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The impacts of inland flooding caused by tropical cyclones (TCs),
including loss of life, infrastructure disruption, and alteration of natural
landscapes, have increased over recent decades. While these im-
pacts are well documented, changes in TC precipitation extremes—
the proximate cause of such inland flooding—have been more dif-
ficult to detect. Here, we present a latewood tree-ring–based re-
cord of seasonal (June 1 through October 15) TC precipitation sums
(ΣTCP) from the region in North America that receives the most
ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP re-
construction reveals that ΣTCP extremes (≥0.95 quantile) have in-
creased by 2 to 4 mm/decade since 1700 CE, with most of the increase
occurring in the last 60 y. Consistent with the hypothesis that TCs are
moving slower under anthropogenic climate change, we show that
seasonal ΣTCP along the US East Coast are positively related to sea-
sonal average TC duration and TC translation speed.

tropical cyclones | tree rings | translation speed | extreme precipitation

Landfalling tropical cyclones (TCs) produce high winds, storm
surges, and inland flooding that can have devastating impacts

on human and natural landscapes (1). TC-related flooding can cause
billions of dollars in structural damage (2) and is one of the deadliest
aspects of TCs (3, 4). Moreover, climate model simulations suggest
that TCs produce more precipitation under anthropogenic forcing,
particularly within the center of the TCs (5–9). However, our un-
derstanding of the impacts and potential trends in the flood hazard
caused by excess precipitation from TCs in the United States is
limited by the length of the instrumental TC precipitation (TCP)
record (1948 to present) (10).
Along the US east coast—an area considered to have the most

complete record of TCs through time worldwide (11–13)—the
translation speed of TCs has decreased in recent decades (14),
which could result in higher TCP totals (ΣTCP) (15). This slow-
down is in line with global decreases in translation speed by 10%
from 1949 to 2016 (16) and has been implicitly related to the
weaker global wind circulation from anthropogenic warming (17,
18). However, part of this slowing of TC speed is an artifact of
the introduction of satellite data recording a larger number of weaker
and smaller TCs, biasing the record of TC translation speed (19–21).
To place modern changes in TC characteristics—and this recent
slowdown—in a historical perspective and to investigate potential
links to anthropogenic climate change, long-term (i.e., multicentury)
records are needed. Slower TCs produce more TCP (15), and long-
term trends in ΣTCP could therefore provide further evidence
that TCs are slowing.
Reliable detection of changes in ΣTCP, however, has proven

challenging and therefore produced mixed results. Annual ΣTCP
in the United States (10, 22) and globally (23) show no significant
trends over the observed record. Yet, studies that focus on TCP
amounts from individual storms have found increases in 1) TC-
induced “drought-busting” events (24, 25), 2) TC-associated heavy
rainfall events (26), and 3) Individual storm-related TCP amounts
in US coastal cities (15). This inconsistency can be explained by
the substantial interannual variability within the short instrumental

TCP record, which limits our ability to reliably detect changes in
ΣTCP through time.
Here, we use 300+ years of tree-ring data to extend the record

of seasonal (June 1 to October 15; Materials and Methods) ΣTCP
for the coast of North Carolina and South Carolina (Fig. 1). This
region experiences the highest annual ΣTCP in North America
(10), averaging ∼50 mm/year (1948 to 2018) and the highest con-
tribution of ΣTCP to annual precipitation (up to 8%; Fig. 1 A and
B). In many years, ΣTCP accumulates within a few days and can
create widespread flooding. For instance, of the 5 y with the largest
ΣTCP in this region, three were generated predominantly by a
single storm that produced ΣTCP exceeding 200 mm (Fig. 1C).
However, the 2 y with the largest ΣTCP were generated by mul-
tiple storms: Connie and Diane (190 and 110 mm) in 1955 and
Bertha and Fran (110 mm and 175 mm) in 1996 (Fig. 1C).

To reconstruct seasonal ΣTCP and extend the ΣTCP record to
1700 CE, we use the latewood portion of tree rings from Pinus
palustrisMill. (longleaf pine). Our reconstruction is based on tree-
ring data collected from seven sites in North Carolina and South
Carolina (Fig. 1), which allows the development of a regional
ΣTCP reconstruction that is calibrated against a gridded dataset
of ΣTCP: TCPDat (10). By creating a regional ΣTCP reconstruc-
tion, we expand upon earlier ΣTCP reconstruction work (27, 28)
spatially as well as temporally. This allows us to determine spa-
tiotemporal ΣTCP variability and in particular, whether extreme
ΣTCP have increased over time, as is expected in a warmer world.

Significance

Using a tree-ring–based reconstruction of tropical cyclone pre-
cipitation summed over June 1 through October 15, we found
that extremely high tropical cyclone precipitation amounts have
increased over the past 300 years. By looking at other charac-
teristics of tropical cyclones, we find that this increase is linked
to the longer average duration of tropical cyclones. The ex-
tremes (≥0.95 quantile) of summed tropical cyclone precipitation
have increased by 2 to 4 mm/decade since 1700, resulting in an
increase of 64 to 128 mm compared to extremes in the early
1700s. This study documents increases in extremes of summed
tropical cyclone precipitation, which provides another line of
evidence that the speed of movement of tropical cyclones
is slowing.
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Results
ΣTCP Reconstruction.All seven of the adjusted latewood (Materials
and Methods) chronologies were significantly positively correlated
with regional instrumental ΣTCP but, importantly, did not re-
spond strongly to regional non-ΣTCP (SI Appendix, Table S1).
These results support the hypothesis that late-season wood produc-
tion (i.e., latewood width) responds primarily to the large, short-
duration inputs of precipitation produced by TCs (27, 28). Due to
different record lengths of the chronologies, the overall reconstruc-
tion model is composed of a series of nested principal-component
reconstruction models (Materials and Methods) that explain be-
tween 34 and 41% of the variance in regional instrumental ΣTCP
(SI Appendix, Fig. S1 and Table S2). After combining the nested
models, our reconstruction spans 1700 through 2015 CE (SI Ap-
pendix, Table S2). The reconstruction overestimated low (1- to 40-
mm) ΣTCP values and underestimated high (>100-mm) values,
and we used a quantile-mapping bias-correction procedure (29)
(Materials and Methods) to reduce these systematic differences
(Fig. 2).

Increases in ΣTCP Extremes. Using quantile regression to estimate
linear trends for the entire bias-corrected reconstruction (Ma-
terials and Methods), the upper tail (≥0.95 quantile) of ΣTCP
shows a significant increase over time, whereas other quantiles ex-
hibit either negative or nonsignificant trends (Fig. 3). This increas-
ing trend starts at the 0.90 quantile (∼1 mm/decade) with the 0.95

and greater quantiles (years with ΣTCP of at least 174 mm) showing
stronger trends (∼2 to 4mm/decade) (Fig. 3B). A total 6 of the 10
yrs with ΣTCP in the 0.95 quantile happened after the year 1900.
Further, 5 of the 7 yrs of highest ΣTCP occurred in the late 20th/
early 21st centuries (1955, 1996, 1999, 2016, and 2018). For years of
extreme (≥0.95 quantile) ΣTCP in the 21st century, the estimated
linear trend of 2 to 4 mm/decade translates into an increase of 64 to
128 mm compared to years of extreme ΣTCP in the early 1700s.

The trend in the reconstruction toward increasingly more ex-
treme ΣTCP is supported by the instrumental record, which also
shows its largest ΣTCP extremes (>300 mm) in more recent years
(Fig. 2A). The two most recent years of extreme ΣTCP include
2016, with Tropical Storm Julia and Hurricane Matthew producing
a combined 334 mm of TCP, and 2018, when Hurricane Florence
produced 292 mm of TCP, causing $10.3 and $24.2 billion in dam-
ages, respectively (30, 31). We also examined whether the seasonal
timing of TC occurrence differentially impacted latewood growth,
potentially influencing the reliability of the reconstruction but found
no significant differences in adjusted latewood growth between dif-
ferent months of TC occurrence (SI Appendix, Fig. S2).
Only in 2 yrs in the early to mid-18th century, 1703 and 1741,

did extreme ΣTCP rival these recent extremes (Fig. 3A). These
earlier extreme ΣTCP are unrelated to increased variance in the
nested tree-ring models (SI Appendix, Fig. S3). Further, histori-
cal documents substantiate that a strong TC affected a large area
of the East Coast from Virginia to Pennsylvania in October 1703

Fig. 1. Instrumental TCP seasonal and extreme year totals. Average (1948 through 2018) June 1 to October 15 ΣTCP (A) and seasonal average contribution of
ΣTCP to overall precipitation (B) (1948 through 2018). Red squares represent the 0.25° grids where data were averaged to calculate the regional ΣTCP. (C)
Maps of individual storms that had large ΣTCP (millimeters) over the instrumental record. Orange diamonds are tree-ring sites. Data for all plots were created
from TCPDat (10).
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(32). Our results suggest that TCP from this storm also affected
the North Carolina and South Carolina coasts. Our reconstruction
further suggests an undocumented storm (or multiple storms) in
1741 that affected the North Carolina and South Carolina coasts,
a year currently without historical documentation of heavy rainfall
or flooding from TCs, to the best of our knowledge.

Changes in TC Duration. ΣTCP in a given year can be influenced by
the annual number of TCs that make landfall, the average dura-
tion of these TCs, and their translation speed. Therefore, an in-
crease in ΣTCP extremes can indicate an increase in one or more
of these factors. For our region, we found that instrumental (1948
to 2018) seasonal ΣTCP was significantly positively correlated with
average (r = 0.807, P < 0.01) and summed (r = 0.893, P < 0.01)
seasonal TC duration but negatively correlated with seasonal av-
erage TC translation speed (ρ = −0.602; P < 0.01; SI Appendix,
Table S3). Correlations with these TC metrics were of the same
sign and significant, albeit weaker, for our reconstructed ΣTCP
over the instrumental period (SI Appendix, Table S3) and with the

longer Hurricane Database (HURDAT2) dataset time period
(1851 to 2018) (SI Appendix, Table S3; correlation with TC
translation speed is not significant).
The relationship between ΣTCP with TC duration and TC

translation speed, with a particular emphasis on extremes in both
metrics, is further demonstrated by the results of our SEA analyses
(Fig. 4 D and E). Years with extreme (≥0.95 quantile) average TC
durations or TC translation speeds (HURDAT2; 1851 to 2018) are
associated with significantly larger ΣTCP (Fig. 4D). Similarly, years
with extreme (≥0.95 quantile) reconstructed ΣTCP are associ-
ated with significantly longer average TC durations and slower
TC translation speeds (Fig. 4E). Our findings thus suggest that
the TC slowdown in recent decades, expressed by lower TC trans-
lation speeds and longer durations, is an important control on the
trend of increasing extreme ΣTCP.
While our findings support a relationship between ΣTCP and

annually averaged TC duration and speed, we also find a rela-
tionship between ΣTCP and the number of TCs (SI Appendix,
Table S3), making it difficult to determine whether the increases

Fig. 2. Bias-corrected ΣTCP reconstruction. (A) Time series of a common period between observed uncorrected and bias-corrected (BC) ΣTCP from the most
replicated model. (B) Time series of full reconstruction period of uncorrected reconstruction and bias-reconstructed along with observed ΣTCP record. The
gray shading is the uncertainty in the reconstruction and represents inner 95% of the spread of the 999 bootstrapped ensembles. (C) A quantile–quantile plot
between the uncorrected and bias-corrected reconstruction. (D) Kernel density estimates of the probability density functions for the observed, uncorrected,
and bias-corrected reconstructions of ΣTCP, showing how the probability distribution of the uncorrected reconstruction differs from that of the observations.
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in ΣTCP extremes are due to increases in the number of TCs or
slower TCs or both. However, we find that the number of TCs
making landfall in our study region has not changed using Mann–
Kendall trend test (−0.002 TCs per year; τ = −0.067; P = 0.8821)
since the start of the HURDAT2 (33) dataset in 1851, whereas their
translation speed has decreased (−0.026 kn per year; τ = −0.137; P <
0.05) and their average duration has increased significantly (0.01 h
per year; τ = 0.093; P < 0.05) (Fig. 4 A–C). To determine the role
that the number of storms in a given year could have on our
results, we examined storm-level statistics (Materials and Meth-
ods). We found a significant relationship (ρ = −0.480; P < 0.01;
1948 through 2018) between the translation speed per TC and
the TCP per TC (Materials and Methods). We examined trends in
TCP from TCs that have similar translation speeds (binned in
groups of 5 kn) to further demonstrate the role of TC speeds on the
increasing trend of ΣTCP extremes. In the three groups (5 to 9 kn,
10 to 14 kn, and 15 to 19 kn) that had a sufficiently large sample
size (≥∼20 TCs), TCP did not have a significant trend through time
(SI Appendix, Fig. S4). However, if we examine TCP per TC from
every storm from 1948 to 2018, there is a weak increasing trend (τ =
0.111; P = 0.08; SI Appendix, Fig. S4). These results support that the
TCP of a given storm is related to the speed of that TC and those
speeds have been slowing through time (Fig. 4 A and B), resulting
in larger extremes in ΣTCP.
While instrumental ΣTCP are weakly related to climatic drivers

along the US Atlantic coast, particularly the Bermuda High and El
Niño Southern Oscillation (ENSO) (10, 34), reconstructed ΣTCP
have minimal to no connection to these climate drivers (SI Ap-
pendix, Table S3). Sea surface temperatures (SSTs) in the tropical

and North Atlantic have increased in recent decades and have
been linked to increased TC activity (35). However, ΣTCP were
not significantly correlated with either gridded SSTs for any por-
tion of the North Atlantic (1850 through 2016; Hadley Center) or
with reconstructed western Atlantic tropical SSTs (36) (SI Ap-
pendix, Table S4), suggesting that it is unlikely that climatic/oceanic
interactions are driving the increase in ΣTCP extremes.

Discussion
Climate model projections of future TC translation speeds and
durations vary widely, and the contribution of anthropogenic cli-
mate change in the slowing of TCs is uncertain (37, 38). Our
ΣTCP reconstruction indicates that ΣTCP have increased in their
extremes, a change that is related to seasonal average TC duration
and TC translation speed but not to increases in SSTs. Therefore,
if TCs are more likely to slow down in a warming world, the
increasing trend in extreme ΣTCP should continue, resulting in
more TCP-related flooding. Further, a warmer climate has been
shown to slow the decay of TCs after making landfall, indicating
that areas farther inland will receive higher amounts of TCP (39)
and increase the water vapor content, which is expected to in-
crease TCP rates (5). TC storm tracks also have shifted westward
globally, making landfalling TCs, and consequently higher ΣTCP,
more likely for the US east coast (40, 41), even if this may be
more complex at the oceanic basin level (42). The combination of
these factors indicates that the future is likely to have increased
extremes in ΣTCP, a pattern that our multicentennial reconstruc-
tion documents. Increased ΣTCP will influence water manage-
ment, flood insurance claims, and water pollution through runoff

Fig. 3. Trends in reconstrcuted ΣTCP. (A) The ΣTCP reconstruction (1700 through 2015) combined with observed values (2016 through 2018) with quantile-
based regression slopes for the 0.99, 0.95, 0.75, 0.50, and 0.25 quantiles. (B) Quantile-based trends for the upper end of the distribution (0.75 through 0.99;
black dotted line) with 95% uncertainity estimates (gray shading). The solid red line represents the ordinary least squares trend (and the red dashed lines its
95% uncertainty estimates). The inset figure shows the trends for a wider range of quantiles, including the lower tail.
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and ruptured waste lagoons (43) for coastal cities. As a result,
warmer conditions will simultaneously increase water demand and
evapotranspiration rates (44) while also leading to higher ΣTCP
(and other high rainfall events) (45–47). Therefore, warmer
conditions will likely cause increased interannual variability in
droughts, flooding, and water availability in the coastal south-
eastern United States.

Materials and Methods
Instrumental ΣTCP Data. To generate seasonal ΣTCP, we used daily instrumental
gridded (0.25° × 0.25°) TCP data from TCPDat (10) (1948 through 2018), which is
a publicly available product (https://github.com/jbregy/TCPDat). TCPDat com-
bines gridded precipitation data from the Climate Prediction Center (48) with
the TC best track data from HURDAT2 (33, 49), available from the World Me-
teorological Organization’s International Best Track Archive for Climate

Fig. 4. Trends in TC duration, number, and speed. (A) Time series of the seasonal average TC duration (number of 6-h segments that a TC was within 223 km
of the study region divided by the number of TCs for that year) with trend line. (B) Time series of average TC translation speed for the portions of the TC tracks
that were within 223 km of the study region with trend line. Breaks in the line are due to years when no TCs were in the region and therefore are not
available for speed. (C) Time series of the number of TCs that affected the study region with trend line. All the time series were derived from HURDAT2. Solid
trend lines represent significant trends (P < 0.05), while the dashed line represents a nonsignificant trend. (D) SEA of ΣTCP reconstruction with seasonal
average TC duration (Top; n = 12) and seasonal average TC translation speed (Bottom; n = 11). (E) SEA of seasonal average TC duration time series (Top) and
seasonal average TC translation speed (Bottom) with years with extreme ΣTCP as event years (n = 12). Event years were selected based on years that were
greater than the 95th quantile, except for seasonal average TC translation speed, which was the 90th quantile. Blue columns represent significant departures
at P < 0.01, and cyan represents P < 0.05.
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Stewardship initiative version 03r09 (49). TCPDat provides robust spatial cov-
erage of TCP allowing the observed record to not be dominated by a single
weather station. While the hurricane season lasts officially from June 1 to
November 30, most longleaf pine trees stop growing by October 15 (50). We
therefore defined seasonal ΣTCP for each year as the sum of daily TCP for the
period June 1 to October 15, the period best captured by latewood ring width
(27). We created a regional (spatial) average of ΣTCP based on 43 contiguous
grid points that received at least an average of 40 mm/year and ensured that
every grid point that contained a tree-ring site was included (Fig. 1). We also
calculated seasonal non-ΣTCP by subtracting the ΣTCP from seasonal total (June
1 to October 15) precipitation for each of the 43 grid points and then spatially
averaging for each year.

Field and Laboratory Methods. We used five previously published latewood-
width chronologies (27, 28) along with two newly sampled longleaf pine late-
wood width chronologies for a total of seven sites across North Carolina and
South Carolina (Fig. 1). We further extended two of the previously published
chronologies with remnant wood cross-section data (SI Appendix, Table S5). All
seven sites are located on Carolina bay sand rims and support longleaf/wiregrass
woodland communities. Seasonal ΣTCP in these sand rims, which rise 0.5 to 1.5 m
above the surrounding area and drain water efficiently, account for approxi-
mately half of the variance in latewood growth from resident longleaf pine (27,
28). At each site, we targeted every canopy-dominant tree with old-growth
morphology (13 to 36 trees per site). For each tree, we extracted two samples
from opposite sides at ∼1.3 m above the ground. To extend the chronology, we
also extracted cross-sections from stumps and remnant wood using a chainsaw.

We measured the earlywood, latewood, and total ring width using
WinDendro (version 2017a) for all core samples and statistically cross-dated the
samples using the program COFECHA (51). Similarly, we measured two tran-
sects for each cross-section. We detrended individual tree-ring time series to
remove the biological growth trend and nonclimatic influences of growth
(e.g., disturbance) by using a two-thirds spline (52) with the adjustment for
endpoints (53) in the program ARSTAN (54). Fire is relatively infrequent at
these sites compared to other pine savannas, but it is still part of the ecosys-
tem. Thus, we used the two-thirds spline as the detrending method to maxi-
mize the retained climate signal and remove nonclimatic noise. Lastly, we
created chronologies for each site using a biweight average of the individual
series (i.e., core and cross-section measurements; SI Appendix, Table S5).

Adjusted Latewood. Climate and other environmental conditions in the early
growing season influence latewood width in other Pinus species via an in-
ertia effect (55, 56). When removing the influence of climate in the early
growing season in the southwestern United States, the resulting adjusted
latewood width has a stronger relationship to monsoon precipitation com-
pared to the unadjusted latewood (55, 56). So far, only unadjusted latewood
widths have been used to reconstruct ΣTCP (27, 28). To remove the influence
of early growing season climate on latewood width, we regressed early-
wood width onto latewood width and retained the residuals for each indi-
vidual measurement series (55, 56). By adding one to the zero-mean
residuals, we produced an adjusted latewood index (LWa) that, like standard
ring-width measurements, has a mean of one over the entirety of the time
series (55). The sensitivity of P. palustris latewood growing on Carolina bay
sand rims is related to microtopographic differences (57). Therefore, the
sensitivity of individual trees to ΣTCP varies. By calculating LWa at the series
level, we can potentially remove some of the influence of landscape position
on latewood and better retain the ΣTCP signal (SI Appendix, Fig. S5).

ΣTCP Reconstruction. We used a nested principal component (PC) regression
(58) to reconstruct regional ΣTCP from our seven LWa chronologies. We first
conducted a PC analysis of the seven LWa site chronologies. We retained only
the first PC as a predictor, as it was the only PC with an eigenvalue greater
than one and consistently explained over ∼80% of the variance in the LWa
chronologies (SI Appendix, Table S2). To account for decreasing sample depth
back in time, we used a nested reconstruction approach (59). The first recon-
struction nest covers the common period of all chronologies (1880 through
2015). We then dropped the youngest chronology as determined by the
expressed population signal (60) (SI Appendix, Fig. S3) and reran the PC re-
gression with the remaining chronologies as predictors and instrumental ΣTCP
as the predictand. We repeated this process until there was only one chro-
nology remaining. The final reconstruction is the combination of the nested
models, with each nested model being calibrated from 1948 to 2015.

To evaluate the reconstruction skill of each nested reconstruction model,
we used a standard split-sample calibration and validation approach. We
divided the instrumental period into two periods of approximately equal
length (1948 through 1978 and 1979 through 2015) to cross-validate the

ΣTCP reconstruction model. Model validation was performed over the later
period (1979 through 2015), and verification statistics were calculated for
the early period. The verification was based on the coefficient of determi-
nation (R2), the Reduction of Error (RE) (61), and the Coefficient of Efficiency
(CE) (62). We then reversed the calibration period to the latter half and
validated on the early half using the same metrics. Positive RE and CE values
indicate adequate skill of the model at predicting ΣTCP through time. We
did this validation procedure for each reconstruction nest. The earliest nest
(based only on the Lewis Ocean Bay chronology) had low explained variance,
and we therefore excluded that nest from the reconstruction. To assess
model uncertainty, we show the inner 95% (for each year) of 999 recon-
struction replicates derived from a maximum entropy bootstrapping
(MEBoot) (63). MEBoot preserves the dependence structure (i.e., the auto-
correlation and partial autocorrelation functions) of the time series and does
not assume stationarity of the time series.

To examine how the timing of the TCs may have influenced LWa, we ex-
amined the month of occurrence for each TC that generated TCP from 1948 to
2015. To better attribute ΣTCP to a specific month, we removed years that did
not have TCP and removed years that had TCs from multiple months contrib-
uting to the ΣTCP. Using this subset of data, we used an ANOVA with a Tukey
honestly significant difference post hoc test to compare the LWa grouped by
the month of TC occurrence and found that there were no significant differ-
ences between groups (SI Appendix, Fig. S2). We also performed an ANOVA on
TCP for each month of occurrence and found no significant differences (SI
Appendix, Fig. S2). It is important to note that the sample size of these groups
was relatively small (n ranged from 4 to 13); however, August and September
account for over 80% of TC activity in the north Atlantic Basin, which is the
peak season for latewood growth. Further, the timing of TC occurrence did not
exhibit a trend through time, and every TC that produced >100mm occurred in
August and September, indicating that the timing of TCs had a minimal impact
on the interpretation of the reconstruction.

Bias Correction. Because the probability distributions of tree-ring reconstruc-
tions often differ from those of instrumental data, especially in the tails, we
bias-corrected (29) our ΣTCP reconstruction. We bias-corrected each nested
model separately, then combined the bias-corrected values for each nested
model to get the final bias-corrected reconstruction of ΣTCP. Bias-correction is
used here as a postprocessing procedure, similar to its use with climate model
outputs (64). We used quantile mapping with the “RQUANT” method in the
qmap package (65) in R (66). RQUANT approximates the quantile–quantile
relationship by using local linear regressions on regularly spaced quantiles. The
bias of a given quantile in the reconstruction is estimated by calculating the
difference between the local regression and the quantile derived from the
observations. These different bias estimates for each quantile can then be
added to the respective quantiles from the reconstruction. Another benefit of
bias-correcting the reconstruction is that we can directly compare the recon-
structed ΣTCP values with very recent observations, such as those during 2016,
2017, and 2018, when we do not have well-replicated tree-ring data. Once
systematic error within the reconstruction has been reduced, a direct com-
parison to observed values is more appropriate. Therefore, we include the
three most recent years from the instrumental data in the bias-corrected re-
construction of ΣTCP. To determine how the postprocessing bias-correction
procedure influenced the reconstruction, we calculated the Nash–Sutcliffe CE
to assess overall model error (1948 through 2015) before and after bias-
correction. We also examined the ratio of the total error that was system-
atic or related to bias by calculating the systematic mean square error and
dividing it by the total mean square error (29, 67). Kernel density estimates of
the probability density functions demonstrate that the bias-corrected recon-
struction better matches the empirical distribution of the observed data
compared to the uncorrected reconstruction (Fig. 2D). The bias-corrected re-
construction also addresses the problem of the reconstruction model produc-
ing negative ΣTCP estimates. To assess the bias-corrected reconstruction model
uncertainty, we applied the same bias-correction procedure to each of the 999
members of the ensemble from the uncorrected reconstruction derived using
MEBoot. We then estimated the percentiles for the 95% CIs from the bias-
corrected ensemble. While the fit of each nested model is not included in the
calculation of the CIs, the RMSEs for each nest only differ by ∼2 mm. Further,
for the majority of the reconstruction (from 1740 onward), the RMSE values
for the various nested reconstructions only differ by ∼1 mm. Overall model
evaluation statistics are slightly improved by the bias-correction procedure,
with calibration CE = 0.255 before versus 0.279 after bias-correction for the
most replicated nest. The proportion of total error that was systematic error
slightly improved after bias-correction, with 20% of the error being systematic
in the original reconstruction and 18% following bias-correction.
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Number and Duration of TCs. We used the HURDAT2 data set (1851 through
2018) to determine the number, translation speed, and duration of landfalling
TCs in our study area. We tabulated any TC that tracked within 223 km—the
average size of themoisture plume from a landfalling TC and the diameter that
was used in TCPDat (10)—of the center of our study region to generate a time
series of the number of landfalling TCs. We calculated translation speed (14)
but only for the portions of the TC tracks that fell within 223 km of our study
region. We used the distances between the 6-h locations along each TC track
using a great circle arc to calculate translation speed. We then averaged the
translation speed for all segments of all TC tracks within 223 km of our study
region for each year to generate a time series of seasonal average translation
speed of landfalling TCs. To calculate seasonal average TC duration, we sum-
med the number of 6-h periods from HURDAT2 during which a TC was located
within 223 km of our study region and then divided it by the number of TCs
that were in our study region for a given year. Because translation speed as
well as the number of TCs influence ΣTCP, we also summed the number of 6-h
periods from HURDAT2 that a TC was located within 223 km of our study re-
gion for each year to create a time series of seasonal total TC duration that
combines the number of TC and the speed of those TCs. We then use seasonal
average translation speed, seasonal average TC duration, and total TC duration
to examine the relationship of TC speed and duration with instrumental and
reconstructed ΣTCP using Spearman’s correlation.

To determine potential relationships between extremes in seasonal av-
erage TC durations and ΣTCP, we conducted a series of superposed epoch
analyses (SEA). In a first SEA, we used reconstructed extreme (≥95th quan-
tile; n = 12) ΣTCP years as event years and seasonal average TC duration as a
chronology for the current year and over the previous year and following 5-y
lags. We then conducted a second SEA in which we used extremes (≥95th
quantile; n = 12) in seasonal average TC duration as event years and
reconstructed ΣTCP as the chronology. We then repeated the same proce-
dure (creating two more SEAs) but replaced seasonal average TC duration
with the seasonal average TC translation speed. For the SEA using transition
speed as the event series, we had to use the 90th quantile to reach a number
of events high enough for the analysis (n = 11). All SEAs were conducted for
the common period (1851 through 2015). We used 1,000 Monte Carlo sim-
ulations to develop bootstrapped CIs to determine statistical significance.

To examine the relationship between TCP and TC speed for individual
storms, we computed the TCP per TC and the translation speed per TC. We
calculated the TCP for each storm by first summing the daily values of TCP for
those days that a storm impactedour study region (fromTCPDat) for eachof the
43 contiguous grid points used in the ΣTCP reconstruction (Fig. 1). We then
averaged the TCP data across the 43 grid points to obtain a regional TCP es-
timate for a given storm. We calculated translation speed per TC for the
portions of the TC tracks that fell within 223 km of our study region, but we
averaged the speeds for each storm instead of averaging for the entire season
as was done for the seasonal average TC translation speed. We then used
Spearman’s correlation to calculate the correlation between TCP and transla-
tion speed per TC. Lastly, we binned individual TCs in groups that had similar
speeds (5-kn groups). For each group that had a sample size of ∼20 or more
TCs (5 to 9 kn, 10 to 14 kn, and 15 to 19 kn), we tested for trends in TCP per TC
with a Mann–Kendall trend test with Sen’s slope using the “MannKendall”
function in the R package “Kendall” (68). We then tested for trends in TCP per
TC for all individual TCs that influenced our study region to determine
whether trends in TCP were related to the translation speeds of TCs.

Trend Analysis. To quantify trends in extremes of reconstructed ΣTCP over time,
we use quantile regression (69), using R package “quantreg” (70), to estimate
the slope of a regression using time as the predictor and ΣTCP as the response.
Whereas ordinary least squares (OLS) regression provides an estimate of the

conditional mean (i.e., an estimate of the mean ΣTCP for a given year),
quantile regression provides trend estimates for ΣTCP across the full proba-
bility distribution. Quantile regression is formulated as an optimization
problem that estimates the conditional quantiles by minimizing the sum of
absolute errors that are weighted according to their quantile position (i.e., it
does not partition the data into quantiles and then estimate parameters).
Here, we estimate the linear relationship between quantiles of ΣTCP and time
for quantiles ranging from 0.01 to 0.99. Given that we are particularly inter-
ested in changes in extreme ΣTCP, we focus on trends in the upper tail of the
distribution, such as the 0.95 quantile and higher, and compare them to trends
in the center of the distribution (Fig. 3). Like OLS, quantile regression provides
estimates of the uncertainty of different quantiles. In our application (using a
zero-limited variable), the higher quantiles clearly have higher uncertainties
compared to the lower quantiles (Fig. 3B). We used the “rank” method to
determine the 95% CI around each quantile regression slope. While our bias-
correction procedure did not inflate the variance during the instrumental
period (variance of 5,162.3 in the original reconstruction compared to 5,271.7
in the bias-corrected reconstruction), bias-correction increased the variance
during the preinstrumental period, with the variance being 43% higher over
the full reconstruction in the bias-corrected time series. The estimates of un-
certainty that are derived from the quantile regression trends (Fig. 3) became
larger after bias-correction. As a result, the changes in uncertainty that come
from the distribution-altering properties of bias-correction are, to a large ex-
tent, captured in the quantile regression-based trend estimates. To determine
whether the annual number, the seasonal average duration, and the seasonal
average translation speed of TCs (1851 through 2018) showed a significant
trend, we used a Mann–Kendall trend test with Sen’s slope using the “Man-
nKendall” function in the R package “Kendall” (68).

Large-Scale Climate Drivers. To determine the role of large-scale atmospheric-
oceanic modes of variability on ΣTCP variability, we compiled climate indices
with a well-known influence on TC genesis, development, and tracks. Spe-
cifically, we used the bivariate ENSO index (BEST) (71) time series (June
through November; 1950 through 2016) from the National Oceanic and
Atmospheric Administration Physical Science Laboratory. We also used the
summer North Atlantic Oscillation index (NAO; 1948 through 2018) (72) and
June through November averages of the Atlantic Multidecadal Oscillation
(AMO; 1856 through 2018) (73) and the Bermuda High Index (1948 through
2018) (74, 75). Lastly, we gathered gridded SSTs for the North Atlantic from
the Hadley Center (76) for the period 1850 through 2016. We then calcu-
lated Pearson correlation coefficients between all climate drivers and the
ΣTCP reconstruction over their period of overlap. To compare over the full
reconstruction period, we also compared our ΣTCP reconstruction with AMO
(May through September) (77) (annual) (78), NAO (winter) (79, 80), NAO
(summer) (81), ENSO (annual) (82) (winter) (83), and tropical North Atlantic
SSTs (April through March tropical year) (36) reconstructions.

Data Availability. All data and code can be accessed in the supplemental files.
Raw tree-ring chronologies and the reconstruction from this paper is archived
at the International Tree-Ring Data Bank (https://www.ncdc.noaa.gov/data-
access/paleoclimatology-data/datasets/tree-ring) in additon to being avail-
able in the supplemental files. All data are included in the article and/or
supporting information.
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