Reading and Writing
https://doi.org/10.1007/s11145-021-10222-w

™

Check for
updates

Automated extraction of revision events from keystroke
data

Rianne Conijn'® . Emily Dux Speltz? - Evgeny Chukharev-Hudilainen?

Accepted: 22 October 2021
©The Author(s) 2021, corrected publication 2021

Abstract

Revision plays an important role in writing, and as revisions break down the linear-
ity of the writing process, they are crucial in describing writing process dynamics.
Keystroke logging and analysis have been used to identify revisions made during
writing. Previous approaches include the manual annotation of revisions, build-
ing nonlinear S-notations, and the automated extraction of backspace keypresses.
However, these approaches are time-intensive, vulnerable to construct, or restricted.
Therefore, this article presents a computational approach to the automatic extraction
of full revision events from keystroke logs, including both insertions and deletions,
as well as the characters typed to replace the deleted text. Within this approach,
revision candidates are first automatically extracted, which allows for a simplified
manual annotation of revision events. Second, machine learning is used to automati-
cally detect revision events. For this, 7120 revision events were manually annotated
in a dataset of keystrokes obtained from 65 students conducting a writing task. The
results showed that revision events could be automatically predicted with a relatively
high accuracy. In addition, a case study proved that this approach could be easily
applied to a new dataset. To conclude, computational approaches can be beneficial
in providing automated insights into revisions in writing.

Keywords Revision analysis - Keystroke logging - Eye tracking - Annotation -
Machine learning

P< Rianne Conijn
m.a.conijn@tue.nl

Human-Technology Interaction Group, Eindhoven University of Technology, PO Box 513,
5600 MB Eindhoven, The Netherlands

Department of English, Iowa State University, Ames, USA

Published online: 22 November 2021 @ Springer

http://orcid.org/0000-0002-6316-4892
http://crossmark.crossref.org/dialog/?doi=10.1007/s11145-021-10222-w&domain=pdf

R. Conijn et al.

Introduction

Writing involves a variety of processes, ranging from low-level (peripheral) pro-
cesses, e.g., motor processes such as typing, to high-level (central) processes,
such as text evaluation (Olive, 2014). Keystroke analysis has been used to get
more insight into these writing processes (Leijten & Van Waes, 2013; Lindgren
& Sullivan, 2019). With keystroke analysis, the timestamps for every key pressed
and released are recorded and analyzed, giving a detailed overview of the writ-
er’s typing behavior. It has been argued that the typing behavior represented in
the keystroke logs might provide evidence for these higher-level cognitive pro-
cesses (Baaijen et al., 2012). For example, a pause before a sentence has been
used as an indicator of sentence planning (Medimorec & Risko, 2017; Roeser
et al., 2019). In addition, backspace or delete key presses have been related to the
revision process (Van Waes et al., 2014).

However, it is still considered difficult to align the metrics obtained from key-
stroke logging with specific writing processes (Galbraith & Baaijen, 2019). There
is a large gap between a single, aggregated metric (e.g., total number of back-
spaces or mean time between words) and the complex writing processes. One
suggested solution to better align the keystrokes with the writing processes has
been to combine multiple metrics obtained from the keystroke data (Galbraith &
Baaijen, 2019). In the current study we propose a method that combines several
metrics to provide a more accurate representation of the writing process, and spe-
cifically the revision process.

Revision plays an important role in writing. Although there is no unambiguous
relation between revision and text quality, revision has shown to be a determin-
ing factor in writers’ development, including writers’ knowledge about the topic
and about writing (Fitzgerald, 1987). Moreover, as revisions lead to disfluencies
in the writing process, they are crucial in describing writing process dynamics.
Therefore, we specifically focus on how keystroke data can provide insight into
revisions made during the writing process.

Revisions have been defined in different ways over the years of writing
research, showing a shift in perspective from revisions seen as "error correction",
towards the cognitive processes involved in revision (Fitzgerald, 1987). For an
overview of the variety of definitions of revisions, see for example (Horning &
Becker, 2006; Lindgren & Sullivan, 2006b). In the current study, we employ a
rather broad definition of revision to be able to identify a wide range of revi-
sions. Revision is defined as “making any changes at any point in the writing
process” (Fitzgerald, 1987, p. 484). This definition focuses on both product and
process, and it includes both internal as well as external revisions, where internal
revisions are changes in the writer’s mind before transcription or text production,
while external revisions are changes during the transcription (Murray, 1978).
These revisions can be any change in the text, and they do not necessarily have to
involve revising an error. In addition, these revisions can include quick, sponta-
neous corrections (editing), as well as more systematic inspection and improve-
ment (reviewing; Flower & Hayes, 1980). As internal revisions are not visible in

@ Springer

Automated extraction of revision events from keystroke data

keystroke data, we here only focus on external revisions. External revisions have
been further categorized, depending on their spatial location in the text, into pre-
contextual revisions and contextual revisions. Pre-contextual revisions are revi-
sions located at the leading edge, while contextual revisions are revisions made
within the text produced so far, away from the leading edge (Lindgren & Sullivan,
2006a, 2006b). Pre-contextual revisions are started by a deletion, while contex-
tual revisions can be started by a deletion or an insertion. In the current approach,
we focus on both pre-contextual deletions and contextual insertions and deletions.

The current approach has two main advantages compared to previous approaches.
First, we consider both deletions and insertions as a possible start of the revision
process. Previously, backspace or delete key presses have often been used as an
indication of revisions (Van Waes et al., 2014). Within this operationalization only
pre-contextual and contextual deletions are considered; contextual insertions are
ignored. Second, we do not consider the end of a delete or backspace key as the end
of the revision process. A backspace key usually does not represent the full cogni-
tive process of making a revision. For example, a revision often consists of both
the deletion of one or more characters, followed by one or more characters that are
typed to replace the deleted text (e.g., a substitution of one or more characters). We
refer to this full process of making a revision as a ’revision event’. By consider-
ing the full revision event, rather than only the deletion, more information can be
obtained about the nature of the revision. For example, natural language processing
may be used to automatically identify the scope or the size of the revision. In the
current paper we provide a method to extract the full process of each revision event
within a keystroke log.

Related work

Although revisions are usually identified by a backspace or delete key press (or
sequences of these key presses), some studies already looked at how the full process
of a revision, the revision event, could be identified with keystroke data. In the fol-
lowing, we describe each of these approaches, their advantages and disadvantages,
and the differences from the current approach.

Events

First, revisions can be seen as an interruption of the text production. Baaijen and
colleagues define these interruptions as events: “episodes that include other mate-
rial or operations before the continuation of text production” (Baaijen et al., 2012, p.
256). These operations can include mouse movements and scrolling, as well as con-
textual insertions and insertions away from the leading edge. This is partly in line
with our definition, as the definition includes both deletions as well as insertions.
However, there are two main differences with our current approach. First, mouse
movements and scrolling are included in Baaijen and colleagues (2012), as these
might indicate rereading and evaluating previously written text. However, this does

@ Springer

R. Conijn et al.

not always result in an external revision event. Sometimes the writer might consider
that the previously written text does not require any changes, or the writer might use
the rereading to plan their next sentence. Accordingly, we only consider revision
events that resulted in at least one character being inserted or deleted.

Second, Baaijen and colleagues (2012) only include the operations before the
continuation of text production. However, as we argued above, we consider that
(part of) the following text production should also be considered as part of the revi-
sion event, as this text production might be used to replace the deleted text.

Revision and insertion bursts

Another concept that has often been used to refer to describe interruptions of text
productions is bursts. The concept of bursts originates from studies on handwrit-
ing (written language bursts), referring to periods of uninterrupted text production.
Specifically, a burst is defined as text production terminated by pauses longer than
two seconds (P-burst), or text production terminated in an evaluation, revision, or a
grammatical discontinuity (R-burst; Kaufer et al., 1986).

In typing, bursts are often referred to as sequences of text production bound by
interruptions and pauses: interkeystroke intervals longer than two seconds. In addi-
tion, the type of burst is not only defined based on the nature of the interruption at
the end of the burst, but also based on the nature of the interruption at the start of
the burst. Baaijen and Galbraith (2018) identify three types of bursts: P-burst, bursts
that both start and end with a pause; R-bursts, bursts that end with a revision at the
leading edge, and I-bursts, bursts that start with a mouse or arrow-key movement
away from the leading edge, followed by text production. The R-burst and I-burst are
especially related to our current conceptualization of a revision event, as the R-burst
can be seen as a pre-contextual deletion, and the I-burst as contextual insertions.

In the current approach we combine R-bursts and I-bursts into one set of revi-
sion events consisting of both insertions and deletions (which can later be further
categorized), where each revision event starts with a revision (rather than ends in a
revision, as in an R-burst). In this way, we can identify the content of the revision,
for both insertions and deletions.

S-notation

A third approach to identify revisions within text production is the S-notation
(Eklundh & Kollberg, 2003; Kollberg, 1996; Severinson—Eklundh & Kollberg,
2001). In line with our approach, the S-notation focuses on both insertions and dele-
tions. Specifically, the S-notation transforms the entire writing process to a num-
bered representation of all insertions and deletions, providing a structured overview
of the spatial and temporal location of all insertions and deletions within the writing
process. The sentence below shows an example of the S-notation for the production
of the following short text: “This is an example of the S-notation. It shows insertions

@ Springer

Automated extraction of revision events from keystroke data

and deletions.” This is {an example of}'1? the S{-}’notation. I!

It [consists of] 31® shows insertions and deletions.

Here, {...} indicates an insertion, [...] a deletion, and | a break, or the spatial
location in the writing process where the insertion or deletion with the correspond-
ing number started. The numbers indicate the temporal order of the revisions.
Within the example sentence, there are three revisions. First, ‘an example of’ is
inserted after the first sentence is finished. Directly thereafter, a hyphen was added
in S-notation. Finally, ‘consists of” is replaced by ‘shows’, right on the spot. This
indication of both the spatial and temporal location of the revision event is very use-
ful as it can be used to identify episodes of revisions, such as sequences of revisions
in previously written text (e.g., the first and the second revision in the example).

Our analysis of revision events is different in two ways. First, the S-notation pro-
vides partial information on when the revision ends. The approach indicates the
beginning and end of an insertion (denoted by the opening and closing bracket,
respectively), but limited information is provided on the end of a deletion. The start
of a new revision (insertion or deletion) may be considered as the end of the pre-
vious revision, but this might also include some new text production, or produc-
tion that is not meant to replace the deleted text. Second, our analysis results in a
table format rather than a (hierarchical) string. The table format is more reliable,
as S-notation can break with long texts, when the hierarchy becomes too compli-
cated (e.g., revisions embedded within revisions, embedded within revisions, etc.).
In addition, researchers are more familiar with the table format, making it easier to
use and implement.

Revision analyses in keystroke logging tools

Keystroke logging tools also provide built-in approaches to identify revisions. Most
keystroke logging tools solely focus on the identification by a backspace or delete
key press (Lindgren & Sullivan, 2006a). Two tools provide some more extensive
revision analysis: JEdit and Inputlog (Lindgren & Sullivan, 2006a; Van Waes et al.,
2012). Both JEdit and Inputlog include the S-notation (as described above). In addi-
tion, Inputlog provides a so-called revision matrix (Leijten & Van Waes, 2013). This
revision matrix provides a linear representation of all insertions and deletions in a
table format, making it relatively easy to implement by researchers. The revision
matrix includes a row per deletion, insertion, and normal text production. For each
of these types, the matrix lists the content (characters deleted, characters inserted, or
characters typed, respectively), the number of edits, start and end time of the action,
the duration, the position of the first and last character of the action, and the number
of characters and words produced or deleted (Leijten & Van Waes, 2013; Leijten
et al., 2019).

The revision matrix provides a clear indication of the start and end of an inser-
tion, as well as the start of a deletion. In this sense, the revision matrix can be con-
sidered the most similar approach to our current approach. However, although the
revision matrix indicates the text production after the deletion, it does not specify
which part of the text production following a deletion should also be considered as

@ Springer

R. Conijn et al.

part of the revision event. In addition, the revision matrix in Inputlog is dependent
on the position of the first and last character of the action, as provided by Microsoft
Word. Especially in longer texts with many non-linear transitions, the position of the
characters might be inaccurate by one or two characters. Although this is not a prob-
lem for many usages of the revision matrix, this would be a problem for our intended
application to use natural language processing, for example to identify the scope of
arevision. A displacement of just a single character would break several natural lan-
guage processing algorithms, as the word cannot be correctly identified anymore.
Therefore, the current approach is tool-independent, allowing the researcher to opt
for different word-processing tools, based on a trade-off between high ecological
validity (as in e.g., Microsoft Word) and high accuracy (as in e.g., Notepad).

Current approach

Within the current approach, we define a revision event as an external revision,
which starts from a pre-contextual deletion or a contextual deletion or insertion, and
ends with normal text production or a new external revision. We consider external
pre-contextual insertions as new text production at the leading edge (cf. Lindgren
& Sullivan, 2006a). The revision event is first approximated using a rule-based
algorithm, resulting in a revision candidate. Thereafter, human annotators indicate
whether the revision candidate is indeed a revision event, and annotate where the
revision ends. This rule-based approximation significantly speeds up the manual
annotation process, as it helps the annotator directly focus on potential revision
events. After the manual annotation, we use the refinements from the manual anno-
tations to automatically extract revision events using machine learning.

Rule-based approximation of revision candidates

Start of the revision candidate. The start of a revision candidate is indicated by a
pre-contextual deletion or a contextual insertion or deletion. The start of a pre-con-
textual or a contextual deletion is identified in the keystroke data when a keypress
results in a decrease of the text length. Note that within this approach, it does not
matter whether the deletion is caused by pressing the backspace or the delete key, or
even by a selection of a text block that is followed by a keypress.

The start of a contextual insertion is slightly harder to define, as we need
to distinguish contextual from pre-contextual insertions. We define a pre-con-
textual insertion as a text insertion at the leading edge of the text. The leading
edge is defined as the location in the text where internal concepts and forms
are transcribed and put into text (Lindgren et al., 2019). The leading edge is
often operationalized as the location after the last character of the text that is
produced so far. However, this operationalization fails when there are invisible
characters at the end of the text (Lindgren et al., 2019), or when there are words,
sentences or even full sections at the end of the text that are not used in the ana-
lyzed writing session (e.g., a bibliography section). This is especially a problem

@ Springer

Automated extraction of revision events from keystroke data

for writing spread out over multiple sessions. Therefore, in the current method,
we flag all deletions and all insertions away from the current cursor position
(point of inscription) as revision candidates. Then, manual annotation is used to
indicate whether this insertion is indeed a true revision. This manual annotation
is in turn used to improve the indication of the start of the revision event.

In summary, the start of a revision candidate is approximated using a rule-
based algorithm based on two rules. Specifically, a revision candidate starts if
one of the following takes place: (1) The writer begins deleting characters in the
text (pre-contextual or contextual deletion), or (2) the writer moves the cursor to
a different location in the text and then begins producing new characters (con-
textual insertion).

End of the revision candidate. The end of a revision is indicated by the start
of normal text production or the start of a new revision event. The start of a
new revision event can be easily inferred using a rule-based algorithm. However,
the point where a pre-contextual or contextual deletion is followed by normal
text production not directly caused by the revision, is not trivial to automatically
identify. For this, inferences need to be made based on the deleted text and the
text typed after the deletion. Therefore, manual annotation is used to indicate the
point where a revision ends and is followed by normal text production.

The end of the revision candidate is approximated to be at a point when the
writer initiates a new revision event candidate (with the rules discussed above).
Thereafter, manual annotation is used to update the end of the revision. The
revision event candidate is a “placeholder” approximation of very limited utility,
because it assumes that the entire process of text production is split into non-
intersecting revision candidates without any fluent text production (i.e., non-
revision behavior) in between. This assumption is, of course, not true. Below
we discuss how the true end of revision events can be annotated manually and
automatically.

Manual annotation of revision candidates

The output of the rule-based algorithm described above is a table of revision can-
didates that can be used for the manual annotation process. The table contains one
line per revision candidate. In addition, the keystroke ID at the start of the revi-
sion candidate, the deleted characters, and the typed characters are provided to aid
the manual annotation in the following step (see the first four columns in Table 1).
The R code for this rule-based algorithm creating the manual annotation table can
be found at https://github.com/RConijn/RevisionEvent The code has been specifi-
cally tailored to Inputlog data (Leijten & Van Waes, 2013), but can be applied to
any other keystroke logging program that collects for each key pressed the key type,
position in the document and current document length. A manual annotation guide
is available from a previous study (Conijn et al., 2021), which includes guidelines
and examples on the annotation of a true revision and revision end as well as addi-
tional revision properties which are not discussed in the present paper. The part of

@ Springer

https://github.com/RConijn/RevisionEvent

R. Conijn et al.

pajejouue AJ[enUBW St UOISIAQI Y} JO PUS J) SIJOUIP , PUS UOISIAY,, UT (/) YSB[S PIBMIOJ],

9)LIM 10U OP T /sAepa SOX Q)1IM J0U Op | sAepa no 19 ¥

1 owog /swaod pue sjoaou SO 1} owog ‘swaod pue s[oAou Kep A19A9 LT €
Kep A10A9 /oymam SO Kep K19A9 9)Im JoLIM L 4

ON UM T 0 I

Joquinu

PUS UOISIASY (N/A) uorsiaay s1a10eIeyd padAy, SI91ORIBYD PIAOWY I Aonsky] QJEPIPURD UOISIATY

S9JEPIPUED UOISIAAI PI)BIouUE In0j Jo 9[qe) ojdwexy | ajqel

pringer

As

Automated extraction of revision events from keystroke data

the guide detailing the annotation of a true revision and the revision end is repro-
duced in Appendix A.

Automated identification of revision events

As manual annotation is time-consuming, we complement the manual annotation
approach with an automated approach. Here, we train a machine learning algorithm
on an existing, manually annotated dataset to identify whether the revision candi-
date is a true revision event and to indicate where the revision ends. The machine-
learning algorithms may in turn be used to automatically identify revision events in
a new dataset from the rule-based approximations (without manual annotation). The
application of the algorithm on a new dataset is described as a case study. The R
code for running these machine-learning algorithms can be found at https://github.
com/RConijn/RevisionEvent

Extracting revision events
Manual annotation of revision candidates

To refine the rule-based approximations defined in the “Rule-based approximation
of revision candidates” section, four human coders manually annotated true revision
events from the automatically extracted revision candidates. For each true revision
event, the end of the revision was also manually annotated. For this, the revision
candidate table (as shown in Table 1) was used in combination with a visual replay
of the writing process and an overlaid eye fixation marker to explore the revision
event in the context of the writing process. The manual coding was conducted as a
part of a previous study, described in detail in (Conijn et al., 2021).

For the manual annotations, a dataset of keystroke and eye fixation data (using
Gazepoint GP3 devices with 0.5-1 degree of visual angle accuracy and a 60 Hz
sampling rate) was sampled from a large database yielded by the CyWrite project
(Chukharev-Hudilainen, 2019; Chukharev-Hudilainen et al., 2019; Feng et al., 2016;
Ranalli et al., 2018). The dataset contained texts produced by 65 students writing
with CyWrite, a web-based word-processing tool. These students came from dif-
ferent backgrounds (graduate and undergraduate first-language writers and sec-
ond-language learners) and wrote to different tasks (abstract, argumentative text).
Specifically, the dataset included 20 texts from native graduate students, writing
150-250-word abstracts of a research article; 20 texts from native undergraduate
students, writing an argumentative task adapted from the Test of English as a For-
eign Language; and 25 texts from learners of English as a second language (most
likely undergraduate students), also writing an argumentative task adapted from the
Test of English as a Foreign Language. For these 65 participants, a total of 7,120
revision event candidates (M =110, SD=53 per participant) were indicated based
on the rule-based algorithm.

@ Springer

https://github.com/RConijn/RevisionEvent
https://github.com/RConijn/RevisionEvent

R. Conijn et al.

For each revision candidate, one of the four annotators indicated whether this
was indeed a revision (the fifth column in Table 1). For 15 randomly chosen texts,
all revision candidates were annotated by two annotators (in randomized pairs) to
calculate inter-rater reliability metrics. On average, 93% of the candidate revision
events were indicated as a true revision (Krippendorff’s a=0.96; percentage agree-
ment=99%). In addition, the annotators annotated where the revision ended, indi-
cated with a backslash in the typed characters (see sixth column, Table 1; Krippen-
dorff’s «=0.74; percentage agreement=_81%). Thus, a true revision and the revision
end could be manually annotated with good reliability (Krippendorff, 2004).

Automated identification of true revision events

To predict true revision events (out of revision candidates), binary classification
models were trained on the keystroke variables obtained from the annotated dataset.
In total, 19 predictor variables were collected that could be automatically extracted
from the keystroke data. The predictor variables are related to the position and time
of the start of the revision event, the duration of the revision event, the number of
characters inserted and deleted, and the starting point of the revision. For an over-
view of all the predictor variables, see Appendix B.

Three different machine learning models were trained using the ‘caret’ R-pack-
age (Kuhn, 2019). Specifically, random forests and support vector machines with a
radial kernel were chosen as they generally work well on continuous data. In addi-
tion, a decision tree model was used to determine whether a simpler, more intuitive
model would perform similarly well. Majority class prediction (93% is annotated
as a true revision event) was used as a baseline. All predictor variables were cen-
tered and scaled as a pre-processing step. Parameter tuning was done via tenfold
cross-validation, optimizing for the largest F;-score. Accuracy, precision, recall, and
F,-score on the ten folds are presented as evaluation metrics.

The outcomes of the machine learning algorithms are presented in Table 2. All
models outperform the majority class baseline, indicating that the models work bet-
ter than just predicting every revision candidate as a true revision event. The deci-
sion tree and the random forest proved to be the best algorithms, with similar per-
formances (F;-score=0.966 and 0.963, respectively). Both the decision tree and
random forest models show high precision, indicating that almost all predictions of
true revision events were indeed a revision event (only a few false positives). The

Table 2 Performance of the prediction of a true revision event

Accuracy (%) Precision Recall F,-score
Support vector machine 97.1 774 (.059) 771 (.061) 771 (.047)
Random forest 99.5 .988 (.020) 940 (.036) 963 (.024)
Decision tree 99.6 998 (.007) .937 (.036) 966 (.018)
Majority class (baseline) 93.3 933 1.000 965

Means across the 10 folds are reported, with standard deviations in parentheses. Bold indicates the high-
est score

@ Springer

Automated extraction of revision events from keystroke data

Fig. 1 Decision tree for the pre- number of
diction of a true revision event deletions < 1

no yes

number of characters
from the leading edge

<1
no yes
True
revision
event
True No
revision revision
event event

recall was slightly lower, indicating that some revisions were still missed (false neg-
atives). As the decision tree algorithm is also the easiest to interpret, we opted for
the decision tree as our final model.

We further inspected this algorithm to get more insights into the workings of the
model. First, the confusion matrix showed that although the model worked fairly
well, the model resulted in slightly more false positives (non-revisions indicated as
revision; 0.40%), compared to false negatives (0.01%). Second, the plot of the deci-
sion tree (see Fig. 1) showed that the model was relatively simple, based on only two
rules: if the number of deletions was lower than 1 (i.e., there were no deletions dur-
ing the candidate revision event) and the number of characters from the leading edge
was lower than 1, it was not a true revision event, otherwise, it was a revision event.
That is, if the writer started inserting text at the leading edge, it is not considered as
a revision event. Combined with our rule-based approximation, we can now update
the definition of a revision event as follows: A revision event starts if one of the fol-
lowing takes place: (1) The writer begins deleting characters in the text, or (2) the
writer moves the cursor to a different location in the text, except for the leading edge
(excluding invisible characters), and then begins producing new characters. Hence,
the updated rule excludes all insertions that are added at the end of the text, as these
are seen as new text production. Thus, for the automatic extraction of true revision
events, we do not need a complex machine learning algorithm, but can reach suffi-
cient performance with a rule-based algorithm.

Automated identification of revision end

For the end of the revision, machine learning algorithms were trained on key-
stroke and eye-tracking variables obtained from the annotated dataset. Here,
we only focused on the revision candidates that were annotated as true revi-
sion events (6,641 revisions). To predict the location of the revision end (i.e.,
the point where the writer resumed fluent outputting or initiated a new revision),
there are two potential approaches. The first approach is predicting the length of
the revision (regression); e.g., in Table 1, revision number 2, the revision length
is five characters. The second approach is predicting for each keystroke whether

@ Springer

R. Conijn et al.

the revision ended there (binary classification). As binary classification gener-
ally results in higher accuracy compared to regression, we opted for the second
approach. For this, the annotated table was collapsed into a dataset showing a
keystroke per row. For each keystroke, the algorithm indicated the probability of
the specific keystroke being the final keystroke of the revision, that is, the revi-
sion end. Here, any probability equal to or higher than 50% might be considered a
revision end. As there is only one revision end per revision number, the keystroke
with the highest probability of being a revision end is selected for each revision
number.

For the prediction of revision end, several machine learning algorithms were
trained on keystroke data only and keystroke data in combination with eye-track-
ing data. In this way, we could determine the added value of using eye-tracking
for the prediction of revision end. In total, 37 predictor variables were collected
that could be automatically extracted from the keystroke data and the eye-track-
ing data (see Appendix B). The same 19 predictor variables from prediction start
were included (Table 2). In addition, 12 keystroke and 6 eye-tracking variables
related to a specific keystroke were added. These consisted of information related
to pauses between keystrokes, the string distance (restricted Damerau-Leven-
shtein distance; Van der Loo, 2014) between the deleted and the typed characters
(so far), eye fixations, and saccades.

Similarly to the prediction of a true revision event, three machine learning mod-
els (random forests, support vector machines with radial kernel, and decision trees)
were trained on the datasets with only keystroke features, and with keystroke and
eye-tracking features combined. As baseline, we used the simple rule where the revi-
sion end was the keystroke where the number of typed characters (so far) was equal
to the number of deleted characters (or the final keystroke if the number of typed
characters was always lower than the number of deleted characters). The dataset
was split into 70% of the files for training, and 30% of the files for testing. In other
words, none of the revisions from a single user were available in both the training
and the testing set. All predictor variables were standardized as a pre-processing
step. As there were many missing variables for the eye-tracking data (i.e., not every
keystroke was preceded by a fixation or saccade), an additional variable was added
to indicate that there was no eye data present for that specific keystroke and all miss-
ing values were set to zero. Parameter tuning was done via tenfold cross-validation,
optimizing for the largest F,-score. Then, the best model was run on the test set, and
the keystroke with the highest confidence score was selected as revision end. Accu-
racy (exact and one off), precision, recall, and F;-score on the test set are presented
as evaluation metrics.

The outcomes of the machine learning algorithms are presented in Table 3. All
models, except the decision tree models, outperformed the baseline. The support
vector machines slightly outperformed the baseline with 43/47% of the revision
end predicted at the exact location of the revision end, and 60/65% within one key-
stroke from the revision end, for keystroke and eye-tracking data or keystroke data
only, respectively. The revision was on average 3.5-3.6 (SD=9.0) characters away
from the actual revision end, indicating that the support vector machine models,
even though they outperformed the baseline, were not very accurate. The random

@ Springer

Automated extraction of revision events from keystroke data

91095 1SYSIY AY) SAILIIPUT P[Og IS 159}) J0J pajiodal oIk $2100G

SS6° LE6 vLE (99 67C 0LS 09¢’ - (ouryaseq) pajefop = pad£p,
806 LEY 166° 691V ozy' 74 oo+ Koy 931 UOISI9(
L86" 986° L86’ #9881 6C8 vIL oo + Koy 15210§ WopUEY
TLe Le €L6 06)9¢ 109 454 ok + Koy suryoew 103094 J1oddng
806’ LEY 166° 699 TY 0Ty’ ove Kot 991) UOISTOA
986’ 986° L86" (99)8°1 0€8’ €I 1) 15910F WOpUEY]
SL6 vLE SLE 06 se S¥9° cLY Koy duryoew 103094 110ddng
asm
Q100s-1 g [eooy uoIsIoRI Aeme S1eyd) AovIndoy JJo Quo KorInody JoBX9 AoRINOOY 198 2IneaJ

PUud uoIsIARI Jo uonorpaid ay) Jo souewWIOjIRd € 3|qel

pringer

As

R. Conijn et al.

Fig.2 Decision tree for the ~ number of
prediction of revision end (note inserted words
so far > 1

that accuracy was rather low)

Keystroke is deletion

yes no
No
revision
end
. number of inserted
Duration > 198ms characters (total) > 1
yes no yes no
No Revision No Revision
revision end revision end
end end

forest models proved to be the best performing models, with 71% of the revision
end predicted at the exact location of the revision end, and 83% of the revision end
predicted within one keystroke from the revision end. On average, the revision end
was predicted 1.8 characters away from the actual revision end, with a quite large
standard deviation of 6.4—6.6 (depending on the feature set). This indicated that even
though the prediction is quite accurate, at some points the prediction is still rather
far away from the actual revision end.

Interestingly, even though the baseline can be considered a simple decision tree,
the decision tree models did not outperform the baseline. In fact, the decision tree
actually performed less well than the baseline. This discrepancy might be explained
by the setup. In our setup, the decision tree predicts for every keystroke whether it
is the revision end, where the keystroke with the highest probability will be chosen
as the actual revision end. In contrast, the baseline only considers a single keystroke
as revision end (i.e., the keystroke where the number of typed characters are equal
to the number of deleted characters). In addition, the decision tree model does not
directly compare the input features, while the baseline model does. Within the deci-
sion tree (Fig. 2), the number of typed and deleted characters are important, as they
do show up separately in the model. However, their values are not compared. At
the root of the tree, it is shown that if the number of inserted words is larger than 1,
there is no revision end. This indicates that the tree always predicts the revision end
to be within or after the first word typed, resulting in only revisions of at most one
word. This might be one reason why the decision tree performs poorly. Furthermore,
within the first word, the revision end is predicted immediately after a deletion if the
duration of the revision event is very short (< 198 ms), otherwise the revision end is
predicted if the number of inserted characters is equal to 1. Combined, this shows
that this decision tree model is too simple to accurately predict the revision end.

@ Springer

Automated extraction of revision events from keystroke data

For almost all models, the performance was similar for the feature set with only
keystroke data, compared to the feature set with both keystroke and eye-tracking
data. This indicates that the eye-tracking data had little additional value on top of the
keystroke data in predicting the revision end. This might indicate that the eyetrack-
ing with Gazepoint GP3 devices was not accurate enough for the current purpose,
or might indicate that eye tracking has limited added value in predicting revision
events. Hence, logging eye tracking data may not necessarily be needed for apply-
ing this model in future work. For the support vector machines, the model with only
keystroke data even outperformed the model with both keystroke and eye-tracking
data. This might indicate that the model with both keystroke and eye tracking data
was too complex, consisting of too many features, potentially resulting in overfitting.

To gain more insight into the errors made by the best performing model (random
forest), we took a closer look at the cases where the prediction was very far away
from the revision end. Here, it was shown that the largest errors were made when
the model predicted a rather small revision (e.g., single character), while the manual
annotation showed a large revision (e.g., revision of a full sentence) or vice versa.
An example of three revisions made by participant 43 is shown in Table 4. Here,
at revision number 51, the revision end is manually indicated after “I”, arguably
because the writer forgot to capitalize the “i”. The algorithm predicts the revision
end only at the end of that sentence, indicating that the revision might have been
larger. This might be true if, for example, the writer had planned to write (“Two
summers ago in Ireland”), later on revised to (“Two summers ago I took ...”); how-
ever, the revision to capitalize the “i” might be more plausible here. For the next
revision (revision number 52), it is somewhat more complex. Here, the manual
annotator indicates the revision ends after the writer has replaced “W” at the start of
the sentence by “The”. Here the algorithm again predicts that the revision ends after
the end of the sentence, indicating that the revision is a sentence revision rather than
a word revision. This example already shows that the errors might sometimes also
be explained by cases which were manually also hard to define.

To gain more insight into the models and the added value of the eye-tracking
data, feature importance was calculated for the random forest model with the key-
stroke and eye-tracking data (see Fig. 3). Two of the most important features for
the model were features related to the full revision event (duration and number of
inserted characters), as indicated by the rule-based approximation. Thereafter, sev-
eral features were important related to specific keystrokes within the revision, such
as the number of inserted characters and words so far, interkeystroke interval, and
the string distance between the typed and deleted characters. The features related to
eye-tracking showed limited importance, with fixation duration and saccade length
being only the twelfth and fourteenth most important predictors, respectively. This
corroborates with previous findings that the addition of eye tracking data showed
limited improvement in the models, on top of the keystroke data. If we compare the
features with the prediction of revision end, we can see that none of the predictors
for a true revision (number of deleted characters and number of characters from the
leading edge) are important for the prediction of revision end. Hence, a true revision
event and a revision end show distinctive properties.

@ Springer

R. Conijn et al.

(4%

din \omu

2muos oy} dois uou J1 0} paud)sY|

I \'wnge mau B y)Im JNo dWod pey spueq
Q)1I0AB] AW JO QU0 3J9[| 210J0q Aep oy,
M \'PuefaI] 03 din Aep uo) & j00) |

din \omu

muad oY) dojs uou J1 03 Pau)SI|

] "WNq[e MU € YIIM JNO SWOD PeY Spueq
9)LIOAR} AW JO QUO 3J9] [210§q Kep \oyL,
M puefaI] 01 din Aep ud} ® 00) \[

dim eamu amus €S

2mued ay) dojs uou 1 03 paud)sI|
] ‘wnge MU B Y)IM JNO SWO0D PEY SpUBq
9)110AB) KW JO QUO 1J9] | 10joq Kep oy, M s
M "puepai] 0y din Aep uo) e j00) | 1 IS
1 05 S1IoWwWnS omJ,

S19)
-ORIRYO UI
Q0UARPIQ

(wyyrioS[e) pus UOISIASY

(Jenuewr) pua UOISIAIY

SI9)oRIRD
s1o)oeIeyd padA], poAOWISY OU "ARY

(PUQ UOTSIART SJBIIPUT \) BIEP SUD[ORI) 940 pue 9Y0NSAY [JIM [9POW IS2I0J WOPUERI) UTY)IM PUS UOISTAI Jo uonorpaid oY) 10J opew s1o11d (agre) jo ojdwexy ¢ 3|qe]

pringer

As

Automated extraction of revision events from keystroke data

Duration

Number of inserted characters

Number of inserted characters so far
Interkeystroke interval

String distance typed and deleted

Number of inserted words so far

Start interkeystroke interval q

Time revision start §

Revision number

Number of inserted words |

Number of characters produced from the start
Number of characters from start of product -
Fixation duration -

Keystroke is deletion

Saccade length

Keystroke is character

Variable

o
N
23
<)
o
~
23
o
1<)

Importance

Fig. 3 Feature importance of the prediction of the revision end with the Random Forest algorithm and
the keystroke and eye data. Note. Importance indicates relative importance to the most important feature;
only the 16 most important features are shown

Proof of concept case study

As a proof of concept, we ran the best performing models for the prediction of a
true revision event and the revision end on a new dataset. Here, we aim to show
how the algorithms can be applied to a new (unseen) dataset and how this could
be used to compare revision events across groups. Here, we compare the revision
events for students writing in their first language (L1) versus their second language
(L2). The dataset was collected for a previous study (Chukharev-Hudilainen et al.,
2019) and consisted of keystroke and eye tracking data from 24 undergraduate stu-
dents at a private university in Turkey writing two essays. One of the essays was
written in Turkish (L1), and the other was written in English (L2), with prompt-to-
language assignment and task order counterbalanced. The prompts for both essays
were adapted from the Test of English as a Foreign Language (TOEFL). Participants
were allowed up to 40 min to write each essay, but they could finish writing earlier
if they were satisfied with their essay. There was no minimum or maximum length
requirement for their texts.

First, the rule-based algorithm was run to determine the revision candidates. In
total, 5326 revision candidates were identified within the 48 essays. Thereafter, the
decision tree model was used (with the updated revision event rules), to determine
the true revision events. This resulted in a total of 4,936 (93%) true revision events.
A similar percentage was found for the manually annotated dataset, where also 93%
of the revision candidates were manually annotated as a revision (“Manual annota-
tion of revision candidates” section). Second, for all true revision events, the revi-
sion end was indicated, using the best performing algorithm from the “Automated
identification of true revision events” section: the random forest model containing
both keystroke and eye tracking data.

@ Springer

R. Conijn et al.

Inserted

Language

. L1_Turkish
. L2_English

Deleted

repeesd] _
0

2 4 6 8
Characters

Mean number of characters

Fig.4 Average revision length for insertions (inserted) and deletion revisions (deleted and replaced) in
L1and L2

subword-level insertion
subword-level deletion
subword-level substitution 4

word-level insertion |
Language

. L1_Turkish
- L2_English

word-level deletion

Revision type

word-level substitution

above word-level insertion

above word-level deletion

above word-level substitution |

20 40
Number of revisions

o

Fig.5 Number of revisions per revision type for L1 and L2

The automatically extracted revision events allow us to compare the revisions
across the two languages in our dataset (L1 and L2). The results showed that the
participants made slightly more revisions in L1, Turkish, with a large variance in
the number of revisions (M=106, SD=73), compared to L2, English (M=99,
SD =40). The lower number of revisions in L2, might be related to the fact that the
participants also wrote less in L2 (M =1458, SD =518 characters) compared to L1
(M=1871, SD =847 characters).

The length of the revision events (including the inserted characters for insertions and
the deleted and replaced characters for deletions) was similar for students writing in L1
M=9.7, SD=12.4) and L2 (M=9.1, SD=10.3). In both L1 and L2, students’ inser-
tions were on average seven to eight characters long, while their deletions consisted of
three to four characters, which were replaced by a mean of six characters (see Fig. 4).

With a clear indication of the revision start and revision end, we could use
additional rules to identify how specific properties of these revisions, such as the
scope of the revisions, differed between L1 and L2. Specifically, for each revision
event, it was indicated whether the scope of the revision was below word-level (at

@ Springer

Automated extraction of revision events from keystroke data

most three characters within a single word), at word-level (at most two words), and
above word-level (more than two words). In addition, the action of the revision was
indicated: an insertion, a deletion, or a substitution. The resulst showed only some
small differences in the type of revisions made (see Fig. 5). Subword-level revi-
sions were the most frequent revisions in both L1 and L2, with slightly fewer sub-
word-level substitutions in L2, compared to L1. In addition, the participants made
slightly more above word-level insertions in L2 compared to L1. To conclude, this
case study shows that the automated revision event extraction could be used to pro-
vide more (and automated) insights into the revisions made in a new dataset.

Discussion

In the current paper we provided a method to extract the full process of each revision
event within a keystroke log. This full process is based on two characteristics: the revi-
sion start and revision end. In contrast to previous approaches (e.g., only focusing on
deletions; Van Waes et al., 2014), we adopted a rather broad definition of revisions,
which included revisions started by pre-contextual and contextual deletions, as well as
contextual insertions. In addition, the revision does not end at the last delete keystroke
(cf. events, Baaijen et al., 2012; insertion and revision bursts, Baaijen & Galbraith,
2018; or S-notation, Kollberg, 1996). Rather, the revision ends when the cognitive
process of making a revision has been finished. The approach presented consists both
of a rule-based approximation which can be used for manual annotation, as well as an
automated extraction. The rule-based approximation with manual coding is generally
more accurate compared to the automated approach, but still needs relatively time-
intensive manual annotation (although the rule-based approximation already simplifies
the process to a large extent). In contrast, the automated approach is much faster, but
requires some knowledge of scripting (e.g., in R) and machine learning. By providing
both a manual and an automated approach, with accompanying scripts, we envision
this approach can be easily adopted by other researchers.

The automated approach showed that the true revision event could be automatically
detected via a decision tree algorithm with high accuracy. Hence, for the prediction
of a true revision event, no complex machine learning models are needed, but a sim-
ple rule-based algorithm already shows high accuracy. The prediction of the revision
end showed to be slightly more complex. The random forest model proved to result
in the highest accuracy, with 71% of the revision end predicted at the exact location
of the revision end. The predicted revision end was on average 1.8 characters away
from the actual revision end, with a standard deviation of 6.4 characters. This indi-
cates that several predictions were still very far away from the actual revision end.
Further inspections of the errors showed that these often consisted of cases where a
character or word revision was made, while the algorithm predicted the revision of a
full sentence (or vice versa). This can be explained by the fact that it is sometimes dif-
ficult to annotate revisions in these cases. If only the first character of a word is typed,
it is hard to infer what the writer intended to write before they started the revision.
This can also be seen in the lower inter-rater reliability for the prediction of revision

@ Springer

R. Conijn et al.

end (Krippendorff’s a=0.74). Data triangulation (e.g., concurrent think-aloud or retro-
spective stimulated recall) might result in a better understanding of the intended words
and the full length of the revision, making for a more reliable manual annotated data-
set to train the machine learning algorithms. This could, in turn, also provide more
insight into why the revision occurred (Wengelin et al., 2019).

The case study showed that the current models can be applied to a new data-
set, allowing for automated in-depth analyses of revision events, such as the level
or scope of the revision. In future work, these levels of revisions could be combined
with the spatial location of the revision in the text as well as the temporal location of
the revision in the writing process, to provide a full overview of the where and when
certain types of revisions are being made.

Limitations

The current study is limited in two ways. First, for the prediction of a true revi-
sion, we aimed to use the manual annotation to improve upon the operationaliza-
tion of the leading edge (the last character or the text produced so far). Here, we
argued this operationalization would fail if there are invisible characters at the end
of the text (Lindgren et al., 2019), or when there is trailing text which is not used in
the analyzed writing session (e.g., a bibliography section). Hence, the updated rule
focused on any change at the point of inscription, except from text insertions at the
leading edge (excluding the invisible characters). Especially in more complex revi-
sion operations, including and reordering and restructuring, this approach results in
many (smaller) revision events, as opposed to a single reordering revision. In addi-
tion, when a larger revision is interrupted by a smaller revision, the revision will be
split into two revision events. Future work should determine how the timing and the
spatial location of the revision event can be used to identify sequences of related
revision events (or revision episodes; Kollberg, 1996).

A second and related limitation is that the manually annotated dataset that was
used to train the prediction algorithms, consisted of relatively short texts, collected
within short writing sessions. Hence, most of the revisions were also relatively small
in size (i.e., many spelling and grammar revisions). Accordingly, the current model
for predicting the revision end might be too much tailored to short revisions. The
prediction models might perform more poorly on new datasets which originate from
longer writing sessions with extensive reordering and restructuring. Hence, future
work should test the model on additional datasets that are more diverse in the types
of revision to determine how well the models generalize to other types of text.
Despite the fact that the models might generalize less well toward other types of
texts, we do feel the current approach is valuable in two ways. Currently, most texts
analyzed in writing research consist of short, single session writing tasks. Therefore,
the current automated approach will be useful in the majority of writing studies. In
addition, for the longer, multi-session writing tasks, the rule-based approximation in
combination with the manual annotation still provides a useful alternative.

@ Springer

Automated extraction of revision events from keystroke data

Implications for writing research

In the current paper, we showed several ways in which a data-driven approach can aid
theory-driven writing research. First, we showed that machine learning can be used to
automatically extract full revisions from keystroke data without time-intensive manual
annotations needed. Although the current system only works for Inputlog and CyWrite
data, it can be easily adapted to other keystroke logging and eye tracking applications.
In addition, the automatic annotation could also allow for the integration of revision
identification in real-time systems that automatically provide information on the writ-
er’s evolving writing process, such as writing dashboards or automated writing feed-
back systems (see e.g., Conijn et al., 2020; Ranalli et al., 2018).

Second, a data-driven approach can provide more insight into theoretical constructs
in writing. Specifically, we showed how the algorithms could provide more insight
into our definition of revision, or the underlying ‘rules’ used in manual annotations.
For example, for the prediction of a revision event, we showed that our initial defini-
tion could be improved by adding a single rule. In this way, data-driven approaches
could be used to shed light on constructs that are theoretically hard to define.

Third, with the case study we showed that by considering the full revision event,
rather than only the deletion, more information can be obtained about the nature of
the revision. This makes it easier to automatically classify different types of revi-
sions (see e.g., Conijn et al., 2019; Daxenberger & Gurevych, 2013), or to identify
sequences of revisions (see e.g., Kollberg, 1996). This could be used to either focus
on certain types of revisions, or to exclude certain types of revisions, which would
be of less interest or could confound the analysis. For example, by using the spatial
location of the revision event in combination with the number of characters deleted
or inserted, researchers might distinguish between editing and reviewing revision
events (cf. Flower & Hayes, 1980).

Lastly, the table of revision events can be used to provide a more condensed over-
view of the rather ‘detailed’” keystroke log, which can be used for a more insightful
unit of analysis (as opposed to a single keystroke) within sequential analyses to gain
insight into patterns of revisions (cf. Zhang et al., 2016).

Conclusion

The current paper provided a method to extract the full process of each revision
event within a keystroke log using both manual annotation and machine learning
algorithms. This showed how computational approaches can be beneficial in pro-
viding more detailed measurements of revision in writing. Specifically, the case
study showed that this approach can be used to automatically gain more insight into
the nature of revisions. In addition, inspection of the models resulted in additional
understanding of the underlying rules in our manual annotation. To conclude, this
illustrates how data-driven methods can aid theory-driven research.

@ Springer

R. Conijn et al.

Appendix A: Manual annotation of revisions (adapted from Conijn
etal.,, 2021)

Table 5 Annotation example for

o RID Removed Typed characters True revision Revision end
revision start [Y/N]

characters

to 0
2 to To hear myself 1 To/ hear myself

Table 6 Annotation example for revision end

RID Removed characters Typed characters True revision Revision end
1 I wriet I write every day 1 I write/ every day
2 Every day Novels and poems/ 1 Novels and poems!./

True revision [Y/N] The revision candidate is a true revision, unless it is just fluent
text production at the leading edge (cursor location). Values: 0,1. For an example see
Table 5.

For every revision candidate that is coded as a true revision you need to indicate
the revision end.

Revision end All characters typed up to where the revision ended and text produc-
tion started. If the writer only revised a character within a word, the revision ends at
the end of that word. If the writer revised a word/phrase/sentence to follow a new train
of thought, be lenient: put the revision end as far as possible. If there is already a slash
in revision end (because the writer typed a slash), please change the typed slash into
an exclamation mark (!). Values: put a slash where the revision ended (see Table 6).

Appendix B: Descriptive statistics of all predictor variables

See Tables 7, 8

@ Springer

Automated extraction of revision events from keystroke data

Table 7 Descriptive statistics for the variables used to predict a true revision event (N=7,120)

Type Variable Mean SD

Key Revision number 70.0 51.1
Number of characters from the leading edge (excl. invisible characters) 67.8 256.5
Number of words from the leading edge (excl. invisible characters) 11.7 449
Number of sentences from the leading edge (excl. invisible characters) 0.5 2.1
Number of characters from the start of the writing product 893.6 652.6
Number of characters produced up to start of the revision 891.2 652.9
Interkeystroke interval at start of revision (ms) 2325.8 7208.0
Time revision start (s) 579.0 458.2
Duration (ms) 3058.8 6394.4
Number of backspace keys 2.2 2.1
Number of deleted characters 33 7.3
Number of inserted characters 18.6 23.7
Number of deleted words 1.0 1.3
Number of inserted words 3.7 42
Number of deleted sentences 1.0 0.1
No change (same characters were deleted as were inserted) 7% 26%
Revision starts without movement of cursor 81% 39%
Starts with capital 10% 31%
Starts with space 1% 10%
Starts with period/comma 6% 24%

@ Springer

R. Conijn et al.

Table 8 Descriptive statistics for the keystroke-specific variables used to predict revision end
(N'=143,838 keystrokes)

Type Variable Mean SD

Key Number of deletion actions (total) 4.4 7.7
Interkeystroke interval (ms) 443.1 1961.1
Typed character is alphanumeric character 69% 46%
Typed character is capital 1% 11%
Typed character is space 14% 35%
Typed character is period or comma 1% 12%
Keystroke is deletion 14% 35%
Number of typed characters (so far) isequal to deleted characters 4% 19%
Typed text (so far) is equal to deleted text 2% 12%
String distance between typed and deleted characters 22.1 27.5
Improvement of string distance (compared to previous keystroke) 0.7 0.6
Number of characters inserted so far 21.5 28.4
Number of words inserted so far 42 4.9

Eye No eye data present 78% 42%
Fixation duration (ms) 478.4 350.7
Saccade length (number of characters) 2.3 99.6
Saccade is initiated at leading edge 27% 44%
Static eye movement (saccade length=0) 7% 26%
Progressive eye movement (saccade length > 0) 60% 49%
Regressive eye movement (saccade length <0) 8% 47%

Acknowledgements This material is based upon work supported by the National Science Foundation
under Grant No. 2016868. In addition, we would like to thank Bauke Conijn, Jens Roeser, and Luuk
Van Waes for their assistance in data cleaning and modeling and making the analysis compatible with
Inputlog.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

Baaijen, V. M., & Galbraith, D. (2018). Discovery through writing: relationships with writing processes
and text quality. Cognition and Instruction, 36(3), 1-25. https://doi.org/10.1080/07370008.2018.
1456431

Baaijen, V. M., Galbraith, D., & de Glopper, K. (2012). Keystroke analysis: reflections on procedures
and measures. Written Communication, 29(3), 246-277. https://doi.org/10.1177/0741088312451108

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/07370008.2018.1456431
https://doi.org/10.1080/07370008.2018.1456431
https://doi.org/10.1177/0741088312451108

Automated extraction of revision events from keystroke data

Chukharev-Hudilainen, E. (2019). Empowering automated writing evaluation with keystroke logging. In
E. Lindgren & K. Sullivan (Eds.), Observing Writing (Vol. 38, pp. 125-142). Brill.

Chukharev-Hudilainen, E., Saricaoglu, A., Torrance, M., & Feng, H. H. (2019). Combined deployable
keystroke logging and eyetracking for investigating L2 writing fluency. Studies in Second Language
Acquisition, 41(3), 583-604.

Conijn, R., Speltz, E. D., van Zaanen, M., Waes, L. V., & Chukharev-Hudilainen, E. (2021). A prod-
uct- and process-oriented tagset for revisions in writing. Written Communication. https://doi.org/10.
1177/07410883211052104.

Conijn, R., Van Waes, L., & van Zaanen, M. (2020). Human-centered design of a dashboard on students’
revisions during writing. Conference Proceedings of the 14th European Conference on Technology
Enhanced Learning, EC-TEL. https://doi.org/10.1007/978-3-030-57717-9_3

Conijn, R., van Zaanen, M., Leijten, M., & Van Waes, L. (2019). How to typo? Building a process-based
model of typographic error revisions. Journal of Writing Analytics, 3, 1.

Daxenberger, J., & Gurevych, 1. (2013). Automatically classifying edit categories in Wikipedia revisions.
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 578-589.

Eklundh, K. S., & Kollberg, P. (2003). Emerging discourse structure: Computer-assisted episode analy-
sis as a window to global revision in university students’ writing. Journal of Pragmatics, 35(6),
869-891. https://doi.org/10.1016/S0378-2166(02)00123-6

Feng, H. H., Saricaoglu, A., & Chukharev-Hudilainen, E. (2016). Automated error detection for develop-
ing grammar proficiency of esl learners. Calico Journal, 33(1), 49-70. https://www.jstor.org/stable/
calicojournal.33.1.49

Fitzgerald, J. (1987). Research on revision in writing. Review of Educational Research, 57(4), 481-506.
https://doi.org/10.3102/00346543057004481

Flower, L., & Hayes, J. R. (1980). The cognition of discovery: Defining a rhetorical problem. College
Composition and Communication, 31(1), 21-32.

Galbraith, D., & Baaijen, V. M. (2019). Aligning keystrokes with cognitive processes in writing. In E.
Lindgren & K. Sullivan (Eds.), Observing Writing (Vol. 38, pp. 306-325). Brill. https://doi.org/10.
1163/9789004392526_015

Horning, A., & Becker, A. (2006). Revision: History, theory, and practice. Parlor Press LLC.

Kaufer, D. S., Hayes, J. R., & Flower, L. (1986). Composing written sentences. Research in the Teaching
of English, 1, 121-140.

Kollberg, P. (1996). S-notation as a tool for analysing the episodic structure of revisions. European Writ-
ing Conferences, 1-15.

Krippendorft, K. (2004). Content analysis: An introduction to its methodology. (Second Edition). Sage.

Kuhn, M. (2019). caret: Classification and Regression Training (R package version 6.0-84). https://
CRAN.R-project.org/package=caret

Leijten, M., & Van Waes, L. (2013). Keystroke logging in writing research: Using Inputlog to analyze
and visualize writing processes. Written Communication, 30(3), 358-392. https://doi.org/10.1177/
0741088313491692

Leijten, M., Van Waes, L., & Van Horenbeeck, E. (2019). Inputlog Manual. https://www.inputlog.net/wp-
content/uploads/Inputlog_manual.pdf

Lindgren, E., & Sullivan, K. P. (2006a). Analysing online revision. In K. P. Sullivan & E. Lindgren
(Eds.), Computer keystroke logging and writing: methods and applications (studies in writing) (pp.
157-188). Elsevier.

Lindgren, E., & Sullivan, K. P. (2006b). Writing and the analysis of revision: An overview. In K. P. Sul-
livan & E. Lindgren (Eds.), Computer keystroke logging and writing: Methods and applications
(Studies in Writing) (pp. 31-40). Elsevier.

Lindgren, E., & Sullivan, K. P. (2019). Observing Writing: Insights from Keystroke Logging and Hand-
writing. Brill. https://doi.org/10.1163/9789004392526

Lindgren, E., Westum, A., Outakoski, H., & Sullivan, K. P. H. (2019). Revising at the Leading Edge:
Shaping Ideas or Clearing up Noise. In E. Lindgren & K. Sullivan (Eds.), Observing Writing (Vol.
38, pp. 346-365). Brill. https://doi.org/10.1163/9789004392526_017

Medimorec, S., & Risko, E. F. (2017). Pauses in written composition: On the importance of where writ-
ers pause. Reading and Writing, 30(6), 1267-1285. https://doi.org/10.1007/s11145-017-9723-7

Murray, D. M. (1978). Internal revision: A process of discovery. Research on Composing: Points of
Departure, 1, 85-103.

Olive, T. (2014). Toward a parallel and cascading model of the writing system: a review of research on
writing processes coordination. Journal of Writing Research, 6, 173—-194.

@ Springer

https://doi.org/10.1177/07410883211052104
https://doi.org/10.1177/07410883211052104
https://doi.org/10.1007/978-3-030-57717-9_3
https://doi.org/10.1016/S0378-2166(02)00123-6
https://www.jstor.org/stable/calicojournal.33.1.49
https://www.jstor.org/stable/calicojournal.33.1.49
https://doi.org/10.3102/00346543057004481
https://doi.org/10.1163/9789004392526_015
https://doi.org/10.1163/9789004392526_015
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1177/0741088313491692
https://doi.org/10.1177/0741088313491692
https://www.inputlog.net/wp-content/uploads/Inputlog_manual.pdf
https://www.inputlog.net/wp-content/uploads/Inputlog_manual.pdf
https://doi.org/10.1163/9789004392526
https://doi.org/10.1163/9789004392526_017
https://doi.org/10.1007/s11145-017-9723-7

R. Conijn et al.

Ranalli, J., Feng, H.-H., & Chukharev-Hudilainen, E. (2018). Exploring the potential of process-tracing
technologies to support assessment for learning of L2 writing. Assessing Writing, 36, 77-89. https://
doi.org/10.1016/j.asw.2018.03.007

Roeser, J., Torrance, M., & Baguley, T. (2019). Advance planning in written and spoken sentence produc-
tion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(11), 1983. https://
doi.org/10.1037/xIm0000685

Severinson—-Eklundh, K., & Kollberg, P. (2001). Studying writers’ revision patterns with S-notation anal-
ysis. In T. Olive & C. M. Levy (Eds.), Contemporary Tools and Techniques for Studying Writing
(Vol. 10, pp. 89-104). Springer.

Van der Loo, M. P. (2014). The stringdist package for approximate string matching. The R Journal, 6(1),
111-122.

Van Waes, L., Leijten, M., Wengelin, A., & Lindgren, E. (2012). Logging tools to study digital writ-
ing processes. In V. W. Berninger (Ed.), Past, present, and future contributions of cognitive writing
research to cognitive psychology (pp. 507-533). Psychology Press.

Van Waes, L., van Weijen, D., & Leijten, M. (2014). Learning to write in an online writing center: The
effect of learning styles on the writing process. Computers & Education, 73, 60-71. https://doi.org/
10.1016/j.compedu.2013.12.009

Wengelin, ;&., Frid, J., Johansson, R., & Johansson, V. (2019). Combining keystroke logging with other
methods: Towards an experimental environment for writing process research. In Observing Writing
(pp- 30-49). Brill. https://doi.org/10.1163/9789004392526_003

Zhang, M., Hao, J., Li, C., & Deane, P. (2016). Classification of Writing Patterns Using Keystroke Logs.
In L. A. van der Ark, D. M. Bolt, W.-C. Wang, J. A. Douglas, & M. Wiberg (Eds.), Quantitative
Psychology Research: The 80th Annual Meeting of the Psychometric Society, Beijing, 2015 (pp.
299-314). Springer. https://doi.org/10.1007/978-3-319-38759-8_23

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.asw.2018.03.007
https://doi.org/10.1016/j.asw.2018.03.007
https://doi.org/10.1037/xlm0000685
https://doi.org/10.1037/xlm0000685
https://doi.org/10.1016/j.compedu.2013.12.009
https://doi.org/10.1016/j.compedu.2013.12.009
https://doi.org/10.1163/9789004392526_003
https://doi.org/10.1007/978-3-319-38759-8_23

	Automated extraction of revision events from keystroke data
	Abstract
	Introduction
	Related work
	Events
	Revision and insertion bursts
	S-notation
	Revision analyses in keystroke logging tools

	Current approach
	Rule-based approximation of revision candidates
	Manual annotation of revision candidates
	Automated identification of revision events

	Extracting revision events
	Manual annotation of revision candidates
	Automated identification of true revision events
	Automated identification of revision end

	Proof of concept case study
	Discussion
	Limitations
	Implications for writing research

	Conclusion
	Acknowledgements
	References

