
Fast Simulation of Trees and Forests for
Bat-inspired Sonar Sensing

Muntasir Wahed
Dept. of Computer Science

Virginia Tech
Blacksburg, USA

mwahed@vt.edu

Mazharul Islam
Dept. of Computer Science

University of Wisconsin-Madison
Madison, USA

mislam9@wisc.edu

Xiaowei Wu
Dept. of Statistics

Virginia Tech
Blacksburg, USA

xwwu@vt.edu

Hongxiao Zhu∗
Dept. of Statistics

Virginia Tech
Blacksburg, USA

hongxiao@vt.edu
∗corresponding author

Abstract—To study the sensing mechanism of bat’s biosonar
system, we propose a fast simulation algorithm to generate
natural-looking trees and forest—the primary living habitat of
bats. We adopt 3D Lindenmayer system to create the fractal ge-
ometry of the trees, and add additional parameters, both globally
and locally, to enable random variations of the tree structures.
Random forest is then formed by placing simulated trees at
random locations of a field according to a spatial point process.
By employing a single algorithmic model with different numeric
parameters, we can rapidly simulate 3D virtual environments
with a wide variety of trees, producing detailed geometry of
the foliage such as the leaf locations, sizes, and orientations.
Written in C++ and visualized with openGL, our algorithm is fast
to implement, easily parallable, and more adaptive to real-time
visualization compared with existing alternative approaches. Our
simulated environment can be used for general purposes such as
studying new sensors or training remote sensing algorithms.

Index Terms—L-system, tree simulation, forest simulation,
algorithm, biosonar, bat.

I. INTRODUCTION

Simulation of natural environments has many applications

ranging from computer animation [1] to autonomous vehicle

design [2]. Of particular challenge is the simulation of nat-

ural vegetated environments such as trees and forests. Trees,

specifically, exhibit complex structural forms and consist of

large amount of foliage, thus are hard to be simulated by

using traditional geometric tools. Existing methods are often

based on static rules to simulate the tree structures [3],

which is limited when there is a need to simulate multiple

similar, yet unique trees found in a forest. Methods that adopt

plant templates to create geometric structures are sometimes

useful, but are usually computationally demanding and hard to

randomize [4], [5]. An ideal approach to simulate realistic trees

is to maintain the high degree of self-similarity within the plant

while introducing some stochastic rules to allow randomization

and diversity. In this regard, the Lindenmayer system [6] seem

to be a good framework to start with.

In this paper, we target at developing efficient algorithms

for simulating random trees and forests. While we expect our

algorithm to be generally applicable to other fields, we are

primarily motivated by the application on bat-inspired sonar

sensing. Bats perform everyday tasks through echolocation.

They emit high frequency sound pulses and listen to the echoes

bounced off the objects. By using their naturally evolved sound

emitters (mouth or nose) and receivers (two ears), they can

easily identify objects, navigate, forage, and hunt in complex

structured environments. Since many bats live in vegetated

habitats such as forests, the simulation of such environment

provides a virtual platform to study the sensing mechanism

of bat’s biosonar. With this application in mind, we aim to

simulate random forest environments that are suitable for the

study of biosonar sensing.

Our previous work has established a foliage echo simulator

that mimics the biosonar system of bats [7], [8]. It adopts

acoustic laws of sound emission and reflection, producing

foliage echoes in various virtual scenes. In the simulator,

foliage echoes are formulated as the superposition of echoes

returned from numerous leaf reflectors. Geometric parameters

about the leaves such as the leaf sizes, orientations, and the

locations are used in the simulation of echoes. To facilitate

a simulated virtual environment for biosonar sensing, our

algorithm for simulating random trees and forests needs to

retain leaf parameters that are required for the foliage echo

simulator.

While several existing works are available for the simulation

of trees and forests, they have several limitations and thus

are restricted for the general study of biosonar sensing. For

example, [7] used a uniform distribution to simulate the spatial

distribution of leaves, failing to take into account the inho-

mogeneity caused by branching patterns in real foliage; [7]

considered the inhomogeneous foliage shapes by simulating

full tree structures, however, only two deterministic trees

were simulated by using deterministic L-system rules. In the

more recent works of [9], [10], further extension has been

performed to simulate natural-looking trees and forests with

desired leaf parameters. In these works, the authors adopted

CAD files from template trees that are modeled by meshed

surfaces. While this approach can produce random forests with

necessary geometric information, rendering multiple trees in

a single graphic application involves loading numerous trian-

gular faces, vertices, and normal vectors, thus requires large

amount of computing power and memory. Furthermore, while

this approach have randomized the locations of branches and

leaves, the branch shape still look similar with the template,

making the appearance of the trees less flexible. On the other

hand, some software have plugins or add-on for the simulation

198

2022 5th International Conference on Information and Computer Technologies (ICICT)

978-1-6654-6960-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ICICT55905.2022.00041

of trees (e.g., the modular tree or Sapling add-on in Blender),

but they usually do not provide detailed leave geometry such

as the leaf size and orientation.

We propose a computationally efficient algorithm to simu-

late random trees and forests. This algorithm employs different

numeric parameters to simulate a wide variety of trees and

produces detailed geometry of the foliage for the study of

foliage echoes. Specifically, we adopt the 3D Lindenmayer

system to create the fractal geometry of trees, and add

additional parameters, both globally and locally, to enable

random variations of the tree structures. We then simulate

random forest by placing simulated trees at random locations

on a field according to an inhomogeneous Poisson process.

Written in C++ and visualized through openGL, our algorithm

is fast to implement, easily parallable, and suitable for real-

time visualization and analysis. Besides biosonar sensing, the

simulated environment can also be used as a virtual interface

for general purposes such as studying new sensors or training

algorithms for Unmanned Aerial Vehicles.

II. SIMULATION OF RANDOM TREES

A. L-system and Honda’s Method

We develop our simulation algorithm for random trees based

on Lindenmayer system, or L-system, a theoretical framework

to generate self-similar fractals. Since the initial work of [6],

L-systems become a popular way to model the structure and

development of simple trees and other multi-cellular organ-

isms. It defines branching pattern through simple recursive

rules consisting of a string of symbols. Each structural com-

ponent of the tree (e.g., branch, terminal, leaf) are represented

by a unique symbol in the string. The remarkable ability to

approximate seemingly complex geometric structure of trees

only using a simple set of recursive rules made L-system very

popular and successful in computer graphics. Moreover, the

parallel application of rules in L-system distinguishes itself

from other formalism like Chomsky grammar that applies rules

sequentially, leading to visually stunning realistic appearance.

Despite its effectiveness, most L-systems, however, suffer

from over-simplified assumptions on geometry of branches,

sub-branches, and leaves. As a result, if trees are generated

from the same L-system rule, they will be exactly identical to

each other. Thus, the lack of natural random variations makes

L-system unsuitable to generate a visually realistic forest.

An early attempt to add natural variations to trees from

L-system was made by Honda [11]. In this work, Honda

extended the L-system by adding a few extra numerical

parameters. By varying these parameters, Honda was able

to produce a wide variety of tree-like structures. With some

improvements and immediate extensions [12], Honda’s model

has been applied to create realistic trees [3]. However, even

Honda’s models and those immediate extensions were com-

pletely deterministic. Later works, such as those by [13]

and [14], introduced stochastic modeling to further enable

random variation in the simulation. Given the above literature,

unfortunately we have not found software that is suitable for

our biosonar application at hand. This motivates us to develop

an algorithm that has all the features of Honda’s model, allow

stochastic variation, and outputs leaf parameters for foliage

echoes simulation.

B. Parameters to be Randomized

In this work, we simulate non-deterministic trees by adding

additional random variation to Honda’s model, following the

approach described in [14]. The main idea is to employ

random variables when simulate the tree structure. Specifically,

we introduce random variables to two types of geometric

parameters—those on global scale and on local scale. On the

global scale, the following parameters are considered:

• initial length or radius of the branches.

• growth level, which describes the mean levels of recur-

sion of the L-system.

• global scaling, which describes the ratio on the mean

length and radius between a daughter branch and its

mother branch.

On the local scale, we randomize the following parameters:

• branching pattern flag, when true, daughter branches will

sprout at random points from a mother branch.

• twists or rotations of the branches.

• mean leaf sizes.

• mean for the number of daughter branches and the

number of leaves.

C. Simulation Effects with Varying Parameters

We now describe how we define the aforementioned pa-

rameters. We will also demonstrate the effects of changing

the parameter values.

On the global scale, we vary the parameters as follows:

(G1) Initial length and radius of the branches: To generate

a tree, we simulate the initial branch length and radius

from a truncated normal distributions with given mean

and standard deviation. For the subsequent branches, we

reduce the branch length and radius by a certain ratio.

Figure 1 shows how different initial length or radius can

produce different trees.

(G2) Growth level: To model age or growth level of a tree,

we change the number of times L-systems rules are

recursively applied to get the final string. When sim-

ulating trees in a forest, this parameter is also randomly

simulated from a discrete distribution. Figure 2 shows

how different number of iterations change the looks of

trees.

(G3) Global scaling: We moderate the two global scaling

parameters for branch length and radius by sampling

them from a truncated normal distribution with a specific

mean and standard deviation. Figure 3 shows the effects

of different global scaling parameters on a tree while

fixing other parameters.

In addition to the aforementioned three global parameters, we

vary the following parameters locally for each individual tree.

(L1) Branching pattern flag If this flag is set to be true,

then daughter branches will sprout at random points

199

(a) (b) (c)

Fig. 1. Different initial length/radius can produce different trees.

(a) 4 (b) 5 (c) 6

Fig. 2. Effects of varying growth Levels.

from a mother branch. In nature, this is the case with

many conifers, such as spruce varieties. If this flag is

set to false, then daughter branches will all sprout from

the apex of their mother branch. In nature, this is the

case with many deciduous trees, such as elm and birch

varieties. The primary effect of changing this flag is

to create more “top-heavy” trees versus more irregular,

branch-distributed trees. An example is displayed in

Figure 4.

(L2) Random twists/rotations of the branches: This flag adds

an extra element of random rotation to the branches. We

set the rotation by sampling from a truncated normal

distribution with given mean and standard deviation.

While this parameter does change the tree structure, it

usually just randomizes the tree structure further, and

does not induce any really useful properties (such as

changing the apparent age of the tree). As such, it is

considered a non-vital parameter. Figure 5 illustrates the

effects of random rotation.

(L3) Leaf sizes: Leaf sizes, measured by length, are drawn

from truncated normal distributions whose parameters

can be determined based on tree species and age. Leaf

width and other shape parameters can be chosen pro-

portional to the lengths, with the flexibility of allowing

some degree of randomness on the proportions. We

experiment with different leaf sizes based on truncated

normal distributions and show the effect of different leaf

sizes in Figure 6.

(L4) Number of daughter branches. The number of daughter

branches is an important variable that could signifi-

cantly influence the appearance of a tree. Increasing

this parameter usually has the effect of increasing the

fullness of the foliage. For example, if one increases the

number of daughter branches in sequence, this will make

the tree appears as if it is growing or budding. More

(a) (b) (c)

Fig. 3. Effects of varying global scaling on branch length and radius.

(a) (b) (c)

Fig. 4. Different tree structures resulted from changing the branching pattern
flag.

explanation of this effect can be found in [14]. Despite

this desirable property, we note that this parameter

should be set carefully to avoid generating trees with

unrealistic looking. In this regard, the values of this

parameter should be sampled from a discrete distribution

with limited number of choices in the sample space.

While introducing random distributions in the setting of

global and local parameters has the effect of randomizing the

appearance of trees to a certain degree, the simulated trees

still look similar under the same L-system rule. This allows

us to simulate random trees from the same species. To simulate

trees for different species, we may need to adopt different L-

system rules, and the randomization parameters should also

be chosen differently to further change the appearance of

trees. For example, the mean growth level is often different

for different species, thus changing this parameter will result

in different mean heights and widths for different species.

Similarly, the mean branch radius changes the thickness of

branches for different species of trees. Furthermore, different

species have different mean leaf sizes, which will change

the appearance of leaves in different species. In Figure 7,

we demonstrate simulated trees that resemble four different

species by adopting different L-systems along with different

global and local parameters.

III. SIMULATION OF FOREST

The simulation of a random forest involves simulating

the structure of individual trees as well as the locations of

trees. The spatial locations of trees should be random and

should reflect the natural structure of a plant community. Its

simulation can be achieved through a spatial point process.

We adopt the flexible inhomogeneous Poisson process (IPP)

200

(a) (b) (c)

Fig. 5. Effects of random rotations.

(a) 0.75 (b) (c)

Fig. 6. The effect of varying leaf sizes.

to simulate the random locations of trees in a 2D landscape,

following a similar approach by [10].

Let S = {s1, . . . , sN} denote the random locations of trees

in a 2D region D ∈ R
2. If we assume that S follows an IPP,

the intensity of points in S will be determined by an intensity

function λ(s) : D → R
+. Larger values of λ(s) imply

higher point intensities at s. Furthermore, for any subregion

A ⊂ D, the number of points falling into A follows a Poisson

distribution with mean parameter
∫
A
λ(s)ds. As a special case,

when A = D, the total number of trees N in the region D
is also Poisson distributed with mean

∫
D
λ(s)ds. Given the

intensity function, the random locations S can be simulated

by using a convenience thinning approach [15]. The format of

λ(s) can be determined either by using analytical functions

(e.g., square exponential functions or mixtures of them) or

estimating λ(s) from empirical data. In the latter case, tree

locations can be collected from an experimental field and used

to estimate the intensity function [16], [17]. If more than one

species are involved, the intensity function for each species

can be used to generate tree locations for that species.

To demonstrate the simulation of random forests, we gen-

erate four species of trees on a square shaped region with

side length 300 meters. For each species, we simulate the

tree locations from an IPP with squared exponential intensity

λ(s) = C exp
{− [

(sx − x0)
2/h+ (sy − y0)

2/l
]}

, where

(sx, sy) are the x and y coordinates of a point s ∈ D, C
is a constant that we can adjust to achieve certain expected

number of trees in D for that species, (x0, y0) denotes the

center of the intensity function, and (h, l) are non-negative

scaling parameters that control the spread of the points along

x and y-axis respectively. We set different parameters for λ(s)
for different tree species and merge the simulated locations to

form one forest. To avoid the situations that two trees overlap

too much, an extra thinning step is performed so that one is

(a) Species A (b) Species B

(c) Species C (d) Species D

Fig. 7. Simulated trees that resemble four different species.

Fig. 8. Placement of different species of trees.

Fig. 9. Generated random forest (top view).

201

Fig. 10. Generated random forest.

removed if two trees are too close to each other. In Figure 8,

we plot the 2D layout of the simulated tree locations from one

simulation. A visualization of the simulated forest is shown in

Figure 9 with a top view and in Figure 10 with a side view.

IV. CONCLUSION

We have proposed a fast algorithm for the simulation of

random forests. By adopting different L-system rules and

random distributions on global and local parameters, our

algorithm can produce a large variety of random trees which

resemble different species. The simulated environments are

fast to visualize, and offers necessary geometry needed for

bat-inspired biosonar sensing. In addition to biosonar sensing,

this algorithm can be also be used to create 3D virtual

environments for the study of other types of sensors such as

radar and LiDAR.

While the current simulation algorithm has already provided

us a platform to study bats’ sensing behavior in forests, it is

natural to expect that an extension of the current simulation

system may further benefit the study of biosonar and other

types of sensors. Possible extensions include adding modules

for the random simulation of other types of natural objects

such as rocks and water. This constitutes a desirable direction

for further research.

Code developed in this paper has been made available on

the Github website [18] with the repository link https://github.

com/immuntasir/forest-generation.git.

ACKNOWLEDGMENT

This research was funded by National Science Foundation

of the United States grant number 1762577.

REFERENCES

[1] J. Letteri, “Computer animation: Digital heroes and computer-generated
worlds,” Nature, vol. 504, p. 214–216, 2013.

[2] O. Ganoni and R. Mukundan, “A framework for visually realistic multi-
robot simulation in natural environment,” 2017.

[3] M. Aono and T. L. Kunii, “Botanical tree image generation,” IEEE
Computer Graphics and Applications, vol. 4, no. 5, pp. 10–34, 1984.

[4] T. T. Santos and A. A. De Oliveira, “Image-based 3d digitizing for
plant architecture analysis and phenotyping,” in Embrapa Informática
Agropecuária-Artigo em anais de congresso (ALICE), In: Conference
on Graphics, Patterns and Images, 25., 2012, Ouro Preto, 2012.

[5] J. Kim and I.-K. Jeong, “Single image–based 3d tree and growth models
reconstruction,” ETRI Journal, vol. 36, no. 3, pp. 450–459, 2014.

[6] A. Lindenmayer, “Mathematical models for cellular interactions in
development i. filaments with one-sided inputs,” Journal of Theoretical
Biology, vol. 18, no. 3, pp. 280–299, 1968.

[7] C. Ming, A. K. Gupta, R. Lu, H. Zhu, and R. Müller, “A computational
model for biosonar echoes from foliage,” PLOS ONE, vol. 12, pp. 1–18,
08 2017.

[8] C. Ming, H. Zhu, and R. Müller, “A simplified model of biosonar echoes
from foliage and the properties of natural foliages,” PLOS ONE, vol. 12,
12 2017.

[9] M. H. Tanveer, A. Thomas, X. Wu, and H. Zhu, “Simulate forest trees by
integrating l-system and 3d cad files,” arXiv preprint arXiv:2001.04530,
2020.

[10] M. H. Tanveer, X. Wu, A. Thomas, C. Ming, R. Müller, P. Tokekar, and
H. Zhu, “A simulation framework for bio-inspired sonar sensing with
unmanned aerial vehicles,” Plos one, vol. 15, no. 11, p. e0241443, 2020.

[11] H. Honda, “Description of the form of trees by the parameters of the
tree-like body: Effects of the branching angle and the branch length on
the shape of the tree-like body,” Journal of theoretical biology, vol. 31,
no. 2, pp. 331–338, 1971.

[12] J. B. Fisher and H. Honda, “Computer simulation of branching pattern
and geometry in terminalia (combretaceae), a tropical tree,” Botanical
Gazette, vol. 138, no. 4, pp. 377–384, 1977.

[13] W. T. Reeves and R. Blau, “Approximate and probabilistic algorithms
for shading and rendering structured particle systems,” in Proceedings
of the 12th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’85, (New York, NY, USA), p. 313–322,
Association for Computing Machinery, 1985.

[14] E. Church and S. Semwal, “Simulating trees using fractals and l-
systems,” 2006.

[15] P. A. Lewis and G. S. Shedler, “Simulation of nonhomogeneous pois-
son processes with degree-two exponential polynomial rate function,”
Operations Research, vol. 27, no. 5, pp. 1026–1040, 1979.

[16] M. van Lieshout, “On estimation of the intensity function of a point
process,” Methodol. Comput. Appl. Probab., vol. 14, p. 567–578, 2012.

[17] D. Simpson, J. B. Illian, F. Lindgren, S. H. Sørbye, and H. Rue,
“Going off grid: computationally efficient inference for log-Gaussian
Cox processes,” Biometrika, vol. 103, no. 1, pp. 49–70, 2016.

[18] F. Zlotnick, “Github open source survey 2017.” http://opensourcesurvey.
org/2017/, June 2017.

202

