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Abstract

Knowledge of the distribution of fitness effects (DFE) of mutations is critical to the
understanding of protein evolution. Here, we describe methods for large-scale, system-
atic measurements of the DFE using growth competition and deep mutational scan-
ning. We discuss techniques for producing comprehensive libraries of gene variants
as well as provide necessary considerations for designing these experiments. Using
thesemethods, we have constructed libraries containing over 18,000 variants, measured
fitness effects of these mutations by deep mutational scanning, and verified the pres-
ence of fitness effects in individual variants. Our methods provide a high-throughput
protocol for measuring biological fitness effects of mutations and the dependence
of fitness effects on the environment.
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1. Introduction

A protein’s amino acid sequence evolves under the presence of muta-

tion, genetic drift, and selection. One key determinant for how proteins

evolve is the distribution of fitness effects (DFE) of mutations, which

describes both the frequency and magnitude of fitness effects. The frequency

of beneficial mutations impacts the rate of adaptive evolution. In addition,

the distribution of neutral and deleterious mutations plays a crucial role in

determining the rate of protein evolution (how fast protein sequences

change), which is of central importance for the reconstruction of evolution-

ary history and mechanisms.

With the advent of deep sequencing technology, it has become possible

to measure fitness effects in a high-throughput and comprehensive manner

through Deep Mutational Scanning (DMS) experiments. DMS studies sub-

ject large-scale libraries of mutations to an enrichment process in which the

enrichment ratio is dependent on the effect of the mutation. Over the course

of the last decade, DMS has been harnessed as a powerful technique for

measuring the fitness effects of mutations on a large-scale (Boucher,

Bolon, & Tawfik, 2016; Canale, Cote-Hammarlof, Flynn, & Bolon,

2018; Fowler & Fields, 2014; Kowalsky et al., 2015). The design of DMS

experiments determines what the enrichment basis and, thus, what the cal-

culated fitness metric measures. Most DMS studies have focused on the pro-

teins themselves. These studies use the term “fitness” to refer to a measure of

the protein’s property (e.g., catalytic activity or ligand affinity) or a pheno-

type it confers (e.g., antibiotic resistance) relative to some wildtype refer-

ence. Often, the selection pressure is artificial. For example, mutational

effects on ligand affinity can be observed using cell surface display and

fluorescence-activated cell sorting (Whitehead et al., 2012) and mutational

effects on enzyme activity can be observed using engineered cells whose

growth rate in a particular environment depends on enzyme activity

(Wrenbeck, Azouz, & Whitehead, 2017). Although such studies provide

valuable information on a component of fitness, they do not accurately cap-

ture the DFE upon which evolution acts. There are multiple reasons for this

issue. (a) If the protein is characterized outside its native environment, the

measure may not accurately reflect the protein’s properties in its native envi-

ronment. (b) A protein may have secondary functions other than the one

being characterized. (c) A variety of mechanisms can buffer fitness effects

from mutational effects on the protein’s physicochemical properties.
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These include a protein’s stability buffer (Tokuriki & Tawfik, 2009), the

action of chaperones to maintain properly folded proteins, cells may have

an excess of the protein’s activity (more than enough to maintain fitness)

(Hartl, Dykhuizen, & Dean, 1985), and the fact that cells are complex with

multiple levels of organization between DNA sequence and organismal fit-

ness. (d) A mutation may affect fitness through mechanisms other than

effects on its ability to perform its physiological function. We recently char-

acterized such “collateral” fitness effects for TEM-1 β-lactamase (Mehlhoff

et al., 2019).

Growth competition experiments with the gene in its native environ-

ment should be used if the focus of the experiment is on organismal fitness

and the DFE upon which evolution acts (e.g., Lind, Arvidsson, Berg, &

Andersson, 2016; Mehlhoff et al., 2019; Melamed, Young, Gamble,

Miller, & Fields, 2013; Noda-Garcia et al., 2019; Roscoe, Thayer,

Zeldovich, Fushman, & Bolon, 2013). Here, we present our method for

constructing comprehensive libraries of gene variants and measuring the

fitness effects of these libraries through growth competition and deep muta-

tional scanning. Our method consists of a single-flask growth competition

experiment with quantification of allele frequency by deep sequencing at

select timepoints during exponential growth. These experiments measure

the rate at which allele frequencies change within the population. Shifts

in allele frequency are one of the closest estimates for organismal fitness as

they represent the effect of mutations on the cellular exponential growth

rate. However, such measures do not capture the fitness effects of mutation

on lag phase, stationary phase, and recovery from long-term dormancy.

They also only capture the fitness effects in the experiment’s environment.

Fitness across a range of environments will govern a protein’s evolution

(Noda-Garcia et al., 2019).

2. General considerations

One consideration in the experimental design is whether to leave the

gene on the chromosome under its native promoter. Mutations for DMS

can be introduced into genes in their native chromosomal environment

by integrating libraries of mutations into the selected strain through λ
Red recombineering (Lind et al., 2016; Lind, Berg, & Andersson, 2010;

Lundin, Tang, Guy, Nasvall, & Andersson, 2017) or other methods

(Noda-Garcia et al., 2019). The advantages of doing so are that it ensures

the gene is expressed at native levels, expression level responds to any native
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regulation the mutations might affect, and cell-to-cell gene copy number

does not have the potential to vary like it might when incorporated into

a plasmid. A disadvantage is that the alleles will be under selective pressure

during library construction and growth that precedes the growth competi-

tion experiment (assuming the gene’s promoter cannot be turned off during

this time). This may limit identification of strongly deleterious mutations

because they are not observed in the sequencing or the fitness effects cannot

be accurately quantified because the mutation’s frequency is too low.

We prefer to place the gene on a low-copy plasmid (to facilitate large-

scale library construction) under an inducible promoter to repress gene

expression levels until the growth competition experiment. Doing so helps

to prevent the loss of deleterious variants during library construction or

propagation of cells preceding growth competition. We placed our gene

of study under the IPTG-inducible tac promoter on a plasmid with a

p15A origin. The tac promoter can be strongly repressed in the absence

of IPTG by using a strain which overexpresses LacI, as is the case for the

strain NEB 5-alpha LacIq. Strong repression may not be possible for essential

genes. Conversely, too high an expression level may lead to the masking of

fitness effects due to protein overabundance. Expression levels should ideally

be maintained at a level that allows for observation of fitness effects without

expression of the gene itself causing significant fitness or phenotypic effects.

Expression at native levels ensures that the measured fitness effects are most

relevant to the evolution of that gene.

A variety of methods for library construction exist and one’s choice

depends on the type of library desired. A common strategy is comprehensive

site-saturation libraries, which contain all possible single amino acid substi-

tutions. Our lab developed PFunkel, a single-pot oligo-directed mutagen-

esis method, specifically for constructing such libraries (Firnberg &

Ostermeier, 2012). The method works best on a single-stranded DNA tem-

plate prepared using helper phage. This requires an f1 phage origin on the

plasmid. TheWhitehead group developed an alternate method for preparing

the single-stranded template for PFunkel mutagenesis (Wrenbeck et al.,

2016). This method, called nicking mutagenesis, avoids the need for an

f1 origin or the use of phage. Inverse PCR ( Jain & Varadarajan, 2014) is

an alternative to PFunkel and nicking mutagenesis and is described in this

chapter. Although the method is more labor-intensive and requires twice

as many primers, it is simpler (it requires fewer manipulations of the

DNA) and offers some other advantages. Success of each mutagenesis reac-

tion can be evaluated at every position by electrophoresing the inverse PCR
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reaction on an agarose gel. The PCR reactions for problematic positions can

be optimized by standard approaches including primer redesign. Reactions

can be combined at different volume ratios based on the gel intensities or

fluorescent nucleic acid stain assays to better balance the frequency of muta-

tions across positions.

Sub-libraries for different regions of the gene are often used due to read-

length limitations of deep sequencing methods. The number of sub-libraries

created depends on the length of the gene and the deep sequencing method

to be used. PacBio allows sequencing of the entire gene but is considerably

more expensive per sequencing read. More often, the gene is divided into

sub-libraries in which mutagenesis is limited to a region that is at or less than

the length of the sequencing read. Such libraries typically undergo separate

growth competition experiments. One artifact of limited sequencing read-

length is that fitness effects can arise from unintended mutations that are

unobserved because they lie outside the sequencing read (either in other

sub-regions of the gene or elsewhere on the plasmid, such as in the promoter

or plasmid origin). Such mutations may occur spontaneously during growth

but more likely arise during library creation. Sub-cloning the library (and

especially just the mutagenized region) into a fresh vector after creation

reduces the frequency of these spurious effects.

3. Methods

Some elements of this protocol are specific to the experimental system

we used in a recent study of the fitness effects of mutations in TEM-1

β-lactamase in the absence of β-lactam antibiotics (Mehlhoff et al., 2019).

Most of these derive from the fact that we used a plasmid encoding specti-

nomycin resistance in which our gene of interest (TEM-1 β-lactamase) was

under the control of the IPTG-inducible tac promoter. This plasmid con-

tained a unique SphI site outside of TEM-1, which was used to linearize

the vector to prepare the DNA for deep sequencing.

3.1 Primer design for inverse PCR
Pairs of forward and reverse primers need to be designed for every codon in

the gene in order to form a comprehensive library of single-codon substi-

tutions. One of the primers in a pair contains the degenerate codon at

the 50 end. N base pair degeneracy in this codon allows for 64 possible codon

combinations and is used if one is interested in codon-specific effects. Data

for synonymous codons can be compared to identify potential fitness effect

207Biological fitness landscapes by deep mutational scanning



artifacts from unintended mutations outside the sequence region. However,

synonymous codons can have different fitness effects (Faber, Wrenbeck,

Azouz, Steiner, & Whitehead, 2019; Firnberg, Labonte, Gray, &

Ostermeier, 2014). Alternatively, NNK, NNS, or NNB libraries can be

used to reduce the frequency of stop codons while keeping all 20 amino

acids. It is best to design the primers to have similar melting temperatures

as PCR reactions are performed in parallel in a 96-well PCR plate.

Examples of forward and reverse primers for the thirtieth codon in

TEM-1 (K30) are shown below.

Forward primer:

50-(N:25252525)(N)(N) GTA AAA GAT GCT GAA GAT CAG TTG

GG-30.
Reverse primer:

50-CAC CAG CGT TTC TGG GTG A-30.
Oligonucleotides containing degenerate bases should ideally be ordered

as hand-mixed, a more expensive option that is designed to produce an equi-

molar ratio of A:C:T:G at the variable N positions. We ordered primers at a

concentration of 100μM in IDTE Buffer (pH8.0) then diluted the primers

to 10μM as a working solution.

3.2 Library construction by inverse PCR
Inverse PCR reactions are performed in separate wells of 96-well PCR

plates for each substitution site (Fig. 1). Reactions are electrophoresed on

a gel to confirm successful amplification of the full-length plasmid. The suc-

cessful reactions are later pooled.

Fig. 1 Schematic depiction of multiplexed inverse PCR using degenerate primers with a
50 NNN at the mutation site.
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1. Make a master mix consisting of 1μL of 50ng/μL template

plasmid:19μL of H2O:25μL of Phusion High-Fidelity PCR Master

Mix with HF Buffer (NEB) for each reaction. Add 45μL of the master

mix to each well of a 96-well PCR plate.

2. Add 2.5μL of 10μM forward primer and 2.5μL of the corresponding

10μM reverse primer to each well.

3. Perform inverse PCR using the thermocycling conditions shown in

Table 1.

4. Following PCR, combine 3μL of the PCR product with 1μL 6�
Purple Loading Dye and 2μL H2O.

5. Prepare a TAE 1.0% agarose gel containing 0.5μg/mL ethidium bromide.

6. Load the samples into the gel and electrophorese at 110V for approxi-

mately 40min. The time and voltage may need to be adjusted depending

on the size of the PCR product.

7. Visualize bands under UV light and image.

8. For any samples which do not have a prominent band at the same size as

the template, repeat steps 1–7. A change in annealing temperature may

be necessary. The extension time and amount of starting template added

to each well can also be altered if necessary.

3.3 Purification of PCR products
1. Prepare a 1.0% agarose gel containing 0.5μg/mL ethidium bromide

using a wide comb which can ideally hold 150μL or more in each well.

Table 1 Thermocycling conditions for using inverse PCR
to make single-codon substitutions.
Step Temperature Time

1 95 °C 2min

2 95 °C 30s

3 58 °C 30s

4 65 °C 2mina

Repeat steps 2–4 for 30 cycles

5 65 °C 5min

6 4 °C ∞
aThe extension time corresponds to that for a �4kb plasmid and
should be adjusted based on the size of the plasmid. At least 30 s of
extension time should be used per kb of PCR product.
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2. For each sub-library, pool all the successful PCR reactions together at

the desired ratio. Sub-libraries are used when the sequencing read-length

is less than the gene’s length (see General Considerations).

3. Add 6� Purple Loading Dye such that it makes up 1/6th of the final

volume.

4. Load the pooled successful PCR reactions into the well. In a separate

well, load linearized template as a control.

5. Run the DNA gel at 110V for 40min.

6. Isolate the band that is the same size as the template and extract

the desired DNA using a PureLink™ Quick Gel Extraction Kit

(Invitrogen) adhering to the manufacturer’s instructions.

7. Concentrate the DNA using the DNA Clean & Concentrator Kit

(Zymo) according to the manufacturer’s instructions.

8. Determine the concentration of the DNA spectrophotometrically using

Eq. (1)

dsDNA½ � ¼ 50
μg
mL

∗ A260�A320ð Þ∗d (1)

where A260 and A320 are the absorbances at 260 and 320nm, respectively and

d is the dilution factor by which the sample has been diluted if necessary.

3.4 Phosphorylation and ligation of PCR product
1. Add approximately 400ng of DNA, 2μL of T4 DNA Ligase Buffer, 1μL

(10units) of T4 PNK (NEB), and ddH2O to a total volume of 20μL.
Pipette the solution up and down to mix and then briefly spin down

in a microcentrifuge.

2. Incubate the sample at 37°C for 1h.

3. Use the DNA Clean & Concentrator Kit (Zymo) to purify the phos-

phorylated DNA. Elute the phosphorylated DNA using 15μL of

nuclease-free water.

4. Add 2μL of T4 DNA Ligase Buffer, 1μL (400 Cohesive End Units) of

T4 DNA Ligase (NEB), and nuclease-free water to a final volume of

20μL. Pipette the solution up and down to mix and then briefly spin

down in a microcentrifuge.

5. Incubate at room temperature for 1h.

6. Store the prepared DNA at �20 °C. One μL will be used per

transformation.
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3.5 Transformation of library into strain for growth
competition

The ligation mixture is then transformed into the desired strain. If the

desired strain transforms poorly, the library can be first transformed into a

high competency strain to maximize library size. Subsequently, plasmid

DNA can be prepared from these transformants and transformed into the

desired strain. We have used NEB 5-alpha LacIq cells (F0 proA+B+ lacIq

Δ(lacZ)M15 zzf::Tn10 (TetR) / fhuA2Δ(argFlacZ) U169 phoA glnV44

Φ80Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17). We elected to

use this particular derivative of DH5α cells for their high transformation effi-

ciency, the lack of functional endA and recA genes, and the presence of the

lacIq mutation. LacIq denotes a mutation within the lacI promoter which

leads to increased transcription of lacI. Overexpression of LacI causes the

tac promoter to be strongly repressed in the absence of IPTG. We also

use 2% w/v glucose in the media to help repress the promoter. We chose

this experimental design to guard against losing deleterious alleles during

library creation and propagation that preceded the growth competition

experiment.

The desired number of transformants for adequate coverage of the library

depends on the degeneracy of the target library and can be estimated

(Bosley & Ostermeier, 2005). Under the simplifying assumption that each

library member is equally frequent, one needs �4.6 times more trans-

formants than the number of variants to ensure that a particular variant

has a 99% probability of being present in the library. To have a 99% prob-

ability that a library is complete requires the number of transformants be at

least 10- to 25-fold higher than the number of variants (the precise number

depends on the number of intended variants). Multiple transformations can

be performed to reach the target number of transformants.

1. Make LB-agar plates containing 2% w/v glucose and 50 μg/mL spec-

tinomycin. We used 2% glucose to help repress expression, but the

addition of this high level of glucose also helps recovery of the library

from the plate (the colonies lift off the plate more readily). We recom-

mend making sets of plates at two different sizes. One set of plates

should be made using 200mL of agar in 245mm�245mm square ster-

ile dishes. These plates will be used for collecting the transformants that

will constitute the library. A smaller set of plates should be made using

20mL of agar in 100mm�15mm round Petri dishes to be used in esti-

mating the total number of transformants on the large plates.
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2. Transform the ligated plasmid into NEB 5-alpha LacIq cells following

the manufacturer’s high efficiency transformation protocol. In brief,

thaw the competent cells on ice for 10min, add 100ng of plasmid

DNA, and gently flick the tube to mix. Allow the mixture to sit on

ice for 30min before performing a heat shock at 42 °C for 30 s and plac-

ing back on ice for 5min. Add 950μL of room temperature SOCmedia

and incubate at 37°C with vigorous (250rpm) shaking for 1h.

3. Prepare a 10-fold dilution by mixing 15μL of the cells into 135μL of

room temperature SOC media.

4. Spread 100μL of the undiluted and 100μL 10-fold diluted cells onto

separate 20mL agar plates.

5. Spread the remaining 885μL of the undiluted cells onto a 200mL

agar plate.

6. Incubate the plates at 37 °C for approximately 16h.

7. Count the number of colonies on the 20mL agar plates. These colony

counts can be used to estimate the number of transformants on the

200mL agar plate by accounting for the difference in volume of cell

suspension plated and any dilution before plating.

8. Select 10 colonies from the 20mL agar plate to grow cultures from in

10mL of growth media containing 2% w/v glucose and 50μg/mL

spectinomycin. Purify plasmid from the cultures after they have been

incubating overnight using a Qiagen Plasmid Miniprep Kit. Plasmid

can be submitted for Sanger sequencing in order to verify the presence

of single-codon substitutions.

9. Collect the cells from the 200mL agar plate by first adding a mix of

7mL of growth media and 3mL of 50% glycerol and scraping the col-

onies off the surface of the agar with an L-shaped spreader. Then add an

additional mix of 3.5mL growth media and 1.5mL 50% glycerol and

recover the remaining cells on the plate.

10. Combine the cell suspensions and centrifuge for 4min at 4500 � g.

Draw off supernatant until the volume of the supernatant and pellet

are about equal. Resuspend the pellet in the remaining supernatant

and aliquot into tubes for �80 °C storage.

11. Repeat the transformation steps until enough transformants have been

collected to ensure high coverage of the library (Bosley & Ostermeier,

2005). The frozen aliquots will later be combined into a single library

during the pre-growth competition growth phase as described in the

subsequent section.

212 Jacob D. Mehlhoff and Marc Ostermeier



3.6 Growth competition
The choice of the growth conditions (e.g., media, media volume, vessel,

temperature, batch vs chemostat) is up to the researcher. The fitness mea-

surements will be specific to that environment. Since libraries are typically

stored as frozen stocks, it is important to grow the cells for enough time

before the growth competition to allow the cells to recover. Our protocol

has an extended growth period prior to the start of the growth competition

experiment to allow all cells to completely recover from being frozen and

“erase” any difference that might occur because some cells or sub-libraries

have been frozen for longer periods of time. We observed evidence of such

an effect in our recent study (Mehlhoff et al., 2019). A separate stock of cells

with the wildtype allele might also be used. Although library construction

techniques typically create wildtype alleles, the advantage of using a separate

stock of wildtype allele is that you can spike it in the library at a desired

higher frequency to better allow for calculation of the frequency of the wil-

dtype allele. The wildtype frequency is very important, since it is the refer-

ence for all fitness values.

If an inducible promoter is used, one must choose when to induce.

Induction at the beginning of the growth competition best guards against

loss of allele diversity prior to the experiment. However, it will take time

for the protein to reach steady-state levels in the cell; thus, the mutation’s

effect will change as a function of time until steady state is reached. The

resulting fitness effect measured is based on the mean growth rate over

the growth competition. In our recent experiments using the tac promoter

(Mehlhoff et al., 2019), fitness effects did not fully manifest until 2–3h of

post-induction growth in LB at 37 °C.
We used the following protocol in a recent experiment in which we

induced with IPTG at the start of the growth competition and grew the cells

for 10 generations (Mehlhoff et al., 2019). The length of time for the growth

experiment is a balance between allowing enough time for small fitness

effects to be observed, but not so long such that the magnitude of the effects

of deleterious mutations cannot be distinguished. Fig. 2 is a useful guide that

shows how allele frequency with deleterious mutations will vary as a func-

tion of mutational effect and number of generations. After long periods of

growth, comparatively small magnitude fitness effects become detectable.

However, there are disadvantages to an increase in the number of genera-

tions. The relative allele frequency for highly deleterious mutations will

approach zero, eventually making themagnitude of deleterious fitness effects
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indistinguishable from one another. Long periods of growth also increase the

risk of background mutations accumulating and affecting allele frequencies.

In our recent experiments, we elected to grow the culture for 10 gener-

ations to potentially allow detection of deleterious mutational effects as small

as 1%. We chose to dilute the cultures after 5 generations so that growth

would remain in exponential phase for all 10 generations (Fig. 3). After a

long pre-growth competition growth period, the first phase of the growth

competition occurred from a starting optical density (OD) at 600nm of

0.020 to an OD of 0.640, which corresponds to five generations of growth.

We then diluted the culture back to an OD of 0.020 and allowed it to grow

to an OD of 0.640 again. The result is 10 generations of growth with the

cells remaining in the exponential growth phase for the majority of their

growth. All measurements of OD were taken at a wavelength of 600nm.

In this protocol, samples for deep sequencing analysis are collected at the

start and end of growth competition. Similar studies measuring biological

fitness through growth competition have used deep sequencing either com-

paring the relative abundance of mutants across more than two timepoints

(Roscoe et al., 2013) or across differences in growth environment (Stiffler,

Hekstra, & Ranganathan, 2015).

Fig. 2 Mutant relative allele frequency as a function of relative fitness (w) and the num-
ber of generations of growth. The mutant relative allele frequency is a ratio of the num-
ber of times a mutant allele appears compared to the wildtype allele and assumes they
are equally as frequent at the start of the growth competition.
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1. Dilute frozen library stocks and wildtype cells into separate flasks

of 100mL growth media containing 50μg/ml spectinomycin and

2% w/v glucose. The volume of cells should be sufficiently large to

ensure adequate coverage of the library without notably increasing

the turbidity of the media. Incubate the resulting inoculums at 37 °C
for approximately 16h.

2. The next morning, measure the OD of the cultures in triplicate.

Average the readings and calculate the dilution to make a 100mL

culture with a final OD of 0.020.

3. Mix wildtype and library cultures at a ratio of 5:95 to make a 100mL

culture.

4. Incubate the flask at 37 °C with 250rpm shaking until the OD is

around 0.5.

5. Collect 10mL of the co-culture in a centrifuge tube on ice. As soon as

time allows, centrifuge at 4 °C and 4000� g for 10min. Extract plasmid

from the pelleted cells using the Plasmid Miniprep Kit (Qiagen). If the

strain being used is endA+, be sure to perform the extra wash step as

indicated in the instructions. Store the DNA at 4 °C as the initial time

point sample.

Fig. 3 Schematic of the growth competition experiment and timepoints at which sam-
ples are collected for deep sequencing. Cultures were grown for five generations from
an OD of 0.020 to 0.640 before being diluted and allowed to grow for an additional five
generations. Cells were pelleted and plasmid prepped for deep sequencing immedi-
ately before induction and again after 10 generations of induced growth.
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6. Dilute the remaining culture to anOD of 0.020 in 100mL of media in a

shake flask. The media and flask should be pre-warmed to 37°C.
7. At time zero, add filter sterilized IPTG to a final concentration of

1mM. Incubate the flasks at 37°Cwith shaking until theOD is approx-

imately 0.640 (5 generations of growth).

8. Dilute the culture to an OD of 0.020 in a pre-warmed flask containing

100mL media.

9. Incubate at 37 °C with shaking until the OD reaches approximately

0.640.

10. Place 10mL of the co-culture on ice and immediately centrifuge at

4000� g for 10min at 4 °C. Isolate and store the 10-generation plasmid

as in step 5.

3.7 Attaching Illumina index sequences
The specifications chosen for deep sequencing are up to the researcher as well.

We elected to use Illumina MiSeq deep sequencing with 2�300bp reads.

IlluminaHiSeq can be utilized to generate more reads (�25million total reads

fromMiSeq;�300million total reads fromHiSeq). The 300bp read-length is

the longest read-length currently available for Illumina MiSeq. Selection of

the read-length will depend on the length of the gene and determines the

number of sub-libraries necessary. Paired end reads allow for higher accuracy

in read alignment and the ability to detect DNA rearrangements such as

insertion-deletion (indel) variants and inversions. Adapter sequences are

designed to anneal to the linearized DNA and amplify it in preparation for

Illumina deep sequencing. Using an index sequence allows for the samples

to be pooled and run in a single lane of Illumina MiSeq as samples can later

be identified by their corresponding index. We used an index sequence of

GCCAAT for our time zero sample and an index sequence of CTTGTA

to represent the 10-generation sample. Examples of forward and reverse

adapters for the first region of TEM-1 (the first 95 codons) are shown in Fig. 4.

1. Mix 50ng of plasmid collected during the growth experiment with 10μl
10� CutSmart Buffer (NEB) and water to a total volume of 97μL.

2. Add 3μL (60units) of SphI-HF (NEB) and incubate for 1h at 37 °C.
3. Purify the plasmid using the DNA Clean & Concentrator Kit (Zymo).

4. Add 1.25μL of each of the forward and reverse Illumina adapter

sequences, 9μL of nuclease-free water, and 12.5μL of Phusion High-

Fidelity PCR Master Mix with HF Buffer (NEB) to 1μL of linearized

DNA. The reverse adapter contains the index sequence, so a different
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reverse adapter should be used for the time zero and 10-generation sam-

ples in order to identify the samples during demultiplexing.

5. Perform PCR using the thermocycling conditions shown in Table 2.

6. Estimate the concentration of the PCR product using spectrophotom-

etry and Eq. (1).

7. Verify the PCR product runs at the proper size on a 1% agarose gel with

0.5μg/mL ethidium bromide.

8. Pool the samples together and submit for Illumina MiSeq

(2�300bp reads).

3.8 Deep sequencing analysis of allele frequency
It is necessary to verify that the deep sequencing files being analyzed have not

been corrupted during any upload, download, or other file transfer process.

Fig. 4 Forward and reverse primers designed for Illumina deep sequencing of the first
sub-library of TEM-1. The forward primer consists of the forward Illumina adapter (red)
and forward annealing sequence (gray). The reverse primer consists of the reverse
Illumina adapter (blue), index sequence (orange), and reverse annealing sequence
(green). The annealing sequence is altered based on the region of the gene to be ampli-
fied. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2 Thermocycling conditions for attaching adapters with
Illumina index sequences to the linearized DNA.
Step Temperature Time

1 98 °C 30s

2 98 °C 15s

3 47 °C 15s

4 72 °C 3min

Repeat steps 2–4 for 25 cycles

5 72 °C 5min

6 4 °C ∞
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A checksum is a string of characters which acts as a “digital fingerprint.”

Tracking the checksum of a file is a way to ensure that the contained data

has not been damaged during file transfer. Programs like FastQC (Wingett &

Andrews, 2018) are another useful tool in performing quality control checks

of raw deep sequencing reads. It provides a summary report of sequencing

quality and scores as well as identifies any concerning patterns within the

raw data.

There are many possible pathways when deciding on tools for processing

and analyzing deep sequencing reads. We elected to use PEAR (Zhang,

Kobert, Flouri, & Stamatakis, 2014), Trimmomatic (Bolger, Lohse, &

Usadel, 2014), and Enrich2 (Rubin et al., 2017). PEAR works to align

paired-end reads. Trimmomatic then cuts a specified number of bases from

the start and end of the paired-end reads. We adjusted the number of bases

needing to be cropped from each sub-library in order to remove bases

corresponding to the Illumina adapter sequences as well as bases outside

the desired region. Enrich2 then quality filters the reads and counts variants

by comparing the read sequence to the input wildtype sequence.

1. Download the Illumina MiSeq reads and verify the checksums in order

to ensure the files have not been corrupted during the upload or down-

load process.

2. Inspect the reads for their per base sequence quality using FastQC.

3. Merge the paired-end reads using PEAR.We elected to run PEARwith

a minimum assembly length of 200 and a maximum assembly length of

500 based on the expected length of our reads.

4. Crop the paired-reads using Trimmomatic so as to remove the adapter

sequences and any base pairs outside the desired region. For TEM-1 and

our specific adapter sequences, we used the following settings: Region

1—HEADCROP:24, CROP:285; Region 2—HEADCROP:20,

CROP:285; Region 3—HEADCROP:24, CROP:291.

5. Input the paired and cropped reads to Enrich2 for counting of variants.

We set Enrich2 to ignore any reads that contained bases with a quality

score below 20, bases marked as N, or mutations at more than

one codon.

3.9 Fitness calculation for DMS
Our approach to calculating fitness from growth competition experiments is

very similar to (and based on) that of Kowalsky et al. (2015) and Rubin et al.

(2017). The difference is our approach calculates a fitness based on growth
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rate instead of using an enrichment ratio as a proxy for fitness. An additional

advantage is that fitness values can be compared between experiments with a

different number of generations. A detailed derivation of our equations for

calculating fitness and associated statistical measures can be found in

our recent study on collateral fitness effects of mutations (Mehlhoff

et al., 2019).

We calculated the fitness of each variant using the allele counts tabulated

by Enrich2 and the fold increase in the number of cells during the experi-

ment. We assume that the optical density (O) of the cell culture is linearly

proportional to the number of cells. The fold increase in the number of cells

(r) is calculated by the ratio of optical densities at the start (designated by sub-

script o) and end (designated by the subscript f ) of growth competition with

a d-fold dilution midway through the induced phase of growth.

r ¼ O f d

Oo
(2)

We calculated an enrichment ratio for allele i from the allele counts (c) at

the start and end of the growth competition in comparison to the total

sequencing counts (designated by the subscript T). A value of 0.5 is added

to the counts in order to allow an estimate of the fitness in cases where the

initial or final counts of allele i is equal to zero (Rubin et al., 2017).

εi ¼ cif cTo

ciocTf
� cif + 0:5

� �
cTo

cio + 0:5ð ÞcTf (3)

Comparing the enrichment scores of allele i and wildtype (i.e., the

enrichment ratio) can be used as a measure of fitness (Kowalsky et al.,

2015; Rubin et al., 2017). Enrichment scores will vary depending on the

number of generations of growth. We prefer to calculate fitness as the

growth rate of cells containing allele i relative to the growth rate of cells con-

taining the wildtype allele. To do this, we use the resulting enrichment, as

calculated in Eq. (3), along with the fold increase in the number of cells to

calculate fitness (w), which is the growth rate (μ) of cells with allele i com-

pared to the growth rate of cells with the wildtype allele (designated by the

subscript wt) .

wi ¼ μi
μwt

¼ ln rεið Þ
ln rεwtð Þ (4)
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3.10 Statistical treatment of DMS fitness measurements
There are two intrinsic sources of variance in the fitness measurement: the

sequencing counts and the fold increase in total number of cells (r). We

assumed that the uncertainty in r is negligible due to it appearing in the

numerator and denominator of the fitness calculation along with it being

of smaller magnitude than the variance stemming from the counts. Using

this assumption, we can calculate the variance in the fitness measurement as

σw
2 ¼ wi

2

1� f ifð Þ
cif

+
1� f ioð Þ
cio

ln rεið Þ2 +

1� f wtfð Þ
cwtf

+
1� f wtoð Þ
cwto

ln rεiwtð Þ2

2
64

3
75 (5)

where fi¼ ci/cT and fwt¼ cwt/cT (Mehlhoff et al., 2019). The confidence

interval can then be calculated from the variance in fitness as

�z*
σwffiffiffi
1

p (6)

where z* ¼2.576 for the 99% confidence interval.

One can calculate P-values to assess if the fitness of cells containing allele i

is different than that of cells with the wildtype allele. This value only depends

on the sequencing counts. We test if two proportions are the same using the

null hypothesis

H0 :
cio
cwto

¼ cif

cwtf
(7)

and calculate a Z-score

Z ¼ p̂o � p̂ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ 1

cwto
+ 1

cwtf

� �r (8)

p̂o ¼ cio
cwto

(9)

p̂ f ¼
cif

cwtf
(10)

p̂ ¼ cio + cwto
cif + cwtf

(11)

P-values are calculated by determining the area under the curve for that

Z-score for one tail of the normal distribution (using the NORMSDIST(Z)
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function in Excel) and then multiplying by 2 for a 2-tailed test (i.e., the fit-

ness might be higher or lower than 1).

The above calculations account for the intrinsic uncertainty in a fitness

measure by DMS based on the sequencing counts. They do not measure

experiment-to-experiment variability. We recommend biological replicates

for DMS experiments as an additional assessment of uncertainty in

fitness values. Fitness measures can be presented as a weighted mean of

the fitness values. This mean is useful when presenting heat maps of the land-

scape or when analyzing a set of fitness values as a whole. However, since

typically only one or two replicas are performed owing to sequencing cost,

the standard error of this weighted mean may not reflect the uncertainty in

the fitness value. Fitness effects of individual mutations are best presented as

separate values each with their own standard error or confidence interval (see

Mehlhoff et al., 2019 for an example).

One final note on uncertainty in fitness measures: an implicit assumption

in the DMS analysis is that allele frequency reflects cell frequency. This

assumption would be violated if, for example, deleterious mutations caused

selection for cells with fewer copies of the plasmid.

3.11 Assays for verifying magnitude of fitness effects
Fitness effects of mutations can be verified in a number of ways. Here, we

present a simple monoculture growth assay, in which cells containing the

mutant allele and cells containing the wildtype allele are incubated in sep-

arate flasks side-by-side and culture growth is monitored by OD. This

method works best for larger fitness effects (i.e., more than a few percent).

For smaller fitness effects, fluorescent markers can be used to track the

relative prevalence of wildtype and mutant alleles in co-cultures (Lind

et al., 2010; Lind et al., 2016; Lundin et al., 2017). For this method cells

with wildtype and mutant alleles contain different fluorescent proteins.

These cells are mixed at a 1:1 ratio, and the fluorescence signal of each

marker is monitored over time. Care must be taken to ensure that the

two fluorescent proteins do not have different fitness effects of their

own. Alternatives for assessing fitness effects of mutation in co-culture

include quantifying the frequency of the mutant allele by analysis of

Sanger sequencing chromatograms of the isolated plasmid from the

co-culture (Mehlhoff et al., 2019)—a method that requires the construc-

tion of a standard curve by sequencing samples of known ratios of wildtype

and mutant plasmids.
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For the monoculture growth assay, one must first make the desired

mutant(s) by standard site-directed mutagenesis techniques. Next, cultures

containing the wildtype or desired mutant alleles are grown using the same

methods as described for growth competition DMS experiments (see

Section 3.6) except the cultures are monocultures and not mixtures of wil-

dtype (WT) and mutant alleles. This includes the pre-induction growth

periods. After the growth competition starts, growth is monitored by mea-

suring the OD at a desired interval, with the final OD measurement at the

end of the experiment being measured in triplicate and averaged (since fit-

ness strongly depends on this value). Fitness is calculated from Eq. (12) by

substituting in the initial (designated by subscript o) and final (designated

by subscript f ) OD values.

wi ¼ μi
μwt

¼
ln

O f d

Oo

� �
i

ln
O f d

Oo

� �
wt

(12)

For the initial values, we use the intended starting OD based on the dilu-

tion (i.e., an OD of 0.02) instead of a measurement of the starting OD

because the uncertainty in such a low OD measurement is too large relative

to its value. This monoculture growth assay for measuring fitness assumes

that the correlation between optical density (O) and the number of cells

is the same for mutant and wildtype cells, which may not be true if the muta-

tions affect cell division, size, or morphology (Mehlhoff et al., 2019).

Alternatively, fitness can be measured using the growth rates as deter-

mined by the slope of a log2(OD) vs. time linear fit during exponential

growth once the cells reach steady-state growth. Note that although

E. coli cells in LB media can grow exponentially to high OD levels (much

greater than 1.0), the maximum steady-state growth rate occurs below an

OD of about 0.30 (Sezonov, Joseleau-Petit, & D’Ari, 2007).

4. Summary

Our outlined methods provide a protocol for constructing compre-

hensive libraries of mutations and measuring the associated fitness effects

using deep mutational scanning. Characterization of individually con-

structed mutants by monoculture growth assays or a variety of alternatives

allow for the confirmation of the fitness effects. Growth competition exper-

iments and deep mutational scanning can be used in combination as a
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powerful tool for high-throughput measurements of fitness effects allowing

researchers to study a wide array of gene variants or environmental impacts

on biological fitness.
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