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Abstract 

Twinning is an important mechanism of deformation in various crystalline materials, and in 

particular in shape memory alloys, where it is inherent to the shape memory and super-elasticity 

effects. This paper presents a generalized methodological approach for analyzing and modeling 

twin boundary dynamics with particular relevance for shape memory alloys. This approach 

combines the topological model description of the interface structure at the atomistic/lattice scale 

with analytical analysis of energy barriers and mechanisms of motion that provide macro-scale 

kinetic laws for the twin boundary motion. We emphasize the main differences between the 

topological structures of different types of twin interfaces and their implications for the mobilities 

of the different twin types. In particular, we elaborate on the relaxed topological structure of type 

II twin boundaries that contains a coherently facetted structure, where the facets are rational planes 

that accommodate misfit strain. Then, we clarify the lattice barriers’ role in determining the 

different regimes of the kinetics of twin boundary motion. Further, we develop models leading to 

analytical expressions for the activation energies of various nucleation processes that dictate the 

overall kinetics of twin boundary motion, and identify of the rate-limiting process for the different 

twin types. In the case of compound and type I twins, the analysis leads to an explicit expression 

for the magnitude of the twinning stress, revealing a strong dependency on the shear modulus and 

the twinning shear, which is in excellent quantitative agreement with experimental values reported 

for different materials. Moreover, our analysis reasons the different temperature dependencies of 

the twinning stress exhibited by the different twin types, and in particular the very low temperature 

sensitivity of type II twins. 
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1. Introduction 

 

Twinning is an essential mode of plastic deformation in a variety of solid materials, such as 

hexagonal close-packed (HCP) metals (e.g., Mg and Ti) [1], nano-crystalline and nano-structures 

of face-centered cubic (FCC) metals (e.g., Cu and Ni) [2–4]. Besides, twinning reorientation in 

ferroelectric materials and shape memory alloys (SMA) facilitates significant straining [5], thus 

providing the fundamental mechanisms for transformation between electric/magnetic/thermal 

energy and mechanical energy, which are used in a variety of advanced actuation, sensing, and 

energy harvesting applications [6–9]. 

Given the importance of twinning to the functionality of advanced materials, an understanding 

of interrelations between the often-complex twin boundary (TB) structure of different twin types 

and their mobility is required. Further, the knowledge of the relations between twin boundary 

mobility and fundamental material properties, such as the twinning shear strain and the shear 

modulus, is of substantial importance. Such knowledge can be acquired through the development 

of general yet simple microstructure-based models, that can be applied to different material 

systems (see, e.g., Refs. [10,11]). This approach should be validated by its power to explain 

twinning behavior based on fundamental material properties such as lattice parameters, twinning 

elements, and elastic constants, and on experimental evidences that have been reported in recent 

years. 

In the classical description of twinning, twins are related by a simple shear. The classical model 

predicts the twinning mode of a given crystal lattice by identifying the twinning elements: the 

twinning invariant planes 1 2,K K , the twinning directions 1 2,  , and the twinning shear strain s  

[1,12–14]. Following this description, twins are classified into three types: type I, type II and 

compound. In type I twins, 1K  and 2  are rational, while 2 1,K   are irrational. In type II twins 1K  

and 2  irrational while 2 1,K   are rational. In compound twins, all four twinning elements are 

rational. In tetragonal martensite (e.g., BaTiO3  [15], non-modulated Ni-Mn-Ga [16]) only 

compound twins exist, while all three twin types can exist in lower symmetry structures, such as 

monoclinic (e.g., NiTi [17], 10M Ni-Mn-Ga [18]) and rhombohedral and hexagonal (e.g., Cu-Al-

Ni [19], Ti-Al [20]) martensite. 
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 Experiments indicate that the dynamics of type II twins are fundamentally different from those 

of type I twins. Type II twins display smaller twinning stress values than type I, as reported for 

several material systems, e.g., Ni-Mn-Ga, Ni-Mn-Sn, and Cu-Al-Ni [18,19,21]. For these 

materials, the room temperature twinning stress of type II twins is smaller than that of the conjugate 

type I twins by at least a factor of 5 [18,22,23]. Previous studies by several research groups, 

focusing mainly on the Ni-Mn-Ga system, have attempted to explain these differences based on 

the complex twinned microstructure occurring at various length scales [24–29]. Here, we analyze 

and explain the different mobilities of type I and II twins based on the periodicity of the lattice as 

a source for energy barriers and the different lattice-scale topological structures. 

Moreover, the twinning stress of type II twins shows a very weak, in some cases undiscernible, 

temperature sensitivity (e.g., Ni-Mn-Ga, Cu-Al-Ni [30–32]). This is in contrast to the behavior of 

type I and compound twins, which typically display an increase in twinning stress as the 

temperature is decreased relative to the martensite to austenite transformation temperature [21,32–

34]. Such behavior indicates that the rate-limiting process in the motion of type II twins is different 

from that in compound and type I twins. Moreover, a finite and relatively low twinning stress value 

of type II TB was reported for 10M Ni-Mn-Ga at temperatures as low as 1.7 K [30]. This indicates 

that the mechanisms responsible for TB motion can proceed in an athermal manner even at low 

driving force values. 

The evolution of twinning, i.e., the micro mechanisms and kinetics by which one twin expands 

at the expense of another through the motion of twin boundaries (TBs), is associated with the 

nucleation and propagation of twinning defects known as twinning disconnections (TD). A 

disconnection is a linear defect with both step and dislocation characters [35,36]. Therefore, a 

thorough understanding of the origin and dynamics of twinning requires the knowledge and 

modeling of the defect structure and the corresponding physical mechanisms of motion. 

The content, properties, and arrangement of TBs and TDs can be well described with the 

topological model (TM) [35–38]. Researchers have applied the TM to explain the formation and 

motion of many interfaces, including precipitate/matrix interfaces, martensite/austenite interfaces, 

as well as compound and type I twins [1,38,39]. Type II twins, which play a dominant role in 

twinning evolution in many SMA, pose a challenge for the TM description because of the irrational 

character of their twinning plane that results in an undefined distance between consecutive 

twinning planes. Recently, Pond et al. introduced a TM-based description for the formation of type 
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II twins and implemented it to several material systems (e.g., α − Ur, NiTi) [40,41]. Following 

these works, possible equilibrium structures of type II twins in Ni-Mn-Ga and Ni-Ti were proposed 

based on the TM [42,43]. Sehitoglu et al. [44] used a combined atomistic-topological approach to 

describe an equilibrium structure of type II twins in Ni-Ti. 

The TM provides a crucial bridge between TB structure and mobility, as it describes the 

twinned interface as an arrangement of TD defects whose nucleation and motion can be evaluated 

based on principles of the classical dislocation theory. Specifically, the mobility of a TD is directly 

related to the fundamental properties of the linear defect: the burgers vector b  and the core width 

 , and potentially other interfacial properties, such as the step height h. For example, small burgers 

vector and large core width are expected to promote high mobility of a linear defect. A fundamental 

feature of any twinning system is the twinning shear strain s . The TM indicates that the magnitude 

of s is related to the properties of a TD according to /s b h  [36]. Different materials, as well as 

different twinning systems within the same material, have significantly different twinning shear 

values [1]. In these cases, the twinning shear may strongly influence the twin boundary mobility. 

In this study we analyze the impact of topological parameters on the mobility of twin 

boundaries. The topological parameters derive from the crystal structure and orientation. To 

facilitate the crystallographic representation of twinning for modulated martensite in different 

SMA, the TM adopts an approximated crystallographic structure that averages out the modulation. 

(e.g., an effective monoclinic unit cell in 10M Ni-Mn-Ga, Refs [42,45]). This approach is useful 

for defining and quantifying the topological parameters of the interface defects (e.g., ,b h ). In 

addition, it allows describing the lattice barrier for TB motion (see section 4) by a simple periodic 

function with periodicity on the order of a single lattice spacing of the effective unit cell. By 

averaging out the lattice modulation we disregard shuffles required to establish the correct 

structure. In the cases discussed here, particularly for type II twins in 10M Ni-Mn-Ga, shuffles are 

very small (substantially below the interatomic distance) and do not include the switching of 

atoms. In such cases, shuffle does not contribute significantly to twin boundary mobility [1]. 

In order to establish general relations between the structure of the TB (as described by the TM) 

and its mobility, the mechanisms of motions for twins in various materials must be clarified. In 

this context, a mechanism of motion is a description of a sequence of several sub-processes by 

which the TB propagates and an identification of the rate-limiting process. This knowledge allows 

the formulation of kinetic relations that quantify the velocity of the interface as a function of the 
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thermodynamic driving force. The term driving force represents the sum of all tractions that act on 

a twin boundary through various types of external loads (e.g., mechanical, magnetic, electrical), 

as further explained in Section 2. The kinetic relation is the basic input for models describing the 

macroscopic mechanical response of materials due to twinning. 

Recently, Müllner analyzed the mechanisms of motions associated with nucleation of new TDs, 

focusing on the relations between the TM of type I and II boundaries and the resulting barriers for 

TD nucleation [11]. Faran and Shilo suggested analytical models for the kinetic relations of TB 

motion, based on different mechanisms of motion [46,47,23]. These studies revealed a clear 

transition between slow and fast regimes of motion that takes place at driving forces much larger 

than the value related to the twinning stress [46–49]. The source for this transition is not yet fully 

explained. Specifically, it is unclear if this source is different for type I and II twin boundaries and 

is this transition expected to appear in other SMA. 

This paper is organized as follows: section 2 presents several basic concepts that are essential 

for the analysis of TB motion in a variety of material systems, focusing on the definitions and 

application of the driving force and kinetic relations. Section 3 contains a basic description of the 

structure of a twinning interface based on the TM. In section 4 we present the energy barriers that 

are imposed by the lattice and resist the motion of the TB, which leads to the classification of 

different regimes of the twin boundary motion. Section 5 presents an analytical formulation of the 

activation energies of different processes that occur during the twin boundary motion. In section 6 

we focus our analysis on TB motion in the slow rate regime and identify the rate limiting process 

that determines the dynamics of different twin types. Further, we obtain explicit expressions for 

the twinning stress for the driving force regime where thermal activation dominates the kinetic 

relation and for the different nucleation energies that were developed in section 5. In section 7 we 

employ the insights presented in the previous sections and reason the available results for the 

motion of different twin types in different materials systems. Emphasis is given to results reported 

on ferromagnetic SMA 10M Ni-Mn-Ga because TB motion in this system was widely investigated 

by several research groups with high quality single crystals.  

 

2. Definitions and basic concepts 

 

Commented [CU1]: I am not sure if this is correct though 
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When discussing the motion of TB, several basic concepts should be defined and clarified to 

allow for a general description that is valid for a variety of material systems. We start with the 

concept of the thermodynamic driving force (driving force in short) g , which is well known from 

the field of phase transformations, and represents the change in free energy due to the 

transformation from one state (or phase) to another [50–52].  For the case of a TB, the driving 

force is the derivative of the TB energy TBU  (per unit area) with respect to the propagation 

coordinate z  normal to the TB plane:  

 

 TBg
z

U


 


 
(1) 

 

The driving force has the dimension of energy per volume. Eq. (1) represents a continuum 

(macroscopic) model, and the definition of TBU  does not account for local atomistic effects such 

as the lattice potentials. The influence of the lattice periodicity on the TB energy is introduced in 

section 4. A similar expression can be formulated for the case of a linear TD defect [53,54] . 

The total energy TBU  contains several contributions, which represent the strain, electric (e.g., 

in ferroelectric crystals), and magnetic (e.g., in ferromagnetic crystals) energies that vary due to 

the TB propagation: 

 

mech elec mag
TB TB TB TBU U U U   (2) 

 

The use of the driving force is general and allows us to decouple the thermodynamic traction 

applied on a moving material defect from the overall mechanical state of the macroscopic crystal. 

For example, Eq. (1) and (2) show that a ferromagnetic crystal subjected to external magnetic field 

results in a non-zero driving force for TB motion, even if there is no mechanical load. In this case, 

the frequent use of the term magneto stress, which is equivalent to the effect of the magnetic 

driving force ( mag

TBU in Eq. (2)), is ambiguous since it is not a real mechanical stress and does not 

appear in the basic equations of force equilibrium over the macroscopic crystal. Furthermore, the 

general formulation of the driving force enables accounting for other effects, such as that of 

demagnetization energy (as in Refs. [47,55]) or cases where the TB area is not constant. 
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The kinetic relation [51,56] is a constitutive material law that correlates the velocity of an 

individual TB to the thermodynamic driving force. Different kinetic relations may arise for 

different ranges of the driving force, but all kinetic relations are determined by properties at the 

atomistic and mesoscopic scales. Kinetic relations serve as the basic input in models describing 

the overall twinning dynamics. Specifically, discrete twin boundary dynamic simulations, based 

on measured kinetic relations, have been demonstrated as a powerful tool for calculating the 

dynamic response of Ni-Mn-Ga actuators [57,58]. Kinetic relations can be obtained experimentally 

by tracking the motion of individual TBs [46,47], and can also be formulated analytically. To the 

latter end, one must identify the mechanism of motion and formulate the kinetic laws for the rate 

of this mechanism. Comparing experimental and analytical kinetic relations allows validating the 

assumptions taken during the analytical approach and extracting values of basic material properties 

[23,47]. 

Another common term in the dynamics of twinning is the twinning stress, which is usually 

obtained from quasi-static uniaxial mechanical experiments at strain rates typically slower than 

2 110 s 
 [59]. Under these conditions, the only non-zero term in Eq. (2) is the mechanical energy, 

T

mech

TB S SU z      . Here, TS  is the twinning stress, which is typically measured along a  <100> 

longitudinal direction of a single crystal cut with faces parallel to {100} planes of the parent cubic 

phase (e.g., Refs. [60,19,61,21]). S  is the corresponding longitudinal strain (i.e., along the same 

direction as TS ) associated with TB motion. For example, 1 /S c a    in tetragonal martensite. 

z  is the propagation distance normal to the TB plane, to straddle a volume that is transformed due 

to the TB motion. Since the twinning shear equals 2 Ss  , the specific driving force TSg  (energy 

/ volume, Eq. (1)) associated with the twinning stress is given by: 

 

2

TS
TS

s
g

 
  

(3) 

 

In cases where the mechanism of motion is thermally activated, the twinning stress TS  depends 

on the temperature and the applied strain rate (or TB velocity). Therefore, in general, the twinning 

stress is not identical to a barrier for the twin boundary motion. 
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3. Topological models for twin interfaces 

 

While the classical description of twinning predicts the twinning mode of a given lattice (see 

section 1), this model does not clarify the micro mechanisms of twinning. For instance, it does not 

provide insight into the formation mechanism and equilibrium structure of type II twin because 

the invariant plane 1K  is irrational in this case [1]. The topological model proposed by Pond and 

Hirth [36,37,39,40,62] provides a framework to extensively characterize the defect contents of 

interfaces, including twinning [63,64]. The model assumes the formation and growth of terraces 

separated by disconnections as the mechanism of formation and growth of twins. 

In compound and type I twins, the invariant plane of twinning, 1K , is rational, and thus 

disconnections, ( , )b h , are intuitively defined in the interface [37]. For example, for a type I twin, 

the Burgers vector, b , of the disconnection is parallel/antiparallel to the shear direction, 1 , and 

the step height, ℎ, is equal to the interplanar spacing of the 1K  plane. The Burgers vector quantifies 

the lattice displacement required for maintaining a coherent interface, and the step height 

quantifies the displacement of the interface accompanying the motion of the disconnection. In a 

relaxed condition, the lowest energy configuration of a TB is a flat 1K  plane without any 

disconnections. 

The twinning plane of type II twins is irrational, which poses intuitive (but not conceptual) 

difficulties in describing the topological structure of the interface. This has motivated several 

studies, both theoretical [40–42,44] and experimental [65–69] in an attempt to unravel the 

equilibrium structure of a type II interface. These studies state that an irrational twinning plane 

possesses high energy, which promotes relaxation of the interface to various types of lower energy 

configurations. For example, experimental characterization using HRTEM images sometimes 

reveals a faceted structure [68,69], while in other cases, the structure relaxes more randomly [65]. 

Macroscopically, the orientation of the relaxed twinning plane coincides with the irrational plane 

predicted by the classical theory of twinning. 

A flat twinning plane that lays along an irrational crystallographic plane is highly incoherent, 

since the two twins only share a common lattice direction but not a plane. The incoherency results 

in a high interfacial energy, and thus the atomistic structure of the type II TB is likely to relax to 

lower energy configurations [70]. A possible relaxed interface for type II TB is the formation of a 

Commented [Bk2]: They share a rational direction (η1), 

but not a lattice plane. 
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coherently faceted structure [71,68,44,42]. In this description (Fig. 1), the TB forms facets that lie 

along low-index planes, separated by equally spaced steps that lie along another low-index plane. 

The “average” interface plane, formed by the facets and the steps, lies very close to the irrational 

twinning plane 1K , calculated based on the classical theory of twinning. In general, while the low-

index facet planes are common to both the parent and the twin, there is some in-plane rotation of 

the lattices of the parent and the twin within this plane. This rotation results in a misfit of the parent 

and twin lattices in the facet plane. This misfit can be accommodated either by long range elastic 

strains, resulting in a fully-coherent interface, or by an array of misfit screw dislocations, resulting 

in a coherently faceted interface. For some materials, e.g., Ni-Ti, the misfit screw dislocations 

coincide with the steps between facets, as demonstrated in Fig. 1, thus forming an array of equally 

spaced misfit screw disconnections, characterized by a step height and a Burgers vector [44]. In 

other materials, such as Ni-Mn-Ga, the direction of the Burgers vector of the misfit dislocation 

results in steps that rotate the average plane formed by the faceted interface out of the irrational 

1K  plane  [42]. Thus, for these materials, the description of the twin boundary as a coherently 

faceted structure is still an unsolved problem. 

At a scale larger than the equilibrium distance between adjacent disconnections ( 0l  in Fig. 1), 

which is on the order of few nm (Refs. [42,44] and values in Table 2), the strain field produced by 

the array of dislocations is equal in magnitude but opposite in sign to the strain field produced by 

the misfit at the faceted interfaces. Thus, the two contributions cancel each other, resulting in zero 

long-range strains. In materials where the coherently faceted structure is possible, the array of 

equally spaced disconnections represents a low-energy configuration of the type II TB, and can 

thus serve as an equilibrium state. 
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Fig. 1 Schematic illustration of a coherently faceted type II TB, showing the low index plane facets 

separated by an array of screw disconnections. b  is the Burgers vector of a disconnection,   is the 

disconnection line direction and is (anti) parallel to the shear direction 1 . The disconnections are equally 

spaced at a distance 0l , such that the average interface plane coincides with the irrational 1K  twinning 

plane. 
 

 

4. Lattice barriers for twin boundary motion and classification of different regimes 

 

To define possible mechanisms of motion that lead to twin boundary propagation, we identify 

the energy barriers that resist each sub-process involved in the motion. Here, we present a general 

analysis that considers only the periodicity of the lattice as a source for energy barriers. Other, 

aperiodic barriers may arise due to interactions of the twin boundary with crystal defects, such as 

surface roughness, precipitates, dislocations, phase boundaries, and grain boundaries. The effects 

of these barriers depend on the specific problem and the quality of the crystal. The lattice barriers 

are shown in Fig. 2 and the different sub-processes are summarized in Table 1. Two different barriers 

separate the driving force scale into three regions. In each of these regions, different processes take 

place, resulting in different velocities through different kinetic relations.  

Compound and type I TB’s are parallel to low-index lattice planes. Such interfaces are 

subjected to a lattice barrier that resists their motion as a flat plane. The periodicity of this barrier 

is equivalent to the lattice spacing of the low-index plane, TBd , and its amplitude is denoted as TB  
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(energy per unit area), as shown in Fig. 2(a). Type II twin boundaries, on the other hand, are 

characterized by an irrational twinning plane, which poses difficulties in realizing the role of a 

periodic lattice barrier that resists the propagation of the twin boundary as a flat plane. However, 

we note that the step height of disconnection on a type II interface has a discrete value. For Ni-

Mn-Ga, the step height is of the same order of magnitude as TBd  [42]. Moreover, the coherent 

facets that constitute the coherently faceted structure lay on low index planes (Fig. 1 and related 

discussion), and are thus subjected to a periodic lattice barrier. 

An additional periodic lattice barrier is associated with the motion of twinning disconnections. 

A disconnection line tends to lay along low-index lattice directions, even when the burgers vector 

is irrational, e.g., in type I twins [42], and is thus subjected to a periodic lattice barrier that resists 

its glide, similarly to the Peierls barrier for the glide of ordinary dislocations. The periodicity of 

the Peierls barrier is the lattice spacing perpendicular to the disconnection line on the glide plane, 

Dd , and its amplitude is denoted as D (energy per unit length), as shown in Fig. 2(b). 

 

 

 

 



12 
 

 

 

Fig. 2 Schematic description of the different lattice barriers for TB motion. The illustrations depict a 

TB with a rational twinning plane 1K , as in compound and type I twins. (a) The lattice barrier for the 

motion of the TB as a flat plane along z direction. The barrier is characterized by an amplitude TB  (energy/ 

area) and periodicity TBd . The TB can also propagate via the glide of twinning disconnections on the 

rational twinning plane 1K , along x direction. ,b   are the Burgers vector and line direction of the 

disconnection, and 1  is the shear direction. (b) Peierls barrier for the glide of a disconnection. The barrier 

is characterized by an amplitude D (energy/length) and periodicity Dd . A kink-pair (KP) mechanism 

allows disconnection motion at driving force values that are smaller than the Peierls barrier. 

 

 

 

Table 1: Sub-processes in the various ranges of the driving force ( g ) and TB velocity ( TBv ). The different ranges of 

the driving force are defined based on the magnitudes of the lattice barriers D  , TB . 

 

 

Nucleation of disconnections 
 

Twin boundary motion as a 

flat plane 

 

 

Nucleation of kink-pairs Disconnection glide as 

straight line 

, TBg v  

 
D

Dd h

 
  0

TB

TB

g
d

 
   
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To evaluate the effects of the lattice barriers presented in Fig. 2 on the motion of a TB, we 

introduce periodic functions that depict the energy landscapes of the lattice barriers, and add them 

to the total energy of the system. In Fig. 3 and Fig. 4 we plot the energy landscapes encountered by 

a moving TB and a moving TD, for two ranges of the external driving force with respect to the 

lattice barrier amplitude. This representation corresponds to cases where the driving force is the 

input parameter and dictates the dynamics of the TB or TD through fundamental kinetic relations 

(see, e.g., Refs. [47,48]). The analysis presented below shows that the energy landscapes are 

qualitatively similar for a moving TB and a TD, and thus the schematic plots in Fig. 3 and Fig. 4 

are valid to both defect types.  

For an existing TB, we express the change in energy per unit area TBU , as a function of the 

boundary position z, where z is the coordinate perpendicular to the boundary plane (Fig. 2(a)): 

 

  2sinTB TB

TB

z
U z gz

d




 
    

 

 
(4) 

 

The first term in Eq. (4) is the work per unit area associated with the motion of the TB under 

the driving force g along the coordinate z  (identical to the continuum quantity  TBU z  in Eq. 

(1)). The second term in Eq. (4) represents the periodic lattice barrier for TB motion (Fig. 2a). 

Analysis of Eq. (4) points to two different cases. In the driving force range  0g g  , where 

0
TB

TB

g
d


  is the driving force associated with overcoming the lattice barrier TB , the function 

 TBU z  decreases monotonically for all values of z  (Fig. 3). In this case, the driving force enables 

overcoming the lattice barrier, and the twin boundary moves as a flat plane. In this regime, the 

twin boundary motion is restricted only by the internal friction of the material and does not require 

a thermally activated process.  

If 
TB

TB

g
d


  the twin boundary encounters a positive energy barrier (marked as bar

TBU  in Fig. 4) 

as it propagates from one potential well to the next. Therefore, motion in this range of the driving 

force necessitates nucleation of disconnections and their further glide. This motion type results in 

a slower advancement of the TB than the motion as a flat plane. For compound and type I twins, 
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whose equilibrium topological structure does not contain disconnections, the nucleation requires 

overcoming an energy barrier via a thermally activated process, as discussed in section 5.2. For 

type II twins, where disconnections are an inherent part of the equilibrium structure, there is a 

unique mechanism of athermal heterogeneous nucleation of disconnections at the surface, as we 

discuss in detail in section 5.3. 

A similar analysis is applicable also for the motion of a disconnection. The change in energy 

(per unit length) of the disconnection is given by 

 

  2sinD D

D

x
u x ghx

d

 
    

 

 
(5). 

 

Here ghx  is the work per unit length associated with the motion of the disconnection along a 

distance x  under the driving force g , x  is the coordinate perpendicular to the disconnection line 

on the twinning plane (Fig. 2(b)), and h is the step height of the disconnection. The second term 

in Eq. (5). represents the periodic lattice barrier for disconnection motion (Fig. 2(b)). 

When 
D

D

g
d h


  in Eq. (5), the function  Du x  decreases monotonically for all values of x  

(Fig. 3) and the disconnection can propagate as a straight line in an athermal manner and its motion 

is restricted only by the internal viscosity (i.e., does not require a thermally activated process). 

Alternatively, when 
D

D

g
d h


 , the disconnection encounters a positive energy barrier, bar

Du , as it 

propagates from one potential well to the next (Fig. 4). Following classical dislocation theory (see, 

e.g., p. 242 in Ref. [72]), motion of a disconnection in this range of the driving force is possible 

through nucleation of kink pairs on the disconnection line and the subsequent expansion of the 

kinks along the disconnection line (Fig. 2(b)). The kink pair mechanism for the advancement of a 

TB is reproduced in atomistic simulations of twinning in ferroelastics (see. e.g., Ref. [73]). 

The above discussion implies that under any value of the driving force there exists a mechanism 

of motion that can lead to the propagation of the TB, as summarized Table 1. In practice, the actual 

movement mechanism of the TB may be indistinguishable in a specific type of experiment. For 

example, slow-rate mechanical tests apply a constant controlled strain rate on the sample. The 

stress reaches a plateau, denoted as the twinning stress, at a value at which the microscopic strain 
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rate induced by the moving twin boundary is equal to the macroscopic strain rate. At stress levels 

smaller than the twinning stress, the stress increases, but this does not mean that there is no twin 

boundary motion in this range. 

 

 

Fig. 3 Energy profile of a twin boundary TBU  (energy/area, Eq.(4)) or twinning disconnection Du ( 

energy / length , Eq. (5)), for the case that the driving force g  (energy/volume) is larger than the lattice 

barrier. The dashed green line represents the work associated with the motion of the TB ( gz  in Eq.(4) ) 

or the disconnection ( ghx  in Eq. (5)). The normalized coordinates / , /TB Dz d x d  represent the directions 

normal to the TB plane and disconnection line, respectively (as in Fig. 2).  
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Fig. 4 Energy profile of a twin boundary TBU  (energy/area, Eq.(4)) or twinning disconnection Du ( 

energy/length, Eq. (5)), for the case that the driving force g  (energy /volume) is smaller than the lattice 

barrier. The dashed green line represents the work associated with the motion of the TB ( gz  in  Eq.(4)) 

or the disconnection ( ghx  in Eq. (5)). The normalized coordinates / , /TB Dz d x d  represent the directions 

normal to the TB plane and TD line, respectively (as in Fig. 2). The magnitude of the barrier for TB or 

disconnection motion associated with the lattice potential is marked as bar

TBU and bar

Du , respectively. The 

energy gained due to the local advancement of the TB or the disconnection is labeled as gain

TBU and gain

Du , 

respectively (see discussion on the different energy terms in sections 5.1 and 5.2). 

 

5. Activation energies for nucleation processes 

 

In section 4 we identified two nucleation processes associated with different mechanism of TB 

motion, namely the nucleation of disconnections and the nucleation of kink pairs on 

disconnections. Next, we formulate analytical expressions for the corresponding activation 

energies of these nucleation processes, and discuss their relevance to the motion of the different 

type of TB’s. Here, we distinguish three nucleation processes: the first analyzes the nucleation of 

kink-pairs on an existing disconnection line. This mechanism is required for the glide of a 

disconnection and thus, it is applicable to all twin types. The second process is the homogenous 

nucleation of disconnection loops that is relevant mainly to compound and type I twins. The third 
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process is the heterogenous nucleation of disconnections at the surface that is unique to the relaxed 

structure of type II twins. 

In the following analysis, we employ isotropic elasticity for evaluating the energies of 

individual disconnections and disconnection arrays. This provides simple analytical expressions 

that can be quantified and compared between different material systems. Yet, isotropic elasticity 

assumes that the shear stiffness is identical in all directions, which is not the case for elastically 

anisotropic martensitic SMA. In order to account for this, we associate the shear stiffness   in the 

isotropic formulation with the 'C  elastic modulus of the austenite phase near the martensitic 

transformation temperature, and not with the isotropic shear modulus G (see values in Table 2, 

Table 3, and similar discussion in Ref. [11]). 

 

5.1 Homogeneous nucleation of kink pairs on disconnection lines.  

 

When the driving force is smaller than the Peierls barrier for disconnection glide (i.e.,
D

D

g
d h




), the glide of a disconnection requires the nucleation and expansion of kinks. This allows part of 

the disconnection to locally overcome the energy barrier bar

Du , as illustrated in Fig. 4. Based on the 

theory of dislocation kinks (Ref. [72] , page 242), we consider the homogenous nucleation of a 

kink-pair on an existing disconnection line. 

The activation energy for the homogenous nucleation of a kink-pair with a kink separation y  

is expressed by: 

 

 bar self

KP D KPQ u y E y    (6) 

 

Here, 
bar

Du  is the energy per unit length required to overcome the periodic Peierls potential of 

the disconnection, and is equal to the first maximum of the disconnection energy  Du x  (given by 

Eq. (5).), calculated at / 2Dx d  (see Fig. 4):  
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 / 2
2

bar D
D D D

d
u u x d g h        

(7) 

 

 

 self

KPE y in Eq. (6) is the self-energy of the kink-pair and is generally given by: 

 

int2self

KP f

e
E e

y
   

 

(8), 

 

where, fe  and inte  are formation and interaction energies, respectively. Under the 

approximation of isotropic elasticity, the two energies scale as 
2

f De b d  and 
2 2

int De b d  (see 

Ref. [72], page 244) , where   is the shear stiffness.  

Both terms in Eq. (6) are positive and increase as y  increases. Further, after the nucleation, if 

y is too small, the attraction forces between the two kinks results in an annihilation of the kinks. 

Therefore, we must find the minimal value of y  for which the nucleated kink-pair tends to grow, 

i.e., to increase the value of y . For this purpose, we express the energy of an existing kink-pair, 

for which Dx d , as a function of y : 

 

     existing gain self self

KP D D KP D KPE x d u y E y g h d y E y          (9) 

 

Here, gain

Du  is the first minima of the energy of the disconnection Du  (Fig. 4). At  Dx d  the 

periodic lattice barrier (2nd term in Eq. (5)) is zero, and thus: 

 

 gain

D D Du x d g h d      (10) 
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The critical length of the kink pair cy  is obtained by finding the first extremum of Eq (9), i.e., 

solving  
( )

0

D

existing

KP

x d

E

y 





 , which provides: 

 

int
c

D

e
y

g h d


 
 

(11) 

  

And thus, Eq. (6) becomes: 

 

int2
2KP

D
D c f

c

ed
Q g h y e

y

  
        
   

 
(12) 

 

Under the conditions of thermally activated motion (i.e., 
D

D

g
d h


 ), both bracketed terms in 

Eq. (12) are positive, and thus the total activation energy KPQ  is always positive. This implies that 

kink-pair nucleation is not a spontaneous process, and requires some finite activation energy. As 

we show in section 7.3, in some twin types and material systems the magnitude of KPQ  is 

comparable to the thermal energy even near 0 K temperature. Thus, a finite concentration of kinks 

is expected to be always present on the disconnection line even under zero driving force (see also 

Ref. [74]). At the same time, TB motion requires annihilation of existing kinks and nucleation of 

fresh kink-pairs. The rate of the later process is determined by the driving force g . 

 

5.2 Thermally activated homogeneous nucleation of disconnection loops  

 

In compound and type I twins, the equilibrium structure of the twin boundary is a flat interface 

that coincides with a low index plane. Thus, when the driving force is lower than the barrier for 

twin boundary motion as a flat plane, i.e., 
TB

TB

g
d


 , twin boundary motion requires the nucleation 

of disconnections on the TB plane. We consider nucleation of disconnection loops in the bulk or 

nucleation of half-loops at the surface, under the application of an external driving force g . This 
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nucleation process is consistent with the recent description of an evolving topology of type I and 

compound twins under non-zero loading conditions (see Ref. [75]).   

The analytical approach is similar to that employed for the nucleation of kink-pairs, in section 

5.1. The activation energy for the nucleation of a disconnection loop with a radius r is expressed 

by: 

 

 2bar self

DL TB DLQ U r E r    (13) 

 

The first term on righ-hand side of Eq. (13) , 
2bar

TBU r , represents the energy required to move 

the disconnection loop across the lattice barrier perpendicular to the twinning plane under the 

application of an external driving force g  (Fig. 4 and also in Ref. [47]). The magnitude of the 

barrier (energy per unit length) is given by 

 

0

2 2

bar TB
TB TB TB

gd g
U g d



 
     

 
 

(14) 

 

Where we substituted 
0TB

TB

d g



 .  

The barrier bar

TBU  is positive within the relevant range of the driving force 
TB

TB

g
d


 . The second 

term in Eq. (13)  self

DLE r represents the self-energy of the disconnection loop. The magnitude of 

 self

DLE r  may depend on the type of nucleation process. Heterogeneous nucleation of a 

disconnection loop, for example at crystal defects, may result in negligibly small value of  self

DLE r

. This in turn, may lead to a negligibly small activation energy DLQ . However, given that the 

equilibrium structure of compound and type I twins contains no disconnections, continuous motion 

of the TB at a scale larger than the lattice scale requires nucleation events that occur regardless of 

the TB position within the crystal, i.e., not just in some few specific locations of crystal defects. 

Thus, we consider here the case of a homogenous nucleation, for which the activation energy given 

by Eq. (13) is always positive and increases as r increases.  
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After the nucleation event, if r is too small, the attraction forces between segments of the 

disconnection loop will result in an annihilation of the loop. Therefore, we find the minimal value 

of r for which the nucleated disconnection loop tends to grow, i.e., to increase the value of r. For 

this purpose, we express the energy of an existing disconnection loop with radius r: 

 

   2existing gain self

DL TB DLE r U r E r   (15) 

 

Eq. (15) describes the energy of a loop that has already “surpassed” the activation energy DLQ  

(expressed in Eq. (13)).  Thus,   gain

TB TB TBU U z d   represents the first minima of TBU  and it has 

a negative value (see Eq. (4) and Fig. 4 in section 4). This distinguishes Eq. (15) from Eq. (13), 

where bar

TBU  represents the first maxima of TBU , and it has a positive value. Further, the lattice 

potential (second term in Eq. (4)) is zero at TBz d . Thus, Eq. (15) becomes: 

 

 2( )existing self

DL TB DLE r gd r E r     (16) 

 

The self-energy of the disconnection loop ( )self

DLE r  can be expressed using the energy per unit 

length of the disconnection loop,  Dq r : 

 

 ( ) 2self

DL DE r r q r   (17), 

 

Equation (16) has a maximal value at cr r . For cr r , 0exsiting

DLE r   , which means that such 

a loop will collapse and disappear. For cr r , 0exsiting

DLE r   , which means that such a nucleated 

loop will grow and increase its radius. Thus, only loops with cr r  contribute to the propagation 

of the twin boundary. For loops with cr r , the minimal value of the activation energy is obtained 

by substituting cr r  in Eq. (13). The energy per unit length of the disconnection loop  Dq r  is a 

slow-varying function of r that changes as  ln r . For simplicity, Faran and Shilo [47] assumed 
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that  Dq r can be taken as a constant. Thus, solving 0exsiting

DLE r    for cr  under these conditions 

results in: 

 

D
c

TB

q
r

gd
  

(18) 

  

The substitution of Eq. (18) in Eq. (13) provides an expression for the activation energy for the 

nucleation of a stable disconnection loop: 

 

 
2

22 0.53 3

2 2

D TB TB
DL

TB TB TB TB

bq
Q

g d g d g d g d

      
      

      
 

(19) 

 

In the second equality in Eq. (19) we introduced a rough approximation based on isotropic 

elasticity for the line energy of the disconnection 
20.5Dq b  (see page 169, Eqn. 6-51 in Ref. 

[72]). 

The nucleation of a disconnection half-loop on the surface can be treated similarly, resulting 

in activation energy that is half the value expressed by Eq. (19). 

 

5.3 Athermal heterogeneous nucleation of disconnections at the surface.  

 

The topological structure of a coherently faceted type II boundary is inherently different from 

that of compound and type I, and contains a dense, ordered array of screw, misfit relieving 

disconnections (Fig. 1 and related discussion in section 3). The disconnection array is preserved 

during motion of the interface. Thus, different nucleation mechanisms of disconnections are 

required to account for the motion of type II twins. In this section, we discuss a mechanism that 

enables athermal generation of disconnections on a type II TB. We evaluate and verify our 

analytical formulations by inserting material parameters for two representative material systems 

(10M Ni-Mn-Ga and Ni-Ti, see Table 2), in which type II twins play a significant role and the 

coherently faceted structure of the TB is well established. 
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We propose the following mechanism for the motion of a coherently faceted type II interface 

(Fig. 5). The twin boundary contains a regular disconnection array (as shown also in Fig. 1) in 

which the disconnection lines are parallel to the free surfaces. The parallelism assumption is valid 

for example when samples are cut with all faces along {100}. This is the case essentially for all 

published experimental results (e.g., Refs. [18,19,21–23,26,31,32,46,49,54,60]). Under an applied 

driving force, the slow-rate motion of this boundary (from top to bottom) involves two processes. 

One is the collective glide (from left to right in Fig. 5) of the disconnection array that advances 

the twin boundary perpendicular to its plane. Here we consider conditions under which the applied 

driving force enables disconnection glide over the Peierls barrier. As the disconnections reach the 

right surface they are emitted to the surface. Thus, a second process is required to occur 

simultaneously to maintain the topological structure and the motion of the TB: the nucleation of 

disconnections on the left surface. Next, we discuss conditions under which disconnections 

nucleate athermally.  

Due to the disconnection glide, there is a region close to the left surface that becomes depleted 

of disconnections. The typical thickness of this region 0x  is much larger than the equilibrium 

spacing 0l  between disconnections in the array (as we show next). Therefore, this region is 

subjected to misfit elastic strains (as discussed in section 3) that are not accommodated by the 

disconnections array. The misfit strain builds up energy that grows with increasing 0x . The 

tendency to reduce the elastic energy in this region results in a restoring force that pulls the array 

of disconnections back towards the left side. This force is not to be confused with the image force, 

which is caused due to the self-strain field of the disconnection. The tendency to reduce the elastic 

energy also encourages nucleation of disconnections on the left surface. 

Recalling the low-energy configuration of the TB structure, presented in section 3, we assume 

that the equilibrium distance 0l  between disconnections is maintained during the motion of the 

array. This means that under an external driving force TSg  (that corresponds to the twinning stress) 

all disconnections move approximately the same distance 
0x , leaving a region with a width 

0x  

near the left surface that is depleted of disconnections Fig. 5(b). After a disconnection is nucleated 

on the left surface, Fig. 5(c), it moves to the right and joins the array of disconnections with 

equilibrium distance 0l . The array of equally spaced disconnections forms a strain field that 

cancels out the misfit strain across the interface, except at the depleted region. Due to the misfit-



24 
 

strain in the depleted region, the separation distance between the few furthermost disconnections 

at the left side of the array is larger than 0l . As we show later, this does not alter the main results 

of our analysis, because 0 0l x L   , where L  is the width of the crystal. 

In the following, we calculate the elastic energy due to the misfit strain. Further, we develop an 

expression for the equilibrium value of 
0x , and show that the misfit strain at the depleted region 

results in an additional energy term that promotes nucleation of disconnections at this surface. We 

develop an expression for the resulting activation energy and show that the term originated from 

the misfit strain may be dominant, thus promoting athermal nucleation. Then, we develop an 

expression for the equilibrium value of 
0x , and estimate 

0x  for Ni-Ti and Ni-Mn-Ga. Further, we 

show that misfit strain at the depleted region results in an additional energy term that promotes 

nucleation of disconnections at this surface. We develop an expression for the resulting activation 

energy and show that the term originated from the misfit strain may be dominant, as is the case for 

Ni-Mn-Ga.  

The strain field caused by the misfit shear in the region 
0x  is equivalent to a strain field caused 

by an array of infinite number of equally-spaced coherency screw dislocations with an 

infinitesimal Burgers vector 0misdb dx , such that the continuous integration of all Burgers 

vectors results in 0 0x  [ 64,65].  The concept of coherency dislocations at an interface was 

introduced by Olson and Cohen (see, e.g., Refs. [77,78]), and was successfully applied by Speck 

et al. in modeling coherency strain at film/substrate interfaces of ferroelastic materials [79,80]. To 

maintain a zero stress near the left surface, we consider an equivalent array of image dislocations 

with a Burgers vector of the same size as the coherency dislocations but an opposite direction. The 

elastic energy associated with the coherency dislocations, per unit length perpendicular to the plane 

shown in Fig. 5, can be expressed as [79–81]: 

 

 
 

2

20 0. .

0 0

0

4
ln

4

coh disl

elastic

x L
E C x

x

 
 



 
  

 
 

(20) 

 

where L  is typically on the order of 1 mm and C is a constant on the order of unity. 
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The work associated with the motion of the TB under the driving force TSg , per unit length 

perpendicular to the plane shown in Fig. 5, is given by 

 

0 sinTB TSW L g Lx    (21). 

 

Here, 0sin x L   is the area (in the x z  plane) subjected to twinning reorientation due to the 

propagation of all disconnections in the array by a distance 
0x , where   is the angle between the 

TB and the rational twinning plane (Fig. 5(b)).  

To calculate the equilibrium value of 
0x , we minimize the overall energy (per unit length 

perpendicular to the viewing plane of Fig. 5) that includes the elastic energy in the depleted region,  

given by Eq. (20), and the work expressed in Eq. (21), i.e., 

 

 
2

0 0 0

0

sin
0

TSC x g Lx

x

    
  


 

(22) 

 

This results in: 

 

0 2

0

sin

2

eq TSg L
x

C




  

(23) 

 

A substitution of material parameters listed in Table 2 and C=1, L=1mm in Eq. (23) provides 

0 3eqx  m for Ni-Mn-Ga and 
0

35eqx  m for Ni-Ti. These values satisfy the model assumption, 

0 0l x L  , as 0x  is larger than 0l  by few orders of magnitude and smaller than L by few orders 

of magnitude. 

Next, we consider the lastly nucleated disconnection with a Burgers vector b , located at a 

distance 0Dx x  from the left surface, as illustrated in Fig. 5(d). This disconnection is subjected to 

several interaction forces as it travels along x . The resultant force per unit length perpendicular 

to the plane shown in Fig. 5, is given by:  
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0

0

0 2

0 0

0
2 2 2

x

PK Peierls

D D Dx

dx dxb b
F F F

x x x x x
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 


 
      

   
   

(24). 

 

The first two terms in Eq. (24) represent the sum of interaction forces between the left-handed 

screw disconnection b  located at Dx  and the array of coherency dislocations  0misdb dx  located 

at 00 x x  . The image forces are accounted for by considering an equivalent array of image 

coherency dislocations 0misdb dx   at 0 0x x   , as shown in Fig. 5(d). The term 
2

2 2 D

b

x




 in 

Eq. (24) is the image force of the disconnection b . PKF  is the Peach-Koehler force under the 

driving force TSg , and PeierlsF  represents the resisting Peierls force acting on the moving 

disconnection by the lattice.  

Our analysis considers conditions under which the driving force is sufficient to propagate the 

other disconnections along the TB. This means that the Peach-Koehler force is equal to, or greater 

than, the resisting Peierls force. Because we analyze a case where the resultant force on the lastly 

nucleated disconnection is always positive, we assume that PK PeierlsF F . Interaction forces due to 

the other disconnections in the array along the TB (not visible in Fig. 5(d)) are not included in Eq. 

(24) because, as stated earlier, at length scales larger than 0l  their strain field is canceled by the 

strain field of the misfit at the interface in their vicinity.  

Solving the integrals and adding the disconnection’s image force term in Eq. (24) results: 

 

2

0 0

0

ln 1
2 2D D

b x b
F

x x

 

 

   
     
     

 

(25) 

    

At the nucleation event 0Dx x . In this region, the natural logarithmic term in Eq. (25) is a 

slowly varying positive function, while the last term in Eq. (25)) is negative and its magnitude 

increases rapidly as Dx  decreases.  The lower limit for Dx  is taken as a single lattice spacing a , 

below which elasticity theory fails and the interaction forces described by Eqns. (24) , (25) remain 
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nearly constant. Taking Dx a , and inserting the values in Table 2, we obtain 

2

0ln 1 20
D

x

x

  
   
   

 

for both Ni-Mn-Ga and Ni-Ti (the slow varying logarithmic term “alleviates” the one order of 

magnitude difference in 0x ). In addition, 
0

3.5
2

b

a
  for both materials, resulting: 

 

  0 020 3.5 8.25
2

b b
F

   

 
    

(26), 

 

 This indicates that in the range relevant for the nucleation event, 0Dx x  the force F is always 

positive and pushes the disconnection towards the right side. Consequently, the self-energy self

DE

of the disconnection that nucleates at the surface (i.e., at Dx a ) is negative and is given by: 

 

0

0
8.25

Dx
self

D D

b
E Y Fdx Ya

 


      

(27) 

 

where Y is the disconnection length in the direction perpendicular to the plane shown in Fig. 5. 

Next, we use this result to evaluate the activation energy for the heterogenous nucleation 

process. In section 5.2 (Eq. (13)) we obtained a general expression for the activation energy for 

nucleation of a disconnection loop, DLQ . Similarly, the activation energy for nucleation of a linear 

disconnection, DQ  , is given by: 

 

bar self

D TB DQ U A E    (28). 

 

Here A Ya  is the area of the TB that has been reoriented by the formation of the disconnection 

at Dx a , and bar

TBU  is the energy barrier imposed by the lattice potential, as expressed in Eq. (14). 

Substituting Eq. (14) (for bar

TBU ) and Eq. (27) (for 
self

DE )  into Eq. (28). Provides 
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 
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(29) 

 

Recalling that b h s , and that the periodicity of the lattice potential approximately equals to 

the disconnection step height (i.e.,  TBd h ), we obtain the following expression for the activation 

energy for the nucleation of a disconnection at the surface. 

 

0 08.25
2

D

g sg
Q Ya h



 

 
    

 
 

(30) 

 

In cases where 0 08.25 s g  , DQ  in Eq. (30) is negative for any value of the applied driving 

force g , indicating that this nucleation process can occur athermally. This condition is determined 

only by material properties and can be evaluated based on the values listed in Table 2.  For 10M 

Ni-Mn-Ga 
6

08.25 20 10s    J/m3, and is larger than 
3

0 85 10g    J/m3 by several orders of 

magnitude (see Ref. [47]). For Ni-Ti, 6
08.25 500 10s    J/m3, indicating that this nucleation 

process can occur athermally if 
230mJ/mTB   (recall that 0 /TB TBg d ). Such a value of TB  

is comparable to atomistic calculations reported by Sehitoglu et al. [70]. 

We now re-evaluate the model assumption that the equilibrium distance 0l  between 

disconnections is maintained during the motion of the array, such that all disconnections move 

approximately the same distance 0x , leaving a region with a thickness 0x  depleted of 

disconnections. To hold this assumption, the lastly nucleated disconnection has to be subjected to 

a positive force (Eq. (25)), until it meets the other disconnections in the array. The force is indeed 

positive for all values of Dx  smaller than 0

2

2
x  . For larger values of Dx , Eq. (25) predicts that 

the net force on the disconnection becomes negative. However, when the disconnection reaches a 

value of Dx  that is on the order of 0x  , it can be regarded as being part of the disconnection array 

that composes the TB. This is in accordance with our previous comment, stating that the leftmost 

disconnections in the array are spread apart a distance that is larger than the equilibrium value 0l  . 
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This relaxation has a minor effect on the elastic energy estimated by Eq. (20) and hence on the 

estimated value of 0

eqx  provided by Eq. (23). Further, the exact value of 0x  has a minor effect on 

the evaluation of the force F  (using Eq. (25)) in the range, 0Dx x  , relevant for the nucleation 

event. We disregard these effects in the current treatment. 

Finally, because the model relies on nucleation at the surface, we evaluate the case of sub-mm 

size samples, e.g., micropillars, where surface to volume ratio is much larger compared to ordinary 

mm-size crystals. In particular, the relation  0 0l x L   (see Eq. (23)) remains valid even for 

values of L that are on the order of few tens of microns (typical to micropillars). Thus, the increase 

in twinning stress observed in some 10M Ni-Mn-Ga micropillars can be associated with the 

presence of defects that hinder TB motion, and result from the unique fabrication process of the 

pillar [82,83]. In case the crystal size is further decreased, such that our model assumptions are no 

longer valid, we expect the twinning stress to increase, because the proposed mechanism of 

athermal disconnection nucleation may not be relevant in such scales.  

 

Table 2: Typical material parameters for type II twins in 10M Ni-Mn-Ga and Ni-Ti.  

 

 10M Ni-Mn-Ga NiTi 

  (GPa) * 2 [11,84]  5 [85,86]  

0  0.0092  [42] 0.049  [44] 

s   0.127  [42] 0.28  [44] 

  4.12  [42] 10.11  [44] 

0l  (nm) 6  [42] 4  [44] 

a  (nm)  0.6  [18] 0.4  [87] 

b  (nm) 0.023 [42] 0.071 [44] 

TSg  (J/m3) 41.3 10 [88] 
63 10 [70] ** 

 
0
μmeqx  3  [Eq. (23)] 35  [Eq. (23)] 

 

*  Value of shear stiffness  in the isotropic elasticity formulation is related to the elastic constant C’. 

** Value is estimated based on a twining stress of 20TS   MPa  [REF?]. 
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Fig. 5 Schematic description of the equilibrium coherently faceted type II interface (inset (a)), that 

contains an array of left-handed screw disconnections, which are marked with an inverted ‘S’. L marks the 

width of the crystal. Under an applied driving force, the disconnections move to the right (green arrows), 

transforming material from the top variant to the bottom (the green area in inset (b)), leading to the 

advancement of the TB downwards (direction marked by the vertical black arrow). The collective motion 

of the disconnection array creates a “depleted” region of length 
0x  close to the left surface (inset (b)). To 

maintain the coherently faceted structure, disconnections nucleate at the left surface and propagate to the 

right (inset (c)). The position Dx  marks the location of a newly nucleated disconnection relative to the left 

surface. (d) A schematic illustration of the depleted region 0x  close to the surface with a representation of 

the disconnections (large S with Burgers vector b ) and coherency dislocations (small s with burgers vector 

misdb ). Image defects maintain zero stresses on the free surface (the vertical black line). 
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6. Kinetic relations for TB motion, rate-limiting processes and twinning stress 

 

In this section, we formulate relations between the different activation energies developed in 

section 5 and the measured quantities that represent the mobility of the different types of TB’s, 

and in particular the twinning stress. This analysis relies on the kinetic relation, which provide an 

analytical expression for the velocity of a TB as a function of the driving force, and is dictated by 

the rate limiting process of the overall TB motion. We focus on TB motion in the low driving force 

range, and discuss separately the situations of compound and type I twins (section 6.1, which is 

based on the analysis in sections 5.1 and 5.2) and type II twins (section 6.3, which is based on 

section 5.3). 

  

6.1 Kinetic relations 

 

To study the kinetic relations, the twin boundary velocity TBv  has to be measured under different 

values of the driving force. This is in contrast to measuring the twinning stress, which occurs at a 

constant value, TSg , of the driving force. Kinetic measurements were performed mainly on the 

10M Ni-Mn-Ga material system, using s - scale pulsed magnetic field experiments, as reported 

by Faran and Shilo [46,47] and by Saren et al [48,89]. Recently, fast TB motion in 10M Ni-Mn-

Ga was also studied by short ms-scale force pulses [90–92]. 

Faran and Shilo [46,47] measured the kinetic relations in a systematic manner by applying 

magnetic pulses with controlled values of the  driving force and tracking the motion of a discrete 

twin boundary. They captured the kinetic relations for twin boundary motion in 10M Ni-Mn-Ga 

over a wide range for driving force and TB velocity. For both type I and II twins, they found a 

clear transition between two types of kinetic relations, as is explained herein.  

For the thermally activated regime of TB motion (i.e. at low driving force), an exponential type 

kinetic relation for the twin boundary velocity TBv  can be assigned: 

 

0

( )
( ) expTB

Q g
v g v

nkT

 
  

 
 

(31) 
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In Eq. (31), v0 is a temperature-independent pre-exponent term, ( )Q g  is the activation energy 

of the rate limiting process, which is a function of the driving force g , and n  is a parameter that 

represents the dimension of the problem (following the analysis of Avrami in Refs. [93,94]). For 

example, for the nucleation of a two-dimensional disconnection loop, 3n   , while for nucleation 

of a linear kink 2n  .  

In slow rate experiments, where a constant deformation rate is applied, the average velocity of 

an individual TB ( )TS

TBv   (i.e., the velcoity associated with the measured twinning stress property) 

is determined by the number of moving twin boundaries in the sample and the applied strain-rate 

( e.g., Ref. [88]). Therefore, the set value of the velocity ( )TS

TBv  in Eq. (31) determines the twinning 

stress TS  or the related value of the driving force, 2TS TSg s   (Eq. (3)), at which TB motion 

occurs, via: 

 

  0

( )
lnTS TS

TB

v
Q g nkT

v

 
  

 
 

(32) 

 

As we show in the next sections, for type I twins, the activation energy corresponds to DLQ  (see 

section 6.2) while for type II it corresponds to KPQ  (see section 6.3). 

In the study by Faran and Shilo on 10M Ni-Mn-Ga [46,47], it was found that above some 

transition value of the driving force Tg , the kinetic relation had the form 

 

2 2

TB Tv g g   
(33), 

 

indicating a process that is resisted by viscous forces. Similar types of viscous-controlled kinetic 

relations were suggested for data measured in other material systems such as Cu-Al-Ni [95] and 

gadolinium molybdate [96]. 

Faran and Shilo [46,47] suggested that the transition at Tg  is attributed to overcoming the lattice 

barrier for the motion of the TB as a flat plane, TB  (as shown in Table 1), resulting in athermal 
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motion of the TB. According to that interpretation, the transition driving force is directly related 

to the lattice barrier via 

 

0
TB

T

TB

g g
d


   

(34) 

 

For type I twins in 10M Ni-Mn-Ga, the transition driving force was 0 105g   kJ/m3 [47], 

relating to a stress of approximately 1.75 MPa, i.e., about twice the twinning stress for this type of 

twin [23]. For type II twins, the transition driving force was 0 85g   kJ/m3 [47] related to a stress 

of approximately 1.4 MPa, i.e., ten times the twinning stress for this twin type [23].  

 

6.2 Motion of compound and type I twins in the low driving force range 

 

The rate limiting process for the motion of compound and type I twins in the slow velocity 

range is either the nucleation of kink-pairs or nucleation of disconnection loops. The two processes 

are characterized by their activation energies KPQ  and DLQ , given by Eq. (12) in section 5.1 and 

Eq. (19) in section 5.2, respectively.  

In order to evaluate which energy dominates, we consider the ratio between the two activation 

energies at a driving force equivalent to the twinning stress, i.e., at
2

TS
TS

s
g

 
 . Specifically, we 

use an under-estimation of DLQ  (by neglecting the positive TB  term in Eq. (19)) and consider 

only the dominant term 2 fe in the expression for KPQ  (Eq. (12)). This results in: 

 

 
2

20.53 1
/

2 2
DL KP

TS TB f

b
Q Q

g d e

   
     

 

(35) 

 

Using an isotropic approximation for the formation energy of a kink 
22 f De b d  (see section 

5.1), and substituting 0.5TS TSg s   ,  b h s  and D TBh d d  , we obtain  
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/DL KP

TS

Q Q s



  

(36) 

 

The ratio / TS   is typically several orders of magnitude larger than unity for all material 

systems and the value of s  is typically on the order of 0.1 (see, e.g., values in Table 2 , Table 3). 

Thus, we can conclude that for the lower driving force range, the activation energy DLQ  is much 

larger than KPQ . 

The above discussion implies that in the thermally activated regimes, the nucleation of 

disconnection loops is the rate-limiting step in the overall motion of the TB for compound and 

type I twins. Even if the driving force does not allow overcoming the Peierls barrier for 

disconnection glide, i.e.,  /D Dg d h   , the thermally activated disconnection glide is still a 

faster process than the thermally activated disconnection nucleation, because DL KPQ Q . Thus, 

inserting DLQ  (Eq. (19) as the activation energy in the kinetic relation for compound and type I 

twins (Eq. (32)) results in: 

  

 
2 3 3

0

( )

23
3 ln

2 2

TB TB
DL TS TS

TS TS TB TB

vs d
Q g kT

s d v

  

 

    
     

    
 

(37) 

 

Here we used the relations  0.5TS TSg s   and TBb h s d s    . 

Typically, the value of ( )TS

TBv  is smaller than 0v  by many orders of magnitude. Therefore, a 

change of ( )TS

TBv  by an order of magnitude results in a minor change of  ( )

0ln TS

TBv v , which is often 

undetectable due to the inherent stress fluctuations and insufficient repeatability that are common 

in such experiments. For example, based on intermediate-rate experiments performed on 10M Ni-

Mn-Ga single crystals, Faran and Shilo extracted the value 0 6.6v m s  for type I boundary [47]. 

A typical twin boundary velocity in a slow rate experiment is ( ) 510TS

TBv   m/s [97]. For these 

values, a change of ( )TS

TBv  by an order of magnitude results in a change of DLQ by 17%, which is 

comparable to the variations of the approximately plateau stress during the experiment. Thus, the 
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estimation of the term 0

( )
ln 13.4

TS

TB

v

v

 
 

 
 can be assumed to be valid in most SMA. Inserting this 

approximation in Eq. (37) results in: 

 

2 3 3 23
40

2 2

TB TB

TS TS TB

s d
kT

s d

  

 

  
  

  
 

(38) 

 

Eq. (38) allows estimating the magnitude of the twinning stress TS , and its temperature 

dependence, provided that the material properties , , ,TB TBs d   are known. We note that a 

measured value for TB  is available only for 10M Ni-Mn-Ga.  

 

 

6.3 Motion of type II twins in the low driving force range 

 

In section 5.3 we presented a mechanism of motion for type II TB, which results from the 

topological structure of this twin type. Our analyses identified that heterogeneous nucleation of 

disconnections at the surface is essential for TB motion, and an expression for the activation energy 

for such a nucleation process was formulated in Eq. (30). Further, we showed that for certain 

materials, such as Ni-Mn-Ga, the expression for the activation energy obtains negative values for 

any value of the applied driving force, implying that nucleation of disconnections occurs 

athermally. In these materials the twinning stress of type II TB is related solely to the glide of 

disconnections. This is in contrast to the case of compound and type I TBs, for which disconnection 

nucleation is the rate limiting step that determines the twinning stress (section 6.1). 

Similar to the motion of ordinary dislocations, disconnection glide proceeds through the 

nucleation and expansion of kink-pairs, where nucleation is typically the rate limiting step. 

Consequently, for a type II TB, the thermally activated kinetic relation (Eq. (31)) is dictated by the 

activation energy for the nucleation of kink-pairs ( KPQ  in Eq. (12)). The combination of these two 

expressions, and by substituting  TSg g , results in: 
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  int 0

( )
2 2 ln

2

TS D
KP TS D c f TS

c TB

g h d e v
Q g y e kT

y v

     
         
    

 
(39) 

 

 

An estimation for the amplitude of the disconnection’s Peierls barrier D  can be obtained from 

the condition    /D Dg d h   that defines the driving force range of athermal disconnection 

glide, i.e., the driving force required to overcome the Peierls barrier D  at 0T K . Thus, we can 

write  

 

 0D TS Dg T K d h     (40) 

 

By inserting the expression for D  (Eq. (40)) and cy  (Eq. (11) in section 5.1) into Eq. (39) and 

rearranging, we obtain: 

 

 

 
  0

int ( )

0 3
2 2 ln

2

TS

TS D f TS

TS TB

g T K v
g T e h d e kT

g T v

   
         

  
 

(41) 

 

Here,  TSg T  represents the driving force associated with the twinning stress at a temperature 

0T K  . Eq. (41) may have various solutions for  TSg T , depending on the ratio between 

0

( )
2 ln

TS

TB

v
kT

v

 
 
 

 and 2 fe . In section 7.3 we discuss experimental data measured for 10M Ni-Mn-Ga 

in light of this analysis. 

 

7. Comparison of model predictions to experimental results 

 

The identification of the different nucleation processes required for TB motion and their 

associated activation energies (section 5), as well as the identification of the rate limiting processes 

for different twin types (section 6) allows us to quantitatively evaluate our predictions and compare 

them to experimental results for TB motion. Because the analysis presented in this paper considers 
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only the lattice barrier as the source for the twinning stress, comparison to experiments is 

meaningful primarily for data measured on high quality single crystals, where the effects of other 

barriers is negligible. For example, grown Ni-Ti single crystals typically include nanoscale 

Titanium carbides and Ni-rich precipitates, which strongly influence the mobility of the TB’s (see, 

e.g., [17]). Thus, twinning stress values measured in such cases are expected to be higher than our 

predictions. 

In the following sections we discuss results from slow-rate deformation experiments with strain 

rates below about 10
-2

 s-1, which have been studied extensively for various shape memory alloys. 

These low strain rates correspond to the small driving force regime. The primary measured 

parameter that characterizes TB motion within this regime of motion is the twinning stress (defined 

in section 2).  Available experimental values for the twinning stress raise several questions, which 

we address in the following sections by employing the equations developed in section 6. 

In section 7.1 we explain why the twinning stress at room temperature of type II twins is much 

smaller than that of type I twins in the same material. In section 7.2 we employ Eq. (38) to predict 

the values of the twinning stress of compound and type I twins in different materials, and compare 

our predictions to experimental data. In addition, we reason the measured temperature dependence 

of the twining stress (available mainly for 10M Ni-Mn-Ga).  In section 7.3, we reason the unique 

temperature insensitivity of type II twinning stress, as demonstrated by very low values measured 

for 10M Ni-Mn-Ga down to near zero temperatures. 

 

7.1 Differences in twinning stress between twin types.  

 

Available experimental data reveals a large difference between the measured twinning stress 

of conjugate type I and type II twins in the same alloy, the latter being significantly smaller. This 

is the case, for example, in 10M Ni-Mn-Ga, where differences as high as one order of magnitude 

are commonly reported between the twinning stress of conjugate type I and type II twins  [18]. 

Similar relations were reported for conjugate type I and type II twins in Cu-Al-Ni [19,31] and in 

Ni-Ti [17,98,99].  

The term conjugate twins implies that the classical twinning elements of both twins, i.e., 

twinning planes 1 2,K K , twinning directions 1 2,  , and twinning shear s , obey 

1 2 2 1,II I II IK K K K  , 1 2 2 1,II I II I     and 
I IIs s . Thus, the twinning shears of both types are 
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identical. Moreover, variations in lattice parameters that directly affect the magnitude of the 

twinning shear, as well as the value of the shear stiffness are identical in the two twin types. The 

TM shows that the magnitudes of the Burgers vector and the step height of a disconnection in 

“conjugate” type I and type II twins, are nearly equal (e.g., the calculations performed for 10M Ni-

Mn-Ga in [42]). Thus, by discussing differences in the twinning stress between “conjugate” twins 

in the same alloy we separate the effect of the topological structure of the TB that dictates the rate 

limiting mechanism of motion, from the impact of material properties (e.g., shear stiffness 

twinning shear and lattice spacing), which are discussed in section Error! Reference source not 

found. . 

The different topological structures of type I and type II twins (section 3) lead to different rate 

limiting mechanisms during TB motion (sections 5 and 6). On the one hand, the motion of type I 

TB is determined by the rate of homogenous nucleation of disconnection loops on the low index 

boundary plane, with an activation energy DLQ . On the other hand, the motion of a coherently 

faceted type II TB is determined by the rate at which disconnections glide on the same low index 

planes. For type II TBs, disconnection glide is dictated by the nucleation rate of kink-pairs, with 

an activation energy KPQ . As we showed in section 6.2, DL KPQ Q  for a given material system. 

Thus, the activiation energy for type II TB motion (which is QKP) is much smaller than the 

activation energy for type I TB motion (which is QDL). This implies that the twinning stress of a 

type II twins is much lower than that of type I and the temperature dependence is much weaker, in 

agreement with experiemmntal observations. 

 

7.2 Twinning stress of compound and type I twins 

 

The twinning stress of compound and type I twins in a given material can be approximated 

based on Eq. (38), provided that the properties , , ,TB TBs d   are known. We first analyze the 

situation in which the term containing TB  in Eq. (38) is much smaller than 3/2, and can thus be 

neglected (which is the case for 10M Ni-Mn-Ga). This results in a simplified expression for the 

twinning stress: 

 

3 2 3 2 33

160
TS TBd s s

kT


     

(42) 
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The value of the lattice spacing for twinning TBd  is similar for different SMA, and can be taken 

as 0.2nmTBd   for all materials. Under these conditions, Eq. (42) predicts a linear relation between 

the twinning stress TS  and the product 
2 3s , with a proportionality factor 33

160
TBd

kT


   . This 

relation, for the twinning stress at the room temperature, is plotted as the solid black line in Fig. 6 

using logarithm scaling of the variables. In this representation, the straight-line has a slope of 1 

and it intercepts the vertical axis at  .  

Experimental data for different materials is also plotted in Fig. 6, using the same logarithm 

scaling. The values of    and s  used for plotting the data for each twinning system and material 

were reported in the literature and are given in Table 3. The dashed line in Fig. 6 presents the 

relation express in Eq. (42) with a proportionality factor ' 0.64   that best fits the experimental 

data. The relatively small difference between   and '  can be attributed to the estimations we 

took in Eq. (37), e.g., the value of 13.4 assigned to the term  ( )

0ln / TS

TBv v , or the factor 0.5 in the 

isotropic approximation 
20.5Dq b .   

The good fit to a linear dependence of the measured twinning stress with the product 
2 3s

(dashed line in Fig. 6, R-squared larger than 0.99) strengthens the validity of our analysis. In 

addition, it implies that our assumption 
2

3 / 2TB

TS TBs d






 
 is valid in most materials. Recalling that 

/ 2TS TSg s   (Eq. (3)) and  0 /TB TBg d  (Eq. (34)), the relation 2 / 3 / 2TB TS TBs d    

implies that 0 5 TSg g . This means that for most materials1 a transition from thermally activated 

                                                           
1 Equation (42) does not apply to materials for which the nucleation of disconnection loops is 

not the rate limiting mechanism. For example, for face-centered cubic (austenitic, twin-induced 

plasticity, TWIP) steel 
2 3s  is in the order of 104 GPa2 and Equation (42) predicts a twinning 

stress about three orders of magnitude higher than actual values. In these materials, substantial 

deformation by slip precedes the onset of twinning. Twin nucleation results from dislocation 

reactions at sites of high dislocation density and strong stress concentrations. The stress 

concentrations result from dislocation pileups of dozens or hundreds of dislocations. Accordingly, 
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motion to fast athermal TB motion is expected to occur at stress values equal or smaller than 5 

times the twinning stress. Measured values of 0g  and TSg  in 10M Ni-Mn-Ga comply with this 

condition (see discussion in section 6.1). 

In a rough approximation, at which the temperature effect on the shear modulus and twinning 

stress is ignored, Eq. (42) predicts that the temperature variation of twinning stress of compound 

and type I twins follows an inverse 1/ T relation. Data reported in Ref. [32] for a type I twin in 

10M Ni-Mn-Ga revealed a linear increase in the twinning stress as the temperature decreases (Fig. 

7). Data measured over a wider range of at least 100 degrees in 10M Ni-Mn-Ga [30,34,100] 

showed a variation that can be interpreted as 1/TS T  (Fig. 7). A similar dependence was 

recently reported for compound twins in Ni-Mn-Ga-Co-Cu [101] and type I twins in 4M Ni-Mn-

Sn alloy [21]. These observations rely on measurements taken over a relatively narrow temperature 

range of about 40 degrees.  

The calculated temperature dependence according to Eq. (42), with   and s takes as their room 

temperature values, for type I twin in 10M Ni-Mn-Ga is plotted in Fig. 7 (blue dashed line), 

showing a weaker dependence on temperature compared to the measured data. We can reason this 

difference by considering the effects of the temperature on product 
2 3s  . Both the shear stiffness 

(again we refer to   as the elastic constant 'C ) [102–104],  and the twinning strain [105] increase 

as the temperature is decreased, and thus amplify the 1/ T dependence in Eq. (42). In addition, for 

materials in which  2 /TB TS TBs d     is comparable to 3/2, the dependence of TB on the 

temperature (as was reported in Ref. [106] ) also contributes to the temperature effect on the 

twinning stress. 

 

 

Table 3: Material properties and measured data used for plotting (in Fig. 6) the room temperature 

twinning stress of type I and compound twins in several materials.  

 

                                                           

dislocation reactions resulting in partial (twinning) dislocations and disconnections occur at 

stresses several orders of magnitude below the stress predicted by Equation (42). [REF] 
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 10M  

Ni-Mn-

Ga 

NM 

 Ni-Mn-Ga 

Cu-Al-Ni Cu-Al-

Ni 

BaTiO3 NiTi 

Twin 

type 

Type I Compound Compound Type I Compound compound 

  

(GPa) 

2  

[11,84]  

2  

[11,84] 

9.14  

 [31] 

9.14  
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Fig. 6 Twinning stress at room temperature versus the product 
2 3s  for compound and type I twins 

in several SMA systems, presented on logarithm scales. Data for different alloys were taken from Table 3. 

The dashed grey line is a linear fit to the experimental data, exhibiting 
2 0.99R  . The solid black line 

represents the calculated relation given by Eq. (42). 
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Fig. 7 Temperature variation of the twinning stress of type I twin in 10M Ni-Mn-Ga. Experimental 

data is taken from Refs. [32,34]. The dashed blue line represents the 1/T dependence obtained from Eq. 

(42), using the room temperature values of   and s listed in Table 3.  

 

  

7.3 Twinning stress of type II twins 

 

Information on the twinning stress of type II TBs is available mainly for Cu-Al-Ni and 10M 

Ni-Mn-Ga, the latter being extensive and measured on high quality single crystals over a large 

temperature range. In the following, we discuss data obtained for 10M Ni-Mn-Ga, which reveals 

two interesting behaviors: (1) an extremely small twinning stress of approximately 0.25 MPa at 

1.7 K and (2) a modest temperature sensitivity of the twinning stress over a range of 300 K (see 

Fig. 8). 

In section 6.3, we obtained an expression for the temperature dependence of the driving force 

associated with the twinning stress (Eq. (41)). We assumed that the type II TB motion follows an 

exponential type kinetic relation (Eq. (31)), which is dictated by the activation energy for the 

nucleation of kink-pairs KPQ  (Eq. (12)) . This approach is valid in case the activation energy KPQ  

is smaller than the thermal energy, and resulted in: 
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(43) 

 

The data presented in Fig. 8 indicates that for 10M Ni-Mn-Ga, 
 

 

0 3

2

TS

TS

g T K

g T


  over the 

temperature range 0 300T K   . Thus, if Eq. (43) is valid then 2 fe   should be larger than 

0

( )
2 ln

TS

TB

v
kT

v

 
 
 

, for any temperature up to 300T K  . Recalling that 2 2 32 f D De b d s d    (the 

first equality follows page 244, Eqn. 8-47 in Ref. [72], and the second equality is obtained by 

taking  Db h s d s    ) and plugging typical material parameters for type II twins in 10M Ni-Mn-

Ga (Table 2), yields 222 2.5 10fe    J. Thus, already for temperatures as low as 10T K  , the 

term 2 fe  (which determines the magnitude of the activation energy) is smaller than the thermal 

energy term, 
210

( 10 ) ( 10 )( )
2 ln 30 4 10T K T KTS

TB

v
kT kT

v



 

 
   

 
J . This implies that for 10M Ni-Mn-Ga, 

the description of the nucleation-controlled kinetics of type II TB motion by an exponential 

relation (Eq. (31), which leads to the formualtion of Eq. (43)) is not valid. Moreover, because the 

activation energy for nucleation of kink pairs is comparable to the thermal energy even at very low 

temperatures, thermally activated disconnection glide, which is weakly dependent on temperature 

and proceeds at very low stress, is possible down to very low temperatures. This agrees with the 

experimental data in Fig. 8. 

  In other materials, the magnitude of 2 fe  is larger than the value for 10M Ni-Mn-Ga (e.g., in 

Cu-Al-Ni it is 20  times larger). However, there is no experimental data on the value of 

 0TS T K   in other materials, and it may be much larger than the value at room temperature, 

such that  
 

 

0 3

2

TS

TS

g T K

g T


 , and 2 fe kT  over a wide temperature range. Under these 

conditions the analysis leading to Eq. (43) is valid. In such cases, the twinning stress of type II TB 

is also expected to be larger than the extremely low values measured for 10M Ni-Mn-Ga. 
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Fig. 8 Temperature variation of the twinning stress of type II twins in 10M Ni-Mn-Ga. Experimental 

data is taken from Refs. [30,32]. The temperature dependence is substantially weaker than that of the 

conjugate type I twins (Fig. 7). 

 

 

8. Summary 

 

This paper combines the TM descriptions for the equilibrium structures of TB in SMA with an 

analysis of energy barriers and mechanisms of motion. This unified approach provides a general 

analysis of TB motion and explains experimental findings on TB motion in different SMA systems, 

in particular in the slow rate regime of TB motion. We identify the topological, structural aspects 

that control the rate limiting mechanisms of motion of different twin types, and deduce quantitative 

predictions for the magnitude and temperature dependency of the twinning stress of different twin 

types. 

The slow rate motion of TB is controlled by different rate-limiting processes, which are 

dictated by the equilibrium topological structure of the TB interface. For type II twins, we discuss 

the case of a coherently faceted interface, which contains an ordered array of equally spaced 

twinning disconnections. We show that for this low-energy relaxed structure, the nucleation of 

new disconnections at the crystal’s surface, which is essential for maintaining the lateral 
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propagation of the TB, can proceed athermally, even at very low temperatures. This explains the 

lower twinning stress of type II twin relative to its value in the conjugate type I twin, as reported 

for various materials. In addition, it accounts for the extremely low twinning stress value of type 

II TB in 10M Ni-Mn-Ga measured at temperatures close to absolute zero. 

In compound and type I twins, the equilibrium boundary structure does not contain 

disconnections. Thus, the rate-limiting step for the motion of the entire TB is the thermally 

activated nucleation of disconnection loops, resulting in an exponential type kinetic relation. We 

formulate an expression for the activation energy for nucleation of disconnection loops, and use it 

to obtain an analytical prediction for the magnitude of the twinning stress. We show that the main 

material properties that control the twinning stress are the shear modulus   and the twinning shear 

s , and obtain a dependence that follows 
2 3

TS s   . This dependence is in excellent agreement 

with reported twinning stress in several materials, e.g., Ni-Mn-Ga, Cu-Al-Ni, Ni-Ti and BaTiO3. 
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10. List of symbols and abbreviations 

 

Symbol Description units 

,a c   Unit cell parameters length 

b  Burgers vector  length 

misdb  
Burgers vector of infinitesimal dislocation 

that accounts for interface misfit strain 
length 

TBd   Lattice spacing perpendicular to a TB plane length 

Dd   Lattice spacing perpendicular to a TD line length 

DL   Disconnection loop - 

fe  Formation energy of a kink-pair Energy 

inte  Interaction energy of kinks in a kink-pair Energy*length 

self

KPE  Self-energy of a kink-pair Energy 

self

DLE  Self-energy of DL Energy 

self

DE  Self-energy of a linear disconnection Energy 

existing

KPE  Total energy of an existing kink-pair Energy 

existing

DLE  Total energy of an existing DL Energy 

. .coh disl

elasticE  
Elastic energy of an array of coherency 

dislocations 
Energy/length 

PeierlsF  
Peierls interaction force acting on a 

disconnection in an array 
Force/length  

PKF  
Peach- Koehler interaction force acting on a 

disconnection in an array 
Force/length  

g   Driving force 
Energy / 

volume 

TSg  
Driving force for TB motion associated with 

the twinning stress 

Energy / 

volume 

0g  
Driving force for TB motion associated with 

the lattice barrier 

Energy / 

volume 

h  Step height of a TD length 

k   Boltzmann constant Energy / Kelvin 

K  Invariant twinning plane - 
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KP   Kink pair - 

0l  
Equilibrium distance between disconnections 

in an array on a type II TB 
length 

Dq  Line energy of a DL Energy/length 

KPQ  
Activation energy for nucleation of a kink-

pair 
Energy 

DLQ  Activation energy for nucleation of a DL Energy 

DQ  
Activation energy for nucleation of a linear 

disconnection 
Energy 

r  Radius of a DL length 

cr  Critical radius of a DL length 

s  Twinning shear  - 

T   Temperature Kelvin 

TB   Twin boundary - 

TD  Twinning disconnection - 

Du  Energy per unit length of a TD Energy/length 

bar

Du  
Energy barrier associated with TD motion 

across the Peierls potential 
Energy/length 

gain

Du  
Energy gain associated with TD motion 

across the Peierls potential 
Energy/length 

TBU   
Energy per unit area of a TB associated with 

its motion 
Energy/area 

bar

TBU  
Energy barrier associated with TB motion 

across the lattice potential 
Energy/area 

gain

TBU  
Energy gain associated with TB motion 

across the lattice potential 
Energy/area 

mech

TBU  
Mechanical energy of a TB associated with 

its motion 
Energy/area 

elec

TBU  
Electric energy of a TB associated with its 

motion 
Energy/area 

mag

TBU  
Magnetic energy of a TB associated with its 

motion 
Energy/area 

TBv  Velocity of a twin boundary Length / time 
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, ,x y z   Cartesian coordinates  

0x  
Length of depletion layer near the surface due 

to uniform motion of a disconnections array 
Length 

Dx  
Distance from the surface of a nucleated 

disconnection 
Length 

cy  Critical length of a KP Length 

Y   Disconnection length Length 

  Proportionality factor 310 / GPa  

TB  Amplitude of the lattice barrier for TB motion Energy /area 

D  Amplitude of Peierls barrier for TD motion Energy / length 

s   Longitudinal twinning strain - 

0   Coherency strain on a faceted type II TB - 

  Twinning shear direction - 

  Shear modulus GPa 

   Poisson ratio - 

   
Line direction of a twinning disconnection 

(TD) 
- 

   Pi, mathematical constant - 

TS  Longitudinal twinning stress  MPa 
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