

SIGN IN/REGISTER

The Journal of the Acoustical Society of America

HOME	BROWSE	MORE ▼	
Home > The Journal of the Acoustical Society of America > Volume 151, Issue 4 > 10.1121/10.0011023			
Check for updates < PREV		NEXT >	
Full Published Online: 10 May 2022			

Multi-material stimuli-responsive hydrogels with optically induced

actuation

The Journal of the Acoustical Society of America 151, A179 (2022); https://doi.org/10.1121/10.0011023

Haley Tholen

- The Penn State Univ., 336 Reber Bldg., University Park, PA 16802, hmt5321@psu.edu Ryan L. Harne
- The Penn State Univ., State College, PA more...

Meeting abstract. No PDF available.

ABSTRACT

A vision for soft, autonomous materials entails synthesis of multiple senses in multifunctional materials where material response requires sensitivity to external stimuli. Stimuli-responsive hydrogels are of particular interest for optically induced mechanical response due to the ability to transform external stimuli into large, reversible shape change. Specifically, temperature-responsive hydrogels are broadly used and can be designed to achieve deformation through the photothermal effect as a result of surface plasmonic resonance of gold nanoparticles. Here, a multi-material stimuli-responsive hydrogel network with embedded gold nanoparticles is demonstrated in a unit cell pattern with anisotropic swelling behavior in response to visible light. Reversible, anisotropic swelling leads to bending motion that contributes to the development of soft, autonomous materials.

© 2022 Acoustical Society of America.

Resources	
AUTHOR	
LIBRARIAN	
ADVERTISER	

General Information

ABOUT

CONTACT

HELP

PRIVACY POLICY

TERMS OF USE

FOLLOW AIP PUBLISHING:

Website © 2022 AIP Publishing LLC. Article copyright remains as specified within the article.

Scitation

