Towards Automated Auditing for Account and Session
Management Flaws in Single Sign-On Deployments

Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis
University of Illinois at Chicago,{mghas2, ckanich, polakis} @uic.edu

Abstract—Single Sign-On (SSO) is both a core and critical compo-
nent of user authentication and authorization on the modern web, as it
is often offered by web and mobile applications along side credential-
based authentication to facilitate the account creation and login pro-
cess. However, the interplay between local account management and
SSO functionality in the backend leads to flaws that enable or magnify
account hijacking attacks. These flaws are not baked into the actual
SSO protocols, but manifest due to the complexity of supporting sep-
arate but intermingling authentication paths. As a result, these types
of flaws cannot be detected by the SSO protocol or implementation
verification tools proposed in prior work. In this paper we introduce
SAAT, a fully automated modular framework that assesses whether
relying parties (RPs) that use Facebook as the IdP comply with
secure practices and guidelines, and uncovers flaws in account and
session management that stem from or are affected by the interplay
of SSO and local functionality. We conduct a large-scale exploration
of authentication and session practices in Facebook’s RPs, revealing a
volatile ecosystem where SSO support can be suddenly dropped and
17.6% of the tested RPs exhibit non-functional SSO implementations.
This highlights the need for the continuous and systematic testing of
the SSO ecosystem made possible by SAAT. More critically, we find
that security measures are often missing and official guidelines are rou-
tinely overlooked or misconfigured, with only 0.8 % of the RPs fully en-
abling re-authentication which can prevent compromise from hijacked
identity provider (IdP) cookies. Our study also shows that less than 2%
of RPs correctly react to SSO revocation and 67% continue to allow
account access even 10 days after revocation. Overall, we envision our
framework as a tool for enabling and guiding widespread remediation
efforts by major SSO identity providers, which were previously infea-
sible due to the sheer scale and inherent mutability of this ecosystem.

I. INTRODUCTION

Account creation and authentication are essential aspects of the
modern web ecosystem. Creating individual accounts for each web
service is tedious both for the user who needs to manage multiple
passwords, and the service owner who needs to develop and maintain
a complex component of their overall system where any flaw can
have severe security ramifications. Single Sign-On (SSO) mecha-
nisms offer an attractive alternative that allows users to avoid tedious
account creation processes by leveraging their existing accounts on
popular services (referred to as Identity Providers or IdPs). Online
services (referred to as Relying Parties or RPs) can then outsource
some or all of their authentication infrastructure to these IdPs,
enabling a more integrated and uniform browsing experience across
different web services and applications while also streamlining
account and session management for both the RPs and the end users.

Although centralizing authentication with major services like
Facebook and Google can improve security at relying parties
by leveraging their substantial security resources and expertise,
SSO introduces a complementary set of security risks to users.

While the security of the underlying protocols has been studied
in depth [1] and are currently understood to be free of substantial
flaws, the implementation thereof may itself be incorrect [2].
Importantly, most uses of SSO augment, rather than fully replace,
a site’s native authentication mechanisms and there is substantial
flexibility in the integration of the RP’s and the IdP’s authentication
mechanisms. This flexibility has led to a variety of specific
implementations, which unsurprisingly leads to both a challenge
for the RPs to implement said schemes correctly (leading to
various vulnerabilities [3], [4], [5]), and difficulty in longitudinally
evaluating the security of these implementations [6], [7].

Although many of the aforementioned vulnerabilities are
predicated on being successfully authenticated to the IdP, the security
of these services can still create a well-fortified but imperfect single
point of failure in online authentication. These major services are
still not impervious to flaws that enable account hijacking, as shown
by prior research [6], [8]. A recent real-world attack campaign
resulted in the largest hack in Facebook’s history [9], where the
authentication tokens (i.e., cookies) of 50 million users were stolen.
Alarmingly, as had been previously demonstrated by Ghasemisharif
et al. [6], a compromised IdP account allows attackers to obtain
persistent and stealthy long-term access to users’ RP accounts with
little to no option for remediation [6]. In essence, the issues they
identified can be traced back to the complexities that arise from the
co-existence and interplay of two separate account authentication
pathways, that of traditional credentials and that of Single Sign-On,
and the ensuing session management processes.

While numerous studies have conducted extensive evaluations
of the design and implementations of SSO protocols, no prior work
has conducted a systematic, large-scale and in-depth exploration
of account and session management in the SSO ecosystem. We
introduce SAAT, an automated black-box framework for auditing
systems, which use Facebook as the IdP, in the wild. First we
compile a set of best-practice guidelines and recommendations for
core building blocks of the SSO ecosystem: integrated registration,
authentication, and session management. Next, we define a series of
auditing tasks, modelled as finite-state machines, that identify viola-
tions and insecure practices in the implementation of these processes
in Relying Parties. This builds upon our ability to orchestrate actions
and infer state changes in the Identity Provider and Relying Parties.
More importantly, our fully automated testing pipeline handles every
aspect of the SSO protocol; from detection of SSO support and
account registration to access revocation and session termination.

We use SAAT to obtain a large-scale longitudinal view of SSO
support, uncovering a brittle and volatile ecosystem, with 17.6%
of the RPs we tested having non-functional SSO implementations
and almost 8% suddenly dropping support for SSO within a 50-day



period. We also identify a significant lack of security mechanisms
being deployed, with only 0.8% of the RPs adequately protecting
users accounts from IdP cookie hijackers. Moreover, only 1.7%
of the RPs log users out in response to IdP access revocation and
67% continue to allow access to the account even 10 days past the
revocation. Our auditing also reveals that 10% of the tested RPs
violate account merging guidelines. Overall our findings highlight
that SSO-deployment insecurity is not limited to implementation
flaws in the protocols themselves, but instead should be viewed
as an error-prone multicomponent integration process complicated
by local account and session management mechanisms. While our
study focuses on Facebook as the IdP, we also perform a manual
comparative analysis to Google and Apple SSO implementations
in a subset of the analyzed RPs. In 99% of the cases we do not find
any differences across IdPs, indicating that the flaws detected by
our system are not limited to a given IdP implementation but instead
are intrinsic and affect multiple IdPs supported by vulnerable RPs.

It is important to note that some of the flaws that we identify
in our study only become operational after a user’s IdP account is
compromised. Unfortunately, this may result in a lack of incentive
for RPs to fix these flaws as blame can be shifted to the IdP. As
such, IdPs can leverage our framework to identify RPs that do not
conform to best practices or violate security guidelines, and enforce
stricter onboarding requirements or mandate the use of official
SDKs. In summary, our research contributions are the following:

e We provide a modeling of SSO account and session
management, which guide our development of an
automated black-box auditing framework for testing RPs
that support Facebook as the IdP.

e  We conduct a large-scale study of SSO deployments in the
wild, uncovering the prevalence of flaws, non-compliance,
and insecure practices across the SSO ecosystem.

e  We have disclosed our findings to affected vendors, and
also developed a Chrome extension for providing users
with additional information about guideline-compliance in
RPs. To foster additional research, we will share our code
and data with researchers and IdP vendors upon request.

II. BACKGROUND AND MOTIVATION

We provide pertinent background information on SSO, and an
overview of policies and best practice guidelines for account and
session management when SSO is supported. We also highlight the
flaws that are the focus of our study, and end with our threat model.

A. Preliminaries

Identity Providers (IdPs) are entities that provide an authenti-
cation service to other entities. We use “SSO support” when a third-
party entity allows their users to authenticate via an IdP. We focus on
Facebook due to it’s prevalence as an IdP [6], as that will allow us to
gain a broader view of how RPs incorporate SSO in their websites.

Relying Parties (RPs) are third-party services that delegate
their authentication process to an Identity Provider. RPs can be
websites or IdP-side applications that other websites use.

Account Access. After the SSO login process, the RP receives
access tokens that have certain permission scopes. The RP can use
these tokens to talk to the IdP (within the permission scope) on
behalf of the user. Moreover, the user receives RP cookies which
they can use to communicate with the RP directly. It is important
to note that access tokens obtained from web logins (as opposed
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Fig. 1: Single Sign-On workflow.

to mobile app logins) are typically short-lived [10] whereas the RP
cookies’ validity can remain valid way beyond the lifetime of the
access tokens. Additionally, the access tokens are either accepted or
rejected by the IdP, while RP cookies can provide different levels of
access. For instance, an RP may allow accessing non-sensitive parts
with cookies while the sensitive parts may require re-authentication
via password. In this paper, we do not differentiate between these
levels of access and we strictly define RP access based on whether
the presence of RP cookies in a request changes the RP’s state.

B. Single Sign-On Workflow

Figure 1 shows a typical SSO authentication process: ) upon
visiting the RP’s website and initiating the SSO process, @) the
user’s browser gets redirected to the IdP’s website. Depending on the
RP’s configuration, €) the IdP will attempt to authenticate the user
via cookies or ask them to re-authenticate using their password. Once
authentication is complete, o the IdP redirects the browser back to
the RP while appending a code. The RP can then optionally @) send
cookies to the user that will get stored in the browser’s cookie jar.
Once cookies are set, the RP can @ continue authenticating the user
in the future via those cookies, until they expire. The RP can also
use the code to retrieve the necessary tokens for communicating
with the IdP on behalf of the user, until those also expire. In this
study, we use three primary terms for the SSO workflow and the
corresponding test cases that are part of our auditing process.

Authentication paths or channels. RPs may offer users one
or more authentication options, namely SSO-based and traditional
credential-based authentication. An authentication path is created
when one of those options is used to register or log into an account.

Account merging is required for different authentication paths
to lead to a single account. For instance, this will occur if a user
initially creates an RP account using credentials and later uses SSO to
log into the RP. If the SSO process ends in the same account created
via credentials, an account merge has occurred, which is the expected
behavior per Facebook’s guidelines on using SSO with existing login
systems [11]. While the lack of account merging may appear as a
functionality issue, creating two separate accounts can also lead
to more serious security problems such as ransom-type account
hijacking [6] where attackers take control of victims’ data due to
misconfigurations in how the accounts are keyed internally by RPs.

Revocation is offered by IdPs and allows users to request the
revocation of the access tokens issued to an RP. While the RP will
not be able to use the revoked access tokens to communicate with
the IdP, the RP can still continue authenticating the user using the
cookies that were set during the SSO workflow (step @ in Figure 1).

C. Account and Session Management

We consider several policies as part of our RP auditing process
for testing RPs’ compliance with account management and



authentication systems. The account management guidelines that we
incorporate in our assessments originate from IdPs (e.g., Facebook)
and outline best practices on how RPs should handle various
scenarios, e.g, for conflict-resolution when multiple authentication
pathways exist. We also select a set of authentication-related recom-
mendations from the security community (i.e., OWASP) regarding
session management in websites that support authentication. Here,
we provide an overview of these recommendations.

Offering multiple authentication pathways may cause conflicts
which can generally occur in two different ways: (1) a user first cre-
ates an account with an RP using a username and password and later
decides to login over SSO or link their IdP account to the RP account
to be able to perform IdP-related actions, and (2) a user first logs in
with an IdP and later decides to add a username and password to the
RP. In the first scenario, Facebook’s guidelines suggest merging the
account information based on the email address being the same, and
adding the IdP account information in a separate database table [11].
When the email addresses are different (e.g., the RP account was
created using foo@example.com and the IdP account with
bar@example.com) Facebook suggests offering the user an
explicit account merging option. In the second scenario, Facebook
suggests verifying the supplied email before requesting the user to set
a password. We note that both resolutions point to an explicit merg-
ing policy: assuming an account belongs to the same user, taking
different authentication paths should not result in separate accounts.

Among the several recommendations and mandates provided
by OWASP for securing session management [12], we focus on
session expiration as it is directly applicable to our study’s focus,
i.e, the additional complexities introduced by SSO support. OWASP
categorizes automatic session expiration into idle and absolute
timeouts. The idle timeout refers to the amount of time that a
session remains active for, when there is no activity. However, since
our threat model focuses on session hijacking, this does not limit
the attacker’s access to a user account as they can thwart such a
defense by keeping the session active. For the absolute timeout,
while OWASP does not specify an exact time range as it depends on
the web app’s functionality, they make it clear that the server side’s
expiration time must precede the client side’s (cookie) expiration. In
addition to the automatic session expiration, OWASP also advocates
for offering a manual session expiration option via the logout button.
While there is no specific time defined for cookie expiration, we
argue that the cookie expiration in RPs should at least resemble token
expiration in IdPs. Facebook’s short-lived tokens have a lifetime of
an hour and long-lived tokens of 60 days [10]. As such, we consider
three primary policies for evaluating session management:

1)  Cookies that allow access to RP accounts for more than

60 days after the initial login are non-compliant.

2)  Session expiration must be done server-side. Assuming
that the server-side timer is in sync with the client-side’s
cookie expiration date, prolonging the client-side cookie
expiration should not affect the server-side timer.

3) If a logout button is offered, it must invalidate session
cookies and prevent access unless re-authentication occurs.

Threat Model. We focus on RPs that offer account registration
through SSO as well as via local credentials. Our main objective is to
design a tool that audits RPs regarding their adoption and correctness
of defensive account and session management mechanisms, as well
as policies for mitigating the impact and coverage of an IdP-account
compromise, such as offering short-term sessions, frequent access-
token validation, and re-authentication enforcement. For our analysis,
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Fig. 2: Components of our SAAT framework.

our main assumption is that the attacker has compromised IdP
accounts at the session level and subsequently targets the users’ RP
accounts. This encompasses several attack vectors [13], [14], [12]
of varying complexity and scalability, all of which are captured
by our threat model because our attack is agnostic to the method
through which the IdP session was compromised. For instance, prior
academic work on cookie hijacking has demonstrated that incom-
plete cookie protections are common across popular websites [8],
[15], [16]. While various cookie-hijacking protections exist, such as
encrypting traffic and using Secure and httpOnly flags, a
recent large-scale study on almost 25K websites found that 50% do
not sufficiently protect authentication cookies [17]. Cookie hijacking
attacks that enable complete IdP account takeover may require
attackers to sniff the users’ mobile traffic [6] (which is inherently
less scalable), or can be the result of software bugs that allow large-
scale cookie harvesting (e.g., as was the case for the stolen Facebook
cookies of 50 million users [9]). More recently, Google has detected
a surge in malware-driven pass-the-cookie attacks, which enabled
the compromise of high-value YouTube accounts; in fact, Google’s
Threat Analysis Group [18] reported the “resurgence as a top
security risk” of these attacks, signifying the prevalence and threat of
cookie-stealing attacks. However, it is important to note that session-
hijacking attacks are typically more complex and smaller scale
compared to more widespread account compromising attacks (e.g.,
stealing credentials through phishing). Nonetheless, while we focus
on session-hijacking attacks, a subset of our experimental findings
(e.g., account merging errors, cookie expiration issues, access revoca-
tion and session invalidation flaws) also apply to phishing attackers.

III. SYSTEM OVERVIEW

Here we present an overview of our framework for auditing
RPs. Our framework consists of two main components; an account
creation engine and an auditing pipeline, as shown in Figure 2.
While our implementation focuses on Facebook as the IdP, we
manually verify our approach for Google and Apple in §IV-D.

A. Automated Account Registration

The automated account creation component of our framework is
built upon Puppeteer [19] for orchestrating our browser automation.

Registration pages. We combine two strategies for finding
login pages. First, we search for the RP’s registration page using
multiple search engines (startpage, bing, duckduckgo)
and select the top three results based on a majority vote. Second,
we test common paths (i.e., /register, /signup, /login,
/signin, /account) that were not in the search results. Finally,
we filter out unreachable pages (e.g., thatreturna 404 status).

Registration forms. Our crawler visits the registration pages
and locates the sign up section by identifying all <form> ele-
ments looking for sign up forms using keyword matching. If our



system finds a form element but fails to match any keywords, it
selects that form element if and only if that is the only form element
in the page and it does not have any search or login related keywords.
While this approach may not detect form-less sign up pages as
opposed to searching for all relevant inputs, we opt for this approach
as it minimizes false positives for pages where the login and sign up
sections are included on one page. If the crawler fails to detect forms,
it looks for potential links that point to an account creation page and
follows them. This is particularly useful in websites whose login and
registration URLSs are indistinguishable, and single-page applications
where sign up forms appear upon interaction. After locating the
forms, we select all non-hidden <input> fields within the forms
and fill them out with random information and check all checkboxes.
This initial process allows us to detect dynamically created input ele-
ments that will only appear depending on whether other inputs have
been filled (e.g., a password confirmation field). We then record all
visible inputs, identify the type of personal information required and
add them in the corresponding input fields. While we apply a sim-
ilar method to <select> and <input type="radio">
fields, if we cannot identify the type of information needed we
select an option randomly. For each type of input, we have a set of
possible values in case some of them are not accepted by the website.
We also take the pattern attribute into account and select the
values that match the pattern. For instance, for password inputs, if our
password does not match the pattern, we generate a new one using
RandExp [20]. Finally, we check for potential invalid inputs by
searching for aria—-invalid attributes, the :invalid CSS
pseudo-class, and “error” keywords in the input elements; we try
variations of the information until one is accepted. To avoid getting
stuck at this phase of our workflow, we need to set an appropriate
threshold for this process: we first check for the invalid inputs and
if none are found we try submitting the form; if it fails, we check
for invalid inputs again. This approach covers both cases of invalid
inputs that appear immediately after typing and ones that only get
flagged during the submission. We limit the number of trials and the
navigation to two and three attempts respectively. The navigation
threshold allows us to also handle multi page/step registration forms.

Email/SMS activation. Some websites require activation via
email or SMS after submitting the forms, to complete account
registration. We use Gmail’s API [21] for retrieving the latest emails
and filter them based on the website’s domain and the existence of
verification-related keywords. We also look for verification/activa-
tion keywords and numbers that can be used as activation codes. To
support SMS verification, we use Twilio’s [22] SMS API and follow
the same code extraction process for locating potential verification
codes in SMS texts. We listen for incoming emails and SMS
messages for 15 seconds after the form is submitted. Once we receive
a code, we submit it to complete the registration. If neither an email
or an SMS is received, we assume that the website does not require
additional verification and the account has been successfully created.

State changes and detection. Our account creation and
auditing flows primarily rely on correctly distinguishing between
an account’s logged in and logged out states. For our auditing
process, we consider an event as a state-changing transition if
sending two equal HTTP requests, where only one of them carries
authentication cookies, results in two different responses. Since web
pages can contain dynamic content (e.g., advertisements), we use
unique identifiers that belong to the user for detecting differences
in the responses. Additionally, while many web pages could be
used for detecting state, we have found that visiting the login page
is a reliable indicator for detecting states. Every time we need

to determine a page’s state, our system visits the login page in
a separate tab (all storage is shared between the two pages) and
checks whether the login page contains indicators such as a login
form or unique identifiable information that points to the user.

CAPTCHAs. Websites often rely on CAPTCHA challenges
as a means of preventing automated account creation [17]. We
draw inspiration from prior studies [23], [24] and use Wit.ai’s [25]
speech-to-text API to implement a solver for the audio challenges
presented by Google ReCAPTCHASs v2. Our solver resides on
a remote web server for bypassing rate limiting restrictions by
funnelling requests through multiple proxies and different user
agents. Before submitting filled-out registration forms, we look for
instances of ReCAPTCHA v2; if it exists we extractits site-key
and send it to our solver. The solver then completes an audio
challenge and sends the corresponding token back to the crawler.
The token is then submitted along with the registration form. In
our initial implementation, we adopted common anti-bot-detection
practices such as overwriting navigator.webdriver or
spoofing navigator.plugins [26]. However, due to the
cat-and-mouse nature of these evasion techniques, eventually
we resorted to using the third-party package puppeteer-—
extra-plugin-stealth [27], which frequently gets updated
with the latest evasion techniques. While this could potentially
violate RPs’ terms of service, automation is a widely established
common practice in web security research, and incorporating
anti-bot-detection features is becoming increasingly necessary for
realistic experimentation [28]. During our experiments, we also
noticed that even then some websites were able to detect automation
and displayed blank pages. We traced the problem back to code
executed from doubleclick.com. As such, we included a rule
in our main crawler for blocking doubleclick.com requests.

B. Single Sign-On Workflow

Single Sign-On detection. We leverage the browser’s Web
Accessibility API for identifying SSO support. The main goal of
this API is to expose an interface that can be used for assistive
technologies, as it exposes a semantic version of the user interface
and facilitates conveying important information across different
platforms, particularly for users with impairments. It is also often
used in automated testing and for Ul automation in applications like
password managers [29]. We provide a code sample of a page with
HTML tags and its corresponding accessibility tree in Listings 1, 2
(Appendix). We use Chromium’s Accessibility API, which returns
a web page’s representation as a tree of objects, and traverse
the accessibility tree to look for nodes that contain SSO-related
information. Since Puppeteer’s accessibility tree does not directly
expose DOM nodes, we modify the Accessibility class to expose
each node’s unique identifier (BackendNodeId), which we use
for resolving the node that contains SSO information.

After detecting SSO support, we inject the IdP cookies into the
page and proceed with initiating the login process for the RP. We
then collect the following information about the deployment of SSO.
First, we log if the IdP requires the user to enter their credentials
and re-authenticate despite the presence of the session cookies.
This only occurs if the relying party explicitly asks the IdP to
re-authenticate users; this can be done through an optional parameter
in the SSO workflow. Second, we log if the IdP asks the user for
their permission. For instance, Facebook displays a “Continue as”
button and upon clicking, the authentication process succeeds and
the browser gets redirected back to the RP website. In addition
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Fig. 3: State machine model of RP account registration.

to the authentication method, we also collect the relying party’s
cookies, and its unique app_id which is assigned by the IdP.

IDPController. A critical dimension of our auditing workflow
is interacting with the IdP and observing the impact of IdP actions on
the RPs. The controller requires programmatic ability to authenticate

with the IdP, access to a list of logged-in RPs, and revoke RP access.

These functionalities are ubiquitously supported by popular IdPs,
and are handled by our Login and IDPController modules. While we
focus on Facebook, these actions can be generalized to other IdPs by
modifying the aforementioned modules. Specifically, the loginIDP
function should be modified to support the new IdP’s authentication
flow and the functions in IDPController should be tailored to the
specifics of the new IdP for obtaining a list of RPs and removing
RPs from the IdP. For instance, Facebook does not currently expose
a public API for interacting with RP apps. Instead of interacting
with Facebook through an orchestrated browser, we have reverse
engineered the communication between client and server and
extracted the required data for successfully querying Facebook
servers via direct HTTP POST requests. This allows us to speed
up the auditing process and is less dependent on Facebook’s Ul and
any changes that would require a modification of our automation
actions. If Facebook changes its behavior or a new IdP has a

different implementation, we can obtain the data via Ul interaction.

Facebook assigns RPs to three categories: active, removed,
and inactive. Using our approach, we can collect the apps in
all categories and also remove them from the active tab. Among
the app-related information, we obtain the install_time,
inactivation_time, removed_time, app_user_id,
permissions,and deletion_url attributes.

C. Auditing Workflow

To enable our collection of auditing tasks and testing procedures,
we model our framework’s actions and the ensuing state changes
as finite-state machines, which allows us to identify non-compliance
and violations of security guidelines and best practices.

Authentication paths and account merging. Our testing flow
identifies the different registration paths supported by the RP and
explores whether taking each path ends in a similar state in the same
account. Specifically, our system assesses whether signing up with
SSO and creating an account using credentials (i.e., username and
password) gets linked to the same account. This workflow verifies
whether the RP correctly merges accounts. Figure 3 depicts how we

TABLE I: Mapping the combinations of input symbol and guards to
abstract input symbols; m is the registration method, A y;-en: points
to the registered account in the current state, and A, is the account
created. We use EQ/N E(Q) to represent the equality/inequality of
accounts (i.e., if they are merged). For instance, Reg(SSO,EQ)
represents a move where registering an account using SSO results
in an account equal to the current state’s account (Acysrent)-

Input Guards Abstract Symbols
m=FEmail Reg(Email)
Reg(m) m=SSOAAcurrent =undefined  Reg(SSO)
egim m:SSOAAcurrent:Am Reg(ssovEQ)
m:SSO/\AcuTrcnt#Am Reg(SSOJVEQ)

model and formalize the relying party’s account registration behavior.
This test is motivated by the expectation that account registration in a
relying party that supports separate authentication paths must result
in creating a single account per user (i.e., email address) regardless
of the path taken by the user. We now define a set of actions and
states we incorporate into our modelling of the registration process.

Registration Model. We use a Mealy machine to model the
registration behavior of a relying party. A Mealy machine is a finite-
state machine where the current state and current inputs determine
the output and the next state. This model can effectively represent the
registration process in a relying party since the action taken by our
system (mimicking a user action) as well as the current state dictate
the subsequent registration state. A Mealy machine M is a six-tuple
(S,50,21,%0,6,A\) where S is a finite set of states, Sy € S is the
initial state, X5 is a finite set of input symbols, > is a finite set of
output symbols, §: S x Xy — S is the transition function, and A:.S X
X1 — Yo is the output function. In our model the starting state is that
of a user being Not Registered. We define a state-dependent variable
Acurrent that is initially undefined and points to the created account.
We also create abstract input symbols by using combinations of input
symbol Reg and a set of guards (shown in Table I). We define the
set of output symbols{ OK,Err} describing the generated output as
we move to another state. Note that in this model we only focus on
registration actions and not linking accounts or adding a password
after creation, as those actions occur within a created account.

Merging. We say that a relying party R merges accounts created
via SSO and credentials if (i) R supports another registration option
(i.e., email) in addition to SSO, (i) when an account is already
registered over SSO, attempting to create an account through a
credential-based method using the email associated with the IdP
account will fail, and (iii) if an account was already created using
the credential-based method, signing up with SSO will access the
same account as if it was created using SSO (the green transition in
Figure 3). This definition is compatible with Facebook’s guidelines
on account merging [11]. We consider the following cases:

1) §(0(So, Reg(SSO)), Reg(Email)) = Ss: Register an
account by signing up via SSO, and then check whether
creating an account using credentials (namely, the IdP
email address) will generate an error stating that the
account already exits.

2)  6(6(Sp, Reg(Email)), Reg(SSO,EQ)) = Sy: Register
an RP account using credentials. Then check whether regis-
tering over SSO using an IdP account with the same email
address will end up navigating to the same RP account.

Note that we classify the transition 6(S5,Reg(SSO,NEQ))= 5,
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(the red transition in Figure 3) as counter-intuitive behavior. The
assumption for case (1) is that accounts registered via SSO are
keyed with the IdP email address, which is also backed by our
observation that accounts created through the SSO process cannot
be re-registered using the IdP’s email address. While case (1)
is detectable using relatively simple heuristics, case (2) is more
challenging. We consider the following strategy for determining
account similarity (Acyrrent = Am): we use different unique
identifiers for account registration and SSO sign up, and check
whether we observe the same identifiers in both pages.

Credential test. This procedure investigates whether the RP or
IdP allow logins using hijacked cookies. The process begins with
visiting the authentication page and verifying that the RP supports
SSO. We then attempt to log into the RP using the IdP cookies to
complete the SSO process. During the IdP authentication, if the IdP
does not ask for credentials, we mark the RP as one that does not
explicitly ask for re-authentication. This procedure also examines the
validity of RP cookies that were collected in §IV-A. Moreover, we
also examine whether explicitly asking for re-authentication using
a username and password can be disabled from the client side; this
would allow an attacker with hijacked IdP cookies to bypass this se-
curity check that requires knowledge of the IdP credentials (and also
avoid additional security checks that typically occur at login [17]).

Revocation test. This test explores the efficacy and effectiveness
of SSO access-revocation. Specifically, we assess whether revoking
access from the IdP affects the user’s access to an already-connected
relying party. Again, we model the revocation process using a Mealy
machine. We define a set of input symbols get Access and Revoke
with two arguments RP.,1i. and R P;4, which represent the relying
party’s cookies and its unique identification number that is assigned
by the IdP. The combinations of these input symbols with a set of
guards (shown in Table IT) will determine the next state. We also
define a set of output symbols{ GRANT, DENY } representing the out-
put of the taken action as we transition into another state. Figure 4 de-
picts the revocation process in relying parties. The Revoke(FULL)
(green) transition allows a user to completely and permanently re-
voke access to the RP account, whereas the get Access(COOKIE)
(red) illustrates incomplete revocation where the IdP revokes the
RP’s access but the RP’s authentication cookies remain valid.

The testing workflow starts from state Sy and logs into
an RP using SSO. This creates a transition from Sy to S;

TABLE II: Mapping the combinations of input symbols and
guards to abstract input symbols. We use RP;; to represent the
unique identifier assigned to the RP by the IdP and Active as
a set of unique identifiers whose access has not been revoked
yet by the IdP. hasAccess returns true or false depending on
whether the previously collected RP.,,ic provides access to the
RP. For instance, the abstract input symbol get Access(COOKIE)
represents a move in which the RP’s cookies grant access to the
account even though RP’s access was revoked by the IdP.

Input Guards

getAccess(RP;a,RPeookic)  RPia € ActiveNhasAccess(RPe,
RP;q ¢ ActiveNhasAccess(RP,
RP;y € Active A—hasAccess(
RP;4 ¢ Active A—hasAccess(RP.ookie

Abstract Symbols

getAccess(SSO)
getAccess(COOKIE)
Revoke(HALF)
Revoke(FULL)

Revoke(RP;q,RP:ookic)

Algorithm 1 Merge test

1: procedure MERGETEST(u,7,.4)

2: result := undefined

3 let {Asso,Binfot €A

4: let {Aemail 7Ainfa} S Asso

5: if 7 = typel then

6: loginWithSSO(u, Asso); register

7 result := HasErr(createAccount(u,{ AemaitsAinfo}))
8 else if 7 = type2 then

9: createAccount(u, { Aemait, Binfo})
10 pagel :=loginWithCredentials(u, Acmair)
11: (ﬁidvﬂstate) = ISLOgngII‘l(U, pagel’ {Ainmeinfo})
12: page2 :=1oginWithSSO(u, Asso); register
13: (i, Qstate) = IsLoggedIn(u, page2’ Ainfo)
14: if Bstate /\asta,te then
15: result .= IsEqual(ciq,B:q); unique identifiers
16: end if
17: end if
18: return result

19: end procedure

(0(So,get Access(SSO))=S51). To test if the RP correctly responds
to access revocation, the workflow tests RP’s compliance in the
logged in (S7) and logged out (S3) states. Logging out creates a
transition to state Sz (6(S1,Revoke(HALF'))=Ss3). When access
is revoked, the workflow checks whether the RP’s cookies grant
access to the RP account. If the RP is not compliant, it will create
transitions to state Sz (d(s, get Access(COOKIE)) = Sy for
s€{51,53}), otherwise it will move to state Sp. The state detection
method (§IIT) identifies the state after each transition. Finally, the
workflow continues testing RP’s compliance overtime while in
state So, and if it fails it will create a transition from .S, to itself
(0(S2,9et Access(COOKIE))=S55).

D. From Theory to Practice: Auditing Process Implementation

Here we provide an overview of how we implement the auditing
workflow in our framework, based on the modeling detailed
previously, and clarify how inputs and outputs are mapped to
SAAT’s components and how it performs the compliance tests.

Merge test workflow. Given the account merge definition
in §III-C, we implement the merge test process using SAAT’s
Register, Login, and Detection modules. Each module contains
functions representing the appropriate abstract symbols (see Table I).
For instance, the Register module defines createAccount
representing Reg(Email) which takes RP’s registration URL



and a set of email and registration information and creates an
account. In an SSO workflow, the registration and login processes
are the same even though they may be presented as different,
e.g., Register with SSO and Login with SSO follow the same
Single Sign-On procedure. Due to this similarity, we define the
loginWithSSO function within the Login module to represent
both Reg(SSO) and get Access(SSO). We also define the function
loginWithCredentials which receives a URL and a set of
credentials (i.e., email and password) to facilitate the login process
for the account that was created with createAccount.

Algorithm 1 describes the implementation of the merge test,
where the MERGETEST function receives a login page URL u,
test type 7, and account information .4 as inputs, and returns a
boolean representing whether the RP merges an account with two
authentication paths. The type input 7 accepts two inputs typel
and type2 representing the two merge cases discussed previously.
Account information .4 contains a set of information pertaining to
the SSO account A, (i.e., IdP account) including the email address
Aemai and personal information A, f,. It also contains personal
information Bj, f,, Which is used for the type2 account creation
as well as being a unique identifier when we compare accounts
created using different authentication paths (line 15). We define
the function IsLoggedIn as part of the Detection module that
receives a URL (i.e., login URL), a web page and a set of identifiers
and returns a tuple with the detected identifiers and a boolean value
representing the web page’s state (i.e., logged in). Note that the
typel and type2 tests are done separately with fresh accounts, such
that lines 6 and 12 are the first time the IdP is connected to the RP.

Revocation test workflow. We implement the revocation test
workflow using the Login and Detection modules, where the Lo-
gin module defines the 1oginWithSSO and logoutFromRP
functions to implement get Access(SSO) and Revoke(HALF).
Algorithm 2 shows the implemented procedure for the revocation
test, where the REVOCATIONTEST function receives a login URL
u, test type 7, and account information .4 and returns a boolean
representing the RP’s revocation compliance. This process first logs
into the RP using the A, account and collects the RP cookies
(line 5). Before proceeding with the test, we examine whether
including the cookies in a new page is sufficient for obtaining
access to the account (lines 6 and 7). Next, depending on the test
type 7, REVOCATIONTEST performs session termination (logout)
or access revocation actions. The former is to examine whether the
RP correctly invalidates cookies after logging out, whereas the latter
tests the RP’s response once the IdP revokes the RP’s access. In both
scenarios, we ultimately test whether after each action, the collected
cookies will provide access to the RP account. Lastly, we leverage
the Detection module’s IsLoggedIn function to retrieve the
login status after adding the RP’s cookies to a newly created
page (line 13). If the state (c),,,) is true, indicating that session
termination and/or revocation actions do not invalidate cookies, the
revocation test result will be false (i.e., the RP is not compliant).

Detection. Our detection functionalities, such as the state
detection and SSO detections, are implemented in the Detection
module, which also defines the locateAuthPage function
that implements the technique for finding login or registration pages
(see SIII-A). Each test workflow begins with locating the login or
registration web pages that support Single Sign-On. Next, each
retrieved URL is used in the MERGETEST and REVOCATIONTEST
as parameter v (Algorithms 1 & 2) until the test is complete (i.e.,
error free), at which point the remaining URLSs are ignored.

Algorithm 2 Revocation test

1: procedure REVOCATIONTEST(u,T,.A)

2: result := undefined

3 let Asso€ A

4: let {Aemail 7Ainfa} € Asso

5: Acookie = collectCookies(loginWithSSO(u, Asso))

6: page := AddCookie( Acookic)

7 (®id,Oistate) = IsLoggedIn(u, page, Ainfo); state detection
8: if astate then

9: if 7 = logout then

10: logoutFromRP(u)

11: else

12: d := getDomain(w)

13: App ID:= getApplD(d)

14: removeApp(App ID); revoke permission
15: end if

16 page’ = AddCookie(Acookic)

17: (O g, Wstare) = IsLoggedIn(u, page’, Ainfo)
18: result = ~lqte

19: end if

20: return result

21: end procedure

IV. EXPERIMENTS & RESULTS
In this section we detail our experimental evaluation and findings.

Experimental setup. We use our framework for two main
objectives: 1) quantifying SSO support and obtaining insight into the
relationship of RPs and IdPs, and 2) performing compliance tests on
RPs. Initially, SAAT takes a hostname and a rank number (to create a
unique id) as input and finds the potential login URLs which will be
used by the various modules and testing workflows. We use SAAT’s
SSO Detection and Login modules for quantifying SSO support and
provide the results and detailed examination in §IV-A. For auditing
workflows and compliance tests, we leverage SAAT’s components
to independently identify non-compliant RPs. For instance, for the
revocation test (Algorithm 2), we use the Login module to log into all
RPs using SSO (line 5) then remove the RPs from Facebook using
Revoke module (line 11), and finally use Detection module (line 14)
to identify the current state of the accounts when authentication cook-
ies are present (i.e., logged in vs logged out). Separating each step
and running them in parallel allow us to 1) find and repeat incomplete
steps due to errors and 2) prevent our system from getting banned
for sending too many requests particularly to the IdP in a short time.

Experimental analysis. We note that Single Sign-On is a
volatile ecosystem where RPs may drop SSO support or completely
change their authentication workflow over short periods of time.
Given our extensive set of experiments conducted at a large-scale,
and to account for these changes, the results and statistics for each
experiment will only include the websites that were available and
supported SSO at the time of each given experiment. Finally, we
have tuned our process to optimize for precision (i.e., minimize false
positives) which may impact recall (i.e., increase false negatives).

Manual verification. In §IV-B and §IV-C, we manually verify
the state-detection results described in §III-A to ensure the accuracy
of SAAT’s state-detection and measure its performance. When we
perform an action that can change the state of an account (e.g.,
log in/out), we take screenshot images of the page before and after
taking the state-change action and save them along with the result
we receive from our Detection module. Then, we manually go
through the images and assess the state-detection results.



A. Single Sign-On Support

RPs often change in a short time period, which can render prior
data on SSO support stale. Therefore, continuous observation is nec-
essary for building an accurate picture. Here we present our study of
SSO support and provide insight into this ever-changing ecosystem.

Methodology. We select the top 100K sites from Majestic [30]
and identify their login pages. Majestic ranks websites based on the
number of unique IP subnets that refer to the website and has been
used in several recent studies [31], [32], [33], [34]. Nonetheless, our
approach is agnostic to the top list used. After identifying the login
page, we detect support for Facebook SSO and initiate the login pro-
cess using our injected Facebook cookies. During the login process,
we record instances of RPs that do not accept Facebook cookies and
explicitly ask for Facebook credentials. We use two separate Face-
book accounts with names that are distinguishable from common
names and English words. This facilitates differential analysis during
the state detection process. We also collect IdP-generated errors that
may appear during login. Such errors may occur if the RP is not con-
figured correctly or is currently in development mode. This allows us
to filter out non-functional RPs that would pollute our measurements.
After logging into each RP, we collect the cookies. We repeat this
process to ensure that unexpected errors, due to network disruptions,
are minimal. One of the practical challenges that we faced during our
crawling process was sending too many and frequent requests, which
trigger Facebook’s bot detection system. To avoid overwhelming
the servers (and potentially getting banned), we limited our crawl
to 10k websites per day. However, this created a gap between when
we logged into each RP and later performed the revocation tests
which could affect the results (e.g., RP cookies expire prior to our
revocation test). Therefore, after the second crawl, we repeat the
login process for all detected RPs with a 40-60 second sleep time
in between. To speed up the process, we use GNU Parallel [35] to
run 5-6 processes at a time, thus requiring approximately 1 day to
complete. All large-scale data collections were done on an Ubuntu
18.04 server with an Intel(R) Xeon(R) Silver 4110 CPU and 32GB
RAM, and manual inspections were done on a personal computer.

Results. We identified and initiated the login process for 2,689
websites that supported SSO with Facebook. Of those, 669 either
had a null App ID or returned an error, and 120 did not complete the
login process due to either freezing from SSO misconfigurations or
not loading correctly in headless Chrome. In total, we successfully
logged into 1,900 websites through Facebook SSO. To further
ensure the reliability of our results, we filtered websites based on
whether the login URL’s domain (via search engines) matched their
corresponding Majestic record, which left us with 1,622 websites
with matching domains. While this filtering process can also
remove legitimate websites such as shelfari.com (merged
with goodreads.com), we believe that it provides a more
accurate dataset for our experiments and eliminates false positives.

To become a Facebook RP a site must first create an application
in Facebook, where it will be assigned a unique App ID. We extract
the App IDs during the SSO login process (from the app_id
or client_id URL parameters) and match them to the data
collected from Facebook’s “Apps and Websites” portal. After
completing the login process, we collected applications from both
Facebook accounts and selected the matching App IDs associated
with those 1,622 websites. In total, we collected 1,494 unique apps
from Facebook’s portal. We note that the relationship between
App IDs and websites can be one-to-one or one-to-many; in the
case of one-to-many the app owner must explicitly whitelist those

websites otherwise Facebook throws errors. An example is shown in
Table III (Appendix) where the “JotFrom Login” App ID is shared
between multiple websites with some of them not being whitelisted.
We found 36 App IDs that had one-to-many relationships, with
19 having similar second-level domains (e.g. yelp.com and
yelp.ca) and 17 cases with different second-level domains.
For instance, cancer.gov, interiordesign.net and
submittable.com use Submittable, an online platform for
collecting and reviewing submissions and applications. Figure 9
(Appendix) visualizes the one-to-many relationships between
App IDs and the websites in our data. Generally, having the same
second-level domain can be an indicator that the RP is managed by
the same organization as the websites. However, the opposite is not
necessarily true. This has three implications: (1) if the entity behind
the shared App ID gets compromised then all RPs that outsourced
their account management will be affected, (2) the entity in charge
of the App ID can track users between the different RPs, and (3) the
RP becomes a “front”, obscuring the actual entity users have to trust.

Takeaway 1: The relationship between IdP-side applications
and the websites can be one-to-one or one-to-many. Outsourcing
account management to a third-party application creates a single
point of failure and an environment where users can be tracked
across disjoint RPs without their knowledge.

SSO permissions. In addition to the App IDs, we collected the
permissions requested by RPs from Facebook’s portal. Facebook
relies on an app review process for applications that request
more than the public_profile and email permissions.
As can be seen in Table IV (Appendix), public_profile
and email are the most prevalent permission combinations we
observed throughout the apps collected from the applications
and business_tools sections. Business_tools apps
request a different set of permissions and are used for managing
business assets like pages, events, and groups. However, both use
SSO as a login method. Figures 10, 11 (Appendix) illustrate the
distribution of requested permissions in the business_tools
and applications sections respectively. Our manual
investigation of 54 apps that did not request the email
permission revealed that for the majority of the apps (33) SSO
cannot be used for account creation and can only be added to existing
accounts. The rest of the apps only need profile info (e.g., to enforce
age restriction) or allow for an email address to be added after SSO.

Longitudinal Single Sign-On support. We tracked changes in
Single Sign-On support across two rounds of data collection that
were 50 days apart. We found that Single Sign-On support was
dropped in 119 websites. We also tracked IdP-side apps through
Facebook’s portal and noted that after 50 days, 41 apps switched
the development mode flag (on/off) at least once. Interestingly, we
observed that if an app goes into development mode, it disappears
from Facebook’s portal, thus preventing users from modifying its
access permissions. However, while apps in development mode are
not shown in the app portal, their access can still be revoked through
Facebook’s recovery process. This requires the user to go through the
recovery process that is different from visiting the applications page
and removing the apps, which may not be obvious to average users.
Our findings also show that many RPs had non-functional SSO
implementations. Out of 669 unsuccessful SSO logins, 407 were
due to errors; these were narrowed down to 348 through our afore-
mentioned domain-filtering process. We manually categorized the
errors based on the received descriptions and found that the majority
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Fig. 5: Number of Relying Party errors and success cases (left) and
error to success ratio (right) per website rank.

of errors are caused by apps being in development mode. Figure 5
illustrates the counts of successful and erroneous SSO logins as well
as their ratio per website rank. Figure 6 depicts the percentage of
error categories correlated with the website rank. As can be observed
from the two figures, while the absolute number of erroneous apps
is comparable across all bins, the error-to-success ratio is dispropor-
tionately lower for the most popular websites (i.e., top 10K).

Takeaway 2: SSO support is dynamic and often changes in a
short time window. Such changes can be temporary (development
mode) or permanent. The login process for 17.6% of Relying
Parties resulted in errors, demonstrating that an accurate
assessment of the ecosystem requires interactive measurements.

Re-authentication enforcement. During the Single Sign-On
support test, we collected the list of RPs that explicitly ask the
Identity Provider to re-authenticate the user even if the user’s
IdP identity is verified via existing authentication cookies. This
additional step is particularly useful for ensuring that having access
to the hijacked cookies without knowledge of the password is not
sufficient for completing authentication (i.e., it can prevent IdP
cookie hijackers from obtaining access to the user’s RP accounts [6]).
Facebook supports two ways for mandating re-authentication. The
first method is performed on the client side, by sending a query string
containing auth_type=reauthenticate [36]. The second
method requires enabling the Force Web OAuth Reauthentication
option in Facebook’s client OAuth settings. We observed a total of 24
RPs requesting re-authentication enforcement. Alarmingly, however,
11 RPs only request re-authentication on the client side; we found
that by simply removing the auth_type parameter, we were
able to bypass re-authentication enforcement and authenticate using
the IdP cookies. In other words, only 13 (0.8%) of the 1,622 RPs
adequately protect user accounts from IdP cookie hijackers. Interest-
ingly, while Google (the second most prevalent IdP) also follows the
RFC and allows the RP to decide [37] [38], Apple follows a more
secure approach and always requires reauthentication. Obviously, if
the attacker knows the user’s IdP password (e.g., through phishing)
this mechanism will not prevent the attacker from gaining access.

Facebook SDK. RPs should regularly check the SSO access
token’s validity, as highlighted by Facebook after their 2018 breach,
when they stated that leveraging the official SDK would protect
RPs [39]. Facebook also recommends using its JavaScript SDK for
protecting against traffic redirection [40]. While not using the SDK
is not inherently bad practice, we are interested in understanding how
many RPs use it and are considered protected per Facebook’s guide-
lines. To use the SDK, the RP needs to include JavaScript code that
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Fig. 6: Error type distribution by website rank.

loads and initializes the SDK. The SDK’s URL is a variation of https:
/lconnect.facebook.net/en_US/sdk.js, and once the SDK is fetched it
creates a JavaScript object called FB. The initialization is completed
by passing RP-specific configuration options to FB.init (),
which is generally wrapped in the window.fbAsyncInit ()
function. Due to the asynchronous nature of this call, we observed
that fbAsyncInit () isa more accurate proxy for measuring
SDK-initialization across RPs. To measure SDK usage, we visited
each RP and inspected outgoing requests for the SDK’s URL as well
as checking for the existence of the FB object. We also record calls
to the fbAsyncInit () and FB.getLoginStatus ()
functions by overriding the functions prior to page_load, which
makes our approach resilient to obfuscation.

Additionally, FB.getLoginStatus () allows the RP to
query Facebook whether the user is currently logged into Face-
book and whether they have logged into the RP website in
the past. Each of these attributes indicates a different level of
SDK usage. For instance, websites can include the SDK URL
which also creates the FB JavaScript object, but never use any
functions from the SDK. Our findings show that 49.5% (of
1360) RPs included the SDK in their website, of which 81%
initialized the SDK using fbAsyncInit () and 4.3% called
FB.getLoginStatus (). According to Facebook, any SDK
functions must be called after SDK initialization. In other words,
an absence of SDK initialization can be a strong indication that RP
does not actually use the SDK’s functions. For comparison, we also
measured SDK usage for two other popular IdPs, Apple and Google.
Both offer official SDKs and provide easy-to-follow documentations
for RPs. Our findings show that Google and Apple SDKs have com-
parable SDK usage, with 45% (of 727) and 40% (217) respectively.

Takeaway 3: Re-authentication enforcement is extremely low
among RPs (1.4%), and can be bypassed in 45.8% of the RPs
that enable it. Despite best practice guidelines and three years
having passed from the Facebook data breach, only 40% of the
observed RPs include and properly initialize the official SDK.

B. Access Revocation

Methodology. We investigate the impact of revoking RP per-
mission from within Facebook and explore the functionality of RPs’
cookies in the aftermath of access revocation. We visit the RP’s login
page in two separate flows, with only one of them including the
cookies in its requests. Using our state-detection method (see §III-A),
we compare the two pages and detect the RP’s state via observable
side-effects. Note that the state detection’s goal is to detect whether



the cookies affect the website’s state and not to infer the level of
access that the cookies provide. We also take screenshots of the login
pages to manually verify the results. During our manual analysis,
we inspected all the screenshots and compared the visual differences
with what was detected by our system (i.e., personal info, logout but-
tons, images, etc.) to verify the results of our state-detection method.

We conduct two experiments: (i) an initial experiment where
we log into RPs, revoke their access and wait for 10 days, and
(ii) an extended experiment where we log into RPs and wait for
a month. The additional time for the control group is to obtain a
more extensive cookie-expiration timeline. To prevent being flagged
as automated bots, we randomly wait 20-60 seconds between each
login attempt, increasing the duration of the entire login process to
two days. For the first experiment, we collect the state-change results
and take screenshots of the login pages before revocation to ensure
that the cookies still work. We continue collecting daily state-change
data and the screenshots for the next 10 days. Apart from the revo-
cation step, we follow the same steps for the second experiment and
continue to obtain daily screenshots for a month. In both experiments,
we collect two sets of state-change data: one with RP cookies as-is,
and another where we extend the expiration dates to study the impact
of client-side and server-side cookie expiration checks. Finally, we
investigate whether RPs correctly terminate sessions after logging
out. We use the following order of actions for this experiment: first
we log into an RP using SSO and collect the RP’s cookies. Next, we
inject the collected (valid) cookies in a fresh browser and log into
the RP again and look for the logout button in the main page and the
login pages. The heuristics we use are very similar to our SSO button
detection. If the logout is successful, we use the (invalidated) cookies
in a fresh browser and visit the RP and invoke our state detection
process. If it detects that we are successfully logged in, we flag the
RP as non-compliant. Similar to previous experiment, we collect
screenshots at each step to later verify our state-detection results.

Results. We consider 1,107 RPs that were successfully pro-
cessed and found in both the initial and extended groups, and their
domain matched the login URL. Initially, we identified 470 RPs
where the presence of RP cookies resulted in detectable changes
to the RP’s state after the SSO login. We manually checked the
screenshots and noted that our state detection method had a 3% false
positive rate. After the revocation process, only 68 RPs showed a
logout behavior. By comparing these RPs with our extended group,
we found that in 60 RPs the logout behavior was caused by cookie
expiration and only 8 RPs actually exhibited the logged out behavior
due to access revocation. We also note that 318 RPs continued
accepting cookies 10 days after revocation. As discussed in §IV-A,
RPs can use the official SDK to regularly check the access token’s
validity and, thus, get notified of invalidated tokens. By comparing
SDK results, we note that 196 (41%) RPs initialized the SDK (i.e.,
called fbAsyncInit ()), butnone of them correctly logged out
after access revocation. Three of the RPs that correctly logged out in-
cluded the SDK and two of them initialized it. This shows that while
RPs that use the SDK are in a better position for getting notified of
invalid access tokens, taking the appropriate actions in response to
access revocation is still their responsibility, yet is mostly ignored.

Takeaway 4: Only 1.7% of RPs logged out the user in response
to IdP access revocation and 67% of the RPs continued to allow
access to the accounts even 10 days past the revocation. Use of
Facebook’s SDK does not correlate with correct logout behavior.

Cookie expiration. We note that short-lived cookies can have
a mitigating effect despite a lack of other defensive actions when
access revocation occurs (although, this is not a complete and robust
solution). Our goal here is to quantify how RP cookies expiration
can impact account access over time. We use the collected data
from the second experiment to analyze the impact of cookie
expiration over a period of 40 days. We identified 1,092 RPs that
set cookies after authentication. For each cookie, we calculate the
time difference between the expiration timestamp and the login
timestamp (which was recorded when we logged in). In cases
where the cookies had already expired (e.g., they have negative
values or already expired in the past) we replace the expiration
date with a value of 0. To better represent the data, we calculate the
minimum and median expiration dates of all the cookies for each
RP and use the median as the main reference value. Based on our
observation, the median value offers a less skewed representation
than the average, particularly due to cookies that may expire many
years in the future. Since we aim to study the impact of cookies
on account access, we only consider the 424 RPs in which cookies
made a detectable state change after login completed.

We acknowledge that not all cookies are required for authentica-
tion; however, by comparing cookie expiration with the state-change
results, we can study the correlation between the time of expiration
and account access. To better understand the impact of cookie expira-
tion, we first identify RP’s actual behavior using our state-detection
method and verify through manual inspection. Our goal is to study
whether there is a correlation between cookie expiration values and
how RPs handle users’ sessions. Next, we separate our dataset into
RPs that prematurely rejected cookies that are yet to expire (based
on the median value) and RPs whose cookie acceptance or rejection
behaviors are aligned with their median expected expiration. We
identified 127 RPs (57% of the overall RPs that rejected cookies in
under 40 days) that prematurely reject cookies. Figure 7 illustrates
the CDF for the cookie expiration time in days. The left figure
provides a comparison between the median expected expiration and
actual expiration after which cookies do not provide access to the
accounts. The median expiration timestamps are calculated for each
RP whereas the actual expiration is measured and verified using our
state-detection method over 40 days. The left diagram represents
RPs that rejected their cookies before reaching the median expiration
timestamp. The right diagram displays the median expected expira-
tion for RPs that accepted cookies before reaching median expiration
date, or rejected cookies after reaching their median expiration date.
This figure shows that most RPs set cookies that expire instantly or in
a short amount of time. The left diagram in Figure 8 shows the actual
expiration over 40 days. The RPs that rejected the cookies are notice-
ably higher two weeks and one month after login. The right diagram
in Figure 8 shows a comparison of rejection due to cookies expiration
(black) and rejection after revocation (red) for the same RPs; the num-
ber of RPs that reject after revocation is higher on the first day and
2 days after. As discussed in §II-C, RPs that accept cookies 60 days
after the initial login are non-compliant. Our state-change data shows
that 179 RPs accepted cookies even after 70 days. We emphasize that
while our cookie expiration examination measured the correlation be-
tween cookie expiration and actual expiration to understand how RPs
set the expiration date, we use the actual expiration data collected
from SAAT’s state-detection module to identify non-compliant RPs.

Takeaway 5: 48% of RPs accepted cookies 40 days after the
initial login and 86% of those RPs were non-compliant and
continued to accept cookies even after 70 days.
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Fig. 7: Actual vs. expected cookie expiration.

Server-side vs. client-side expiration. Enforcing the lifetime
of cookies falls into two categories: persistent and session cookies.
The lifetime of persistent cookies are specified by the Expires
or Max—Age attributes. Unlike persistent cookies, session cookies
don’t have explicit expiration dates and are expired and removed at
the end of the session. While the definition of a session’s end may
vary between browsers, they treat expired cookies as stale and won’t
include them in future requests. In this experiment, we investigate
whether websites correctly enforce a crucial session expiration
rule: regardless of the category, session expiration must be enforced
on the server-side [12]. To investigate this, we collect cookies
after authentication and send them to the RPs in two scenarios:
(1) with their original expiration dates and (ii) with expiration dates
set to 1 year in the future. If an RP responds differently to these
requests, it means that they rely on the browser to enforce session
expiration (client-side). We examined the collected daily screenshots
using our state-detection method and manual verification and
found 6 RPs including popular websites (masterclass.com,
yourstory.com, crowdrise.com), and less popular ones
(yet ranked above 20k) like freeart.com, carvana.com,
and webike.net thatresponded differently. All these websites
had cookies that had expired before we extended the expiration.
Interestingly, apart from freeart, the rest of the RPs used a
common method of setting the expiration date in the past and
hoping that the browser takes care of removing those cookies.
We note that the actual expiration time, when the server-side
session termination occurs, differs between these RPs. For instance,
masterclass accepted the modified cookies up to one month
after while webike and yourstory accepted the cookies up
to the last day of our data collection (i.e., for 70 days).

Session termination (Logout): We revisit the RPs from our re-
vocation experiment for which the presence of cookies changed their
state. Out of 382 correctly processed RPs, we were able to automati-
cally complete the logout process in 138. We proceeded with testing
how servers will treat the cookies in subsequent requests. Alarmingly,
40.5% of the RPs allowed us to access the account after logout.

Takeaway 6: Server-side session management and session
invalidation are not implemented consistently, as we found 6
RPs that relied on clients’ browsers to invalidate cookies, and
40.5% of the RPs did not invalidate cookies after logout.

GDPR Compliance. Under GDPR developers are required to
provide a method for users to request the deletion of their data. In
Facebook, developers can either provide a link with instructions
on how users can do that, or a Data Deletion Request Callback [41]
that Facebook pings when the users remove the app and request
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data deletion. Unlike the De-authorization Callback URL, the data
deletion URL can be collected from the app portal. We found that
only 15 Relying Parties have a deletion URL, i.e., if users request
data deletion after removing the RPs, only 15 RPs will get notified.
Nevertheless, we note that this does not mean the remaining RPs
do not accept data deletion requests directly from their website.

C. Account Merging

Methodology. Guided by our merging definition in §III-C, we
use two Facebook accounts (Asso, Bsso) with distinct personal
information (Ainfo:Binfo) and emails (Aemails Bemair) to perfonn
the account merging test. Our key assumption here is that RPs use
email addresses retrieved from the IdP, or received directly from
the sign up forms, to create a local notion of identity. In the first
test case, we create accounts with each RP using SSO (Agso)
and later attempt to register an account using Aeynqi and By, fo. If
we detect an error message indicating the account already exists,
we count this event as a fype-I merge. In the second case, we
first register accounts using A;, fo and Beynqq and later we sign
up with SSO (Bgso). We call this a type-2 merge if the process
results in an account with Ay, f,. In both cases, our framework
detects if a specific RP violates the merging policy upon detecting
a pre-existing account, which can occur if the RP creates a separate
account or overwrites the account with new personal information.

To prepare for type-1 we logged into the RP accounts using SSO.
This is shown as transition 6 (Sp,Reg(S.SO)) =5 in Figure 3. Next
we initiated type-2 by creating accounts using our automated account
registration module, denoted by transition 6(Sp,Reg(Email)) =Ss.
After logging in with SSO (type-1), we created accounts using
credentials and then checked for errors. If the RP displayed an error
indicating the account already exists, we added the RP to the correct
merging group. For the RPs that we registered using credentials (type-
2), we proceeded with SSO login and searched for similar identifiers.
If detected (5(0(Sp, Reg(Email)), Reg(SSO, EQ)) S1),
we classified the RP as correctly merging the accounts.
In contrast, if we detected different identifiers,
(0(6(So,Reg(Email)),Reg(SSO,N EQ))=S,), we flagged it as
non-merging. For both cases, we manually verified the results.

Type-1 results. According to our merge definition, RP accounts
created using SSO (Agso) should show an error when there is an
attempt to create an account using (Aemqir). We identified 118 RPs
that displayed an error indicating an account with (A7) already
exists. Among the successfully created accounts (50) we found 4 RPs
that did not correctly merge: surveymonkey, diffen, con-
npass, and pakwheels violated the merge policy and allowed



account creation. While not against policy, we note that 92y .org
merged the accounts but overwrote the name. The lack of account
merging can have security implications, as the attacker can cut off the
user’s access to the account until some demand is met (i.e., ransom-
style account takeover [6]). We provide an example in the Appendix.

Type-2 results. Using our account registration component, we
were able to successfully create accounts in 243 RPs using the tradi-
tional credential-based approach. Out of those, 115 have the identi-
fiers that are suitable for the merge test. On the other hand, out of the
1,223 RPs where we created an account over SSO, 354 displayed de-
tectable identifiers and were suitable for this test. We note that not all
RPs from the first dataset were also found in the second dataset. For
instance, accounts could be registered correctly but when we tried to
log in with SSO we encountered app errors (§IV-A), or at the time of
this experiment SSO support had been dropped. In total, we had 34
RPs shared between the two datasets. By comparing the identifiers,
we identified 30 RPs that correctly merged the accounts and 4 RPs
that violated the merge policy: our manual investigation showed that
while diffen uses email address during the registration it relies
on the username, and pakwheels does not use the email address
when SSO is used. However, in the case of surveymonkey and
gifyu, our experiment resulted in two accounts that share the same
email address but have different account information.

Takeaway 7: 10% of the RPs violated the merging guidelines
when SSO is used with preexisting accounts, and 11% violated
them when the initial account creation was done over SSO.

D. Cross-1dP Generalizability

Next, we explore how the SAAT auditing workflow generalizes
across IdPs supported by a given RP and are not tied to the implemen-
tation of a specific IdP (i.e., Facebook). To that end, we conduct a
series of experiments in a subset of the RPs from our previous experi-
ments that also support Google or Apple as IdPs. These IdPs support
the universal features requisite for automation using the IDPCon-
troller module (discussed in §III-B) and are thus amenable to SAAT’s
auditing workflow. As such, while there are no technical barriers to
incorporating additional IdPs into our automated implementation, the
additional engineering effort required to develop the appropriate IDP-
Controller modules for Google and Apple is outside the scope of our
work. As such, we resort to a manual process that exactly replicates
the steps followed by our system’s automated workflow, allowing us
to explore the generalizability of our findings across different IdPs.

First, we created a Google and an Apple account with new
email addresses (email oppre and emailgoogie), to ensure that an
experiment with one IdP will not affect another IdP’s experiment. We
selected a subset of RPs from our previous experiments that also sup-
port Google and/or Apple in addition to Facebook, and verified that
their SSO procedure is error free (e.g., they are not in development
mode). The RPs were selected randomly to eliminate the potential
rank bias in the samples. We selected 50 RPs for Google and 50 for
Apple, while allowing partial overlap between the two sets so as to
obtain additional evidence for certain RPs that their behavior remains
consistent across all three IdPs. In total, we conduct 100 sets of
comparative experiments across 91 unique RPs. We omit the cookie
expiration measurements and session termination (i.e., logout) exper-
iments as they are RP-wide and not tied to an IdP’s implementation.

First, we examined whether using Apple or Google as the IdP
would produce a different account merging behavior than when using
Facebook’s SSO implementation. We used two separate browsers, in
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one browser we logged into each RP using Apple’s SSO, and then we
attempted to create an account using email appie. We note that while
Apple allows users to hide their real email by sending a randomly
generated email to the RPs, we did not select this option and opted
to share the real email address to mimic the process followed for
Facebook. Our findings showed that all of the RPs tested with
Apple’s SSO produced the same merging behavior (since none of the
problematic RPs supported Apple, all 50 RPs we tested had correct
merging behavior). Interestingly, we performed the same experiment
for Google and found one RP (pakwheels.com) exhibiting a
different merging behavior: using Google’s SSO and creating an
account with emailgoogie resulted in correctly creating one account
whereas the same process using Facebook’s SSO incorrectly resulted
in two separate accounts (Section IV-C). When creating an ac-
count with Google’s SSO pakwheels.com sets the user’s email
address to emailgoogie, While with Facebook it does not despite
requesting access to the email address. Next, we used the same subset
of RPs to compare the effect of access revocation across different
IdPs. We began by logging into each RP over SSO and then removed
the app (i.e., revoked app’s access) from within Apple or Google. We
then checked whether revoking access impacted the RP’s state and
compared to the Facebook results. Unsurprisingly, regardless of the
IdP, all results remained consistent. Overall, our comparative analysis
showed consistent results when using Google or Apple instead of
Facebook in 99% of the cases. This strongly suggests that the flaws
uncovered by our system and the overall takeaways of our study are
predominantly IdP-agnostic. Nonetheless, we consider larger-scale
experimental verification using SAAT an interesting future direction.

V. COUNTERMEASURES

Our experiments reveal a series of flaws, misconfigurations, and
non-compliance in RPs. In practice, developers can use the official
SSO SDKs and also leverage online guides that detail how to cor-
rectly implement session and account management processes (e.g.,
the extensive OWASP cheatsheets [12]). However, RPs may lack
the incentives or the technical know-how for addressing these flaws.
Thus, we propose two additional strategies for better protecting users.

Transparency report. Our framework can be utilized as a
continuous testing framework for generating transparency reports
that shed light on RPs’ bad practices. We built our framework to
be as general as possible to support different SSO implementations.
While our main focus was on Facebook, the auditing workflows
remain the same for other IdPs. As discussed in previous sections, the
SSO ecosystem is highly volatile and any policy checks should be
performed over time, therefore proposals that focus on auditing RPs
during registration are not sufficient. By leveraging our framework,
IdPs can continuously audit RPs and either block problematic RPs
or, less intrusively, generate a transparency report that can be used in
extensions like the one we describe next, to warn users about RPs that
do not adhere to secure account and session management practices.

Browser extension. Complementary to our framework, we
have developed an extension that informs users visiting an RP about
some malpractices. We provide more details in the Appendix.

VI. DISCUSSION

Automated account registration. Drakonakis et al. [17]
implemented and released an automated account registration tool for
auditing authentication and authorization flows in web applications.
While account creation is only a subset of our system, the high-level



non-SSO registration methods in both systems are quite similar, with
a few key differences that we will highlight here. In contrast to their
implementation, our system uses Puppeteer to control and automate
browser interaction. We chose Puppeteer instead of Selenium due to
Puppeteer’s improved performance, as well as other key features like
the ability to interact with Chrome’s DevTools Protocol (CDP), listen
on network events and modify requests (Selenium 4 introduced
support for CDP API, but it is still in alpha version at the time of
this writing). Additionally, Puppeteer provides more control over
when and how cookies are loaded/injected and stored, which is a
crucial part of our auditing framework. We also leverage Puppeteer’s
CDP API to obtain corresponding DOM nodes in the accessibility
tree which are not typically exposed (discussed in §III-B). Our
system also includes CAPTCHA-solving, which was one of the
two main causes for failed registrations in [17]. The second main
cause for failed registrations was the lack functionality for detecting
and fixing input errors during registration (e.g., due to formatting
constraints), which we have included in our system. We have also
extended the account activation process to support SMS-based
activation. For us to have a unified framework and also address these
shortcomings, we decided to not directly utilize their tool but instead
incorporate their key ideas into our own version of the non-SSO
automated account registration using Puppeteer. We note that all
of our SSO-related processes were not modelled after their design.

Ethics and disclosure. It is important to emphasize that all
experiments were conducted using test accounts registered by our
framework. During our experiments we did not interact with or
affect actual users in any way. To facilitate remediation efforts we
notified affected RPs following established strategies [42], [43],
[44], [17] for identifying contact emails. This included collecting
websites’ security.txt files, leveraging search engines,
crawling the websites, and obtaining each domain’s WHOIS record.
While we are still waiting for feedback from other RPs, we received
confirmation from gifyu.com that their current system does not
merge accounts as they do not collect email addresses, but plan to
use Hybridauth [45]. We have also shared our work with Facebook.

Limitations. Certain caveats are inherent to any study, such as
ours, that relies on a fully automated system and analysis pipeline.
This includes the inability to create an account on certain RPs, or
potential false positives/negatives during the testing phase. For the
former issue, while our system was able to successfully complete the
login process on 1,900 RPs, in practice researchers could supplement
this by manually creating accounts on problematic websites of
interest. For the latter, as aforementioned, when designing our
system we opted for correctness (i.e., minimizing false positives)
and also manually verified all of our findings to ensure validity.

VII. RELATED WORK

Protocol Verification on the Web. Authentication and autho-
rization using third parties is a complex, critical, and security-
sensitive component of the modern web, necessitating the standard-
ization and evaluation of appropriate protocols. OpenID Connect,
the standardized protocol used in most implementations of Web
SSO, has been studied extensively; see the formal analysis of the
protocol in Fett et al. [46] and an overview of the scholarship in
this area related to protocol vulnerabilities by Mainka et al. [1].
While these efforts are substantial and necessary for securing the
SSO ecosystem, the vulnerabilities that we consider in this paper are
beyond the scope of such tools due to the vulnerabilities that arise out
of the composition of SSO and non-SSO authentication mechanisms.
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Protocol and implementation mismatches. While the
analysis of these protocols is a necessary component of ensuring
their security, very often the devil is in the implementation
details. Researchers have investigated SSO implementations and
found various vulnerabilities [47], [48], [4]. Our approach is
complementary to investigations of attack models that directly
target the SSO implementations themselves,e.g., Sudhodanan et
al’s work evincing various vulnerabilities of Multi-Party Web
Applications [49] and Cao et al’s investigation of relying party
impersonation attacks [50]. A necessary precondition for evaluating
attacks at scale is the ability to create and interact with valid
authenticated sessions; SAAT complements these investigations by
providing a framework for evaluating large swaths of the Internet for
vulnerabilities. Zhou and Evans [2] built an automated system that
handled the SSO-registration process and detected implementation
flaws in SSO protocols; while some of the automation techniques
have inspired our SSO registration process, their system has not been
publicly maintained in the past six years, and thus cannot be readily
applied for auditing contemporary web application implementations.

While our paper focuses on SSO-based account creation and
session management, Shernan et al. [5] performed a crawl-based
investigation of a CSRF vulnerability in OAUTH 2.0 (a precursor
to contemporary SSO implementations) which was able to auto-
matically audit sites for potential vulnerabilities, and necessitated
manual inspection to identify true vulnerabilities. Recently Liu et
al. [7], explored how email reuse attacks can allow an adversary
to takeover accounts in SSO RPs. More closely related to our work
is that of Ghasemisharif et al. [6], which investigated the interplay
between accounts managed by relying parties and the connection
to the accounts managed by IdPs, but did so with substantial
manual investigation and at a small scale, the likes of which our
automated auditing system is designed to streamline and standardize.
Furthermore, their study did not explore how revocation, session
termination and cookie expiration actually affect RPs over time.
Considering the web ecosystem more broadly, researchers have also
investigated the security of various protocols and implementations
thereof for other web security primitives including Certificate
Authorities [51], TLS [52], [53], HSTS [54], and CSP [55]. In many
cases, dynamic analysis via crawling-style auditing was able to
identify numerous vulnerable implementations of these protocols.

VIII. CONCLUSION

SSO has revolutionized web authentication by allowing services
to essentially outsource the identity verification process to major IdPs
While the authentication process in these services is typically well-
protected, leading to security benefits for the RPs, the co-existence
and interplay of two separate account authentication pathways cre-
ates additional security pitfalls. As such, we developed an approach
to fully automating black-box auditing framework for detecting
violations and non-compliance of secure practices in Facebook’s RPs.
‘We implemented this tool for Facebook and manually verified the
approach on Apple and Google. Our large-scale analysis revealed a
series of flaws, ranging from insecure cookie management practices
and a lack of token-liveness checks to incorrect account-merging
practices. Overall, our research highlights that adopting SSO is not a
panacea against authentication flaws but, instead, a process fraught
with multiple nuanced opportunities for mistakes. Apart from our
responsible disclosure to the affected RPs, we will also share our
framework with researchers and IdPs, as we envision it being used by
major IdPs for ensuring a safer SSO ecosystem through continuous
testing and reporting of insecure practices.
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APPENDIX

Here we include additional analysis and findings from our
large-scale study.

A. Relationship between RPs and IdP

In §IV-A we discussed the subtle distinction between IdP-side
applications (i.e., App IDs) and RPs; each IdP-side application can
belong to a website called an RP, or provide a service to different
websites by positioning itself between the IdP and the websites
and form a one-to-many relationship. Figure 9 visualizes the
one-to-many relationship between the IdP, IdP-side applications and
websites in our data. The green nodes are the IdP-side applications
that likely belong to the same organization (based on domain
names) and red nodes are the IdP-side applications with different
domains from the websites. Table III presents an example of a
shared App ID between seven websites, where three of the websites
have errors. We also discussed the negative implication of such
one-to-many relationship particularly for the ones that are not
managed by the same organizations (red nodes): apart from the
obvious privacy implications, the potential misconfigurations in the
IdP-side applications can indirectly propagate to the websites and its
impact is multiplied by the number of websites connected to them.
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Fig. 9: One-to-many relationship between the App IDs (red,green)
and websites (grey). Websites with the same App ID are connected
to an intermediate node which is colored based on whether the con-
nected websites have the same (green) or different (red) second-level
domains. The blue node represents the Identity Provider (Facebook).

TABLE III: Example of application that is shared between seven
websites and not configured correctly on three of them.

App ID Rank  Domain Login URL Error

1140740696088074 883 jotform.com www.jotform.com/signup/

1140740696088074 3753 jotformeu.com  jotformeu.com/signup Redirect URI not whitelisted
1140740696088074 8077  jotform.us www.jotform.us/signup

1140740696088074 8328  jotform.me www.jotform.me/signup

1140740696088074 11844  jotformpro.com  www.jotformpro.com/signup ~ Redirect URI not whitelisted
1140740696088074 19929  jotform.co www.jotform.co/signup Redirect URI not whitelisted
1140740696088074 53896  jotformz.com www.jotformz.com/signup

B. App Permissions

The majority of the collected Facebook applications discussed
in §IV-A belong to the applications category, and Figure 11
illustrates their SSO permission distribution. A handful of collected
applications in our data belonged to the business_tools
category where the applications can request different permissions for
managing pages and groups in addition to typical permissions such
as public_profile, email and user_posts. Figure 10
illustrates the permission distributions for apps in the busi-
ness_tools category. We note that public_profile and
email are requested more frequently in both categories, which
is intuitive since they provide basic personal information about the
users. In contrast, user_posts is requested less frequently in
both categories, which may indicate that either apps are not interested
in interacting with users’ posts or requesting such permissions
may generate negative feedback from users and decrease the
adoption rate. Additional exploration is needed for understanding
the underlying cause, since this falls out of the scope of our study.

C. Cookie Rejection Ratio

In §IV-B, we studied the impact of cookie expiration over
time in RPs. Figure 12 shows the number of RPs that accepted or
rejected cookies per their rank, in the first day after login and 40
days later. As can be observed, both popular (i.e., highly ranked)
and unpopular RPs accepted cookies even 40 days after login.



TABLE IV: Permission combination frequencies in applications.

Permission

Combinations

Applications

public_profile, email
public_profile

public_profile, user_friends, email
public_profile, email, user_birthday

1,325

54
29
9

public_profile
pages_show_list
pages_manage_ads
email

pages_read_e ent
pages_read_user_content
pages_manage_metadata
publish_to_groups
pages_manage_posts
pages_manage_engagement
groups_access_member_info
read_insights

user_posts
business_management
instagram_basic
user_photos
read_page_mailboxes
pages_messaging
ads_management
user_videos

user_events
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Fig. 10: Permission distribution of apps in Business Tools.
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Fig. 11: Permission distribution of apps in Applications.
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Fig. 12: Counts of accepted/rejected cookies per rank for the first

and the last day (40).
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Fig. 13: Dev-mode switched on/off during 50 days.

D. Development Mode

In §IV-A we discussed how enabling the development mode
essentially renders an RP inaccessible. By observing and measuring
how often the IdP-side apps disabled and enabled the development
mode over 50 days, we illustrated the importance of interacting with
the RPs for accurately measuring SSO related features. Figure 13
shows how frequently IdP-side apps switched development mode
on/off over the span of 50 days.

E. Web Accessibility API

In §III-B, we discussed how we leveraged Chromium’s Web
Accessibility API to obtain the accessibility tree, which is a tree
of objects resembling the HTML elements and used by assistive
technologies to facilitate website interactions for users with
disabilities. Listing 1 depicts an HTML code segment for a login
page, which contains two text boxes for the username and password,
a submit button, and Facebook’s SSO button. For brevity, we do not
include the entire HTML code in this sample. Listing 2 illustrates
the accessibility tree obtained from Chromium’s Web Accessibility
API upon visiting the page. We modified Puppeteer’s accessibility
API to also include the node information that is not included in
the accessibility tree to map each object back to its DOM element.
Note that the accessibility tree only contains simplified information,
which includes a subset of HTML elements that are deemed to be
useful (e.g., it does not include the hidden input element). For
the purpose of SSO detection, we apply a set of regular expressions
on the accessibility tree values to find potential candidates for
SSO buttons, and username and password fields related to our test
workflows. For instance, in Listing 2, the last node is a candidate
for Facebook’s SSO button that can initiate the login process.

Listing 1: A sample HTML code for a login page.

1 [ <form method="get" action="/submit" validate>
2 <h3>Login Form</h3>

3 <div>

4 <label for="username">Email</label>

5 <input type="text" name="email" required>

6 for="password">Password</label>

7 type="password" name="password" required>
8 type="hidden" id="test" name="secret"

9

value="1234">

<label
<input
<input

</div>
<div>
<button type="submit">Login</button>
</div>
<fb:login-button scope="public_profile,email"
onlogin="checkLoginState () ;">
</fb:login-button>
</form>

Listing 2: A sample output of accessibility tree obtained from Web
Accessibility API

1

2 "role": "WebArea",

3 "name": "",

4 "children": [

5 {

6 "role": "heading",
7 "name": "Login Form",
8 "level": 3

9 I

10 {

11 "role": "text",

12 "name": "Email"

13 },

14 {

15 "role": "textbox",
16 "name": "M,

17 "required": true,
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

"invalid": "true"

3
"role": "text",
"name": "Password"
}
"role": "textbox",

"name": ",
"required": true,

"invalid": "true"
}
"role": "button",
"name": "Login"
3
"role": "Iframe",
"name": "fb:login_button Facebook Social Plugin"

E Ransom-style Example

Here, we provide an instance of a ransom-style attack on
connpass. An attacker can log into connpass using the IdP’s
hijacked session, de-link the user’s IdP from connpass after
adding her own email address and setting a password or linking an-
other IdP (e.g., Twitter). As a result of the de-linking and re-linking,
the user will not be able to access their RP account since there is no
other viable authentication path for them. Had the RP followed the
policy and merged the accounts, the user would have had another
path (e.g., over email) to take back control of their account.

G. Countermeasures

Extension for user awareness. As mentioned in §V, we have
developed a Chrome extension that informs users visiting an RP
about a subset of the issues detected by our system, which can
be inferred by visiting the website and without conducting our
entire black-box auditing workflow. For instance, if the access
tokens of RPs that use Facebook’s official SDK are automatically
and frequently validated and whether their redirection traffic is
protected [10]. By checking for the presence of SDKs, we display
a set of preferred IdPs to the user to choose from, based on
whether they are using the official SDKs. Our extension uses the
chrome.debugger API to get a copy of the accessibility tree
and looks for potential IdPs. We also pre-load and instrument the
well-know IdP SDKs (i.e., Facebook, Apple, and Google) to track
whether they are used by the page. Upon detecting the IdPs, we
check for the presence of the SDKs, and for Facebook we also
check whether it has been initialized. For the compliance tests that
can’t be done in a live setting (e.g., merge tests), our extension could
incorporate IdPs’ transparency reports to help users make more
informed decisions. While our prototype’s functionality is limited
due to the inherently complex nature of our framework’s auditing
process, we hope that our work motivates major IdPs and leads to
stricter RP-compliance requirements being enforced.
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