CHAPTER NINE

Biological fitness landscapes
by deep mutational scanning

Jacob D. Mehlhoff and Marc Ostermeier*

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD,
United States

*Corresponding author: e-mail address: oster@jhu.edu

Contents
1. Introduction 204
2. General considerations 205
3. Methods 207
3.1  Primer design for inverse PCR 207
3.2 Library construction by inverse PCR 208
3.3  Purification of PCR products 209
3.4 Phosphorylation and ligation of PCR product 210
3.5 Transformation of library into strain for growth competition 211
3.6 Growth competition 213
3.7 Attaching lllumina index sequences 216
3.8 Deep sequencing analysis of allele frequency 217
3.9 Fitness calculation for DMS 218
3.10 Statistical treatment of DMS fitness measurements 220
3.11 Assays for verifying magnitude of fitness effects 221
4. Summary 222
Acknowledgments 223
References 223
Abstract

Knowledge of the distribution of fitness effects (DFE) of mutations is critical to the
understanding of protein evolution. Here, we describe methods for large-scale, system-
atic measurements of the DFE using growth competition and deep mutational scan-
ning. We discuss techniques for producing comprehensive libraries of gene variants
as well as provide necessary considerations for designing these experiments. Using
these methods, we have constructed libraries containing over 18,000 variants, measured
fitness effects of these mutations by deep mutational scanning, and verified the pres-
ence of fitness effects in individual variants. Our methods provide a high-throughput
protocol for measuring biological fitness effects of mutations and the dependence
of fitness effects on the environment.
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1. Introduction

A protein’s amino acid sequence evolves under the presence of muta-
tion, genetic drift, and selection. One key determinant for how proteins
evolve is the distribution of fitness eftects (DFE) of mutations, which
describes both the frequency and magnitude of fitness effects. The frequency
of beneficial mutations impacts the rate of adaptive evolution. In addition,
the distribution of neutral and deleterious mutations plays a crucial role in
determining the rate of protein evolution (how fast protein sequences
change), which is of central importance for the reconstruction of evolution-
ary history and mechanisms.

With the advent of deep sequencing technology, it has become possible
to measure fitness effects in a high-throughput and comprehensive manner
through Deep Mutational Scanning (DMS) experiments. DMS studies sub-
ject large-scale libraries of mutations to an enrichment process in which the
enrichment ratio is dependent on the effect of the mutation. Over the course
of the last decade, DMS has been harnessed as a powerful technique for
measuring the fitness effects of mutations on a large-scale (Boucher,
Bolon, & Tawtik, 2016; Canale, Cote-Hammarlof, Flynn, & Bolon,
2018; Fowler & Fields, 2014; Kowalsky et al., 2015). The design of DMS
experiments determines what the enrichment basis and, thus, what the cal-
culated fitness metric measures. Most DMS studies have focused on the pro-
teins themselves. These studies use the term “fitness” to refer to a measure of
the protein’s property (e.g., catalytic activity or ligand affinity) or a pheno-
type it confers (e.g., antibiotic resistance) relative to some wildtype refer-
ence. Often, the selection pressure is artificial. For example, mutational
effects on ligand affinity can be observed using cell surface display and
fluorescence-activated cell sorting (Whitehead et al., 2012) and mutational
effects on enzyme activity can be observed using engineered cells whose
growth rate in a particular environment depends on enzyme activity
(Wrenbeck, Azouz, & Whitehead, 2017). Although such studies provide
valuable information on a component of fitness, they do not accurately cap-
ture the DFE upon which evolution acts. There are multiple reasons for this
issue. (a) If the protein is characterized outside its native environment, the
measure may not accurately reflect the protein’s properties in its native envi-
ronment. (b) A protein may have secondary functions other than the one
being characterized. (c) A variety of mechanisms can buffer fitness effects
from mutational effects on the protein’s physicochemical properties.
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These include a protein’s stability buffer (Tokuriki & Tawfik, 2009), the
action of chaperones to maintain properly folded proteins, cells may have
an excess of the protein’s activity (more than enough to maintain fitness)
(Hartl, Dykhuizen, & Dean, 1985), and the fact that cells are complex with
multiple levels of organization between DNA sequence and organismal fit-
ness. (d) A mutation may affect fitness through mechanisms other than
effects on its ability to perform its physiological function. We recently char-
acterized such “collateral” fitness effects for TEM-1 B-lactamase (Mehlhoff
et al., 2019).

Growth competition experiments with the gene in its native environ-
ment should be used if the focus of the experiment is on organismal fitness
and the DFE upon which evolution acts (e.g., Lind, Arvidsson, Berg, &
Andersson, 2016; Mehlhoff et al., 2019; Melamed, Young, Gamble,
Miller, & Fields, 2013; Noda-Garcia et al., 2019; Roscoe, Thayer,
Zeldovich, Fushman, & Bolon, 2013). Here, we present our method for
constructing comprehensive libraries of gene variants and measuring the
fitness effects of these libraries through growth competition and deep muta-
tional scanning. Our method consists of a single-flask growth competition
experiment with quantification of allele frequency by deep sequencing at
select timepoints during exponential growth. These experiments measure
the rate at which allele frequencies change within the population. Shifts
in allele frequency are one of the closest estimates for organismal fitness as
they represent the effect of mutations on the cellular exponential growth
rate. However, such measures do not capture the fitness effects of mutation
on lag phase, stationary phase, and recovery from long-term dormancy.
They also only capture the fitness effects in the experiment’s environment.
Fitness across a range of environments will govern a protein’s evolution
(Noda-Garcia et al., 2019).

2. General considerations

One consideration in the experimental design is whether to leave the
gene on the chromosome under its native promoter. Mutations for DMS
can be introduced into genes in their native chromosomal environment
by integrating libraries of mutations into the selected strain through A
Red recombineering (Lind et al., 2016; Lind, Berg, & Andersson, 2010;
Lundin, Tang, Guy, Nasvall, & Andersson, 2017) or other methods
(Noda-Garcia et al., 2019). The advantages of doing so are that it ensures
the gene is expressed at native levels, expression level responds to any native
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regulation the mutations might affect, and cell-to-cell gene copy number
does not have the potential to vary like it might when incorporated into
a plasmid. A disadvantage is that the alleles will be under selective pressure
during library construction and growth that precedes the growth competi-
tion experiment (assuming the gene’s promoter cannot be turned oft during
this time). This may limit identification of strongly deleterious mutations
because they are not observed in the sequencing or the fitness effects cannot
be accurately quantified because the mutation’s frequency is too low.

We prefer to place the gene on a low-copy plasmid (to facilitate large-
scale library construction) under an inducible promoter to repress gene
expression levels until the growth competition experiment. Doing so helps
to prevent the loss of deleterious variants during library construction or
propagation of cells preceding growth competition. We placed our gene
of study under the IPTG-inducible tac promoter on a plasmid with a
p15A origin. The fac promoter can be strongly repressed in the absence
of IPTG by using a strain which overexpresses Lacl, as is the case for the
strain NEB 5-alpha LacI?. Strong repression may not be possible for essential
genes. Conversely, too high an expression level may lead to the masking of
fitness effects due to protein overabundance. Expression levels should ideally
be maintained at a level that allows for observation of fitness effects without
expression of the gene itself causing significant fitness or phenotypic eftects.
Expression at native levels ensures that the measured fitness effects are most
relevant to the evolution of that gene.

A variety of methods for library construction exist and one’s choice
depends on the type of library desired. A common strategy is comprehensive
site-saturation libraries, which contain all possible single amino acid substi-
tutions. Our lab developed PFunkel, a single-pot oligo-directed mutagen-
esis method, specifically for constructing such libraries (Firnberg &
Ostermeier, 2012). The method works best on a single-stranded DNA tem-
plate prepared using helper phage. This requires an f1 phage origin on the
plasmid. The Whitehead group developed an alternate method for preparing
the single-stranded template for PFunkel mutagenesis (Wrenbeck et al.,
2016). This method, called nicking mutagenesis, avoids the need for an
f1 origin or the use of phage. Inverse PCR (Jain & Varadarajan, 2014) is
an alternative to PFunkel and nicking mutagenesis and is described in this
chapter. Although the method is more labor-intensive and requires twice
as many primers, it is simpler (it requires fewer manipulations of the
DNA) and offers some other advantages. Success of each mutagenesis reac-
tion can be evaluated at every position by electrophoresing the inverse PCR.
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reaction on an agarose gel. The PCR reactions for problematic positions can
be optimized by standard approaches including primer redesign. Reactions
can be combined at different volume ratios based on the gel intensities or
fluorescent nucleic acid stain assays to better balance the frequency of muta-
tions across positions.

Sub-libraries for different regions of the gene are often used due to read-
length limitations of deep sequencing methods. The number of sub-libraries
created depends on the length of the gene and the deep sequencing method
to be used. PacBio allows sequencing of the entire gene but is considerably
more expensive per sequencing read. More often, the gene is divided into
sub-libraries in which mutagenesis is limited to a region that is at or less than
the length of the sequencing read. Such libraries typically undergo separate
growth competition experiments. One artifact of limited sequencing read-
length is that fitness effects can arise from unintended mutations that are
unobserved because they lie outside the sequencing read (either in other
sub-regions of the gene or elsewhere on the plasmid, such as in the promoter
or plasmid origin). Such mutations may occur spontaneously during growth
but more likely arise during library creation. Sub-cloning the library (and
especially just the mutagenized region) into a fresh vector after creation
reduces the frequency of these spurious effects.

3. Methods

Some elements of this protocol are specific to the experimental system
we used in a recent study of the fitness effects of mutations in TEM-1
B-lactamase in the absence of f-lactam antibiotics (Mehlhoff et al., 2019).
Most of these derive from the fact that we used a plasmid encoding specti-
nomycin resistance in which our gene of interest (TEM-1 B-lactamase) was
under the control of the IPTG-inducible tac promoter. This plasmid con-
tained a unique Sphl site outside of TEM-1, which was used to linearize
the vector to prepare the DNA for deep sequencing.

3.1 Primer design for inverse PCR

Pairs of forward and reverse primers need to be designed for every codon in
the gene in order to form a comprehensive library of single-codon substi-
tutions. One of the primers in a pair contains the degenerate codon at
the 5" end. N base pair degeneracy in this codon allows for 64 possible codon
combinations and is used if one is interested in codon-specific effects. Data
for synonymous codons can be compared to identify potential fitness effect
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artifacts from unintended mutations outside the sequence region. However,
synonymous codons can have different fitness effects (Faber, Wrenbeck,
Azouz, Steiner, & Whitehead, 2019; Firnberg, Labonte, Gray, &
Ostermeier, 2014). Alternatively, NNK, NNS, or NNB libraries can be
used to reduce the frequency of stop codons while keeping all 20 amino
acids. It is best to design the primers to have similar melting temperatures
as PCR reactions are performed in parallel in a 96-well PCR plate.
Examples of forward and reverse primers for the thirtieth codon in
TEM-1 (K30) are shown below.

Forward primer:

5'-(N:25252525)(N)(N) GTA AAA GAT GCT GAA GAT CAG TTG
GG-3'.

Reverse primer:

5-CAC CAG CGT TTC TGG GTG A-3.

Oligonucleotides containing degenerate bases should ideally be ordered
as hand-mixed, a more expensive option that is designed to produce an equi-
molar ratio of A:C:T:G at the variable N positions. We ordered primers at a
concentration of 100 pM in IDTE Buffer (pH 8.0) then diluted the primers
to 10pM as a working solution.

3.2 Library construction by inverse PCR

Inverse PCR reactions are performed in separate wells of 96-well PCR
plates for each substitution site (Fig. 1). Reactions are electrophoresed on
a gel to confirm successful amplification of the full-length plasmid. The suc-
cessful reactions are later pooled.
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Yy 4 \ \\ [J Gene of interest
,‘( [f 1 | Mutation site
1 ¢ }l | — Inverse PCR primers
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Fig. 1 Schematic depiction of multiplexed inverse PCR using degenerate primers with a
5’ NNN at the mutation site.
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Table 1 Thermocycling conditions for using inverse PCR
to make single-codon substitutions.

Step Temperature Time

1 95°C 2min
2 95°C 30s

3 58°C 30s

4 65°C 2min”

Repeat steps 2—4 for 30cycles
5 65°C 5min
6 4°C o

*The extension time corresponds to that for a ~4kb plasmid and
should be adjusted based on the size of the plasmid. At least 30s of
extension time should be used per kb of PCR product.

1. Make a master mix consisting of 1pL of 50ng/pL template
plasmid:19pL of H,O:25puL of Phusion High-Fidelity PCR Master
Mix with HF Buffer (NEB) for each reaction. Add 45 pL of the master
mix to each well of a 96-well PCR plate.

2. Add 2.5pL of 10pM forward primer and 2.5pL of the corresponding
10 pM reverse primer to each well.

3. Perform inverse PCR using the thermocycling conditions shown in
Table 1.

4. Following PCR, combine 3pL of the PCR product with 1pL 6 X
Purple Loading Dye and 2L H,O.

5. Prepare a TAE 1.0% agarose gel containing 0.5 pg/mL ethidium bromide.

6. Load the samples into the gel and electrophorese at 110V for approxi-
mately 40 min. The time and voltage may need to be adjusted depending
on the size of the PCR product.

7. Visualize bands under UV light and image.

8. For any samples which do not have a prominent band at the same size as
the template, repeat steps 1—7. A change in annealing temperature may
be necessary. The extension time and amount of starting template added
to each well can also be altered if necessary.

3.3 Purification of PCR products

1. Prepare a 1.0% agarose gel containing 0.5pg/mL ethidium bromide
using a wide comb which can ideally hold 150 pL or more in each well.
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2. For each sub-library, pool all the successtul PCR reactions together at
the desired ratio. Sub-libraries are used when the sequencing read-length
is less than the gene’s length (see General Considerations).

3. Add 6 x Purple Loading Dye such that it makes up 1/6th of the final
volume.

4. Load the pooled successful PCR reactions into the well. In a separate
well, load linearized template as a control.

5. Run the DNA gel at 110V for 40 min.

6. Isolate the band that is the same size as the template and extract
the desired DNA using a PureLink™ Quick Gel Extraction Kit
(Invitrogen) adhering to the manufacturer’s instructions.

7. Concentrate the DNA using the DNA Clean & Concentrator Kit
(Zymo) according to the manufacturer’s instructions.

8. Determine the concentration of the DNA spectrophotometrically using

Eq. (1)

[dsDNA] = 50 % *( Apgy — Az ) *d (1)

where Ajqo and Aspg are the absorbances at 260 and 320 nm, respectively and
d is the dilution factor by which the sample has been diluted if necessary.

3.4 Phosphorylation and ligation of PCR product

1. Addapproximately 400 ng of DNA, 2 pL of T4 DNA Ligase Buffer, 1 pL
(10units) of T4 PNK (NEB), and ddH,O to a total volume of 20 uL.
Pipette the solution up and down to mix and then briefly spin down
in a microcentrifuge.

2. Incubate the sample at 37°C for 1h.

3. Use the DNA Clean & Concentrator Kit (Zymo) to purify the phos-
phorylated DNA. Elute the phosphorylated DNA using 15pL of
nuclease-free water.

4. Add 2pL of T4 DNA Ligase Bufter, 1 pL (400 Cohesive End Units) of
T4 DNA Ligase (NEB), and nuclease-free water to a final volume of
20 pL. Pipette the solution up and down to mix and then briefly spin
down in a microcentrifuge.

5. Incubate at room temperature for 1h.

6. Store the prepared DNA at —20°C. One pL will be used per
transformation.
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3.5 Transformation of library into strain for growth
competition

The ligation mixture is then transformed into the desired strain. If the
desired strain transforms poorly, the library can be first transformed into a
high competency strain to maximize library size. Subsequently, plasmid
DNA can be prepared from these transformants and transformed into the
desired strain. We have used NEB 5-alpha Lacl? cells (F proA + B+ lacl?
A(lacZ)M15 zzf::Tn10 (TetR) / fhuA2A(argFlacZ) U169 phoA glnl'44
DE0A(lacZ)M15 gyrA96 recAl relA1 endA1 thi-1 hsdR17). We elected to
use this particular derivative of DH5a cells for their high transformation effi-
ciency, the lack of functional endA and recA genes, and the presence of the
lacI” mutation. Lacl? denotes a mutation within the lacI promoter which
leads to increased transcription of lacl. Overexpression of Lacl causes the
fac promoter to be strongly repressed in the absence of IPTG. We also
use 2% w/v glucose in the media to help repress the promoter. We chose
this experimental design to guard against losing deleterious alleles during
library creation and propagation that preceded the growth competition
experiment.

The desired number of transformants for adequate coverage of the library
depends on the degeneracy of the target library and can be estimated
(Bosley & Ostermeier, 2005). Under the simplifying assumption that each
library member is equally frequent, one needs ~4.6 times more trans-
formants than the number of variants to ensure that a particular variant
has a 99% probability of being present in the library. To have a 99% prob-
ability that a library is complete requires the number of transformants be at
least 10- to 25-fold higher than the number of variants (the precise number
depends on the number of intended variants). Multiple transformations can
be performed to reach the target number of transformants.

1. Make LB-agar plates containing 2% w/v glucose and 50 pg/mL spec-
tinomycin. We used 2% glucose to help repress expression, but the
addition of this high level of glucose also helps recovery of the library
from the plate (the colonies lift off the plate more readily). We recom-
mend making sets of plates at two different sizes. One set of plates
should be made using 200mL of agar in 245 mm X 245 mm square ster-
ile dishes. These plates will be used for collecting the transformants that
will constitute the library. A smaller set of plates should be made using
20mL of agar in 100 mm X 15 mm round Petri dishes to be used in esti-
mating the total number of transformants on the large plates.
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10.

11.

. Transform the ligated plasmid into NEB 5-alpha LacI? cells following

the manufacturer’s high efficiency transformation protocol. In brief,
thaw the competent cells on ice for 10min, add 100ng of plasmid
DNA, and gently flick the tube to mix. Allow the mixture to sit on
ice for 30 min before performing a heat shock at 42 °C for 30s and plac-
ing back on ice for 5min. Add 950 pL of room temperature SOC media
and incubate at 37 °C with vigorous (250 rpm) shaking for 1h.

. Prepare a 10-fold dilution by mixing 15puL of the cells into 135 pL of

room temperature SOC media.
Spread 100 uL of the undiluted and 100 pL 10-fold diluted cells onto
separate 20 mL agar plates.

. Spread the remaining 885pL of the undiluted cells onto a 200mL

agar plate.

Incubate the plates at 37 °C for approximately 16 h.

Count the number of colonies on the 20mL agar plates. These colony
counts can be used to estimate the number of transformants on the
200mL agar plate by accounting for the diftference in volume of cell
suspension plated and any dilution before plating.

Select 10 colonies from the 20mL agar plate to grow cultures from in
10mL of growth media containing 2% w/v glucose and 50 pg/mL
spectinomycin. Purify plasmid from the cultures after they have been
incubating overnight using a Qiagen Plasmid Miniprep Kit. Plasmid
can be submitted for Sanger sequencing in order to verify the presence
of single-codon substitutions.

Collect the cells from the 200mL agar plate by first adding a mix of
7mL of growth media and 3mL of 50% glycerol and scraping the col-
onies oft the surface of the agar with an L-shaped spreader. Then add an
additional mix of 3.5mL growth media and 1.5mL 50% glycerol and
recover the remaining cells on the plate.

Combine the cell suspensions and centrifuge for 4min at 4500 X g.
Draw oft supernatant until the volume of the supernatant and pellet
are about equal. Resuspend the pellet in the remaining supernatant
and aliquot into tubes for —80°C storage.

Repeat the transformation steps until enough transformants have been
collected to ensure high coverage of the library (Bosley & Ostermeier,
2005). The frozen aliquots will later be combined into a single library
during the pre-growth competition growth phase as described in the
subsequent section.
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3.6 Growth competition

The choice of the growth conditions (e.g., media, media volume, vessel,
temperature, batch vs chemostat) is up to the researcher. The fitness mea-
surements will be specific to that environment. Since libraries are typically
stored as frozen stocks, it is important to grow the cells for enough time
before the growth competition to allow the cells to recover. Our protocol
has an extended growth period prior to the start of the growth competition
experiment to allow all cells to completely recover from being frozen and
“erase” any difference that might occur because some cells or sub-libraries
have been frozen for longer periods of time. We observed evidence of such
an effect in our recent study (Mehlhoff et al., 2019). A separate stock of cells
with the wildtype allele might also be used. Although library construction
techniques typically create wildtype alleles, the advantage of using a separate
stock of wildtype allele is that you can spike it in the library at a desired
higher frequency to better allow for calculation of the frequency of the wil-
dtype allele. The wildtype frequency is very important, since it is the refer-
ence for all fitness values.

If an inducible promoter is used, one must choose when to induce.
Induction at the beginning of the growth competition best guards against
loss of allele diversity prior to the experiment. However, it will take time
for the protein to reach steady-state levels in the cell; thus, the mutation’s
effect will change as a function of time until steady state is reached. The
resulting fitness effect measured is based on the mean growth rate over
the growth competition. In our recent experiments using the fac promoter
(Mehlhoft et al., 2019), fitness eftects did not fully manifest until 2-3h of
post-induction growth in LB at 37°C.

We used the following protocol in a recent experiment in which we
induced with IPTG at the start of the growth competition and grew the cells
for 10 generations (Mehlhoft et al., 2019). The length of time for the growth
experiment is a balance between allowing enough time for small fitness
effects to be observed, but not so long such that the magnitude of the effects
of deleterious mutations cannot be distinguished. Fig. 2 is a useful guide that
shows how allele frequency with deleterious mutations will vary as a func-
tion of mutational effect and number of generations. After long periods of
growth, comparatively small magnitude fitness effects become detectable.
However, there are disadvantages to an increase in the number of genera-
tions. The relative allele frequency for highly deleterious mutations will
approach zero, eventually making the magnitude of deleterious fitness effects
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Fig. 2 Mutant relative allele frequency as a function of relative fitness (w) and the num-
ber of generations of growth. The mutant relative allele frequency is a ratio of the num-
ber of times a mutant allele appears compared to the wildtype allele and assumes they
are equally as frequent at the start of the growth competition.

indistinguishable from one another. Long periods of growth also increase the
risk of background mutations accumulating and affecting allele frequencies.

In our recent experiments, we elected to grow the culture for 10 gener-
ations to potentially allow detection of deleterious mutational effects as small
as 1%. We chose to dilute the cultures after 5 generations so that growth
would remain in exponential phase for all 10 generations (Fig. 3). After a
long pre-growth competition growth period, the first phase of the growth
competition occurred from a starting optical density (OD) at 600nm of
0.020 to an OD of 0.640, which corresponds to five generations of growth.
We then diluted the culture back to an OD of 0.020 and allowed it to grow
to an OD of 0.640 again. The result is 10 generations of growth with the
cells remaining in the exponential growth phase for the majority of their
growth. All measurements of OD were taken at a wavelength of 600 nm.

In this protocol, samples for deep sequencing analysis are collected at the
start and end of growth competition. Similar studies measuring biological
fitness through growth competition have used deep sequencing either com-
paring the relative abundance of mutants across more than two timepoints
(Roscoe et al., 2013) or across differences in growth environment (Stiffler,
Hekstra, & Ranganathan, 2015).
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5 generations ‘ 5 generations l
28 S

Start at ODgy = 0.02 At ODgy0 = 0.64 End at ODgy, = 0.64

/ \ Dilute to ODgq, = 0.02

1
: Deep sequencing : Deep sequencing
CTA GCC TGT CTA GCC TGT
CTA GCC TGT CTA GCC GCC
CTA GCC TGT CTA GCC GCC

Fig. 3 Schematic of the growth competition experiment and timepoints at which sam-
ples are collected for deep sequencing. Cultures were grown for five generations from
an OD of 0.020 to 0.640 before being diluted and allowed to grow for an additional five
generations. Cells were pelleted and plasmid prepped for deep sequencing immedi-
ately before induction and again after 10 generations of induced growth.

1. Dilute frozen library stocks and wildtype cells into separate flasks
of 100mL growth media containing 50 pg/ml spectinomycin and
2% w/v glucose. The volume of cells should be sufficiently large to
ensure adequate coverage of the library without notably increasing
the turbidity of the media. Incubate the resulting inoculums at 37°C
for approximately 16h.

2. The next morning, measure the OD of the cultures in triplicate.
Average the readings and calculate the dilution to make a 100mL
culture with a final OD of 0.020.

3. Mix wildtype and library cultures at a ratio of 5:95 to make a 100mL
culture.

4. Incubate the flask at 37°C with 250rpm shaking until the OD is
around 0.5.

5. Collect 10mL of the co-culture in a centrifuge tube on ice. As soon as
time allows, centrifuge at 4 °C and 4000 X ¢ for 10 min. Extract plasmid
from the pelleted cells using the Plasmid Miniprep Kit (Qiagen). If the
strain being used is endA”, be sure to perform the extra wash step as
indicated in the instructions. Store the DNA at 4 °C as the initial time
point sample.
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6. Dilute the remaining culture to an OD 0f 0.020 in 100 mL of mediaina
shake flask. The media and flask should be pre-warmed to 37 °C.

7. At time zero, add filter sterilized IPTG to a final concentration of
1 mM. Incubate the flasks at 37 °C with shaking until the OD is approx-
imately 0.640 (5 generations of growth).

8. Dilute the culture to an OD of 0.020 in a pre-warmed flask containing
100 mL media.

9. Incubate at 37°C with shaking until the OD reaches approximately
0.640.

10. Place 10mL of the co-culture on ice and immediately centrifuge at
4000 x g for 10 min at 4 °C. Isolate and store the 10-generation plasmid
as in step 5.

3.7 Attaching lllumina index sequences

The specifications chosen for deep sequencing are up to the researcher as well.
We elected to use Illumina MiSeq deep sequencing with 2 X 300bp reads.
[Mumina HiSeq can be utilized to generate more reads (~25 million total reads
from MiSeq; ~300 million total reads from HiSeq). The 300 bp read-length is
the longest read-length currently available for Illumina MiSeq. Selection of
the read-length will depend on the length of the gene and determines the
number of sub-libraries necessary. Paired end reads allow for higher accuracy
in read alignment and the ability to detect DNA rearrangements such as
insertion-deletion (indel) variants and inversions. Adapter sequences are
designed to anneal to the linearized DNA and amplify it in preparation for
Mlumina deep sequencing. Using an index sequence allows for the samples
to be pooled and run in a single lane of [llumina MiSeq as samples can later
be identified by their corresponding index. We used an index sequence of
GCCAAT for our time zero sample and an index sequence of CTTGTA
to represent the 10-generation sample. Examples of forward and reverse
adapters for the first region of TEM-1 (the first 95 codons) are shown in Fig. 4.

1. Mix 50ng of plasmid collected during the growth experiment with 10 pl
10 X CutSmart Buffer (NEB) and water to a total volume of 97 pL.

2. Add 3pL (60 units) of Sphl-HF (NEB) and incubate for 1h at 37°C.

Purity the plasmid using the DNA Clean & Concentrator Kit (Zymo).

4. Add 1.25pL of each of the forward and reverse Illumina adapter
sequences, 9uL of nuclease-free water, and 12.5pL of Phusion High-
Fidelity PCR Master Mix with HF Bufter (NEB) to 1pL of linearized
DNA. The reverse adapter contains the index sequence, so a different

w



Biological fitness landscapes by deep mutational scanning 217

Forward primer

5/ AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TAC AAT TTC ACA CAG GAG GAAG -3

Reverse primer for first time point

5'-CAA GCA GAA GAC GGC ATA CGA GAT GCC AAT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T GT GAG TAC TCA ACC AAG TCATTC -3

Reverse primer for second time point

AR GUA GAA GAC COU ATA COA GAT CTT GTA GTC ACT GOA GTT CAG ACC TOT GCT CTT CCO ATCT GT GAG TAC TCA ACC ARG TCA TTC -3
Fig. 4 Forward and reverse primers designed for lllumina deep sequencing of the first
sub-library of TEM-1. The forward primer consists of the forward Illumina adapter (red)
and forward annealing sequence (gray). The reverse primer consists of the reverse
lllumina adapter (blue), index sequence (orange), and reverse annealing sequence
(green). The annealing sequence is altered based on the region of the gene to be ampli-
fied. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2 Thermocycling conditions for attaching adapters with
lllumina index sequences to the linearized DNA.

Step Temperature Time
1 98°C 30s
2 98°C 15s
3 47°C 155
4 72°C 3min

Repeat steps 2—4 for 25 cycles

5 72°C 5min
6 4°C o0

reverse adapter should be used for the time zero and 10-generation sam-
ples in order to identify the samples during demultiplexing.

5. Perform PCR using the thermocycling conditions shown in Table 2.

6. Estimate the concentration of the PCR product using spectrophotom-
etry and Eq. (1).

7. Verify the PCR product runs at the proper size on a 1% agarose gel with
0.5pg/mL ethidium bromide.

8. Pool the samples together and submit for Illumina MiSeq
(2% 300bp reads).

3.8 Deep sequencing analysis of allele frequency

[t is necessary to verify that the deep sequencing files being analyzed have not
been corrupted during any upload, download, or other file transfer process.
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A checksum is a string of characters which acts as a “digital fingerprint.”
Tracking the checksum of a file is a way to ensure that the contained data
has not been damaged during file transfer. Programs like FastQC (Wingett &
Andrews, 2018) are another useful tool in performing quality control checks
of raw deep sequencing reads. It provides a summary report of sequencing
quality and scores as well as identifies any concerning patterns within the
raw data.

There are many possible pathways when deciding on tools for processing
and analyzing deep sequencing reads. We elected to use PEAR (Zhang,
Kobert, Flouri, & Stamatakis, 2014), Trimmomatic (Bolger, Lohse, &
Usadel, 2014), and Enrich2 (Rubin et al., 2017). PEAR works to align
paired-end reads. Trimmomatic then cuts a specified number of bases from
the start and end of the paired-end reads. We adjusted the number of bases
needing to be cropped from each sub-library in order to remove bases
corresponding to the Ilumina adapter sequences as well as bases outside
the desired region. Enrich?2 then quality filters the reads and counts variants
by comparing the read sequence to the input wildtype sequence.

1. Download the Illumina MiSeq reads and verify the checksums in order
to ensure the files have not been corrupted during the upload or down-
load process.

2. Inspect the reads for their per base sequence quality using FastQC.

3. Merge the paired-end reads using PEAR. We elected to run PEAR with
a minimum assembly length of 200 and a maximum assembly length of
500 based on the expected length of our reads.

4. Crop the paired-reads using Trimmomatic so as to remove the adapter
sequences and any base pairs outside the desired region. For TEM-1 and
our specific adapter sequences, we used the following settings: Region
1—HEADCROP:24, CROP:285; Region 2—HEADCROP:20,
CROP:285; Region 3—HEADCR OP:24, CROP:291.

5. Input the paired and cropped reads to Enrich2 for counting of variants.
We set Enrich2 to ignore any reads that contained bases with a quality
score below 20, bases marked as N, or mutations at more than
one codon.

3.9 Fitness calculation for DMS

Our approach to calculating fitness from growth competition experiments is
very similar to (and based on) that of Kowalsky et al. (2015) and Rubin et al.
(2017). The difterence is our approach calculates a fitness based on growth
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rate instead of using an enrichment ratio as a proxy for fitness. An additional
advantage is that fitness values can be compared between experiments with a
different number of generations. A detailed derivation of our equations for
calculating fitness and associated statistical measures can be found in
our recent study on collateral fitness effects of mutations (Mehlhoft
et al., 2019).

We calculated the fitness of each variant using the allele counts tabulated
by Enrich2 and the fold increase in the number of cells during the experi-
ment. We assume that the optical density (O) of the cell culture is linearly
proportional to the number of cells. The fold increase in the number of cells
(r) 1s calculated by the ratio of optical densities at the start (designated by sub-
script 0) and end (designated by the subscript f) of growth competition with
a d-fold dilution midway through the induced phase of growth.

O¢d
=" ©)

We calculated an enrichment ratio for allele i from the allele counts () at
the start and end of the growth competition in comparison to the total
sequencing counts (designated by the subscript T). A value of 0.5 is added
to the counts in order to allow an estimate of the fitness in cases where the
initial or final counts of allele i is equal to zero (Rubin et al., 2017).

CifCTo (cbf + O.S)CTO
E = ~
coctr (cio T 0.5)cqr

(3)

Comparing the enrichment scores of allele i and wildtype (i.e., the
enrichment ratio) can be used as a measure of fitness (Kowalsky et al.,
2015; Rubin et al., 2017). Enrichment scores will vary depending on the
number of generations of growth. We prefer to calculate fitness as the
growth rate of cells containing allele 7 relative to the growth rate of cells con-
taining the wildtype allele. To do this, we use the resulting enrichment, as
calculated in Eq. (3), along with the fold increase in the number of cells to
calculate fitness (w), which is the growth rate () of cells with allele i com-
pared to the growth rate of cells with the wildtype allele (designated by the
subscript wr) .

_ M In (re;)
Mo In(rey)

)

i
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3.10 Statistical treatment of DMS fitness measurements

There are two intrinsic sources of variance in the fitness measurement: the
sequencing counts and the fold increase in total number of cells (r). We
assumed that the uncertainty in r is negligible due to it appearing in the
numerator and denominator of the fitness calculation along with it being
of smaller magnitude than the variance stemming from the counts. Using
this assumption, we can calculate the variance in the fitness measurement as

(1?{(!/') + (1?&) <1wa) + (17fwm)
2 2 if io + wif Cwto (5)

o, = w;
v l (In re?,v)2 (In re?,-wf)2

where fi=c¢/cr and f,,=c¢,/cr (Mehlhoff et al., 2019). The confidence
interval can then be calculated from the variance in fitness as

oy

V1

where 2* =2.576 for the 99% confidence interval.

One can calculate P-values to assess if the fitness of cells containing allele i
is different than that of cells with the wildtype allele. This value only depends
on the sequencing counts. We test if two proportions are the same using the

+=*

(6)

null hypothesis

Cj Ci
Hy: o =1 7)
Cuwto Cutf
and calculate a Z-score
7= Po Py (®)
\/pm -+ )
A~ Cio
— Lo 9
po CH/[O ( )
” Cif
= 10
Py Cunf (10)
~ Cio + Cuwto
=1 Wk 11
P Cif T Curf ()

P-values are calculated by determining the area under the curve for that
Z-score for one tail of the normal distribution (using the NORMSDIST (Z)
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function in Excel) and then multiplying by 2 for a 2-tailed test (i.e., the fit-
ness might be higher or lower than 1).

The above calculations account for the intrinsic uncertainty in a fitness
measure by DMS based on the sequencing counts. They do not measure
experiment-to-experiment variability. We recommend biological replicates
for DMS experiments as an additional assessment of uncertainty in
fitness values. Fitness measures can be presented as a weighted mean of
the fitness values. This mean is useful when presenting heat maps of the land-
scape or when analyzing a set of fitness values as a whole. However, since
typically only one or two replicas are performed owing to sequencing cost,
the standard error of this weighted mean may not reflect the uncertainty in
the fitness value. Fitness effects of individual mutations are best presented as
separate values each with their own standard error or confidence interval (see
Mehlhoft et al., 2019 for an example).

One final note on uncertainty in fitness measures: an implicit assumption
in the DMS analysis is that allele frequency reflects cell frequency. This
assumption would be violated if, for example, deleterious mutations caused
selection for cells with fewer copies of the plasmid.

3.11 Assays for verifying magnitude of fitness effects

Fitness effects of mutations can be verified in a number of ways. Here, we
present a simple monoculture growth assay, in which cells containing the
mutant allele and cells containing the wildtype allele are incubated in sep-
arate flasks side-by-side and culture growth is monitored by OD. This
method works best for larger fitness effects (i.e., more than a few percent).
For smaller fitness effects, fluorescent markers can be used to track the
relative prevalence of wildtype and mutant alleles in co-cultures (Lind
et al., 2010; Lind et al., 2016; Lundin et al., 2017). For this method cells
with wildtype and mutant alleles contain difterent fluorescent proteins.
These cells are mixed at a 1:1 ratio, and the fluorescence signal of each
marker is monitored over time. Care must be taken to ensure that the
two fluorescent proteins do not have different fitness effects of their
own. Alternatives for assessing fitness effects of mutation in co-culture
include quantifying the frequency of the mutant allele by analysis of
Sanger sequencing chromatograms of the isolated plasmid from the
co-culture (Mehlhoff et al., 2019)—a method that requires the construc-
tion of a standard curve by sequencing samples of known ratios of wildtype
and mutant plasmids.
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For the monoculture growth assay, one must first make the desired
mutant(s) by standard site-directed mutagenesis techniques. Next, cultures
containing the wildtype or desired mutant alleles are grown using the same
methods as described for growth competition DMS experiments (see
Section 3.6) except the cultures are monocultures and not mixtures of wil-
dtype (WT) and mutant alleles. This includes the pre-induction growth
periods. After the growth competition starts, growth is monitored by mea-
suring the OD at a desired interval, with the final OD measurement at the
end of the experiment being measured in triplicate and averaged (since fit-
ness strongly depends on this value). Fitness is calculated from Eq. (12) by
substituting in the initial (designated by subscript o) and final (designated

by subscript f) OD values.
Od
_Hi _ <ln Tfﬂ);

w; = U - —Ofd (12)
" ( ln T“) wt

For the initial values, we use the intended starting OD based on the dilu-
tion (i.e., an OD of 0.02) instead of a measurement of the starting OD
because the uncertainty in such a low OD measurement is too large relative
to its value. This monoculture growth assay for measuring fitness assumes
that the correlation between optical density (O) and the number of cells
is the same for mutant and wildtype cells, which may not be true if the muta-
tions affect cell division, size, or morphology (Mehlhoft et al., 2019).

Alternatively, fitness can be measured using the growth rates as deter-
mined by the slope of a log,(OD) vs. time linear fit during exponential
growth once the cells reach steady-state growth. Note that although
E. coli cells in LB media can grow exponentially to high OD levels (much
greater than 1.0), the maximum steady-state growth rate occurs below an
OD of about 0.30 (Sezonov, Joseleau-Petit, & D’Ari, 2007).

4. Summary

Our outlined methods provide a protocol for constructing compre-
hensive libraries of mutations and measuring the associated fitness effects
using deep mutational scanning. Characterization of individually con-
structed mutants by monoculture growth assays or a variety of alternatives
allow for the confirmation of the fitness effects. Growth competition exper-
iments and deep mutational scanning can be used in combination as a
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powertful tool for high-throughput measurements of fitness effects allowing
researchers to study a wide array of gene variants or environmental impacts
on biological fitness.
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