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Abstract

The energy equation is an expression of the first law of thermodynamics or the law of conservation of energy. According to
the first law of thermodynamics, the externally applied work to a system is equal to the sum of dissipation energy and
Helmholtz free energy of the system. However, most of the currently available stress—dilatancy relationships are based on
the energy equation of Taylor-Cam Clay type, which hypothesizes that the applied plastic work is equal solely to the
frictional dissipation energy. The Helmholtz free energy has been completely neglected. Recently, observed from acoustic
experiments, it has been recognized that Helmholtz free energy can be caused by deformation mechanisms other than
friction between particles. Thus, it is necessary to include additional terms in the energy equation in order to correctly
model the stress-dilatancy behavior. This paper addresses the issue regarding the balance of this energy equation. Analyses
of experimental results are presented. Specific forms of the frictional energy and Helmholtz free energy are proposed. The
proposed energy equation is verified with the experimental data obtained from Silica sand, Ottawa sand, and Nevada sand.
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1 Introduction processes. The thermal dissipation —27* is small com-

pared to the mechanical dissipation for slow processes, and

The stress—dilatancy relationship plays an important role in -~ pence it can be neglected [22]. The Clausius—Duhem
modeling the stress—strain behaviors of granular materials inequality now reduces to a more stringent form.

[24, 30, 56]. It is fundamentally connected to the laws of
thermodynamics. Using both the First and Second Laws of

Thermodynamics, the Clausius—Duhem inequality is given For isothermal condition ® = aé; — ¥ > 0. Thus, the
by Lemaitre and Chaboche [29]: '

(I)ZGijéij*\PfsTZO (2)

externally applied work W = g€ is equal to the summa-

D = ;i — Y _ T QkTT ok >0 (1) tion of Helmholtz free energy ¥ and the dissipation energy
D.
The dissipation energy ® is the mechanical work input W=V¥+d (3)

W= 0;;é;j, subtracting the Helmholtz free energy ¥, the

thermal energy s7', and the thermal dissipation QkTT“', where

ojj is stress, &; is strain, T is temperature, s is entropy, and
Q is heat. The Clausius—Duhem inequality implies the
thermodynamic admissibility of any non-dissipative

According to the second law of thermodynamics, the
dissipation energy ® is non-negative, which is vanished
from the system via mechanisms such as frictional dissi-
pation and particle breakage dissipation. In this manuscript,
we study the dilatancy of sand under low confining stress,
in which, the dissipation energy is primarily due to friction.
The dissipation energy due to particle breakage is not
considered.
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540 Yibing Deng In Eq. (3), the Helmholtz free energy ¥ can be either

yibingdeng @engin.umass.edu; yibingdeng @outlook.com positive or negative (stored into or released from the sys-
| tem, respectively). In the conventional elastoplastic theory,
Department of Civil and Environmental Engincering, the Helmholtz free energy consists of only elastic energy.

University of Massachusetts, Amherst, MA 01003, USA

Published online: 17 November 2021 @ Springer


http://orcid.org/0000-0002-3595-5099
http://orcid.org/0000-0001-5343-1988
http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-021-01389-1&amp;domain=pdf
https://doi.org/10.1007/s11440-021-01389-1

Acta Geotechnica

However, the Helmholtz free energy stored in the system
generally consists of both elastic energy and plastic energy.

For example, during volume contraction of soil under
applied load, the elastic part of the applied work is stored in
the system (i.e., elastic Helmholtz free energy). The plastic
part of the applied work has two portions: A large portion
is dissipated through friction, and the remaining portion is
stored in the system through non-dissipative rearrangement
of particles (causing an increase in potential energy). The
stored plastic work would increase the plastic Helmholtz
free energy in the system, which can be released during soil
dilation at later stage.

Separating the total work into elastic and plastic com-
ponents [52], the rate of elastic and plastic work can be
written as

e = e (4)
WP =9 + (5)

Thus, part of the applied plastic work is dissipated and
the other part is Helmholtz free energy which can either be
stored in or extracted from the system.

Dissipation energy includes friction and breakage. In
this paper the breakage is not considered. The experimental
triaxial test data selected for this study were under small
confining stresses.

Taylor [49] first discussed the basic idea of his famous
“stress-dilatancy” theory from the energy perspective, by
using a few data from direct shear tests on Ottawa standard
sand. Taylor’s intuitive assumption is based on the inter-
pretation of incremental work done in a direct shear test,

W = tduy, + o'du, (6)

In this expression, ¢’ and t are, respectively, the normal
(effective compressive) and shear stresses, acting on planes
parallel to the shear-plane, and u;, and u, are, respectively,
the relative horizontal and vertical displacements. The
increment work is the amount of energy per unit area for
the depth of shear zone (Fig. 1).

'
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— T = 0 tang,s

Fig. 1 Dilation of soil in a shear box
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It was assumed that all elastic stored energy is negligible
and that practically all the work done by the internal forces
is dissipated (i.e., W= ®) and the frictional dissipation is

® = ¢’ tan ¢ duy, (7)

This hypothesis assumed that ¢, is the mobilized fric-
tion angle ¢, when the vertical deformation becomes
steady state. By equating Egs. (6) and (7), we may write the
following stress—dilatancy relationship.

du, T
D:_d :tan(bcv_; (8)

Up

We retrieve Taylor’s decomposition of shearing strength
of sands into pure “frictional resistance among grains” and
a resistance due to “interlocking dilation” of grains. This
interpretation is an attempt for a plausible micromechanical
interpretation of the strength of sand. In Taylor’s dilatancy
equation, only the frictional dissipation term was
considered.

A similar approach is used in the critical state (or Cam
Clay) model [5, 24, 25, 41, 45] by assuming that the plastic
part of the applied work is equal to the frictional
dissipation.

WP =@ )

Consider an assembly of grains undergoing plastic
dilatant volumetric strain de} and shear strain dé} when a
set of mean effective stress p’ and shear stress g are
applied. The plastic work is defined by W” = gqde}) + pldet,
and the frictional dissipation function is given by ® =
p’Md.sZ where M is the slope of critical state line in p’ — ¢

plane. Assuming that W” is solely equal to the frictional
dissipation, then

qdel 4 p'de}) = Mpde) (10)

condition, p’ = (0/1 + 20/3)/3,
q =01 — 03, & = & — &,/3. The superscript ‘p’ stands for
plastic. It is noted that the applied work expression in
Eq. (10) does not consider the case of non-coaxially
between the principal stress and principal strain rate
directions, which is an elusive feature that influences for
the dilatancy behavior of sand [17, 53]. The corresponding
stress—dilatancy relationship is expressed as:

where for triaxial

de? ¢
—==—-M (11)
def p

This equation has been applied to several constitutive
models. However, this equation generally over predicts the
dilatancy for dense sand. To avoid this shortcoming, Nova
[36] applied a correction factor ¢ to the dilatancy (i.e.,

ds
°qz

). The value of ¢ appears to be soil type dependent,
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which is found to be 0.5 for Ottawa sand [53], and 0.63—
0.75 for Erksak sand [3]. Instead of being a constant, the
value of ¢ is assumed to be a function dependent on M, e.g.
¢ =coM [30] and ¢ = 1 — M/3 [48].

Another class of dilatancy equation was proposed by
Rowe [43], Newland and Alley [33], and de Joselin de Jong
[27], Wan and Guo [57], etc. Although Rowe’s dilatancy
equation was not derived directly from thermodynamics, it
was shown by Guo [15] that Rowe’s dilatancy equation can
be recovered from the same assumption that the applied
work is solely equal to the frictional dissipation.

Considering an assembly of grains deformed in a triaxial
condition, Rowe’s stress-dilatancy equation couples the
mobilized friction angle ¢,, to the dilation angle i in the
following convenient form

sin ¢,,, — sin ¢y

siny = 1 — sin ¢, sin ¢,

(12)
where ¢, is a material parameter, which changes with
initial void ratio and stress level. For convenience, ¢, is
commonly assumed to be equal to ¢.. The mobilized
friction angle ¢,, and the dilation angle y are defined by

m

—(de,/der) . _
2= (dey/dey) SO =

01-03
o1+ 03

siny = (13)

A formal derivation of Eq. (12) from Eq. (13) and its
application to triaxial compression and plane strain con-
ditions can be found in the literature [44, 54].

Correction factors for the dilation angle are also found
in the literature. The results of DEM simulations performed
by Alonso-Marroquin et al. [2] and Kruyt and Rothenburg
[28] showed that, irrespective of the inter-particle friction
and particle shape, siny in Eq. (12) can be replaced by
csiny with ¢ = 0.58-0.62. Powrie et al. [39] also reported
that ¢ = 0.5.

Another correction factor is suggested to modify the
value ¢, by the consideration that void ratio is a factor
influencing the dilatancy behavior of sand [57], given by

sin d)f = (e/ecr)aSin Py (14)

where o is a constant, ¢ and e, are the current void ratio
and the critical void ratio, respectively. For the same rea-
soning to include void ratio as variable, Li and Dafalias
[30] applied a correction factor to the value of M by
M - exp(m(e — e.,)). However, in the study by Been and
Jefferies [3] on the dilatancy behavior of very loose sand,
they stated that it is unclear that this correction factor, as a
function of void ratios, is an appropriate choice.

The above mentioned stress—dilatancy relationships are
based on the hypothesis that plastic work W? consists only
frictional dissipation as shown in Eq. (9). Recently,
observed from acoustic experiments, it has been found that

plastic energy can be produced by deformation mecha-
nisms other than friction between particles [31, 47]. Thus,
it is necessary to account for the Helmholtz free energy in
order to correctly model the stress-dilatancy behavior. A
couple of models have considered the Helmholtz free
energy ¥’ (see Eq. 5) in the energy equation for deriving
the stress—dilatancy relationship, notably by Jefferies [25],
and Collins and Kelly [10]. They demonstrated that the
energy equation fundamentally linked to the dilatancy
behavior of sand.

In the following, the stress—dilatancy relationships
derived by Jefferies [25], and Collins and Kelly [10] will be
briefly described and compared with the experimental
results in a later section. Based on experimental results, we
propose new formulations for the equation of energy con-
servation. The resulted stress—dilatancy relationship is then
compared with other models and with the measured results
for Silica sand [13], Ottawa sand [16], and Nevada sand
[35]. Discussion is given on the process of calibration of
parameters based on measurable physical properties, and
on the influence factors of soil density and confining stress.

2 Existing models considering plastic
Helmholtz free energy

At the micro or contact scale, the major dissipative
mechanism for cohesionless systems is friction, with
plastic slip as the internal variable (see, for example,
Tordesillas and Walsh [51]). There is, however, compelling
evidence from DEM simulations indicating that dissipation
in friction does not equal to the applied plastic work in a
quasi-statically loaded cohesionless assembly [28, 42, 55].
Various studies have shown that, for constitutive models in
which friction serves as the sole source of plastic work, the
dilation is not properly accounted and could over predict
the material stability [1, 6, 32, 51]. Thus, besides the
frictional dissipation ®, an additional term of plastic

Helmbholtz free energy ¥’ should be added.
qdel + p'del) = ® + V7 (15)

To consider the term of plastic Helmholtz free energy, a
form of energy equation was proposed by Collins and
Kelly [10], in which the frictional dissipation is similar to
that of the modified Cam Clay model.

® = 2 pey/ (060 + (Mae)? (16)

And the Helmholtz free energy is assumed to be
dependent on plastic volume strain increment [7]

@ Springer
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. 1
¥ = 2 pedd] (17)

where the stress parameter p. is the mean normal consol-
idation pressure, calculated from an elliptical yield locus
given by

M2+ (q/p)
e=r

(18)
Thus, the energy equation is written as

1 1
qdel + p'del = ~pe\/ (del)’ +(Mdef)* + FPede (19)

2

Collins and Hilder [8] showed that the form of energy

equation has a fundamental influence on constitutive

equations such as yield function [11]. From Eq. (19),

Collins and Kelly [54] derived the resultant stress—dila-

tancy relationship, which was found to be identical to that
of modified Cam Clay model [40].

d8€ 2 N2 /
= (M= (a/p')/afp) (20)
a

Another energy equation that contains a Helmholtz free
energy term was suggested by Jefferies [25] in the fol-
lowing form

gde + p'del = Mp'del + Np'de! (21)

The term of Helmholtz free energy is similar to that
proposed by Collins and Kelly [10] in Eq. (17). Jefferies
showed that, from Eq. (21), the stress—dilatancy relation-
ship can be derived as:

P
j_Z{V; = ﬁ (M —q/p") (22)

The parameter N is related to the correction factor
c(i.e.,c =1 —N) proposed by Nova [36]. Jefferies sug-
gested that commonly, N = 0.25, implying that the dissi-
pation energy is not equal to the externally applied work.
The N value significantly alter the stress-dilatancy
characteristics.

These results demonstrated that the stress—dilatancy
relationship is directly influenced not only by the form of
frictional dissipation function ® but also by the form of

Helmbholtz free energy ¥ In the following, we will
investigate the appropriate forms of the energy equations
for three types of sand (i.e. Silica sand [13], Ottawa sand
[16], and Nevada sand [35]) and their implications to
stress—dilatancy relationship.

@ Springer

3 Experimental results
3.1 Silica sand and its stress—strain results

Drained triaxial test results of Pasabahce silica sand (herein
referred to as silica sand) is selected for this study [13].
Samples were prepared by the following seven grades of
“uniform” sands: No.16-No.18, No.18-No0.30, No.30-
No.50, No0.50-No0.80, No0.80-No.100, No.100-No.120,
No0.120-No0.200. Each uniform sand is named by the upper
and the lower sieve numbers. The particle sizes and
specific gravities of these seven uniform sands are listed in
Table 1. The shapes of the sand grains are mostly sub-
angular. The minimum and the maximum void ratios of
samples are tabulated in Table 1.

Samples were prepared at nearly the same relative
density of around 95%. The drained triaxial compression
tests for each sample were performed under three different
effective confining stresses of 100 kPa, 200 kPa, and
400 kPa. Particle breakage was not observed in all tests.

Figure 2 shows stress ratio #=g/p’ (where
q = o1 — 03) and volumetric strain (g,) versus deviatoric
strain (¢,) relationships for the 7 uniform silica sands under
three different confining stresses (100, 200, 400 kPa). As
shown in Fig. 2, all samples after peak exhibit softening
behavior in the stress—strain curves and exhibit dilative
behavior in the volumetric strain curves. Following the
initial slight contraction at a small axial strain, dilation then
commences. The dilation continues during shearing until
the deviatoric stress g mobilizes to the peak value. After
the peak deviatoric stress, the stress decreases and
approaches to a stable value (the critical state).

Kinks can be found in the stress ratio vs strain curves for
the samples with particle size from 0.10 to 0.16 mm. For
these samples, shear band were observed at end of test.
Comparing to samples with larger particle sizes, the

Table 1 Properties of the uniform silica sands of seven different
particle sizes

Uniform sand*  dso (mm)  epax €min Roundness G
#16—#18 1.086 0.901 0.632 0.36 2.624
#18—#30 0.775 0.907 0.64 0.35 2.625
#30-#50 0.424 0.999 0.698 0.26 2.64
#50-#80 0.232 1.102  0.786 0.17 2.646
#80—#100 0.164 1.128 0.768 0.19 2.654
#100-#120 0.137 1.108 0.778 0.18 2.652
#120-#200 0.096 1.099 0.717 0.23 2.654

*The uniform silica sand is artificially graded using two adjacent
sieves. # No.— # No. is the upper and the lower sieve numbers,
respectively, for a uniform sand
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Fig. 2 Relationships between stress ratio n = ¢/p’ (where ¢ = o1 — ¢3) and volumetric strain (¢,) versus deviatoric strain (g,) for the seven

uniform silica sands under three different confining stresses

smaller particle samples are likely to form shear band,
which has been explained from the viewpoint of particle
column buckling in the recently published paper [13].

3.2 Ottawa sand and its stress—strain results

Drained triaxial test results of Ottawa sand are also selected
for this study [16]. Particles of Ottawa sand are rounded in
shape. Its e;.x and ey, are 0.811 and 0.503, respectively.
The mean particle size of Ottawa sand Dsq = 0.376 mm.
Samples were prepared at three different initial void ratios
(eo = 0.584, 0.711, and 0.773) and sheared at an effective
confining pressure of 100 kPa. The experimental results of
Ottawa sand are shown in Fig. 3. In these tests, particle
breakage and shear band were not reported.

3.3 Nevada loose sand and its stress—strain
results

Drained triaxial test results of Nevada sand are also
selected for this study [35]. Particles of Nevada sand are
subrounded in shape. Its e, and e,;, are 0.856 and 0.548,
respectively. The mean particle size Dsy is 0.144 mm.
Samples were prepared at initial void ratios
eo = 0.905 ~ 0.936 and sheared at an effective confining
pressure of 10 kPa ~ 200 kPa. The experimental results
of Nevada sand are shown in Fig. 4.

4 Energy equation
4.1 Elastic and plastic strain

According to the elastoplastic theory, the total strain
increment can be decomposed into plastic strain and elastic
strain increments. The elastic shear modulus of an assem-
bly of particles is assumed to be computed by the following
equations [20]:

G = Gop =) (23a)

2 \"
1+e (p_a)

where the value n = 0.4, p, = 101.3kPa. The value ¢, =
2.17 for round sand and 2.79 for angular sand. Gy is 160 for
Silica sand and Nevada sand, and 300 for Ottawa sand. e is
current void ratio which can be calculated from initial void
ratio ey and total volumetric strain g, I1.e.
e=-¢ey—¢&, - (14 ep). The elastic bulk modulus K can be
computed by

2(1+v)

3(1—2v) (236)

K=G

In this study, the Poisson’s ratio v is assumed to be 0.2.
The elastic shear and volume strains are computed by

& =p'/K; ¢, =4q/3G (24)

@ Springer
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Fig. 3 Relationships between stress ratio 1 and volumetric strain (g,) versus axial strain (g,) for Ottawa sand with three different initial densities
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Fig. 4 Relationships between stress ratio 1 and volumetric strain (g,) versus axial strain (g,) for Nevada sand with different confining stresses

It is noted that there is a coupling effect between the
elastic and plastic strains due to the evolution of modulus
with void ratio (i.e., plastic volume strain) [9, 14].

The total derivative of Eq. (24) yields

dp’ p (0K 0K
e __ _ ! _
def = x kK \5 dp » de (25a)
dg qg (oG . , 0OG
€ = — — — - 2
% =367 3¢ (ap'd 2e % (25b)

The second terms on the right hand of Egs. (25a and
25b) are the elastic component coupled with the plastic
strain, which is not exist in the conventional elastoplastic
model. The plastic strain increments, de? and dsg can be
obtained by subtracting the calculated the elastic strain
increment from the measured total strain increment.

For a drained triaxial test on sand, the elastic strain
increment is very small compared with plastic strain
increment. And only a portion of elastic strain is coupled

@ Springer

with plastic strain. Therefore, the coupling effect can be
ignored in estimating the plastic work, frictional dissipa-
tion, and plastic Helmholtz free energy, as evaluated in
Appendix A.

4.2 Imbalance of energy equation

In general, the frictional dissipation is a function of plastic
strain increment CD(dalv’ , dsZ). However, the frictional dis-

sipation energy of Taylor-Cam Clay type is only a function
of shear strain (i.e.Mp’dsZ, see Eq. 10). In this restricted
context, the form in Eq. (10) is not ideal because it does not
consider the frictional dissipation due to plastic volume
strain [10]. On the other hand, the frictional energy of
Taylor-Cam Clay type has been widely used in various
constitutive models [12, 24, 36, 58] and the hypothesis has
been supported by several studies of DEM simulations
[18, 28], in which, the frictional dissipations calculated
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from inter-particle contacts were found to be very close to
that computed from the Taylor-Cam Clay model. Thus, in
the first approximation, we use the expression ® = Mp’ def
for the frictional dissipation energy.

To compare the magnitudes of W” and ®, we plot the
externally applied plastic work W” and the frictional
energy dissipation @ in Fig. 5 for dense Silica sand (#30-
#50, see Table 1) with three different confining stresses, in
Fig. 6 for Ottawa sand with three different initial densities,
and in Fig. 7 for loose Nevada sand with three different
confining stresses. Note that the dissipation energy is a
function of plastic shear strain rate. The plastic shear strain
rate is not zero at the point of zero shear strain. Therefore,
both the calculated dissipation energy and total work are
nonzero at zero strain.

It is noted that for all cases in Figs. 5, 6 and 7, the plastic
applied work is not equal to frictional dissipation, i.e.,
wr =# @. For silica sand, the difference between the two
values seems to be proportional to confining stress. For
Ottawa sand, the difference between these two values are
significantly larger for dense sand and negligibly small for

very loose sand. Similarly, the difference is insignificant
for loose Nevada sand.

The difference between W” and ® may be caused by two
reasons: (1) the Helmholtz free energy should be consid-
ered in additional to the frictional dissipation energy, as
indicated in the first law of thermodynamics (see Eq. 3)
and (2)the expression of the frictional energy estimated by
Mp' déll could be incorrect and overestimated. These two

possible causes are discussed below.
4.3 Consideration of Helmholtz free energy

According to thermodynamics (see Eq. 3), the term of
Helmbholtz free energy ¥ is generally required to balance
the externally applied plastic work. Thus, the energy
equation of Taylor-Cam Clay type becomes

qde} + p'del = Mp'de]) + g’ (26)
—_—————

N——
wr 0]
The dissipation energy is a quantity that must always be

positive. However, Helmholtz free energy ¥’ can be either
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Fig. 5 Plastic work and frictional dissipation energy versus shear strain for dense Silica sands under three different confining pressures (100 kPa,
200 kPa, and 400 kPa). The calculated plastic energy is normalized per unit axial strain under the triaxial loading condition
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Fig. 6 Plastic work and frictional dissipation energy versus shear strain for Ottawa sands under three different initial densities (dense, loose and
very loose). The calculated plastic energy is normalized per unit axial strain under the triaxial loading condition
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Fig. 7 Plastic work and frictional dissipation energy versus shear strain for loose Nevada sands under three different confining pressures (30 kPa,
50 kPa, and 200 kPa). The calculated plastic energy is normalized per unit axial strain under the triaxial loading condition

positive or negative. Figures 5, 6 and 7 show, for loose
sand, W? > @, thus according to energy balance, the free
energy ¥ —Wwr—®is positive, which means that part of
the applied plastic work is dissipated, and the other part
(i.e., ‘Pp) is stored into the internal energy of particle
system.

On the other hand, WP” < ® for dense sand, thus the free

energy V=W —®is negative, which means that not
only all applied plastic work is dissipated, but also addi-

tional plastic work (i.e., ¥ is dissipated. The additional
part is extracted from the available internal energy of the
particle system.

The Helmholtz free energy ¥ is also term as free
energy because it can be either stored or extracted from the
system. It is noted that whether the free energy is positive
or negative is associated with the shear induced volume
contraction or dilation in a particle system.

In a triaxial test for a loose specimen, volume contrac-
tion is caused by rearrange of particles, which leads to a
collapsing of voids and an increase of internal energy of the
system. In contrast, for a dense specimen, dilation of
specimen is caused mainly by buckling of force chains
[13, 37, 50, 60] and the associated growth of surrounding
voids [23, 37, 38]. Thus, the mechanism of buckling of
force chains characteristically involves the collective
release of stored energy.

Figures 5, 6 and 7 show that the difference between
applied work and frictional dissipation energy (i.e., the
Helmbholtz free energy ‘{’p) is caused by volume contrac-
tion or dilation in a particle system. Thus, it is reasonable
to assume that the Helmholtz free energy is a function of
plastic volume strain increment, ie 9’ = Np'dél. Thus,

Eq. (26) becomes:
qde) + p'del = Mp'de} + Np'de) (27)

Let D = —dé&) /daZ, which is positive for dilation, then
the energy Eq. (27) can lead to a stress—dilatancy rela-
tionship in the form:

@ Springer

n® =M+ (1-N)D (28)

where 7% = q/p’ represents the stress ratio calculated

from Eq. (28). When N = 0, Eq. (28) reduces to the classic
form of Taylor-Cam Clay type (see Eq. 11)

n) =M+D (29)

where (") = q/p’ represents the stress ratio calculated
from the classic Taylor-Cam Clay.

The solid line in Fig. 8 shows a typical measured stress—
strain curve for dense sand, which has three characteristic
states—namely, the phase transformation state (the onset
point where the volumetric-strain increment is zero at
n = n,), the peak sate (where the stress peaks at # = 1..)s
and the critical state at large shear strain (where the vol-
umetric-strain increment and stress increment are both zero
at # = M). The maximum dilatancy Dy, is defined as the

Fig. 8 The measure stress ratio n compared with those calculated
from Egs. (28) and (29)
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maximum ratio of de” /de?, which is corresponding to the
peak state.

The blue dashed line 5! represents the curve calculated
from Eq. (29) without consideration of the term of Helm-
holtz free energy. The red dashed line #(® represents the
curve calculated from Eq. (28) with consideration of the
term of Helmholtz free energy, which fits better to the
measured curve (in solid line).

At peak stress state, Eq. (29) becomes

() = M + Dpax

nmax -

And Eq. (28) becomes
2 =M+ (1 — N)Dpax

nmax =

(30)

(31)

() with the

We want to match the peak stress ratio #max
measured peak stress ratio #),,,,. Substituting nfﬁx = Nmax

into Eq. (31), it leads to
N=1- (nmax _M)/Dmax

The value of N can be obtained from Eq. (32) based on
the measured values of 7,,,, and Dp,x.

(32)

Equation (32) can be used to determine the value of
N for most densities of sand, in which peak state exists in
their stress—strain curves. However, for cases of very loose
sand, peak is not revealed. The value of N can be deter-
mined by try and error for best fitting the experimental
data.

Using Eq. (32), the calibrated N values for silica sand
are 0.49 for the confining stress of 100 kPa, 0.41 for the
confining stress of 200 kPa, and 0.31 for the confining
stress of 400 kPa. The calibrated N values for Ottawa sand
are 0.35 for dense sand, 0.38 for loose sand, and 0.22 for
very loose sand. The calibrated N values for Nevada loose
sand are 0.607 for all confining stresses. The measured
values M = 1.357 for Silica sand, M = 1.183 for Ottawa
sand, and M = 1.23 for Nevada sand.

To evaluate the calibrated values of N for the Helmholtz
free energy term, we compare the calculated energy
(®+ ‘Pp) from Eq. (27) with the measured WP for Silica
sand plotted in Fig. 9. We also compare the energy curves
for Ottawa sand plotted in Fig. 10, and for Nevada sand
plotted in Fig. 11.

_ 1200 - Silica Sand We ] Silica Sand W | Silica Sand
m .
= 1 ——- O+ WP
=, 1000 - E
m
o 1 i
= 500 4
> J ]
(o))
@ 600 -
C 4
w
© 400
- 4
0 ——
£ 2004 ,7 .
= 1 = 1 = 1 _ —-—- O+ WP
o (a) o3 = 100 kPa (b) o5 = 200 kPa (¢) o3 = 400 kPa
I T 5 T T T T T T T Y T z T T T T T u T Y T T T Y T . T ¥ T
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
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Fig. 9 Work W? and plastic energy (® + 9") versus shear strain for Silica sand under three different confining stresses. The calculated plastic
energy is normalized per unit axial strain under the triaxial loading condition
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Fig. 10 Work W” and plastic energy (® + Y’) versus shear strain for Ottawa sand under three different initial densitics. The calculated plastic
energy is normalized per unit axial strain under the triaxial loading condition
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Fig. 11 Work W and plastic energy (® + ") versus shear strain for Nevada sand under three different confining stresses. The calculated plastic
energy is normalized per unit axial strain under the triaxial loading condition

Figures 9, 10 and 11 show that, with the consideration

of ¥, agreements between the two energy curves are
largely improved than those shown in Figs. 5, 6 and 7
computed without consideration of g

It is noted that the value N can be determined from two
readily measurable parameters #,,,, and Dy, as shown in
Eq. (32). The physical meaning of N represents the mag-
nitude of shear resistance (#,,,,x — M) that can be produced
from the dilation of grains Dy,,x. The N value is likely to be
associated with the shape and surface roughness of parti-
cles. Figure 12 shows the measured value of (1., — M)
versus D, for Silica sand for seven different particles
sizes (Table 1) and for Ottawa sand. For each type of soil,
the relationship can be approximated by a linear line. The
slope of the line is (1 — N). It shows that the average value
of N is 0.37 for Erksak sand [3] and is 0.5 for Silica sand,
compared to N = 0 for the Taylor-Cam Clay model.

Equation (31) is comparable with the Bolton’s dilatancy
equation [4],

¢p - ¢CV = bwp (33)
Erksak Sand (Been & Jefferies 2004) L7
0.9 A A  Ottawa Sand (Guo & Su 2007) P4
Silica Sand (Deng et al. 2021) .
—===N=0 e
0.7 N=0.5 .7
) N=0.37 .
= 05
£
=
0.3
0.1 1
-0.1 T T T r :
-0.1 0.1 0.3 0.5 0.7 0.9

Fig. 12 The meaning of parameter N
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where y,, is the angle of dilation at peak state, ¢, and ¢,
are the friction angles of friction at peak state and at critical
state, respectively. It is noted that the physical meaning of
b is equivalent to that of (1 — N). In Fig. 12, the value of
N can also be determined from the b coefficient of the
Bolton’s dilatancy equation.

4.4 Additional imbalance due to the incorrect
expression of frictional dissipation energy

Although Figs. 9, 10 and 11 show that the balance of
energy equation is improved with the term of Helmholtz
free energy, the imbalance are still noticeable between the
applied work and the sum of dissipation energy @ and

Helmbholtz free energy ¥’ The imbalance of energy
equation is not negligible for the region of small shear
strain, particularly prior to peak stress state for the dense
sand. Therefore, an additional energy OF is needed to
balance the equation.

gde) + p'del) = Mp/del) + Np/del) + O (34)

Figures 9, 10, and 11 show that the energy OF is nega-
tive and is a function of plastic shear strain ¢. This dis-

crepancy is attributed to the overestimated frictional energy
using the expression Mp' def.

Let /3 be the ratio of JF to the frictional dissipation, i.e.
B (SZ) = —0E/Mp'de), the energy Eq.(34) can be
expressed by

gdel + p'det) = (1 - ﬁ(sZ))Mp’deZ + Np'de? (35)

In Eq. (35), the term of (1 —f 8§)>Mpds’; represents
the frictional energy dissipation. Note that the energy JOF is

negative, thus ﬁ(sg) is positive, which means a reduction

of the estimated frictional energy. The function of 1 —

ﬁ(sfq’) indicates that the value of frictional dissipation is
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not a constant, but varies with the shear strain SZ. This

hypothesis is examined below.
The energy Eq. (35) leads to the following stress-dila-
tancy relationship,

n® = (1 _ﬁ<g§))M+(1 —N)D (36)

where the function 8 (sg) is represented by the shaded zone

schematically shown in Fig. 13. #®) represents the value of
n calculated from Eq. (36). Since Eq. (36) is advocated so
that 11(3) best fits the measured curve, thus assuming
73 =y, and Eq. (36) can be expressed as

1= B(5) = (n— (1= N)D)/M (37)

Using Eq. (37) and experimental data,l —ﬁ(&:Z) is
plotted in Fig. 14a for Silica sand, Fig. 14b for Ottawa
sand, and Fig. 14c for Nevada sand, which show that the

shape of f (P‘Z) resembles an exponential curve, given by

[3(8’;) =b- exp(—mag) (38)
At the initial state 1 =0, s’; =0, and D = Dy. From

Egs. (37) and (38), we obtain

V=14 (1—-N)Dy/M (39)
The dilatancy Dy at initial state can be obtained from

experiments, which is negative (i.e., contractive). Thus, the
value &', calculated from Eq. (39), is less than 1. The value

n* = Mexp(—msgld)

Fig. 13 Schematic illustration of # computed by Eq. (36)

of ' is 0.83 for Silica sand, 0.73 for Ottawa sand, and 0.65
for Nevada sand.

For dense sand, the value m in Eq. (38) can be calibrated
from the measures stress ratio #, at the onset of dilation
(D =0), as shown in Fig. 13. At the onset of dilation n =

n, and 8‘; = F'Z,w from Eq. (37) and Eq. (38), we obtain

1—n,/M=10"- exp(—mafbd) (40)

For cases of loose sand, in which dilation is not
revealed, the value of m can be determined by try and error
for best fitting Fig. 14 plotted from experimental data.

With Eq. (40), the m value calibrated for Silica sand
(#30-#50) is 0.95 for 100 kPa, 0.95 for 200 kPa, and 0.70
for 400 kPa. The m value for Ottawa sand is 5 for dense
sand, 3 for loose sand, and 5 for very loose sand. The m
value for Nevada sand is 0.35 for confining stresses 30,
150, 200 kPa. It is noted that the value of » can be
regarded as 1, which is insensitive to the fitted results.

Note that the term of (1 — ﬁ(sg))Mpds{; represents the

frictional energy dissipation. The function of 1 — f§ (82) in

Fig. 14 indicates that the value of frictional dissipation is
initially nearly zero, increases with the shear strain & and
approach to one near peak state. The dependency of shear
strain is a reasonable hypothesis because frictional dissi-
pation is induced from mobilization between contacts due
to the relative motion between contacts via rolling and
sliding. The amount of mobilized contacts depends on the
level of shear deformation. Thus, frictional dissipation is
influenced by the level of shear strain.

In the initial stage of shearing, the number of mobilized
particle contacts is only a small portion of the total number
of particles. The number of mobilized particle contacts
increases with shear stress level. Figure 14 shows that the
frictional energy, started from a small value, increases
quickly in an exponential form, approaching to the value of
Mp’ds’; around the level of peak stress. Whereupon, after
peak state, the assembly is fully mobilized with 1 — f§
being equal to 1, indicating that the frictional dissipation
energy is accurately represented by Mp' dél). Therefore, the
frictional energy of Taylor-Cam Clay type is a good
approximation for the range of large shear strain, but needs
to be modified as a function of & in the range of small
shear strain.

From Eq. (40), m can be solved with measured #, and
the corresponding ‘3{‘1, , at the onset of dilation. Since b can

be regarded as 1, Eq. (40) can be written as

M )
In (M - ”d) =mé, (41)

@ Springer
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Fig. 14 The curves of beta function for a Silica sand, b Ottawa sand, and ¢ Nevada sand
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Fig. 15 The relationship of In ( M{ﬂﬂ) versus shear strain sZ} d
Figure 15 shows the measured value of In (ﬁ) Versus

& 4 for Silica sand of seven different particle sizes (see

Table 1) and Ottawa sand (see Fig. 3). For a line con-
necting each data point to the point of origin, its slope is
m. The range of m for Silica sand shown in Fig. 15 is about
from 0.5 to 2.0.

According to the measured results of the relationship

between 1, and eJZ 4» the calculated value m ranges from 0.5

to 2.0 for silica sand, and from 2.4 to 5 for Ottawa sand.
The calculated value of m is also correlated with 1,/M as
shown in Fig. 16.

4.5 Summary of the proposed stress—dilatancy
relationship

Based on the consideration of a Helmholtz free energy and
specific forms of the frictional dissipation energy into the
energy equation, a stress—dilatancy relationship was
derived and summarized in Table 2.

@ Springer

14
O Silica Sand (Deng et al. 2021)

ndM
2
© O
O

0.8

0.4 T T T T

Fig. 16 The correlation between 1,/M and parameter m
5 Model evaluation

The comparison of predicted and measured stress—dila-
tancy relationship is shown in Fig. 17a for dense silica sand
(#30—#50) with three confining stresses, Fig. 17b for
Ottawa sand with three initial densities, and Fig. 17c for
loose Nevada sand with three confining stresses. The pre-
dicted stress-dilatancy curve is computed based on the
measured volume strain versus shear strain curve. For all
dense sands, the dilatancy curves are not linear lines. The
curves show similar patterns of back-hook after peak point
for various densities and confining stresses, but the curves
show different magnitude of Dyax.

Using the proposed stress—dilatancy relationship
(Eq. 36), the predicted stress-dilatancy curves capture the
back-hook features and are in good agreement with the
measured results. The proposed stress-dilatancy model

reduces to Nova’s model when f (EZ) =0, (i.e. Equa-

tion 28) and further reduces to Cam Clay model when N =
0 (i.e. Equation 29). In Fig. 17, the measured data are also
compared with those predicted by Cam Clay, modified
Cam Clay models and Nova’s model. Note that the stress—
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Table 2 Summary for the proposed stress—dilatancy relationship

Description

Equations or parameters

Proposed stress—dilatancy relation
Dilation
Stress ratio

Correction parameter for frictiona

Required parameters

ship

1 dissipation energy

D=l5(n—(1-p)M)
D = —d&f/de]
n=q/r

f =exp (—WLSZ)

M: Critical state stress ratio

N: Helmbholtz free energy coefficient

m: Correction exponent for frictional dissipation energy

(a) Silica Sand (#30-#50) .~  ..-"
1.6 - #
124
3 i Exp. (100 kPa)
Il 0.8 - Exp. (200 kPa)
< Exp. (400 kPa)
—— Model (100 kPa)
—— Model (200 kPa)
0.4 —— Model (400 kPa)
..... NOVa
—— Cam Clay
—=—- Modified Cam Clay
0.0

T
-0.4 0.

0 0.4

0.8

D = -def/def

(b) Ottawa Sand
1.6
1.2 A
% ] Exp. (0.584)
] 0.8 4 Exp. (0.711)
< Exp. (0.773)
] —— Model (0.584)
—— Model (0.711)
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Fig. 17 Predicted Stress-dilatancy curves for a Silica sand, b Ottawa sand, and ¢ Nevada sand, compared with measure results and other models

dilatancy relationship of modified Cam Clay model
(Eq. 20) is in the same form as that derived by Collins and
Kelly [10]. The stress—dilatancy relationship of Nova’s

model (Eq. 22) is in the same form as that derived by
Jefferies [25]. The modified Cam Clay model gives a curve

line,

predicting more contraction and less dilation
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Fig. 18 Predicted volume strain curve for Silica sand compared with measure results and other models
compared with the linear line predicted by Cam Clay 5
model. The Nova’s model also gives a linear line with its
slope fitting to the post-peak portion. All the three models
. . 4
cannot capture the portion of curves prior to peak state. i 0000060
To further evaluate the accuracy of the model, we e} 3355500 5.
compare the predicted and measured evolution of volume 560 ©

strain. The predicted ¢, — ¢, strain curves are computed
based on the measured ¢, — g strain curve. The predicted
results are shown for Silica sand (#30—#50 particle size)
with three different confining stresses in Fig. 18. The curve
predicted by modified Cam Clay model, Cam Clay model,
and Nova’s model do not agree with the measured curves.
Among the three models, Nova’s model predicts better
curve shape after peak stress state (about &, =7%).
However, due to the discrepancies in the region before the
peak point, the Nova’s model does not provide good
overall predictions. The proposed model predicts curves in
good agreement with the measured curves over all range of
strain.

The predicted results are shown for Ottawa sand with
three different initial densities in Fig. 19. Similar discrep-
ancies are displayed in curves predicted by modified Cam
Clay model, Cam Clay model, and Nova’s model. Like-
wise, the Nova’s model gives good prediction for the curve

~oooU U0 00T

&, (%)

O  Exp. (30 kPa)

< Exp. (50 kPa)

(e} Exp. (200 kPa)
Predicted (30 kPa)
= = = Predicted (50 kPa)
------ Predicted (200 kPa)

20 25

Fig. 20 Predicted volume strain curve for Ottawa sand compared with
measure results and other models

shape after peak stress state. The proposed model predicts
curves in good agreement with the measured curves. The
good performance of the proposed model is also demon-
strated by the predictions for loose Nevada sand shown in
Fig. 20.

4
] - | —
< 0 e
o] ONQL - — B .
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--------------- Modified Cam Clay
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Fig. 19 Predicted volume strain curve for Ottawa sand compared with measure results and other models
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Fig. 21 Predicted stress—dilatancy relationships compared with measure results for Silica sand with different particle sizes

The proposed model is also applied to the other 18 tests
on Silica sand with different particle sizes (see Table 1).
The predicted results in Fig. 21 show similar back-hook
patterns. The predicted pre-peak curves have a good overall
agreement with the measured stress-dilatancy curves. Thus,
the predicted results of volume strain evolution match well
with the measured results. It is noted that for samples with
small particle size (0.23 mm-1.09 mm), the occurrence of
shear band was observed at the end of test. For these
samples, the critical state stress ratios were determined by a
multiple-test method for dense sand suggested by several
investigators [16, 21, 26, 46, 59]. Appendix B is provided
to evaluate the localization effect.

6 Discussion

The classic energy equation of Taylor-Cam Clay type
considers only frictional dissipation energy, and involves
only one parameter (i.e. critical state stress ratio M). This
parameter assures the energy balance at the critical state as
shown from the experimental results in Figs. 4, 5 and 6. In
the proposed energy equation, for achieving a better energy
balance, we have: (1) considered the Helmholtz free
energy, and (2) modified the expression of frictional dis-
sipation energy. Accordingly, besides the critical state

parameter M, it involves two more parameters (N and m),
which are associated with the peak stress state #,,,,, and the
phase transformation state #,. The energy balance is
assured for the three levels of shear deformation: the phase
transformation state, the peak state, and the critical state.
A parametric comparison is given below to show the
effect of parameters N and m on a dense sand. Figure 22a
shows the predicted stress-dilatancy curves for m = 0.95,
N =0~0.75. The predicted stress-dilatancy curves are
computed based on the measured volume strain versus
shear strain curve for Silica sand (#30—#50 particle size)
with 100 kPa confining stress. The value of N does not
have effect on the curves prior to the phase transformation
state, but considerably alters the slopes after the peak state.
The effect of m on the predicted stress-dilatancy curves is
shown in Fig. 22b for N = 0.49, m = 0.5 ~ 2. The value of
m does not have effect on the post-peak curve, but signif-
icantly alters the curve shape before peak.
Correspondingly, Fig. 23a shows the predicted volume-
shear strain curves for m = 0.95, N =0 — 0.75. In this
case, the predicted volume-shear strain curves are com-
puted based on the measured stress versus shear strain
curve for Silica sand (#30—#50 particle size) with 100 kPa
confining stress. The value of N does not have effect on the
curves prior to the phase transformation state, but signifi-
cantly influences the slopes of volumetric-shear strain
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Fig. 22 Parametric comparisons of predicted stress—dilatancy relationships for dense sand: a various N keeping m = 0.95, and b various
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Fig. 23 Parametric comparisons of predicted volume versus shear strain relationships for dense sand: a various N keeping m = 0.95, and

b various m keeping N = 0.49

curves after the peak state (about 7% of ¢,). The effect of m
on the predicted volume-shear strain curves is shown in
Fig. 23b for N = 0.49, m = 0.5 ~ 2. In Fig. 23b, the slopes
of volumetric-shear strain curves after the peak state are
nearly parallel for various values of m. The value of m,
however, substantially influences on the slopes prior to the
phase transformation state.

A parametric comparison is also given to show the effect
of parameters N and m on loose sand. Figure 24a shows the
predicted  stress-dilatancy  curves for m =15.0,
N =0~0.75. The predicted stress-dilatancy curves are
computed based on the measured volume strain versus
shear strain curve for Ottawa sand with void ratio 0.773
(very loose condition). The effect of N mainly alters the
slopes at higher stress level (y > 0.8). Effect of m is shown
in Fig. 24b for the predicted curves with N = 0.22,
m = 1~10. The value of m does not have effect on the
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curve at higher stress level, but considerably alters the
curve shape at lower stress level.

Similarly, Fig. 25a shows the predicted volume-shear
strain curves for m =5, N =0~0.75. In this case, the
predicted volume-shear strain curves are computed based
on the measured stress versus shear strain curve for the
very loose Ottawa sand. The value of N significantly
influences on the slopes of volumetric-shear strain curves
over all strain range. Figure 25b shows the predicted
curves for N = 0.22, m = 1 ~ 10. In Fig. 25b, the slopes of
volumetric-shear strain curves, in the range of ¢, > 3%, are
parallel for various values of m. The value of m, however,
considerably influences the slopes of curves in the range of
&g <3%.

The quantities of #,,, and 7, influenced by confining
stress and soil density are vital to the stress-dilatancy
behavior. The two parameters (1.« — M) and (n, — M)
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for Silica sand are plotted in Fig. 26a as a function of
confining stress. These two curves have exponential shape
approaching to the base line. These two parameters (#,,,x —
M) and (n; — M) for Ottawa sand are also plotted in
Fig. 26b as a function of density, which have similar pat-
terns as those in Fig. 26a. The effects of density on the
peak state friction angle and the phase transformation state
friction angle have been studied by many investigators
[16, 19, 21, 34] in abundant references. Thus, using the
present model, the stress-dilatancy behavior can be con-
veniently studied for the effect of density and confining
stress.

7 Summary and conclusion

In this study, energy equation of Taylor-Cam Clay type is
investigated for sand without particle breakage. In addition
to the frictional dissipation, we considered the Helmholtz
free energy originated from the dilation due to force chain
buckling. This essential physics mechanism is missed in
the classic stress-dilatancy models. We also found that
energy equation of Taylor-Cam Clay type does not satisfy
the energy conservation. The frictional dissipation energy
is overestimated for the small shear stress level, particu-
larly in dense sand. The discrepancies of energy balance
need to be corrected in order to predict correctly the dila-
tancy behavior. The proposed model is evaluated using
experimentally measured results. It shows that the model
can correctly capture the back-hook features of stress-di-
latancy and can predict the evolution of volume with
excellent agreement with measured results.

Two parameters N and m for this model can be cali-
brated from the measured stress ratios at peak state and at
phase transformation state in a triaxial test. The stress
ratios, 7, and #,,,, influenced by density and confining
pressure have been extensively studied in the literature.
Thus, the model provides a tool for further study the
dilatancy behavior influenced by density and confining
pressure.

Appendix A: Evaluating the coupling effect

The common assumption in elastoplastic theory is adopted
to decompose the strain into elastic and plastic parts (de-
noted by ‘e’ and ‘p’ superscripts), i.e.,

de; = de, + def), de, = de; + def (A.1)

Here, we evaluate the elastic—plastic coupling effect on
the calculated results of elastic and plastic strains. Elastic
strains follow Hooke’s law given as

@ Springer
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In this study, shear modulus and bulk modulus are
considered as a function of void ratio e and applied mean
stress p’ (see Egs. 23a and 23b). The function can be
expressed as Egs. (A.3a and A.3b), in which, Gy,

Ko, e, cg,pq and n are constants.
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g_g =K, gTG % — Ko %, derived from Egs. (A.3a and A.3b).

On the right side of Eqgs. (A.4a and A.4b), there are two
terms for both shear and volumetric elastic strain incre-
ments. The second term represents the coupled strain
increment. To evaluate the effect of the coupled strain
increment, two methods (named “Method 1” and “Method
2”) were employed to calculate the elastic and plastic
strains in this appendix. In “Method 17, the coupled strain
increment is not considered, while in “Method 2”, the
coupled strain increment is considered. Noted that in the
elastoplastic constitutive model, “Method 1” is adopted.

An example is shown for Silica sand (#30—#50, see
Table 1) with three different confining stresses. The cal-
culated elastic strains and the calculated plastic strains
from both methods are plotted in Fig. 27 and in Fig. 28,
respectively. As shown in Fig. 27, there is a considerable
difference for the calculated elastic strain from both
methods. With the consideration of the coupled strain
increment, the calculated elastic strain from “Method 2” is
less than that from “Method 1”. However, since elastic
strain is a small fraction of total strain, the difference of the
calculated plastic strain between “Method 1” and “Method
2” is negligible, as shown in Fig. 28.

The plastic energy per unit axial strain at ith strain step
in these methods was estimated as follows.

(P P P
ql(“!qi %.i—l) "‘Pi(bv,i “'v.i—l)
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(A.5a)
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where f is calculated using Eq. (38).
The estimated plastic work, frictional dissipation, and
plastic Helmholtz free energies for the Silica sand are
plotted in Fig. 29. Due to the trivial difference in the
plastic strain between these two methods, the difference in
each plastic energy between these two methods is expected

to be negligible as shown Fig. 29. Therefore, the effect of
coupled strain increment is insignificant with respect to the
study of balance of plastic work, frictional dissipation, and
plastic Helmholtz free energy.

Appendix B: Evaluating strain localization
effect

For some dense sand samples used in this study, strain
localization (i.e. shear band or bifurcation) takes place after
peak stress. After strain localization occurs, the global
stress—strain behavior of the soil is largely dependent on
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Fig. 29 a Plastic work, b dissipation energy, and ¢ plastic Helmholtz free energy in “Method 1” and “Method 2”

the soil in the shearing zone, which has essentially reached
a constant volume state. Therefore, the global stress—strain
and volumetric strain curves after the occurrence of shear
band would not represent the behavior of uniformly
deformed material due to non-homogeneous deformation.

To avoid the influence of localization, Nova [36] and
Bolton [4] suggested to determine the stress-dilatancy
making use of multiple test samples under different con-
fining pressures or different void ratios for the same
granular soil, using the measured peak stress ratios and the
corresponding dilatancy. Since, at peak stress state, the

localization just starts to develop in a sample, thus the
samples can be regarded as uniformly deformed. This
method has been adopted by many researchers
[16, 21, 26, 46, 59].

In this study, for these samples with shear band, we use
test results from three different confining stresses (i.e.,
100 kPa, 200 kPa, and 400 kPa) to obtain the relationship
between the peak stress ratio and the corresponding dila-
tancy by fitting the dilation equation (Eq. 31). For the three
tests shown in Fig. 30, the fitted solid line from multiple
samples is considered to be the stress-dilatancy behavior of
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Fig. 30 The post-peak stress-dilatancy responses for the samples with occurrence of strain localization (the symbols are the measured points of
three confining pressures for each sand, the black lines are the fitted stress—dilatancy relationship from multiple-test method)
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a uniformly deformed sample without localization. Fig-
ure 30 shows minor deviations between the post-peak
stress-dilatancy responses (data symbols) and the fitted
solid line, which means that the critical state stress ratio
M needs to be corrected for these tests with localizations.

In the proposed stress-dilatancy model, three parameters
are required, M, N, and m (see Sect. 4.5). Among the three
parameters, the values of N and m are not influenced by
strain localization, because the value of N is obtained from
the energy curves considering only peak state. The value of
m is obtained mainly from the energy curves before peak
state. However, the value M is affected by strain localiza-
tion, which should be obtained from multiple-test method.

Comparing the predictions shown in Figs. 17 and 30, the
predicted curves using the proposed model agree well with
the fitted dilatancy relationship from multiple-test method.
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