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ABSTRACT
Statisticians oftenuseMonteCarlomethods to approximateprobability distributions, primarilywithMarkov
chainMonte Carlo and importance sampling. SequentialMonte Carlo samplers are a class of algorithms that
combine both techniques to approximate distributions of interest and their normalizing constants. These
samplers originate from particle filtering for state space models and have become general and scalable
sampling techniques. This articledescribes sequentialMonteCarlo samplers and their possible implementa-
tions, arguing that they remain under-used in statistics, despite their ability to perform sequential inference
and to leverage parallel processing resources among other potential benefits. Supplementary materials for
this article are available online.
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1. Introduction

Motivation. The numerical approximation of probability dis-
tributions is ubiquitous in statistics, whether it concerns the dis-
tribution of a test statistic, or conditional distributions of param-
eters and latent variables given observed variables. Monte Carlo
methods, originally developed in physics to compute specific
expectations of interest, have become fundamental in data anal-
ysis. The complexity of distributions encountered in the practice
of statistics has increased, and the study ofMonteCarlomethods
to approximate them has become more formal. Meanwhile, the
context surrounding the development of numerical methods
has changed, with computation becoming more parallel, users
becoming accustomed to stochastic as opposed to deterministic
calculations, increasing interest in quantifying Monte Carlo
errors, and a wider availability of modifiable software packages.

In this fast-changing landscape, it can be difficult for the
nonspecialist to keep track of important developments inMonte
Carlo methods. This article shines some light on Sequential
Monte Carlo samplers, imported from the signal processing lit-
erature to statistics in the early 2000s (Chopin 2002; Del Moral,
Doucet, and Jasra 2006). These algorithms provide a generic
approach to sample fromprobability distributions, can scalewell
with the dimension of the state space, provide estimates of the
associated normalizing constants, are well-adapted to sequential
settings and are largely amenable to parallel computing.

We first recall Markov chain Monte Carlo (MCMC, Robert
and Casella 2011; Dunson and Johndrow 2020) and importance
sampling (IS, Owen 2013, chap. 9) techniques and highlight
someof their limitations. Throughout the articlewe consider the
task of sampling from a target distribution π(dx) = γ (x)dx/Z
defined on ameasurable space (X,X ), with unnormalized den-
sity x �→ γ (x) and unknown normalizing constant Z =∫
X γ (x)dx, that we might also want to approximate.

CONTACT Pierre E. Jacob pierre.jacob@essec.edu ESSEC Business School, 3 avenue Bernard Hirsch, 95000 Cergy, France.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

MCMC. Given a π-invariant Markov transition kernel M, an
MCMC method generates a Markov chain (xt)t≥0 by sampling
x0 from an initial distribution π0 and iteratively sampling the
next state xt given xt−1 from M(xt−1, ·). After discarding an
initial portion of the trajectory as “burn-in,” the subsequent T
states form an empirical approximation T−1 ∑T

t=1 δxt (·) of the
target distribution π converging as T → ∞ (Nummelin 2002).
Although immensely successful (Diaconis 2009),MCMCmeth-
ods suffer from serious limitations: their iterative nature pre-
vents straightforward parallelization; tuning the Markov tran-
sition kernels to achieve a satisfactory efficiency might be time-
consuming; and the estimation of the normalizing constant Z
fromMCMC runs alone is difficult.

Motivated by these considerations, a number of more elab-
orate algorithms, or “meta-algorithms,” emerged in the 1990s,
such as parallel tempering (Geyer 1991) where intermediate
distributions of varying complexity are introduced between π0
andπ , andMarkov chains targeting these distributions regularly
exchange their states. The introduction of a path of distributions
also appeared in techniques specifically designed to estimate Z,
known as bridge sampling and path sampling (Chen and Shao
1997; Gelman and Meng 1998).

Importance sampling. IS is a method to approximate π and
Z using samples from another distribution π0. Denoting N
independent samples from π0 by (xn)n∈[N], IS assigns weights
computed as wn = γ (xn)/π0(xn) for each n ∈ [N] =
{1, . . . ,N}. This provides the estimator ZN = N−1 ∑N

n=1 wn

and the weighted empirical measure (NZN)−1 ∑N
n=1 wnδxn(·)

that converge to Z and π as N → ∞ under assumptions
on the ratio of densities π(x)/π0(x) (Owen 2013). The
method is amenable to parallel computation but its naive
implementation can fail spectacularly when π0 and π are

© 2022 American Statistical Association
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Figure 1. The three steps of SMCS. Particles (x̌nt−1)n∈[N] approximating πt−1 evolve separately according to an MCMC kernel Mt (left). To approximate πt , each pair
(x̌nt−1, x

n
t ) is assigned an importance weightwt(x̌nt−1, x

n
t ), which depends on a backward kernel Lt−1 (middle). The size of weights is depicted by the shade of gray. Equally

weighted particles are then obtained by sampling from the particles according to their weights (right).

far apart (Agapiou et al. 2017; Chatterjee and Diaconis 2018).
This motivated the introduction of “bridging” distributions
between π0 and π and the combination of these intermediate
distributions with MCMC moves was proposed in Annealed
Importance Sampling (Neal 2001), see also Jarzynski (1997).
These works are predecessors to sequential Monte Carlo
samplers.

Particle filters. State space models are a flexible way of ana-
lyzing time series, where each observation is associated with a
latent variable, and these latent variables form a Markov chain.
In that context, importance sampling forms the basis of parti-
cle filters (Gordon, Salmond, and Smith 1993; Kong, Liu, and
Wong 1994), developed for sequential state inference where
the target πt at step t is the distribution of the tth latent vari-
able given observations available up to time t. Particle filters
employ Monte Carlo principles that generalize Kalman filters
to nonlinear, non-Gaussian state space models. Many variants
have been put forward to deal with state space models of vari-
ous complexities (Cappé, Godsill, and Moulines 2007; Chopin
and Papaspiliopoulos 2020), for example with the addition of
MCMCmoves at each step (Gilks and Berzuini 2001).

SMCS. By the late 1990s, various Monte Carlo algorithms
incorporated ideas from both importance sampling and
MCMC, and the introduction of intermediate distributions was
already familiar. There were concurrent efforts to generalize
particle filters to a much wider class of problems arising
in statistics, under the name of Iterated Batch Importance
Sampling (Chopin 2002) and SMC samplers (SMCS, Del Moral,
Doucet, and Jasra 2006). To avoid confusion with particle filters,
we refer to SMC samplers as SMCS and we view them as a
generic alternative to MCMC and IS for the approximation of π
andZ. SMCS share the general structure of particle filters andwe
elaborate further on the links in the supplementary materials.

SMCS are designed to approximate an arbitrary sequence
of target distributions of fixed dimension, that recovers the

desired distribution π as its last element, and estimates of Z are
obtained as by-products. SMCS involve sequences of bridging
distributions or “paths,” as in path sampling and parallel temper-
ing. Specifically, SMCS generate a system of N samples, termed
particles, that evolve through MCMC moves and importance
weights, and interact through resampling steps. A schematic
description of SMCS is provided in Figure 1. The benefits of
SMCS include the estimation of Z, the ability to adaptively tune
MCMC kernels, a large amenability to parallel computing, and
improved accuracy relative to plain or annealed IS.

Objectives and outline. We aim to provide an accessible
guide with useful references on SMCS for statisticians. We do
not assume familiarity with particle filters. Our presentation
is self-contained, complementing chap. 17 of Chopin and
Papaspiliopoulos (2020) with updated pointers to some of
the most significant advances. Section 2 describes SMCS and
possible instantiations. As SMCS involve IS steps, and since
the performance of one step of IS tends to deteriorate with the
dimension, we provide in Section 3 a clarification of the role of
bridging distributions. In Section 4 we present methodological
consequences of the fact that SMCS generate interacting particle
systems (Del Moral 2004, 2013), and not trajectories of Markov
chains as in MCMC. We underline how parallel computers
can be employed and how the approximation error can be
quantified. In Section 5 we illustrate how SMCS translate into
algorithms of practical importance in statistics using simple
examples, and Section 6 concludes.

2. What are Sequential Monte Carlo Samplers?

We follow Del Moral, Doucet, and Jasra (2006), and describe
the required specification of paths, of forward and backward
Markov transition kernels and of various algorithmic compo-
nents. As we will see, many of these choices can be implicitly or
adaptively made.

https://doi.org/10.1080/01621459.2022.2087659
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2.1. Algorithmic Description

A generic, nonadaptive sequential Monte Carlo sampler is
described in Algorithm 1. As input, a sequence of T + 1
distributions π0, . . . ,πT is introduced, with each πt(dx) =
γt(x)dx/Zt defined on the same space (X,X ), where γt(x)
denotes an unnormalized density, and Zt = ∫

X γt(x)dx a
normalizing constant (with Z0 = 1). We assume that we
can sample from π0 to initialize the algorithm (see Step 1(a))
and that the terminal distribution πT is precisely the target
distribution π .

Next we introduce two sequences of Markov kernels.
In the sequence (Mt)t∈[T] of “forward” kernels, each Mt is
designed to leave πt invariant, at least approximately. The
forward kernel Mt is used to sample xt given xt−1 at the tth
step of the algorithm (see Step 2(b) and left of Figure 1). At
this stage, one could imagine an importance sampling step
with the proposed xt to approximate πt. However, for most
choices of Mt, the marginal density of the proposed state
qt(xt) = ∫

X πt−1(dxt−1)Mt(xt−1, xt) would be intractable, and
importance weights could not be computed. To circumvent this
issue, the key idea is to define an importance sampling step on
the space of (xt−1, xt), by introducing the sequence (Lt−1)t∈[T]
of “backward” kernels (Neal 2001) (see Step 2(c) and middle of
Figure 1). Defining the proposal πt−1(dxt−1)Mt(xt−1, dxt) and
the target πt(dxt)Lt−1(xt , dxt−1) on the joint space, the weight
function

wt(xt−1, xt) = γt(xt)Lt−1(xt , xt−1)

γt−1(xt−1)Mt(xt−1, xt)
(2.1)

can be made tractable even if the marginal distribution of
xt is intractable and even if Mt has an intractable transition
density, by choosing Lt−1 appropriately. Indeed the backward
kernel Lt−1 is introduced specifically so that the importance
weight in (2.1) achieves a practical compromise between
ease of numerical evaluation and variance. The joint target
πt(dxt)Lt−1(xt , dxt−1) admits πt as marginal on xt, for any

Algorithm 1 Sequential Monte Carlo sampler
Input: sequence of distributions (πt), forward Markov kernels
(Mt), backward Markov kernels (Lt), resampling distribution
r(·|w1:N) on [N]N where w1:N is an N-vector of probabilities.

1. Initialization.

(a) Sample particle xn0 from π0(·) for n ∈ [N] independently.
(b) Set wn

0 = N−1 for n ∈ [N].
2. For t ∈ [T], iterate the following steps.

(a) Sample ancestor indices (ant−1)n∈[N] from r(·|w1:N
t−1), and

define x̌nt−1 = xa
n
t−1

t−1 for n ∈ [N].
(b) Sample particle xnt ∼ Mt(x̌nt−1, ·) for n ∈ [N].
(c) Compute weights wt(x̌nt−1, xnt ) = γt(xnt )Lt−1(xnt ,x̌nt−1)

γt−1(x̌nt−1)Mt(x̌nt−1,x
n
t )

for
n ∈ [N],
and set wn

t ∝ wt(x̌nt−1, xnt ) such that
∑

n∈[N] wn
t = 1.

Output:weighted particles (wn
t , xnt )n∈[N] approximating πt, and

estimator ZN
t = ∏t

s=1 N−1 ∑
n∈[N] ws(x̌ns−1, xns ) of Zt for t ∈

[T].

choice of backward kernel Lt−1, therefore, (2.1) provides a valid
importance weight. As described in Del Moral, Doucet, and
Jasra (2006, sec. 3.3), given πt−1, πt, andMt, one should ideally
select Lt−1 to keep the variance of wt(xt−1, xt) under the joint
proposal πt−1(dxt−1)Mt(xt−1, dxt) small. Minimal variance is
attained by Lt−1(xt , xt−1) = πt−1(xt−1)Mt(xt−1, xt)/qt(xt), the
backward transition under the joint proposal, that reduces to
having wt(xt−1, xt) = γt(xt)/qt(xt), which, again, would be
typically intractable. In other words tractability of importance
sampling through operating on the joint space of (xt−1, xt)
comes with an increase of variance.

Overall, the algorithm propagates N particles x1:Nt =
(x1t , . . . , xNt ) using the forward kernels (Mt), and assigns to the
particles some weights that depend on (πt), (Mt) and (Lt−1).
The above reasoning could be carried out recursively and the
final weights would be obtained as the product over time of the
weights computed at each time step (Neal 2001). One might
then worry about the variance of the weights after T steps. The
resampling step (see Step 2(a) and right of Figure 1) helps to
mitigate this issue. According to the magnitude of their weights,
some particles are discarded and others duplicated, maintaining
a fixed population size of N. Resampling involves a distribution
r(·|w1:N) of ancestor indices a1:N in [N]N , parametrized by a
vector w1:N of probabilities. The simplest resampling scheme is
called multinomial resampling (Gordon, Salmond, and Smith
1993), where a1:N are independent Categorical variables on
[N] with probabilities w1:N . At step t of the algorithm, N
particles are obtained by propagating particles with indices
(ant−1)n∈[N] generated from r(·|w1:N

t−1). Gerber, Chopin, and
Whiteley (2019) provide recent discussions on resampling
schemes, Whiteley, Lee, and Heine (2016) study the stabilizing
effect of resampling, andGerber andChopin (2015) consider the
use of quasi-random numbers. One could resample a different
number of particlesNt at each step t, and the optimal allocation
of these numbers is discussed in Lee and Whiteley (2018).
Resampling is the key difference between Annealed Importance
Sampling (Neal 2001) and SMCS, and we recover the former
by omitting the resampling steps, that is, x̌nt−1 = xnt−1 in Step
2(a). Resampling makes the SMCS output non-differentiable
with respect to the input, which has motivated works such as
Corenflos et al. (2021).

The output of SMCS includes weighted particles (wn
t ,

xnt )n∈[N] approximating πt, in the sense that πN
t (ϕ) =∑

n∈[N] wn
t ϕ(xnt ) converges to πt(ϕ) = ∫

X ϕ(xt)πt(dxt), for
suitable ϕ : X → R, as N → ∞. Another output of the
algorithm is an unbiased and consistent normalizing constant
estimator ZN

t , computed using the unnormalized weights.

2.2. Paths of Distributions

The initial distribution π0(dx) = γ0(x)dx/Z0 and target distri-
butionπ(dx) = γ (x)dx/Z are considered inputs of the problem.
We consider the choice of a path πt(dx) = γt(x)dx/Zt for
t ∈ [T], where the number of distributions T can be user-
specified or determined adaptively (see Section 2.4).

Geometric path. A popular choice is the geometric path

γt(x) = γ0(x)1−λtγ (x)λt , (2.2)
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defined by a sequence 0 = λ0 < λ1 < · · · < λT = 1, often
referred to as inverse temperatures (Kirkpatrick, Jr., Gelatt, C.
D., and Vecchi 1983). The unnormalized density γt(x) and its
gradient can be evaluated pointwise if it is possible to evaluate
γ0(x) and γ (x) and their gradients. If π0 is a proper prior and π

the posterior distribution, then the geometric path corresponds
to raising the likelihood to a power. There could be statistical
reasons to consider the resulting “tempered” posteriors, for
example, see Holmes andWalker (2017) and references therein.
A run of SMCSusing (2.2) provides approximations of tempered
posteriors over a desired sequence of exponents. Geometric
paths can be generalized into q-paths, where the geometric
mean in (2.2) is replaced by a power mean (Whitfield, Bu, and
Straub 2002); see Syed et al. (2021) in the context of parallel
tempering.

Path of partial posteriors. In the Bayesian setting, with a
prior distribution π0(dx) = p(dx) and the target distribution
π(dx) = p(dx|y1:T) defined as the posterior based on obser-
vations y1:T = (y1, . . . , yT), Chopin (2002) proposed SMCS,
then termed Iterated Batch Importance Sampling, applied to
the sequence of “partial posteriors” πt(dx) = p(dx|y1:t) for
t ∈ [T]. The procedure provides a richer analysis compared to
the approximation of p(dx|y1:T) alone, helping one to visualize
how the posterior distribution and the marginal likelihood
evolve as data points are assimilated. Concepts such as Bayesian
updating, sequential analysis and coherency are often presented
as central in Bayesian theory (e.g., sec. 2.4.4 of Bernardo and
Smith (2009) or Hooten, Johnson, and Brost (2019)), and yet
it is common in applied Bayesian analysis to examine only the
posterior distribution given all the data. SMCS on the path of
partial posteriors enable the consideration of the dynamics of
Bayesian inference, as will be illustrated in Section 5. This path is
also key to the assessment of sequential predictive performance,
such as with the Hyvärinen score (Dawid andMusio 2015; Shao
et al. 2019), and plays a special role in Bayesian sequential
experimental design (Drovandi, McGree, and Pettitt 2014;
Cuturi et al. 2020). The path of partial posteriors is particularly
appealing for time series, and when combined with particle
filters for nonlinear state space models, the technique is known
as SMC2 (Chopin, Jacob, and Papaspiliopoulos 2013; Fulop and
Li 2013).

Improved performance can be obtained by introducing a
geometric path between successive partial posteriors. In the
presence of improper priors, the initial distribution cannot be
set as the prior. As an alternative, one can start the algorithm
using a geometric path between some proper distribution and
the posterior distribution given enough observations for it to be
proper.

Path of truncated distributions. In rare event estimation, the
task is to approximate the probability of a set A ∈ X under
a distribution μ(dx) = μ(x)dx defined on (X,X ). Following
Cérou et al. (2012), we consider sets A = {x ∈ X : �(x) ≥ �}
for a function � : X → R and a level � ∈ R. We can define

γt(x) = μ(x)IA(�t)(x), (2.3)

where −∞ = �0 < �1 < · · · < �T = � is a sequence of levels,
and IA(l)(x) denotes the indicator function on the set A(l) =

{x ∈ X : �(x) ≥ l}. This defines a path of distributions that
gradually truncatesπ0(dx) = μ(dx) to π(dx) = μ(dx)IA(x)/Z,
whose normalizing constant Z = μ(A) is the probability of
interest.

In the Bayesian setup where π0 and π denote a (proper)
prior and posterior, respectively, nested sampling (Skilling 2006)
represents the marginal likelihood as Z = ∫ ∞

0 π0(A(l))dl with
A(l) defined by level sets of the likelihood function �(x) =
γ (x)/γ0(x). This identity is leveraged by Salomone et al. (2018)
to apply SMCS with the path (2.3). Approximate Bayesian com-
putation provides another setting where a sequence of trun-
cated distributions, indexed by a “tolerance” parameter, can be
estimated by SMCS (Sisson, Fan, and Tanaka 2007; Del Moral,
Doucet, and Jasra 2012).

Path of least coding effort. In anticipation of the choice of
forward Markov kernels (Mt), we might want to introduce a
path of distributions such that the associatedMarkov kernels are
readily available. One might already have an MCMC algorithm
that targets π , for example a Gibbs sampler that exploits specific
aspects of π . To reduce implementation effort, we can then
introduce a path (πt) designed so that only slight modifica-
tions to that MCMC algorithm are required. For example, the
implementation of Langevin or Hamiltonian Monte Carlo to
target any distribution on the geometric path requires minimal
modifications relative to the original target π .

Another example can be found in Rischard, Jacob, and Pillai
(2018), in the context of logistic regression. Assuming a Normal
prior on the regression coefficients, the Pólya–Gamma Gibbs
(PGG) sampler of Polson, Scott, and Windle (2013) can be
employed to target the posterior distribution, for any matrix of
covariates x and binary outcome vector y. We can introduce a
path of posterior distributions πt corresponding to the use of
scaled covariates λtx instead of x, with λt ∈ [0, 1]. The appeal is
that the same implementation of PGG, given inputs λtx and y,
provides a forward kernelMt for each distribution πt. A similar
approach was considered for probit regressions in Del Moral,
Doucet, and Jasra (2007).

There is much freedom in the choice of paths, so that various
settings and goals can be accommodated. Sequences of distribu-
tions can be further generalized to sets of distributions indexed
by trees, with applications to Bayesian hierarchical models in
Lindsten et al. (2017).

2.3. Forward and BackwardMarkov Kernels

Given a path (πt), the SMCS user must select forward and back-
ward kernels, (Mt) and (Lt). In view of Algorithm 1, one must
be able to sample fromMt(xt−1, ·) and to evaluatewt(xt−1, xt) in
(2.1). We would set Mt(xt−1, dxt) = πt(dxt) if perfect samples
from πt could be obtained, and by defining Lt−1(xt , dxt−1) =
πt−1(dxt−1) the weight would simplify to Zt/Zt−1, leading to an
estimator of Zt with zero variance. This section presents more
practical choices.

Exact MCMC moves. We can exploit the vast literature on
MCMC to design Mt as a πt-invariant kernel. Although such
choices typically do not admit tractable transition densities,
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the weight in (2.1) can be tractable if the backward kernel
Lt−1 is chosen judiciously. Following Jarzynski (1997) and
Neal (2001), Lt−1 can be selected as the time reversal of
Mt, that is, Lt−1(xt , xt−1) = πt(xt−1)Mt(xt−1, xt)/πt(xt),
leading to the weight γt(xt−1)/γt−1(xt−1). When the distri-
butions πt−1 and πt are close, the time reversal provides an
approximation of the backward transition Lt−1(xt , xt−1) =
πt−1(xt−1)Mt(xt−1, xt)/qt(xt) yielding minimal variance.
Del Moral, Doucet, and Jasra (2006, sec. 3.3) provide more
discussions on the choice of (Lt) given (Mt).

SMCS can also accommodate kernels Mt that are not πt-
invariant, while preserving consistency of SMC estimates.
We provide an example that shows how to remove time-
discretization biases without resorting to Metropolis–
Rosenbluth–Teller–Hastings corrections.

Unadjusted Langevin moves. For problems on X = R
d, we

can select forward kernels based on the unadjusted Langevin
algorithm (ULA, Grenander and Miller 1994):

Mt(xt−1, dxt) = N
(
xt ; xt−1 + ε

2

∇ logπt(xt−1), ε


)
dxt ,
(2.4)

where z �→ N (z;μ,�) denotes the density of a Normal
distribution with mean vector μ and covariance matrix �,
ε > 0 denotes a step size, and 
 ∈ R

d×d is a positive definite
preconditioning matrix. In general the ULA transition does not
leave πt invariant for any ε > 0.When an acceptance correction
step is added to enforce πt-invariance, the resulting method
is known as the Metropolis-adjusted Langevin algorithm
(MALA). In SMCS one can account for the time-discretization
using importance sampling instead. The reversibility of the
underlying continuous-time Langevin diffusion suggests the
choice Lt−1(xt , dxt−1) = Mt(xt , dxt−1) for sufficiently small ε

(Nilmeier et al. 2011). With these choices, the weight (2.1) is
tractable, and approaches γt(xt−1)/γt−1(xt−1) as ε → 0. The
tractability of ULA kernels as an alternative to MALA kernels
within SMCS was exploited in the controlled sequential Monte
Carlo approach (Heng et al. 2020), which optimizes over the
path of distributions (πt) and forward kernels (Mt) to improve
performance, and in the Schrödinger bridge sampler (Bernton
et al. 2019) that fixes (πt) and optimizes over (Mt) and (Lt−1)
for similar purposes. As an alternative, the supplementary
materials describe the use of unadjusted Hamiltonian Monte
Carlo (HMC) moves within SMCS. One can also design the
forward kernel Mt as a deterministic map that transports πt−1
to πt, and choose the backward kernel Lt−1 as the inverse map
(Vaikuntanathan and Jarzynski 2008; Everitt et al. 2020; Arbel,
Matthews, and Doucet 2021; Heng, Doucet, and Pokern 2021;
Matthews et al. 2022).

Tuning parameters. Having chosen Markov kernels, there
might be some algorithmic parameters to tune. Firstly, it is
often worthwhile to iterate the chosenMarkov kernel more than
once at each step of SMCS. For πt-invariant forward kernels
with time reversals as backward kernels, iterating the forward
kernel can be done without modification of the weights. For
unadjusted kernels additional care might be required. When we
iterate MCMC moves, or when we perform moves that involve

intermediate steps such as HMC, it can be advantageous to
exploit all intermediate samples (Dau and Chopin 2022); see
also the supplementary material.

EachMarkov kernel may further depend on parameters such
as step sizes, or preconditioning matrices. An appealing speci-
ficity of SMCS, relative to classical MCMC, is that approxi-
mations of the previous and current bridging distributions are
available and can be used to inform the choice of parameters. For
example one can select 
 as the estimated covariance of bridg-
ing distributions for random walk or MALA moves (Chopin
2002). Fearnhead and Taylor (2013) offer a generic recipe to
automate such tuning procedures. Kostov (2006) and Buchholz,
Chopin, and Jacob (2020) consider specifically HMC kernels,
and Schäfer andChopin (2013) and South, Pettitt, andDrovandi
(2019) discuss strategies to adapt independent proposals on
discrete and continuous spaces. While these adaptation rules
will not affect consistency properties of SMCS as N → ∞
(Beskos et al. 2016), they may not preserve the unbiasedness
property of normalizing constant estimators. When this unbi-
asedness matters, for example in particle MCMCmethods as in
Section 4.2, one can run an adaptive SMCS, record the obtained
tuning parameters and run a second, nonadaptive sampler, for
an approximate 2-fold increase in computing cost.

2.4. Progressing Through a Path of Distributions

The user also needs to address the choice of the number of
distributions T and of the particular distributions πt along a
given path. In the case of a geometric path (2.2), one needs
a specific choice of inverse temperatures (λt)t∈[T]. We could
simply prespecifyT and select λt = (t/T)p for t ∈ [T] and some
exponent p > 0, informed by preliminary runs. The following
describes a common procedure that specifies T and (λt)t∈[T]
adaptively. For clarity, we consider only the setting where the
forward kernelMt is πt-invariant and the backward kernel Lt−1
is its time reversal, leading to the weight

wt(xt−1) = γt(xt−1)

γt−1(xt−1)
= γ (xt−1)

γ0(xt−1)

λt−λt−1
. (2.5)

As particle weights do not depend on their states at step t in
this setting, one can perform weighting (Step 2(c)) and resam-
pling (Step 2(a)) before applying Markov moves (Step 2(b)) to
promote sample diversity in Algorithm 1. Equation (2.5) can
be seen as an importance weight targeting πt using proposed
samples from πt−1. Suppose πt−1 has been determined by some
λt−1 ∈ [0, 1) and we seek λt ∈ (λt−1, 1] so that πt can be
well-approximated by πt−1 through importance sampling. We
can control the performance by keeping theχ2-divergence small
(Agapiou et al. 2017), where

χ2(πt|πt−1) =
∫
X

(
πt(x)

πt−1(x)
− 1

)2
πt−1(dx)

=
∫
X wt(x)2πt−1(dx)(∫
X wt(x)πt−1(dx)

)2 − 1. (2.6)

Instead of fixing χ2(πt|πt−1) to a desired level, it is more conve-
nient toworkwith
t(λt) = (1+χ2(πt|πt−1))

−1 as this quantity

https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1080/01621459.2022.2087659
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takes values in [0, 1]. Given samples (xnt−1)n∈[N] approximat-
ing πt−1, an approximation of 
t(λt) is given by 
̂t(λt) =
ESSt(λt)/N, where

ESSt(λt) =
(∑N

n=1 wt(xnt−1)
)2

∑N
n=1 wt(xnt−1)

2

=
(∑N

n=1(γ /γ0)(xnt−1)
λt−λt−1

)2
∑N

n=1(γ /γ0)(xnt−1)
2(λt−λt−1)

. (2.7)

This effective sample size (ESS) (Kong, Liu, and Wong 1994)
takes values in [1,N], achieving the lower bound when one
sample holds all the weight and the upper bound when all
samples have equal weights.

If 
̂t(1) is greater than a prespecified threshold κ ∈ (0, 1),
we set λt = 1. Otherwise, we can solve for λt ∈ (λt−1, 1) such
that 
̂t(λt) is equal to κ (Jasra et al. 2011). As this enforces the
χ2-divergence between successive distributions to be approxi-
mately δ = κ−1 − 1 in the large N regime, higher thresholds
lead to more bridging distributions T. The search for λt can
be implemented using the bisection method on the interval
[λt−1, 1] as the function 
̂t(λt) is strictly decreasing (Beskos
et al. 2016, Lemma 3.1). The cost of this procedure is negligible
as evaluations of (2.7) are inexpensive once (γ /γ0)(xnt−1) have
been pre-computed. Note that when the path is fixed, adaptively
resampling whenever the ESS falls below a threshold does not
alter unbiasedness (Whiteley, Lee, and Heine 2016).

Modifications and alternatives to the ESS criterion are
proposed in Cornebise, Moulines, and Olsson (2008), Zhou,
Johansen, and Aston (2016), and Huggins and Roy (2019), and
can be used to select intermediate distributions. An alternative
method to determine (λt) adaptively is described in Nguyen
et al. (2015). In any case, starting with a fixed or an adaptive
schedule, we can re-run SMCS with additional intermediate
steps to improve performance without necessarily increasing
the number of particles, as mentioned in Section 4.2 and the
supplementary materials.

3. Effect of Bridging Distributions

3.1. The Curse of Dimension for Importance Sampling

The cost of IS estimators is related to the discrepancy between
the proposal and target distributions, as measured by the χ2

or KL divergence (Agapiou et al. 2017; Chatterjee and Diaco-
nis 2018). For example, the number of samples needed for an
estimator of Z to achieve a given variance is proportional to that
χ2-divergence. As the dimension d ∈ N of X grows, the χ2 and
KL divergences between π0 and π would often increase expo-
nentially with d. Since each step of SMCS involves importance
sampling, concerns about their performance in high dimension
are understandable. Remarkably, SMCS can deliver reliable esti-
mates for problems in high dimension; see, for example, the
applications to inverse problems in Kantas, Beskos, and Jasra
(2014), and to spatio-temporal models in Naesseth, Lindsten,
and Schön (2015). We propose simple elements to explain this
operational success.

3.2. Variance of the Normalizing Constant Estimator

We focus on the geometric path (2.2), forward πt-invariant
kernels (Mt), and backward kernels (Lt) taken as their time
reversals. We consider the variance of the normalizing constant
estimator

ZN
T =

T∏
t=1

1
N

N∑
n=1

wt(Xn
t−1), (3.1)

produced by the modification of Algorithm 1 described in Sec-
tion 2.4 to promote sample diversity. Cérou, Del Moral, and
Guyader (2011) established a formula for this estimator’s non-
asymptotic variance in the setting of Feynman–Kac formulas.
Our first step is to make a simplifying assumption that allows us
to capture someof the essence ofCérou,DelMoral, andGuyader
(2011) with only simple calculations.

Assumption 3.1. For all t ∈ [T], the forward kernel is perfect:
Mt(xt−1, dxt) = πt(dxt).

Our priority here is exposition rather than realism, but in
practice if Mt is taken as multiple iterations of an ergodic
kernel targeting πt, then Assumption 3.1 essentially holds if
the number of iterates is large enough. Using the unbiased
property of ZN

T and the identity Z = ∏T
t=1 Zt/Zt−1 =∏T

t=1{
∫
X wt(xt−1)πt−1(dxt−1)}, a calculation shows that

var

[
ZN
T
Z

]
=

T∏
t=1

[
1 + χ2(πt|πt−1)

N

]
− 1. (3.2)

Hence, χ2-divergences between consecutive distributions
appear in the variance of ZN

T /Z.

3.3. Scaling the Number of Bridging Distributions with
Dimension

Next we introduce a sequence of sampling problems, indexed
by d ∈ N. We will specify the inverse temperatures (λt) in a way
that possibly depends on d. The next assumption captures the
idealized performance of the adaptive procedure of Section 2.4
asN → ∞, and serves to dispense with technical subtleties that
would arise if the number of distributions T was random.

Assumption 3.2. For all t ∈ [T − 1], πt−1 and πt satisfy
χ2(πt|πt−1) ≤ δ for some prespecified δ > 0 which is
independent of d, and such that χ2(π |π0) > δ.

Assumption 3.3. There exists α > 0 such that T = O(dα) as
d → ∞.

The above assumption postulates how the number of
bridging distributions T scales with dimension d. The fact that
Assumptions 3.2–3.3 can hold simultaneously will be illustrated
through examples. Since the χ2-divergence between successive
distributions is fixed as δ = κ−1 − 1 under Assumption 3.2,
the relative variance in (3.2) is equal to (1 + δ/N)T − 1.
As d → ∞ and hence T → ∞, to ensure stability of the

https://doi.org/10.1080/01621459.2022.2087659
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estimator (3.1), we can choose the number of particles N such
that N = O(T) to keep the relative variance of a constant
order (since limN→∞(1 + δ/N)N = exp(δ)). Therefore, the
overall cost of this idealized SMCSmeasured in terms of density
evaluations would be O(T2) = O(d2α), that is polynomial in d,
under Assumption 3.3. We next consider Assumptions 3.2–3.3
on a Normal example.

Example 3.1. Set π0(dx) = N (x;μ0,�)dx and π(dx) =
N (x;μ,�)dx for some μ0,μ ∈ R

d and � ∈ R
d×d. Each

distribution along the geometric path (2.2) is Normal πt(dx) =
N (x;μt ,�)dx with mean vector μt = μ0 + λt(μ − μ0) for t ∈
[T]. The χ2-divergence between successive distributions can be
computed in closed-form: χ2(πt|πt−1) = exp((λt−λt−1)2|μ−
μ0|2�−1)− 1, where |μ−μ0|�−1 = √

(μ − μ0)��−1(μ − μ0).
Under the specification

T = �|μ − μ0|�−1/
√
log(1 + δ)
,

λt = t
√
log(1 + δ)/|μ − μ0|�−1 for t ∈ [T − 1], (3.3)

where �·
 denotes the ceiling function, Assumption 3.2 is sat-
isfied. Using the bound |μ − μ0|�−1 ≤ �min(�)−1/2|μ −
μ0|, where �min(�) denotes the minimum eigenvalue of �, it
follows from (3.3) that T = O(

√
d) if �min(�) is uniformly

bounded away from zero and |μ − μ0| is O(
√
d), both as d →

∞. In this situation, Assumption 3.3 holds with α = 1/2.

To address less specific examples on X = R
d, we consider

assumptions along the path π(λ, dx) = γ (λ, x)dx/Z(λ) for
λ ∈ [0, 1], where γ (λ, x) = γ0(x)1−λγ (x)λ and Z(λ) =∫
X γ (λ, x)dx. The densities γ0(x) and γ (x) are assumed to be
continuously differentiable. We will write the expectation of ϕ :
R
d → R with respect to π(λ, dx) as π(λ,ϕ) = ∫

X ϕ(x)π(λ, dx)
and �(x) = log(γ (x)/γ0(x)).

Assumption 3.4. There exist constants C, ζ > 0 and a function
β : [0, 1] → R+ with infλ∈[0,1] β(λ) > 0 such that for each
λ ∈ [0, 1], the distribution π(λ, dx) along the geometric path
satisfies:

(i) a Poincaré inequality with constant β(λ), that is, for all
differentiable ϕ : Rd → R, we have π(λ,ϕ2) − π(λ,ϕ)2 ≤
β(λ)−1π(λ, |∇ϕ|2);

(ii) a bound on the maximum log-likelihood, supx∈X �(x) ≤
Cdζ ;

(iii) a bound on the expected log-likelihood, π(λ, �) ≥ −Cdζ ;
(iv) a bound on the expected squared norm of the log-

likelihood, π(λ, |∇�|2) ≤ Cd2ζ .

The Poincaré inequality is an isoperimetric condition with
rich implications, such as the exponential convergence of certain
MCMC algorithms (Vempala andWibisono 2019) which can be
used to generalize the discussion in Section 3.2 by relaxing the
assumption of perfectly mixing kernels (Schweizer 2012a). We
refer to references inVempala andWibisono (2019, pp. 7 and 16)
for conditions to verify a Poincaré inequality and we recall
that it is implied by strong log-concavity of the distribution in
question. Under Assumption 3.4, we can verify Assumptions 3.2
and 3.3. At step t ∈ [T], the χ2-divergence of πt−1(dx) =
π(λt−1, dx) from πt(dx) = π(λt , dx) for 0 ≤ λt−1 < λt ≤ 1

can be bounded,

χ2(πt|πt−1) ≤ β(λt−1)
−1(λt − λt−1)

2∫
X

πt(x)
πt−1(x)

|∇�(x)|2πt(dx). (3.4)

This follows from Assumption 3.4(i) for the distribution
π(λt−1, dx) and the function ϕ(x) = πt(x)/πt−1(x). To upper
bound the ratio of densities in (3.4), we consider

logπt(x) − logπt−1(x) = (λt − λt−1)�(x)
− (logZt − logZt−1) (3.5)

= (λt − λt−1)(�(x) − π(λ∗
t , �))

which holds for some λ∗
t ∈ (λt−1, λt) using the mean value

theorem. Hence, using Assumption 3.4(ii)–(iii), we have

sup
x∈X

πt(x)
πt−1(x)

≤ exp(2C(λt − λt−1)dζ ). (3.6)

Applying this upper bound in (3.4), Assumption 3.4(iv) and the
lower bound β = infλ∈[0,1] β(λ), we obtain

χ2(πt|πt−1) ≤ β−1(λt − λt−1)
2 exp(2C(λt − λt−1)dζ )Cd2ζ .

(3.7)
If we construct a sequence (λt) with increment λt − λt−1 =
cd−ζ , the constant c > 0 can be chosen so that Assumption 3.2
holds, and Assumption 3.3 is satisfied since T = O(dζ ).

Formal studies on SMCS in high dimension include that of
Beskos, Crisan, and Jasra (2014), which provides stability results
in settingswhere the targetπ can be factorized into independent
components, and discusses the behavior of the required number
of bridging steps and of the effective sample size. Relevant dis-
cussions can also be found in sec. 6 of Schweizer (2012a), where
solid reasons are given to support a polynomial dimension
dependence; see also Brosse,Durmus, andMoulines (2018). The
supplementary materials contain numerical illustrations of the
performance of SMCS in increasing dimensions.

4. Parallel Execution and Confidence Intervals

Having specified the ingredients of SMCS, the user has more
than one way of running these algorithms, which leads to dif-
ferent perspectives on the use of parallel processors and on the
quantification of errors.

4.1. Interacting Particle Systems

SMCS are instances of interacting particle systems, or equiva-
lently Monte Carlo approximations of Feynman–Kac models.
This view has proven fruitful and allows the application of
readily-available results (Del Moral 2004, 2013). In particular
the estimators πN

t (ϕ), for a function ϕ, and ZN
t satisfy central

limit theorems:
√
N(πN

t (ϕ) − πt(ϕ))
d.−→ N (0, vt(ϕ)), (4.1)

√
N(ZN

t /Zt − 1) d.−→ N (0, v�
t ), (4.2)

for each t as N → ∞, where d.−→ denotes convergence in
distribution, and vt(ϕ), v�

t > 0 denote asymptotic variances.

https://doi.org/10.1080/01621459.2022.2087659
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Therefore, valid confidence intervals can be derived from con-
sistent estimators of the asymptotic variances. Such estimators
were derived in Chan and Lai (2013), Lee and Whiteley (2018),
and Du and Guyader (2021), and address a long-standing gap
on the quantification of errors in SMC.

Wepresent a result fromLee andWhiteley (2018) that is valid
when multinomial resampling is employed. We introduce the
“lineage” of the nth particle at step t:

bnt,t = n, and bns−1,t = ab
n
s,t
s−1 for 1 ≤ s ≤ t, (4.3)

where the ancestor indices (ant ) are defined when resampling in
Step 2(a) of Algorithm 1. Since only the offspring of the particles
indexed by b1:N0,t survive at time t, we will refer to such indices as
“roots.” For a function ϕ, consider the quantity

VN
t (ϕ) = πN

t (ϕ)2 −
(

N
N − 1

)t+1 1
N2

∑
n,m : bn0,t �=bm0,t

ϕ(xnt )ϕ(xmt ),

(4.4)

which can be computed as a by-product of SMCS. Theorem 1 of
Lee andWhiteley (2018) states the convergence in probability of
N ·VN

t (ϕ −πN
t (ϕ)) to vt(ϕ), and ofN ·VN

t (1) to v�
t , asN → ∞.

We can directly write

VN
t (1) = 1 −

(
N

N − 1

)t+1
+

(
N

N − 1

)t+1

× 1
N2

∑
n∈[N]

|{m : bm0,t = bn0,t}|2. (4.5)

The right-hand side features the cardinality of the set of siblings
of particle n, that is, the particles that have the same ancestor at
time zero. If all particles were siblings, the sumwould be of order
N2 and thus the estimated variance would be away from zero,
but if all particles have a small number of siblings, the variance
estimator is of order N−1.

The N → ∞ regime underpinning the above results is
compatible with parallel computing since the propagation of
particles and the calculation of weights can be distributed across
processors. The resampling step, on the other hand, induces
interactions and thus synchronization and communication (Jun,
Wang, and Bouchard-Côté 2012; Murray, Lee, and Jacob 2016),
so that SMCS are not fully parallelizable. Another limitation is
that a direct implementation requires N particles in memory,
which can be limiting in certain settings; Jun and Bouchard-
Côté (2014) propose a memory-efficient implementation.
Finally SMCS in the large N regime are not “anytime”: they
run for T steps before returning their output and then stop. In
contrast, MCMC methods are easier to interrupt and resume.
These shortcomings have motivated variants where individual
particles can be added sequentially (Brockwell, Del Moral, and
Doucet 2010; Paige et al. 2014; Finke, Doucet, and Johansen
2020).

4.2. Independent Systems of Fixed Xize

Consider R independent SMCS runs, with a fixed number of
particlesN. The runs can be executed on parallel machines, and
denote by (πN,r)r∈[R] and by (ZN,r)r∈[R] the resulting particle

approximations of π and Z, respectively. We can obtain con-
sistent approximations of π and Z as R → ∞, even though
N is fixed (e.g., Whiteley, Lee, and Heine 2016; Rainforth et al.
2016). Since the normalizing constant estimator is unbiased, we
can directly average (ZN,r)r∈[R] to obtain a consistent estimator
of Z as R → ∞. Estimating expectations under π seems more
involved as the estimator πN

t (ϕ) is itself biased when N is fixed.
We describe how to correct this in the framework of Andrieu,
Doucet, and Holenstein (2010).

We select a particle among the N available ones at the termi-
nal step of Algorithm 1, by sampling k ∈ [N] with probabilities
w1:N
T , and returning xkT . The distribution of all random variables

generated by the procedure is

qN(k, x̄, ā) =
⎧⎨
⎩

∏
n∈[N]

π0(xn0)

⎫⎬
⎭

T∏
t=1

⎧⎨
⎩r(a1:Nt−1|w1:N

t−1)
∏
n∈[N]

Mt(x
ant−1
t−1 , x

n
t )

⎫⎬
⎭wk

T ,

(4.6)

where x̄ = (xnt )n∈[N] for 0 ≤ t ≤ T and ā = (ant )n∈[N] for
0 ≤ t ≤ T − 1. Next we define

π̄N(k, x̄, ā) = ZN
T

ZT
qN(k, x̄, ā). (4.7)

Under a mild assumption on the resampling scheme, Andrieu,
Doucet, and Holenstein (2010) observe that (4.7) defines a valid
probability distribution, and that its marginal distribution in
xkT is the target π . Therefore, we can use qN as a proposal
and π̄N as a target in an importance sampling argument, and
the corresponding unnormalized weight is ZN

T . For a function
ϕ, a self-normalized importance sampling estimator after Rao-
Blackwellizing the index k is thus,

π̄R(ϕ) =
∑

r∈[R] ZN,rπN,r(ϕ)∑
r′∈[R] ZN,r′ , (4.8)

which approximates π(ϕ) as R → ∞, for any fixed N. Its
asymptotic variance can be estimated consistently as R → ∞
to construct confidence intervals (eq. (9.8) in Owen 2013).
There are practical benefits of the large R asymptotics over the
large N asymptotics: independent SMCS can be run on parallel
machines without communication; results can be refined with
more independent runs without hitting memory limits; the
procedure is simple to implement, to interrupt and to resume.
More advanced schemes where “islands” of particles are allowed
to communicate have been studied in for example, Vergé et al.
(2015) and Whiteley, Lee, and Heine (2016).

Equation (4.7) suggests the use of SMCS as an independent
proposal in a Metropolis–Rosenbluth–Teller–Hastings algo-
rithm (Andrieu, Doucet, and Holenstein 2010). Despite the
iterative nature of MCMC, most of the computation here lies in
the generation of the independent proposals, which can be fully
parallelized. The approach lends itself to generic convergence
diagnostics for MCMC (Brooks et al. 2011), and other tools
developed for MCMC estimators, including variance reduction
(Dellaportas and Kontoyiannis 2012) and debiasing techniques
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Figure 2. Logistic regression with forest cover type data. Evolution of the posterior distribution of β1 (top-left) and β8 (top-right) as more data are assimilated, with
initialization from the priorsN (2, 3) (blue) andN (−2, 3) (beige). Performance of the posterior predictive distribution on a test dataset as the first 5000 (bottom-left) and
next 5000 (bottom-right) observations are assimilated, estimated using independent runs of SMCS.

(Middleton et al. 2019). The latter reference describes a generic
strategy that delivers unbiased estimators of π(ϕ) using only
standard SMCS runs, thus, bypassing the design of algorithm-
specific couplings as in Jacob, O’Leary, and Atchadé (2020).

The performance of (4.8) clearly depends on the perfor-
mance of each run of SMCS. If N is fixed to a low value, the
performance can still be satisfactory provided that the other
algorithmic ingredients are well-chosen. The supplementary
materials present numerical experiments where the variance of
logZN is seen to be stable in problems of increasing dimension
d using a fixed value of N, thanks to an adequate scaling of the
number of intermediate steps.

5. Illustrations

We illustrate some appealing properties of SMCS compared
to MCMC methods in two simple examples; all details and
the implementation are described in supplementary materials.
More challenging problems have been tackled with SMCS,
for example, in Bayesian nonparametrics (Griffin 2017),
phylogenetic inference (Wang, Bouchard-Côté, and Doucet
2015), fiducial inference (Cisewski and Hannig 2012), financial
econometrics (Fulop and Li 2013; Fulop et al. 2021), large-scale
graphical models (Naesseth, Lindsten, and Schön 2014), partial
differential equations (Beskos et al. 2017) and experimental
design (Drovandi, McGree, and Pettitt 2014; Cuturi et al.
2020).

5.1. Logistic Regression

We consider a logistic regression y = (y1, . . . , ym) ∈ {0, 1}m on
covariates x = (x1, . . . , xm) ∈ R

m×d. Under the model, yi is a
Bernoulli variable with success probability (1+ exp(−x�

i β))−1

where β ∈ R
d denote the regression coefficients. We use

the “forest cover type” data (Blackard 2000), processed as in
Collobert, Bengio, and Bengio (2002).1 The data contain car-
tographic information (relating to altitude, slope, azimuth etc)
for 30m by 30m cells in northern Colorado, along with the type
of cover (originally spruce/fir, lodgepole pine, Ponderosa pine,
cottonwood/willow, spruce/fir and aspen or Douglas-fir, and
in Collobert, Bengio, and Bengio (2002) this was simplified to
lodgepole pine versus the other categories combined). With a
logistic regression, we predict the cover type using cartographic
variables. There are d = 11 regression coefficients including the
intercept, and the prior is Normal(0, 10) on each coefficient
unless specified otherwise.

We illustrate the sequential aspect of Bayesian updating with
SMCS using the path of partial posteriors; other paths are con-
sidered in the supplementary materials. Figure 2(a)–(b) show
a phenomenon called “merging” whereby posteriors resulting
from different priors eventually coincide as more observations
are introduced. We observe that certain components of the
posterior “merge” faster than others. Similar figures could help
to visualize the Bernstein-vonMises phenomenon, whereby the

1https://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/datasets/binary.html.

https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1080/01621459.2022.2087659
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 3. SIRmodel with boarding school data. Observations of daily counts (top-left). Log-marginal likelihood of the initial time t0 at which the first individual is assumed
to be infected (top-right). Evolution of the marginal posterior distribution of φinv (bottom-left) and of (γ ,β) (bottom-right) as more data are assimilated.

posterior distribution becomes closer to a Normal distribution
as more data get assimilated.

Sequential inference allows us tomonitor not only the evolu-
tion of beliefs but also measures of predictive performance. For
example, Figure 2(c)–(d) show the logarithmic score associated
with the posterior predictive distribution as the number of
observations increases, on a test dataset. Predictive performance
increases significantly as we start to assimilate data. After a
certain point the predictive performance seems to stagnate.
Indeed, under model misspecification, there is no guarantee
that the posterior predictive performance would improve with
more data. The ability to monitor performance can be helpful
when deciding whether the model under consideration is able
to benefit from the inclusion of more data. The arbitrariness of
the ordering of the observations in the setting of regression can
be addressed by averaging over orderings, as described in the
supplementary materials, where it is also shown how Bayesian
asymptotics provide efficient strategies for initializing SMCS.

5.2. Susceptible-Infected-Recoveredmodel

Another setting where sequential inference is particularly rele-
vant is the modeling of disease outbreaks. Parameter calibration
involves blending prior knowledge with data arriving regularly,
typically daily or weekly. We consider a simple determinis-
tic Susceptible-Infected-Recovered (SIR) model (Bacaër 2012).
Inference for suchmodels can be done withMCMC (Grinsztajn
et al. 2021). We consider an example from that article, using the
classical boarding school data of daily counts of pupils confined

to bed during an influenza outbreak, shown in Figure 3(a). The
model is described by the differential equations

dS
dt

= −βSI/n,
dI
dt

= βSI/n − γ I,
dR
dt

= γ I, (5.1)

where n = 763 is the total number of school children, S, I and
R represent the number of susceptible, infected and recovered
children, respectively, and γ ,β > 0 are parameters to be
inferred. We assume an initial condition of (S, I,R) = (n −
1, 1, 0) at time t0 = 0, that is, with an infected individual. The
observations, which begin at time t = 1, are assumed to be noisy
measurements of the number I of infected children that day. The
observation noise is modeled as a Negative Binomial distribu-
tion parameterized by φinv > 0. Priors on γ ,β ,φinv are taken
as N (0.4, 0.52), N (2, 1) (truncated to R+) and an exponential
distribution with rate 5, respectively. The Stan implementation
in Grinsztajn et al. (2021) provides a function that evaluates the
posterior log-density, which we use in an adaptive SMCS for the
path of partial posteriors.

The bottom row of Figure 3 displays the time evolution of the
posterior distribution of parameters. These types of visualiza-
tion could be used, for example, to study howmany observations
are necessary to obtain a desired precision on the parameter
estimates. Lastly, we consider a simple procedure to infer the
initial time t0 at which the first individual is assumed to be
infected. Figure 3(b) plots themarginal likelihood of t0, which is
the normalizing constant of the corresponding posterior distri-
bution, obtained here by running SMCS 10 times independently
for different values of t0; we observe a peak around t0 = 0.5.

https://doi.org/10.1080/01621459.2022.2087659
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6. Discussion

Consider a standard MCMC setting, where we run R chains
independently for T steps each, possibly after some early adap-
tive phase and discarding the first samples as burn-in. From this
familiar situation, wemight want to: (a) parallelize computation
across chains, ideally with a large R and a small T; (b) allow the
R chains to communicate in order to accelerate their exploration
of the state space; (c) use differentMarkov kernels depending on
the marginal distribution of the chains at the current iteration;
(d) estimate the normalizing constant; (e) approximate not a
single but multiple, related target distributions. There are var-
ious ways of addressing any of these points, but SMCS provide
a unified and principled strategy to address them all. We can
add to this list: for example there are documented advantages
of particle methods over Markov chains for multimodal target
distributions (Schweizer 2012b; Paulin, Jasra, and Thiery 2019),
and unbiased estimators of normalizing constants lead to useful
evidence lower bounds for variational inference (Naesseth et al.
2018). The most important message is perhaps that SMCS pro-
vide a viable alternative to MCMCwith distinct advantages that
can help statisticians.

We take a cautious view regarding performance comparisons
between SMCS and MCMC algorithms. There are many tun-
ing choices involved in both families of algorithms, thus, one
should not expect to draw fully general conclusions about one
algorithm being superior to another. Comparisons can be infor-
mative in specific cases (e.g., Matthews et al. 2022). More often
comparisons aremade between SMCS and annealed importance
sampling (e.g., Heng, Doucet, and Pokern 2021) or between
variants of SMCS (e.g., Salomone et al. 2018). In principle, any
efficient MCMC algorithm could also be used as an ingredient
in SMCS, but the choice of paths might not be obvious. For
example when the target distribution is supported on amanifold
(see e.g., Diaconis, Holmes, and Shahshahani 2013), it might be
difficult to define a suitable initial distribution for SMCS, while
any point on the manifold provides a valid start for MCMC.
Also, as of today the literature on convergence diagnostics is
muchmore developed for MCMCmethods (Roy 2020) than for
SMCS.Methods discussed in Section 4.1 to construct valid con-
fidence intervals for SMCS estimators are only recent, while the
construction of confidence intervals using independent SMCS
runs as in Section 4.2 seems to be rarely employed.

Why are sequential Monte Carlo samplers not used more
often? The flexibility in the choice of paths and Markov kernels
may appear overwhelming to new users. Despite useful efforts
to automatize the design of SMCS, for example , using stochastic
optimization (Fearnhead and Taylor 2013), or Generative
Adversarial Networks (Kempinska and Shawe-Taylor 2017),
there remains a number of tuning choices to be addressed in any
specific case, which may be a barrier even to computationally-
minded statisticians. In addition, software implementations
of SMCS exist (Wood, Meent, and Mansinghka 2014; Sal-
vatier, Wiecki, and Fonnesbeck 2016; Murray and Schön
2018) but are not as widely used as MCMC software such
as Stan (Carpenter et al. 2017) and do not benefit from a
comparable community support. We have described reasons
for SMCS to be implemented more often by statisticians in
the future.

SupplementaryMaterials

Supplementary material contains additional information on the link
between particle filters and SMCS, unadjusted Hamiltonian Monte
Carlo moves, experiments on Normal distributions in increasing
dimensions, implementation details for the experiments of Section 5,
and additional paths of distributions for the logistic regression example
(pdf file).

R-package An R package contains code to reproduce the figures (zip file),
also available at https://github.com/pierrejacob/smcsamplers.

Tutorials RMarkdown files presenting various implementations of SMCS,
how to add intermediate distributions and how to remove the bias from
adaptive versions of SMCS (zip file).
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