
ar
X

iv
:2

10
9.

00
63

7v
2

 [c
s.D

S]
 1

 N
ov

 2
02

1

Properly learning decision trees in almost polynomial time∗

Guy Blanc

Stanford

Jane Lange

MIT

Mingda Qiao

Stanford

Li-Yang Tan

Stanford

November 2, 2021

Abstract

We give an nO(log logn)-time membership query algorithm for properly and agnostically learn-
ing decision trees under the uniform distribution over {±1}n. Even in the realizable setting, the
previous fastest runtime was nO(logn), a consequence of a classic algorithm of Ehrenfeucht and
Haussler.

Our algorithm shares similarities with practical heuristics for learning decision trees, which
we augment with additional ideas to circumvent known lower bounds against these heuristics.
To analyze our algorithm, we prove a new structural result for decision trees that strengthens a
theorem of O’Donnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every
decision tree has an influential variable, we show how every decision tree can be “pruned” so
that every variable in the resulting tree is influential.

∗A preliminary version of this paper appeared in the proceedings of the 62nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2021).

http://arxiv.org/abs/2109.00637v2

1 Introduction

Decision trees are a simple and effective way to represent boolean functions f : {±1}n → {±1}.
Their logical, flow-chart-like structure makes them easy to understand, and they are the canonical
example of an interpretable model in machine learning. They are also fast to evaluate: the com-
plexity of evaluating a decision tree on an input scales with the depth of the tree, which is often
much smaller than the dimension n of f .

The algorithmic problem of converting a function f into a decision tree representation T has
therefore been extensively studied by a number of communities spanning both theory and practice.
Naturally, we would like T to be as small as possible, ideally close to the optimal decision tree size
of f . If we require T to compute f exactly, this is unfortunately likely an intractable problem, even
if T is allowed to be larger than the optimal decision tree for f : finding an approximately minimal
decision tree for a given function is NP-hard [LR76, ZB00, Sie08, AH12].

We therefore allow T to err on a small fraction of inputs. Our main result is a new algorithm
for this problem:

Theorem 1. There is an algorithm which, given as input ε > 0, s ∈ N, and query access to a
function f : {±1}n → {±1} that is promised to be opts-close to a size-s decision tree, runs in time

Õ(n2) · (s/ε)O(log((log s)/ε))

and outputs a size-s decision tree T that w.h.p. satisfies Pr
uniform x

[T (x) 6= f(x)] ≤ opts + ε.

For s = poly(n) and ε ≥ 1/polylog(n), our algorithm runs in almost polynomial time, nO(log logn).
Even in the realizable setting (opts = 0), the previous fastest algorithms took quasipolynomial time,
nΩ(logn), even for constant ε. This was the state of the art even for algorithms with access to an
explicit representation of f , rather than just query access.

Another interesting setting is when the algorithm is only given uniform random examples labeled
by f rather than query access. For this setting, we have the following result:

Theorem 2. In the context of Theorem 1, if f is monotone, our algorithm uses only random
labeled examples (x, f(x)) where x ∼ {±1}n is uniformly random.

1.1 Background and context

In the language of learning theory, Theorem 1 gives a query algorithm for properly and agnostically
learning decision trees under the uniform distribution. We now overview previous algorithms for
this and related problems.

Ehrenfeucht and Haussler [EH89], in an early paper following the introduction of the PAC
learning model, gave an nO(log s) time algorithm for properly learning size-s decision trees. [EH89]’s
algorithm works in the more general distribution-free setting and only uses random examples. On
the other hand, [EH89] assumes the realizable setting, and their algorithm is not known to extend
to the agnostic setting. This limitation is likely inherent: being an Occam algorithm, its analysis
crucially relies on noiseless examples. Furthermore, [EH89]’s algorithm is weakly proper, in the
sense that its decision tree hypothesis can be as large as nΩ(log s). A (strongly) proper algorithm
returns a hypothesis that belongs to the target concept class; in this case, a size-s decision tree
hypothesis for a size-s decision tree target.

1

Since the work of Ehrenfeucht and Haussler, a couple of alternative algorithms for properly
learning decision trees have been developed in the uniform-distribution setting. These algorithms
are quite different from [EH89]’s and from each other. Mehta and Raghavan [MR02] gave an nO(log s)

time algorithm that uses random examples, and more recently [BLT20] gave a poly(n) · sO(log s)

time membership query algorithm. For the standard setting where s = poly(n), these runtimes are
still nΩ(logn), just like [EH89]’s.

Therefore, while [EH89]’s nO(logn) runtime for properly learning polynomial-size decision trees
has been matched twice in the uniform-distribution setting, it has remained unsurpassed for over
three decades. Furthermore, the analyses of all three algorithms are known to be tight: for each of
them, there are targets for which the algorithm can be shown to require nΩ̃(logn) time.

Table 1 summarizes of how our algorithm compares with existing ones:

Reference Running time Hypothesis size Access to target Agnostic?

[EH89] nO(log s) nO(log s) Random examples ×

[MR02] nO(log s) s Random examples X

[BLT20] poly(n) · sO(log s) sO(log s) Queries ×

This work poly(n) · sO(log log s) s Queries X

Table 1: Algorithms for properly learning size-s decision trees. [EH89]’s algorithm works
in the more general distribution-free setting, whereas all others, including ours, work in
the uniform-distribution setting.

Improper algorithms. While the focus of our work is on proper learning, the problem of im-
properly learning decision trees, where the hypothesis is not required to itself be a decision tree, is
also the subject of intensive study. Kusilevitz and Mansour [KM93] gave a polynomial-time mem-
bership query algorithm for learning polynomial-size decision trees under the uniform distribution;
this was subsequently extended to the agnostic setting by Gopalan, Kalai, and Klivans [GKK08].
Both works employ Fourier-analytic techniques, and their algorithms return the sign of a Fourier
polynomial as their hypothesis.

Other works on improper learning of decision trees include [Riv87, Blu92, Han93, Bsh93,
BFJ+94, HJLT96, JS06, OS07, KS06, KST09, HKY18, CM19].

On the use of membership queries. It would be preferable if our algorithm in Theorem 1 did
not require membership queries and instead relied only on random examples. However, there are
well-known barriers to obtaining such an improvement of our algorithm, even an improper one and
even just within the realizable setting.

First, no such statistical query algorithm exists: any SQ algorithm for learning polynomial-size
decision trees has to take nΩ(logn) time [BFJ+94]. Second, we observe that our poly(n) · sO(log log s)

runtime is fixed-parameter tractable in ‘s’. Obtaining a poly(n) ·Φ(s) time algorithm that only uses
random examples, for any growth function Φ, would give the first polynomial-time algorithm for

2

learning ωn(1)-juntas. This would be a breakthrough on a notorious open problem [BL97]; current
algorithms for learning k-juntas take time nΩ(k) [MOS04, Val15].

2 Overview of our approach

The starting point of our work is [BLT20]’s poly(n) · sO(log s) time algorithm for the realizable
setting. We begin with a brief overview of their algorithm, followed by a description of how we
obtain our improved poly(n) · sO(log log s) time algorithm in the realizable setting. We then explain
how we extend our algorithm to the agnostic setting.

[BLT20]’s greedy algorithm. At the heart of [BLT20]’s algorithm, as well as ours, is the notion
of the influence of a variable on a function. For a function f : {±1}n → {±1} and a variable i ∈ [n],
the influence of i on f is the quantity Pr[f(x) 6= f(x∼i)], where x ∼ {±1}n is uniformly random
and x

∼i denotes x with its i-th coordinate rerandomized.
[BLT20] analyzes a simple greedy algorithm for constructing a decision tree T for f :

1. Using membership queries to f , identify the variable i ∈ [n] with (approximately) the largest
influence on f .

2. Query xi at the root of T .

3. Build the left and right subtrees of T by recursing on fxi=−1 and fxi=1 respectively.

[BLT20] proved that growing this tree to size sO(log s) yields a high-accuracy hypothesis for f .
Their algorithm, like [EH89]’s, is weakly proper.

A near-matching lower bound. [BLT20] provided a near-matching lower bound showing that
their analysis of their algorithm is essentially tight. They exhibited a size-s decision tree target f
such that the tree grown by their algorithm has to reach size sΩ̃(log s) before achieving any nontrivial
accuracy.

2.1 Our algorithm and its analysis

[BLT20]’s algorithm formalizes the intuition, drawn from decision tree learning heuristics used in
practice (e.g. ID3, CART, C4.5), that the most influential variable is a “somewhat good” root: the
greedy strategy of recursively querying the most influential variable converges to a high-accuracy
hypothesis at size sO(log s). Their lower bound establishes the limitations of this strategy.

At a high level, we obtain our improved algorithm by showing that there’s an even better

root among the polylog(s) most influential variables. Rather than committing to the single most
influential variable as the root of our tree, we consider the set of polylog(s) most influential variables
as candidate roots. We prove the existence of a variable xi within this set such that growing a
size-s tree with xi as the root results in a high-accuracy hypothesis for f .

2.1.1 Our key new tool: A pruning lemma for decision trees

The analysis of our algorithm is driven by a new structural lemma for decision trees. This lemma
generalizes a result of O’Donnell, Saks, Schramm, Servedio [OSSS05]—the OSSS inequality—which
is the crux of [BLT20]’s analysis of their algorithm:

3

Theorem 3 (OSSS inequality). Let f : {±1}n → {±1} be a size-s decision tree. Then:

max
i∈[n]

{Inf i(f)} ≥
Var(f)

2 log s
,

where Var(f) denotes the variance of the random variable f(x).

In words, the OSSS inequality says that every small-size decision tree (that is not too biased)
has an influential variable.

Our new structural lemma shows that every decision tree can be “pruned” so that every variable
in the resulting tree is influential. Our notion of pruning is simple and is based on a single atomic
procedure: one prunes a decision tree T by iteratively replacing any of its internal nodes by one of
the node’s subtrees.

Theorem 4 (Our pruning lemma for the realizable setting). Let f be computable by a size-s
decision tree T and τ > 0. There is a pruning T ⋆ of T satisfying:

◦ Pr
uniform x

[f(x) 6= T ⋆(x)] ≤ τ log s;

◦ For every node v of T ⋆, writing i(v) to denote the variable queried at v, we have that

Infi(v)(fv) ≥ τ, (1)

where fv denotes the restriction of f by the root-to-v path in T ⋆.

(We show in the body of this paper that this pruning lemma implies the OSSS inequality.)
For the realizable setting, this lemma is useful because only a small number of variables can

satisfy Equation (1). It is well known and easy to show that the total influence of a size-s decision
tree, the sum of individual variable influences, is upper bounded by log s. There can therefore be
at most (log s)/τ many variables with influence at least τ . Our poly(n) · sO(log log s) time algorithm
for the realizable setting follows quite easily from Theorem 4.

The agnostic setting. In the agnostic setting, there is no longer a good bound on the number
of variables of f with influence at least τ . If f is merely close to a size-s decision tree, say 0.1-close,
the size of this set can be as large as Ω(n) as opposed to (log s)/τ as in the realizable setting.

To overcome this, we consider the smoothing of f and the noisy influence of its variables, and
rely on a generalization of our pruning lemma based on these notions. By choosing an appropriate
smoothing/noise parameter δ, we show that:

◦ The smoothing f̃ is (δ log s)-close to f ;

◦ There are at most 1/(τδ) many variables with noisy influence at least τ on f̃ .

A straightforward application of these ideas yields an agnostic algorithm that achieves accuracy
O(opt) + ε. A more careful analysis further improves the guarantee to opt + ε.

The high-level idea of using smoothing and noisy influence to upgrade a non-agnostic algorithm
into an agnostic one already appears in prior work on decision tree learning [BGLT20], though the
details of our analyses differ.

4

3 Preliminaries

We use boldface (e.g. x ∼ {±1}n) to denote random variables, and unless otherwise stated, all
probabilities and expectations are with respect to the uniform distribution. A restriction π of a
function f : {±1}n → R, denoted fπ, is the subfunction of f that one obtains by fixing a subset of
the variables to constants (i.e. xi = b for i ∈ [n] and b ∈ {±1}). We write |π| to denote the number
of variables fixed by π.

The size of a tree is its number of leaves, its depth is the length of the longest root-to-leaf path,
and we define its average depth to be the quantity:

∆(T) := E
x∼{±1}n

[depth of leaf that x reaches] =
∑

leaves ℓ ∈ T

2−|ℓ| · |ℓ|,

where |ℓ| denotes the depth of ℓ within T . Note that if T is a size-s decision tree, then ∆(T) ≤ log s.

Definition 1 (Influence of variables). For f : {±1}n → {±1} and i ∈ [n], the influence of xi with
respect to f is the quantity

Infi(f) := Pr
x∼{±1}n

[
f(x) 6= f(xi)

]
, (2)

where x
i denotes x with its ith coordinate rerandomized (i.e. flipped with probability 1

2). More
generally, for f : {±1}n → Y where Y is a metric space equipped with a distance function ρ,

Infi(f) := E
x∼{±1}n

[
ρ(f(x), f(xi))

]
. (3)

Remark 1 (Metric spaces of interest). Although the focus of our work is on learning boolean-valued
functions f : {±1}n → {±1}, our approach involves reasoning more generally about real-valued
functions f̃ : {±1}n → R. Several intermediate results that we establish for real-valued functions
hold even more generally for any metric space Y as the codomain (e.g. our pruning lemma), and
in those cases we state and prove them in their most general form.

Throughout this paper the codomain Y = {±1} is by default equipped with the not-equals
metric ρ(x, y) = 1[x 6= y] (note that in this case Equations (2) and (3) are equivalent), and the
codomain Y = R is by default equipped with the absolute value metric ρ(x, y) = |x− y|.

Definition 2 (Distance between functions). For any metric space Y equipped with a distance
function ρ, we define the distance between two functions f, g : {±1}n → Y to be

dist(f, g) := E
x∼{±1}n

[ρ(f(x), g(x))].

We say that f is ε-close to g if dist(f, g) ≤ ε.

We note that we can express influence in terms of distance.

Fact 3.1. For any metric space Y , function f : {±1} → Y , and i ∈ [n],

Infi(f) = dist(f, fxi=1) = dist(f, fxi=−1).

5

Fourier analysis of boolean functions. We will need the very basics of the Fourier analysis
of boolean functions; for an in-depth treatment, see [O’D14]. Every function f : {±1}n → R can
be uniquely expressed as a multilinear polynomial via its Fourier expansion:

f(x) =
∑

S⊆[n]

f̂(S)
∏

i∈S

xi, where f̂(S) = E
[
f(x)

∏
i∈S xi

]
.

Definition 3 (Smoothed version of a function). For a function f : {±1}n → {±1} and noise rate
δ ∈ [0, 1], the δ-smoothed version of f is the function fδ : {±1}n → [−1, 1] defined as

fδ(x) := E
x̃∼δx

[f(x̃)],

where x̃ ∼δ x denotes drawing x̃ such that each coordinate x̃i is set to xi with probability 1 − δ,
and rerandomized with probability δ. Equivalently, each bit of x gets flipped in x̃ with probability δ

2
independently.

We remark that fδ is sometimes also denoted T1−δf , with T1−δ being called the noise operator
with parameter 1− δ.

4 Our pruning lemma

In this section we prove our key new structural result, the decision tree pruning lemma. The actual
result that we establish, Theorem 5, generalizes the pruning lemma as stated in the introduction
(Theorem 4) in two ways:

1. It holds for functions mapping into an arbitrary metric space rather than just boolean-valued
functions;

2. The decision tree T need not compute f .

Both aspects will be needed for the application to agnostic learning.

Definition 4 (Everywhere τ -influential). For any function f : {±1}n → Y , threshold τ > 0, and
decision tree T : {±1}n → Y , we say that T is everywhere τ -influential with respect to f if, for
every internal node v of T , writing i(v) to denote the variable queried at v, we have

Infi(v)(fv) ≥ τ,

where fv denotes the restriction of f by the root-to-v path in T .

The proof of our pruning lemma is constructive—we give an efficient algorithm (Figure 1)
showing how to prune T so that the resulting tree is everywhere τ -influential with respect to f—
though in our applications to learning we do not need it to be constructive.

The remainder of this subsection will be devoted to proving the following generalization of
Theorem 4.

Theorem 5 (Properties of Prune). For any metric space Y , function f : {±1} → Y , decision
tree T : {±1} → Y , and threshold τ > 0, let T ⋆ = Prune(f, T, τ). Then,

6

Prune(f, T, τ):

Input: Query access to a function f : {±1}n → Y , a decision tree T : {±1}n → Y , and a
threshold τ > 0.

Output: A decision tree that is everywhere τ -influential w.r.t. f .

1. If T has depth 0, return T .

2. Let xi be the variable queried at root of T and T−1 and T1 be its left and right subtree
respectively.

3. If Infi(f) > τ , return the tree that queries xi as its root and has Prune(fxi=−1, T−1, τ)
and Prune(fxi=1, T1, τ) as its left and right subtree respectively.

4. If Infi(f) ≤ τ , return whichever of Prune(f, T−1, τ) or Prune(f, T1, τ) have less dis-
tance w.r.t. f .

Figure 1: A procedure for pruning a tree T to ensure it is everywhere τ -influential with
respect to a function f .

1. Size and depth do not increase: The size and depth of T ⋆ are at most the size and depth of T .

2. Everywhere τ -influential: T ⋆ is everywhere τ -influential with respect to f .

3. Small increase in distance: For ∆(T) the average depth of T ,

dist(T ⋆, f) ≤ dist(T, f) + ∆(T) · τ.

Theorem 4 is a special case of Theorem 5 where Y = {±1} with the not-equals metric and
f ≡ T . (Recall also that ∆(T) ≤ log s.) We prove each guarantee of Theorem 5 separately.

Proof of the first guarantee of Theorem 5. By induction on the depth of T . If T has depth 0, then
the size and depth of Prune(f, T, τ) are the same as T . For xi the variable queried at root of T
and T−1, T1 its left and right subtrees respectively, if Infi(f) > τ ,

size(Prune(f, T, τ)) = size(Prune(fxi=−1, T−1, τ)) + size(Prune(fxi=1, T1, τ))

≤ size(T−1) + size(T1)

= size(T).

where the second step is the inductive hypothesis. Similarly, for depth

depth(Prune(f, T, τ)) = 1 + max
(
depth(Prune(fxi=−1, T−1, τ)),depth(Prune(fxi=1, T1, τ))

)

≤ 1 + max
(
depth(T−1,),depth(T1)

)

= depth(T).

7

Finally, if Infi(f) ≤ τ , then Prune(f, T, τ) is equal to either Prune(f, T−1, τ) or Prune(f, T1, τ).
Since T−1 and T1 each have size and depth less than those of T , the desired result holds by the
inductive hypothesis.

Proof of the second guarantee of Theorem 5. By induction on the depth of T . If T has depth 0,
then it has no internal nodes, so vacuously is everywhere τ -influential. Otherwise, let xi be the
variable queried at root of T and T−1, T1 be its left and right subtrees respectively. If Infi(f) ≤ τ ,
then Prune(f, T, τ) is either Prune(f, T−1, τ) or Prune(f, T1, τ), which is everywhere τ -influential
w.r.t. f by the inductive hypothesis.

If we fell in neither of the above two cases, we have Infi > τ . Let v be some internal node of
Prune(f, T−1, τ). If v is the root of Prune(f, T−1, τ), then

Infi(v)(fv) = Infi(f) > τ.

Otherwise, let α be the restriction corresponding to the root-to-v path. Since xi is the root
of Prune(f, T−1, τ), we have that α must fix xi = b for b ∈ {±1} and v is an internal node
for Prune(fxi=b, Tb, τ). Applying the inductive hypothesis to Prune(fxi=b, Tb, τ), we have that
Infi(v)(fv) > τ .

Before we prove the third and final guarantee of Theorem 5, we state two easy facts about the
subtrees of a decision tree.

Fact 4.1 (Subtrees of a tree). Let T : {±1}n → Y be some decision tree and T−1, T1 be its left and
right subtrees respectively. Then,

1
2 · (∆(T−1) + ∆(T1)) = ∆(T)− 1. (4)

Furthermore, any function f : {±1}n → Y and xi being the root of T ,

1
2 · (dist(T−1, fxi=−1) + dist(T1, fxi=1)) = dist(T, f). (5)

Proof of the third guarantee of Theorem 5. By induction on the depth of T . If T has depth 0 then
the claim easily holds with equality. Otherwise, let xi be the variable queried at root of T and
T−1, T1 be its left and right subtrees respectively. We note that the depth of T−1 and T1 are strictly
less than the depth of T , so we can apply our inductive hypothesis to them. We consider two cases.

Case 1: Infi(f) > τ .

dist(Prune(f, T, τ), f) =
1

2
·


 ∑

b∈{±1}

dist(Prune(fxi=b, Tb, τ), fxi=b)


 (Equation (5))

≤
1

2
·


 ∑

b∈{±1}

dist(Tb, fxi=b) + ∆(Tb) · τ


 (Inductive hypothesis)

= dist(T, f) + (∆(T)− 1) · τ (Equations (4) and (5))

≤ dist(T, f) + ∆(T) · τ.

8

Case 2: Infi(f) ≤ τ .

dist(Prune(f, T, τ), f) = min
b∈{±1}

{dist(Prune(f, Tb, τ), f)}

≤
1

2
·




∑

b∈{±1}

dist(Prune(f, Tb, τ), f)


 (min ≤ average)

≤
1

2
·


 ∑

b∈{±1}

dist(Tb, f) + ∆(Tb) · τ


 (Inductive hypothesis)

≤
1

2
·




∑

b∈{±1}

dist(Tb, fxi=b) + dist(f, fxi=b) + ∆(Tb) · τ




(Triangle inequality)

=
1

2
·


 ∑

b∈{±1}

dist(Tb, fxi=b) + Infi(f) + ∆(Tb) · τ


 (Fact 3.1)

= dist(T, f) + (∆(T)− 1) · τ + Infi(f) (Equations (4) and (5))

≤ dist(T, f) + ∆(T) · τ. (Infi(f) ≤ τ)

This completes the proof.

4.1 Our pruning lemma implies the OSSS inequality

Several variants of the OSSS inequality (Theorem 3) have been proved over the years [Lee10, JZ11,
O’D14, DCRT19]. We show that our pruning lemma implies the following strengthening of the
OSSS inequality:

Theorem 6 ([JZ11]). For any function f : {±1}n → {±1} and decision tree T : {±1}n → {±1},

max
i∈[n]

{
Infi(f)

}
≥

bias(f)− dist(T, f)

∆(T)

where the bias of f is defined as

bias(f) = min
b∈{±1}

{
Pr

x∼{±1}n
[f(x) 6= b]

}
.

The OSSS inequality follows from Theorem 6 by taking T = f , and because 2·bias(f) ≤ Var(f).
We now show that Theorem 6 is a special case of Theorem 5:

Proof of Theorem 5 =⇒ Theorem 6. Set Y = {±1} and τ = maxi∈[n]{Inf i(f)}. There are no
variables with influence more than τ on f so the only decision trees that are everywhere τ -influential
w.r.t. f are the trivial ones that make no queries. In other words, Prune(T, f, τ) is either the
constant +1 function or constant −1 function. Therefore,

dist(f,Prune(f, T, τ)) ≥ bias(f).

9

By the third guarantee of Theorem 5,

bias(f) ≤ dist(f,Prune(f, T, τ)) ≤ dist(T, f) + ∆(T) · τ

= dist(T, f) + ∆(T) ·max
i∈[n]

{
Infi(f)

}
.

Rearranging completes the proof.

5 Learning in the realizable setting

We first present and analyze our algorithm in the simpler realizable setting where f is exactly a
size-s decision tree (i.e., opts = 0).

Theorem 7 (Special case of Theorem 1: the realizable setting). There is an algorithm which, given
as input ε > 0, s ∈ N, and query access to a size-s decision tree f : {±1}n → {±1}, runs in time

Õ(n2) · (s/ε)O(log((log s)/ε))

and outputs a size-s decision tree hypothesis T that w.h.p. satisfies dist(T, f) ≤ ε.

For clarity, we describe our algorithm, BuildDT in Figure 2, under the assumption that variable
influences of f and its subfunctions (i.e. the quantities Infi(fπ) for all i and π) can be computed
exactly in unit time. In actuality one can only obtain high-accuracy estimates of these quantities
via random sampling. When we prove Theorem 7 we will show how this assumption can be removed
via standard arguments.

Claim 5.1 (Correctness). During the execution of BuildDT, for any f : {±1}n → [−1, 1], restric-
tion π, and d, s ∈ N, if M [π, s] is nonempty, it contains a tree T that minimizes dist(fπ, T) among
all depth-(d − |π|), size-s, everywhere τ -influential trees.

Proof. We proceed by induction on d − |π|. When d = |π|, BuildDT populates M [π, s] with the
singleton leaf b ∈ {±1} that minimizes dist(fπ, b), which is indeed sign(E[fπ]). For the inductive
step, note that each Ti,k satisfies

dist(fπ, Ti,k) =
1
2

(
dist(fπ∪{xi=−1},M [π ∪ {xi = −1}, k]) + dist(fπ∪{xi=1},M [π ∪ {xi = 1}, s − k])

)
.

It follows from the inductive hypothesis that Ti,k minimizes distance among all everywhere τ -
influential, depth-(d− |π|), size-s trees with xi as the root, and whose left and right subtrees have
sizes k and s− k respectively. Since M [π, s] is chosen to minimize distance among all such Ti,k, its
distance is minimal among all size-s, depth-(d− |π|), everywhere τ -influential trees.

Claim 5.2 (Runtime). Let d, s ∈ N. Let f : {±1}n → {±1} be a size-s decision tree, and
assume that variable influences of f and its subfunctions can be computed exactly in unit time. The
algorithm BuildDTM (f,∅, s, d, τ) runs in time n · s2 · ((log s)/τ)O(d).

Proof. For all π, the size of the set S defined on Step 4(a) is at most

|S| ≤
1

τ

n∑

i=1

Infi(fπ) ≤
log s

τ
, (6)

10

BuildDTM (f, π, s, d, τ):

Input: Query access to a function f : {±1}n → [−1, 1], restriction π, size parameter s, depth
parameter d, influence parameter τ . It maintains a map M : {restrictions} × [s] →
{decision trees}.

Output: A decision tree T that minimizes dist(T, fπ) among all depth-(d − |π|), size-s,
everywhere τ -influential trees.

1. If π = ∅, initialize M to the empty map.

2. If M [π, s] is nonempty, return M [π, s].

3. If |π| = d or s = 1, return the singleton leaf labeled sign(E[fπ]).

4. Otherwise:

(a) Let S ⊆ [n] be the set of variables i such that Infi(fπ) ≥ τ .

(b) For each i ∈ S and k ∈ [s− 1], let Ti,k be the tree such that

root(Ti,k) = xi

left-subtree(Ti,k) = BuildDTM (f, π ∪ {xi = −1}, k, d, τ)

right-subtree(Ti,k) = BuildDTM (f, π ∪ {xi = 1}, s − k, d, τ)

(c) Set M [π, s] to be the tree among the Ti,k’s defined above with minimal distance
to fπ.

(d) Return M [π, s].

Figure 2: BuildDT uses dynamic programming to find the size-s, depth-d, everywhere
τ -influential tree of minimal distance to f .

where the second inequality uses the fact that for any size-s decision tree T : {±1}n → {±1},

n∑

i=1

Infi(T) ≤

n∑

i=1

Pr[T queries xi] = ∆(T) ≤ log s.

Since BuildDT terminates once |π| = d (Step 3), and a restriction π is extended by {xi = b}
for some b ∈ {±1} only if Infi(fπ) ≥ τ (Step 4), the number of different restrictions that can be
constructed throughout the execution of the algorithm is at most

d∑

k=1

(
log s

τ

)k

=

(
log s

τ

)O(d)

.

Since BuildDT returns at Step 2 if M [π, s] is nonempty, this ensures that Step 4, the recursive
part of BuildDT, is reached at most once for each restriction π and size s. The total number of

11

recursive calls is therefore upper bounded by

s ·

(
log s

τ

)O(d)

. (7)

Outside of the recursive calls, the runtime of BuildDT is

O(n+ s · |S|) ≤ O(n) + s ·

(
log s

τ

)
. (8)

The factor of n comes from computing and comparing influences of variables (Line 4(a)), and the
factor of s · |S| comes from Line 4(b), the number of different (candidate root, size split) pairs. The
overall runtime is therefore at most the product of the bounds in Equations (7) and (8), and the
proof is complete.

Proof of Theorem 7. Let d := log(s/ε) and τ := ε/ log s. We first establish correctness: we claim
that BuildDTM (f,∅, s, d, τ) returns a size-s tree T satisfying dist(T, f) ≤ 2ε. Since ∆(f) ≤ log s,
our pruning lemma, Theorem 5, tells us that there is a pruning T ⋆ of f that is everywhere τ -
influential and satisfies dist(f, T ⋆) ≤ ∆(f) ·τ ≤ ε. Let T ⋆

trunc be T
⋆ truncated to depth d (where the

new leaves introduced by truncated paths are labeled with arbitrary leaf values, say 1). This tree
T ⋆
trunc is a depth-d, size-s, everywhere τ -influential tree that satisfies dist(f, T ⋆

trunc) ≤ dist(f, T ⋆) +
ε ≤ 2ε. Therefore, by Claim 5.1 BuildDT returns a tree T that also satisfies dist(f, T) ≤ 2ε.

As for runtime, in Claim 5.2 we assumed that variable influences can be computed exactly
in unit time, whereas in actuality, we can only obtain estimates of these quantities via random
sampling. By inspection of our proofs, it is straightforward to verify that it suffices for these
estimates to be accurate to ± τ

2 . Query access to f provides us with query access to fπ for any π,
and hence by the Chernoff bound, we can estimate Infi(fπ) to accuracy ± τ

2 and with confidence
1 − δ using O(log(1/δ)/τ2) queries and in n · O(log(1/δ)/τ2) time. As shown in Claim 5.2, the
number of times variables influences are computed throughout the execution of the algorithm is at
most n · ((log s)/τ)O(d), and so by setting δ < 1/(n · ((log s)/τ)O(d)), we ensure that w.h.p. all our
estimates are indeed accurate to within ± τ

2 . Combining this with Claim 5.2, the overall runtime
of our algorithm is

n · s2 ·

(
log s

τ

)O(d)

·
n

τ2
(
log n+ d log ((log s)/τ)

)
≤ Õ(n2) · (s/ε)O(log((log s)/ε)),

and this completes the proof.

6 Learning monotone target functions in the agnostic setting

In the remainder of this paper we extend our analysis from the realizable to the agnostic setting.
As alluded to in the introduction, the main challenge that arises when if f is merely close to a
small-size decision tree, instead of being exactly a small-size decision tree, is that we no longer have
a good bound on the number of its variables with influence at least τ . In the realizable setting
we were able to bound this number by (log s)/τ (Equation (6) in the proof of Theorem 7) but this
crucially relied on the assumption that f and and its subfunctions are size-s decision trees, and
hence have total influence at most log s.

12

The way we handle this in the case of general target functions is somewhat involved; we give
the full analysis in the next section. In this section we consider the special case of monotone target
functions and prove Theorem 2. For monotone functions f , we show that we can easily bound
the number of variables of influence at least τ by 1/τ2, even if f is not a small-size decision tree.
Furthermore, we also show that for monotone targets f our algorithm does not need membership
queries to f and can instead rely only on uniform random labeled examples.

We recall two basic facts from the Fourier analysis of boolean functions:

Fact 6.1 (Parseval’s identity). For all boolean functions f : {±1}n → {±1},
∑

S⊆[n]

f̂(S)2 = E[f(x)2] = 1.

Fact 6.2 (Influence = linear Fourier coefficient for monotone f). For all monotone boolean functions
f : {±1}n → {±1} and all i ∈ [n],

Infi(f) =
1
2 E[f(x)xi] =

1
2 f̂({i}).

Combining these facts, we also have the following, which is needed for our runtime bound.

Corollary 6.3. For all monotone boolean functions f : {±1}n → {±1} and all τ ∈ [0, 1],

|{i | Infi(f) ≥ τ}| ≤
1

4τ2
.

Proof. The sum of squares of linear Fourier coefficients is at most the sum of squares of all Fourier
coefficients, so by Parseval’s identity, it is at most 1:

∑

i∈[n]

Infi(f)
2 = 1

4

∑n
i=1 f̂(i)

2 ≤ 1
4

∑
S⊆[n] f̂(S)

2 = 1
4 .

The corollary follows since Infi(f) ≥ τ iff Inf i(f)
2 ≥ τ2.

6.1 Proof of Theorem 2

Theorem 8 (Theorem 2 restated). Let f : {±1}n → {±1} be a monotone boolean function that
is opts-close to a size-s decision tree. Then for d := log(s/ε) and τ := ε/ log s, the algorithm
BuildDTM (f,∅, s, d, τ) runs in time

Õ(n2) · (s/ε)O(log((log s)/ε)),

uses poly(s/ε) · log n uniform random examples labeled by f , and outputs a size-s decision tree
hypothesis T that satisfies dist(f, T) ≤ opts + ε.

The proof is very similar to that of Theorem 7 and we point out the essential differences.

Correctness. Claim 5.1 does not use the assumption that f is exactly a size-s decision tree, so
correctness essentially follows from Claim 5.1 exactly as in the proof of Theorem 7. Let Topt be the
size-s decision tree that is opts-close to f . Our pruning lemma, Theorem 5, tells us that there is a
pruning T ⋆ of Topt that is everywhere τ -influential and satisfies dist(f, T ⋆) ≤ opts+ε. Then, letting
T ⋆
trunc be T

⋆ truncated to depth d, we have that T ⋆
trunc is a depth-d, size-s, everywhere τ -influential

tree that satisfies dist(f, T ⋆
trunc) ≤ opts + O(ε). Therefore, by Claim 5.1 BuildDT returns a tree

T that also satisfies dist(f, T) ≤ opts +O(ε).

13

Runtime. We have the following analogue of Claim 5.2:

Claim 6.4 (Runtime in the monotone case). Assume that variable influences of f and its sub-
functions can be computed exactly in unit time. For all d, s ∈ N and τ > 0, the algorithm
BuildDTM (f,∅, s, d, τ) runs in time n · s2 · (1/τ)O(d).

Proof. By Corollary 6.3, we have that for any restriction fπ, the set S defined on Step 4(a) of the
algorithm has size at most |S| ≤ 1

4τ2
. The rest of the proof proceeds exactly as in Claim 5.2, where

log s
τ is replaced by 1

4τ2
. This gives a bound of

s ·

(
1

τ

)O(d)

for the number of recursive calls, and a bound of

n · s2 ·

(
1

τ

)O(d)

for the total running time.

Finally, we remove the assumption that the variable influences of f and its restrictions can be
computed in unit time. We claim that they can be efficiently estimated to sufficiently high accuracy
using only uniform random labeled examples (x, f(x)). As in the proof of Theorem 7, it suffices to
ensure that all the estimates that our algorithm makes are accurate to within ± τ

2 .
Using Fact 6.2, we have for any i and restriction π,

Infi(fπ) =
1
2 E[fπ(x)xi] =

1
2 E[f(x)xi | x consistent with π].

The right hand side is equivalent to
1
2 E

[
f(x)xi · 1[x consistent with π]

]

Pr[x consistent with π]
= 2|π|−1 · E

[
f(x)xi · 1[x consistent with π]

]
.

To estimate Infi(fπ) to accuracy ± τ
2 , it then suffices to estimate E

[
f(x)xi ·1[x consistent with π]

]

to accuracy ±τ · 2−|π|. By Chernoff bounds, this can be estimated with confidence ≥ 1− δ with

O

(
1

τ2
· 22d · log(1/δ)

)

uniform random examples (x, f(x)) labeled by f , where we have used the fact that |π| ≤ d. Each
estimate takes time

n ·O

(
1

τ2
· 22d · log(1/δ)

)
.

The number of times variable influences are computed during the execution of BuildDT is at most
n · (1τ)

O(d), so by setting δ < 1/(n · (1τ)
O(d)) we ensure that w.h.p. all our estimates are indeed

accurate to within ± τ
2 . The sample complexity of our algorithm is

O

(
1

τ2
· 22d ·

(
log n+ d log 1

τ

))
= poly(s/ε) · log n,

and by Claim 6.4, the overall runtime of our algorithm is

n · s2 ·

(
1

τ

)O(d)

·
n · 22d

τ2
· (log n+ d log(1/τ)) ≤ Õ(n2) · (s/ε)O(log((log s)/ε)).

This completes the proof of Theorem 2.

14

7 Learning general target functions in the agnostic setting

In this section we prove Theorem 1. The algorithm for the agnostic setting calls the same pro-
cedure BuildDT as in the realizable setting, but on the smoothed version fδ of function f (re-
call Definition 3).

Correctness. We’ll prove that the output of BuildDT on fδ is close to f . For that, we’ll need
some facts about the noise operator.

Fact 7.1 (Noise sensitivity of decision trees). For any δ ∈ (0, 1) and decision tree T : {±1}n →
{±1},

dist(Tδ, T) ≤ ∆(T) · δ.

Proof. We expand the distance between Tδ and T ,

dist(Tδ, T) = E
x∼{±1}n

[|Tδ(x)− T (x)|]

= E
x∼{±1}n

[∣∣∣∣ E
x̃∼δx

[T (x̃)]− T (x)

∣∣∣∣
]

= 2 · E
x∼{±1}n

[
Pr

x̃∼δx

[T (x̃) 6= T (x)

]
.

For any x ∈ {±1}n, let d(x) be the depth of the leaf in T that x reaches. In order for T (x̃) 6= T (x),
T (x̃) must reach a different leaf in T than x does. For that to happen, one of the d(x) coordinates

T queries for x must flip. By union bound, this occurs with probability at most δ·d(x)
2 . Therefore,

dist(Tδ , T) ≤ 2 · E
x∼{±1}n

[
δ · d(x)

2

]
= ∆(T) · δ.

Fact 7.2 (Noise operator is self-adjoint, also in [O’D14]). For any functions f, g : {±1}n → {±1},

dist(fδ, g) = dist(f, gδ).

Proof. Drawing x ∼ {±1}n uniformly and then x̃ ∼δ x gives the same joint distribution over (x, x̃)
as first drawing x̃ ∼δ {±1}n uniformly and then x ∼δ x̃. That fact is used between the third and
fourth line of the following series of algebraic manipulations.

dist(fδ, g) = E
x∼{±1}n

[∣∣∣∣ E
x̃∼δx

[fδ(x̃)]− g(x)

∣∣∣∣
]

= 2 · E
x∼{±1}n

[
Pr

x̃∼δx

[f(x̃) 6= g(x)]

]

= 2 · E
x∼{±1}n,x̃∼δx

[
1[f(x̃) 6= g(x)]

]

= 2 · E
x̃∼{±1}n,x∼δx

[
1[f(x̃) 6= g(x)]

]

= 2 · E
x̃∼{±1}n

[
Pr

x∼δx

[f(x̃) 6= g(x)]

]

= dist(f, gδ).

15

Given the above two facts, we are able to prove that our algorithm has the desired error on
guarantee.

Lemma 7.3. For any size s and ε ∈ (0, 1), set d := log(sε) and τ := ε
log s . Then, for any δ ≤ ε

log s ,
BuildDTM (fδ,∅, s, d, τ) returns a decision tree T satisfying

dist(T, f) ≤ opts + 4ε.

Proof. Let T ⋆ be the size-s decision tree that f is opts-close to. First, we show T ⋆ is also close to
f .

dist(T ⋆, fδ) = dist((T ⋆)δ, f) (Fact 7.2)

≤ dist((T ⋆)δ, T
⋆) + dist(T ⋆, f) (Triangle inequality)

≤ δ ·∆(T ⋆) + opts (Fact 7.1)

≤ ε+ opts. (∆(T ⋆) ≤ log(s), δ ≤ ε
log s)

By Theorem 5 (applied with the metric space Y = [−1, 1]), we know that there is some T ⋆
pruned

that is everywhere τ -influential with respect to fδ satisfying,

dist(T ⋆
pruned, fδ) ≤

(
opts + ε

)
+ ε = opts + 2ε.

As in the proof of Theorem 7, let T ⋆
trunc be T ⋆

pruned truncated to depth d (where the new leaves
introduced by truncated paths are labeled with arbitrary leaf values, say 1). This tree T ⋆

trunc is a
depth-d, size-s, everywhere τ -influential tree that satisfies

dist(fδ, T
⋆
trunc) ≤ dist(fδ, T

⋆
pruned) + ε ≤ opts + 3ε.

Therefore, by Claim 5.1 BuildDT returns a tree T that also satisfies dist(fδ, T) ≤ opts + 3ε.
Finally, we bound the distance between f and T .

dist(f, T) ≤ dist(f, Tδ) + dist(T, Tδ) (Triangle inequality)

≤ dist(fδ, T) + dist(T, Tδ) (Fact 7.2)

≤ (opts + 3ε) + δ ·∆(T) (Fact 7.1)

≤ (opts + 3ε) + ε = opts + 4ε. (∆(T) ≤ log s, δ ≤ ε
log s)

Efficiency. Now we analyze the runtime of the procedure BuildDT on the smoothed function
fδ. As in the proof of Claim 5.2 for the realizable setting, we need to upper bound the number
of different recursive calls to the procedure. The key step is to control the size of S, the set of
variables that is sufficient influential (w.r.t. function (fδ)π and threshold τ).

We start with a well-known fact stating that the total influence of any δ-smoothed function is
at most O(1/δ). Here, we use a slightly different version of influence that is defined as the expected
squared difference between the functions values at x and x

∼i. This squared influence does not fit
into Definition 1 since the squared difference is not a metric, but the advantage is that it can be
easily expressed in terms of the Fourier coefficients of the function.

16

Fact 7.4 (Total influence of smoothed functions). For any f : {±1}n → {±1} and δ ∈ (0, 1],

n∑

i=1

E
x∼{±1}n

[
(fδ(x)− fδ(x

∼i))2
]
≤

1

eδ
.

Proof. Suppose that the Fourier expansion of f is f(x) =
∑

S⊆[n] f̂(S)
∏

i∈S xi. The Fourier coef-

ficients of fδ are given by f̂δ(S) = (1 − δ)|S|f̂(S). Then, using the Fourier formula for the total
squared influence,

n∑

i=1

E
x∼{±1}n

[
(fδ(x)− fδ(x

∼i))2
]
= 2

∑

S⊆[n]

|S| ·
[
f̂δ(S)

]2

=
∑

S⊆[n]

2|S| · (1− δ)2|S| ·
[
f̂(S)

]2

≤
1

eδ

∑

S⊆[n]

[
f̂(S)

]2

=
1

eδ
.

The third step applies maxx≥0 x(1 − δ)x ≤ maxx≥0 xe
−δx = 1/(eδ), and the last step applies

Parseval’s identity (Fact 6.1).

For any restriction π, applying Fact 7.4 to fπ allows us to control the number of variables that
have large influences w.r.t. (fπ)δ . To upper bound the runtime of BuildDT, however, we need a
similar guarantee for the function (fδ)π, which is different from (fπ)δ in general. Fortunately, the
following fact states that for small δ, the two functions are pointwise close, and thus allows us to
relate the influences of each variable xi w.r.t. the two functions.

Fact 7.5. For any f : {±1}n → {±1} and restriction π, it holds for every x ∈ {±1}n that

|(fπ)δ(x)− (fδ)π(x)| ≤ δ|π|.

Furthermore, for every i ∈ [n],

|Infi((fπ)δ)− Infi((fδ)π)| ≤ 2δ|π|.

Proof. Fix x ∈ {±1}n and consider the following procedure for calculating (fπ)δ(x):

1. Set y ← x and draw s1, s2, . . . , sn independently from Beroulli(δ/2).

2. For each i ∈ [n], negate yi if si = 1.

3. For each constraint “xi = b” in π, set the i-th bit of y to b.

We can easily verify that (fπ)δ(x) = E[f(y)], where the expectation is over the randomness in s.
Furthermore, (fδ)π(x) can be defined by an almost identical procedure, with Steps 2 and 3

performed in reverse order: We start with z = x and draw s ∈ {±1}n randomly. We set zi to b for
each constraint “xi = b” in π, and then negate z according to the non-zero entries in s. Similarly,
we have (fδ)π(x) = E[f(z)].

17

We can couple the two procedures by sharing the random bits s1 through sn. Note that if si = 0
holds for every index i that appears in π, we would end up with y = z. In other words, y and z

may differ only when si = 1 for some index i that appears in π, which, by a union bound, happens
with probability ≤ |π| · (δ/2). Since f has codomain {±1}, we have

|(fπ)δ(x)− (fδ)π(x)| = |E[f(y)]− E[f(z)]| ≤ E [|f(y)− f(z)|] ≤ 2Pr[y 6= z] ≤ δ|π|,

where the probability and expectations are over the coupling of (y,z) defined earlier.
The second part of the fact follows immediately: the first part implies

|(fπ)δ(x)− (fπ)δ(y)| − |(fδ)π(x)− (fδ)π(y)| ∈ [−2δ|π|, 2δ|π|]

for every x, y ∈ {±1}n. Therefore, the difference between the influences,

Infi((fπ)δ)− Infi((fδ)π) = E
x∼{±1}n

[
|(fπ)δ(x)− (fπ)δ(x

∼i)| − |(fδ)π(x)− (fδ)π(x
∼i)|

]
,

is also in [−2δ|π|, 2δ|π|].

Claim 7.6 (Runtime). For all d, s ∈ N and τ, δ > 0 that satisfy τ > 2δd, assuming that vari-
able influences of fδ and its subfunctions can be computed exactly in unit time, the algorithm
BuildDTM (fδ,∅, s, d, τ) runs in time

n · poly(s) ·

(
1

eδ(τ − 2δd)2

)O(d)

.

In particular, for δ = τ/(4d), the runtime is n · poly(s) · (d/τ)O(d).

Proof. As in the proof of Claim 5.2, it suffices to show that when invokingBuildDTM (fδ,∅, s, d, τ),

at most s ·
(

1
eδ(τ−2δd)2

)O(d)
different parameter tuples are passed to the recursive calls. It is, in

turn, sufficient to prove that |S| ≤ 1
eδ(τ−2δd)2

holds for every recursive call BuildDTM (fδ, π, s
′, d, τ),

where S is the set of indices i that satisfy Infi((fδ)π) ≥ τ . We note that

i ∈ S ⇐⇒ Inf i((fδ)π) ≥ τ

=⇒ Infi((fπ)δ) ≥ τ − 2δd (Fact 7.5 and |π| ≤ d)

⇐⇒ E
x∼{±1}n

[
|(fπ)δ(x)− (fπ)δ(x

∼i)|
]
≥ τ − 2δd (definition of influence)

=⇒ E
x∼{±1}n

[
((fπ)δ(x)− (fπ)δ(x

∼i))2
]
≥ (τ − 2δd)2. (Jensen’s inequality and τ > 2δd)

Applying Fact 7.4 to fπ shows that the above can hold for at most 1/(eδ)
(τ−2δd)2 different indices i. This

proves |S| ≤ 1
eδ(τ−2δd)2

and finishes the proof.

Now we put everything together to prove our main theorem.

Proof of Theorem 1. Let d := log(s/ε), τ := ε
log s and δ := τ

4d . By Lemma 7.3, BuildDTM (fδ,∅, s, d, τ)
returns a decision tree T that satisfies dist(T, f) ≤ opts + 4ε.

For the runtime, in Claim 7.6 we again assumed that the influences of fδ and its restrictions
can be computed exactly in unit time. As in the proof of Theorem 7, estimating these influences

18

up to an O(τ) additive error would suffice. Given query access to f , (fδ)π(x) can be estimated up
to O(τ) error with probability 1− δ using O(log(1/δ)/τ2) queries for any restriction π and input x.
Then, by randomly sampling O(log(1/δ)/τ2) copies of x ∼ {±1} and estimating both (fδ)π(x) and
(fδ)π(x

⊕i), we can estimate Infi((fδ)π) up to O(τ) error with probability 1−O(log(1/δ)/τ2) · δ.
By Claim 7.6, the number of variable influences that need to be computed is at most n·(d/τ)O(d).

By setting δ < 1/(n2 · (d/τ)O(d)), we can ensure that

n · (d/τ)O(d) ·O(log(1/δ)/τ2) · δ ≪ 1,

so that w.h.p. all the influence estimates are accurate up to O(τ) error. Note that estimating each
influence takes [O(log(1/δ)/τ2)]2 queries and thus runs in time

n · [O(log(1/δ)/τ2)]2 = Õ(n) · poly(d/τ).

Together with Claim 7.6, this upper bounds the overall runtime of the algorithm by

n · poly(s) ·

(
d

τ

)O(d)

· Õ(n) · poly(d/τ) ≤ Õ(n2) · (s/ε)O(log((log s)/ε)).

8 Conclusion

We have given an nO(log logn)-time membership query algorithm for properly learning decision trees
under the uniform distribution, improving on the previous fastest runtime of nO(logn). The obvious
open problem is to obtain a polynomial-time algorithm, which would bring the state of the art for
proper learning of decision trees into alignment with that of improper learning [KM93, GKK08].

Improved learning algorithms for decision trees often go hand in hand with an improved under-
standing of their structure. Ehrenfeucht and Haussler’s algorithm [EH89] is based on the observa-
tion that one of the subtrees of the root of a size-s decision tree has size ≤ s/2; [BLT20] uses the
OSSS inequality to show that influence is a good proxy for quality as a root; our algorithm is built
on our decision tree pruning lemma, which strengthens the OSSS inequality and the connection
between influence and root quality. A natural next step is to formulate and develop new structural
results that will facilitate a polynomial-time algorithm.

Concluding on a speculative note, we remark that [BLT20]’s algorithm is modeled after practical
heuristics, such as ID3, CART, and C4.5, for learning decision trees. These are some of the earliest
and most basic algorithms in machine learning, and they continue to be widely used to this day.
Our algorithm extends [BLT20]’s and circumvents lower bounds that [BLT20] had established for
their algorithm. It would be interesting to explore possible practical implications of our work.

Acknowledgements

We are grateful to the anonymous reviewers, whose comments and suggestions have helped improve
this paper.

Guy and Li-Yang are supported by NSF CAREER Award 1942123. Mingda is supported
by DOE Award DE-SC0019205 and ONR Young Investigator Award N00014-18-1-2295. Jane is
supported by NSF Award CCF-2006664.

19

References

[AH12] Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. Algo-
rithmica, 62(3-4):1112–1121, 2012. 1

[BFJ+94] Avirm Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. In Proceedings of the 26th Annual ACM Symposium on Theory
of Computing (STOC), pages 253–262, 1994. 1.1, 1.1

[BGLT20] Guy Blanc, Neha Gupta, Jane Lange, and Li-Yang Tan. Universal guarantees for de-
cision tree induction via a higher-order splitting criterion. In Proceedings of the 34th
Conference on Neural Information Processing Systems (NeurIPS), 2020. 2.1.1

[BL97] Avrim Blum and Pat Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97(1-2):245–271, 1997. 1.1

[BLT20] Guy Blanc, Jane Lange, and Li-Yang Tan. Top-down induction of decision trees: rig-
orous guarantees and inherent limitations. In Proceedings of the 11th Innovations in
Theoretical Computer Science Conference (ITCS), volume 151, pages 1–44, 2020. 1.1,
??, 2, 2, 2, 2, 2.1, 2.1.1, 8

[Blu92] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Inform. Process.
Lett., 42(4):183–185, 1992. 1.1

[Bsh93] Nader Bshouty. Exact learning via the monotone theory. In Proceedings of 34th Annual
Symposium on Foundations of Computer Science (FOCS), pages 302–311, 1993. 1.1

[CM19] Sitan Chen and Ankur Moitra. Beyond the low-degree algorithm: mixtures of subcubes
and their applications. In Proceedings of the 51st Annual ACM Symposium on Theory
of Computing (STOC), pages 869–880, 2019. 1.1

[DCRT19] Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion. Sharp phase transition for the
random-cluster and potts models via decision trees. Annals of Mathematics, 189(1):75–
99, 2019. 4.1

[EH89] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random exam-
ples. Information and Computation, 82(3):231–246, 1989. 1.1, ??, 1, 2, 8

[GKK08] Parikshit Gopalan, Adam Kalai, and Adam Klivans. Agnostically learning decision
trees. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC),
pages 527–536, 2008. 1.1, 8

[Han93] Thomas Hancock. Learning kµ decision trees on the uniform distribution. In Proceedings
of the 6th Annual Conference on Computational Learning Theory (COT), pages 352–
360, 1993. 1.1

[HJLT96] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning
decision lists and trees. Information and Computation, 126(2):114–122, 1996. 1.1

20

[HKY18] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral
approach. Proceedings of the 6th International Conference on Learning Representations
(ICLR), 2018. 1.1

[JS06] Jeffrey C. Jackson and Rocco A. Servedio. On learning random dnf formulas under the
uniform distribution. Theory of Computing, 2(8):147–172, 2006. 1.1

[JZ11] Rahul Jain and Shengyu Zhang. The influence lower bound via query elimination.
Theory of Computing, 7(1):147–153, 2011. 4.1, 6

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spec-
trum. SIAM Journal on Computing, 22(6):1331–1348, December 1993. 1.1, 8

[KS06] Adam Klivans and Rocco Servedio. Toward attribute efficient learning of decision lists
and parities. Journal of Machine Learning Research, 7(Apr):587–602, 2006. 1.1

[KST09] Adam Kalai, Alex Samorodnitsky, and Shang-Hua Teng. Learning and smoothed anal-
ysis. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 395–404, 2009. 1.1

[Lee10] Homin K. Lee. Decision trees and influence: an inductive proof of the osss inequality.
Theory of Computing, 6(4):81–84, 2010. 4.1

[LR76] Hyafil Laurent and Ronald Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 5(1):15–17, 1976. 1

[MOS04] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k
relevant variables. Journal of Computer and System Sciences, 69(3):421–434, 2004. 1.1

[MR02] Dinesh Mehta and Vijay Raghavan. Decision tree approximations of boolean functions.
Theoretical Computer Science, 270(1-2):609–623, 2002. 1.1, ??

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 3,
4.1, 7.2

[OS07] Ryan O’Donnell and Rocco Servedio. Learning monotone decision trees in polynomial
time. SIAM Journal on Computing, 37(3):827–844, 2007. 1.1

[OSSS05] Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco Servedio. Every decision
tree has an influential variable. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 31–39, 2005. 2.1.1

[Riv87] Ronald Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987. 1.1

[Sie08] Detlef Sieling. Minimization of decision trees is hard to approximate. Journal of Com-
puter and System Sciences, 74(3):394–403, 2008. 1

[Val15] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. Journal of the ACM (JACM), 62(2):1–45, 2015.
1.1

[ZB00] Hans Zantema and Hans Bodlaender. Finding small equivalent decision trees is hard.
International Journal of Foundations of Computer Science, 11(2):343–354, 2000. 1

21

	1 Introduction
	1.1 Background and context

	2 Overview of our approach
	2.1 Our algorithm and its analysis
	2.1.1 Our key new tool: A pruning lemma for decision trees

	3 Preliminaries
	4 Our pruning lemma
	4.1 Our pruning lemma implies the OSSS inequality

	5 Learning in the realizable setting
	6 Learning monotone target functions in the agnostic setting
	6.1 Proof of thm:monotone

	7 Learning general target functions in the agnostic setting
	8 Conclusion

