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Abstract 

1.  Integrating  food  web  indicators  into  ecological  status assessments is central  to 

developing effective management measures that can improve  degraded ecosys- 

tems. This is because they can reveal  how  ecosystems respond to environmen- 

tal change  that cannot be inferred from studying habitat, species  or assemblages 

alone.  However, the substantial investment required to monitor food  webs  (e.g. 

via stomach contents analysis) and the lack of internationally agreed approaches 

to assessing them has hampered their development. 

2.  Inventories of trophic interactions have been collated world-wide and across biomes, 

and can be applied  to infer food web structure and energy  flow. Here, we compile 

a  new  marine  dataset containing  8,092   unique  predator–prey interactions  from 

415,294 fish stomachs. We demonstrate how feeding guilds (i.e. groupings based  on 

diet and life stage) could be defined systematically and in a way that is conducive to 

their application internationally across ecosystems; and apply them to the North Sea 

fish assemblage to demonstrate their responsiveness to anthropogenic pressures. 

3.  We found  evidence for seven  distinct feeding  guilds. Differences between guilds 

were  related to predator size, which positively correlated with piscivory, phylog- 

eny, with multiple size classes  of a species  often in the same guild, and habitat, as 

pelagic, benthic and shallow-coastal foraging was apparent. 

4.  Guild biomasses were  largely consistent through time  at the  North  Sea-level  and 

spatially aggregated at the regional level with change  relating to changes in resource 

availability, temperature, fishing and the biomass  of other guilds. This suggests that 

fish biomass  was partitioned across  broad  feeding  and environmental niches,  and 

changes over time were  governed partly by guild carrying capacities, but also by a 

combination of covariates with contrasting patterns of change.  Management of the 

North  Sea  ecosystem could  therefore be  adaptive and  focused towards specific 

guilds and pressures in a given area. 

5. Synthesis and applications. We propose a food  web  indicator which has been  ex- 

plicitly called for to inform policy via food  web  status assessment as part of the 
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European Union's  Marine  Strategy Framework Directive and the indicator toolkit 

supporting The Convention for the Protection of the Marine  Environment of the 

North-East Atlantic (the ‘OSPAR Convention’). 
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1   |   I NTR O D U C TI O N 
 

 
Determining  how   anthropogenic  and   environmental   stressors 

affect ecosystems is critical in ecological  status assessment. 

Analysis of food webs  is seen  as a key component in evaluating 

ecosystem status because they reveal  system-level  phenomena 

that cannot be detected by studying focal species  or assemblages 

alone   (Cohen,  Schittler,  Raffaelli,  & Reuman,   2009;  Rombouts 

et al., 2013;  Tam et al., 2017).  For  instance,  studies  have  shown 

that effects mediated  via the food  web  can  include  changes to 

resources (‘bottom-up’ effects), to predation pressure (‘top-down’ 

effects),   lead   to  secondar y  extinctions,   and   these  responses, 

among  others, may interact (Brose et al., 2017; Dunne,  Williams, 

& Martinez,  2002;  Lynam  et al., 2017;  Wang  & Brose,  2018).  In 

the  marine   environment,  an  area   we   focus   on  here,   impacts 

from  overfishing   and  warming   associated  with  climate  change 

have  been  widely reported to manifest at the food  web-level 

(Ciannelli et al., 2007; Heath, 2005; Planque  et al., 2010; Scheffer, 

Carpenter, & De Young, 2005). Hence,  marine  food  web  indicator 

development has received much recent attention (e.g. Greenstreet 

et al., 2011; Queirós,  Fernandes, Genevier,  & Lynam, 2018; 

Rombouts et al., 2013). 

Organismal  body  size has been  described as a ‘super trait’ since 

it determines many other traits which can affect food web structure 

and energy  flux, such as trophic level, access  to resources, vulnera- 

bility to predation and sensitivity to perturbation (Brose et al., 2006; 

Cohen  et al., 2009; Hirt  et al., 2018;  Petchey,  Beckerman, Riede, 

& Warren,  2008;  Woodward et al., 2005).  This has  led to the use 

of   body   size   distributions   (e.g.   Jennings,   Pinnegar,   Polunin,   & 

Boon, 2001; Kerr & Dickie, 2001), such  as proportion of large indi- 

viduals (e.g. the large fish indicator; LFI; Engelhard,  Lynam, García- 

Carreras,   Dolder,   & Mackinson,   2015;  Greenstreet et  al.,  2011; 

Modica,  Velasco,  Preciado,  Soto, & Greenstreet,  2014;  Shephard, 

Reid, & Greenstreet, 2011), and  the inclusion  of species  life stages 

to interpret changes to food  webs  (Clegg, Ali, & Beckerman, 2018). 

Research conducted by The European Science Foundation Research 

Network (SIZEMIC) indicated  that further synthesis  of  taxonomic 

information with body size distribution data could help to develop a 

universal  indicator of ecological  status (Petchey & Belgrano,  2010). 

Despite this, and specific calls for the development of food web indi- 

cators within regulatory frameworks such as OSPAR and the Marine 

Strategy Framework Directive (MSFD), a more  synthetic approach 

that encapsulates body size, taxonomy and feeding  interactions has 

not yet been  accepted into any indicator framework. 

Using functionally distinct ‘guilds’ or ‘groups’ that encapsulate 

taxonomic and trait information relevant to food  web  assessment 

has  been  widely  advocated (e.g. EC, 2010; ICES, 2014,  2018; 

Rombouts et al., 2013;  Shephard, Greenstreet,  Piet,  Rindorf,  & 

Dickey-Collas,2015). Yet, the process of defining  such groups  has 

received less attention, often relying on either feeding  ecology, 

habitat   preference,   taxon-based  morphological   information   or 

some expert judgement of a combination of these (e.g. Greenstreet, 

Br yant, Broekhuizen,  Hall, & Heath,  1997;  Heath,  2005;  Reecht, 

Rochet, Trenkel, Jennings,  & Pinnegar, 2013; Shephard et al., 2014; 

but see  Garrison  & Link, 2000a, 2000b). This makes  comparisons 

across  systems challenging  because any  difference  could  have  a 

methodological basis. Another approach would be to comprehen- 

sively sur vey feeding  interactions. However, this would be prohib- 

itively  expensive  (Gray  et al., 2015;  Ings et al., 2009),  especially 

given the dearth of feeding  information for the lower tropic levels 

in marine  food  webs  (Rombouts  et al., 2013),  and  this  is before 

more  complex  spatial  and/or  temporal  changes in  communities 

(e.g. via seasonal migrations) or interactions between small and 

large individuals are considered. Thus, despite the many potential 

advantages of food web assessment, and further integration of 

taxonomic and body size data into this, defining guilds and gather- 

ing feeding  interaction data remains  a significant challenge. 

Inventories  of  trophic  interactions  with  predator–prey  body 

sizes have  been  collated world-wide and  across  biomes  (e.g. Brose 

et al., 2005;  Gray  et al., 2015;  Pinnegar,  2014).  Information  from 

these can be applied  to assess  within- and cross-system changes in 

food  web  structure and  energy  flow in a repeatable, standardized 

way. For instance, based  on species  lists collated during  long-term 

UK-wide  monitoring  of  running  waters,  Gray  et al. (2016)  used  a 

feeding  link inventory to infer food web structure and thereby asses 

biotic recovery following  widespread improvements in water qual- 

ity. Feeding  inventories such as the ‘Integrated Database and Portal 

for  Fish  Stomach Records’  (DAPSTOM;  Pinnegar,  2014)  and  ICES 

‘Year of the Stomach’ database (ICES, 1997) https://ices.dk/data/ 

data-portals/Pages/Fish-stomach.aspx exist for marine  ecosystems 

but have  not yet been  applied  to develop food  web  indicators. We 

combine  these databases to produce the most comprehensive data- 

set of trophic interactions for the North East Atlantic (NEA) and its 

marginal seas. These  data are then used  to establish ‘feeding guilds’ 

https://ices.dk/data/data-portals/Pages/Fish-stomach.aspx
https://ices.dk/data/data-portals/Pages/Fish-stomach.aspx
https://ices.dk/data/data-portals/Pages/Fish-stomach.aspx
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(henceforth guilds, defined here  as predators that have  many  prey 

taxa in common;  Garrison & Link, 2000a, 2000b) for a range of juve- 

nile and adult size classes  per species  using an approach that could 

be reproduced where taxonomic, feeding  interaction and ontoge- 

netic trait data exist. We then use these guilds to assess  changes in 

fish populations in the North Sea as a case study. In doing so, our aim 

was to assess  the applicability of guilds as the basis of an indicator 

for food  webs  to support OSPAR Quality Status Assessments (and 

fulfil the candidate indicator requirement ‘biomass and  abundance 

of functional groups’) and Good  Environmental Status assessments 

to meet the needs of the European MSFD and  national  reporting 

(e.g. UK Marine Strategy). 

Specifically, we  test for distinct  guilds and  partitioning  of fish 

biomass  across  them,  how  this  varies  in space  and  time,  and  re- 

late these to anthropogenic and environmental stressors. Because 

guilds integrate biomass  structure with the processes that cause  it, 

such  as predation (e.g. variation in piscivore  biomass), energy  flux 

and resource limitation (e.g. via dynamic  relations between guilds), 

recruitment and ontogeny (i.e. taxa occur across  multiple guilds be- 

cause  their  diet  changes through ontogeny), we  use  the distribu- 

tion  and  dynamics  of guild biomasses  as a measure of ecosystem 

structure and  functioning.  Hence,  we  assess   whether change   in 

the biomass  of guilds in the North  Sea was indicative of changes in 

ecosystem structure and functioning between 1985 and 2014,  and 

whether adaptive management over  that period  (i.e. reductions in 

fishing activity) was detectable. We test the following hypotheses: 

(a) there are  distinct guilds  in the trophic interaction  dataset;  (b) 

guild biomasses, and thus food web structure and ecosystem func- 

tioning, vary in space;  (c) spatiotemporal change  in guild biomasses 

are  related  to changes in resource availability  (bottom-up),  tem- 

perature (which can be a combination of direct and indirect effects 

impacting both bottom-up and top-down processes, e.g. see Lynam 

et al., 2017),  inter-guild  predation  and  fishing  (top-down  effects). 

Our  aim was  two-fold:  firstly,  to develop  a reproducible  method 

for defining  guilds and, secondly,  to assess  whether they could  be 

applied  to reveal  ecosystem-level responses to stressors and  thus 

offer potential as a food web indicator. 

 

 
2   |  M AT E R I A L S  A N D  M E T H O DS  

 
2.1 | Feeding guild classification 

 

 
DAPSTOM is an ongoing  initiative  digitizing  fish stomach records. 

The  database contains  information  collected  between 1836 and 

2013 on 187 predator species  (most occurring  in northern European 

groundfish surveys). ICES Year of The Stomach Dataset contains re- 

cords  from 35 fish species  between 1980 and 1991 sampled  in the 

North Sea. Both datasets have  information on predator–prey inter- 

actions for given sea  areas  and  years.  The new  trophic interaction 

dataset spans  the NEA (Figure S1), contains 8,092  unique  preda- 

tor–prey interactions from 415,294 fish stomachs, representing 155 

predatory fish taxa and 1,643  prey taxa. 

Guilds are defined here  as a group  of predators that have  many 

prey taxa in common,  and whose prey differentiate it from other 

predator guilds. We  pooled  all observed feeding  links for five size 

classes  of each  predator taxa (usually predator species;  predator 

groupings are  thus referred to as taxa-by-size-classes) across  both 

space  and time to produce an aggregated diet for each.  We pooled 

in this way because stomach contents analysis captures only a snap- 

shot of  a predator's diet,  predators are  typically  gape-limited  (i.e. 

body size is an important determinant of what prey are available to 

a predator), the developmental stage of fish is important for stock 

assessment and fishing is known to disproportionately remove large 

fish  from  high  trophic  levels  (Greenstreet  et al., 2011;  Shephard 

et al., 2012; Shin, Rochet, Jennings,  Field, & Gislason, 2005). Taxa- 

by-size-class  categories  were  defined as: <3 cm considered larvae 

(Lv); small juvenile fish (Js) of 3 cm to half of length at maturity; ju- 

venile-medium fish (Jm) from half of length at maturity to length at 

maturity; medium  fish (M) from length at maturity to half-length at 

infinity and large fish (L) above  half-length at infinity. Length at ma- 

turity and length at infinity were  estimated for fish taxa using the r 

package  Fishlife (Thorson, Munch, Cope, & Gao, 2017). 

Any rarefaction to test for the number of stomachs required to 

reach  a dietary  asymptote would  be  confounded here  by the dif- 

ferences in spatial and temporal distribution of sampling effort. For 

example,  the number of samples  required  to classify  the diet  of a 

predator one year may be different from another year, or other pred- 

ator species  in the same year, simply because samples  varied in their 

spatial distribution. Our aim therefore was to group  fish into guilds 

based  on their having similar predatory roles given the broadest 

understanding of predator–prey interactions and in a way that was 

insensitive to variation in sampling  effort across  predators. Hence, 

we selected only taxa-by-size-classes with 30+ stomach samples  in 

the trophic  interaction  dataset to avoid  inaccurate  representation 

of diets. In addition, we use  the presence of prey  taxonomic ‘fam- 

ily’  to account for  changes in predator–prey interactions  through 

space  and/or time, which  will be strongly influenced by prey  avail- 

ability  and  sampling  effort (e.g.  Pinnegar,  Trenkel,  Tidd, Dawson, 

& Du buit, 2003; Woodward et al., 2010). Using prey  species  iden- 

tity (e.g. rather than family) or a quantity (e.g. % occurrence) could 

mean  we  interpret predators to be  selecting different prey  and/or 

at different  rates when  in fact they are  feeding  on  similar taxa at 

quantities driven by their relative abundance in the environment. An 

additional concern was that the diet width of predators with more 

stomach data could be broader due  to sampling bias (e.g. Table S1). 

We  attempt to standardize  the data by using  the median  number 

of prey  families exploited (n = 21) as a threshold for maximum  diet 

width  thereby excluding  rarely  consumed prey  for  highly sampled 

predators (i.e. to make  sampling  across  predators more  consistent, 

we use all data for the majority of predators, but remove rare  prey 

from the minority of predators with the most data). We also distin- 

guish fish larvae (≤3 cm) as prey from other fish (>3 cm), as feeding 

on  larvae  is analogous  to zooplanktivory  as opposed to piscivory, 

and use the lower  taxonomic classification of ‘order’ for larvae due 

to the difficulty  in resolving  their taxonomy. Guilds were  assigned 
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ette width (Kaufman & Rousseeuw, 2009), gap statistic (Tibshirani, 
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We explore  differences between guilds by relating covariates to 

non-metric multidimensional scaling (nMDS) dimensions and gener- 

ate  p values based on n = 999  permutation  tests using  the envfit ,  ,
 

function in the r package  vegan (Oksanen et al., 2015). Specifically, 

we  assess   whether variation  in  predator size,  the occurrence of 

different  prey   functional  groups   (e.g.  benthic,  planktonic;  using  ,
 

World  Register of Marine  Species  classifications), prey  types (after 2 

Pinnegar,  2014), prey  phyla and  variation in sampling  effort across 

predators (i.e. number of stomachs) were  significant explanatory 

variables in our ordination. 
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2.2 | Data and statistical modelling to assess 

changes in guild biomass and correlations with 

covariates 

 
We  investigate  changes in biomass  of  guilds  based  on  processed 

survey  data (Moriarty, Greenstreet, & Rasmussen, 2017) and  make 

F I G U R E 1   A directed acyclic graph of the model 

 

 
and temperature, V

temp,
s,t. To account for temporal and spatial cor- 

relation in the data, we used a mixed effect model (Figure 1). 

For each  location s, we calculated the mean  value of the covari- 

ates across  all 30 years, 

 
30 

use  of the Greater North Sea otter trawl data in quarter 1 (i.e. the 

International Bottom Trawl Survey, henceforth trawl data; Moriarty 

& Greenstreet, 2017). We  adjusted for the area  swept to estimate 

V̄ s
 =   

1  � 
V 

30 
t=1 

s,t , (1) 

the absolute  biomass  of  each  species  and  length  category at the where V = (V 
 
temp,s,t , Votter,s,t , Vbeam,s,t , Vpel,s,t , Vzoo,s,t 

)�.  For some  of the 

ICES statistical rectangle scale. Feeding  guilds were  allocated based covariates there  was  evidence of  quadratic effects, 

on taxa and  size category to estimate  the annual  biomass  of each Ū  = 
(
V̄ 2 

temp,s V̄
 2 otter,s V̄ 2 beam,s 

) 
. We defined the expected guild biomass 

guild in each grid cell. 

To estimate annual fishing pressure at the same scale, beam and 

otter trawl effort (fishing hours) was compiled for the period 1985– 

2014 after Couce,  Schratzberger, and  Engelhard   (2020).  Pelagic 

at location s as  

 
Jls  = e + B V̄ s + Bp𝜇 Ū

 
s , 

 

 
 
(2) 

trawling impacts were  estimated using landings reported by the 

Scientific, Technical and Economic Committee for Fisheries  (2017). 

Annual  estimates  for pelagic  landings  for the complete  guild bio- 

mass  time  series  was  not possible  so  only mean  pelagic  landings 

where θ is a 7-dimensional vector, B
μ 

is a 7 × 5 matrix and Bpμ 
is a 7 × 3 

matrix. The dynamics  of the covariates, V s,t, at location s and time t 

were described by 

were  assessed. As an estimate of resource availability, annual  av- 

erages of zooplankton  density  were  calculated  for  hydrodynamic 

Vs,t  = V̄ s + t{3 v,s  + es.t , (3) 

regions  (after  Capuzzo  et al., 2017;  see  also  Van Leeuwen,  Tett, 

Mills, & Van Der  Molen,  2015) between 1985 and  2014 from  the 

Continuous Plankton Recorder (CPR, https://www.cprsurvey.org/ 

where β v,s is a 7-dimensional vector and ϵ s.t  follows an independent 

auto-regressive model of order 1 (Chib, Omori, & Asai, 2009), i.e. 

data/our-data/; Batten et al., 2003; SAHFOS, 2018). Mean  annual 

sea  bed  temperature data were  calculated  using  the data prod- 

 s,t  N
 
P   s,t 1 ,     

   
, 

 

 
2

 

(4) 

uct published by the Copernicus Marine  Environment Monitoring 

Service (http://marine.copernicus.eu) for the MyOcean project (see 

Wakelin et al., 2015). 

We modelled  annual  estimates of fish biomass  for the guilds at 

where the diagonal  elements of P
ϵ 
and Σ

ϵ  
are ρ 

ϵ 
and a

e  
respectively, 

and  the off-diagonal elements are 0. The rate of change  in the guild 

biomass at location s was vector defined as 

location s and  time t (from 1985,  t = 1, to 2014,  t = 30), G s,t (a 7- 

dimensional vector), as a function of top-down effects (beam trawl 

ps  = JlfJ  + Ba p v,s  + '1s  + ros , (5) 

effort, V
beam,

s,t and  otter trawl effort, V
otter,

s,t), bottom-up effects 

(zooplankton  abundance,  V
zoo,

s,t  and  pelagic  fish  landings,  V
pel,

s,t) 

where μ 
β 

is a 7-dimensional vector, B
α 

is 7 × 5 matrix, η s  is sampled 

from a spatial auto-regressive model with correlation parameter ρ 
η 
and 

https://www.cprsurvey.org/data/our-data/
https://www.cprsurvey.org/data/our-data/
http://marine.copernicus.eu/
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variance a2 (Ver Hoef, Peterson, Hooten, Hanks, & Fortin, 2018) and 

ms  N(0, ). Ω describes the covariance of the rate of change between 

guilds. The guild biomass at location s and time t was 

details  of  data generation  and  statistical  modelling  are  given  in 

Materials and Methods in Data S1. 

 

G   =  +  + 
s,t s s s,t (6) 3   |   R E S U LT S 

 
where Jls   is  the  expected guild  biomass   at location  s,  defined  in 

Equation 2, β s, defined in Equation 5 and ζs,t  follows an independent 

auto-regressive model of order 1 with parameters ρ  and o2. Due to the 

dimensionality and correlation of the uncertain parameter space,  we 

fitted the model using No U-turn Hamiltonian Monte Carlo (Hoffman 

& Gelman, 2011) in the r package  stan (Gelman, Lee, & Guo, 2015). 

Using Bayes factors (ratios of the likelihood probability) we can 

evidence the relationship between the biomass  of guilds and covari- 

ates in space  and over time. We focus primarily on results which sur- 

pass the more stringent thresholds suggested by Gelman and Robert 

(2014;  Bayes  factors ≤0.04  and  ≥25  indicate  strong to compelling 

evidence  for  a negative  or  positive  relationship,  respectively)  but 

note less compelling relationships following Kass and Raftery (1995) 

which  could  correspond with  p values  of  0.05  (Bayes  factors be- 

tween >0.04  to 0.333 and 3 to <25 indicate evidence for a negative 

and positive relationship, respectively). 

We complement this finer spatial scale approach using structural 

change  analysis (Zeileis, Kleiber, Walter, & Hornik, 2003; Zeileis, 

Leisch,  Hornik,  & Kleiber,  2015)  to test for  significant  sustained 

temporal change  in guild biomass  at the whole system level. Further 

3.1 | Feeding guild classification 

 
There were  diet data for 220 taxa-by-size-classes (73 predator taxa) 

and multiple distinct guilds were  evident (nMDS axes 1–2; r2 = 0.68, 

p = 0.001;  we  selected seven  as an optimum based  on Figure  S2), 

supporting our first hypothesis that multiple guilds are  identifiable 

(Figure 2; Figures  S3 and  S4; Tables  S1–S3). Omnivory  was ubiqui- 

tous, with fish, benthic and planktonic prey occurring  in the diet of 

all guilds, albeit to quite different levels. Arthropoda, specifically 

crustaceans,  were  the most frequently  encountered prey  phylum 

across  all but a piscivorous guild (Table S2). Differences in the diet 

of guilds were  related to the size of predators, which positively cor- 

related  with  piscivory,  and  negatively  correlated  with  % Annelida, 

Mollusca  and  Arthropoda, among  other prey  (Figure  2; Figure  S4; 

Table S3). Differences between guilds were also related to habitat as, 

for example,  planktonic and benthic foraging  guilds were  apparent, 

and these correlated with planktivory and benthivory gradients (i.e. 

predator clustering based  on prey presence data was supported by 

the relative occurrence of prey functional groups  to predator diets). 

The number of stomachs processed and the number of observations 
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for  each  taxa-by-size-class  were  not significant  explanatory vari- 

ables  for  discriminating between  guilds  (Table  S3),  indicating that 

differences  in sample  size were  not driving  guild differences.  The 

following seven guilds were identified: (a) ‘Generalist planktivore’; (b) 

‘Zooplanktivore’; (c) ‘Coastal benthivore’; (d) ‘Generalist benthivore’; 

(e)  ‘Specialist  benthivore’;  (f)  ‘Zoobenthivore’  and  (g)  ‘Piscivore’. 

Guilds are described in detail in Results in Data S1. 

 

 
3.2 | Guild-level assessment of North Sea Otter 

trawl data 

 
All guilds identified in the NEA stomach contents data were  present 

in the trawl data, with corresponding information for 175  taxa-by- 

size-classes representing 99.7%  of the biomass  (Figure 2; Tables S1 

and S4). Three  guilds made  up 93.9%  of the biomass:  the Piscivore 

guild (33.6%) which was dominated by a range of whiting Merlangius 

merlangus,  grey  gurnard  Eutrigla gurnardus and cod Gadus morhua 

size  classes;   the Generalist  planktivore  guild  (31.1%)  was  domi- 

nated by juvenile herring  Clupea harengus, followed  by adult herring 

and a range  of size classes  of Norway  pout Trisopterus esmarkii and 

mackerel  Scomber scombrus (i.e. forage  fish); and the Specialist ben- 

thivore guild (29.2%) contained a range of size classes of haddock 

Melanogrammus aeglefinus, dab Limanda limanda, plaice Pleuronectes 

platessa and sole Soleo soleo. The Zooplanktivore (4.7%), Generalist 

benthivore (0.5%), Zoobenthivore (0.5%), Coastal benthivore (0.1%), 

guilds represented a tiny fraction of the surveyed biomass  (see also 

Results in Data S1; Table S4; Figures S5 and S6). 

Guilds were  widely  distributed  but their  biomass  was  spatially 

aggregated within the North Sea, confirming  our  second hypothe- 

sis that ecosystem structure and  function vary in space  (Figure 3). 

The Piscivore  and Zoobenthivore guilds aggregated in the west, 

Specialist and Generalist benthivore guilds in the north, the Coastal 

benthivore and  Zooplanktivore  guilds in the south,  and  Generalist 

planktivores were more patchy aggregating around Dogger bank and 

in the north, among other areas. 

Guild biomasses  related to environmental  and  anthropogenic 

covariates  in space  and  over  time,  supporting  our  third  hypothe- 

sis that resource availability,  temperature and  fishing  effects are 

important  drivers  of change  in ecosystem structure and  function 

(Table 1; Table S5). The majority of guild and covariate spatial cor- 

relations  were  strong to compelling.  For  example,  Piscivore  guild 

biomass  correlated  positively  with  otter trawling,  but negatively 

with  pelagic  landings,  temperature and  zooplankton  density,  and 

was not related to beam  trawling; and otter trawling correlated 

negatively  with  Coastal  benthivore biomass,  with  no  relationship 

to Zooplanktivore biomass,  and  positively with all other guild bio- 

masses  (Figures 3 and 4). 

Temporal  correlations between guilds and between guilds and 

covariates  were   all  weak.   Temperature  correlated  dynamically 

and positively with Zooplanktivore biomass, and negatively with 

Generalist benthivore and Piscivore biomass. Zooplankton density 

correlated dynamically and positively with Zoobenthivore biomass. 

Negative dynamical  relationships existed between beam  trawling 

and  Zoobenthivore  and  Piscivore  biomasses  highlighting  poten- 

tial  negative  impacts  from  fishing and  recover y from  it  on  these 
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F I G U R E 3   Mean feeding  guild biomass 

distribution between 1985 and 2014 

across ICES statistical rectangles in the 
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T A B L E 1   Positive and negative 

relationships based  on Bayes factors 

evident following mixed effect modelling 

for spatial (denoted by *) and dynamic 

correlations between guild biomasses 

and covariates. Columns represent 

guilds: GP = ‘Generalist planktivore’; ZP 

= ‘Zooplanktivore’; CB = ‘Coastal 

benthivore’; GB = ‘Generalist 

benthivore’; SB = ‘Specialist benthivore’; 

ZB = ‘Zoobenthivore’; PI = ‘Piscivore’; 

related to covariates (rows). Compelling 

evidence for a negative (<0.01 = ---) or 

positive (>100 = +++) relationship; strong 

evidence for a negative (>0.01 to 0.04 = --) 

or positive (25 to <100  = ++) relationship; 

evidence of a negative (>0.04 to 0.333 = -) 

or positive (3 to <25 = +) relationship (see 

Table S5 for Bayes factors) 
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guilds. However, weak positive dynamical correlations were  also 

evident between beam  trawling and Zooplanktivore, Generalist 

benthivore and Specialist  benthivore biomasses (Figures 5 and 6). 

There   was   no   evidence  for   negative  dynamical   correlations 

between guilds  (i.e. top-down inter-guild  control;  Figure  5),  but 

only weak  positive correlations. Despite marked  regional  changes 

in guild biomasses (Figure 5) and large within-guild variation in the 

distribution of biomass  between taxa-by-size-classes (Figure S6), 
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sustained  changes at the  North Sea  scale  were   less  apparent. 

Change  in Zooplanktivore and Generalist planktivore guilds was 

driven  by changes in the sur veyed  biomass  of individual  species 

within them, namely increasing  juvenile sprat Sprattus sprattus and 

decreasing  herring,  respectively  (Figure  2c;  Figures  S6  and  S7), 

with shorter-term fluctuations evident in the Piscivore and Coastal 

benthivore guilds. 

 

 
4   |  D I S CU S S I O N 

 

 
Guild  assessment represents a  synthesis  of  taxonomic-  and  size- 

based   approaches,  supplemented  with  dietary  information,  that 

can reveal  higher-level phenomena undetectable to its component 

parts if considered independently. For instance, temporal variation 

in Generalist benthivore and Piscivore guilds (Figure 5) was less 

apparent at the North Sea  scale  (Figure  2c)  because of  contrast- 

ing  regional   responses.  Sustained  changes  were   most  apparent 

in guilds dominated in the survey  by individual species.  This high- 

lights  regional  changes in food  web  structure and  functioning  but 

also points to guild carrying  capacities. In studies of the fish com- 

munity  in the western Atlantic,  Garrison  and  Link (2000a,  2000b) 

and Auster and Link (2009) found  guild biomasses to be remarkably 

consistent through time despite fishery-induced perturbations on 

species  within guilds. Given guild composition may change  dramati- 

cally through time (Figure S6; see also Auster & Link, 2009; Garrison 

& Link, 2000a, 2000b) and in response to multiple drivers, guild bio- 

masses  were  likely sustained via high functional redundancy analo- 

gous  to the insurance hypothesis (Yachi & Loreau, 1999): whereby 

change  in a species  biomass  is offset by contrasting change  in an- 

other within the same  guild such that guild biomass,  which reflects 

the contribution of particular energy pathways to fish biomass, is rel- 

atively stable over time. Guild biomass is therefore likely constrained 

by the amount of available  energy,  the number of species  able  to 

exploit it, and changes to it highlight where pressures manifest at the 

system level. This, in turn, provides critical new insights into whether 

changes are caused by energetic constraints and/or environmental 

change,  for instance, which is valuable  information within the eco- 

system approach to fisheries that could help to develop a more holis- 

tic understanding of anthropogenic impacts on ecosystems. 

Our findings complement the powerful size-structuring widely 

reported to belie food web taxonomic structure (Brose et al., 2006; 

Clegg et al., 2018; Jennings,  2005; Jennings  et al., 2001). For in- 

stance,  fish with  markedly  different  foraging  strategies  and  evo- 

lutionar y histories, e.g. dab, herring  and saithe, grouped together 

as lar vae and juveniles  in the Zooplanktivore guild, but larger size 

classes  of those species  were  grouped in different guilds suggest- 

ing divergence in foraging  through ontogeny related to taxonomy 

and size, with many large apex  predators in the Piscivorous guild. 

Moreover, the unique  spatial distributions and unique  correlations 

between each  guild and  the covariates suggests even  apparently 

similar guilds, e.g. benthivores (Table 1; Figure  3), provide  useful 

information  about how  foraging  behaviour  changes in space  and 

over  time. This highlights the complex  interactions between spe- 

cies,  size  classes  and  diet  embedded in the guild  classifications 

which  would  not be  considered  if based  on  one  or two of those 

components. 

Our results show that the optimal number of guilds was between 

four  and  nine,  with  no  clear  threshold  of change  using  the elbow 

method (Figure  S2).  We  based  our  case  study assessment on  the 

North Sea using seven  as an intermediate value but recognize a sim- 

pler or more complex approach could be justified and depends on the 

question. If the need  was to understand relative changes in plank- 

tivory in its most simple  form, the first split between planktivores 

and those more benthivorous and/or piscivorous in the dendrogram 

could be used  (Figure S3). To get a more  nuanced understanding of 

change  with  distinctions  in the type of planktivory  (e.g.  specialist 

planktivores vs. zooplanktivores, the former  of which preys  on the 

latter)  and  benthivory  (e.g.  coastal  vs. generalist)  then more  com- 

plex solutions would be justifiable. We see this as a strength of our 

approach because feeding  guilds are hierarchically  structured much 

like how  taxonomic or other trait information has  been  organized. 

We provide  a table in Data S1 which details the branches for up to 

nine  feeding  guilds so  future assessments can  choose which  level 

of complexity suits their need  (Table S6). And, because it is a data- 

driven, reproducible approach, new information can be systemati- 

cally integrated to (a) further resolve  the number of feeding  guilds 

that can be confidently characterized, (b) their composition and  (c) 

test if seasonal to annual changes in feeding  behaviour provides ev- 

idence  for dynamical  classifications. Feeding  interactions could, for 

example,  be further spatiotemporally resolved by future targeted 

stomach content sampling (e.g. under-sampled taxa-size-class feed- 

ing interactions, Table S1) using conventional and emerging  molecu- 

lar techniques (e.g. see Pompanon et al., 2012), inferring from similar 

predators where species-level  data are  sparse (e.g.  following  Gray 

et al., 2015) and also via predictive modelling (Link, 2004; O'Gorman 

et al., 2019; Petchey et al., 2008). 

Our  mixed  effect model  and  structural  change   analysis  pro- 

vide a 30-year overview of change  at the ICES statistical rectangle 

scale with annual ecosystem-scale temporal dynamics, respectively. 

Stronger spatial  rather than temporal  effects were  evident  in the 

mixed effect model largely due to the level of change in space relative 

to change  over time in both responses and covariates (Figures 3–6). 

For example,  the spatial difference in mean  annual  temperature is 

~4°C, whereas the largest change  over  time was  ~0.8°C.  By com- 

paring  findings  across  analyses  we were  able to better understand 

both the spatiotemporal scale and potential causes of change. For in- 

stance, Zooplanktivores showed a consistent increasing  trend at the 

North Sea scale (Figure S7). Coupled  with the results from the finer- 

scale  assessment that shows  a positive dynamical  correlation with 

temperature (Table 1; Figures 5 and 6), this suggests Zooplanktivores 

(mostly juveniles of sprat and herring) were prospering where waters 

warmed most. Piscivores  and  Generalist benthivores did not show 

sustained declines  over time despite having negative dynamical 

correlations with temperature. This is likely because of contrasting 

patterns of change  in their biomasses with increases where warming 
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was relatively low and decreases in coastal areas where warming was 

higher  (Figures 5 and  6). Using the temperature-guild relationships 

evidenced here, future simulations could build on species-based ap- 

proaches (e.g. Cheung  et al., 2009), to make predictions about how 

ecosystem structure and function could be affected as warming be- 

comes more pronounced. 

The  positive   temporal   correlations  between  guilds  reported 

here  could  be  caused by several  factors potentially acting simulta- 

neously:  one  guild received recruits  from  another,  their  resources 

and responses to environmental change  were  correlated and one or 

both consume the other without  exerting  top-down forcing.  Since 

fishing fleets target adult size classes  and can quickly adapt to spa- 

tiotemporal changes in target species  biomass,  the relationship be- 

tween guild biomasses and  fishing is also likely to be complex.  For 

instance, positive spatial correlations between otter trawling and 

Specialist benthivore and Piscivore biomass  were in line with our ex- 

pectations.  However, the negative spatial  correlation  between the 

Genralist planktivore guild and pelagic landings (used here  as a proxy 

for fishing pressure on planktivorous fish; Engelhard  et al., 2014), was 

not, possibly because juvenile biomass  dominated this guild and the 

fishery targets adult fish across  the Zooplanktivore and Genralist 

planktivore guilds which have contrasting distributions. Moreover, 

despite overall reductions in demersal fishing effort occurred during 

the study period  (Figure 6; Couce  et al., 2020), there was only weak 

evidence  of negative  impacts  from  fishing and  recovery from  it  at 

the  guild-level,  possibly   due   to dynamic   fleet  behaviour  and/or 

the long  lag time  expected for  the recovery of  fish  communities 

(Fung,  Farnsworth,  Shephard, Reid,  & Rossberg,   2013;  Shephard 

et al., 2013). There  were  also likely indirect or spurious (i.e. coinci- 

dental) positive dynamical  correlations between beam  trawling and 

Zooplanktivore  guild biomass.  Given  that we  include  juvenile  and 

adult  life stages across  many  fish taxa, there  is potential  for more 

complex guild-covariate spatiotemporal lags than was explored here. 

Future work could consider developing an approach to test for these 

more  subtle but important lagged relationships and thereby further 

refine  our understanding of responses to more  heterogeneous and 

dynamic pressures such as fishing and resource availability (Fountalis, 

Dovrolis, Bracco, Dilkina, & Keilholz, 2018; Probst, Stelzenmüller, & 

Fock, 2012).  To further understand how  between-guild  and  guild- 

covariate correlations determine fish biomass distribution and their rel- 

ative importance, future refinements could integrate acoustic survey 

data to better capture variation in pelagic fish populations and beam 

trawl survey  data for benthic fish via Bayesian  spatial multispecies 

modelling (e.g. Juntunen, Vanhatalo, Peltonen, & Mäntyniemi, 2012), 

for  instance.  Catchability  corrections  were  not implemented  here, 

but future research could  estimate undersampling of some  species 

due  to behavioural responses (e.g. schooling,  net avoidance) and/or 

limitations of the gear to catch particular size classes. Intra-guild indi- 

cators and synthesis with existing indicators would be another logical 

future development. A guild's size structure could be used  to assess 

impacts from fishing via the Typical Length indicator (OSPAR, 2017a) 

or the 95%  percentile  of the length  frequency distribution  (Probst 

et al., 2012)  and  through change   in  species   composition  via  the 

Mean  Maximum  Length  Indicator  (Fisher,  Frank,  & Leggett,  2010; 

OSPAR, 2017b).  Measures such  as  intra-guild  evenness and  spe- 

cies  richness  could  help  to reveal  key energetic  pathways and  the 

level of intra-guild redundancy. For example,  we  expect functional 

redundancy to be  more  constrained in guilds and  areas  dominated 

by a single  species,  hence where food  web  structure and  ecosys- 

tem function are likely to vary most and be least resilient to change. 

And changes in total fish biomass,  such as the decline  ~2006 in the 

North Sea largely driven  by the decrease in Generalist planktivore 

biomass, highlight the importance of particular guilds to system-wide 

structure and functioning (Figures S6 and S7). Developments such as 

these could  therefore enable  a more  synthetic approach to under- 

standing changes in ecosystem structure and  functioning than has 

yet been  achieved within the indicator framework. 

Effective ecosystem management will need  to consider how 

large-scale  pressures,  such  as  nutrient  availability  and  tempera- 

ture, and more  localized and heterogeneous human  activities, such 

as fishing, may interact  (e.g.  Capuzzo  et al., 2017).  In combination 

with  a suite  of indicators  relating  to species  composition  and  size 

structure of communities,  guild assessment could  enable  targeted 

advice for fishing-levels  to offset impacts of increasing  temperature 

and/or  decreasing  primary  production,  for  instance,  which  cannot 

be managed directly in the short-term or locally. Comparable guild 

assessment could be applied  in other marine  systems (e.g. Garrison 

& Link, 2000a, 2000b) making the approach potentially applicable 

as part of a global-scale  Integrated Ecosystem Assessment (DePiper 

et al., 2017). This will be informative to gauge how larger contrasts in 

environmental drivers, such as fishing and temperature, act on eco- 

system structure and  function,  and  thus enable  a more  predictive 

approach than was possible  here. Moreover, the notion that, by sup- 

plementing organismal  size with taxonomic information and feeding 

behaviour, the potential for a universal indicator of ecological status 

could be more rigorously tested. 
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