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Abstract—Cooperative spectrum sensing (CSS) adopted by
spectrum-sensing providers (SSPs) plays a key role for dynamic
spectrum access and is essential for avoiding interference with
licensed primary users (PUs). A typical SSP system consists of
geographically distributed spectrum sensors which can be com-
promised to submit fake spectrum-sensing reports. In this paper,
we propose SpecKriging, a new spatial-interpolation technique
based on Inductive Graph Neural Network Kriging (IGNNK)
for secure CSS. In SpecKriging, we first pretrain a graphical
neural network (GNN) model with the historical sensing records
of a few trusted anchor sensors. During system runtime, we use
the trained model to evaluate the trustworthiness of non-anchor
sensors’ data and also use them along with anchor sensors’
new data to retrain the model. SpecKriging outputs trustworthy
sensor reports for spectrum-occupancy detection. To the best
of our knowledge, SpecKriging is the first work that explores
GNNs for trustworthy CSS and also incorporates the hardware
heterogeneity of spectrum sensors. Extensive experiments confirm
the high efficacy and efficiency of SpecKriging for trustworthy
spectrum-occupancy detection even when malicious spectrum
sensors constitute the majority.

Index Terms—Wireless security, GNN, cooperative spectrum
sensing.

I. INTRODUCTION

With ever-growing wireless/mobile devices and the resulting
explosive data traffic, RF spectrum has emerged as an impera-
tive resource worldwide with limited supply. Cooperative spec-
trum sensing (CSS) adopted by spectrum-sensing providers
(SSPs) plays a key role for dynamic spectrum access and is
essential for avoiding interference with licensed primary users
(PUs). A typical SSP system consists of geographically dis-
tributed spectrum sensors. Most spectrum sensors are deployed
by the SSP itself, and some can be recruited mobile users
accepting crowdsourced spectrum-sensing tasks [1-3]. The
SSP distributes spectrum-sensing tasks to spectrum sensors
and then explores the collected spectrum data to provide
an integrated spectrum-analytics platform to various users.
There has been a lot of work on CSS-based applications
such as spectrum patrolling [4], spectrum occupancy query
[5], and transmitter localization [6]. Although promising, CSS
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is vulnerable to false spectrum reports from compromised or
dysfunctional spectrum sensors. An extreme example is when
the majority of spectrum sensors are compromised to submit
fake spectrum measurements and/or location information, the
spectrum-analysis results can be totally wrong.

The prior work to defend against compromised spectrum
sensors can be classified into several categories. The first
category [7, 8] uses anomaly detection and fails if malicious
sensors are the majority. The second category maintains rep-
utations for spectrum sensors based on their historical logs
or statistical results [9—11]. These methods could not handle
the sudden change in sensor behavior and thus are vulnerable
to the instantaneous attack. The third category relies on a
few trusted sensors to exclude the malicious nodes whose
data significantly deviate from trusted sensors’ [1, 12, 13].
Although attractive, they require either real signal-propagation
data from PUs that are often difficult to obtain [12] or signal-
propagation models that are unpredictable in real scenarios
[1]. The latest category utilizes various spatial-interpolation
techniques such as Inverse Distance Weighting (IDW) [14]
and Ordinary Kriging (OK) [5, 13]. With growing demand
for fine-granular and large-scale spectrum data, these spatial-
interpolation techniques show great potential for RF signal
processing [5, 13]. The underlying intuition is that the spec-
trum measurement in a location can be inferred from those at
neighboring locations with spatial interpolation. By comparing
the predicted and measured spectrum data of individual spec-
trum sensors, the SSP could evaluate their trustworthiness.

Although promising, spatial-interpolation techniques suffer
from a few drawbacks. First, it can be difficult to implement
these techniques when the number n of spectrum sensors
is large. For example, the state-of-the-art techniques [5, 13]
based on OK [15] uses large-matrix multiplication with com-
putational complexity of O(n?*). Second, these methods can-
not handle the multi-dimensional RF datasets (e.g., spectrum
signals from multiple frequency bins). Last and most impor-
tantly, these methods cannot apply when spectrum sensors
are heterogeneous. In particular, when spectrum sensors have
heterogeneous device features such as a different number
of antennas, various sampling rates, or measurement mech-
anisms, their RF signal measurements might relate to not only
spatial information but also these device features. In this case,
spatial-interpolation methods become less valid.

This paper explores graph neural networks (GNNs) for
secure CSS for the first time in literature. We are motivated
to adopt GNNs because they are powerful in mapping spa-
tiotemporal spectrum data from different sensor location at
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a certain time slot into a single graph. Then we can adopt
GNN-based interpolation techniques such as [16] to detect
malicious spectrum sensors. The biggest advantage of GNN-
based interpolation is that the GNN-based model need not be
retrained once trained well. In contrast, the OK-based model
needs to recalculate the variance matrix of all sensors every
time when new data arrive, resulting in huge computational
overhead for a large number of spectrum sensors. Our main
contributions can be summarized as follows.

o First, we propose SpecKriging, a new spatial-
interpolation technique based on Inductive Graph
Neural Network Kriging (IGNNK) [16] for secure CSS.
In SpecKriging, we first pretrain the GNN model with
the historical sensing records of a few trusted sensors
called anchor sensors during system initialization.
During system runtime, we use the model to evaluate
the trustworthiness of non-anchor sensor’s data and
also use them along with anchor sensors’ new data to
retrain the model. The model retraining stops when the
model quality is sufficiently high. Compared with the
OK-based methods with computational complexity of
O(n*) [15], SpecKriging’ computational complexity is
only O(n?) for each time slot and is thus more suitable
for large-scale CSS systems.

« Second, we incorporate spectrum-sensor heterogeneity
into SpecKriging. As far as we know, SpecKriging is
the first work that takes spectrum-sensor heterogeneity
into consideration for interpolation-based trustworthiness
evaluation of spectrum sensors. In particular, we assign a
linear transformation matrix for each sensor to represent
its hardware configuration before feeding its sensing
reports into the GNN model. These matrices are updated
with other model parameters during the training phase.

o Third, we evaluate the efficacy of SpecKriging for trust-
worthy spectrum-occupancy detection with and without
malicious spectrum sensors. Our evaluations use SVM
and Random Forest as examples. The experiments show
that SpecKriging can distinguish benign and malicious
sensors with the classification accuracy up to 98.10%
for homogeneous sensors and 97.69% for heterogeneous
sensors. When the sensors are homogeneous, SpecKrig-
ing can perform correct spectrum-occupancy detection
with accuracy as high as 98.45%, which is comparable
to the performance of the OK-based techniques [5, 13].
When the sensors are heterogeneous, SpecKriging can
still achieve the detection accuracy up to 98.18%, while
the OK-based techniques [5, 13] no longer work.

The rest of this paper is organized as follows. Section II
gives the problem formulation and threat model. Section III
illustrates the SpecKriging design. Section IV presents the
experimental evaluation of SpecKriging. Section V reviews
the related work. Section VI concludes this paper.

II. PROBLEM FORMULATION AND GNN PRIMER
A. System Model

We consider an SSP who provides spectrum analytics over
a large geographic area divided into many sensing zones.
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Fig. 1: System architecture.

There are one or more static PUs in each sensing zone.
Since SpecKriging applies to one or more PUs without any
operational difference, we assume only one PU in each sensing
zone hereafter for ease of presentation. Fig. 1 shows the CSS
architecture where the snapshot of one sensing zone is shown.
As in [1, 12, 13], we assume that the SSP deploys several
anchor sensors at strategic locations. Anchor sensors are highly
safeguarded, tamper-resilient, and remotely monitored by the
SSP; they can also undergo periodic remote attestation by the
SSP and are excluded if tested as compromised. Although
anchor sensors provide trustworthy sensing reports, they are
too expensive to deploy in large numbers and can thus only
serve as “ground-truth” reports at their locations. the SSP
resorts to a lot of cheaper non-anchor sensors along with a
few anchor sensors to provide high-quality spectrum analytics.
Most non-anchor sensors are expected to be deployed by the
SSP itself, and some can be recruited mobile users accept-
ing crowdsourced spectrum-sensing tasks [1-3]. Anchor and
non-anchor sensors can be mobile or static and report their
location-tagged spectrum-sensing reports to the SSP either
periodically or on demand. For simplicity, we assume that
each report contains the sensor location and detected RSS
(radio signal strength) values, and the extension of our work
to other types of spectrum-sensing reports is left as future
work. Most sensing reports come from non-anchor sensors
are initially untrustworthy. In the following, we use Anchor
to denote anchor sensors and A to denote non-anchor sensors,
where |A]| > |Aanchor|-

B. Threat Model

We assume that anchors sensors cannot be compromised,
but the adversary can compromise and fully control arbitrary
non-anchor sensors. Each malicious sensor hereafter refers to a
compromised non-anchor sensor. The adversary is fully aware
of our SpecKriging scheme and can use malicious sensors to
launch the following attack. First, a malicious sensor submits
high RSS values when the PU is absent, aiming to block the
spectrum access of legitimate spectrum users by increasing
the probability of false alarms. Second, a malicious sensor
may report low RSS values when the PU is present, aim to
cause interference to the PU by increasing the probability
of missed detection. Third, the malicious sensor submits a
fake location to attempt inducing a wrong CSS result. Given
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this threat model, we assume that anchor sensors’ reports are
trustworthy, but the trustworthiness of all non-anchor sensor’s
reports needs to be carefully evaluated before they are explored
for spectrum-occupancy detection.

C. Problem Formulation

The goal of our SpecKriging technique is to develop
a secure sensor-selection scheme for trustworthy spectrum-
occupancy detection when malicious non-anchor sensors are
present and even constitute the majority. SpecKriging uses
a GNN framework to achieve this goal by mapping the RF
signals of all sensors to an undirected graph. It works by
using GNN-based spatiotemporal interpolation to predict the
sensing data of each non-anchor sensor based on trustworthy
anchor-sensor reports and then evaluating the trustworthiness
of each non-anchor sensor, which is commensurate with the
similarity between their respective interpolation results and
reports. In particular, the SSP first pretrains a GNN model
with the historical datasets from anchor sensors in the off-line
mode during system initialization, as shown in Fig. 1. Note
that a limited number of anchors are always not sufficient to
train a GNN model that is good enough for testing. Therefore,
retraining by using new sensors is necessary for the first
several rounds of the online mode. In particular, each time the
SSP receives new spectrum-sensing reports from non-anchor
and anchor sensors during system runtime, i.e., in the online
mode, it tests non-anchor sensor reports in batches with the
pre-trained model and new anchor sensor reports, distinguish
benign and malicious non-anchor sensors, and then retrain the
GNN model. The model retraining can stop once the retrained
GNN model satisfies the detection-accuracy requirement. In
this scenario, only dataset testing is needed as illustrated in
Fig. 1.

D. IGNNK Method for Spatiotemporal Interpolation

We use GNNGs to characterize the spatiotemporal relation-
ships of all sensing reports generated by different spectrum
sensors at different time. Let G = (V, £) denote an undirected
graph, where V and £ denote the node and edge sets, respec-
tively. We also define a Euclidean distance-based adjacency
matrix W as follows,

diSt(uZ-,vj)>2 0

g

Wi,j =exp | — <

where dist(v;,v;) denotes the Euclidean distance or edge
weight between arbitrary sensors ¢ and j. We also use X;
to represent the data of node i € V.

We adopt the IGNNK model in [16] as the basic model
for spatiotemporal representation and interpolation of sensing
signals. One superior feature of IGNNK is that it is an
inductive GNN which has parameters independent of the scale
of graph nodes and can be used for previous unseen nodes or
even an unseen graph. This feature makes the graph available
even when the input data are from non-anchor sensors (e.g.,
mobile crowdsourcing users) that have never appeared.

IGNNK works as follows. When a period of datasets that
contain some masked measurements are fed into the IGNNK
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model, this model learns the corresponding spatiotemporal
graph and then reconstruct the data of all nodes including
both observed and masked nodes. Here the measurements of
masked nodes—called masked or unknown measurements—
are interpolated based on the spatiotemporal relationships with
their neighbors in the graph. This model has three layers where
the first layer is the initial representation of signals. IGNNK
adopts Diffusion Graph Convolutional Networks (DGCNs)
[17] as the basic building block show below,

K
Hl = ZTk(Wsample)H0@’g7o + Tk(Wsample)Hoe'];,o . (2)
k=1

Here Hy = X .. denote observed and masked
measurements fed into the first layer, and w =

Weample/rowsum(Wgample) represents the forward/backward
transition matrix. T}, 9113,07 and @’}70 are the model’s inner
function and parameters representing the Chebyshev polyno-
mial and learning parameters.

Note that the masked nodes only pass 0 to their neighbors in
this layer and their features are also masked hindering them to
produce desired representation. Therefore, the second layer is
added to produce more generalized representations of masked
nodes, which is represented by

K

H2 = G(Z Tk (Wsample)HlefJ"’Tk (Wsample)Hl@?l)“‘Hl .
k=1

3)

The third layer is to reconstruct the input data as

K
Xsample = Z T, (Wsampb)H?@l]f,Q + Ty, (Wsample)HQG)?Q :
k=1
4)

Here the loss function is defined as the total reconstruction
error on both unmasked and masked samples as follows

l= Z HXsarnple - Xsample||2 . (5)
sample
With the IGNNK method, the measurements from new loca-
tions can be predicted using the trained model. In particular,
these samples are masked as unobserved data and fed into the
model along with the observed ones, and the output of the
model is the interpolation results for the masked locations.

III. SPECKRIGING DESIGN
A. SpecKriging GNN for Homogeneous Sensors

We use the graph model G = (V, &) in Section II-D to
characterize the spatiotemporal sensing data reports. Each an-
chor or non-anchor sensor corresponds to a unique node in V.
We use sensor or node ¢ and V; interchangeably hereafter. The
edge set £ contains an edge between any two spectrum sensors
(anchor or non-anchor). The edge weights form the Euclidean
distance-based adjacency matrix W defined in Eq. (1). We
also use X to denote all the time series of sensing data (i.e.,
RSS values), and X; € X to represent the data of each node
i € V. Fig. 3 illustrates the graph model where Type-n means
the configuration information of each sensor investigated in
Section III-B.
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Fig. 3: Graph model illustration.

Algorithm 1 illustrates the basic SpecGriging GNN ar-
chitecture when all spectrum sensors are homogeneous. In
this algorithm, the model goes through pretraining-testing-
retraining steps, and new data reports are finally classified as
either trustworthy or malicious. Trustworthy reports are used
for both spectrum-occupancy detection and model retaining if
needed, while malicious reports are simply dropped. It is worth
noting that malicious reports are similar to wrong reports
submitted by dysfunctional but benign spectrum sensors. So it
is up to the SSP to decide whether the corresponding spectrum
sensors are excluded permanently or temporarily suspended
from the system. Note that in the testing phase, non-anchor
sensors are not added in one time. Instead, each time we add a
batch of nodes that have the nearest distance to anchor sensors
(see Step 2). Fig. 6a shows that adding all non-anchor sensors
in one time results in worse performance than our scheme
because too many negative samples can reduce the sensor-
classification performance.

Fig. 2 illustrates the workflow of SpecKriging. In the
training phase, we mask the anchor nodes whose reports are
trustworthy and improve the model performance by minimiz-
ing the prediction error of the masked nodes. In the testing
phase, we mask the newly added nodes for trustworthiness
classification. If the difference between the predicted and
measured value collected in one time slot exceeds a predefined
empirical threshold, the corresponding node is classified as
malicious and discarded in this time slot.
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Algorithm 1 SpecKriging algorithm for homogeneous sensors

Require: Historical RSS data X from anchor sensors over
period [1,p] (size n X p); adjacent matrix W of these
anchor sensors; New data X"V from both anchor and
non-anchor sensors over a short period [1,¢] (¢t = h x*
batch) (size (n + k) x t). Parameters: parameters of the
IGNNK architecture Fy.

1: Train IGNNK algorithm using X and W;
training step

2: Sort all non-anchor sensors according to the distance
from anchor sensors, and then partition them into sets
51,52,...,51\4 with |51| < ‘SQ|, Sy < S3,...,‘SM_1| <

> Initial

ISul;

3: Let the current node set S = S2¢ and the added node
set Sadd — @)

4: for m=1: M do

5. Update S2dd = G, . Concatenate the sensing data,

X2dd and XU from S244 and S°** during [1,], and
obtain a new data matrix X}V and adjacent matrix

Wnew.

m 9
6: Test XV with masked X2d9 using the trained model
and W°V; obtain a predicted signal matrix X; >

Testing step
for x,,[i, 7] in X2 do
if | &, [0, j] — @i, j]| > 71 then
: T3, 7] = 0;
10: end if

11: end for
12: Make the zero elements in X[V as missing values

which will not participant in the following retraining
process of MODIFIED_IGNNK algorithm;
13: Update S = {S2"¢ Sy, Sa, ..., Sm 5
14: Retrain IGNNK algorithm; > Retraining step
15: end for

B. SpecKriging GNN for Heterogeneous Sensors

Now we illustrate how to modify the basic SpecKriging
GNN architecture to accommodate heterogeneous spectrum
sensors. A heterogeneous graph is associated with a sensor-
configuration mapping function ¢ : VV — M where M denotes
the set of sensor configuration [18, 19]. For each configuration
type of sensors (e.g., those of type ¢;), we use the type-specific
linear transformation matrix Mgy, to project the features of
different sensor configurations into the same feature space as

xp =My, ;. (6)

Here x; and z) denote the original and projected feature of
sensor 1, respectively.

Thus we incorporate these configuration matrices into the
model’s parameter set and update them during the training
phase. Algorithm 2 shows the brief structure of the heteroge-
neous SpecKriging GNN, where MODIFIED_IGNNK repre-
sents a new model for reconstructing sensing data based on
the IGNNK model. The key difference is MODIFIED_IGNNK
requires the data matrix to be multiplied by the linear
transformation matrix—referred to as a configuration matrix
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Algorithm 2 SpecKriging algorithm for heterogeneous sensors

Require: Historical data X from anchor sensors S?"¢ over
period [1,p] (size n X p); adjacent matrix W of these
sensors; current data X™°V from both anchor and non-
anchor sensors over a short period [1, ] (size (n+k) X t);
a configuration feature list " containing (n+k) elements
with each of size ¢ (the number of configuration feature).
Parameters: parameter set of the IGNNK architecture, Fj;
time slot length h.

1: Create two lists, F30y and T35y (of size h x h), for anchor
sensors; Create two empty lists, Fjof and T3ioF, for
current empty non-anchor sensor set; add these four lists to
MODIFIED_IGNNK algorithm as learnable parameters.

2: Train MODIFIED_IGNNK model in Training-Mode using
X and W; update F o7 and T357; > Initial training step

3: Sort all non-anchor sensors according to the distance from
anchor sensors; partition them into sets Si,52,...,Sn
with |Sl| < |SQ|, Sy < Sg,...,‘SM_1| < |SM|,

4: Let the non-anchor sensor set S™™ = (), and the added
node set Sadd — (;

5. for m=1: M do

Let current node set S = {S®"¢ S"°"} consisting
of anchor and current non-anchor sensor set;

7. Update S?dd = S .. Concatenate the data from $244
and S during [1,#], X244 and X™, and obtain a
new data matrix X" and adjacent matrix W% from
the concatenated nodes; derive a redundant configura-
tion feature list £24¢ only from S,,

8: Test X2V with masked X244 using the model, W2ev,
and 27 in Testing-Mode, and obtain a predicted data

(&1

matrix X; > Testing step
9: for x,,[i, 7] in X2 do
10: if | &[4, j] — @i, j]| > 71 then
11: Tmli, 4] = 0;
12: end if
13: end for
14: Make the zero elements in X °" as missing values;
15: Update S™on = {S1,89,...,Sm}; augment

ot .append(Ffeﬁ ) and T3¢ .append(T;7);

16: Retrain MODIFIED_IGNNK algorithm in Training-
Mode; update F3N7, T35, augmented 57, and aug-
mented 707 > Retraining
step

17: end for

hereafter—before feeding the data to the IGNNK model. Note
that instead of adding the redundant configuration matrices
into the model’s parameters, we add the de-duplicated config-
uration matrices. In the following, we use three new metrics
defined in Table I—Fy4eq, Tgeq, and Treq—to characterize the
configuration knowledge.

In Algorithm 2, we first randomly generate a de-duplicated
list of configuration matrices for all anchor sensors corre-
sponding to their known configuration features. Then we train
MODIFIED_IGNNK model using the signal matrix, adjacency
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TABLE I: Definitions of some variables used in Algorithm 2.

Variables | Description

Faed a de-duplicated list of the collected configuration features

Tded a de-duplicated list of linear transformation matrices,
initialized by random generation for anchor sensors while
by NN for non-anchor sensors, and updated with other
model parameters

Tred a list of the redundant linear transformation matrices used
to multiply the original data X

Algorithm 3 MODIFIED_IGNNK in training mode

Require: Data matrix X and the corresponding adjacent
matrix W. Parameters: two de-duplicated lists, F3\{ and
T3~ , from anchor sensors; two de-duplicated lists, FJo7
and T3, from current non-anchor sensors (if exist); Fp;

1: Obtain T2 from anchor sensors with T30¢ and F3Y;
2: if the non-anchor sensor set is NOT empty then
Obtain 173" from the non-anchor sensors with 1707
and Fo0
4: end if
5: Concatenate T3 and

con.

non

o, and obtain a new matrix list

red

6: Multiply X with 7527, and get X';
7: obtain reconstructed data X’ = IGNNK(X', W, P,);

8: return X'

matrix, and configuration matrix of all anchor sensors. In
particular, the model updates the parameters containing not
only the parameter set of the IGNNK algorithm but also the
configuration parameters of all anchor sensors, T3\, as shown
in Algorithm 3. In the testing step, because the model does not
know the configuration matrices of the new nodes in advance,
we propose to use a small neural network (NN) to predict
these matrices using the matrices from the previously known
nodes, as detailed in Algorithm 4. With the predicted config-
uration matrices, MODIFIED_IGNNK could determine if the
measurements from new nodes are trustworthy or not. Then
it adds trustworthy measurements into the dataset and discard
the untrustworthy ones. Then we retrain MODIFIED_IGNNK
using the augmented dataset, the augmented adjacency matrix,
and the augmented configuration matrix list which has been
initialized in the testing step. The testing and retraining steps
are executed in batches. In summary, the training mode is
responsible for updating model parameters, while the testing
mode is responsible for predicting the configuration matrices
of new nodes and then decide if the nodes are trustworthy or
malicious.

IV. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the efficacy and
efficiency of SpecKriging for both homogeneous and hetero-
geneous sensors with comparison to OK-based interpolation
techniques [5, 13].

A. Experimental Setup

We design experiments to verify that we could use SpecK-
riging to select trustworthy RSS measurements for coop-
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Algorithm 4 MODIFIED_IGNNK in testing mode

Require: Data matrix X and the corresponding adjacent
matrix W. Parameters: the same parameters as that on
the Training-Mode; a redundant configuration feature list
F24d from the new non-anchor sensors;

1: Concatenate T3}y and T);of from anchor and current non-

anchor sensors, and get a new list T503;

2: Concatenate F31{ and F}o], and obtain a new list F§0);

3: Use a small NN network to learn the mapping from F§0}
to T5°0; use the network to predict 7344 from the new
non-anchor sensors with F2dd;

4: Obtain the overall redundant configuration matrix list T, 4
from anchor, current non-anchor and added sensors using
TS0, Fioy, Tiod, and F3d

5: Multiply X with T}, and obtain X';

6: obtain reconstructed data X’ = IGNNK (X', W, Py);

7: return X

erative spectrum-occupancy detection. We use the follow-
ing two datasets corresponding to homogeneous-node and
heterogeneous-node scenarios, respectively.

e Real data from homogeneous sensors. We use the datasets
from [13, 20]. The sensing data are collected on the
campus of the University of Colorado Boulder and cover
an area of 1.5kmx1.1km. We test the sensing data from
100 randomly chosen sensors, and there are 4 randomly
placed transmitters emitting signals in different time slots
in the corresponding coverage area. Three measurements
are collected for each sensor in each time slot, so we let
h = 3. Here we just show the interpolation performance
because the datasets contains only the data for transmitter
presence.

o Synthetic data from homogeneous sensors. We use the
RF signal-analysis tool SPLAT! [21] and the terrain
database of US Geological Survey [22] to generate the
path-loss model for spectrum sensors. We consider a
geographic area of 1 km by 1 km where we randomly
deploy 100 spectrum sensors with the PU at the center.
Actually, if the PU moves during a sensing period, we
can collect the time-varying sensing reports and train
a new spatiotemporal GNN model, which could be our
future work. We also simulate spatially correlated noise
samples of the same number as the signal samples for
sensor selection and spectrum-occupancy detection.

o Synthetic data from heterogeneous sensors. We adopt
the simulation data in [4], which defines 36 different
sensor-configurations with each corresponding to a tuple
(N, NFFT). Here N denotes the number of I/Q samples,
and NFFT denotes the resolution of the FFT algorithm.
Because there is only one energy value in every location,
we can only generate a l-dimensional feature vector
which is not sufficient for spectrum-sensing experiments.
Therefore, we augment the dataset by adding some Gaus-
sian noise of power -80dBm.

In our experiments, we claim that a malicious sensor
launches an attack with attack strength T dB if it reports z;+7T
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TABLE II: Default experiment parameters.

Para. | Value Description

k 70 Number of sensors

ka 20 Number of malicious sensors

n 10 Number of anchor sensors

P 27-33 dBm [6] | Transmitter power

Ny -80dBm Noise power

t 200 Number of time slots of anchor sensors’
historical data

thew |50 Number of time slots of new data

T 10 dB Attack strength

h 2 Number of measurements in each time slot

q 2 Configuration feature length

Py [16] Parameters of IGNNK algorithm

instead where x; denotes the true RSS value [1, 23]. Table 11
lists the default experiment parameters.

B. Classification and Interpolation Performance for Evaluat-
ing Sensor Trustworthiness

Fig. 4 compares SpecKriging with OK-based interpolation
techniques [5, 13] for distinguishing between benign and
malicious non-anchor sensors. The performance metric here is
the classical classification accuracy defined as the number of
correct predictions divided by the total number of predictions.
Fig. 4a and Fig. 4b show the results for homogeneous spectrum
sensors. For both methods, the classification accuracy in-
creases with the attack strength because benign and malicious
sensors are obviously much easier to tell apart for larger attack
strength. In addition, SpecKriging and the OK-based methods
have comparable classification performance. Fig. 4c shows the
results for heterogeneous sensors. It is clear that SpecKriging
outperforms the OK-based techniques regardless of the attack
strength. The reason is that the OK algorithm calculates the
weights between two nodes based on the prediction variance,
but the sensor-configuration information is unpredictable and
not related to the variance matrix constructed by the OK algo-
rithm. This issue makes the OK-based methods less applicable
when spectrum sensors have highly heterogeneous hardware
configurations.

Fig. 5 compares the interpolation performance of SpecK-
riging and the OK-based methods when all the non-anchor
sensors are benign. The performance metric here is Mean
Absolute Error (MAE), which indicates the difference between
the interpolated (predicted) and measured data values. We test
the real data with 30 sensors during the training phase. As
shown in Fig. 5a, the MAE values of SpecKriging algorithm
decrease sharply in the first several epochs and finally reach
a lower extreme (smaller than 6) than that of the OK-based
algorithm. This result verifies the effectiveness of SpecKriging
in real scenarios.

Recall that SpecKriging adds non-anchor sensors in batches
during the testing and model-retraining phases. Next, we test
the MAE changes because of the batch processing. We assume
that non-anchor sensors are partitioned into random batches
for the model training. The dataset contains 50 new non-
anchor sensors with each reporting 3 RSS values (i.e., covering
3/h = 1 time slots). These sensors are used for validation
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Fig. 4: Sensor-classification accuracy for homogeneous and heterogeneous sensors.

and thus not used in the model-training phase. We use the
trained model to predict the data values of these sensors
and then compute the average MAE. Each data point in
Fig. 5b represents the average of 100 runs. Other experiment
parameters follow Table II.
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Fig. 5: MAEs of homogeneous sensors corresponding to real
data.
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Fig. 6: MAEs of homogeneous and heterogeneous sensors
corresponding to synthetic data.

We also test the performance of synthetic data of homo-
geneous and heterogeneous sensors. The dataset contains 55
new non-anchor sensors with each reporting 100 RSS values
(i.e., covering 100/h time slots). Fig. 6a plots the MAE for
homogeneous sensors. we can clearly see SpecKriging has
much better performance when batch processing is used. In
addition, the larger the batch size, the more non-anchor sensors
contributing to the model training, the better the interpolation
accuracy, the lower the MAE, and vice versa. In addition,
SpecKriging starts to outperform the OK-based methods when
the batch size exceeds 7. Similar results can be observed in
Fig. 6b for heterogeneous sensors. Note that the MAE of
SpecKriging decreases significantly with the batch size, while
the MAE of the OK-based methods has little change. The
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main reason is that the OK-based methods do not take sensor
configuration into consideration, resulting in prediction errors
for new sensors.

C. Performance for Spectrum-Occupancy Detection

In this section, we compare the performance of SpecK-
riging and the OK-based methods for spectrum-occupancy
detection in the presence of malicious sensors. For this set
of experiments, we use classification accuracy and also the
reconstructed Radio Environmental Map (REM) as the main
performance metrics. In this context, a classification error is
said to happen if a present (or absent) PU is classified as
absent (or present). We use two popular machine learning
methods—SVM and Random Forest [24, 25]—for detecting
spectrum occupancy based on trustworthy data reports output
by SpecKriging or the OK-based methods. Each data sample is
a time sequence of RSS measurements, and there can be miss-
ing measurements after SpecKriging or the OK-based methods
are applied to detect and then discard malicious measurements.
Since the data samples with missing measurements cannot
be directly used, we use the interpolated measurements to
substitute the discarded measurements.

1) Homogeneous sensors: This section reports the results
with homogeneous spectrum sensors. In this group of experi-
ments, we have 100 samples (each of size k + n) with the PU
present and 100 noise samples of the same size. The simulation
is done in Python, and anchor/benign/malicious sensors are
picked randomly. Each point in Fig. 8 is the average of 100
runs. We also show the results without any countermeasure as
a reference.

Fig. 7 visualizes the REMs when all nodes are benign
(Fig. 7b), there are malicious sensors without any defense
(Fig. 7c), and SpecKriging is adopted to counteract malicious
sensors (Fig. 7d). Because the PU is at the center of the sensing
region, its signal strength decreases gradually from the center
to the corners. Malicious sensors report high RSS values to
change the signal distribution in REM significantly. We can
clearly see that SpecKriging could exclude the malicious sen-
sors and reconstruct accurate measurements in their locations.

Fig. 8a demonstrates the classification accuracy with differ-
ent numbers of anchor sensors. Both SpecKriging and the OK-
based methods achieve comparably very high classification
accuracy when malicious sensors are present. In addition, the
classification accuracy increases with the number of anchor
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Fig. 7: REMs for homogeneous sensors.

sensors because more trustworthy measurements could train a
better model for evaluating sensor trustworthiness. In addition,
even though the sensor-classification accuracy is relatively low
for low attack strength as shown in Fig. 4b, the spectrum-
occupancy classification accuracy can still be very high. The
reason is that with the lower attack strength, malicious mea-
surements escaping the detection are also more similar to
benign measurements and thus have a weaker negative impact
on spectrum-occupancy classification.

Fig. 8b shows the classification accuracy with different
numbers of malicious sensors. As we can see, the classification
accuracy decreases with the number of malicious sensors. This
result coincides with our intuition but is still much better than
without any defense. The good news is that even when there
are more malicious sensors than benign ones (40 vs. 30),
SpecKriging can still achieve classification accuracy over 90%
better than that of the OK-based methods.

Fig. 8c illustrates the classification accuracy as the attack
strength varies. When the attack strength becomes 0, the
classification accuracy is clearly the highest. In addition, no
matter whether the attacker reports higher or RSS values, the
classification accuracy always drops. The reason is that higher
RSS values increase the false positive rate (FPR) when the PU
is absent, while lower RSS values increase the false negative
rate (FNR) when the PU is present. In all simulated scenarios,
SpecKriging can still achieve classification accuracy over 90%.

2) Heterogeneous sensors: Now we report the results with
heterogeneous spectrum sensors. In this group of experiments,
we feed the energy data with sensor-configuration information
into the SpecKriging model.

We first show the REMs with benign sensors only (Fig. 9b),
with malicious sensors but without any defense (Fig. 9c),
and with SkecKriging adopted to detect malicious sensors
(Fig. 9d). We can clearly see the high performance of SpecK-
riging in excluding malicious measurements and reconstruct
accurate substitutes.

Fig. 10a shows the classification accuracy with differ-
ent numbers of anchor sensors. SpecKriging achieves very
high classification accuracy and significantly outperforms
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the OK-based methods which cannot accommodate sensor-
configuration heterogeneity. Also as expected, the more anchor
sensors, the higher the classification accuracy.

Fig. 10b illustrates the impact of different numbers of
malicious sensors. SpecKriging always outperforms the OK-
based methods and maintains high performance even when
malicious sensors are more than benign ones (40 vs. 30).

Fig. 10c demonstrates the classification accuracy as the at-
tack strength varies. SpecKriging always outperforms the OK-
based methods and maintains high performance even when
the attack strength is very high. Since high attack strength
can significantly increase the attacker’s cost, SpecKriging can
significantly raise the bar of launching effective spectrum-
sensing attacks.

Fig. 11 shows the effect of sensor density on the classifi-
cation accuracy. As we can see, a large number of sensors
can boost the classification performance, which also verifies
that trustworthy anchor sensors alone are not enough for high-
quality spectrum analytics.

D. Computational Time

We also evaluate the computational time (mainly the dom-
inating model-training latency) of SpecKriging and compare
it with the OK-based methods. We train the model on a Dell
desktop with 3.19 GHz CPU, 16 GB RAM, and Windows
10 64-bit Professional. As shown in Fig. 12a, SpecKriging
has similar model-training latency to the OK-based methods
when the data size is small and is significantly better when the
data size ((especially the number of sensors) becomes large.
This result is anticipated due to their different computational
complexity. For the OK-based methods, the computational
complexity is O(n*) with n denoting the number of sen-
sors [15]. Since IGNNK constructs three layers of DGCNs
[17] with computational complexity O(n?) in our scenario,
SpecKriging also has computational complexity O(n?) for
each time slot. Therefore, SpecKriging outperforms the OK-
based schemes in large-scale CSS systems.

We also evaluate the effect of the number of measurements,
h, in each time slot for SpecKriging with heterogeneous
sensors. This parameter h also denotes the size of the linear
transformation matrix assigned to the input data. It determines
the granularity of the data after being multiplied by &. Fig. 12b
shows the classification accuracy with different h. As we can
see, when h increases, the classification accuracy decreases
due to the coarser data segmentation during linear transfor-
mation. However, a small i value means high computational
complexity. Therefore, there is a trade-off between classifica-
tion accuracy and computational complexity with regard to h.

V. RELATED WORK

In this section, we briefly outline the prior work most
germane to SpecKriging.

There are various countermeasures to identify the false
sensing reports. The first category is anomaly detection [7,
8, 26, 27]. Some methods identify false sensing reports by
differentiating them from other measurements of the normal
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nodes in their neighborhood. For example, in [8], the authors
use a moving box window to detect the abnormal locations
where the measurement is very different from that submitted
by its neighbors. Some other techniques use machine learning-
based methods to predict attacking behaviors based on the
legitimate sensors’ previous patterns. For example, in [26],
the authors use one-class SVM to learn the pattern of nor-
mal sensors’ previous behavior and predict future abnormal
reports from attackers. These methods fail when the malicious
nodes become the majority in the sensing region. The second
category detects adversaries based on the reputation scores
from historical logs or statistical results [9-11]. In [9], the
authors propose to use sensors’ reputation levels as their fusion
weights during spectrum detection. However, reputation-based
methods cannot handle the sudden change in mobile sensors’
behaviors and are thus vulnerable to instantaneous attacks.

Researchers also use the trusted nodes/anchors to detect the
false measurements from the crowdsourcing users [1, 12, 13].
In [12], the authors observe that given the real signal prop-
agation information from PU, neighboring cells can help to
correct the sensing decision. In [1], the relationship between
anchors and normal nodes are established to exclude abnormal
nodes. However, the performance degrades if the propagation
model is not accurate enough.

Recently, some papers propose interpolation techniques,
such as Inverse Distance Weighting (IDW) and Ordinary
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Kriging (OK), to detect malicious nodes [5, 13, 14]. The
intuition is that measurements from good nodes can be used
to “interpolate” the measurements from unknown sensors. If
the reports from some sensors are significantly different from
the interpolated results, these sensors are probably malicious.
For example, in [5], the authors use OK to select the proper
sensors for the spectrum occupancy query. In [13], the authors
use OK to select the normal sensors to construct the radio
environment map. These methods are promising for sensor
selection but they have some limitations as mentioned in I
First of all, these methods become less effective when the
sensors have heterogeneous features (e.g., various sampling
rates or different number of antennas) that affect the sensing
reports. In contrast, SpecKriging explores a GNN model for
the interpolation task and incorporates sensors’ heterogeneous
information into the model. By combining the spatial-temporal
and configuration features, we can obtain good interpolated
results from the unknown sensors. In addition, the existing
interpolation methods are applied to spatial or temporal in-
terpolation solely. Therefore, each time when a new dataset
arrives, all sensors are required to update the interpolation
matrix. SpecKriging, by contrast, does not need extra training
efforts when new nodes are added once the model is trained.

Researchers have also explored the sensor heterogeneity in
cooperative spectrum sensing [4, 28-32]. In [28, 29, 32], the
authors consider the heterogeneity of SUs in terms of the SNR
values, reporting errors, and data transmission rates. Besides,
the authors in [30] investigate the heterogeneous sensing
abilities including detection and false alarm rates. In addition,
authors in [31] discuss the CSS performance of SUs with
different antenna numbers and sampling rates. The most recent
work [4] considers the scenario when spectrum sensors have
heterogeneous sensing capabilities including sampling rates
(i.e., the number of FFT bins) and sample numbers in one time
slot. Similar to the work in [4], we also incorporate spectrum
heterogeneity into SpecKriging, with regard to sampling rates
and sample numbers. As far as we know, SpecKriging is the
first work that takes spectrum-sensor heterogeneity into con-
sideration for interpolation-based trustworthiness evaluation of
spectrum sensors. In our setting, because the sample number
and FFT bin number are both discrete values, we could classify
each sample number (i.e., an FFT bin number pair) as one
sensor type and assign it a type-specific linear transformation
matrix. As for other heterogeneous configuration information
such as SNR, discretization is needed before such information
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is assigned a transformation matrix and fed into the GNN
model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the design and evaluation of
SpecKriging, the first work that explores GNNs and considers
sensor heterogeneity for secure cooperative spectrum sensing
(CSS). Extensive experiments show that SpecKriging main-
tains very high spectrum-occupancy detection accuracy even
when the majority of spectrum sensors are malicious. We also
show that besides its unique support for sensor heterogeneity,
SpecKriging has comparably high performance for trustworthy
spectrum-occupancy detection and much lower computational
complexity than the state-of-the-art prior work in large-scale
CSS systems with homogeneous spectrum sensors.
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