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Science (Cefas), Lowestoft, Suffolk, UK 1. Integrating food web indicators into ecological status assessments is central to
“Marine Scotland Science, Aberdeen, UK developing effective management measures that can improve degraded ecosys-
3Environmental Sciences Research Institute, L .
Ulster University, Coleraine, UK tems. This is because they can reveal how ecosystems respond to environmen-
“Marine Biological Association, Plymouth, tal change that cannot be inferred from studying habitat, species or assemblages
UK alone. However, the substantial investment required to monitor food webs (e.g.
Correspondence via stomach contents analysis) and the lack of internationally agreed approaches
;Amu;:?’;nirg;;czzi SSOOIL eetas couk to assessing them has hampered their development.
2. Inventories of trophic interactions have been collated world-wide and across biomes,
:)“e'::lir';ii;’rﬁ"f:;ag:’:;mnmem’ Food and and can be applied to infer food web structure and energy flow. Here, we compile
Rural Affairs, Grant/Award Number: BX020 a new marine dataset containing 8,092 unique predator-prey interactions from
and MF1228 415,294 fish stomachs. We demonstrate how feeding guilds (i.e. groupings based on
Handling Editor: Nessa O'Connor diet and life stage) could be defined systematically and in a way that is conducive to
their application internationally across ecosystems; and apply them to the North Sea
fish assemblage to demonstrate their responsiveness to anthropogenic pressures.

3. We found evidence for seven distinct feeding guilds. Differences between guilds
were related to predator size, which positively correlated with piscivory, phylog-
eny, with multiple size classes of a species often in the same guild, and habitat, as
pelagic, benthic and shallow-coastal foraging was apparent.

4. Guild biomasses were largely consistent through time at the North Sea-level and
spatially aggregated at the regional level with change relating to changes in resource
availability, temperature, fishing and the biomass of other guilds. This suggests that
fish biomass was partitioned across broad feeding and environmental niches, and
changes over time were governed partly by guild carrying capacities, but also by a
combination of covariates with contrasting patterns of change. Management of the
North Sea ecosystem could therefore be adaptive and focused towards specific
guilds and pressures in a given area.

5. Synthesis and applications. We propose a food web indicator which has been ex-

plicitly called for to inform policy via food web status assessment as part of the
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1 | INTRODUCTION

Determining how anthropogenic and environmental stressors
affect ecosystems 1is critical in ecological status assessment.
Analysis of food webs is seen as a key component in evaluating
ecosystem status because they reveal system-level phenomena
that cannot be detected by studying focal species or assemblages
alone (Cohen, Schittler, Raffaelli, & Reuman, 2009; Rombouts
et al., 2013; Tam et al., 2017). For instance, studies have shown
that effects mediated via the food web can include changes to
resources (‘bottom-up’ effects), to predation pressure (‘top-down’
effects), lead to secondary extinctions, and these responses,
among others, may interact (Brose et al., 2017; Dunne, Williams,
& Martinez, 2002; Lynam et al., 2017; Wang & Brose, 2018). In
the marine environment, an area we focus on here, impacts
from overfishing and warming associated with climate change
have been widely reported to manifest at the food web-level
(Ciannelli et al., 2007; Heath, 2005; Planque et al., 2010; Scheffer,
Carpenter, & De Young, 2005). Hence, marine food web indicator
development has received much recent attention (e.g. Greenstreet
et al., 2011; Queirods, & Lynam, 2018;
Romboutset al., 2013).

Organismal body size has been described as a ‘super trait’ since

Fernandes, Genevier,

it determines many other traits which can affect food web structure
and energy flux, such as trophic level, access to resources, vulnera-
bility to predation and sensitivity to perturbation (Brose et al., 2006;
Cohen et al., 2009; Hirt et al., 2018; Petchey, Beckerman, Riede,
& Warren, 2008; Woodward et al., 2005). This has led to the use
of body Polunin, &
Boon, 2001; Kerr & Dickie, 2001), such as proportion of large indi-

size distributions (e.g. Jennings, Pinnegar,
viduals (e.g. the large fish indicator; LFI; Engelhard, Lynam, Garcia-
Carreras, Dolder, & Mackinson, 2015; Greenstreet et al., 2011;
Modica, Velasco, Preciado, Soto, & Greenstreet, 2014; Shephard,
Reid, & Greenstreet, 2011), and the inclusion of species life stages
to interpret changes to food webs (Clegg, Ali, & Beckerman, 2018).
Research conducted by The European Science Foundation Research
Network (SIZEMIC) indicated that further synthesis of taxonomic
information with body size distribution data could help to develop a
universal indicator of ecological status (Petchey & Belgrano, 2010).
Despite this, and specific calls for the development of food web indi-
cators within regulatory frameworks such as OSPAR and the Marine

Strategy Framework Directive (MSFD), a more synthetic approach

European Union's Marine Strategy Framework Directive and the indicator toolkit
supporting The Convention for the Protection of the Marine Environment of the
North-East Atlantic (the ‘OSPAR Convention’).

ecological status assessment, ecosystem structure and function, environmental change,

feeding guilds, fishing impacts, food web indicator, good environmental status, marine

that encapsulates body size, taxonomy and feeding interactions has
not yet been accepted into any indicator framework.

Using functionally distinct ‘guilds’ or ‘groups’ that encapsulate
taxonomic and trait information relevant to food web assessment
has been widely advocated (e.g. EC, 2010; ICES, 2014, 2018;
Rombouts et al., 2013; Shephard, Greenstreet, Piet, Rindorf, &
Dickey-Collas,2015). Yet, the process of defining such groups has
received less attention, often relying on either feeding ecology,
habitat preference, taxon-based morphological information or
some expert judgement of a combination of these (e.g. Greenstreet,
Bryant, Broekhuizen, Hall, & Heath, 1997; Heath, 2005; Reecht,
Rochet, Trenkel, Jennings, & Pinnegar, 2013; Shephardet al., 2014,
but see Garrison & Link, 2000a, 2000b). This makes comparisons
across systems challenging because any difference could have a
methodological basis. Another approach would be to comprehen-
sively sur vey feeding interactions. However, this would be prohib-
itively expensive (Gray et al., 2015; Ings et al., 2009), especially
given the dearth of feeding information for the lower tropic levels
in marine food webs (Rombouts et al., 2013), and this is before
more complex spatial and/or temporal changes in communities
(e.g. via seasonal migrations) or interactions between small and
large individuals are considered. Thus, despite the many potential
advantages of food web assessment, and further integration of
taxonomic and body size data into this, defining guilds and gather-
ing feeding interaction data remains a significant challenge.

Inventories of trophic interactions with predator-prey body
sizes have been collated world-wide and across biomes (e.g. Brose
et al., 2005; Gray et al., 2015; Pinnegar, 2014). Information from
these can be applied to assess within- and cross-system changes in
food web structure and energy flow in a repeatable, standardized
way. For instance, based on species lists collated during long-term
UK-wide monitoring of running waters, Gray et al. (2016) used a
feeding link inventory to infer food web structure and thereby asses
biotic recovery following widespread improvements in water qual-
ity. Feeding inventories such as the ‘Integrated Database and Portal
for Fish Stomach Records’ (DAPSTOM; Pinnegar, 2014) and ICES
‘Year of the Stomach’ database (ICES, 1997) https://ices.dk/data/
data-portals/Pages/Fish-stomach.aspx exist for marine ecosystems
but have not yet been applied to develop food web indicators. We
combine these databases to produce the most comprehensive data-
set of trophic interactions for the North East Atlantic (NEA) and its

marginal seas. These data are then used to establish ‘feeding guilds’
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(henceforth guilds, defined here as predators that have many prey
taxa in common; Garrison & Link, 2000a, 2000b) for a range of juve-
nile and adult size classes per species using an approach that could
be reproduced where taxonomic, feeding interaction and ontoge-
netic trait data exist. We then use these guilds to assess changes in
fish populations in the North Sea as a case study. In doing so, our aim
was to assess the applicability of guilds as the basis of an indicator
for food webs to support OSPAR Quality Status Assessments (and
fulfil the candidate indicator requirement ‘biomass and abundance
of functional groups’) and Good Environmental Status assessments
to meet the needs of the European MSFD and national reporting
(e.g. UK Marine Strategy).

Specifically, we test for distinct guilds and partitioning of fish
biomass across them, how this varies in space and time, and re-
late these to anthropogenic and environmental stressors. Because
guilds integrate biomass structure with the processes that cause it,
such as predation (e.g. variation in piscivore biomass), energy flux
and resource limitation (e.g. via dynamic relations between guilds),
recruitment and ontogeny (i.e. taxa occur across multiple guilds be-
cause their diet changes through ontogeny), we use the distribu-
tion and dynamics of guild biomasses as a measure of ecosystem
structure and functioning. Hence, we assess whether change in
the biomass of guilds in the North Sea was indicative of changes in
ecosystem structure and functioning between 1985 and 2014, and
whether adaptive management over that period (i.e. reductions in
fishing activity) was detectable. We test the following hypotheses:
(a) there are distinct guilds in the trophic interaction dataset; (b)
guild biomasses, and thus food web structure and ecosystem func-
tioning, vary in space; (c) spatiotemporal change in guild biomasses
are related to changes in resource availability (bottom-up), tem-
perature (which can be a combination of direct and indirect effects
impacting both bottom-up and top-down processes, e.g. see Lynam
et al., 2017), inter-guild predation and fishing (top-down effects).
Our aim was two-fold: firstly, to develop a reproducible method
for defining guilds and, secondly, to assess whether they could be
applied to reveal ecosystem-level responses to stressors and thus

offer potential as a food web indicator.

2 | MATERIALS AND METHODS

2.1 | Feeding guild classification

DAPSTOM is an ongoing initiative digitizing fish stomach records.
The database contains information collected between 1836 and
2013 on 187 predator species (most occurring in northern European
groundfish surveys). ICES Year of The Stomach Dataset contains re-
cords from 35 fish species between 1980 and 1991 sampled in the
North Sea. Both datasets have information on predator—prey inter-
actions for given sea areas and years. The new trophic interaction
dataset spans the NEA (Figure S1), contains 8,092 unique preda-
tor—prey interactions from 415,294 fish stomachs, representing 155

predatory fish taxa and 1,643 prey taxa.

Guilds are defined here as a group of predators that have many
prey taxa in common, and whose prey differentiate it from other
predator guilds. We pooled all observed feeding links for five size
classes of each predator taxa (usually predator species; predator
groupings are thus referred to as taxa-by-size-classes) across both
space and time to produce an aggregated diet for each. We pooled
in this way because stomach contents analysis captures only a snap-
shot of a predator's diet, predators are typically gape-limited (i.e.
body size is an important determinant of what prey are available to
a predator), the developmental stage of fish is important for stock
assessment and fishing is known to disproportionately remove large
fish from high trophic levels (Greenstreet et al., 2011; Shephard
et al., 2012; Shin, Rochet, Jennings, Field, & Gislason, 2005). Taxa-
by-size-class categories were defined as: <3 cm considered larvae
(Lv); small juvenile fish (Js) of 3 cm to half of length at maturity; ju-
venile-medium fish (Jm) from half of length at maturity to length at
maturity; medium fish (M) from length at maturity to half-length at
infinity and large fish (L) above half-length at infinity. Length at ma-
turity and length at infinity were estimated for fish taxa using the r
package Fishiife (Thorson, Munch, Cope, & Gao, 2017).

Any rarefaction to test for the number of stomachs required to
reach a dietary asymptote would be confounded here by the dif-
ferences in spatial and temporal distribution of sampling effort. For
example, the number of samples required to classify the diet of a
predator one year may be different from another year, or other pred-
ator species in the same year, simply because samples varied in their
spatial distribution. Our aim therefore was to group fish into guilds
based on their having similar predatory roles given the broadest
understanding of predator-prey interactions and in a way that was
insensitive to variation in sampling effort across predators. Hence,
we selected only taxa-by-size-classes with 30+ stomach samples in
the trophic interaction dataset to avoid inaccurate representation
of diets. In addition, we use the presence of prey taxonomic ‘fam-
ily’ to account for changes in predator-prey interactions through
space and/or time, which will be strongly influenced by prey avail-
ability and sampling effort (e.g. Pinnegar, Trenkel, Tidd, Dawson,
& Du buit, 2003; Woodward et al., 2010). Using prey species iden-
tity (e.g. rather than family) or a quantity (e.g. % occurrence) could
mean we interpret predators to be selecting different prey and/or
at different rates when in fact they are feeding on similar taxa at
quantities driven by their relative abundance in the environment. An
additional concern was that the diet width of predators with more
stomach data could be broader due to sampling bias (e.g. Table SI).
We attempt to standardize the data by using the median number
of prey families exploited (n = 21) as a threshold for maximum diet
width thereby excluding rarely consumed prey for highly sampled
predators (i.e. to make sampling across predators more consistent,
we use all data for the majority of predators, but remove rare prey
from the minority of predators with the most data). We also distin-
guish fish larvae (<3 cm) as prey from other fish (>3 cm), as feeding
on larvae is analogous to zooplanktivory as opposed to piscivory,
and use the lower taxonomic classification of ‘order’ for larvae due

to the difficulty in resolving their taxonomy. Guilds were assigned



1772 Journal of Applied Ecology

THOMPSON et ar.

in r using the stats package (R Development Core Team, 2018) and
based on cluster analysis using the ‘ward D2’ agglomeration method
on Serensen dissimilarities on binary data. The optimum number of
feeding guilds (i.e. clusters) was assessed using the average silhou-
ette width (Kaufman & Rousseeuw, 2009), gap statistic (Tibshirani,
Walther, & Hastie, 2001) and elbow method.

We explore differences between guilds by relating covariates to
non-metric multidimensional scaling (nMDS) dimensions and gener-
ate p values based on n =999 permutation tests using the envfit
function in the r package vegan (Oksanen et al., 2015). Specifically,
we assess whether variation in predator size, the occurrence of
different prey functional groups (e.g. benthic, planktonic; using
World Register of Marine Species classifications), prey types (after
Pinnegar, 2014), prey phyla and variation in sampling effort across
predators (i.e. number of stomachs) were significant explanatory

variables in our ordination.

2.2 | Data and statistical modelling to assess
changes in guild biomass and correlations with
covariates

We investigate changes in biomass of guilds based on processed
survey data (Moriarty, Greenstreet, & Rasmussen, 2017) and make
use of the Greater North Sea otter trawl data in quarter 1 (i.e. the
International Bottom Trawl Survey, henceforth trawl data; Moriarty
& Greenstreet, 2017). We adjusted for the area swept to estimate
the absolute biomass of each species and length category at the
ICES statistical rectangle scale. Feeding guilds were allocated based
on taxa and size category to estimate the annual biomass of each
guild in each grid cell.

To estimate annual fishing pressure at the same scale, beam and
otter trawl effort (fishing hours) was compiled for the period 1985—
2014 after Couce, Schratzberger, and Engelhard (2020). Pelagic
trawling impacts were estimated using landings reported by the
Scientific, Technical and Economic Committee for Fisheries (2017).
Annual estimates for pelagic landings for the complete guild bio-
mass time series was not possible so only mean pelagic landings
were assessed. As an estimate of resource availability, annual av-
erages of zooplankton density were calculated for hydrodynamic
regions (after Capuzzo et al.,, 2017; see also Van Leeuwen, Tett,
Mills, & Van Der Molen, 2015) between 1985 and 2014 from the
Continuous Plankton Recorder (CPR, https://www.cprsurvey.org/
data/our-data/; Batten et al., 2003; SAHFOS, 2018). Mean annual
sea bed temperature data were calculated using the data prod-
uct published by the Copernicus Marine Environment Monitoring
Service (http://marine.copernicus.eu) for the MyOcean project (see
Wakelin et al., 2015).

We modelled annual estimates of fish biomass for the guilds at
location s and time f (from 1985, =1, to 2014, t=30), Gs,t (a 7-
dimensional vector), as a function of top-down effects (beam trawl

effort, V.. s,f and otter trawl effort, V,

otter,

s,f), bottom-up effects
s,f)

eam,

(zooplankton abundance, V.

200,

s,t and pelagic fish landings, Vpel_

FIGURE 1

A directed acyclic graph of the model

and temperature, V,

temp,s,t. To account for temporal and spatial cor-

relation in the data, we used a mixed effect model (Figure 1).
For each location s, we calculated the mean value of the covari-

ates across all 30 years,

- 4
v = % Vst )

t=1

- i
where Vs,t - (Vtemp,s,hVotter,s,trvbeam,s,t'Vpel,s,tvvzoo,s,t)' For some of the

cova(iates evidence  of effects,
U= P fomps’ \potters\2beams  We defined the expected guild biomass

at location s as

there  was ) quadratic

J,=e+B,\ +B,U, (0

where 6 is a 7-dimensional vector, Bﬂ isa 7 x 5 matrix and Bpﬂ isa7x3
matrix. The dynamics of the covariates, V _,, at location s and time ¢

were described by

st

Vs,t = Vs + t{3v,s + es.tv (3)

where f ¢ is a 7-dimensional vector and € _; follows an independent

auto-regressive model of order 1 (Chib, Omori, & Asai, 2009), i.e.

st ™ NP s,HvZ ) 4

where the diagonal elements of P, and £_are p , and a 2respectively,
and the off-diagonal elements are 0. The rate of change in the guild

biomass at location s was vector defined as

ps = JIfJ + Bapv,s + '15 + FOS, (5)

where 1, is a 7-dimensional vector, B_ is 7 x 5 matrix, 7 ¢ is sampled

from a spatial auto-regressive model with correlation parameter p y and
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variance af (Ver Hoef, Peterson, Hooten, Hanks, & Fortin, 2018) and
my ~ N(O, ()). Q describes the covariance of the rate of change between

guilds. The guild biomass at location S and time £ was
Gs,t = J’s + tps + es,tv (6)

where JIy is the expected guild biomass at location s, defined in
Equation 2, B ; defined in Equation 5 and {, follows an independent
auto-regressive model of order 1 with parameters p and 0{2. Due to the
dimensionality and correlation of the uncertain parameter space, we
fitted the model using No U-turn Hamiltonian Monte Carlo (Hoffman
& Gelman, 2011) in the r package stan (Gelman, Lee, & Guo, 2015).

Using Bayes factors (ratios of the likelihood probability) we can
evidence the relationship between the biomass of guilds and covari-
ates in space and over time. We focus primarily on results which sur-
pass the more stringent thresholds suggested by Gelman and Robert
(2014; Bayes factors <0.04 and >25 indicate strong to compelling
evidence for a negative or positive relationship, respectively) but
note less compelling relationships following Kass and Raftery (1995)
which could correspond with p values of 0.05 (Bayes factors be-
tween >0.04 to 0.333 and 3 to <25 indicate evidence for a negative
and positive relationship, respectively).

We complement this finer spatial scale approach using structural
analysis (Zeileis, Kleiber, Walter, & Hornik, 2003; Zeileis,
Leisch, Hornik, & Kleiber, 2015) to test for significant sustained

change

temporal change in guild biomass at the whole system level. Further

details of data generation and statistical modelling are given in

Materials and Methods in Data S1.

3 | RESULTS

3.1 | Feeding guild classification

There were diet data for 220 taxa-by-size-classes (73 predator taxa)
and multiple distinct guilds were evident (nMDS axes 1-2; r* = 0.68,
p = 0.001; we selected seven as an optimum based on Figure S2),
supporting our first hypothesis that multiple guilds are identifiable
(Figure 2; Figures S3 and S4; Tables S1-S3). Omnivory was ubiqui-
tous, with fish, benthic and planktonic prey occurring in the diet of
all guilds, albeit to quite different levels. Arthropoda, specifically
crustaceans, were the most frequently encountered prey phylum
across all but a piscivorous guild (Table S2). Differences in the diet
of guilds were related to the size of predators, which positively cor-
related with piscivory, and negatively correlated with % Annelida,
Mollusca and Arthropoda, among other prey (Figure 2; Figure S4;
Table S3). Differences between guilds were also related to habitat as,
for example, planktonic and benthic foraging guilds were apparent,
and these correlated with planktivory and benthivory gradients (i.e.
predator clustering based on prey presence data was supported by
the relative occurrence of prey functional groups to predator diets).

The number of stomachs processed and the number of observations
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cB 3% 8 ZEL
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Year

is represented in brackets
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for each taxa-by-size-class were not significant explanatory vari-
ables for discriminating between guilds (Table S3), indicating that
differences in sample size were not driving guild differences. The
following seven guilds were identified: (a) ‘Generalist planktivore’; (b)
‘Zooplanktivore’; (c) ‘Coastal benthivore’; (d) ‘Generalist benthivore’;
(e) ‘Specialist benthivore’; (f) ‘Zoobenthivore’ and (g) ‘Piscivore’.

Guilds are described in detail in Results in Data S1.

3.2 | Guild-level assessment of North Sea Otter
trawl data

All guilds identified in the NEA stomach contents data were present
in the trawl data, with corresponding information for 175 taxa-by-
size-classes representing 99.7% of the biomass (Figure 2; Tables S1
and S4). Three guilds made up 93.9% of the biomass: the Piscivore
guild (33.6%) which was dominated by a range of whiting Merlangius
merlangus, grey gurnard Eutrigla gurnardus and cod Gadus morhua
size classes; the Generalist planktivore guild (31.1%) was domi-
nated by juvenile herring Clupea harengus, followed by adult herring
and a range of size classes of Norway pout Trisopterus esmarkii and
mackerel Scomber scombrus (i.e. forage fish); and the Specialist ben-
thivore guild (29.2%) contained a range of size classes of haddock
Melanogrammus aeglefinus, dab Limanda limanda, plaice Pleuronectes
platessa and sole Soleo soleo. The Zooplanktivore (4.7%), Generalist
benthivore (0.5%), Zoobenthivore (0.5%), Coastal benthivore (0.1%),
guilds represented a tiny fraction of the surveyed biomass (see also
Results in Data S1; Table S4; Figures S5 and S6).

Zooplanktivore

Generalist planktivore
0

Log 10 Log 10
(tonnes + 1) (tonnes + 1)
45
4.0
35
3.0
2.5 1
2.0 0
Specialist benthivore
Log 10 Log 10
(tonnes + 1) (tonnes + 1)
[0} 25
°
2 2.0
8 15
1.0
05 25
Log10 Log 10
(tonnes + 1) (tonnes + 1)
45 25
4.0 20
35 1.5
1.0

3.0

-50 0.0 5.0
Longitude

Guilds were widely distributed but their biomass was spatially
aggregated within the North Sea, confirming our second hypothe-
sis that ecosystem structure and function vary in space (Figure 3).
The Piscivore and Zoobenthivore guilds aggregated in the west,
Specialist and Generalist benthivore guilds in the north, the Coastal
benthivore and Zooplanktivore guilds in the south, and Generalist
planktivores were more patchy aggregating around Dogger bank and
in the north, among other areas.

Guild biomasses related to environmental and anthropogenic
covariates in space and over time, supporting our third hypothe-
sis that resource availability, temperature and fishing effects are
important drivers of change in ecosystem structure and function
(Table 1; Table S5). The majority of guild and covariate spatial cor-
relations were strong to compelling. For example, Piscivore guild
biomass correlated positively with otter trawling, but negatively
with pelagic landings, temperature and zooplankton density, and
was not related to beam trawling; and otter trawling correlated
negatively with Coastal benthivore biomass, with no relationship
to Zooplanktivore biomass, and positively with all other guild bio-
masses (Figures 3 and 4).

Temporal correlations between guilds and between guilds and
covariates were all weak. Temperature correlated dynamically
and positively with Zooplanktivore biomass, and negatively with
Generalist benthivore and Piscivore biomass. Zooplankton density
correlated dynamically and positively with Zoobenthivore biomass.
Negative dynamical relationships existed between beam trawling
and Zoobenthivore and Piscivore biomasses highlighting poten-

tial negative impacts from fishing and recovery from it on these

Coastal benthivore

Log 10
(tonnes + 1)

Log 10
(tonnes + 1)

FIGURE 3 Mean feeding guild biomass
distribution between 1985 and 2014
across ICES statistical rectangles in the
North Sea
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guilds. However, weak positive dynamical correlations were also
evident between beam trawling and Zooplanktivore, Generalist
benthivore and Specialist benthivore biomasses (Figures 5 and 6).

There was no evidence for negative dynamical correlations

between guilds (i.e. top-down inter-guild control; Figure 5), but
only weak positive correlations. Despite marked regional changes
in guild biomasses (Figure 5) and large within-guild variation in the

distribution of biomass between taxa-by-size-classes (Figure S6),
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sustained changes at the North Sea scale were less apparent.
Change in Zooplanktivore and Generalist planktivore guilds was
driven by changes in the surveyed biomass of individual species
within them, namely increasing juvenile sprat Sprattus sprattus and
decreasing herring, respectively (Figure 2c; Figures S6 and S7),
with shorter-term fluctuations evident in the Piscivore and Coastal

benthivore guilds.

4 | DISCUSSION

Guild assessment represents a synthesis of taxonomic- and size-
based approaches, supplemented with dietary information, that
can reveal higher-level phenomena undetectable to its component
parts if considered independently. For instance, temporal variation
in Generalist benthivore and Piscivore guilds (Figure 5) was less
apparent at the North Sea scale (Figure 2c) because of contrast-
ing regional responses. Sustained changes were most apparent
in guilds dominated in the survey by individual species. This high-
lights regional changes in food web structure and functioning but
also points to guild carrying capacities. In studies of the fish com-
munity in the western Atlantic, Garrison and Link (2000a, 2000b)
and Auster and Link (2009) found guild biomasses to be remarkably
consistent through time despite fishery-induced perturbations on
species within guilds. Given guild composition may change dramati-
cally through time (Figure S6; see also Auster & Link, 2009; Garrison
& Link, 2000a, 2000b) and in response to multiple drivers, guild bio-
masses were likely sustained via high functional redundancy analo-
gous to the insurance hypothesis (Yachi & Loreau, 1999): whereby
change in a species biomass is offset by contrasting change in an-
other within the same guild such that guild biomass, which reflects
the contribution of particular energy pathways to fish biomass, is rel-
atively stable over time. Guild biomass is therefore likely constrained
by the amount of available energy, the number of species able to
exploit it, and changes to it highlight where pressures manifest at the
system level. This, in turn, provides critical new insights into whether
changes are caused by energetic constraints and/or environmental
change, for instance, which is valuable information within the eco-
system approach to fisheries that could help to develop a more holis-
tic understanding of anthropogenic impacts on ecosystems.

Our findings complement the powerful size-structuring widely
reported to belie food web taxonomic structure (Brose et al.,2006;
Clegg et al., 2018; Jennings, 2005; Jennings et al., 2001). For in-
stance, fish with markedly different foraging strategies and evo-
lutionary histories, e.g. dab, herring and saithe, grouped together
as larvae and juveniles in the Zooplanktivore guild, but larger size
classes of those species were grouped in different guilds suggest-
ing divergence in foraging through ontogeny related to taxonomy
and size, with many large apex predators in the Piscivorous guild.
Moreover, the unique spatial distributions and unique correlations
between each guild and the covariates suggests even apparently
similar guilds, e.g. benthivores (Table 1; Figure 3), provide useful

information about how foraging behaviour changes in space and

over time. This highlights the complex interactions between spe-
cies, size classes and diet embedded in the guild classifications
which would not be considered if based on one or two of those
components.

Our results show that the optimal number of guilds was between
four and nine, with no clear threshold of change using the elbow
method (Figure S2). We based our case study assessment on the
North Sea using seven as an intermediate value but recognize a sim-
pler or more complex approach could be justified and depends on the
question. If the need was to understand relative changes in plank-
tivory in its most simple form, the first split between planktivores
and those more benthivorous and/or piscivorous in the dendrogram
could be used (Figure S3). To get a more nuanced understanding of
change with distinctions in the type of planktivory (e.g. specialist
planktivores vs. zooplanktivores, the former of which preys on the
latter) and benthivory (e.g. coastal vs. generalist) then more com-
plex solutions would be justifiable. We see this as a strength of our
approach because feeding guilds are hierarchically structured much
like how taxonomic or other trait information has been organized.
We provide a table in Data S1 which details the branches for up to
nine feeding guilds so future assessments can choose which level
of complexity suits their need (Table S6). And, because it is a data-
driven, reproducible approach, new information can be systemati-
cally integrated to (a) further resolve the number of feeding guilds
that can be confidently characterized, (b) their composition and (c)
test if seasonal to annual changes in feeding behaviour provides ev-
idence for dynamical classifications. Feeding interactions could, for
example, be further spatiotemporally resolved by future targeted
stomach content sampling (e.g. under-sampled taxa-size-class feed-
ing interactions, Table S1) using conventional and emerging molecu-
lar techniques (e.g. see Pompanon et al., 2012), inferring from similar
predators where species-level data are sparse (e.g. following Gray
etal.,2015) and also via predictive modelling (Link, 2004; O'Gorman
etal.,2019; Petchey et al.,2008).

Our mixed effect model and structural change analysis pro-
vide a 30-year overview of change at the ICES statistical rectangle
scale with annual ecosystem-scale temporal dynamics, respectively.
Stronger spatial rather than temporal effects were evident in the
mixed effect model largely due to the level of change in space relative
to change over time in both responses and covariates (Figures 3—0).
For example, the spatial difference in mean annual temperature is
~4°C, whereas the largest change over time was ~0.8°C. By com-
paring findings across analyses we were able to better understand
both the spatiotemporal scale and potential causes of change. For in-
stance, Zooplanktivores showed a consistent increasing trend at the
North Sea scale (Figure S7). Coupled with the results from the finer-
scale assessment that shows a positive dynamical correlation with
temperature (Table 1; Figures 5 and 6), this suggests Zooplanktivores
(mostly juveniles of sprat and herring) were prospering where waters
warmed most. Piscivores and Generalist benthivores did not show
sustained declines over time despite having negative dynamical
correlations with temperature. This is likely because of contrasting

patterns of change in their biomasses with increases where warming
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was relatively low and decreases in coastal areas where warming was
higher (Figures 5 and 6). Using the temperature-guild relationships
evidenced here, future simulations could build on species-based ap-
proaches (e.g. Cheung et al., 2009), to make predictions about how
ecosystem structure and function could be affected as warming be-
comes more pronounced.

The positive temporal correlations between guilds reported
here could be caused by several factors potentially acting simulta-
neously: one guild received recruits from another, their resources
and responses to environmental change were correlated and one or
both consume the other without exerting top-down forcing. Since
fishing fleets target adult size classes and can quickly adapt to spa-
tiotemporal changes in target species biomass, the relationship be-
tween guild biomasses and fishing is also likely to be complex. For
instance, positive spatial correlations between otter trawling and
Specialist benthivore and Piscivore biomass were in line with our ex-
pectations. However, the negative spatial correlation between the
Genralist planktivore guild and pelagic landings (used here as a proxy
for fishing pressure on planktivorous fish; Engelhard et al., 2014), was
not, possibly because juvenile biomass dominated this guild and the
fishery targets adult fish across the Zooplanktivore and Genralist
planktivore guilds which have contrasting distributions. Moreover,
despite overall reductions in demersal fishing effort occurred during
the study period (Figure 6; Couce et al., 2020), there was only weak
evidence of negative impacts from fishing and recovery from it at
the guild-level, possibly due to dynamic fleet behaviour and/or
the long lag time expected for the recovery of fish communities
(Fung, Farnsworth, Shephard, Reid, & Rossberg, 2013; Shephard
et al., 2013). There were also likely indirect or spurious (i.e. coinci-
dental) positive dynamical correlations between beam trawling and
Zooplanktivore guild biomass. Given that we include juvenile and
adult life stages across many fish taxa, there is potential for more
complex guild-covariate spatiotemporal lags than was explored here.
Future work could consider developing an approach to test for these
more subtle but important lagged relationships and thereby further
refine our understanding of responses to more heterogeneous and
dynamic pressures such as fishing and resource availability (Fountalis,
Dovrolis, Bracco, Dilkina, & Keilholz, 2018; Probst, Stelzenmiiller, &
Fock, 2012). To further understand how between-guild and guild-
covariate correlations determine fish biomass distribution and their rel-
ative importance, future refinements could integrate acoustic survey
data to better capture variation in pelagic fish populations and beam
trawl survey data for benthic fish via Bayesian spatial multispecies
modelling (e.g. Juntunen, Vanhatalo, Peltonen, & Miantyniemi, 2012),
for instance. Catchability corrections were not implemented here,
but future research could estimate undersampling of some species
due to behavioural responses (e.g. schooling, net avoidance) and/or
limitations of the gear to catch particular size classes. Intra-guild indi-
cators and synthesis with existing indicators would be another logical
future development. A guild's size structure could be used to assess
impacts from fishing via the Typical Length indicator (OSPAR, 2017a)
or the 95% percentile of the length frequency distribution (Probst

et al.,, 2012) and through change in species composition via the

Mean Maximum Length Indicator (Fisher, Frank, & Leggett, 2010;
OSPAR, 2017b). Measures such as intra-guild evenness and spe-
cies richness could help to reveal key energetic pathways and the
level of intra-guild redundancy. For example, we expect functional
redundancy to be more constrained in guilds and areas dominated
by a single species, hence where food web structure and ecosys-
tem function are likely to vary most and be least resilient to change.
And changes in total fish biomass, such as the decline ~2006 in the
North Sea largely driven by the decrease in Generalist planktivore
biomass, highlight the importance of particular guilds to system-wide
structure and functioning (Figures S6 and S7). Developments such as
these could therefore enable a more synthetic approach to under-
standing changes in ecosystem structure and functioning than has
yet been achieved within the indicator framework.
Effective ecosystem management will need to consider how
large-scale pressures, such as nutrient availability and tempera-
ture, and more localized and heterogeneous human activities, such
as fishing, may interact (e.g. Capuzzo et al., 2017). In combination
with a suite of indicators relating to species composition and size
structure of communities, guild assessment could enable targeted
advice for fishing-levels to offset impacts of increasing temperature
and/or decreasing primary production, for instance, which cannot
be managed directly in the short-term or locally. Comparable guild
assessment could be applied in other marine systems (e.g. Garrison
& Link, 2000a, 2000b) making the approach potentially applicable
as part of a global-scale Integrated Ecosystem Assessment (DePiper
et al.,2017). This will be informative to gauge how larger contrasts in
environmental drivers, such as fishing and temperature, act on eco-
system structure and function, and thus enable a more predictive
approach than was possible here. Moreover, the notion that, by sup-
plementing organismal size with taxonomic information and feeding
behaviour, the potential for a universal indicator of ecological status

could be more rigorously tested.
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