
Towards Automated Auditing for Account and Session

Management Flaws in Single Sign-On Deployments

Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis

University of Illinois at Chicago,{mghas2, ckanich, polakis}@uic.edu

Abstract—Single Sign-On (SSO) is both a core and critical compo-
nent of user authentication and authorization on the modern web, as it
is often offered by web and mobile applications along side credential-
based authentication to facilitate the account creation and login pro-
cess. However, the interplay between local account management and
SSO functionality in the backend leads to flaws that enable or magnify
account hijacking attacks. These flaws are not baked into the actual
SSO protocols, but manifest due to the complexity of supporting sep-
arate but intermingling authentication paths. As a result, these types
of flaws cannot be detected by the SSO protocol or implementation
verification tools proposed in prior work. In this paper we introduce
SAAT, a fully automated modular framework that assesses whether
relying parties (RPs) that use Facebook as the IdP comply with
secure practices and guidelines, and uncovers flaws in account and
session management that stem from or are affected by the interplay
of SSO and local functionality. We conduct a large-scale exploration
of authentication and session practices in Facebook’s RPs, revealing a
volatile ecosystem where SSO support can be suddenly dropped and
17.6% of the tested RPs exhibit non-functional SSO implementations.
This highlights the need for the continuous and systematic testing of
the SSO ecosystem made possible by SAAT. More critically, we find
that security measures are often missing and official guidelines are rou-
tinely overlooked or misconfigured, with only 0.8% of the RPs fully en-
abling re-authentication which can prevent compromise from hijacked
identity provider (IdP) cookies. Our study also shows that less than 2%
of RPs correctly react to SSO revocation and 67% continue to allow
account access even 10 days after revocation. Overall, we envision our
framework as a tool for enabling and guiding widespread remediation
efforts by major SSO identity providers, which were previously infea-
sible due to the sheer scale and inherent mutability of this ecosystem.

I. INTRODUCTION

Account creation and authentication are essential aspects of the
modern web ecosystem. Creating individual accounts for each web
service is tedious both for the user who needs to manage multiple
passwords, and the service owner who needs to develop and maintain
a complex component of their overall system where any flaw can
have severe security ramifications. Single Sign-On (SSO) mecha-
nisms offer an attractive alternative that allows users to avoid tedious
account creation processes by leveraging their existing accounts on
popular services (referred to as Identity Providers or IdPs). Online
services (referred to as Relying Parties or RPs) can then outsource
some or all of their authentication infrastructure to these IdPs,
enabling a more integrated and uniform browsing experience across
different web services and applications while also streamlining
account and session management for both the RPs and the end users.

Although centralizing authentication with major services like
Facebook and Google can improve security at relying parties
by leveraging their substantial security resources and expertise,
SSO introduces a complementary set of security risks to users.

While the security of the underlying protocols has been studied
in depth [1] and are currently understood to be free of substantial
flaws, the implementation thereof may itself be incorrect [2].
Importantly, most uses of SSO augment, rather than fully replace,
a site’s native authentication mechanisms and there is substantial
flexibility in the integration of the RP’s and the IdP’s authentication
mechanisms. This flexibility has led to a variety of specific
implementations, which unsurprisingly leads to both a challenge
for the RPs to implement said schemes correctly (leading to
various vulnerabilities [3], [4], [5]), and difficulty in longitudinally
evaluating the security of these implementations [6], [7].

Although many of the aforementioned vulnerabilities are
predicated on being successfully authenticated to the IdP, the security
of these services can still create a well-fortified but imperfect single
point of failure in online authentication. These major services are
still not impervious to flaws that enable account hijacking, as shown
by prior research [6], [8]. A recent real-world attack campaign
resulted in the largest hack in Facebook’s history [9], where the
authentication tokens (i.e., cookies) of 50 million users were stolen.
Alarmingly, as had been previously demonstrated by Ghasemisharif
et al. [6], a compromised IdP account allows attackers to obtain
persistent and stealthy long-term access to users’ RP accounts with
little to no option for remediation [6]. In essence, the issues they
identified can be traced back to the complexities that arise from the
co-existence and interplay of two separate account authentication
pathways, that of traditional credentials and that of Single Sign-On,
and the ensuing session management processes.

While numerous studies have conducted extensive evaluations
of the design and implementations of SSO protocols, no prior work
has conducted a systematic, large-scale and in-depth exploration
of account and session management in the SSO ecosystem. We
introduce SAAT, an automated black-box framework for auditing
systems, which use Facebook as the IdP, in the wild. First we
compile a set of best-practice guidelines and recommendations for
core building blocks of the SSO ecosystem: integrated registration,
authentication, and session management. Next, we define a series of
auditing tasks, modelled as finite-state machines, that identify viola-
tions and insecure practices in the implementation of these processes
in Relying Parties. This builds upon our ability to orchestrate actions
and infer state changes in the Identity Provider and Relying Parties.
More importantly, our fully automated testing pipeline handles every
aspect of the SSO protocol; from detection of SSO support and
account registration to access revocation and session termination.

We use SAAT to obtain a large-scale longitudinal view of SSO
support, uncovering a brittle and volatile ecosystem, with 17.6%
of the RPs we tested having non-functional SSO implementations
and almost 8% suddenly dropping support for SSO within a 50-day







system finds a form element but fails to match any keywords, it
selects that form element if and only if that is the only form element
in the page and it does not have any search or login related keywords.
While this approach may not detect form-less sign up pages as
opposed to searching for all relevant inputs, we opt for this approach
as it minimizes false positives for pages where the login and sign up
sections are included on one page. If the crawler fails to detect forms,
it looks for potential links that point to an account creation page and
follows them. This is particularly useful in websites whose login and
registration URLs are indistinguishable, and single-page applications
where sign up forms appear upon interaction. After locating the
forms, we select all non-hidden <input> fields within the forms
and fill them out with random information and check all checkboxes.
This initial process allows us to detect dynamically created input ele-
ments that will only appear depending on whether other inputs have
been filled (e.g., a password confirmation field). We then record all
visible inputs, identify the type of personal information required and
add them in the corresponding input fields. While we apply a sim-
ilar method to <select> and <input type="radio">

fields, if we cannot identify the type of information needed we
select an option randomly. For each type of input, we have a set of
possible values in case some of them are not accepted by the website.
We also take the pattern attribute into account and select the
values that match the pattern. For instance, for password inputs, if our
password does not match the pattern, we generate a new one using
RandExp [20]. Finally, we check for potential invalid inputs by
searching for aria-invalid attributes, the :invalid CSS
pseudo-class, and “error” keywords in the input elements; we try
variations of the information until one is accepted. To avoid getting
stuck at this phase of our workflow, we need to set an appropriate
threshold for this process: we first check for the invalid inputs and
if none are found we try submitting the form; if it fails, we check
for invalid inputs again. This approach covers both cases of invalid
inputs that appear immediately after typing and ones that only get
flagged during the submission. We limit the number of trials and the
navigation to two and three attempts respectively. The navigation
threshold allows us to also handle multi page/step registration forms.

Email/SMS activation. Some websites require activation via
email or SMS after submitting the forms, to complete account
registration. We use Gmail’s API [21] for retrieving the latest emails
and filter them based on the website’s domain and the existence of
verification-related keywords. We also look for verification/activa-
tion keywords and numbers that can be used as activation codes. To
support SMS verification, we use Twilio’s [22] SMS API and follow
the same code extraction process for locating potential verification
codes in SMS texts. We listen for incoming emails and SMS
messages for 15 seconds after the form is submitted. Once we receive
a code, we submit it to complete the registration. If neither an email
or an SMS is received, we assume that the website does not require
additional verification and the account has been successfully created.

State changes and detection. Our account creation and
auditing flows primarily rely on correctly distinguishing between
an account’s logged in and logged out states. For our auditing
process, we consider an event as a state-changing transition if
sending two equal HTTP requests, where only one of them carries
authentication cookies, results in two different responses. Since web
pages can contain dynamic content (e.g., advertisements), we use
unique identifiers that belong to the user for detecting differences
in the responses. Additionally, while many web pages could be
used for detecting state, we have found that visiting the login page
is a reliable indicator for detecting states. Every time we need

to determine a page’s state, our system visits the login page in
a separate tab (all storage is shared between the two pages) and
checks whether the login page contains indicators such as a login
form or unique identifiable information that points to the user.

CAPTCHAs. Websites often rely on CAPTCHA challenges
as a means of preventing automated account creation [17]. We
draw inspiration from prior studies [23], [24] and use Wit.ai’s [25]
speech-to-text API to implement a solver for the audio challenges
presented by Google ReCAPTCHAs v2. Our solver resides on
a remote web server for bypassing rate limiting restrictions by
funnelling requests through multiple proxies and different user
agents. Before submitting filled-out registration forms, we look for
instances of ReCAPTCHA v2; if it exists we extract its site-key

and send it to our solver. The solver then completes an audio
challenge and sends the corresponding token back to the crawler.
The token is then submitted along with the registration form. In
our initial implementation, we adopted common anti-bot-detection
practices such as overwriting navigator.webdriver or
spoofing navigator.plugins [26]. However, due to the
cat-and-mouse nature of these evasion techniques, eventually
we resorted to using the third-party package puppeteer-

extra-plugin-stealth [27], which frequently gets updated
with the latest evasion techniques. While this could potentially
violate RPs’ terms of service, automation is a widely established
common practice in web security research, and incorporating
anti-bot-detection features is becoming increasingly necessary for
realistic experimentation [28]. During our experiments, we also
noticed that even then some websites were able to detect automation
and displayed blank pages. We traced the problem back to code
executed from doubleclick.com. As such, we included a rule
in our main crawler for blocking doubleclick.com requests.

B. Single Sign-On Workflow

Single Sign-On detection. We leverage the browser’s Web
Accessibility API for identifying SSO support. The main goal of
this API is to expose an interface that can be used for assistive
technologies, as it exposes a semantic version of the user interface
and facilitates conveying important information across different
platforms, particularly for users with impairments. It is also often
used in automated testing and for UI automation in applications like
password managers [29]. We provide a code sample of a page with
HTML tags and its corresponding accessibility tree in Listings 1, 2
(Appendix). We use Chromium’s Accessibility API, which returns
a web page’s representation as a tree of objects, and traverse
the accessibility tree to look for nodes that contain SSO-related
information. Since Puppeteer’s accessibility tree does not directly
expose DOM nodes, we modify the Accessibility class to expose
each node’s unique identifier (BackendNodeId), which we use
for resolving the node that contains SSO information.

After detecting SSO support, we inject the IdP cookies into the
page and proceed with initiating the login process for the RP. We
then collect the following information about the deployment of SSO.
First, we log if the IdP requires the user to enter their credentials
and re-authenticate despite the presence of the session cookies.
This only occurs if the relying party explicitly asks the IdP to
re-authenticate users; this can be done through an optional parameter
in the SSO workflow. Second, we log if the IdP asks the user for
their permission. For instance, Facebook displays a “Continue as”
button and upon clicking, the authentication process succeeds and
the browser gets redirected back to the RP website. In addition

4



S0

Not Registered
start

S1

Reg w/SSO
(Acurrent←SSO)

S2

Registration Failed

S3

Reg w/Email
(Acurrent←email)

S4

Reg w/SSO
(Acurrent←SSO′)

Reg(SSO)/OK

Reg(Email)/OK Reg(SSO,EQ)/OK

Reg(Email)/Err

Reg(SSO,EQ)/OK

Reg(SSO,NEQ)/OK

Reg(SSO,EQ)/OK

Reg(Email)/Err

Reg(Email)/Err

Fig. 3: State machine model of RP account registration.

to the authentication method, we also collect the relying party’s
cookies, and its unique app_id which is assigned by the IdP.

IDPController. A critical dimension of our auditing workflow
is interacting with the IdP and observing the impact of IdP actions on
the RPs. The controller requires programmatic ability to authenticate
with the IdP, access to a list of logged-in RPs, and revoke RP access.
These functionalities are ubiquitously supported by popular IdPs,
and are handled by our Login and IDPController modules. While we
focus on Facebook, these actions can be generalized to other IdPs by
modifying the aforementioned modules. Specifically, the loginIDP
function should be modified to support the new IdP’s authentication
flow and the functions in IDPController should be tailored to the
specifics of the new IdP for obtaining a list of RPs and removing
RPs from the IdP. For instance, Facebook does not currently expose
a public API for interacting with RP apps. Instead of interacting
with Facebook through an orchestrated browser, we have reverse
engineered the communication between client and server and
extracted the required data for successfully querying Facebook
servers via direct HTTP POST requests. This allows us to speed
up the auditing process and is less dependent on Facebook’s UI and
any changes that would require a modification of our automation
actions. If Facebook changes its behavior or a new IdP has a
different implementation, we can obtain the data via UI interaction.
Facebook assigns RPs to three categories: active, removed,
and inactive. Using our approach, we can collect the apps in
all categories and also remove them from the active tab. Among
the app-related information, we obtain the install_time,
inactivation_time, removed_time, app_user_id,
permissions, and deletion_url attributes.

C. Auditing Workflow

To enable our collection of auditing tasks and testing procedures,
we model our framework’s actions and the ensuing state changes
as finite-state machines, which allows us to identify non-compliance
and violations of security guidelines and best practices.

Authentication paths and account merging. Our testing flow
identifies the different registration paths supported by the RP and
explores whether taking each path ends in a similar state in the same
account. Specifically, our system assesses whether signing up with
SSO and creating an account using credentials (i.e., username and
password) gets linked to the same account. This workflow verifies
whether the RP correctly merges accounts. Figure 3 depicts how we

TABLE I: Mapping the combinations of input symbol and guards to
abstract input symbols;m is the registration method,Acurrent points
to the registered account in the current state, and Am is the account
created. We use EQ/NEQ to represent the equality/inequality of
accounts (i.e., if they are merged). For instance, Reg(SSO,EQ)
represents a move where registering an account using SSO results
in an account equal to the current state’s account (Acurrent).

Input Guards Abstract Symbols

Reg(m)

m=Email
m=SSO∧Acurrent=undefined
m=SSO∧Acurrent=Am

m=SSO∧Acurrent 6=Am

Reg(Email)
Reg(SSO)
Reg(SSO,EQ)
Reg(SSO,NEQ)

model and formalize the relying party’s account registration behavior.
This test is motivated by the expectation that account registration in a
relying party that supports separate authentication paths must result
in creating a single account per user (i.e., email address) regardless
of the path taken by the user. We now define a set of actions and
states we incorporate into our modelling of the registration process.

Registration Model. We use a Mealy machine to model the
registration behavior of a relying party. A Mealy machine is a finite-
state machine where the current state and current inputs determine
the output and the next state. This model can effectively represent the
registration process in a relying party since the action taken by our
system (mimicking a user action) as well as the current state dictate
the subsequent registration state. A Mealy machine M is a six-tuple
(S,S0,ΣI,ΣO,δ,λ) where S is a finite set of states, S0 ∈ S is the
initial state, ΣI is a finite set of input symbols, ΣO is a finite set of
output symbols, δ :S×ΣI→S is the transition function, and λ :S×
ΣI→ΣO is the output function. In our model the starting state is that
of a user being Not Registered. We define a state-dependent variable
Acurrent that is initially undefined and points to the created account.
We also create abstract input symbols by using combinations of input
symbol Reg and a set of guards (shown in Table I). We define the
set of output symbols{OK,Err} describing the generated output as
we move to another state. Note that in this model we only focus on
registration actions and not linking accounts or adding a password
after creation, as those actions occur within a created account.

Merging. We say that a relying party R merges accounts created
via SSO and credentials if (i) R supports another registration option
(i.e., email) in addition to SSO, (ii) when an account is already
registered over SSO, attempting to create an account through a
credential-based method using the email associated with the IdP
account will fail, and (iii) if an account was already created using
the credential-based method, signing up with SSO will access the
same account as if it was created using SSO (the green transition in
Figure 3). This definition is compatible with Facebook’s guidelines
on account merging [11]. We consider the following cases:

1) δ(δ(S0, Reg(SSO)), Reg(Email)) = S2: Register an
account by signing up via SSO, and then check whether
creating an account using credentials (namely, the IdP
email address) will generate an error stating that the
account already exits.

2) δ(δ(S0,Reg(Email)),Reg(SSO,EQ)) = S1: Register
an RP account using credentials. Then check whether regis-
tering over SSO using an IdP account with the same email
address will end up navigating to the same RP account.

Note that we classify the transition δ(S3,Reg(SSO,NEQ))=S4

5



S3

RP Logged Out
& Active

S1

RP Logged In
& Active

S2

RP Logged In
& Removed

S0

RP Logged Out
& Removed

start

Revoke(HALF )
/DENY

Revoke(HALF )
/DENY

getAccess(SSO)/GRANT

getAccess(SSO)
/GRANT

getAccess(SSO)
/GRANT

getAccess(SSO)/GRANT

getAccess(COOKIE)
/GRANT

getAccess(COOKIE)
/GRANT

getAccess(COOKIE)
/GRANT

Revoke(FULL)
/DENY

Revoke(FULL)/DENY

Revoke(FULL)
/DENY

Fig. 4: State machine model of RP’s access revocation.

(the red transition in Figure 3) as counter-intuitive behavior. The
assumption for case (1) is that accounts registered via SSO are
keyed with the IdP email address, which is also backed by our
observation that accounts created through the SSO process cannot
be re-registered using the IdP’s email address. While case (1)
is detectable using relatively simple heuristics, case (2) is more
challenging. We consider the following strategy for determining
account similarity (Acurrent = Am): we use different unique
identifiers for account registration and SSO sign up, and check
whether we observe the same identifiers in both pages.

Credential test. This procedure investigates whether the RP or
IdP allow logins using hijacked cookies. The process begins with
visiting the authentication page and verifying that the RP supports
SSO. We then attempt to log into the RP using the IdP cookies to
complete the SSO process. During the IdP authentication, if the IdP
does not ask for credentials, we mark the RP as one that does not
explicitly ask for re-authentication. This procedure also examines the
validity of RP cookies that were collected in §IV-A. Moreover, we
also examine whether explicitly asking for re-authentication using
a username and password can be disabled from the client side; this
would allow an attacker with hijacked IdP cookies to bypass this se-
curity check that requires knowledge of the IdP credentials (and also
avoid additional security checks that typically occur at login [17]).

Revocation test. This test explores the efficacy and effectiveness
of SSO access-revocation. Specifically, we assess whether revoking
access from the IdP affects the user’s access to an already-connected
relying party. Again, we model the revocation process using a Mealy
machine. We define a set of input symbols getAccess and Revoke
with two arguments RPcookie and RPid, which represent the relying
party’s cookies and its unique identification number that is assigned
by the IdP. The combinations of these input symbols with a set of
guards (shown in Table II) will determine the next state. We also
define a set of output symbols{GRANT, DENY} representing the out-
put of the taken action as we transition into another state. Figure 4 de-
picts the revocation process in relying parties. The Revoke(FULL)
(green) transition allows a user to completely and permanently re-
voke access to the RP account, whereas the getAccess(COOKIE)
(red) illustrates incomplete revocation where the IdP revokes the
RP’s access but the RP’s authentication cookies remain valid.

The testing workflow starts from state S0 and logs into
an RP using SSO. This creates a transition from S0 to S1

TABLE II: Mapping the combinations of input symbols and
guards to abstract input symbols. We use RPid to represent the
unique identifier assigned to the RP by the IdP and Active as
a set of unique identifiers whose access has not been revoked
yet by the IdP. hasAccess returns true or false depending on
whether the previously collected RPcookie provides access to the
RP. For instance, the abstract input symbol getAccess(COOKIE)
represents a move in which the RP’s cookies grant access to the
account even though RP’s access was revoked by the IdP.

Input Guards Abstract Symbols

getAccess(RPid,RPcookie) RPid∈Active∧hasAccess(RPcookie) getAccess(SSO)
RPid /∈Active∧hasAccess(RPcookie) getAccess(COOKIE)

Revoke(RPid,RPcookie) RPid∈Active∧¬hasAccess(RPcookie) Revoke(HALF)
RPid /∈Active∧¬hasAccess(RPcookie) Revoke(FULL)

Algorithm 1 Merge test

1: procedure MERGETEST(u,τ ,A)
2: result := undefined
3: let {Asso,Binfo}∈A
4: let {Aemail,Ainfo}∈Asso

5: if τ = type1 then
6: loginWithSSO(u, Asso); register
7: result := HasErr(createAccount(u,{Aemail,Ainfo}))
8: else if τ = type2 then
9: createAccount(u, {Aemail, Binfo})

10: page1 := loginWithCredentials(u, Aemail)
11: (βid,βstate) := IsLoggedIn(u, page1, {Ainfo,Binfo})
12: page2 := loginWithSSO(u, Asso); register
13: (αid,αstate) := IsLoggedIn(u, page2, Ainfo)
14: if βstate∧αstate then
15: result := IsEqual(αid,βid); unique identifiers
16: end if
17: end if
18: return result
19: end procedure

(δ(S0,getAccess(SSO))=S1). To test if the RP correctly responds
to access revocation, the workflow tests RP’s compliance in the
logged in (S1) and logged out (S3) states. Logging out creates a
transition to state S3 (δ(S1,Revoke(HALF))=S3). When access
is revoked, the workflow checks whether the RP’s cookies grant
access to the RP account. If the RP is not compliant, it will create
transitions to state S2 (δ(s, getAccess(COOKIE)) = S2 for
s∈{S1,S3}), otherwise it will move to state S0. The state detection
method (§III) identifies the state after each transition. Finally, the
workflow continues testing RP’s compliance overtime while in
state S2, and if it fails it will create a transition from S2 to itself
(δ(S2,getAccess(COOKIE))=S2).

D. From Theory to Practice: Auditing Process Implementation

Here we provide an overview of how we implement the auditing
workflow in our framework, based on the modeling detailed
previously, and clarify how inputs and outputs are mapped to
SAAT’s components and how it performs the compliance tests.

Merge test workflow. Given the account merge definition
in §III-C, we implement the merge test process using SAAT’s
Register, Login, and Detection modules. Each module contains
functions representing the appropriate abstract symbols (see Table I).
For instance, the Register module defines createAccount

representing Reg(Email) which takes RP’s registration URL

6



and a set of email and registration information and creates an
account. In an SSO workflow, the registration and login processes
are the same even though they may be presented as different,
e.g., Register with SSO and Login with SSO follow the same
Single Sign-On procedure. Due to this similarity, we define the
loginWithSSO function within the Login module to represent
bothReg(SSO) and getAccess(SSO). We also define the function
loginWithCredentials which receives a URL and a set of
credentials (i.e., email and password) to facilitate the login process
for the account that was created with createAccount.

Algorithm 1 describes the implementation of the merge test,
where the MERGETEST function receives a login page URL u,
test type τ , and account information A as inputs, and returns a
boolean representing whether the RP merges an account with two
authentication paths. The type input τ accepts two inputs type1
and type2 representing the two merge cases discussed previously.
Account informationA contains a set of information pertaining to
the SSO account Asso (i.e., IdP account) including the email address
Aemail and personal information Ainfo. It also contains personal
information Binfo, which is used for the type2 account creation
as well as being a unique identifier when we compare accounts
created using different authentication paths (line 15). We define
the function IsLoggedIn as part of the Detection module that
receives a URL (i.e., login URL), a web page and a set of identifiers
and returns a tuple with the detected identifiers and a boolean value
representing the web page’s state (i.e., logged in). Note that the
type1 and type2 tests are done separately with fresh accounts, such
that lines 6 and 12 are the first time the IdP is connected to the RP.

Revocation test workflow. We implement the revocation test
workflow using the Login and Detection modules, where the Lo-
gin module defines the loginWithSSO and logoutFromRP

functions to implement getAccess(SSO) and Revoke(HALF).
Algorithm 2 shows the implemented procedure for the revocation
test, where the REVOCATIONTEST function receives a login URL
u, test type τ , and account information A and returns a boolean
representing the RP’s revocation compliance. This process first logs
into the RP using the Asso account and collects the RP cookies
(line 5). Before proceeding with the test, we examine whether
including the cookies in a new page is sufficient for obtaining
access to the account (lines 6 and 7). Next, depending on the test
type τ , REVOCATIONTEST performs session termination (logout)
or access revocation actions. The former is to examine whether the
RP correctly invalidates cookies after logging out, whereas the latter
tests the RP’s response once the IdP revokes the RP’s access. In both
scenarios, we ultimately test whether after each action, the collected
cookies will provide access to the RP account. Lastly, we leverage
the Detection module’s IsLoggedIn function to retrieve the
login status after adding the RP’s cookies to a newly created
page (line 13). If the state (α′

stat) is true, indicating that session
termination and/or revocation actions do not invalidate cookies, the
revocation test result will be false (i.e., the RP is not compliant).

Detection. Our detection functionalities, such as the state
detection and SSO detections, are implemented in the Detection
module, which also defines the locateAuthPage function
that implements the technique for finding login or registration pages
(see §III-A). Each test workflow begins with locating the login or
registration web pages that support Single Sign-On. Next, each
retrieved URL is used in the MERGETEST and REVOCATIONTEST

as parameter u (Algorithms 1 & 2) until the test is complete (i.e.,
error free), at which point the remaining URLs are ignored.

Algorithm 2 Revocation test

1: procedure REVOCATIONTEST(u,τ ,A)
2: result := undefined
3: let Asso∈A
4: let {Aemail,Ainfo}∈Asso

5: Acookie := collectCookies(loginWithSSO(u, Asso))
6: page := AddCookie(Acookie)
7: (αid,αstate) := IsLoggedIn(u, page, Ainfo); state detection
8: if αstate then
9: if τ = logout then

10: logoutFromRP(u)
11: else
12: d := getDomain(u)
13: App ID:= getAppID(d)
14: removeApp(App ID); revoke permission
15: end if
16: page′ := AddCookie(Acookie)
17: (α′

id,α
′

state) := IsLoggedIn(u, page′, Ainfo)
18: result := ¬α′

state

19: end if
20: return result
21: end procedure

IV. EXPERIMENTS & RESULTS

In this section we detail our experimental evaluation and findings.

Experimental setup. We use our framework for two main
objectives: 1) quantifying SSO support and obtaining insight into the
relationship of RPs and IdPs, and 2) performing compliance tests on
RPs. Initially, SAAT takes a hostname and a rank number (to create a
unique id) as input and finds the potential login URLs which will be
used by the various modules and testing workflows. We use SAAT’s
SSO Detection and Login modules for quantifying SSO support and
provide the results and detailed examination in §IV-A. For auditing
workflows and compliance tests, we leverage SAAT’s components
to independently identify non-compliant RPs. For instance, for the
revocation test (Algorithm 2), we use the Login module to log into all
RPs using SSO (line 5) then remove the RPs from Facebook using
Revoke module (line 11), and finally use Detection module (line 14)
to identify the current state of the accounts when authentication cook-
ies are present (i.e., logged in vs logged out). Separating each step
and running them in parallel allow us to 1) find and repeat incomplete
steps due to errors and 2) prevent our system from getting banned
for sending too many requests particularly to the IdP in a short time.

Experimental analysis. We note that Single Sign-On is a
volatile ecosystem where RPs may drop SSO support or completely
change their authentication workflow over short periods of time.
Given our extensive set of experiments conducted at a large-scale,
and to account for these changes, the results and statistics for each
experiment will only include the websites that were available and
supported SSO at the time of each given experiment. Finally, we
have tuned our process to optimize for precision (i.e., minimize false
positives) which may impact recall (i.e., increase false negatives).

Manual verification. In §IV-B and §IV-C, we manually verify
the state-detection results described in §III-A to ensure the accuracy
of SAAT’s state-detection and measure its performance. When we
perform an action that can change the state of an account (e.g.,
log in/out), we take screenshot images of the page before and after
taking the state-change action and save them along with the result
we receive from our Detection module. Then, we manually go
through the images and assess the state-detection results.

7



A. Single Sign-On Support

RPs often change in a short time period, which can render prior
data on SSO support stale. Therefore, continuous observation is nec-
essary for building an accurate picture. Here we present our study of
SSO support and provide insight into this ever-changing ecosystem.

Methodology. We select the top 100K sites from Majestic [30]
and identify their login pages. Majestic ranks websites based on the
number of unique IP subnets that refer to the website and has been
used in several recent studies [31], [32], [33], [34]. Nonetheless, our
approach is agnostic to the top list used. After identifying the login
page, we detect support for Facebook SSO and initiate the login pro-
cess using our injected Facebook cookies. During the login process,
we record instances of RPs that do not accept Facebook cookies and
explicitly ask for Facebook credentials. We use two separate Face-
book accounts with names that are distinguishable from common
names and English words. This facilitates differential analysis during
the state detection process. We also collect IdP-generated errors that
may appear during login. Such errors may occur if the RP is not con-
figured correctly or is currently in development mode. This allows us
to filter out non-functional RPs that would pollute our measurements.
After logging into each RP, we collect the cookies. We repeat this
process to ensure that unexpected errors, due to network disruptions,
are minimal. One of the practical challenges that we faced during our
crawling process was sending too many and frequent requests, which
trigger Facebook’s bot detection system. To avoid overwhelming
the servers (and potentially getting banned), we limited our crawl
to 10k websites per day. However, this created a gap between when
we logged into each RP and later performed the revocation tests
which could affect the results (e.g., RP cookies expire prior to our
revocation test). Therefore, after the second crawl, we repeat the
login process for all detected RPs with a 40-60 second sleep time
in between. To speed up the process, we use GNU Parallel [35] to
run 5-6 processes at a time, thus requiring approximately 1 day to
complete. All large-scale data collections were done on an Ubuntu
18.04 server with an Intel(R) Xeon(R) Silver 4110 CPU and 32GB
RAM, and manual inspections were done on a personal computer.

Results. We identified and initiated the login process for 2,689
websites that supported SSO with Facebook. Of those, 669 either
had a null App ID or returned an error, and 120 did not complete the
login process due to either freezing from SSO misconfigurations or
not loading correctly in headless Chrome. In total, we successfully
logged into 1,900 websites through Facebook SSO. To further
ensure the reliability of our results, we filtered websites based on
whether the login URL’s domain (via search engines) matched their
corresponding Majestic record, which left us with 1,622 websites
with matching domains. While this filtering process can also
remove legitimate websites such as shelfari.com (merged
with goodreads.com), we believe that it provides a more
accurate dataset for our experiments and eliminates false positives.

To become a Facebook RP a site must first create an application
in Facebook, where it will be assigned a unique App ID. We extract
the App IDs during the SSO login process (from the app_id

or client_id URL parameters) and match them to the data
collected from Facebook’s “Apps and Websites” portal. After
completing the login process, we collected applications from both
Facebook accounts and selected the matching App IDs associated
with those 1,622 websites. In total, we collected 1,494 unique apps
from Facebook’s portal. We note that the relationship between
App IDs and websites can be one-to-one or one-to-many; in the
case of one-to-many the app owner must explicitly whitelist those

websites otherwise Facebook throws errors. An example is shown in
Table III (Appendix) where the “JotFrom Login” App ID is shared
between multiple websites with some of them not being whitelisted.
We found 36 App IDs that had one-to-many relationships, with
19 having similar second-level domains (e.g. yelp.com and
yelp.ca) and 17 cases with different second-level domains.
For instance, cancer.gov, interiordesign.net and
submittable.com use Submittable, an online platform for
collecting and reviewing submissions and applications. Figure 9
(Appendix) visualizes the one-to-many relationships between
App IDs and the websites in our data. Generally, having the same
second-level domain can be an indicator that the RP is managed by
the same organization as the websites. However, the opposite is not
necessarily true. This has three implications: (1) if the entity behind
the shared App ID gets compromised then all RPs that outsourced
their account management will be affected, (2) the entity in charge
of the App ID can track users between the different RPs, and (3) the
RP becomes a “front”, obscuring the actual entity users have to trust.

Takeaway 1: The relationship between IdP-side applications
and the websites can be one-to-one or one-to-many. Outsourcing
account management to a third-party application creates a single
point of failure and an environment where users can be tracked
across disjoint RPs without their knowledge.

SSO permissions. In addition to the App IDs, we collected the
permissions requested by RPs from Facebook’s portal. Facebook
relies on an app review process for applications that request
more than the public_profile and email permissions.
As can be seen in Table IV (Appendix), public_profile

and email are the most prevalent permission combinations we
observed throughout the apps collected from the applications

and business_tools sections. Business_tools apps
request a different set of permissions and are used for managing
business assets like pages, events, and groups. However, both use
SSO as a login method. Figures 10, 11 (Appendix) illustrate the
distribution of requested permissions in the business_tools

and applications sections respectively. Our manual
investigation of 54 apps that did not request the email

permission revealed that for the majority of the apps (33) SSO
cannot be used for account creation and can only be added to existing
accounts. The rest of the apps only need profile info (e.g., to enforce
age restriction) or allow for an email address to be added after SSO.

Longitudinal Single Sign-On support. We tracked changes in
Single Sign-On support across two rounds of data collection that
were 50 days apart. We found that Single Sign-On support was
dropped in 119 websites. We also tracked IdP-side apps through
Facebook’s portal and noted that after 50 days, 41 apps switched
the development mode flag (on/off) at least once. Interestingly, we
observed that if an app goes into development mode, it disappears
from Facebook’s portal, thus preventing users from modifying its
access permissions. However, while apps in development mode are
not shown in the app portal, their access can still be revoked through
Facebook’s recovery process. This requires the user to go through the
recovery process that is different from visiting the applications page
and removing the apps, which may not be obvious to average users.
Our findings also show that many RPs had non-functional SSO
implementations. Out of 669 unsuccessful SSO logins, 407 were
due to errors; these were narrowed down to 348 through our afore-
mentioned domain-filtering process. We manually categorized the
errors based on the received descriptions and found that the majority

8





the cookies affect the website’s state and not to infer the level of
access that the cookies provide. We also take screenshots of the login
pages to manually verify the results. During our manual analysis,
we inspected all the screenshots and compared the visual differences
with what was detected by our system (i.e., personal info, logout but-
tons, images, etc.) to verify the results of our state-detection method.

We conduct two experiments: (i) an initial experiment where
we log into RPs, revoke their access and wait for 10 days, and
(ii) an extended experiment where we log into RPs and wait for
a month. The additional time for the control group is to obtain a
more extensive cookie-expiration timeline. To prevent being flagged
as automated bots, we randomly wait 20-60 seconds between each
login attempt, increasing the duration of the entire login process to
two days. For the first experiment, we collect the state-change results
and take screenshots of the login pages before revocation to ensure
that the cookies still work. We continue collecting daily state-change
data and the screenshots for the next 10 days. Apart from the revo-
cation step, we follow the same steps for the second experiment and
continue to obtain daily screenshots for a month. In both experiments,
we collect two sets of state-change data: one with RP cookies as-is,
and another where we extend the expiration dates to study the impact
of client-side and server-side cookie expiration checks. Finally, we
investigate whether RPs correctly terminate sessions after logging
out. We use the following order of actions for this experiment: first
we log into an RP using SSO and collect the RP’s cookies. Next, we
inject the collected (valid) cookies in a fresh browser and log into
the RP again and look for the logout button in the main page and the
login pages. The heuristics we use are very similar to our SSO button
detection. If the logout is successful, we use the (invalidated) cookies
in a fresh browser and visit the RP and invoke our state detection
process. If it detects that we are successfully logged in, we flag the
RP as non-compliant. Similar to previous experiment, we collect
screenshots at each step to later verify our state-detection results.

Results. We consider 1,107 RPs that were successfully pro-
cessed and found in both the initial and extended groups, and their
domain matched the login URL. Initially, we identified 470 RPs
where the presence of RP cookies resulted in detectable changes
to the RP’s state after the SSO login. We manually checked the
screenshots and noted that our state detection method had a 3% false
positive rate. After the revocation process, only 68 RPs showed a
logout behavior. By comparing these RPs with our extended group,
we found that in 60 RPs the logout behavior was caused by cookie
expiration and only 8 RPs actually exhibited the logged out behavior
due to access revocation. We also note that 318 RPs continued
accepting cookies 10 days after revocation. As discussed in §IV-A,
RPs can use the official SDK to regularly check the access token’s
validity and, thus, get notified of invalidated tokens. By comparing
SDK results, we note that 196 (41%) RPs initialized the SDK (i.e.,
called fbAsyncInit()), but none of them correctly logged out
after access revocation. Three of the RPs that correctly logged out in-
cluded the SDK and two of them initialized it. This shows that while
RPs that use the SDK are in a better position for getting notified of
invalid access tokens, taking the appropriate actions in response to
access revocation is still their responsibility, yet is mostly ignored.

Takeaway 4: Only 1.7% of RPs logged out the user in response
to IdP access revocation and 67% of the RPs continued to allow
access to the accounts even 10 days past the revocation. Use of
Facebook’s SDK does not correlate with correct logout behavior.

Cookie expiration. We note that short-lived cookies can have
a mitigating effect despite a lack of other defensive actions when
access revocation occurs (although, this is not a complete and robust
solution). Our goal here is to quantify how RP cookies expiration
can impact account access over time. We use the collected data
from the second experiment to analyze the impact of cookie
expiration over a period of 40 days. We identified 1,092 RPs that
set cookies after authentication. For each cookie, we calculate the
time difference between the expiration timestamp and the login
timestamp (which was recorded when we logged in). In cases
where the cookies had already expired (e.g., they have negative
values or already expired in the past) we replace the expiration
date with a value of 0. To better represent the data, we calculate the
minimum and median expiration dates of all the cookies for each
RP and use the median as the main reference value. Based on our
observation, the median value offers a less skewed representation
than the average, particularly due to cookies that may expire many
years in the future. Since we aim to study the impact of cookies
on account access, we only consider the 424 RPs in which cookies
made a detectable state change after login completed.

We acknowledge that not all cookies are required for authentica-
tion; however, by comparing cookie expiration with the state-change
results, we can study the correlation between the time of expiration
and account access. To better understand the impact of cookie expira-
tion, we first identify RP’s actual behavior using our state-detection
method and verify through manual inspection. Our goal is to study
whether there is a correlation between cookie expiration values and
how RPs handle users’ sessions. Next, we separate our dataset into
RPs that prematurely rejected cookies that are yet to expire (based
on the median value) and RPs whose cookie acceptance or rejection
behaviors are aligned with their median expected expiration. We
identified 127 RPs (57% of the overall RPs that rejected cookies in
under 40 days) that prematurely reject cookies. Figure 7 illustrates
the CDF for the cookie expiration time in days. The left figure
provides a comparison between the median expected expiration and
actual expiration after which cookies do not provide access to the
accounts. The median expiration timestamps are calculated for each
RP whereas the actual expiration is measured and verified using our
state-detection method over 40 days. The left diagram represents
RPs that rejected their cookies before reaching the median expiration
timestamp. The right diagram displays the median expected expira-
tion for RPs that accepted cookies before reaching median expiration
date, or rejected cookies after reaching their median expiration date.
This figure shows that most RPs set cookies that expire instantly or in
a short amount of time. The left diagram in Figure 8 shows the actual
expiration over 40 days. The RPs that rejected the cookies are notice-
ably higher two weeks and one month after login. The right diagram
in Figure 8 shows a comparison of rejection due to cookies expiration
(black) and rejection after revocation (red) for the same RPs; the num-
ber of RPs that reject after revocation is higher on the first day and
2 days after. As discussed in §II-C, RPs that accept cookies 60 days
after the initial login are non-compliant. Our state-change data shows
that 179 RPs accepted cookies even after 70 days. We emphasize that
while our cookie expiration examination measured the correlation be-
tween cookie expiration and actual expiration to understand how RPs
set the expiration date, we use the actual expiration data collected
from SAAT’s state-detection module to identify non-compliant RPs.

Takeaway 5: 48% of RPs accepted cookies 40 days after the
initial login and 86% of those RPs were non-compliant and
continued to accept cookies even after 70 days.

10





account creation. While not against policy, we note that 92y.org

merged the accounts but overwrote the name. The lack of account
merging can have security implications, as the attacker can cut off the
user’s access to the account until some demand is met (i.e., ransom-
style account takeover [6]). We provide an example in the Appendix.

Type-2 results. Using our account registration component, we
were able to successfully create accounts in 243 RPs using the tradi-
tional credential-based approach. Out of those, 115 have the identi-
fiers that are suitable for the merge test. On the other hand, out of the
1,223 RPs where we created an account over SSO, 354 displayed de-
tectable identifiers and were suitable for this test. We note that not all
RPs from the first dataset were also found in the second dataset. For
instance, accounts could be registered correctly but when we tried to
log in with SSO we encountered app errors (§IV-A), or at the time of
this experiment SSO support had been dropped. In total, we had 34
RPs shared between the two datasets. By comparing the identifiers,
we identified 30 RPs that correctly merged the accounts and 4 RPs
that violated the merge policy: our manual investigation showed that
while diffen uses email address during the registration it relies
on the username, and pakwheels does not use the email address
when SSO is used. However, in the case of surveymonkey and
gifyu, our experiment resulted in two accounts that share the same
email address but have different account information.

Takeaway 7: 10% of the RPs violated the merging guidelines
when SSO is used with preexisting accounts, and 11% violated
them when the initial account creation was done over SSO.

D. Cross-IdP Generalizability

Next, we explore how the SAAT auditing workflow generalizes
across IdPs supported by a given RP and are not tied to the implemen-
tation of a specific IdP (i.e., Facebook). To that end, we conduct a
series of experiments in a subset of the RPs from our previous experi-
ments that also support Google or Apple as IdPs. These IdPs support
the universal features requisite for automation using the IDPCon-
troller module (discussed in §III-B) and are thus amenable to SAAT’s
auditing workflow. As such, while there are no technical barriers to
incorporating additional IdPs into our automated implementation, the
additional engineering effort required to develop the appropriate IDP-
Controller modules for Google and Apple is outside the scope of our
work. As such, we resort to a manual process that exactly replicates
the steps followed by our system’s automated workflow, allowing us
to explore the generalizability of our findings across different IdPs.

First, we created a Google and an Apple account with new
email addresses (emailApple and emailGoogle), to ensure that an
experiment with one IdP will not affect another IdP’s experiment. We
selected a subset of RPs from our previous experiments that also sup-
port Google and/or Apple in addition to Facebook, and verified that
their SSO procedure is error free (e.g., they are not in development
mode). The RPs were selected randomly to eliminate the potential
rank bias in the samples. We selected 50 RPs for Google and 50 for
Apple, while allowing partial overlap between the two sets so as to
obtain additional evidence for certain RPs that their behavior remains
consistent across all three IdPs. In total, we conduct 100 sets of
comparative experiments across 91 unique RPs. We omit the cookie
expiration measurements and session termination (i.e., logout) exper-
iments as they are RP-wide and not tied to an IdP’s implementation.

First, we examined whether using Apple or Google as the IdP
would produce a different account merging behavior than when using
Facebook’s SSO implementation. We used two separate browsers, in

one browser we logged into each RP using Apple’s SSO, and then we
attempted to create an account using emailApple. We note that while
Apple allows users to hide their real email by sending a randomly
generated email to the RPs, we did not select this option and opted
to share the real email address to mimic the process followed for
Facebook. Our findings showed that all of the RPs tested with
Apple’s SSO produced the same merging behavior (since none of the
problematic RPs supported Apple, all 50 RPs we tested had correct
merging behavior). Interestingly, we performed the same experiment
for Google and found one RP (pakwheels.com) exhibiting a
different merging behavior: using Google’s SSO and creating an
account with emailGoogle resulted in correctly creating one account
whereas the same process using Facebook’s SSO incorrectly resulted
in two separate accounts (Section IV-C). When creating an ac-
count with Google’s SSO pakwheels.com sets the user’s email
address to emailGoogle, while with Facebook it does not despite
requesting access to the email address. Next, we used the same subset
of RPs to compare the effect of access revocation across different
IdPs. We began by logging into each RP over SSO and then removed
the app (i.e., revoked app’s access) from within Apple or Google. We
then checked whether revoking access impacted the RP’s state and
compared to the Facebook results. Unsurprisingly, regardless of the
IdP, all results remained consistent. Overall, our comparative analysis
showed consistent results when using Google or Apple instead of
Facebook in 99% of the cases. This strongly suggests that the flaws
uncovered by our system and the overall takeaways of our study are
predominantly IdP-agnostic. Nonetheless, we consider larger-scale
experimental verification using SAAT an interesting future direction.

V. COUNTERMEASURES

Our experiments reveal a series of flaws, misconfigurations, and
non-compliance in RPs. In practice, developers can use the official
SSO SDKs and also leverage online guides that detail how to cor-
rectly implement session and account management processes (e.g.,
the extensive OWASP cheatsheets [12]). However, RPs may lack
the incentives or the technical know-how for addressing these flaws.
Thus, we propose two additional strategies for better protecting users.

Transparency report. Our framework can be utilized as a
continuous testing framework for generating transparency reports
that shed light on RPs’ bad practices. We built our framework to
be as general as possible to support different SSO implementations.
While our main focus was on Facebook, the auditing workflows
remain the same for other IdPs. As discussed in previous sections, the
SSO ecosystem is highly volatile and any policy checks should be
performed over time, therefore proposals that focus on auditing RPs
during registration are not sufficient. By leveraging our framework,
IdPs can continuously audit RPs and either block problematic RPs
or, less intrusively, generate a transparency report that can be used in
extensions like the one we describe next, to warn users about RPs that
do not adhere to secure account and session management practices.

Browser extension. Complementary to our framework, we
have developed an extension that informs users visiting an RP about
some malpractices. We provide more details in the Appendix.

VI. DISCUSSION

Automated account registration. Drakonakis et al. [17]
implemented and released an automated account registration tool for
auditing authentication and authorization flows in web applications.
While account creation is only a subset of our system, the high-level

12



non-SSO registration methods in both systems are quite similar, with
a few key differences that we will highlight here. In contrast to their
implementation, our system uses Puppeteer to control and automate
browser interaction. We chose Puppeteer instead of Selenium due to
Puppeteer’s improved performance, as well as other key features like
the ability to interact with Chrome’s DevTools Protocol (CDP), listen
on network events and modify requests (Selenium 4 introduced
support for CDP API, but it is still in alpha version at the time of
this writing). Additionally, Puppeteer provides more control over
when and how cookies are loaded/injected and stored, which is a
crucial part of our auditing framework. We also leverage Puppeteer’s
CDP API to obtain corresponding DOM nodes in the accessibility
tree which are not typically exposed (discussed in §III-B). Our
system also includes CAPTCHA-solving, which was one of the
two main causes for failed registrations in [17]. The second main
cause for failed registrations was the lack functionality for detecting
and fixing input errors during registration (e.g., due to formatting
constraints), which we have included in our system. We have also
extended the account activation process to support SMS-based
activation. For us to have a unified framework and also address these
shortcomings, we decided to not directly utilize their tool but instead
incorporate their key ideas into our own version of the non-SSO
automated account registration using Puppeteer. We note that all
of our SSO-related processes were not modelled after their design.

Ethics and disclosure. It is important to emphasize that all
experiments were conducted using test accounts registered by our
framework. During our experiments we did not interact with or
affect actual users in any way. To facilitate remediation efforts we
notified affected RPs following established strategies [42], [43],
[44], [17] for identifying contact emails. This included collecting
websites’ security.txt files, leveraging search engines,
crawling the websites, and obtaining each domain’s WHOIS record.
While we are still waiting for feedback from other RPs, we received
confirmation from gifyu.com that their current system does not
merge accounts as they do not collect email addresses, but plan to
use Hybridauth [45]. We have also shared our work with Facebook.

Limitations. Certain caveats are inherent to any study, such as
ours, that relies on a fully automated system and analysis pipeline.
This includes the inability to create an account on certain RPs, or
potential false positives/negatives during the testing phase. For the
former issue, while our system was able to successfully complete the
login process on 1,900 RPs, in practice researchers could supplement
this by manually creating accounts on problematic websites of
interest. For the latter, as aforementioned, when designing our
system we opted for correctness (i.e., minimizing false positives)
and also manually verified all of our findings to ensure validity.

VII. RELATED WORK

Protocol Verification on the Web. Authentication and autho-
rization using third parties is a complex, critical, and security-
sensitive component of the modern web, necessitating the standard-
ization and evaluation of appropriate protocols. OpenID Connect,
the standardized protocol used in most implementations of Web
SSO, has been studied extensively; see the formal analysis of the
protocol in Fett et al. [46] and an overview of the scholarship in
this area related to protocol vulnerabilities by Mainka et al. [1].
While these efforts are substantial and necessary for securing the
SSO ecosystem, the vulnerabilities that we consider in this paper are
beyond the scope of such tools due to the vulnerabilities that arise out
of the composition of SSO and non-SSO authentication mechanisms.

Protocol and implementation mismatches. While the
analysis of these protocols is a necessary component of ensuring
their security, very often the devil is in the implementation
details. Researchers have investigated SSO implementations and
found various vulnerabilities [47], [48], [4]. Our approach is
complementary to investigations of attack models that directly
target the SSO implementations themselves,e.g., Sudhodanan et
al.’s work evincing various vulnerabilities of Multi-Party Web
Applications [49] and Cao et al.’s investigation of relying party
impersonation attacks [50]. A necessary precondition for evaluating
attacks at scale is the ability to create and interact with valid
authenticated sessions; SAAT complements these investigations by
providing a framework for evaluating large swaths of the Internet for
vulnerabilities. Zhou and Evans [2] built an automated system that
handled the SSO-registration process and detected implementation
flaws in SSO protocols; while some of the automation techniques
have inspired our SSO registration process, their system has not been
publicly maintained in the past six years, and thus cannot be readily
applied for auditing contemporary web application implementations.

While our paper focuses on SSO-based account creation and
session management, Shernan et al. [5] performed a crawl-based
investigation of a CSRF vulnerability in OAUTH 2.0 (a precursor
to contemporary SSO implementations) which was able to auto-
matically audit sites for potential vulnerabilities, and necessitated
manual inspection to identify true vulnerabilities. Recently Liu et
al. [7], explored how email reuse attacks can allow an adversary
to takeover accounts in SSO RPs. More closely related to our work
is that of Ghasemisharif et al. [6], which investigated the interplay
between accounts managed by relying parties and the connection
to the accounts managed by IdPs, but did so with substantial
manual investigation and at a small scale, the likes of which our
automated auditing system is designed to streamline and standardize.
Furthermore, their study did not explore how revocation, session
termination and cookie expiration actually affect RPs over time.
Considering the web ecosystem more broadly, researchers have also
investigated the security of various protocols and implementations
thereof for other web security primitives including Certificate
Authorities [51], TLS [52], [53], HSTS [54], and CSP [55]. In many
cases, dynamic analysis via crawling-style auditing was able to
identify numerous vulnerable implementations of these protocols.

VIII. CONCLUSION

SSO has revolutionized web authentication by allowing services
to essentially outsource the identity verification process to major IdPs
While the authentication process in these services is typically well-
protected, leading to security benefits for the RPs, the co-existence
and interplay of two separate account authentication pathways cre-
ates additional security pitfalls. As such, we developed an approach
to fully automating black-box auditing framework for detecting
violations and non-compliance of secure practices in Facebook’s RPs.
We implemented this tool for Facebook and manually verified the
approach on Apple and Google. Our large-scale analysis revealed a
series of flaws, ranging from insecure cookie management practices
and a lack of token-liveness checks to incorrect account-merging
practices. Overall, our research highlights that adopting SSO is not a
panacea against authentication flaws but, instead, a process fraught
with multiple nuanced opportunities for mistakes. Apart from our
responsible disclosure to the affected RPs, we will also share our
framework with researchers and IdPs, as we envision it being used by
major IdPs for ensuring a safer SSO ecosystem through continuous
testing and reporting of insecure practices.

13



ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This work was supported by the National Science Foundation (CNS-
1934597). Any opinions, findings, conclusions, or recommendations
expressed herein are those of the authors, and do not necessarily
reflect those of the US Government.

REFERENCES

[1] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich, “Sok: single sign-on
security-an evaluation of openid connect,” in 2017 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 2017, pp. 251–266.

[2] Y. Zhou and D. Evans, “Ssoscan: Automated testing of web applications
for single sign-on vulnerabilities,” in 23rd {USENIX} Security Symposium

({USENIX} Security 14), 2014, pp. 495–510.

[3] W. Li and C. J. Mitchell, “Security issues in oauth 2.0 sso implementations,”
in International Conference on Information Security. Springer, 2014, pp.
529–541.

[4] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details: An
empirical analysis of oauth sso systems,” in Proceedings of CCS 2012.

[5] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler, “More guidelines
than rules: Csrf vulnerabilities from noncompliant oauth 2.0 implementations,”
in International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer, 2015, pp. 239–260.

[6] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis,
“O single sign-off, where art thou? an empirical analysis of single
sign-on account hijacking and session management on the web,” in 27th

USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 1475–1492. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/ghasemisharif

[7] G. Liu, X. Gao, and H. Wang, “An investigation of identity-account
inconsistency in single sign-on,” in Proceedings of the Web Conference, 2021.

[8] S. Sivakorn, J. Polakis, and A. D. Keromytis, “The cracked cookie jar: Http
cookie hijacking and the exposure of private information,” in In Proceedings

of the 37th IEEE Symposium on Security and Privacy, ser. S&P ’16, 2016.

[9] M. Isaac and K. Conger, “The New York Times - Facebook Hack
Puts Thousands of Other Sites at Risk,” 2018. [Online]. Available: https:
//www.nytimes.com/2018/10/02/technology/facebook-hack-other-sites.html

[10] Facebook, “Access tokens - facebook login,” 2021. [Online]. Available:
https://developers.facebook.com/docs/facebook-login/access-tokens/

[11] ——, “Using facebook login with existing login systems,” 2021.
[Online]. Available: https://developers.facebook.com/docs/facebook-login/
multiple-providers/

[12] OWASP, “Session management cheat sheet,” 2021. [Online]. Available:
https://cheatsheetseries.owasp.org/cheatsheets/Session Management Cheat
Sheet.html

[13] C. A. Vlsaggio and L. C. Blasio, “Session management vulnerabilities in
today’s web,” IEEE Security Privacy, vol. 8, no. 5, pp. 48–56, 2010.

[14] R. Wang, S. Chen, and X. Wang, “Signing me onto your accounts through
facebook and google: A traffic-guided security study of commercially
deployed single-sign-on web services,” in 2012 IEEE Symposium on Security

and Privacy. IEEE, 2012, pp. 365–379.

[15] S. Calzavara, A. Rabitti, A. Ragazzo, and M. Bugliesi, “Testing for integrity
flaws in web sessions,” in European Symposium on Research in Computer

Security. Springer, 2019, pp. 606–624.

[16] S. Sivakorn, A. D. Keromytis, and J. Polakis, “That’s the way the cookie
crumbles: Evaluating https enforcing mechanisms,” in Proceedings of the 2016

ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 71–81.

[17] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter: Automated
black-box auditing for web authentication and authorization flaws,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and

Communications Security, 2020, pp. 1953–1970.

[18] A. Shen, “Google Threat Analysis Group - Phishing
campaign targets YouTube creators with cookie theft malware,”
2021. [Online]. Available: https://blog.google/threat-analysis-group/
phishing-campaign-targets-youtube-creators-cookie-theft-malware/

[19] Google, “Puppeteer,” 2021. [Online]. Available:
https://github.com/puppeteer/puppeteer

[20] Fent, “Randexp,” 2021. [Online]. Available: https://github.com/fent/randexp.js

[21] Google, “Gmail api,” 2021. [Online]. Available:
https://developers.google.com/gmail/api

[22] Twilio, “Communication apis for sms, voice, video and authentication,” 2021.
[Online]. Available: https://www.twilio.com/

[23] S. Solanki, G. Krishanan, V. Sampath, and J. Polakis, “In (cyber)space bots
can hear you speak: Breaking audio captchas using ots speech recognition,”
in Proceedings 10th ACM Workshop on Artificial Intelligence and Security,
ser. AISec ’17, 2017.

[24] K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-resource
defeat of recaptcha’s audio challenge,” in 11th {USENIX} Workshop on

Offensive Technologies ({WOOT} 17), 2017.

[25] Wit.ai, “Build natural language experience,” 2021. [Online]. Available:
https://wit.ai/

[26] E. Sangaline, “It is not possible to detect and
block chrome headless,” 2021. [Online]. Available:
https://intoli.com/blog/not-possible-to-block-chrome-headless/

[27] Berstend, “puppeteer-extra-plugin-stealth,” 2021. [Online]. Available:
https://github.com/berstend/puppeteer-extra/tree/master/packages/
puppeteer-extra-plugin-stealth

[28] J. Jueckstock, S. Sarker, P. Snyder, A. Beggs, P. Papadopoulos, M. Varvello,
B. Livshits, and A. Kapravelos, “Towards realistic and reproducibleweb crawl
measurements,” ser. WWW ’21, 2021.

[29] Chromium, “Accessibility overview,” 2021. [Online]. Available:
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/
accessibility/overview.md

[30] Majestic, “The majestic million,” 2020. [Online]. Available:
https://majestic.com/reports/majestic-million

[31] A. Aliyeva and M. Egele, “Oversharing is not caring: How cname cloaking
can expose your session cookies,” in Proceedings of the 2021 ACM Asia

Conference on Computer and Communications Security, 2021, pp. 123–134.

[32] Y. Nakatsuka, A. Paverd, and G. Tsudik, “Pdot: Private dns-over-tls with
tee support,” Digital Threats: Research and Practice, vol. 2, no. 1, Feb. 2021.
[Online]. Available: https://doi.org/10.1145/3431171

[33] F. Quinkert, T. Lauinger, W. Robertson, E. Kirda, and T. Holz, “It’s not what
it looks like: Measuring attacks and defensive registrations of homograph
domains,” in 2019 IEEE Conference on Communications and Network

Security (CNS), 2019, pp. 259–267.

[34] K. Borgolte, C. Kruegel, and G. Vigna, “Meerkat: Detecting website
defacements through image-based object recognition,” in 24th {USENIX}
Security Symposium ({USENIX} Security 15), 2015, pp. 595–610.

[35] O. Tange, “Gnu parallel 20200522 (’kraftwerk’),” May 2020, GNU
Parallel is a general parallelizer to run multiple serial command
line programs in parallel without changing them. [Online]. Available:
https://doi.org/10.5281/zenodo.3841377

[36] Facebook, “Re-authentication - facebook login,” 2021. [Online]. Available:
https://developers.facebook.com/docs/facebook-login/reauthentication/

[37] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore, “Final:
Openid connect core 1.0 incorporating errata set 1,” 2021. [Online]. Available:
https://openid.net/specs/openid-connect-core-1 0.html

[38] Google, “Openid connect,” 2021. [Online]. Available:
https://developers.google.com/identity/protocols/oauth2/openid-connect

[39] Facebook, “Facebook login update - about facebook,” 2021. [Online].
Available: https://about.fb.com/news/2018/10/facebook-login-update/

[40] ——, “Login security - facebook login,” 2021. [Online]. Available:
https://developers.facebook.com/docs/facebook-login/security/

[41] ——, “Data deletion callback - app development,” 2021. [Online]. Available:
https://developers.facebook.com/docs/apps/delete-data/

[42] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex
security policy? a longitudinal analysis of deployed content security policies,”
in NDSS, 2020.

[43] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey, you have
a problem: On the feasibility of large-scale web vulnerability notification,”
in 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, 2016.

[44] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage,
and V. Paxson, “You’ve got vulnerability: Exploring effective vulnerability

14







18 "invalid": "true"

19 },
20 {
21 "role": "text",

22 "name": "Password"

23 },
24 {
25 "role": "textbox",

26 "name": "",

27 "required": true,

28 "invalid": "true"

29 },
30 {
31 "role": "button",

32 "name": "Login"

33 },
34 {
35 "role": "Iframe",

36 "name": "fb:login_button Facebook Social Plugin"

37 }
38 ]

39 }

F. Ransom-style Example

Here, we provide an instance of a ransom-style attack on
connpass. An attacker can log into connpass using the IdP’s
hijacked session, de-link the user’s IdP from connpass after
adding her own email address and setting a password or linking an-
other IdP (e.g., Twitter). As a result of the de-linking and re-linking,
the user will not be able to access their RP account since there is no
other viable authentication path for them. Had the RP followed the
policy and merged the accounts, the user would have had another
path (e.g., over email) to take back control of their account.

G. Countermeasures

Extension for user awareness. As mentioned in §V, we have
developed a Chrome extension that informs users visiting an RP
about a subset of the issues detected by our system, which can
be inferred by visiting the website and without conducting our
entire black-box auditing workflow. For instance, if the access
tokens of RPs that use Facebook’s official SDK are automatically
and frequently validated and whether their redirection traffic is
protected [10]. By checking for the presence of SDKs, we display
a set of preferred IdPs to the user to choose from, based on
whether they are using the official SDKs. Our extension uses the
chrome.debugger API to get a copy of the accessibility tree
and looks for potential IdPs. We also pre-load and instrument the
well-know IdP SDKs (i.e., Facebook, Apple, and Google) to track
whether they are used by the page. Upon detecting the IdPs, we
check for the presence of the SDKs, and for Facebook we also
check whether it has been initialized. For the compliance tests that
can’t be done in a live setting (e.g., merge tests), our extension could
incorporate IdPs’ transparency reports to help users make more
informed decisions. While our prototype’s functionality is limited
due to the inherently complex nature of our framework’s auditing
process, we hope that our work motivates major IdPs and leads to
stricter RP-compliance requirements being enforced.

17


