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Abstract

Twinning is an important mechanism of deformation in various crystalline materials, and in
particular in shape memory alloys, where it is inherent to the shape memory and super-elasticity
effects. This paper presents a generalized methodological approach for analyzing and modeling
twin boundary dynamics with particular relevance for shape memory alloys. This approach
combines the topological model description of the interface structure at the atomistic/lattice scale
with analytical analysis of energy barriers and mechanisms of motion that provide macro-scale
kinetic laws for the twin boundary motion. We emphasize the main differences between the
topological structures of different types of twin interfaces and their implications for the mobilities
of the different twin types. In particular, we elaborate on the relaxed topological structure of type
II twin boundaries that contains a coherently facetted structure, where the facets are rational planes
that accommodate misfit strain. Then, we clarify the lattice barriers’ role in determining the
different regimes of the kinetics of twin boundary motion. Further, we develop models leading to
analytical expressions for the activation energies of various nucleation processes that dictate the
overall kinetics of twin boundary motion, and identify of the rate-limiting process for the different
twin types. In the case of compound and type I twins, the analysis leads to an explicit expression
for the magnitude of the twinning stress, revealing a strong dependency on the shear modulus and
the twinning shear, which is in excellent quantitative agreement with experimental values reported
for different materials. Moreover, our analysis reasons the different temperature dependencies of
the twinning stress exhibited by the different twin types, and in particular the very low temperature

sensitivity of type II twins.
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1. Introduction

Twinning is an essential mode of plastic deformation in a variety of solid materials, such as
hexagonal close-packed (HCP) metals (e.g., Mg and Ti) [1], nano-crystalline and nano-structures
of face-centered cubic (FCC) metals (e.g., Cu and Ni) [2-4]. Besides, twinning reorientation in
ferroelectric materials and shape memory alloys (SMA) facilitates significant straining [5], thus
providing the fundamental mechanisms for transformation between electric/magnetic/thermal
energy and mechanical energy, which are used in a variety of advanced actuation, sensing, and
energy harvesting applications [6-9].

Given the importance of twinning to the functionality of advanced materials, an understanding
of interrelations between the often-complex twin boundary (TB) structure of different twin types
and their mobility is required. Further, the knowledge of the relations between twin boundary
mobility and fundamental material properties, such as the twinning shear strain and the shear
modulus, is of substantial importance. Such knowledge can be acquired through the development
of general yet simple microstructure-based models, that can be applied to different material
systems (see, e.g., Refs. [10,11]). This approach should be validated by its power to explain
twinning behavior based on fundamental material properties such as lattice parameters, twinning
elements, and elastic constants, and on experimental evidences that have been reported in recent
years.

In the classical description of twinning, twins are related by a simple shear. The classical model
predicts the twinning mode of a given crystal lattice by identifying the twinning elements: the
twinning invariant planes K, K,, the twinning directions 7,,7,, and the twinning shear strain s
[1,12—-14]. Following this description, twins are classified into three types: type I, type II and
compound. In type I twins, K, and 77, are rational, while K, ,7, are irrational. In type II twins K
and 77, irrational while K,,7, are rational. In compound twins, all four twinning elements are

rational. In tetragonal martensite (e.g., BaTiO3 [15], non-modulated Ni-Mn-Ga [16]) only
compound twins exist, while all three twin types can exist in lower symmetry structures, such as
monoclinic (e.g., NiTi [17], 10M Ni-Mn-Ga [18]) and rhombohedral and hexagonal (e.g., Cu-Al-
Ni [19], Ti-Al [20]) martensite.



Experiments indicate that the dynamics of type II twins are fundamentally different from those
of type I twins. Type II twins display smaller twinning stress values than type I, as reported for
several material systems, e.g., Ni-Mn-Ga, Ni-Mn-Sn, and Cu-AI-Ni [18,19,21]. For these
materials, the room temperature twinning stress of type II twins is smaller than that of the conjugate
type I twins by at least a factor of 5 [18,22,23]. Previous studies by several research groups,
focusing mainly on the Ni-Mn-Ga system, have attempted to explain these differences based on
the complex twinned microstructure occurring at various length scales [24-29]. Here, we analyze
and explain the different mobilities of type I and II twins based on the periodicity of the lattice as
a source for energy barriers and the different lattice-scale topological structures.

Moreover, the twinning stress of type II twins shows a very weak, in some cases undiscernible,
temperature sensitivity (e.g., Ni-Mn-Ga, Cu-Al-Ni [30-32]). This is in contrast to the behavior of
type I and compound twins, which typically display an increase in twinning stress as the
temperature is decreased relative to the martensite to austenite transformation temperature [21,32—
34]. Such behavior indicates that the rate-limiting process in the motion of type II twins is different
from that in compound and type I twins. Moreover, a finite and relatively low twinning stress value
of type II TB was reported for 10M Ni-Mn-Ga at temperatures as low as 1.7 K [30]. This indicates
that the mechanisms responsible for TB motion can proceed in an athermal manner even at low
driving force values.

The evolution of twinning, i.e., the micro mechanisms and kinetics by which one twin expands
at the expense of another through the motion of twin boundaries (TBs), is associated with the
nucleation and propagation of twinning defects known as twinning disconnections (TD). A
disconnection is a linear defect with both step and dislocation characters [35,36]. Therefore, a
thorough understanding of the origin and dynamics of twinning requires the knowledge and
modeling of the defect structure and the corresponding physical mechanisms of motion.

The content, properties, and arrangement of TBs and TDs can be well described with the
topological model (TM) [35-38]. Researchers have applied the TM to explain the formation and
motion of many interfaces, including precipitate/matrix interfaces, martensite/austenite interfaces,
as well as compound and type I twins [1,38,39]. Type II twins, which play a dominant role in
twinning evolution in many SMA, pose a challenge for the TM description because of the irrational
character of their twinning plane that results in an undefined distance between consecutive

twinning planes. Recently, Pond et al. introduced a TM-based description for the formation of type



II twins and implemented it to several material systems (e.g., « — Ur, NiTi) [40,41]. Following
these works, possible equilibrium structures of type II twins in Ni-Mn-Ga and Ni-Ti were proposed
based on the TM [42,43]. Sehitoglu et al. [44] used a combined atomistic-topological approach to
describe an equilibrium structure of type II twins in Ni-Ti.

The TM provides a crucial bridge between TB structure and mobility, as it describes the
twinned interface as an arrangement of TD defects whose nucleation and motion can be evaluated
based on principles of the classical dislocation theory. Specifically, the mobility of a TD is directly
related to the fundamental properties of the linear defect: the burgers vector & and the core width
0, and potentially other interfacial properties, such as the step height /. For example, small burgers
vector and large core width are expected to promote high mobility of a linear defect. A fundamental
feature of any twinning system is the twinning shear strain s . The TM indicates that the magnitude
of s is related to the properties of a TD according to s =b/h [36]. Different materials, as well as
different twinning systems within the same material, have significantly different twinning shear
values [1]. In these cases, the twinning shear may strongly influence the twin boundary mobility.

In this study we analyze the impact of topological parameters on the mobility of twin
boundaries. The topological parameters derive from the crystal structure and orientation. To
facilitate the crystallographic representation of twinning for modulated martensite in different
SMA, the TM adopts an approximated crystallographic structure that averages out the modulation.
(e.g., an effective monoclinic unit cell in 10M Ni-Mn-Ga, Refs [42,45]). This approach is useful
for defining and quantifying the topological parameters of the interface defects (e.g., b,%4). In
addition, it allows describing the lattice barrier for TB motion (see section 4) by a simple periodic
function with periodicity on the order of a single lattice spacing of the effective unit cell. By
averaging out the lattice modulation we disregard shuffles required to establish the correct
structure. In the cases discussed here, particularly for type II twins in 10M Ni-Mn-Ga, shuffles are
very small (substantially below the interatomic distance) and do not include the switching of
atoms. In such cases, shuffle does not contribute significantly to twin boundary mobility [1].

In order to establish general relations between the structure of the TB (as described by the TM)
and its mobility, the mechanisms of motions for twins in various materials must be clarified. In
this context, a mechanism of motion is a description of a sequence of several sub-processes by
which the TB propagates and an identification of the rate-limiting process. This knowledge allows

the formulation of kinetic relations that quantify the velocity of the interface as a function of the
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thermodynamic driving force. The term driving force represents the sum of all tractions that act on
a twin boundary through various types of external loads (e.g., mechanical, magnetic, electrical),
as further explained in Section 2. The kinetic relation is the basic input for models describing the
macroscopic mechanical response of materials due to twinning.

Recently, Miillner analyzed the mechanisms of motions associated with nucleation of new TDs,
focusing on the relations between the TM of type I and Il boundaries and the resulting barriers for
TD nucleation [11]. Faran and Shilo suggested analytical models for the kinetic relations of TB
motion, based on different mechanisms of motion [46,47,23]. These studies revealed a clear
transition between slow and fast regimes of motion that takes place at driving forces much larger
than the value related to the twinning stress [46—49]. The source for this transition is not yet fully
explained. Specifically, it is unclear if this source is different for type I and II twin boundaries and
is this transition expected to appear in other SMA.

This paper is organized as follows: section 2 presents several basic concepts that are essential
for the analysis of TB motion in a variety of material systems, focusing on the definitions and
application of the driving force and kinetic relations. Section 3 contains a basic description of the
structure of a twinning interface based on the TM. In section 4 we present the energy barriers that
are imposed by the lattice and resist the motion of the TB, which leads to the classification of
different regimes of the twin boundary motion. Section 5 presents an analytical formulation of the
activation energies of different processes that occur during the twin boundary motion. In section 6
we focus our analysis on TB motion in the slow rate regime and identify the rate limiting process
that determines the dynamics of different twin types. Further, we obtain explicit expressions for
the twinning stress for the driving force regime where hhermal activation dominates the kinetic
relation and for the different nucleation energies that were developed in section 5. In section 7 we
employ the insights presented in the previous sections and reason the available results for the
motion of different twin types in different materials systems. Emphasis is given to results reported
on ferromagnetic SMA 10M Ni-Mn-Ga because TB motion in this system was widely investigated

by several research groups with high quality single crystals.

2. Definitions and basic concepts
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When discussing the motion of TB, several basic concepts should be defined and clarified to
allow for a general description that is valid for a variety of material systems. We start with the
concept of the thermodynamic driving force (driving force in short) g, which is well known from
the field of phase transformations, and represents the change in free energy due to the

transformation from one state (or phase) to another [50-52]. For the case of a TB, the driving
force is the derivative of the TB energy U 5 (per unit area) with respect to the propagation

coordinate Z normal to the TB plane:

. 1)
g= aZ(Um)

The driving force has the dimension of energy per volume. Eq. (1) represents a continuum
(macroscopic) model, and the definition of U 5 does not account for local atomistic effects such

as the lattice potentials. The influence of the lattice periodicity on the TB energy is introduced in

section 4. A similar expression can be formulated for the case of a linear TD defect [53,54] .

The total energy Urs contains several contributions, which represent the strain, electric (e.g.,
in ferroelectric crystals), and magnetic (e.g., in ferromagnetic crystals) energies that vary due to

the TB propagation:
U =Up" +Ups +Ups &)

The use of the driving force is general and allows us to decouple the thermodynamic traction
applied on a moving material defect from the overall mechanical state of the macroscopic crystal.
For example, Eq. (1) and (2) show that a ferromagnetic crystal subjected to external magnetic field
results in a non-zero driving force for TB motion, even if there is no mechanical load. In this case,
the frequent use of the term magneto stress, which is equivalent to the effect of the magnetic

mag

driving force (U, in Eq. (2)), is ambiguous since it is not a real mechanical stress and does not

appear in the basic equations of force equilibrium over the macroscopic crystal. Furthermore, the
general formulation of the driving force enables accounting for other effects, such as that of

demagnetization energy (as in Refs. [47,55]) or cases where the TB area is not constant.



The kinetic relation [51,56] is a constitutive material law that correlates the velocity of an
individual TB to the thermodynamic driving force. Different kinetic relations may arise for
different ranges of the driving force, but all kinetic relations are determined by properties at the
atomistic and mesoscopic scales. Kinetic relations serve as the basic input in models describing
the overall twinning dynamics. Specifically, discrete twin boundary dynamic simulations, based
on measured kinetic relations, have been demonstrated as a powerful tool for calculating the
dynamic response of Ni-Mn-Ga actuators [57,58]. Kinetic relations can be obtained experimentally
by tracking the motion of individual TBs [46,47], and can also be formulated analytically. To the
latter end, one must identify the mechanism of motion and formulate the kinetic laws for the rate
of this mechanism. Comparing experimental and analytical kinetic relations allows validating the
assumptions taken during the analytical approach and extracting values of basic material properties
[23.47].

Another common term in the dynamics of twinning is the twinning stress, which is usually

obtained from quasi-static uniaxial mechanical experiments at strain rates typically slower than
107 s~ [59]. Under these conditions, the only non-zero term in Eq. (2) is the mechanical energy,
Up = —z- 0,5 - & . Here, 0y, is the twinning stress, which is typically measured along a <100>
longitudinal direction of a single crystal cut with faces parallel to {100} planes of the parent cubic
phase (e.g., Refs. [60,19,61,21]). & is the corresponding longitudinal strain (i.e., along the same
direction as o) associated with TB motion. For example, & =1-c/a in tetragonal martensite.
z is the propagation distance normal to the TB plane, to straddle a volume that is transformed due
to the TB motion. Since the twinning shear equals s = 2¢;, the specific driving force g, (energy

/ volume, Eq. (1)) associated with the twinning stress is given by:

_ Oy 3)

8rs 5

In cases where the mechanism of motion is thermally activated, the twinning stress o, depends

on the temperature and the applied strain rate (or TB velocity). Therefore, in general, the twinning

stress is not identical to a barrier for the twin boundary motion.



3. Topological models for twin interfaces

While the classical description of twinning predicts the twinning mode of a given lattice (see
section 1), this model does not clarify the micro mechanisms of twinning. For instance, it does not
provide insight into the formation mechanism and equilibrium structure of type Il twin because

the invariant plane K| is irrational in this case [1]. The topological model proposed by Pond and

Hirth [36,37,39,40,62] provides a framework to extensively characterize the defect contents of
interfaces, including twinning [63,64]. The model assumes the formation and growth of terraces
separated by disconnections as the mechanism of formation and growth of twins.

In compound and type I twins, the invariant plane of twinning, K, is rational, and thus
disconnections, (b,#), are intuitively defined in the interface [37]. For example, for a type I twin,
the Burgers vector, b, of the disconnection is parallel/antiparallel to the shear direction, 7,, and
the step height, h, is equal to the interplanar spacing of the K, plane. The Burgers vector quantifies

the lattice displacement required for maintaining a coherent interface, and the step height
quantifies the displacement of the interface accompanying the motion of the disconnection. In a

relaxed condition, the lowest energy configuration of a TB is a flat K, plane without any

disconnections.

The twinning plane of type II twins is irrational, which poses intuitive (but not conceptual)
difficulties in describing the topological structure of the interface. This has motivated several
studies, both theoretical [40—42,44] and experimental [65—69] in an attempt to unravel the
equilibrium structure of a type II interface. These studies state that an irrational twinning plane
possesses high energy, which promotes relaxation of the interface to various types of lower energy
configurations. For example, experimental characterization using HRTEM images sometimes
reveals a faceted structure [68,69], while in other cases, the structure relaxes more randomly [65].
Macroscopically, the orientation of the relaxed twinning plane coincides with the irrational plane
predicted by the classical theory of twinning.

A flat twinning plane that lays along an irrational crystallographic plane is highly incoherent,
since the two twins only share a common lattice direction but not a plane. The incoherency results
in a high interfacial energy, and thus the atomistic structure of the type II TB is likely to relax to

lower energy configurations [70]. A possible relaxed interface for type II TB is the formation of a
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coherently faceted structure [71,68,44,42]. In this description (Fig. 1), the TB forms facets that lie
along low-index planes, separated by equally spaced steps that lie along another low-index plane.
The “average” interface plane, formed by the facets and the steps, lies very close to the irrational

twinning plane K, calculated based on the classical theory of twinning. In general, while the low-

index facet planes are common to both the parent and the twin, there is some in-plane rotation of
the lattices of the parent and the twin within this plane. This rotation results in a misfit of the parent
and twin lattices in the facet plane. This misfit can be accommodated either by long range elastic
strains, resulting in a fully-coherent interface, or by an array of misfit screw dislocations, resulting
in a coherently faceted interface. For some materials, e.g., Ni-Ti, the misfit screw dislocations
coincide with the steps between facets, as demonstrated in Fig. 1, thus forming an array of equally
spaced misfit screw disconnections, characterized by a step height and a Burgers vector [44]. In
other materials, such as Ni-Mn-Ga, the direction of the Burgers vector of the misfit dislocation
results in steps that rotate the average plane formed by the faceted interface out of the irrational
K, plane [42]. Thus, for these materials, the description of the twin boundary as a coherently
faceted structure is still an unsolved problem.

At a scale larger than the equilibrium distance between adjacent disconnections (/;, in Fig. 1),

which is on the order of few nm (Refs. [42,44] and values in Table 2), the strain field produced by
the array of dislocations is equal in magnitude but opposite in sign to the strain field produced by
the misfit at the faceted interfaces. Thus, the two contributions cancel each other, resulting in zero
long-range strains. In materials where the coherently faceted structure is possible, the array of
equally spaced disconnections represents a low-energy configuration of the type II TB, and can

thus serve as an equilibrium state.



Fig. 1 Schematic illustration of a coherently faceted type II TB, showing the low index plane facets
separated by an array of screw disconnections. b is the Burgers vector of a disconnection, & is the

disconnection line direction and is (anti) parallel to the shear direction 77,. The disconnections are equally

spaced at a distance /;, such that the average interface plane coincides with the irrational K, twinning
plane.

4. Lattice barriers for twin boundary motion and classification of different regimes

To define possible mechanisms of motion that lead to twin boundary propagation, we identify
the energy barriers that resist each sub-process involved in the motion. Here, we present a general
analysis that considers only the periodicity of the lattice as a source for energy barriers. Other,
aperiodic barriers may arise due to interactions of the twin boundary with crystal defects, such as
surface roughness, precipitates, dislocations, phase boundaries, and grain boundaries. The effects
of these barriers depend on the specific problem and the quality of the crystal. The lattice barriers
are shown in Fig. 2 and the different sub-processes are summarized in Table 1. Two different barriers
separate the driving force scale into three regions. In each of these regions, different processes take
place, resulting in different velocities through different kinetic relations.

Compound and type I TB’s are parallel to low-index lattice planes. Such interfaces are
subjected to a lattice barrier that resists their motion as a flat plane. The periodicity of this barrier

is equivalent to the lattice spacing of the low-index plane, d,,, and its amplitude is denoted as 7,
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(energy per unit area), as shown in Fig. 2(a). Type Il twin boundaries, on the other hand, are
characterized by an irrational twinning plane, which poses difficulties in realizing the role of a
periodic lattice barrier that resists the propagation of the twin boundary as a flat plane. However,
we note that the step height of disconnection on a type Il interface has a discrete value. For Ni-

Mn-Ga, the step height is of the same order of magnitude as d,, [42]. Moreover, the coherent

facets that constitute the coherently faceted structure lay on low index planes (Fig. 1 and related
discussion), and are thus subjected to a periodic lattice barrier.

An additional periodic lattice barrier is associated with the motion of twinning disconnections.
A disconnection line tends to lay along low-index lattice directions, even when the burgers vector
is irrational, e.g., in type I twins [42], and is thus subjected to a periodic lattice barrier that resists
its glide, similarly to the Peierls barrier for the glide of ordinary dislocations. The periodicity of
the Peierls barrier is the lattice spacing perpendicular to the disconnection line on the glide plane,

d,,, and its amplitude is denoted as I',, (energy per unit length), as shown in Fig. 2(b).
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Fig. 2 Schematic description of the different lattice barriers for TB motion. The illustrations depict a
TB with a rational twinning plane K, as in compound and type I twins. (a) The lattice barrier for the

motion of the TB as a flat plane along z direction. The barrier is characterized by an amplitude y,, (energy/
area) and periodicity d,,. The TB can also propagate via the glide of twinning disconnections on the
rational twinning plane K|, along x direction. b,& are the Burgers vector and line direction of the
disconnection, and 7, is the shear direction. (b) Peierls barrier for the glide of a disconnection. The barrier

is characterized by an amplitude I', (energy/length) and periodicity d,,. A kink-pair (KP) mechanism
allows disconnection motion at driving force values that are smaller than the Peierls barrier.

Table 1: Sub-processes in the various ranges of the driving force (g ) and TB velocity (V5 ). The different ranges of
the driving force are defined based on the magnitudes of the lattice barriers I” D> VB

Nucleation of disconnections

Twin boundary motion as a
Nucleation of kink-pairs | Disconnection glide as flat plane
straight line
» <, Vrp
zlp Vs _ g
dpyh dry 0
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To evaluate the effects of the lattice barriers presented in Fig. 2 on the motion of a TB, we
introduce periodic functions that depict the energy landscapes of the lattice barriers, and add them
to the total energy of the system. In Fig. 3 and Fig. 4 we plot the energy landscapes encountered by
a moving TB and a moving TD, for two ranges of the external driving force with respect to the
lattice barrier amplitude. This representation corresponds to cases where the driving force is the
input parameter and dictates the dynamics of the TB or TD through fundamental kinetic relations
(see, e.g., Refs. [47,48]). The analysis presented below shows that the energy landscapes are
qualitatively similar for a moving TB and a TD, and thus the schematic plots in Fig. 3 and Fig. 4
are valid to both defect types.

For an existing TB, we express the change in energy per unit area U,,, as a function of the

boundary position z, where z is the coordinate perpendicular to the boundary plane (Fig. 2(a)):

7z 4)
dTB

The first term in Eq. (4) is the work per unit area associated with the motion of the TB under

Uy (z)=—gz+yysin’ (

the driving force g along the coordinate z (identical to the continuum quantity Un (z) in Eq.
(1)). The second term in Eq. (4) represents the periodic lattice barrier for TB motion (Fig. 2a).

Analysis of Eq. (4) points to two different cases. In the driving force range g > g, , where

_ TV

TB

2 is the driving force associated with overcoming the lattice barrier y,,, the function

Uy, (Z ) decreases monotonically for all values of Z (Fig. 3). In this case, the driving force enables

overcoming the lattice barrier, and the twin boundary moves as a flat plane. In this regime, the
twin boundary motion is restricted only by the internal friction of the material and does not require

a thermally activated process.

2 the twin boundary encounters a positive energy barrier (marked as U2 in Fig. 4)

Ifg<

B
as it propagates from one potential well to the next. Therefore, motion in this range of the driving
force necessitates nucleation of disconnections and their further glide. This motion type results in

a slower advancement of the TB than the motion as a flat plane. For compound and type I twins,
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whose equilibrium topological structure does not contain disconnections, the nucleation requires
overcoming an energy barrier via a thermally activated process, as discussed in section 5.2. For
type II twins, where disconnections are an inherent part of the equilibrium structure, there is a
unique mechanism of athermal heterogeneous nucleation of disconnections at the surface, as we
discuss in detail in section 5.3.

A similar analysis is applicable also for the motion of a disconnection. The change in energy

(per unit length) of the disconnection is given by

X 5).
up, (x)=—ghx+I,sin’ [d—J ®)

D

Here —ghx is the work per unit length associated with the motion of the disconnection along a
distance x under the driving force g, X is the coordinate perpendicular to the disconnection line
on the twinning plane (Fig. 2(b)), and 4 is the step height of the disconnection. The second term

in Eq. (5). represents the periodic lattice barrier for disconnection motion (Fig. 2(b)).

D

Wh >7Zf
o ET

D

in Eq. (5), the function u,, (X) decreases monotonically for all values of x

(Fig. 3) and the disconnection can propagate as a straight line in an athermal manner and its motion

is restricted only by the internal viscosity (i.e., does not require a thermally activated process).

D bar

, the disconnection encounters a positive energy barrier, u,", as it

. A
Alternatively, when g <
dD

propagates from one potential well to the next (Fig. 4). Following classical dislocation theory (see,
e.g., p- 242 in Ref. [72]), motion of a disconnection in this range of the driving force is possible
through nucleation of kink pairs on the disconnection line and the subsequent expansion of the
kinks along the disconnection line (Fig. 2(b)). The kink pair mechanism for the advancement of a
TB is reproduced in atomistic simulations of twinning in ferroelastics (see. e.g., Ref. [73]).

The above discussion implies that under any value of the driving force there exists a mechanism
of motion that can lead to the propagation of the TB, as summarized Table 1. In practice, the actual
movement mechanism of the TB may be indistinguishable in a specific type of experiment. For
example, slow-rate mechanical tests apply a constant controlled strain rate on the sample. The

stress reaches a plateau, denoted as the twinning stress, at a value at which the microscopic strain
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rate induced by the moving twin boundary is equal to the macroscopic strain rate. At stress levels
smaller than the twinning stress, the stress increases, but this does not mean that there is no twin

boundary motion in this range.

T8 L'y
g > drp N dp-h

Upgyup =10

Energy/(area , length)

—gz, —ghx

0 0.5 1 1.5
i
drg? dp

Fig. 3 Energy profile of a twin boundary U,, (energy/area, Eq.(4)) or twinning disconnection u, (
energy / length , Eq. (5)), for the case that the driving force § (energy/volume) is larger than the lattice
barrier. The dashed green line represents the work associated with the motion of the TB (—8Z in Eq.(4) )
or the disconnection (—ghx in Eq. (5)). The normalized coordinates z/ d,, ,x/ d, represent the directions
normal to the TB plane and disconnection line, respectively (as in Fig. 2).
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Fig. 4 Energy profile of a twin boundary U,, (energy/area, Eq.(4)) or twinning disconnection u, (
energy/length, Eq. (5)), for the case that the driving force § (energy /volume) is smaller than the lattice
barrier. The dashed green line represents the work associated with the motion of the TB (—gZ in Eq.(4))

or the disconnection (—ghx in Eq. (5)). The normalized coordinates z/d,, ,x/ d,, represent the directions

normal to the TB plane and TD line, respectively (as in Fig. 2). The magnitude of the barrier for TB or

disconnection motion associated with the lattice potential is marked as U 2" and u%" , respectively. The

energy gained due to the local advancement of the TB or the disconnection is labeled as U5 and 25",
respectively (see discussion on the different energy terms in sections 5.1 and 5.2).

5. Activation energies for nucleation processes

In section 4 we identified two nucleation processes associated with different mechanism of TB
motion, namely the nucleation of disconnections and the nucleation of kink pairs on
disconnections. Next, we formulate analytical expressions for the corresponding activation
energies of these nucleation processes, and discuss their relevance to the motion of the different
type of TB’s. Here, we distinguish three nucleation processes: the first analyzes the nucleation of
kink-pairs on an existing disconnection line. This mechanism is required for the glide of a
disconnection and thus, it is applicable to all twin types. The second process is the homogenous

nucleation of disconnection loops that is relevant mainly to compound and type I twins. The third

16



process is the heterogenous nucleation of disconnections at the surface that is unique to the relaxed
structure of type Il twins.

In the following analysis, we employ isotropic elasticity for evaluating the energies of
individual disconnections and disconnection arrays. This provides simple analytical expressions
that can be quantified and compared between different material systems. Yet, isotropic elasticity
assumes that the shear stiffness is identical in all directions, which is not the case for elastically

anisotropic martensitic SMA. In order to account for this, we associate the shear stiffness 4 in the

isotropic formulation with the C' elastic modulus of the austenite phase near the martensitic
transformation temperature, and not with the isotropic shear modulus G (see values in Table 2,

Table 3, and similar discussion in Ref. [11]).

5.1 Homogeneous nucleation of kink pairs on disconnection lines.

D

dyh

When the driving force is smaller than the Peierls barrier for disconnection glide (i.e., & <

), the glide of a disconnection requires the nucleation and expansion of kinks. This allows part of

bar

the disconnection to locally overcome the energy barrier ", as illustrated in Fig. 4. Based on the

theory of dislocation kinks (Ref. [72] , page 242), we consider the homogenous nucleation of a
kink-pair on an existing disconnection line.

The activation energy for the homogenous nucleation of a kink-pair with a kink separation y

is expressed by:

=uy" - y+Eg (») (6)

p =

Here, u}" is the energy per unit length required to overcome the periodic Peierls potential of
the disconnection, and is equal to the first maximum of the disconnection energy u,, (x) (given by

Eq. (5).), calculated at x=d,, /2 (see Fig. 4):
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up” :uD(xzd/2)=FD—g-h-d70

Ey (v)in Eq. (6) is the self-energy of the kink-pair and is generally given by:

. o 8 2
B =2, ~ S ®
"y

where, €, and e, are formation and interaction energies, respectively. Under the

approximation of isotropic elasticity, the two energies scale as €, 0 _and ¢, U _ (see

Ref. [72], page 244) , where u is the shear stiffness.

Both terms in Eq. (6) are positive and increase as y increases. Further, after the nucleation, if
y is too small, the attraction forces between the two kinks results in an annihilation of the kinks.
Therefore, we must find the minimal value of y for which the nucleated kink-pair tends to grow,

i.e., to increase the value of y . For this purpose, we express the energy of an existing kink-pair,

for which x =d,, as a function of y :

Ele{x}isring (}CZdD)Z uﬁw'"y+E;§§f (y):_gthy-{-E;éif (y) 9)

Here, u%™ is the first minima of the energy of the disconnection u,, (Fig. 4). At x=d,, the

periodic lattice barrier (2" term in Eq. (5)) is zero, and thus:

ugai"(x=dD)=—g~h~dD (10)
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The critical length of the kink pair y, is obtained by finding the first extremum of Eq (9), i.e.,

existing
aE KpP

solving =0 , which provides:

(x=dp)

— einl (1 1)
Y \gon-d,
And thus, Eq. (6) becomes:
d e (12)
9, :(FD —g-hj’Jyf +[28f —‘"‘j
yC
ﬂrD

Under the conditions of thermally activated motion (i.e., & < ), both bracketed terms in

dyh
Eq. (12) are positive, and thus the total activation energy O, is always positive. This implies that

kink-pair nucleation is not a spontaneous process, and requires some finite activation energy. As
we show in section 7.3, in some twin types and material systems the magnitude of Q,, is
comparable to the thermal energy even near 0 K temperature. Thus, a finite concentration of kinks
is expected to be always present on the disconnection line even under zero driving force (see also
Ref. [74]). At the same time, TB motion requires annihilation of existing kinks and nucleation of

fresh kink-pairs. The rate of the later process is determined by the driving force g.

5.2 Thermally activated homogeneous nucleation of disconnection loops

In compound and type I twins, the equilibrium structure of the twin boundary is a flat interface

that coincides with a low index plane. Thus, when the driving force is lower than the barrier for

7Y g

twin boundary motion as a flat plane, i.e., & < , twin boundary motion requires the nucleation

B
of disconnections on the TB plane. We consider nucleation of disconnection loops in the bulk or

nucleation of half-loops at the surface, under the application of an external driving force g . This
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nucleation process is consistent with the recent description of an evolving topology of type I and
compound twins under non-zero loading conditions (see Ref. [75]).

The analytical approach is similar to that employed for the nucleation of kink-pairs, in section
5.1. The activation energy for the nucleation of a disconnection loop with a radius r is expressed

by:

QDL :Uzlzgr -7r? +ELX)eLlf (r) (13)

The first term on righ-hand side of Eq. (13) , Uy - 7r*, represents the energy required to move

the disconnection loop across the lattice barrier perpendicular to the twinning plane under the
application of an external driving force g (Fig. 4 and also in Ref. [47]). The magnitude of the

barrier (energy per unit length) is given by

o d (14)
UTbB =Vrs _g'f:dm(%_gJ

d
Where we substituted }p; = Lok .

Y rp

The barrier U} is positive within the relevant range of the driving force g < . The second

B

term in Eq. (13) E3Y (r)represents the self-energy of the disconnection loop. The magnitude of
Ex/ (r) may depend on the type of nucleation process. Heterogeneous nucleation of a
disconnection loop, for example at crystal defects, may result in negligibly small value of Ej/ (r)

. This in turn, may lead to a negligibly small activation energy O, . However, given that the

equilibrium structure of compound and type I twins contains no disconnections, continuous motion
of the TB at a scale larger than the lattice scale requires nucleation events that occur regardless of
the TB position within the crystal, i.e., not just in some few specific locations of crystal defects.
Thus, we consider here the case of a homogenous nucleation, for which the activation energy given

by Eq. (13) is always positive and increases as r increases.
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After the nucleation event, if  is too small, the attraction forces between segments of the
disconnection loop will result in an annihilation of the loop. Therefore, we find the minimal value
of r for which the nucleated disconnection loop tends to grow, i.e., to increase the value of r. For

this purpose, we express the energy of an existing disconnection loop with radius 7:
existing __rrgain__ 2 self 15
E (r)— Uy mr” +Ep) (r) (15)

Eq. (15) describes the energy of a loop that has already “surpassed” the activation energy Q,,

(expressed in Eq. (13)). Thus, Usy" =Uy, (z=d,;) represents the first minima of U,, and it has

a negative value (see Eq. (4) and Fig. 4 in section 4). This distinguishes Eq. (15) from Eq. (13),

where U} represents the first maxima of U,,, and it has a positive value. Further, the lattice

potential (second term in Eq. (4)) is zero at z = d ;. Thus, Eq. (15) becomes:
Ep " (r)=—gdyy - + Epy) (1) (16)

The self-energy of the disconnection loop E:/

' (r) can be expressed using the energy per unit

length of the disconnection loop, ¢, (r) :
EX (r)=2zr-q, (r) (17),

Equation (16) has a maximal value at 7= . For r <r., OE.=™ [dr > 0, which means that such
a loop will collapse and disappear. For »>r,, OEf™ /ér <0, which means that such a nucleated
loop will grow and increase its radius. Thus, only loops with » >7, contribute to the propagation

of the twin boundary. For loops with r >, the minimal value of the activation energy is obtained
by substituting r =7, in Eq. (13). The energy per unit length of the disconnection loop ¢, (r) isa

slow-varying function of r that changes as ln(l’). For simplicity, Faran and Shilo [47] assumed
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exsiting

that ¢, (l’) can be taken as a constant. Thus, solving 0E}); / or =0 for 7, under these conditions

results in:

9p (18)
gdy

¢

The substitution of Eq. (18) in Eq. (13) provides an expression for the activation energy for the

nucleation of a stable disconnection loop:

22 (19)
0 :72"qu|:§+ Vs :|zﬂ-.(0'5'ub) |:§+ Vs :|
DL

g'dTB 2 g'dTB g'dTB 2 g'dTB

In the second equality in Eq. (19) we introduced a rough approximation based on isotropic
elasticity for the line energy of the disconnection g, = 0.5ub> (see page 169, Eqn. 6-51 in Ref.
[72]).

The nucleation of a disconnection half-loop on the surface can be treated similarly, resulting

in activation energy that is half the value expressed by Eq. (19).

5.3 Athermal heterogeneous nucleation of disconnections at the surface.

The topological structure of a coherently faceted type Il boundary is inherently different from
that of compound and type I, and contains a dense, ordered array of screw, misfit relieving
disconnections (Fig. 1 and related discussion in section 3). The disconnection array is preserved
during motion of the interface. Thus, different nucleation mechanisms of disconnections are
required to account for the motion of type II twins. In this section, we discuss a mechanism that
enables athermal generation of disconnections on a type II TB. We evaluate and verify our
analytical formulations by inserting material parameters for two representative material systems
(10M Ni-Mn-Ga and Ni-Ti, see Table 2), in which type II twins play a significant role and the
coherently faceted structure of the TB is well established.
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We propose the following mechanism for the motion of a coherently faceted type II interface
(Fig. 5). The twin boundary contains a regular disconnection array (as shown also in Fig. 1) in
which the disconnection lines are parallel to the free surfaces. The parallelism assumption is valid
for example when samples are cut with all faces along {100}. This is the case essentially for all
published experimental results (e.g., Refs. [18,19,21-23,26,31,32,46,49,54,60]). Under an applied
driving force, the slow-rate motion of this boundary (from top to bottom) involves two processes.
One is the collective glide (from left to right in Fig. 5) of the disconnection array that advances
the twin boundary perpendicular to its plane. Here we consider conditions under which the applied
driving force enables disconnection glide over the Peierls barrier. As the disconnections reach the
right surface they are emitted to the surface. Thus, a second process is required to occur
simultaneously to maintain the topological structure and the motion of the TB: the nucleation of
disconnections on the left surface. Next, we discuss conditions under which disconnections
nucleate athermally.

Due to the disconnection glide, there is a region close to the left surface that becomes depleted
of disconnections. The typical thickness of this region x, is much larger than the equilibrium
spacing /, between disconnections in the array (as we show next). Therefore, this region is
subjected to misfit elastic strains (as discussed in section 3) that are not accommodated by the
disconnections array. The misfit strain builds up energy that grows with increasing x,. The

tendency to reduce the elastic energy in this region results in a restoring force that pulls the array
of disconnections back towards the left side. This force is not to be confused with the image force,
which is caused due to the self-strain field of the disconnection. The tendency to reduce the elastic
energy also encourages nucleation of disconnections on the left surface.

Recalling the low-energy configuration of the TB structure, presented in section 3, we assume

that the equilibrium distance /, between disconnections is maintained during the motion of the
array. This means that under an external driving force g, (that corresponds to the twinning stress)
all disconnections move approximately the same distance x,, leaving a region with a width x,

near the left surface that is depleted of disconnections Fig. 5(b). After a disconnection is nucleated
on the left surface, Fig. 5(c), it moves to the right and joins the array of disconnections with
equilibrium distance /,. The array of equally spaced disconnections forms a strain field that

cancels out the misfit strain across the interface, except at the depleted region. Due to the misfit-
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strain in the depleted region, the separation distance between the few furthermost disconnections

at the left side of the array is larger than /. As we show later, this does not alter the main results
of our analysis, because /, << x, << L , where L is the width of the crystal.

In the following, we calculate the elastic energy due to the misfit strain. Further, we develop an

expression for the equilibrium value of x,, and show that the misfit strain at the depleted region

results in an additional energy term that promotes nucleation of disconnections at this surface. We
develop an expression for the resulting activation energy and show that the term originated from
the misfit strain may be dominant, thus promoting athermal nucleation. Then, we develop an

expression for the equilibrium value of x , and estimate x, for Ni-Ti and Ni-Mn-Ga. Further, we

show that misfit strain at the depleted region results in an additional energy term that promotes
nucleation of disconnections at this surface. We develop an expression for the resulting activation
energy and show that the term originated from the misfit strain may be dominant, as is the case for
Ni-Mn-Ga.

The strain field caused by the misfit shear in the region x, is equivalent to a strain field caused
by an array of infinite number of equally-spaced coherency screw dislocations with an

infinitesimal Burgers vector db,

mis

=¢g,dx, such that the continuous integration of all Burgers
vectors results in g,x, [ 64,65]. The concept of coherency dislocations at an interface was

introduced by Olson and Cohen (see, e.g., Refs. [77,78]), and was successfully applied by Speck
et al. in modeling coherency strain at film/substrate interfaces of ferroelastic materials [79,80]. To
maintain a zero stress near the left surface, we consider an equivalent array of image dislocations
with a Burgers vector of the same size as the coherency dislocations but an opposite direction. The
elastic energy associated with the coherency dislocations, per unit length perpendicular to the plane

shown in Fig. 5, can be expressed as [79-81]:

: (20)
[peohdisl. _ Mln[ét_LJ =~ Cy(&‘oxo )2

lasti
elastic 47[ xO

where L is typically on the order of 1 mm and C'is a constant on the order of unity.
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The work associated with the motion of the TB under the driving force g, per unit length

perpendicular to the plane shown in Fig. 5, is given by

WL = —gcLx,sin @ @2n.

Here, sinfx,-L is the area (in the x—z plane) subjected to twinning reorientation due to the
propagation of all disconnections in the array by a distance x,, where @ is the angle between the
TB and the rational twinning plane (Fig. 5(b)).

To calculate the equilibrium value of x,, we minimize the overall energy (per unit length
perpendicular to the viewing plane of Fig. 5) that includes the elastic energy in the depleted region,

given by Eq. (20), and the work expressed in Eq. (21), i.e.,

0 |:C/U (0% )2 — &rsLx, sin 9:| (22)
=0
0ox,
This results in:
e« _ 8rsLsinf (23)
* 2Cus}

A substitution of material parameters listed in Table 2 and C=1, L=1mm in Eq. (23) provides
x;? =3 pm for Ni-Mn-Ga and x'* =35 um for Ni-Ti. These values satisfy the model assumption,
Iy <<x, << L, as x, is larger than /; by few orders of magnitude and smaller than L by few orders
of magnitude.

Next, we consider the lastly nucleated disconnection with a Burgers vector b, located at a
distance x,, < x, from the left surface, as illustrated in Fig. 5(d). This disconnection is subjected to

several interaction forces as it travels along x . The resultant force per unit length perpendicular

to the plane shown in Fig. 5, is given by:
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(24).
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The first two terms in Eq. (24) represent the sum of interaction forces between the left-handed
screw disconnection b located at x,, and the array of coherency dislocations db,, = &,dx located
at 0<x<x,. The image forces are accounted for by considering an equivalent array of image
2

ub

n2x,,

in

coherency dislocations db,, =—g,dx at —x, <x <0, as shown in Fig. 5(d). The term

Eq. (24) is the image force of the disconnection b. F), is the Peach-Koehler force under the

driving force g, and F, represents the resisting Peierls force acting on the moving

Peierls
disconnection by the lattice.
Our analysis considers conditions under which the driving force is sufficient to propagate the
other disconnections along the TB. This means that the Peach-Koehler force is equal to, or greater
than, the resisting Peierls force. Because we analyze a case where the resultant force on the lastly

nucleated disconnection is always positive, we assume that F},, = F}, ., . Interaction forces due to

Peierls
the other disconnections in the array along the TB (not visible in Fig. 5(d)) are not included in Eq.
(24) because, as stated earlier, at length scales larger than /, their strain field is canceled by the
strain field of the misfit at the interface in their vicinity.

Solving the integrals and adding the disconnection’s image force term in Eq. (24) results:

2 25)
F:% In [ij -1|- b

2z Xp 2&,x,,

At the nucleation event x,, << Xx,. In this region, the natural logarithmic term in Eq. (25) is a
slowly varying positive function, while the last term in Eq. (25)) is negative and its magnitude
increases rapidly as x, decreases. The lower limit for x,, is taken as a single lattice spacing &,

below which elasticity theory fails and the interaction forces described by Eqns. (24) , (25) remain
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2
nearly constant. Taking x, = a, and inserting the values in Table 2, we obtain In Kx—oj - 1} =20

Xp

for both Ni-Mn-Ga and Ni-Ti (the slow varying logarithmic term “alleviates” the one order of

magnitude difference in x, ). In addition, < 3.5 for both materials, resulting:

2&4a

b b 26
F=(20-35)22% g 25£%% (26)
2 Vs
This indicates that in the range relevant for the nucleation event, x,, << x, the force F'is always
positive and pushes the disconnection towards the right side. Consequently, the self-energy Ej”
of the disconnection that nucleates at the surface (i.e., at x,, = a) is negative and is given by:
@7

By’ =Y[" ~Fdx, =-Ya- 8.25%

where Y is the disconnection length in the direction perpendicular to the plane shown in Fig. 5.
Next, we use this result to evaluate the activation energy for the heterogenous nucleation
process. In section 5.2 (Eq. (13)) we obtained a general expression for the activation energy for

nucleation of a disconnection loop, O, . Similarly, the activation energy for nucleation of a linear

disconnection, Q, , is given by:
0, =Uk -A+Ey" (28).

Here A=Ya is the area of the TB that has been reoriented by the formation of the disconnection

bar

at x, =a,and U}y is the energy barrier imposed by the lattice potential, as expressed in Eq. (14).

Substituting Eq. (14) (for U2 ) and Eq. (27) (for E5;") into Eq. (28). Provides
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(29)
0, =Ya-d, | 8o —&_gosHab
T 2 7d,

Recalling that 5/ = s, and that the periodicity of the lattice potential approximately equals to
the disconnection step height (i.e., d,, = k), we obtain the following expression for the activation

energy for the nucleation of a disconnection at the surface.

30
QD:yg.h[&_g_w@j 30)
T 2 V4

In cases where 8.25us,s > g,, O, in Eq. (30) is negative for any value of the applied driving
force ¢, indicating that this nucleation process can occur athermally. This condition is determined
only by material properties and can be evaluated based on the values listed in Table 2. For 10M
Ni-Mn-Ga 8.25u¢,s =20-10° J/m®, and is larger than g,=85-10° J/m® by several orders of

magnitude (see Ref. [47]). For Ni-Ti, 8.25u&,s =500-10° J/m?, indicating that this nucleation

process can occur athermally if y,, <30mJ/m’ (recall that g, = 7zy,, / d,; ). Such a value of ¥,
is comparable to atomistic calculations reported by Sehitoglu et al. [70].

We now re-evaluate the model assumption that the equilibrium distance /, between

disconnections is maintained during the motion of the array, such that all disconnections move

approximately the same distance x,, leaving a region with a thickness x, depleted of

disconnections. To hold this assumption, the lastly nucleated disconnection has to be subjected to

a positive force (Eq. (25)), until it meets the other disconnections in the array. The force is indeed

2
positive for all values of x, smaller than TXO . For larger values of x,, Eq. (25) predicts that

the net force on the disconnection becomes negative. However, when the disconnection reaches a
value of x,, that is on the order of x, , it can be regarded as being part of the disconnection array
that composes the TB. This is in accordance with our previous comment, stating that the leftmost

disconnections in the array are spread apart a distance that is larger than the equilibrium value /; .
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This relaxation has a minor effect on the elastic energy estimated by Eq. (20) and hence on the

estimated value of x;* provided by Eq. (23). Further, the exact value of x, has a minor effect on

the evaluation of the force F (using Eq. (25)) in the range, x,, <<x, , relevant for the nucleation

event. We disregard these effects in the current treatment.
Finally, because the model relies on nucleation at the surface, we evaluate the case of sub-mm
size samples, e.g., micropillars, where surface to volume ratio is much larger compared to ordinary

mm-size crystals. In particular, the relation [, <<x, << L (see Eq. (23)) remains valid even for

values of L that are on the order of few tens of microns (typical to micropillars). Thus, the increase
in twinning stress observed in some 10M Ni-Mn-Ga micropillars can be associated with the
presence of defects that hinder TB motion, and result from the unique fabrication process of the
pillar [82,83]. In case the crystal size is further decreased, such that our model assumptions are no
longer valid, we expect the twinning stress to increase, because the proposed mechanism of

athermal disconnection nucleation may not be relevant in such scales.

Table 2: Typical material parameters for type II twins in 10M Ni-Mn-Ga and Ni-Ti.

10M Ni-Mn-Ga NiTi
u (GPa) * 0 [11,84] 0 [85.86]
&, 0.0092 [42] 0.049 [44]
s 0.127 [42] 0.28 [44]
0 4.12° [42] 10.11° [44]
ly (nm) 0 [42] 0 [44]

a (nm) 0[s) 0 [87]
|| (nm) 0.023 [42] 0.071 [44]
grs (J/m’) 1.3-10* [88] 0 [70] %
X" (um) U [Eq.(23)] 0 [Eq.(23)]

* Value of shear stiffness u in the isotropic elasticity formulation is related to the elastic constant C’.
** Value is estimated based on a twining stress of ’O'rs =20 MPa ’[REF?].‘
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Red - defects, nside the crystal

i Black - image defects, outside the crystal
§ - right-handed screw

a- left-handed screw

Small § - coherency dislocations

Large S - misfit-relieving disconnections
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Fig. 5 Schematic description of the equilibrium coherently faceted type II interface (inset (a)), that
contains an array of left-handed screw disconnections, which are marked with an inverted ‘S’. L marks the
width of the crystal. Under an applied driving force, the disconnections move to the right (green arrows),
transforming material from the top variant to the bottom (the green area in inset (b)), leading to the
advancement of the TB downwards (direction marked by the vertical black arrow). The collective motion
of the disconnection array creates a “depleted” region of length x, close to the left surface (inset (b)). To

maintain the coherently faceted structure, disconnections nucleate at the left surface and propagate to the
right (inset (c)). The position x,, marks the location of a newly nucleated disconnection relative to the left
surface. (d) A schematic illustration of the depleted region x, close to the surface with a representation of

the disconnections (large S with Burgers vector b ) and coherency dislocations (small s with burgers vector

db

mis

). Image defects maintain zero stresses on the free surface (the vertical black line).

30



6. Kinetic relations for TB motion, rate-limiting processes and twinning stress

In this section, we formulate relations between the different activation energies developed in
section 5 and the measured quantities that represent the mobility of the different types of TB’s,
and in particular the twinning stress. This analysis relies on the kinetic relation, which provide an
analytical expression for the velocity of a TB as a function of the driving force, and is dictated by
the rate limiting process of the overall TB motion. We focus on TB motion in the low driving force
range, and discuss separately the situations of compound and type I twins (section 6.1, which is
based on the analysis in sections 5.1 and 5.2) and type II twins (section 6.3, which is based on

section 5.3).

6.1 Kinetic relations

To study the kinetic relations, the twin boundary velocity v,, has to be measured under different
values of the driving force. This is in contrast to measuring the twinning stress, which occurs at a
constant value, g, of the driving force. Kinetic measurements were performed mainly on the
10M Ni-Mn-Ga material system, using us - scale pulsed magnetic field experiments, as reported
by Faran and Shilo [46,47] and by Saren et al [48,89]. Recently, fast TB motion in 10M Ni-Mn-
Ga was also studied by short ms-scale force pulses [90-92].

Faran and Shilo [46,47] measured the kinetic relations in a systematic manner by applying
magnetic pulses with controlled values of the driving force and tracking the motion of a discrete
twin boundary. They captured the kinetic relations for twin boundary motion in 10M Ni-Mn-Ga
over a wide range for driving force and TB velocity. For both type I and II twins, they found a
clear transition between two types of kinetic relations, as is explained herein.

For the thermally activated regime of TB motion (i.e. at low driving force), an exponential type

kinetic relation for the twin boundary velocity v,, can be assigned:

—Q(g)j GD

V() =V, exp( =
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In Eq. (31), vo is a temperature-independent pre-exponent term, Q(g) is the activation energy
of the rate limiting process, which is a function of the driving force g, and 7 is a parameter that
represents the dimension of the problem (following the analysis of Avrami in Refs. [93,94]). For
example, for the nucleation of a two-dimensional disconnection loop, 7 =3 , while for nucleation

of a linear kink n=2.

In slow rate experiments, where a constant deformation rate is applied, the average velocity of

(7S)

. (i.e., the velcoity associated with the measured twinning stress property)

an individual TB v
is determined by the number of moving twin boundaries in the sample and the applied strain-rate
(e.g., Ref. [88]). Therefore, the set value of the velocity v{7*’ in Eq. (31) determines the twinning
stress oy, or the related value of the driving force, g5 =0y -s/2 (Eq. (3)), at which TB motion

occurs, via:

32
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As we show in the next sections, for type I twins, the activation energy corresponds to O, (see
section 6.2) while for type II it corresponds to O, (see section 6.3).

In the study by Faran and Shilo on 10M Ni-Mn-Ga [46,47], it was found that above some

transition value of the driving force g;, the kinetic relation had the form

33),
VTBOC\/gZ_gTZ @3)

indicating a process that is resisted by viscous forces. Similar types of viscous-controlled kinetic
relations were suggested for data measured in other material systems such as Cu-Al-Ni [95] and
gadolinium molybdate [96].

Faran and Shilo [46,47] suggested that the transition at g, is attributed to overcoming the lattice

barrier for the motion of the TB as a flat plane, y,, (as shown in Table 1), resulting in athermal
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motion of the TB. According to that interpretation, the transition driving force is directly related

to the lattice barrier via

7Y 18 G4

B

8r=8 =

For type 1 twins in 10M Ni-Mn-Ga, the transition driving force was g, =105 kJ/m® [47],
relating to a stress of approximately 1.75 MPa, i.e., about twice the twinning stress for this type of
twin [23]. For type II twins, the transition driving force was g, =85 kJ/m® [47] related to a stress

of approximately 1.4 MPa, i.e., ten times the twinning stress for this twin type [23].

6.2 Motion of compound and type I twins in the low driving force range

The rate limiting process for the motion of compound and type I twins in the slow velocity
range is either the nucleation of kink-pairs or nucleation of disconnection loops. The two processes
are characterized by their activation energies O,, and Q,, , given by Eq. (12) in section 5.1 and
Eq. (19) in section 5.2, respectively.

In order to evaluate which energy dominates, we consider the ratio between the two activation

Org S

energies at a driving force equivalent to the twinning stress, i.e., at g, = . Specifically, we

use an under-estimation of O,, (by neglecting the positive y,, term in Eq. (19)) and consider
only the dominant term 2e, in the expression for O, (Eq. (12)). This results in:
2\ (35)

3 72"(0.5 ub ) 1

[ S i
QDL QKP 2 o dTB 2e/

Using an isotropic approximation for the formation energy of a kink 2e, ~ ub’d,) (see section

5.1), and substituting g,; =0.50,5-s , b=h-sand h=~d, ~d,, , we obtain
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(36)
Op [ Ogp2s £

TS

The ratio /o, is typically several orders of magnitude larger than unity for all material
systems and the value of s is typically on the order of 0.1 (see, e.g., values in Table 2 , Table 3).
Thus, we can conclude that for the lower driving force range, the activation energy Q,, is much
larger than O, .

The above discussion implies that in the thermally activated regimes, the nucleation of
disconnection loops is the rate-limiting step in the overall motion of the TB for compound and

type I twins. Even if the driving force does not allow overcoming the Peierls barrier for
disconnection glide, i.e., g <(7-T),/d,-h), the thermally activated disconnection glide is still a
faster process than the thermally activated disconnection nucleation, because O, >> O, . Thus,
inserting O,, (Eq. (19) as the activation energy in the kinetic relation for compound and type I

twins (Eq. (32)) results in:

233 37)
s dpy| 3 2¥ s V, (
~ —+ =3kT'In
Op; (grs) 5 |:2 sedyy V(TITfS)

78
Here we used the relations g, =0.5-0,5-sand b=h-s=d,-s.
Typically, the value of v{;*> is smaller than v, by many orders of magnitude. Therefore, a

change of v{I*’ by an order of magnitude results in a minor change of In (vo JVEs ) , which is often

undetectable due to the inherent stress fluctuations and insufficient repeatability that are common

in such experiments. For example, based on intermediate-rate experiments performed on 10M Ni-

Mn-Ga single crystals, Faran and Shilo extracted the value v, =6.6 m/s for type I boundary [47].

A typical twin boundary velocity in a slow rate experiment is v/ =107 m/s [97]. For these
(75)

values, a change of v{;>’ by an order of magnitude results in a change of O, by 17%, which is

comparable to the variations of the approximately plateau stress during the experiment. Thus, the
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estimation of the term ln( :/;’S) ] ~13.4 can be assumed to be valid in most SMA. Inserting this
\Z

B

approximation in Eq. (37) results in:

o sts .dTB‘B |:3 . 2V i| _ e (38) Commented [Bk6]: Maybe add Opz (g75) = ...

‘ 20y 2 Opgsedp

Eq. (38) allows estimating the magnitude of the twinning stress o, and its temperature

dependence, provided that the material properties ,s,d,;,7,; are known. We note that a

measured value for y,; is available only for 10M Ni-Mn-Ga. ‘ Commented [PM7]: Is this true for ALL materials
including structural materials or only for shape memory
alloys? Steels seems to fall outside the prediction in Fig. 6.

6.3 Motion of type II twins in the low driving force range

In section 5.3 we presented a mechanism of motion for type II TB, which results from the
topological structure of this twin type. Our analyses identified that heterogeneous nucleation of
disconnections at the surface is essential for TB motion, and an expression for the activation energy
for such a nucleation process was formulated in Eq. (30). Further, we showed that for certain
materials, such as Ni-Mn-Ga, the expression for the activation energy obtains negative values for
any value of the applied driving force, implying that nucleation of disconnections occurs
athermally. In these materials the twinning stress of type II TB is related solely to the glide of
disconnections. This is in contrast to the case of compound and type I TBs, for which disconnection
nucleation is the rate limiting step that determines the twinning stress (section 6.1).

Similar to the motion of ordinary dislocations, disconnection glide proceeds through the
nucleation and expansion of kink-pairs, where nucleation is typically the rate limiting step.
Consequently, for a type II TB, the thermally activated kinetic relation (Eq. (31)) is dictated by the

activation energy for the nucleation of kink-pairs (0, in Eq. (12)). The combination of these two

expressions, and by substituting g = g, results in:
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~h-d e, v, (39)
Okp (grs) ~ (ru _grsiDJyp +(Zef _lm] = 2kT1n[v(7?S‘) j

2 c B

An estimation for the amplitude of the disconnection’s Peierls barrier I';, can be obtained from
the condition g > (ﬂ' FD)/ (d Dh) that defines the driving force range of athermal disconnection

glide, i.e., the driving force required to overcome the Peierls barrier I', at 7 =0K . Thus, we can

write
I, <gy(T=0K)d,h/7 (40)

By inserting the expression for I, (Eq. (40)) and y. (Eq. (11) in section 5.1) into Eq. (39) and

rearranging, we obtain:

2 (T=0K) 3 - (41)
[M—EJ gTS(T)'eim'h'dD+2ef:2len(v(Tos)]

T8 (T) T8

Here, g, (T ) represents the driving force associated with the twinning stress at a temperature

T>0K . Eq. (41) may have various solutions for g, (T), depending on the ratio between

(1S)

2kTIn [L) and 2e, . In section 7.3 we discuss experimental data measured for 10M Ni-Mn-Ga
B

in light of this analysis.

7. Comparison of model predictions to experimental results

The identification of the different nucleation processes required for TB motion and their
associated activation energies (section 5), as well as the identification of the rate limiting processes
for different twin types (section 6) allows us to quantitatively evaluate our predictions and compare

them to experimental results for TB motion. Because the analysis presented in this paper considers
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only the lattice barrier as the source for the twinning stress, comparison to experiments is
meaningful primarily for data measured on high quality single crystals, where the effects of other
barriers is negligible. For example, grown Ni-Ti single crystals typically include nanoscale
Titanium carbides and Ni-rich precipitates, which strongly influence the mobility of the TB’s (see,
e.g., [17]). Thus, twinning stress values measured in such cases are expected to be higher than our
predictions.

In the following sections we discuss results from slow-rate deformation experiments with strain
rates below about 102 57!, which have been studied extensively for various shape memory alloys.
These low strain rates correspond to the small driving force regime. The primary measured
parameter that characterizes TB motion within this regime of motion is the twinning stress (defined
in section 2). Available experimental values for the twinning stress raise several questions, which
we address in the following sections by employing the equations developed in section 6.

In section 7.1 we explain why the twinning stress at room temperature of type II twins is much
smaller than that of type I twins in the same material. In section 7.2 we employ Eq. (38) to predict
the values of the twinning stress of compound and type I twins in different materials, and compare
our predictions to experimental data. In addition, we reason the measured temperature dependence
of the twining stress (available mainly for 10M Ni-Mn-Ga). In section 7.3, we reason the unique

temperature insensitivity of type Il twinning stress, as demonstrated by very low values measured

for 10M Ni-Mn-Ga down to near zero temperatures.

7.1 Differences in twinning stress between twin types.

Available experimental data reveals a large difference between the measured twinning stress
of conjugate type I and type II twins in the same alloy, the latter being significantly smaller. This
is the case, for example, in 10M Ni-Mn-Ga, where differences as high as one order of magnitude
are commonly reported between the twinning stress of conjugate type I and type II twins [18].
Similar relations were reported for conjugate type I and type II twins in Cu-AlI-Ni [19,31] and in
Ni-Ti [17,98,99].

The term conjugate twins implies that the classical twinning elements of both twins, i.e.,

twinning planes K,,K,, twinning directions 7,,7,, and twinning shear S, obey

K=K, K, =K/, n/ =n,,m, =nand s' =s". Thus, the twinning shears of both types are
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identical. Moreover, variations in lattice parameters that directly affect the magnitude of the
twinning shear, as well as the value of the shear stiffness are identical in the two twin types. The
TM shows that the magnitudes of the Burgers vector and the step height of a disconnection in
“conjugate” type I and type II twins, are nearly equal (e.g., the calculations performed for 10M Ni-
Mn-Ga in [42]). Thus, by discussing differences in the twinning stress between “conjugate” twins
in the same alloy we separate the effect of the topological structure of the TB that dictates the rate
limiting mechanism of motion, from the impact of material properties (e.g., shear stiffness
twinning shear and lattice spacing), which are discussed in section Error! Reference source not
found. .

The different topological structures of type I and type II twins (section 3) lead to different rate
limiting mechanisms during TB motion (sections 5 and 6). On the one hand, the motion of type I
TB is determined by the rate of homogenous nucleation of disconnection loops on the low index

boundary plane, with an activation energy O,, . On the other hand, the motion of a coherently

faceted type II TB is determined by the rate at which disconnections glide on the same low index
planes. For type II TBs, disconnection glide is dictated by the nucleation rate of kink-pairs, with
an activation energy Q,,. As we showed in section 6.2, O,, >> O,,, for a given material system.
Thus, the activiation energy for type II TB motion (which is Qkp) is much smaller than the
activation energy for type I TB motion (which is Opr). This implies that the twinning stress of a
type II twins is much lower than that of type I and the temperature dependence is much weaker, in

agreement with experiemmntal observations.

7.2 Twinning stress of compound and type I twins

The twinning stress of compound and type I twins in a given material can be approximated
based on Eq. (38), provided that the properties ,s,d,,,,; are known. We first analyze the
situation in which the term containing y,, in Eq. (38) is much smaller than 3/2, and can thus be

neglected (which is the case for 10M Ni-Mn-Ga). This results in a simplified expression for the

twinning stress:

3 42
Oy = mdm}ﬂzs3 = Bu’s’ (42)
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The value of the lattice spacing for twinning d,, is similar for different SMA, and can be taken
as dp, =0.2nm for all materials. Under these conditions, Eq. (42) predicts a linear relation between

3

mdrgs . This

the twinning stress o, and the product z’s’, with a proportionality factor f =

relation, for the twinning stress at the room temperature, is plotted as the solid black line in Fig. 6
using logarithm scaling of the variables. In this representation, the straight-line has a slope of 1

and it intercepts the vertical axis at £ .

Experimental data for different materials is also plotted in Fig. 6, using the same logarithm

scaling. The values of g and s used for plotting the data for each twinning system and material

were reported in the literature and are given in Table 3. The dashed line in Fig. 6 presents the

relation express in Eq. (42) with a proportionality factor f'=0.64/ that best fits the experimental
data. The relatively small difference between £ and f' can be attributed to the estimations we
took in Eq. (37), e.g., the value of 13.4 assigned to the term ln(vo / v;g”) , or the factor 0.5 in the
isotropic approximation g, ~ 0.5ub".

The good fit to a linear dependence of the measured twinning stress with the product z’s’
(dashed line in Fig. 6, R-squared larger than 0.99) strengthens the validity of our analysis. In

2w <3/2 is valid in most materials. Recalling that

Opg S -y

addition, it implies that our assumption

8 =0r5/2 (Eq. 3)) and g, =7nyy/dy (Eq. (34)), the relation 2y, /0y s dp <3/2

implies that g, <5g,. This means that for most ﬁnaterials1 ‘a transition from thermally activated

1 Equation (42) does not apply to materials for which the nucleation of disconnection loops is
not the rate limiting mechanism. For example, for face-centered cubic (austenitic, twin-induced
plasticity, TWIP) steel z’s’ is in the order of 10* GPa? and Equation (42) predicts a twinning
stress about three orders of magnitude higher than actual values. In these materials, substantial
deformation by slip precedes the onset of twinning. Twin nucleation results from dislocation
reactions at sites of high dislocation density and strong stress concentrations. The stress

concentrations result from dislocation pileups of dozens or hundreds of dislocations. Accordingly,
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motion to fast athermal TB motion is expected to occur at stress values equal or smaller than 5
times the twinning stress. Measured values of g, and g, in 10M Ni-Mn-Ga comply with this
condition (see discussion in section 6.1).

In a rough approximation, at which the temperature effect on the shear modulus and twinning
stress is ignored, Eq. (42) predicts that the temperature variation of twinning stress of compound
and type I twins follows an inverse 1/T relation. Data reported in Ref. [32] for a type I twin in
10M Ni-Mn-Ga revealed a linear increase in the twinning stress as the temperature decreases (Fig.
7). Data measured over a wider range of at least 100 degrees in 10M Ni-Mn-Ga [30,34,100]
showed a variation that can be interpreted as o, ocl/T (Fig. 7). A similar dependence was
recently reported for compound twins in Ni-Mn-Ga-Co-Cu [101] and type I twins in 4M Ni-Mn-
Sn alloy [21]. These observations rely on measurements taken over a relatively narrow temperature
range of about 40 degrees.

The calculated temperature dependence according to Eq. (42), with 4 and s takes as their room
temperature values, for type I twin in 10M Ni-Mn-Ga is plotted in Fig. 7 (blue dashed line),
showing a weaker dependence on temperature compared to the measured data. We can reason this
difference by considering the effects of the temperature on product z’s* . Both the shear stiffness
(again we refer to u as the elastic constant C") [102—-104], and the twinning strain [105] increase
as the temperature is decreased, and thus amplify the 1/ T dependence in Eq. (42). In addition, for
materials in which 2y, /0. -s-d, is comparable to 3/2, the dependence of y,;on the
temperature (as was reported in Ref. [106] ) also contributes to the temperature effect on the

twinning stress.

Table 3: Material properties and measured data used for plotting (in Fig. 6) the room temperature
twinning stress of type I and compound twins in several materials.

dislocation reactions resulting in partial (twinning) dislocations and disconnections occur at

stresses several orders of magnitude below the stress predicted by Equation (42). [REF]
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10M NM Cu-AlI-Ni | Cu-Al- BaTiOs; NiTi
Ni-Mn- | Ni-Mn-Ga Ni
Ga
Twin Typel | Compound | Compound | Typel | Compound | compound
type
H 2 2 9.14 9.14 50 5[85,86]
(GPa) | [11,84] | [11,84] [31] [31] [107]
s 0.127 0.36 0.074 0.26 0.0109 0.2385
[42] [108] [31,109] [31] [6] [44]
Oy 0.8 11 2 >100 0.25 25
(MPay | [181 | [HOIHT | [19] [31] [6] [17]
(exp.)
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Fig. 6 Twinning stress at room temperature versus the product £s” for compound and type I twins

in several SMA systems, presented on logarithm scales. Data for different alloys were taken from Table 3.

The dashed grey line is a linear fit to the experimental data, exhibiting R> > 0.99 . The solid black line
represents the calculated relation given by Eq. (42).

42



Typel

2.5 . .

g2,
Eﬁ . i
72}
§ L5 . - . 1
n
=1} - [m)
£ 1 e
£ =i,
E 051 ™ [Heczkoetal ,2003] o |

: O [Straka et al. , 2012] g

________ O~ T -
0 1 1 1 1 1 1
200 220 240 260 280 300 320 340
T,K

Fig. 7 Temperature variation of the twinning stress of type I twin in 10M Ni-Mn-Ga. Experimental
data is taken from Refs. [32,34]. The dashed blue line represents the 1/T dependence obtained from Eq.
(42), using the room temperature values of x4 and s listed in Table 3.

7.3 Twinning stress of type II twins

Information on the twinning stress of type II TBs is available mainly for Cu-Al-Ni and 10M
Ni-Mn-Ga, the latter being extensive and measured on high quality single crystals over a large
temperature range. In the following, we discuss data obtained for 10M Ni-Mn-Ga, which reveals
two interesting behaviors: (1) an extremely small twinning stress of approximately 0.25 MPa at
1.7 K and (2) a modest temperature sensitivity of the twinning stress over a range of 300 K (see
Fig. 8).

In section 6.3, we obtained an expression for the temperature dependence of the driving force
associated with the twinning stress (Eq. (41)). We assumed that the type II TB motion follows an
exponential type kinetic relation (Eq. (31)), which is dictated by the activation energy for the

nucleation of kink-pairs O, (Eq. (12)) . This approach is valid in case the activation energy O,

is smaller than the thermal energy, and resulted in:
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temperature range 0<7 <300K . Thus, if Eq. (43) is valid then 2e, should be larger than

The data presented in Fig. 8 indicates that for 10M Ni-Mn-Ga, <% over the

2kTIn [Lj, for any temperature up to 7' =300K . Recalling that 2e, = ub°d,, = us’d,,’ (the
N .

(75)
8B

first equality follows page 244, Eqn. 8-47 in Ref. [72], and the second equality is obtained by
taking b=h-s=d, -s)and plugging typical material parameters for type II twins in 10M Ni-Mn-

Ga (Table 2), yields 2e, =2.5x107? J. Thus, already for temperatures as low as 7 =10K , the

term 2e, (which determines the magnitude of the activation energy) is smaller than the thermal

energy term, 2kT}; ., In (v—“] ~30kT;;_ ) =4x107'J . This implies that for 10M Ni-Mn-Ga,
v

(75)
TB

the description of the nucleation-controlled kinetics of type II TB motion by an exponential
relation (Eq. (31), which leads to the formualtion of Eq. (43)) is not valid. Moreover, because the
activation energy for nucleation of kink pairs is comparable to the thermal energy even at very low
temperatures, thermally activated disconnection glide, which is weakly dependent on temperature
and proceeds at very low stress, is possible down to very low temperatures. This agrees with the
experimental data in Fig. 8.

In other materials, the magnitude of 2e, is larger than the value for 10M Ni-Mn-Ga (e.g., in

Cu-Al-Ni it is [ times larger). However, there is no experimental data on the value of

Oy (T =0K ) in other materials, and it may be much larger than the value at room temperature,

T=0K
L) > 3 , and 2e, >>kT over a wide temperature range. Under these
7g:s(T) 2

conditions the analysis leading to Eq. (43) is valid. In such cases, the twinning stress of type I TB

such that

is also expected to be larger than the extremely low values measured for 10M Ni-Mn-Ga.
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Fig. 8 Temperature variation of the twinning stress of type II twins in 10M Ni-Mn-Ga. Experimental
data is taken from Refs. [30,32]. The temperature dependence is substantially weaker than that of the
conjugate type I twins (Fig. 7).

8. Summary

This paper combines the TM descriptions for the equilibrium structures of TB in SMA with an
analysis of energy barriers and mechanisms of motion. This unified approach provides a general
analysis of TB motion and explains experimental findings on TB motion in different SMA systems,
in particular in the slow rate regime of TB motion. We identify the topological, structural aspects
that control the rate limiting mechanisms of motion of different twin types, and deduce quantitative
predictions for the magnitude and temperature dependency of the twinning stress of different twin
types.

The slow rate motion of TB is controlled by different rate-limiting processes, which are
dictated by the equilibrium topological structure of the TB interface. For type II twins, we discuss
the case of a coherently faceted interface, which contains an ordered array of equally spaced
twinning disconnections. We show that for this low-energy relaxed structure, the nucleation of

new disconnections at the crystal’s surface, which is essential for maintaining the lateral
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propagation of the TB, can proceed athermally, even at very low temperatures. This explains the
lower twinning stress of type Il twin relative to its value in the conjugate type I twin, as reported
for various materials. In addition, it accounts for the extremely low twinning stress value of type
II TB in 10M Ni-Mn-Ga measured at temperatures close to absolute zero.

In compound and type I twins, the equilibrium boundary structure does not contain
disconnections. Thus, the rate-limiting step for the motion of the entire TB is the thermally
activated nucleation of disconnection loops, resulting in an exponential type kinetic relation. We
formulate an expression for the activation energy for nucleation of disconnection loops, and use it
to obtain an analytical prediction for the magnitude of the twinning stress. We show that the main

material properties that control the twinning stress are the shear modulus # and the twinning shear

s, and obtain a dependence that follows o, o £°s> . This dependence is in excellent agreement

with reported twinning stress in several materials, e.g., Ni-Mn-Ga, Cu-Al-Ni, Ni-Ti and tBaTiO3L Commented [e10]: Is this a good place to relate to
twinning stress in steels that falls outside the prediction of
Fig 62
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10. List of symbols and abbreviations

Symbol Description units
a,c Unit cell parameters length
b Burgers vector length
db, . Burgers vector of ir.lﬁnitesimal. disloca;ion length
that accounts for interface misfit strain
dpp Lattice spacing perpendicular to a TB plane length
d, Lattice spacing perpendicular to a TD line length
DL Disconnection loop -
e, Formation energy of a kink-pair Energy
€ Interaction energy of kinks in a kink-pair Energy*length
EXY Self-energy of a kink-pair Energy
EyY Self-energy of DL Energy
EyY Self-energy of a linear disconnection Energy
Egpe Total energy of an existing kink-pair Energy
Eppe Total energy of an existing DL Energy
;;;;f_zcisz. Elastic energyd;)sfl (z)i(rzlaztiir;i}sl of coherency Energy/length
I e L e
| PRl o e | et
g Driving force ]fll(l:flrli}l]e/
€ Driving force for TB rpotion associated with Energy /
the twinning stress volume
2 Driving force for TB. motion. associated with Energy /
the lattice barrier volume
Step height of a TD length
k Boltzmann constant Energy / Kelvin
K Invariant twinning plane -

47



KP Kink pair -
! Equilibrium distance between disconnections leneth
0 in an array on a type Il TB g
q, Line energy of a DL Energy/length
0. Activation energy for pucleatlon of a kink- Energy
pair
O Activation energy for nucleation of a DL Energy
Activation energy for nucleation of a linear
0 disconnection Energy
r Radius of a DL length
r, Critical radius of a DL length
K Twinning shear -
T Temperature Kelvin
TB Twin boundary -
TD Twinning disconnection -
U Energy per unit length of a TD Energy/length
bar Energy barrier associated with TD motion
“p across the Peierls potential Energy/length
ain Energy gain associated with TD motion
8
“b across the Peierls potential Energy/length
U, Energy per unit area of a TB associated with Energy/area
1ts motion
Uher Energy barrier associated with TB motion Enerav/area
8 across the lattice potential gy
ain Energy gain associated with TB motion
Us . .
T8 across the lattice potential Energy/area
U;;;ch Mechanical energy of a'TB associated with Energy/arca
1ts motion
U;]I:c Electric energy of a TB associated with its Energy/arca
motion
U Magnetic energy of a TB associated with its Energy/arca
motion
Vrg Velocity of a twin boundary Length / time
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(1]
(2]
(3]
(4]

(5]

X, ),Z Cartesian coordinates
X, Length of deplet'ion layer near the s_urface due Length
to uniform motion of a disconnections array
x, Distance from 'the surfaqe of a nucleated Length
disconnection

Y. Critical length of a KP Length

Y Disconnection length Length

s Proportionality factor 10°/GPa
Vs Amplitude of the lattice barrier for TB motion | Energy /area
r, Amplitude of Peierls barrier for TD motion | Energy / length
&, Longitudinal twinning strain -

& Coherency strain on a faceted type II TB -

n Twinning shear direction -

H Shear modulus GPa

v Poisson ratio -

& Line direction of a twinning disconnection )

(TD)

T Pi, mathematical constant -
Oy Longitudinal twinning stress MPa
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