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Abstract
The energy equation is an expression of the first law of thermodynamics or the law of conservation of energy. According to

the first law of thermodynamics, the externally applied work to a system is equal to the sum of dissipation energy and

Helmholtz free energy of the system. However, most of the currently available stress–dilatancy relationships are based on

the energy equation of Taylor-Cam Clay type, which hypothesizes that the applied plastic work is equal solely to the

frictional dissipation energy. The Helmholtz free energy has been completely neglected. Recently, observed from acoustic

experiments, it has been recognized that Helmholtz free energy can be caused by deformation mechanisms other than

friction between particles. Thus, it is necessary to include additional terms in the energy equation in order to correctly

model the stress-dilatancy behavior. This paper addresses the issue regarding the balance of this energy equation. Analyses

of experimental results are presented. Specific forms of the frictional energy and Helmholtz free energy are proposed. The

proposed energy equation is verified with the experimental data obtained from Silica sand, Ottawa sand, and Nevada sand.
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1 Introduction

The stress–dilatancy relationship plays an important role in

modeling the stress–strain behaviors of granular materials

[24, 30, 56]. It is fundamentally connected to the laws of

thermodynamics. Using both the First and Second Laws of

Thermodynamics, the Clausius–Duhem inequality is given

by Lemaitre and Chaboche [29]:

U ¼ rij _eij � _W� s _T � QkT;k
T

� 0 ð1Þ

The dissipation energy U is the mechanical work input

_W ¼ rij _eij, subtracting the Helmholtz free energy _W, the

thermal energy s _T , and the thermal dissipation
QkT;k
T , where

rij is stress, eij is strain, T is temperature, s is entropy, and

Q is heat. The Clausius–Duhem inequality implies the

thermodynamic admissibility of any non-dissipative

processes. The thermal dissipation � QkT;k
T is small com-

pared to the mechanical dissipation for slow processes, and

hence it can be neglected [22]. The Clausius–Duhem

inequality now reduces to a more stringent form.

U ¼ rij _eij � _W� s _T � 0 ð2Þ

For isothermal condition U ¼ rij _eij � _W� 0. Thus, the

externally applied work _W ¼ rij _eij is equal to the summa-

tion of Helmholtz free energy _W and the dissipation energy

U.

_W ¼ _Wþ U ð3Þ

According to the second law of thermodynamics, the

dissipation energy U is non-negative, which is vanished

from the system via mechanisms such as frictional dissi-

pation and particle breakage dissipation. In this manuscript,

we study the dilatancy of sand under low confining stress,

in which, the dissipation energy is primarily due to friction.

The dissipation energy due to particle breakage is not

considered.

In Eq. (3), the Helmholtz free energy _W can be either

positive or negative (stored into or released from the sys-

tem, respectively). In the conventional elastoplastic theory,

the Helmholtz free energy consists of only elastic energy.
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However, the Helmholtz free energy stored in the system

generally consists of both elastic energy and plastic energy.

For example, during volume contraction of soil under

applied load, the elastic part of the applied work is stored in

the system (i.e., elastic Helmholtz free energy). The plastic

part of the applied work has two portions: A large portion

is dissipated through friction, and the remaining portion is

stored in the system through non-dissipative rearrangement

of particles (causing an increase in potential energy). The

stored plastic work would increase the plastic Helmholtz

free energy in the system, which can be released during soil

dilation at later stage.

Separating the total work into elastic and plastic com-

ponents [52], the rate of elastic and plastic work can be

written as

_We ¼ _We ð4Þ
_Wp ¼ _Wp þ U ð5Þ

Thus, part of the applied plastic work is dissipated and

the other part is Helmholtz free energy which can either be

stored in or extracted from the system.

Dissipation energy includes friction and breakage. In

this paper the breakage is not considered. The experimental

triaxial test data selected for this study were under small

confining stresses.

Taylor [49] first discussed the basic idea of his famous

‘‘stress-dilatancy’’ theory from the energy perspective, by

using a few data from direct shear tests on Ottawa standard

sand. Taylor’s intuitive assumption is based on the inter-

pretation of incremental work done in a direct shear test,

_W ¼ sduh þ r0duv ð6Þ

In this expression, r0 and s are, respectively, the normal

(effective compressive) and shear stresses, acting on planes

parallel to the shear-plane, and uh and uv are, respectively,

the relative horizontal and vertical displacements. The

increment work is the amount of energy per unit area for

the depth of shear zone (Fig. 1).

It was assumed that all elastic stored energy is negligible

and that practically all the work done by the internal forces

is dissipated (i.e., _W ¼ UÞ and the frictional dissipation is

U ¼ r0 tan/csduh ð7Þ

This hypothesis assumed that /cs is the mobilized fric-

tion angle /cv when the vertical deformation becomes

steady state. By equating Eqs. (6) and (7), we may write the

following stress–dilatancy relationship.

D ¼ � duv
duh

¼ tan/cv �
s
r0

ð8Þ

We retrieve Taylor’s decomposition of shearing strength

of sands into pure ‘‘frictional resistance among grains’’ and

a resistance due to ‘‘interlocking dilation’’ of grains. This

interpretation is an attempt for a plausible micromechanical

interpretation of the strength of sand. In Taylor’s dilatancy

equation, only the frictional dissipation term was

considered.

A similar approach is used in the critical state (or Cam

Clay) model [5, 24, 25, 41, 45] by assuming that the plastic

part of the applied work is equal to the frictional

dissipation.

_Wp ¼ U ð9Þ

Consider an assembly of grains undergoing plastic

dilatant volumetric strain depv and shear strain depq when a

set of mean effective stress p0 and shear stress q are

applied. The plastic work is defined by _Wp ¼ qdepq þ p0depv ,

and the frictional dissipation function is given by U ¼
p0Mdepq where M is the slope of critical state line in p0 � q

plane. Assuming that _Wp is solely equal to the frictional

dissipation, then

qdepq þ p0depv ¼ Mpdepq ð10Þ

where for triaxial condition, p0 ¼ r
0
1 þ 2r

0
3

� �
=3,

q ¼ r1 � r3, eq ¼ e1 � ev=3. The superscript ‘p’ stands for
plastic. It is noted that the applied work expression in

Eq. (10) does not consider the case of non-coaxially

between the principal stress and principal strain rate

directions, which is an elusive feature that influences for

the dilatancy behavior of sand [17, 53]. The corresponding

stress–dilatancy relationship is expressed as:

depv
depq

¼ q

p0
�M ð11Þ

This equation has been applied to several constitutive

models. However, this equation generally over predicts the

dilatancy for dense sand. To avoid this shortcoming, Nova

[36] applied a correction factor c to the dilatancy (i.e.,

c de
p
v

depq
). The value of c appears to be soil type dependent,

= tan

Fig. 1 Dilation of soil in a shear box
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which is found to be 0.5 for Ottawa sand [53], and 0.63–

0.75 for Erksak sand [3]. Instead of being a constant, the

value of c is assumed to be a function dependent on M, e.g.

c ¼ c0M [30] and c ¼ 1�M=3 [48].

Another class of dilatancy equation was proposed by

Rowe [43], Newland and Alley [33], and de Joselin de Jong

[27], Wan and Guo [57], etc. Although Rowe’s dilatancy

equation was not derived directly from thermodynamics, it

was shown by Guo [15] that Rowe’s dilatancy equation can

be recovered from the same assumption that the applied

work is solely equal to the frictional dissipation.

Considering an assembly of grains deformed in a triaxial

condition, Rowe’s stress-dilatancy equation couples the

mobilized friction angle /m to the dilation angle w in the

following convenient form

sinw ¼
sin/m � sin/f

1� sin/m sin/f

ð12Þ

where /f is a material parameter, which changes with

initial void ratio and stress level. For convenience, /f is

commonly assumed to be equal to /cv. The mobilized

friction angle /m and the dilation angle w are defined by

sinw ¼ � dev=de1ð Þ
2� dev=de1ð Þ ; sin/m ¼ r1�r3

r1 þ r3
ð13Þ

A formal derivation of Eq. (12) from Eq. (13) and its

application to triaxial compression and plane strain con-

ditions can be found in the literature [44, 54].

Correction factors for the dilation angle are also found

in the literature. The results of DEM simulations performed

by Alonso-Marroquin et al. [2] and Kruyt and Rothenburg

[28] showed that, irrespective of the inter-particle friction

and particle shape, sinw in Eq. (12) can be replaced by

c sinw with c = 0.58–0.62. Powrie et al. [39] also reported

that c = 0.5.

Another correction factor is suggested to modify the

value /f by the consideration that void ratio is a factor

influencing the dilatancy behavior of sand [57], given by

sin/f ¼ e=ecrð Þasin/cv ð14Þ

where a is a constant, e and ecr are the current void ratio

and the critical void ratio, respectively. For the same rea-

soning to include void ratio as variable, Li and Dafalias

[30] applied a correction factor to the value of M by

M � exp m e� ecrð Þð Þ. However, in the study by Been and

Jefferies [3] on the dilatancy behavior of very loose sand,

they stated that it is unclear that this correction factor, as a

function of void ratios, is an appropriate choice.

The above mentioned stress–dilatancy relationships are

based on the hypothesis that plastic work _Wp consists only

frictional dissipation as shown in Eq. (9). Recently,

observed from acoustic experiments, it has been found that

plastic energy can be produced by deformation mecha-

nisms other than friction between particles [31, 47]. Thus,

it is necessary to account for the Helmholtz free energy in

order to correctly model the stress-dilatancy behavior. A

couple of models have considered the Helmholtz free

energy _W
p
(see Eq. 5) in the energy equation for deriving

the stress–dilatancy relationship, notably by Jefferies [25],

and Collins and Kelly [10]. They demonstrated that the

energy equation fundamentally linked to the dilatancy

behavior of sand.

In the following, the stress–dilatancy relationships

derived by Jefferies [25], and Collins and Kelly [10] will be

briefly described and compared with the experimental

results in a later section. Based on experimental results, we

propose new formulations for the equation of energy con-

servation. The resulted stress–dilatancy relationship is then

compared with other models and with the measured results

for Silica sand [13], Ottawa sand [16], and Nevada sand

[35]. Discussion is given on the process of calibration of

parameters based on measurable physical properties, and

on the influence factors of soil density and confining stress.

2 Existing models considering plastic
Helmholtz free energy

At the micro or contact scale, the major dissipative

mechanism for cohesionless systems is friction, with

plastic slip as the internal variable (see, for example,

Tordesillas and Walsh [51]). There is, however, compelling

evidence from DEM simulations indicating that dissipation

in friction does not equal to the applied plastic work in a

quasi-statically loaded cohesionless assembly [28, 42, 55].

Various studies have shown that, for constitutive models in

which friction serves as the sole source of plastic work, the

dilation is not properly accounted and could over predict

the material stability [1, 6, 32, 51]. Thus, besides the

frictional dissipation U, an additional term of plastic

Helmholtz free energy _W
p
should be added.

qdepq þ p0depv ¼ Uþ _Wp ð15Þ

To consider the term of plastic Helmholtz free energy, a

form of energy equation was proposed by Collins and

Kelly [10], in which the frictional dissipation is similar to

that of the modified Cam Clay model.

U ¼ 1

2
pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
depvð Þ2þ Mdepqð Þ2

q
ð16Þ

And the Helmholtz free energy is assumed to be

dependent on plastic volume strain increment [7]
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_Wp ¼ 1

2
pcde

p
v ð17Þ

where the stress parameter pc is the mean normal consol-

idation pressure, calculated from an elliptical yield locus

given by

pc ¼ p0
M2 þ q=p0ð Þ2

M2
ð18Þ

Thus, the energy equation is written as

qdepq þ p0depv ¼
1

2
pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
depvð Þ2þ Mdepqð Þ2

q
þ 1

2
pcde

p
v ð19Þ

Collins and Hilder [8] showed that the form of energy

equation has a fundamental influence on constitutive

equations such as yield function [11]. From Eq. (19),

Collins and Kelly [54] derived the resultant stress–dila-

tancy relationship, which was found to be identical to that

of modified Cam Clay model [40].

depv
depq

¼ M2 � q=p0ð Þ2
� �

= 2q=p0ð Þ ð20Þ

Another energy equation that contains a Helmholtz free

energy term was suggested by Jefferies [25] in the fol-

lowing form

qdepq þ p0depv ¼ Mp0depq þ Np0depv ð21Þ

The term of Helmholtz free energy is similar to that

proposed by Collins and Kelly [10] in Eq. (17). Jefferies

showed that, from Eq. (21), the stress–dilatancy relation-

ship can be derived as:

depv
depq

¼ 1

1� N
M � q=p0ð Þ ð22Þ

The parameter N is related to the correction factor

c i.e., c ¼ 1� Nð Þ proposed by Nova [36]. Jefferies sug-

gested that commonly, N = 0.25, implying that the dissi-

pation energy is not equal to the externally applied work.

The N value significantly alter the stress-dilatancy

characteristics.

These results demonstrated that the stress–dilatancy

relationship is directly influenced not only by the form of

frictional dissipation function U but also by the form of

Helmholtz free energy _W
p
. In the following, we will

investigate the appropriate forms of the energy equations

for three types of sand (i.e. Silica sand [13], Ottawa sand

[16], and Nevada sand [35]) and their implications to

stress–dilatancy relationship.

3 Experimental results

3.1 Silica sand and its stress–strain results

Drained triaxial test results of Pasabahce silica sand (herein

referred to as silica sand) is selected for this study [13].

Samples were prepared by the following seven grades of

‘‘uniform’’ sands: No.16–No.18, No.18–No.30, No.30–

No.50, No.50–No.80, No.80–No.100, No.100–No.120,

No.120–No.200. Each uniform sand is named by the upper

and the lower sieve numbers. The particle sizes and

specific gravities of these seven uniform sands are listed in

Table 1. The shapes of the sand grains are mostly sub-

angular. The minimum and the maximum void ratios of

samples are tabulated in Table 1.

Samples were prepared at nearly the same relative

density of around 95%. The drained triaxial compression

tests for each sample were performed under three different

effective confining stresses of 100 kPa, 200 kPa, and

400 kPa. Particle breakage was not observed in all tests.

Figure 2 shows stress ratio g ¼ q=p0 (where

q ¼ r1 � r3) and volumetric strain (ev) versus deviatoric

strain (eq) relationships for the 7 uniform silica sands under

three different confining stresses (100, 200, 400 kPa). As

shown in Fig. 2, all samples after peak exhibit softening

behavior in the stress–strain curves and exhibit dilative

behavior in the volumetric strain curves. Following the

initial slight contraction at a small axial strain, dilation then

commences. The dilation continues during shearing until

the deviatoric stress q mobilizes to the peak value. After

the peak deviatoric stress, the stress decreases and

approaches to a stable value (the critical state).

Kinks can be found in the stress ratio vs strain curves for

the samples with particle size from 0.10 to 0.16 mm. For

these samples, shear band were observed at end of test.

Comparing to samples with larger particle sizes, the

Table 1 Properties of the uniform silica sands of seven different

particle sizes

Uniform sand* d50 (mm) emax emin Roundness Gs

#16–#18 1.086 0.901 0.632 0.36 2.624

#18–#30 0.775 0.907 0.64 0.35 2.625

#30–#50 0.424 0.999 0.698 0.26 2.64

#50–#80 0.232 1.102 0.786 0.17 2.646

#80–#100 0.164 1.128 0.768 0.19 2.654

#100–#120 0.137 1.108 0.778 0.18 2.652

#120–#200 0.096 1.099 0.717 0.23 2.654

*The uniform silica sand is artificially graded using two adjacent

sieves. # No.– # No. is the upper and the lower sieve numbers,

respectively, for a uniform sand
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smaller particle samples are likely to form shear band,

which has been explained from the viewpoint of particle

column buckling in the recently published paper [13].

3.2 Ottawa sand and its stress–strain results

Drained triaxial test results of Ottawa sand are also selected

for this study [16]. Particles of Ottawa sand are rounded in

shape. Its emax and emin are 0.811 and 0.503, respectively.

The mean particle size of Ottawa sand D50 = 0.376 mm.

Samples were prepared at three different initial void ratios

(e0 = 0.584, 0.711, and 0.773) and sheared at an effective

confining pressure of 100 kPa. The experimental results of

Ottawa sand are shown in Fig. 3. In these tests, particle

breakage and shear band were not reported.

3.3 Nevada loose sand and its stress–strain
results

Drained triaxial test results of Nevada sand are also

selected for this study [35]. Particles of Nevada sand are

subrounded in shape. Its emax and emin are 0.856 and 0.548,

respectively. The mean particle size D50 is 0.144 mm.

Samples were prepared at initial void ratios

e0 = 0.905 * 0.936 and sheared at an effective confining

pressure of 10 kPa * 200 kPa. The experimental results

of Nevada sand are shown in Fig. 4.

4 Energy equation

4.1 Elastic and plastic strain

According to the elastoplastic theory, the total strain

increment can be decomposed into plastic strain and elastic

strain increments. The elastic shear modulus of an assem-

bly of particles is assumed to be computed by the following

equations [20]:

G ¼ G0pa
cg � e
� �2

1þ e

p0

pa

� �n

ð23aÞ

where the value n ¼ 0:4, pa ¼ 101:3 kPa. The value cg ¼
2:17 for round sand and 2.79 for angular sand. G0 is 160 for

Silica sand and Nevada sand, and 300 for Ottawa sand. e is

current void ratio which can be calculated from initial void

ratio e0 and total volumetric strain ev, i.e.

e ¼ e0 � ev � 1þ e0ð Þ. The elastic bulk modulus K can be

computed by

K ¼ G
2 1þ mð Þ
3 1� 2mð Þ ð23bÞ

In this study, the Poisson’s ratio m is assumed to be 0.2.

The elastic shear and volume strains are computed by

eev ¼ p0=K; eeq ¼ q=3G ð24Þ

Fig. 2 Relationships between stress ratio g ¼ q=p0 (where q ¼ r1 � r3) and volumetric strain (ev) versus deviatoric strain (eq) for the seven

uniform silica sands under three different confining stresses
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It is noted that there is a coupling effect between the

elastic and plastic strains due to the evolution of modulus

with void ratio (i.e., plastic volume strain) [9, 14].

The total derivative of Eq. (24) yields

deev ¼
dp0

K
� p0

K2

oK

op0 dp
0 � oK

oe
de

� �
ð25aÞ

deeq ¼
dq

3G
� q

3G2

oG

op0 dp
0 � oG

oe
de

� �
ð25bÞ

The second terms on the right hand of Eqs. (25a and

25b) are the elastic component coupled with the plastic

strain, which is not exist in the conventional elastoplastic

model. The plastic strain increments, depv and depq can be

obtained by subtracting the calculated the elastic strain

increment from the measured total strain increment.

For a drained triaxial test on sand, the elastic strain

increment is very small compared with plastic strain

increment. And only a portion of elastic strain is coupled

with plastic strain. Therefore, the coupling effect can be

ignored in estimating the plastic work, frictional dissipa-

tion, and plastic Helmholtz free energy, as evaluated in

Appendix A.

4.2 Imbalance of energy equation

In general, the frictional dissipation is a function of plastic

strain increment U depv ; de
p
q

� �
. However, the frictional dis-

sipation energy of Taylor-Cam Clay type is only a function

of shear strain (i.e.Mp0depq, see Eq. 10). In this restricted

context, the form in Eq. (10) is not ideal because it does not

consider the frictional dissipation due to plastic volume

strain [10]. On the other hand, the frictional energy of

Taylor-Cam Clay type has been widely used in various

constitutive models [12, 24, 36, 58] and the hypothesis has

been supported by several studies of DEM simulations

[18, 28], in which, the frictional dissipations calculated

Fig. 3 Relationships between stress ratio g and volumetric strain (ev) versus axial strain (ea) for Ottawa sand with three different initial densities
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Fig. 4 Relationships between stress ratio g and volumetric strain (ev) versus axial strain (ea) for Nevada sand with different confining stresses
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from inter-particle contacts were found to be very close to

that computed from the Taylor-Cam Clay model. Thus, in

the first approximation, we use the expression U ¼ Mp0depq
for the frictional dissipation energy.

To compare the magnitudes of _Wp and U, we plot the

externally applied plastic work _Wp and the frictional

energy dissipation U in Fig. 5 for dense Silica sand (#30–

#50, see Table 1) with three different confining stresses, in

Fig. 6 for Ottawa sand with three different initial densities,

and in Fig. 7 for loose Nevada sand with three different

confining stresses. Note that the dissipation energy is a

function of plastic shear strain rate. The plastic shear strain

rate is not zero at the point of zero shear strain. Therefore,

both the calculated dissipation energy and total work are

nonzero at zero strain.

It is noted that for all cases in Figs. 5, 6 and 7, the plastic

applied work is not equal to frictional dissipation, i.e.,
_Wp 6¼ U. For silica sand, the difference between the two

values seems to be proportional to confining stress. For

Ottawa sand, the difference between these two values are

significantly larger for dense sand and negligibly small for

very loose sand. Similarly, the difference is insignificant

for loose Nevada sand.

The difference between _Wp and U may be caused by two

reasons: (1) the Helmholtz free energy should be consid-

ered in additional to the frictional dissipation energy, as

indicated in the first law of thermodynamics (see Eq. 3)

and (2)the expression of the frictional energy estimated by

Mp0depq could be incorrect and overestimated. These two

possible causes are discussed below.

4.3 Consideration of Helmholtz free energy

According to thermodynamics (see Eq. 3), the term of

Helmholtz free energy _W
p
is generally required to balance

the externally applied plastic work. Thus, the energy

equation of Taylor-Cam Clay type becomes

qdepq þ p0depv|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
_Wp

� Mp0depq|fflfflffl{zfflfflffl}
U

þ _W
p ð26Þ

The dissipation energy is a quantity that must always be

positive. However, Helmholtz free energy _W
p
can be either

Fig. 5 Plastic work and frictional dissipation energy versus shear strain for dense Silica sands under three different confining pressures (100 kPa,

200 kPa, and 400 kPa). The calculated plastic energy is normalized per unit axial strain under the triaxial loading condition

Fig. 6 Plastic work and frictional dissipation energy versus shear strain for Ottawa sands under three different initial densities (dense, loose and

very loose). The calculated plastic energy is normalized per unit axial strain under the triaxial loading condition
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positive or negative. Figures 5, 6 and 7 show, for loose

sand, _Wp [U, thus according to energy balance, the free

energy _W
p ¼ _Wp � U is positive, which means that part of

the applied plastic work is dissipated, and the other part

(i.e., _W
p
) is stored into the internal energy of particle

system.

On the other hand, _Wp\U for dense sand, thus the free

energy _W
p ¼ _Wp � U is negative, which means that not

only all applied plastic work is dissipated, but also addi-

tional plastic work (i.e., _W
p
) is dissipated. The additional

part is extracted from the available internal energy of the

particle system.

The Helmholtz free energy _W
p
is also term as free

energy because it can be either stored or extracted from the

system. It is noted that whether the free energy is positive

or negative is associated with the shear induced volume

contraction or dilation in a particle system.

In a triaxial test for a loose specimen, volume contrac-

tion is caused by rearrange of particles, which leads to a

collapsing of voids and an increase of internal energy of the

system. In contrast, for a dense specimen, dilation of

specimen is caused mainly by buckling of force chains

[13, 37, 50, 60] and the associated growth of surrounding

voids [23, 37, 38]. Thus, the mechanism of buckling of

force chains characteristically involves the collective

release of stored energy.

Figures 5, 6 and 7 show that the difference between

applied work and frictional dissipation energy (i.e., the

Helmholtz free energy _W
p
) is caused by volume contrac-

tion or dilation in a particle system. Thus, it is reasonable

to assume that the Helmholtz free energy is a function of

plastic volume strain increment, i.e. _W
p ¼ Np0depv . Thus,

Eq. (26) becomes:

qdepq þ p0depv ¼ Mp0depq þ Np0depv ð27Þ

Let D ¼ �depv=de
p
q, which is positive for dilation, then

the energy Eq. (27) can lead to a stress–dilatancy rela-

tionship in the form:

gð2Þ ¼ M þ 1� Nð ÞD ð28Þ

where gð2Þ ¼ q=p0 represents the stress ratio calculated

from Eq. (28). When N ¼ 0, Eq. (28) reduces to the classic

form of Taylor-Cam Clay type (see Eq. 11)

gð1Þ ¼ M þ D ð29Þ

where gð1Þ ¼ q=p0 represents the stress ratio calculated

from the classic Taylor-Cam Clay.

The solid line in Fig. 8 shows a typical measured stress–

strain curve for dense sand, which has three characteristic

states—namely, the phase transformation state (the onset

point where the volumetric-strain increment is zero at

g ¼ gd), the peak sate (where the stress peaks at g ¼ gmax),

and the critical state at large shear strain (where the vol-

umetric-strain increment and stress increment are both zero

at g ¼ M). The maximum dilatancy Dmax is defined as the
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maximum ratio of depv=de
p
q, which is corresponding to the

peak state.

The blue dashed line gð1Þ represents the curve calculated
from Eq. (29) without consideration of the term of Helm-

holtz free energy. The red dashed line gð2Þ represents the

curve calculated from Eq. (28) with consideration of the

term of Helmholtz free energy, which fits better to the

measured curve (in solid line).

At peak stress state, Eq. (29) becomes

g 1ð Þ
max ¼ M þ Dmax ð30Þ

And Eq. (28) becomes

g 2ð Þ
max ¼ M þ 1� Nð ÞDmax ð31Þ

We want to match the peak stress ratio g 2ð Þ
max with the

measured peak stress ratio gmax. Substituting g 2ð Þ
max ¼ gmax

into Eq. (31), it leads to

N ¼ 1� gmax �Mð Þ=Dmax ð32Þ

The value of N can be obtained from Eq. (32) based on

the measured values of gmax and Dmax.

Equation (32) can be used to determine the value of

N for most densities of sand, in which peak state exists in

their stress–strain curves. However, for cases of very loose

sand, peak is not revealed. The value of N can be deter-

mined by try and error for best fitting the experimental

data.

Using Eq. (32), the calibrated N values for silica sand

are 0.49 for the confining stress of 100 kPa, 0.41 for the

confining stress of 200 kPa, and 0.31 for the confining

stress of 400 kPa. The calibrated N values for Ottawa sand

are 0.35 for dense sand, 0.38 for loose sand, and 0.22 for

very loose sand. The calibrated N values for Nevada loose

sand are 0.607 for all confining stresses. The measured

values M = 1.357 for Silica sand, M = 1.183 for Ottawa

sand, and M = 1.23 for Nevada sand.

To evaluate the calibrated values of N for the Helmholtz

free energy term, we compare the calculated energy

(Uþ _W
p
) from Eq. (27) with the measured _Wp for Silica

sand plotted in Fig. 9. We also compare the energy curves

for Ottawa sand plotted in Fig. 10, and for Nevada sand

plotted in Fig. 11.

Fig. 9 Work _Wp and plastic energy (Uþ _W
p
) versus shear strain for Silica sand under three different confining stresses. The calculated plastic

energy is normalized per unit axial strain under the triaxial loading condition

Fig. 10 Work _Wp and plastic energy (Uþ _W
p
) versus shear strain for Ottawa sand under three different initial densities. The calculated plastic

energy is normalized per unit axial strain under the triaxial loading condition
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Figures 9, 10 and 11 show that, with the consideration

of _W
p
, agreements between the two energy curves are

largely improved than those shown in Figs. 5, 6 and 7

computed without consideration of _W
p
.

It is noted that the value N can be determined from two

readily measurable parameters gmax and Dmax as shown in

Eq. (32). The physical meaning of N represents the mag-

nitude of shear resistance ðgmax �MÞ that can be produced

from the dilation of grains Dmax. The N value is likely to be

associated with the shape and surface roughness of parti-

cles. Figure 12 shows the measured value of (gmax �M)

versus Dmax for Silica sand for seven different particles

sizes (Table 1) and for Ottawa sand. For each type of soil,

the relationship can be approximated by a linear line. The

slope of the line is 1� Nð Þ. It shows that the average value
of N is 0.37 for Erksak sand [3] and is 0.5 for Silica sand,

compared to N = 0 for the Taylor-Cam Clay model.

Equation (31) is comparable with the Bolton’s dilatancy

equation [4],

/p � /cv ¼ bwp ð33Þ

where wp is the angle of dilation at peak state, /p and /cv

are the friction angles of friction at peak state and at critical

state, respectively. It is noted that the physical meaning of

b is equivalent to that of 1� Nð Þ. In Fig. 12, the value of

N can also be determined from the b coefficient of the

Bolton’s dilatancy equation.

4.4 Additional imbalance due to the incorrect
expression of frictional dissipation energy

Although Figs. 9, 10 and 11 show that the balance of

energy equation is improved with the term of Helmholtz

free energy, the imbalance are still noticeable between the

applied work and the sum of dissipation energy U and

Helmholtz free energy _W
p
. The imbalance of energy

equation is not negligible for the region of small shear

strain, particularly prior to peak stress state for the dense

sand. Therefore, an additional energy dE is needed to

balance the equation.

qdepq þ p0depv ¼ Mp0depq þ Np0depv þ dE ð34Þ

Figures 9, 10, and 11 show that the energy dE is nega-

tive and is a function of plastic shear strain epq. This dis-

crepancy is attributed to the overestimated frictional energy

using the expression Mp0depq.

Let b be the ratio of dE to the frictional dissipation, i.e.

b epq

� �
¼ �dE=Mp0depq, the energy Eq. (34) can be

expressed by

qdepq þ p0depv ¼ 1� b epq

� �� �
Mp0depq þ Np0depv ð35Þ

In Eq. (35), the term of 1� b epq

� �� �
Mpdepq represents

the frictional energy dissipation. Note that the energy dE is

negative, thus b epq

� �
is positive, which means a reduction

of the estimated frictional energy. The function of 1�

b epq

� �
indicates that the value of frictional dissipation is
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not a constant, but varies with the shear strain epq. This

hypothesis is examined below.

The energy Eq. (35) leads to the following stress-dila-

tancy relationship,

gð3Þ ¼ 1� b epq

� �� �
M þ 1� Nð ÞD ð36Þ

where the function b epq

� �
is represented by the shaded zone

schematically shown in Fig. 13. gð3Þ represents the value of
g calculated from Eq. (36). Since Eq. (36) is advocated so

that gð3Þ best fits the measured curve, thus assuming

gð3Þ ¼ g, and Eq. (36) can be expressed as

1� b epq

� �
¼ g� 1� Nð ÞDð Þ=M ð37Þ

Using Eq. (37) and experimental data,1� b epq

� �
is

plotted in Fig. 14a for Silica sand, Fig. 14b for Ottawa

sand, and Fig. 14c for Nevada sand, which show that the

shape of b epq

� �
resembles an exponential curve, given by

b epq

� �
¼ b0 � exp �mepq

� �
ð38Þ

At the initial state g ¼ 0; epq ¼ 0, and D ¼ D0. From

Eqs. (37) and (38), we obtain

b0 ¼ 1þ 1� Nð ÞD0=M ð39Þ

The dilatancy D0 at initial state can be obtained from

experiments, which is negative (i.e., contractive). Thus, the

value b0, calculated from Eq. (39), is less than 1. The value

of b0 is 0.83 for Silica sand, 0.73 for Ottawa sand, and 0.65

for Nevada sand.

For dense sand, the value m in Eq. (38) can be calibrated

from the measures stress ratio gd at the onset of dilation

(D ¼ 0Þ, as shown in Fig. 13. At the onset of dilation g ¼
gd and epq ¼ epq;d, from Eq. (37) and Eq. (38), we obtain

1� gd=M ¼ b0 � exp �mepq;d

� �
ð40Þ

For cases of loose sand, in which dilation is not

revealed, the value of m can be determined by try and error

for best fitting Fig. 14 plotted from experimental data.

With Eq. (40), the m value calibrated for Silica sand

(#30–#50) is 0.95 for 100 kPa, 0.95 for 200 kPa, and 0.70

for 400 kPa. The m value for Ottawa sand is 5 for dense

sand, 3 for loose sand, and 5 for very loose sand. The m

value for Nevada sand is 0.35 for confining stresses 30,

150, 200 kPa. It is noted that the value of b0 can be

regarded as 1, which is insensitive to the fitted results.

Note that the term of 1� b epq

� �� �
Mpdepq represents the

frictional energy dissipation. The function of 1� b epq

� �
in

Fig. 14 indicates that the value of frictional dissipation is

initially nearly zero, increases with the shear strain epq and

approach to one near peak state. The dependency of shear

strain is a reasonable hypothesis because frictional dissi-

pation is induced from mobilization between contacts due

to the relative motion between contacts via rolling and

sliding. The amount of mobilized contacts depends on the

level of shear deformation. Thus, frictional dissipation is

influenced by the level of shear strain.

In the initial stage of shearing, the number of mobilized

particle contacts is only a small portion of the total number

of particles. The number of mobilized particle contacts

increases with shear stress level. Figure 14 shows that the

frictional energy, started from a small value, increases

quickly in an exponential form, approaching to the value of

Mp0depq around the level of peak stress. Whereupon, after

peak state, the assembly is fully mobilized with 1� b
being equal to 1, indicating that the frictional dissipation

energy is accurately represented by Mp0depq. Therefore, the

frictional energy of Taylor-Cam Clay type is a good

approximation for the range of large shear strain, but needs

to be modified as a function of epq in the range of small

shear strain.

From Eq. (40), m can be solved with measured gd and

the corresponding epq;d at the onset of dilation. Since b0 can

be regarded as 1, Eq. (40) can be written as

ln
M

M � gd

� �
¼ mepq;d ð41Þ

=
/
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=
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= − ,

,
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Fig. 13 Schematic illustration of g computed by Eq. (36)
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Figure 15 shows the measured value of ln M
M�gd

� �
versus

epq;d for Silica sand of seven different particle sizes (see

Table 1) and Ottawa sand (see Fig. 3). For a line con-

necting each data point to the point of origin, its slope is

m. The range of m for Silica sand shown in Fig. 15 is about

from 0.5 to 2.0.

According to the measured results of the relationship

between gd and epq;d, the calculated value m ranges from 0.5

to 2.0 for silica sand, and from 2.4 to 5 for Ottawa sand.

The calculated value of m is also correlated with gd=M as

shown in Fig. 16.

4.5 Summary of the proposed stress–dilatancy
relationship

Based on the consideration of a Helmholtz free energy and

specific forms of the frictional dissipation energy into the

energy equation, a stress–dilatancy relationship was

derived and summarized in Table 2.

5 Model evaluation

The comparison of predicted and measured stress–dila-

tancy relationship is shown in Fig. 17a for dense silica sand

(#30–#50) with three confining stresses, Fig. 17b for

Ottawa sand with three initial densities, and Fig. 17c for

loose Nevada sand with three confining stresses. The pre-

dicted stress-dilatancy curve is computed based on the

measured volume strain versus shear strain curve. For all

dense sands, the dilatancy curves are not linear lines. The

curves show similar patterns of back-hook after peak point

for various densities and confining stresses, but the curves

show different magnitude of Dmax.

Using the proposed stress–dilatancy relationship

(Eq. 36), the predicted stress-dilatancy curves capture the

back-hook features and are in good agreement with the

measured results. The proposed stress-dilatancy model

reduces to Nova’s model when b epq

� �
¼ 0; (i.e. Equa-

tion 28) and further reduces to Cam Clay model when N ¼
0 (i.e. Equation 29). In Fig. 17, the measured data are also

compared with those predicted by Cam Clay, modified

Cam Clay models and Nova’s model. Note that the stress–
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dilatancy relationship of modified Cam Clay model

(Eq. 20) is in the same form as that derived by Collins and

Kelly [10]. The stress–dilatancy relationship of Nova’s

model (Eq. 22) is in the same form as that derived by

Jefferies [25]. The modified Cam Clay model gives a curve

line, predicting more contraction and less dilation

Table 2 Summary for the proposed stress–dilatancy relationship

Description Equations or parameters

Proposed stress–dilatancy relationship D ¼ 1
1�N g� 1� bð ÞMð Þ

Dilation D ¼ �depv=de
p
q

Stress ratio g ¼ q=p0

Correction parameter for frictional dissipation energy b ¼ exp �mepq

� �

Required parameters M: Critical state stress ratio

N: Helmholtz free energy coefficient

m: Correction exponent for frictional dissipation energy
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Fig. 17 Predicted Stress-dilatancy curves for a Silica sand, b Ottawa sand, and c Nevada sand, compared with measure results and other models
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compared with the linear line predicted by Cam Clay

model. The Nova’s model also gives a linear line with its

slope fitting to the post-peak portion. All the three models

cannot capture the portion of curves prior to peak state.

To further evaluate the accuracy of the model, we

compare the predicted and measured evolution of volume

strain. The predicted eq � ev strain curves are computed

based on the measured eq � q strain curve. The predicted

results are shown for Silica sand (#30–#50 particle size)

with three different confining stresses in Fig. 18. The curve

predicted by modified Cam Clay model, Cam Clay model,

and Nova’s model do not agree with the measured curves.

Among the three models, Nova’s model predicts better

curve shape after peak stress state (about eq ¼ 7%Þ.
However, due to the discrepancies in the region before the

peak point, the Nova’s model does not provide good

overall predictions. The proposed model predicts curves in

good agreement with the measured curves over all range of

strain.

The predicted results are shown for Ottawa sand with

three different initial densities in Fig. 19. Similar discrep-

ancies are displayed in curves predicted by modified Cam

Clay model, Cam Clay model, and Nova’s model. Like-

wise, the Nova’s model gives good prediction for the curve

shape after peak stress state. The proposed model predicts

curves in good agreement with the measured curves. The

good performance of the proposed model is also demon-

strated by the predictions for loose Nevada sand shown in

Fig. 20.

Fig. 18 Predicted volume strain curve for Silica sand compared with measure results and other models

Fig. 19 Predicted volume strain curve for Ottawa sand compared with measure results and other models
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Fig. 20 Predicted volume strain curve for Ottawa sand compared with

measure results and other models

Acta Geotechnica

123



The proposed model is also applied to the other 18 tests

on Silica sand with different particle sizes (see Table 1).

The predicted results in Fig. 21 show similar back-hook

patterns. The predicted pre-peak curves have a good overall

agreement with the measured stress-dilatancy curves. Thus,

the predicted results of volume strain evolution match well

with the measured results. It is noted that for samples with

small particle size (0.23 mm–1.09 mm), the occurrence of

shear band was observed at the end of test. For these

samples, the critical state stress ratios were determined by a

multiple-test method for dense sand suggested by several

investigators [16, 21, 26, 46, 59]. Appendix B is provided

to evaluate the localization effect.

6 Discussion

The classic energy equation of Taylor-Cam Clay type

considers only frictional dissipation energy, and involves

only one parameter (i.e. critical state stress ratio M). This

parameter assures the energy balance at the critical state as

shown from the experimental results in Figs. 4, 5 and 6. In

the proposed energy equation, for achieving a better energy

balance, we have: (1) considered the Helmholtz free

energy, and (2) modified the expression of frictional dis-

sipation energy. Accordingly, besides the critical state

parameter M, it involves two more parameters (N and m),

which are associated with the peak stress state gmax and the

phase transformation state gd. The energy balance is

assured for the three levels of shear deformation: the phase

transformation state, the peak state, and the critical state.

A parametric comparison is given below to show the

effect of parameters N and m on a dense sand. Figure 22a

shows the predicted stress-dilatancy curves for m ¼ 0:95,

N ¼ 0� 0:75. The predicted stress-dilatancy curves are

computed based on the measured volume strain versus

shear strain curve for Silica sand (#30–#50 particle size)

with 100 kPa confining stress. The value of N does not

have effect on the curves prior to the phase transformation

state, but considerably alters the slopes after the peak state.

The effect of m on the predicted stress-dilatancy curves is

shown in Fig. 22b for N ¼ 0:49, m ¼ 0:5� 2. The value of

m does not have effect on the post-peak curve, but signif-

icantly alters the curve shape before peak.

Correspondingly, Fig. 23a shows the predicted volume-

shear strain curves for m ¼ 0:95, N ¼ 0� 0:75. In this

case, the predicted volume-shear strain curves are com-

puted based on the measured stress versus shear strain

curve for Silica sand (#30–#50 particle size) with 100 kPa

confining stress. The value of N does not have effect on the

curves prior to the phase transformation state, but signifi-

cantly influences the slopes of volumetric-shear strain

Fig. 21 Predicted stress–dilatancy relationships compared with measure results for Silica sand with different particle sizes
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curves after the peak state (about 7% of eqÞ. The effect of m
on the predicted volume-shear strain curves is shown in

Fig. 23b for N ¼ 0:49, m ¼ 0:5� 2. In Fig. 23b, the slopes

of volumetric-shear strain curves after the peak state are

nearly parallel for various values of m. The value of m,

however, substantially influences on the slopes prior to the

phase transformation state.

A parametric comparison is also given to show the effect

of parameters N and m on loose sand. Figure 24a shows the

predicted stress-dilatancy curves for m ¼ 5:0,

N ¼ 0� 0:75. The predicted stress-dilatancy curves are

computed based on the measured volume strain versus

shear strain curve for Ottawa sand with void ratio 0.773

(very loose condition). The effect of N mainly alters the

slopes at higher stress level (g[ 0:8Þ. Effect of m is shown

in Fig. 24b for the predicted curves with N ¼ 0:22,

m ¼ 1� 10. The value of m does not have effect on the

curve at higher stress level, but considerably alters the

curve shape at lower stress level.

Similarly, Fig. 25a shows the predicted volume-shear

strain curves for m ¼ 5, N ¼ 0� 0:75. In this case, the

predicted volume-shear strain curves are computed based

on the measured stress versus shear strain curve for the

very loose Ottawa sand. The value of N significantly

influences on the slopes of volumetric-shear strain curves

over all strain range. Figure 25b shows the predicted

curves for N ¼ 0:22, m ¼ 1� 10. In Fig. 25b, the slopes of

volumetric-shear strain curves, in the range of eq [ 3%, are

parallel for various values of m. The value of m, however,

considerably influences the slopes of curves in the range of

eq\3%.

The quantities of gmax and gd influenced by confining

stress and soil density are vital to the stress-dilatancy

behavior. The two parameters ðgmax �MÞ and ðgd �MÞ

Fig. 22 Parametric comparisons of predicted stress–dilatancy relationships for dense sand: a various N keeping m = 0.95, and b various

m keeping N = 0.49

Fig. 23 Parametric comparisons of predicted volume versus shear strain relationships for dense sand: a various N keeping m = 0.95, and

b various m keeping N = 0.49
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Fig. 24 Parametric comparisons of predicted stress–dilatancy relationships for very loose sand: a various N keeping m = 5, and b various

m keeping N = 0.22

Fig. 25 Parametric comparisons of predicted volume versus shear strain relationships for very loose sand: a various N keeping m = 5, and

b various m keeping N = 0.22
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for Silica sand are plotted in Fig. 26a as a function of

confining stress. These two curves have exponential shape

approaching to the base line. These two parameters ðgmax �
MÞ and ðgd �MÞ for Ottawa sand are also plotted in

Fig. 26b as a function of density, which have similar pat-

terns as those in Fig. 26a. The effects of density on the

peak state friction angle and the phase transformation state

friction angle have been studied by many investigators

[16, 19, 21, 34] in abundant references. Thus, using the

present model, the stress-dilatancy behavior can be con-

veniently studied for the effect of density and confining

stress.

7 Summary and conclusion

In this study, energy equation of Taylor-Cam Clay type is

investigated for sand without particle breakage. In addition

to the frictional dissipation, we considered the Helmholtz

free energy originated from the dilation due to force chain

buckling. This essential physics mechanism is missed in

the classic stress-dilatancy models. We also found that

energy equation of Taylor-Cam Clay type does not satisfy

the energy conservation. The frictional dissipation energy

is overestimated for the small shear stress level, particu-

larly in dense sand. The discrepancies of energy balance

need to be corrected in order to predict correctly the dila-

tancy behavior. The proposed model is evaluated using

experimentally measured results. It shows that the model

can correctly capture the back-hook features of stress-di-

latancy and can predict the evolution of volume with

excellent agreement with measured results.

Two parameters N and m for this model can be cali-

brated from the measured stress ratios at peak state and at

phase transformation state in a triaxial test. The stress

ratios, gd and gmax, influenced by density and confining

pressure have been extensively studied in the literature.

Thus, the model provides a tool for further study the

dilatancy behavior influenced by density and confining

pressure.

Appendix A: Evaluating the coupling effect

The common assumption in elastoplastic theory is adopted

to decompose the strain into elastic and plastic parts (de-

noted by ‘e’ and ‘p’ superscripts), i.e.,

deq ¼ deeq þ depq; dev ¼ deev þ depv ðA:1Þ

Here, we evaluate the elastic–plastic coupling effect on

the calculated results of elastic and plastic strains. Elastic

strains follow Hooke’s law given as

eeq ¼
q

3G
; eev ¼

p0

K
ðA:2Þ

In this study, shear modulus and bulk modulus are

considered as a function of void ratio e and applied mean

stress p0 (see Eqs. 23a and 23b). The function can be

expressed as Eqs. (A.3a and A.3b), in which, G0,

K0; e0; cg; pa and n are constants.

G ¼ G p0; eð Þ ¼ G0pa
cg � e
� �2

1þ e0

p0

pa

� �n

ðA:3aÞ

K ¼ K p0; eð Þ ¼ 2 1þ mð Þ
3 1� 2mð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

K0

G p0; eð Þ ðA:3bÞ

Taking the total derivative on Eq. (A.2) yields

deeq ¼
dq

3G
� q

3G2

oG

op0
dp0 þ oG

oe
de

� �
ðA:4aÞ

deev ¼
dp0

K
� p0

K2

oK

op0
dp0 þ oK

oe
de

� �
ðA:4bÞ

where oG
op0 ¼ nG

p0 ,
oG
oe ¼ G0pa

p0

pa

� �n

1� 1þcg
1þe

� �2
� �

,

oK
op0 ¼ K0

oG
op0,

oK
oe ¼ K0

oG
oe , derived from Eqs. (A.3a and A.3b).

On the right side of Eqs. (A.4a and A.4b), there are two

terms for both shear and volumetric elastic strain incre-

ments. The second term represents the coupled strain

increment. To evaluate the effect of the coupled strain

increment, two methods (named ‘‘Method 1’’ and ‘‘Method

2’’) were employed to calculate the elastic and plastic

strains in this appendix. In ‘‘Method 1’’, the coupled strain

increment is not considered, while in ‘‘Method 2’’, the

coupled strain increment is considered. Noted that in the

elastoplastic constitutive model, ‘‘Method 1’’ is adopted.

An example is shown for Silica sand (#30–#50, see

Table 1) with three different confining stresses. The cal-

culated elastic strains and the calculated plastic strains

from both methods are plotted in Fig. 27 and in Fig. 28,

respectively. As shown in Fig. 27, there is a considerable

difference for the calculated elastic strain from both

methods. With the consideration of the coupled strain

increment, the calculated elastic strain from ‘‘Method 2’’ is

less than that from ‘‘Method 1’’. However, since elastic

strain is a small fraction of total strain, the difference of the

calculated plastic strain between ‘‘Method 1’’ and ‘‘Method

2’’ is negligible, as shown in Fig. 28.

The plastic energy per unit axial strain at ith strain step

in these methods was estimated as follows.

_Wp
i ¼

qi epq;i � epq;i�1

� �
þ p

0
i epv;i � epv;i�1

� �

e1;i�1 � e1;i�1

ðA:5aÞ
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Ui ¼
1� b epq;i

� �� �
Mp

0
i epq;i � epq;i�1

� �

e1;i�1 � e1;i�1

ðA:5bÞ

_W
p

i ¼
Np

0
i epv;i � epv;i�1

� �

e1;i�1 � e1;i�1

ðA:5cÞ

where b is calculated using Eq. (38).

The estimated plastic work, frictional dissipation, and

plastic Helmholtz free energies for the Silica sand are

plotted in Fig. 29. Due to the trivial difference in the

plastic strain between these two methods, the difference in

each plastic energy between these two methods is expected

to be negligible as shown Fig. 29. Therefore, the effect of

coupled strain increment is insignificant with respect to the

study of balance of plastic work, frictional dissipation, and

plastic Helmholtz free energy.

Appendix B: Evaluating strain localization
effect

For some dense sand samples used in this study, strain

localization (i.e. shear band or bifurcation) takes place after

peak stress. After strain localization occurs, the global

stress–strain behavior of the soil is largely dependent on

Fig. 27 a Elastic shear strain and b elastic volumetric strain in ‘‘Method 1’’ and ‘‘Method 2’’

Fig. 28 a Plastic shear strain and b plastic volumetric strain in ‘‘Method 1’’ and ‘‘Method 2’’
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the soil in the shearing zone, which has essentially reached

a constant volume state. Therefore, the global stress–strain

and volumetric strain curves after the occurrence of shear

band would not represent the behavior of uniformly

deformed material due to non-homogeneous deformation.

To avoid the influence of localization, Nova [36] and

Bolton [4] suggested to determine the stress-dilatancy

making use of multiple test samples under different con-

fining pressures or different void ratios for the same

granular soil, using the measured peak stress ratios and the

corresponding dilatancy. Since, at peak stress state, the

localization just starts to develop in a sample, thus the

samples can be regarded as uniformly deformed. This

method has been adopted by many researchers

[16, 21, 26, 46, 59].

In this study, for these samples with shear band, we use

test results from three different confining stresses (i.e.,

100 kPa, 200 kPa, and 400 kPa) to obtain the relationship

between the peak stress ratio and the corresponding dila-

tancy by fitting the dilation equation (Eq. 31). For the three

tests shown in Fig. 30, the fitted solid line from multiple

samples is considered to be the stress-dilatancy behavior of

Fig. 29 a Plastic work, b dissipation energy, and c plastic Helmholtz free energy in ‘‘Method 1’’ and ‘‘Method 2’’

Fig. 30 The post-peak stress-dilatancy responses for the samples with occurrence of strain localization (the symbols are the measured points of

three confining pressures for each sand, the black lines are the fitted stress–dilatancy relationship from multiple-test method)
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a uniformly deformed sample without localization. Fig-

ure 30 shows minor deviations between the post-peak

stress-dilatancy responses (data symbols) and the fitted

solid line, which means that the critical state stress ratio

M needs to be corrected for these tests with localizations.

In the proposed stress-dilatancy model, three parameters

are required, M, N, and m (see Sect. 4.5). Among the three

parameters, the values of N and m are not influenced by

strain localization, because the value of N is obtained from

the energy curves considering only peak state. The value of

m is obtained mainly from the energy curves before peak

state. However, the value M is affected by strain localiza-

tion, which should be obtained from multiple-test method.

Comparing the predictions shown in Figs. 17 and 30, the

predicted curves using the proposed model agree well with

the fitted dilatancy relationship from multiple-test method.
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