PRIVACY PRESERVING INFERENCE WITH FAIR REPRESENTATIONS

Yulu Jin and Lifeng Lai

Department of ECE, University of California, Davis
Email:{yuljin,Iflai} @ucdavis.edu

ABSTRACT

In this paper, we develop a framework to achieve a trade-off
between fairness, inference accuracy and privacy protection
in the inference as service system. Instead of sending raw data
to the cloud, we conduct a random mapping of the data, which
will increase privacy protection and mitigate bias but reduce
inference accuracy. To achieve a desirable trade-off, we for-
mulate an optimization problem to find the optimal transfor-
mation mapping. As the problem is non-convex in general,
we develop an iterative algorithm to find the desired map-
ping. Numerical examples show that the proposed method has
better performance than gradient ascent in the convergence
speed, solution quality and algorithm stability.

Index Terms— statistical inference, fair representation,
privacy protection, iterative algorithm.

1. INTRODUCTION

As the number of low cost IoT devices being introduced in
the market has increased dramatically, inference as a service
(IAS) has become a promising solution for decision making
using powerful machine learning algorithms running in the
cloud [1]. In IAS, devices will send data to cloud and sophis-
ticated machine learning algorithms can be run on the cloud
providers’ infrastructure where training and deploying ma-
chine learning models are performed on cloud servers. How-
ever, two important issues, namely data privacy and fairness,
need to be properly addressed.

Data privacy governs how data is collected, shared and
used. In the IAS scenario, if the devices send raw data to the
cloud, several privacy issues such as whether or how data is
shared with third parties and how data is legally stored will
naturally arise. In our recent work [2], we have addressed
such privacy issue by transforming raw data through a care-
fully designed privacy-preserving mapping and sending the
transformed data to the cloud. We show in [2] that such a
transformation can provide a desirable trade-off between in-
ference accuracy and privacy protection.

While [2] addresses the privacy issue, it does not take the
fairness issue into consideration. The main purpose of the
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fairness consideration in learning system is to ensure that the
inference decisions do not reflect discriminatory behavior to-
ward certain groups or populations. With the wide spread
applications of machine learning in many scenarios that have
a direct effect in our lives, fairness constraints have become
a huge issue for researchers [3]. A well-known example is
Correctional Offender Management Profiling for Alternative
Sanctions (COMPAYS), a software that measures the risk of a
person to recommit another crime [4]. An investigation into
the software found that COMPAS is more likely to assign a
higher risk score to African-American offenders than to Cau-
casians with the same profile [4]. Similar findings have also
been made in other areas [3, 5]. There are at least two poten-
tial sources of unfairness in machine learning outcomes-those
arising from biases in the data and those arising from the al-
gorithms. Firstly, data is often heterogeneous, generated by
subgroups with their own characteristics and behaviors. Then
a model learned on biased data may lead to unfair and inaccu-
rate predictions [6, 7]. Secondly, for the algorithmic fairness,
one should first define the notion of fairness to fight against
discrimination and achieve fairness. However, the fact that
no universal definition of fairness exists shows the difficulty
of solving this problem. With different definitions, a vari-
ety of methods involving pre-processing [8], in-processing
[9, 10, 11] and post-processing [12] have been proposed to
satisfy some of the fairness definitions.

The goal of this paper is to extend the framework estab-
lished in our work [2] to address the fairness and privacy is-
sues simultaneously in the IAS design. The main observation
is that the transformation mapping employed in [2] can not
only be used for privacy protection but could also be used for
fairness representation. However, there is a trade-off among
data utility, fairness representation and privacy protection. By
carefully designing a transformation mapping on the original
data, the predictor will not observe the data directly, thereby
reducing the bias and enhancing the privacy protection, but
it will also reduce the inference accuracy. To properly ad-
dress the trade-off between different goals, we formulate an
optimization problem to find the optimal transformation map-
ping. To quantify the inference accuracy, we use mutual in-
formation between the transformed variable and the label. To
guarantee the fairness, we measure the bias by mutual infor-
mation between the transformed variable and the sensitive at-



tribute. To determine the privacy protection, instead of using
a specific privacy leakage measure, we follow our previous
work [2] and apply a general privacy leakage metric defined
by a continuous function f, where different choices of f lead
to different privacy measures. Thus, the trade-off problem
can be solved through a maximization problem where the ob-
jective function is composed of the above-mentioned three
terms. To solve the maximization problem, if we optimize
over the space of the transformation mapping directly, the
formulated problem is non-convex with multiple constraints.
Through various transformations and variable augmentations,
we show that there are four dominating arguments with cer-
tain nice properties. We then exploit this structure and design
an algorithm to solve the optimization problem by iterating
between dominating arguments until reaching convergence.
Compared with solving the optimization problem using gra-
dient ascent in the space of the transformation mapping di-
rectly, the proposed method does not need hyper-parameter
tuning and converges faster.

2. PROBLEM FORMULATION

As shown in Fig.1, we consider an IAS setup, in which one
would like to infer the parameter S € S from data Y € ),
in which Y has a finite alphabet, using servers in the cloud.
At the meantime, there is a sensitive attribute Z which con-
tains sensitive information such as race, gender etc. Under the
considered setup, instead of sending Y directly to the server,
we will learn a transformation mapping from Y to U € U,
and send U to the server. The server will use U to conduct
the inference task. This transformation mapping serves two
purposes: fair presentation to reduce bias and privacy pro-
tection. In order to mitigate the bias, we seek to find U that
captures all the relevant information to predict S while not
containing any information about the sensitive attribute Z. To
preserve the privacy, we want U to disclose as little informa-
tion about Y as possible. Here, U/ also has a finite alphabet
and is allowed to be different from ). Without loss of gener-
ality, we will employ a randomized mapping and use p(u|y)
to denote the probability that data Y = y will be mapped
to U = u and the whole mapping is denoted as Py y. Fur-
thermore, we use Pg to denote the prior distribution of S,
Pz|s to denote the conditional distribution Z given S and
Py| s to denote the conditional distribution Y given .S, while
the lower-case letter p is used to denote the component-wise
probability (e.g., p(s), p(z|s), p(y|s) will be used in the se-
quel). Thus, Z,Y, U form a Markov chain, and S, Y, U form
another Markov chain.

To measure the inference accuracy, note that the distribu-
tional difference between Pgs and Pg|yy characterizes the in-
formation about S contained in U. As I(.S; U) is the averaged
Kullback-Leibler (KL) divergence between Ps and Pgi7, we
use it to measure the inference accuracy. We would like to
make [(S;U) as large as possible so as to retain as much in-
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Fig. 1. Problem setup: Z is the sensitive attribute, S is the pa-
rameter of interest, Y is the data observation, U is the trans-
formed variable after the transformation mapping and S’ is
the inferred result.

formation about the parameter of interest S in U so that the
server can make a more accurate inference.

For the fairness, note that the distributional difference be-
tween Pz and Py |y characterizes the information about Z
contained in U, which is related to the bias. As the inference
is based on U and I(Z; U) is the averaged KL divergence be-
tween Pz and Pz, we use it to measure the bias. We aim to
make I(Z;U) as small as possible so that U contains as little
information about the sensitive attribute Z as possible.

To measure the privacy leakage, we follow similar ap-
proach as in our recent work [2]. In particular, we choose a

general form Ey, ¢y [d(y, u)], in which d(y, u) = f(pz();ﬁ/’z.) ) and

f is a continuous function defined on (0, +00). We note that

Ey,uld(y,u)] = Eyu[f (p’g;ﬁ) )] measures the distributional
distance between Py and PY|U. The smaller the distance, the
less information U can provide about Y and the better the pri-
vacy protection. This form is applicable for different privacy
metrics by setting f in different form [2].

Taking all these three conflicting goals into consideration,
we aim to find the mapping p(u|y) that solves the following

optimization problem
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Here, o € (0,00) and 8 € (0,00) are weights that indicate
the relative importance of minimizing the bias and maximiz-
ing the privacy protection respectively.

The problem setting is an extension of our previous work
[2], which investigates the privacy-accuracy trade-off in the
IAS scenario. The concept of measuring the inference accu-
racy and the privacy leakage follows directly from [2]. How-
ever, by taking fairness issue into consideration, we have an
additional term o (Z; U) in the objective function, which is
non-convex with respect to Py . Thus, the formulated opti-
mization problem is much more complicated. As the result,
the algorithm proposed in [2] are not suitable for this work.
In this paper, we will develop a new algorithm that can effi-
ciently solve (1).



3. PROPOSED METHOD

As the objective function is a complicated non-convex func-

tion of Py, we only expect to find a local maximal point.

First, we transform the maximization over single argument

to an alternative maximization problem over multiple argu-

ments. Then the Alternating Direction Method of Multipliers

(ADMM) method is introduced to solve the sub-problems.
From [2], we have that

I(S;U) =I(S;Y) Zp

U,y

p(uly) Drcrlp(sly) || p(s|u)]-

Then the objective function defined in (1) can be written as

FlPuyy, Pu, Pziu, Psiy] = 1(S;Y) — BEy,uld(y, )]
_Zp

For consistency, we require the following equations to be sat-
isfied simultaneously

= p(uly)p(y), vu, 3)
%, pluly)p(z )
p(zlu) = —p(u) ,Vz,u, ()]
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By (4) and (5) , we require that p(u) > 0, Vu. By considering
the objective function defined in (1) as a functional on Py |y,
Py, Pzy and Pg|y7, we have the following lemma.

Lemma 1. Suppose that f(-) is a strictly convex function.
Then for given Py, Py u, Psjy, F[Puy,Pv, Pz, Psiu]
is concave in each Py, ,Vy; € Y. Similarly, for given
Pu\y, Pziu, Psiuv » FlPuy, Pu, Pziv, Psju] is concave in
Py. For given Pyy, Py, Ps\y, F[Py|y, Pu, Pzju, Psju] is
concave in Pzy. For given Pyy, Py, Pzy, ]:[PU‘y,PU,
Pz v, Psju] is concave in Pg|y.

Using this lemma, a natural approach to solve (2) with the
requirements on the dominating arguments is to alternately it-
erate between Py, Py, Pz and Pgy until reaching con-
vergence. Following this insight, we rewrite (2) as an alter-
nating optimization problem

max max max max F[Pyy, Py, Pz, Ps\u].
Psiy Pziu Pu Pyjy

st pluly) = e, vy,

u, Y pluly) =1,Vy,
u) > 0,Vu, szu) =

p(z|u) > o,vu,z, > p(zlu) = 1,Vu,

p(slu) > 0,Yu, s, ip(su) =1,Vu,

and constraints (3), (4), (5).

p(uly) Dk rlp(sly) || p(s|w)] — al(Z;U).

Under this formula, we will solve the maximization on
Pg|y first and derive an analytical result as a function of Py,
Pyy and Pzy. Then consider the maximization on Py,
Pyy and Pgy for a given Pg|y.

For Pg|y7, the maximization problem is

max J:[PS|U|PU\Y7PU; PZ\U];
Ps|u

s.t. p(s|u) > 0,Vu, s, Zp(s\u) = 1, Vu, with constraint (5).

>, p(uly)p(s,y)

The solution can be easily derived as p(s|u) = o) ,

which satisfies all the constraints naturally.

Then we update Py by the consistency equation (4). For
the given Pg|y and P77, we solve the optimization problem
on Pyy and Py:

maxmax F|[Pyy, Pu|Psv, Pzl (6)
PU\Y PU

st p(uly) > €Yy, u, > pluly) =1,Yy, (1)

u) > 0,Yu, » p(u) =1, ®)

— > p(uly)p(y)

where (9) corresponds to the consistency requirement (3).
Since it is a non-convex problem with multiple constraints,
we apply ADMM to solve the problem. The augmented
Lagrangian for the above problem is given by

=0,Yu, (9)

L[Pyy, Pu, Psju, Pzu; Al
= F[Pyy, PulPsu, Pziu] + 3 Au)d(u) —

P 2
B) Z 6(u)
where A is a vector of size |{/|. Then (6) can be solved by the

following iterative procedure,

P — arg max L[Pyy,, P Py, Ph; A, (10)

Ulyi Py, Uly G-)

P = argrr})ax,c[P;]T;,PU;At], (11)
(%4

AL = N+ (P = (PL)T Py ), (12)

where Py denotes all rows before the i-th row in the
matrix PU‘y and PU\YUH denotes all rows after the ¢-th row.
After solving two sub-problems on Py and Py respec-
tively, we update the value of A. By conducting the process
iteratively until convergence, we will obtain a local optimal
solution. The algorithm is summarized in Algorithm 1.

4. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the results. In the simulation, we set Z € {0, 1}, which could



Algorithm 1 Design the optimal transformation mapping
Input:

Prior distribution Pg, Pz and conditional distribution Py, 7.
Trade-off parameter «, 3. Convergence parameter 7, ;.
Output:

A mapping Pyy fromY € YtoU € U.

Initialization:

Randomly initiate Pr;y and calculate Py, Pz 7, Psji by (3),
(4) and (5).

7 =1
2 while |[PY), — PG| > ndo
(1)1 _ pli—1) pl )1 (-1
3 P Pj PUJ‘Y = PU]D, .
4: t=1. _
5 while t =1 or HP(J) — p9r= IH >, do
6 Update Py, by solving (10), update Py by solv-

ing (11) and update A by (12).
7: t=1 + 1
8  Update PY)); by (4) and update P{}, by (5).
9: j=J3+1L
10: return Py
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Fig. 2. Conditional distributions

represent sensitive information such as gender, race, etc. We
set the prior distributions p, = {§,3} and p, = {},2, 2}.
Let Y| = 9,|4| = 11. The conditional distributions
Pys(yls,Z = 0) and Py|s(y|s,Z = 1) are shown in
Fig. 2(a) and Fig. 2(b). The initial mapping Pyy|y is obtained
by selecting uniformly distributed random numbers and nor—
malizing them. By setting f as f(z) = z log -2 a:+1 z+1’
we use Jensen-Shannon divergence as the privacy leakage
measure. Then we will perform both Algorithm 1 and gradi-
ent ascent (GA) to find the transformation mapping.

First, we explore the relationship between fairness trade-
off parameter o and the degree of fairness. Set the privacy
trade-off parameter 3 = 7. Then we randomly initialize Py
and run the algorithm until it terminates for different o’s. The
stopping criterion is HP['}T; Phyllr < 107% We repeat
this procedure 300 times for each a.. As shown in Fig. 3, we
notice that the bias measure I(Z; U) decreases as « increases,
indicating that the transformed variable U provides less infor-
mation about the sensitive attribute Z and thus the predictor

nz:uy

Fig. 3. Relationship between « and I(Z,U)

(a) Function value of Algorithm 1 (b) Function value of GA

Fig. 4. Function value v.s. iteration

will discriminate less against certain groups.

Secondly, we investigate the convergence speed of the
proposed algorithm. Fig. 4(a) illustrates the relationship be-
tween objective function values and iteration number. This
figure shows that the objective function value monotonically
increases and converges as the iterative process progresses.
For comparison purpose, we also plot the corresponding fig-
ure for GA in Fig. 4(b). From these figures, we can see that
Algorithm 1 converges within 30 iterations. On the other
hand, for GA, it is difficult to determine a proper step size
and the optimal function value found by GA is always smaller
than the value found by Algorithm 1. Furthermore, by setting
fasf(z) = 21;2 and applying Le Cam divergence as the pri-
vacy leakage measure, the local maxima found by our method
is also larger than the one found by GA.

5. CONCLUSION

We have established a framework to explore the fairness, in-
ference accuracy and privacy trade-off in IAS scenarios under
sensitive environments. We have formulated an optimization
problem to find the optimal transformation mapping. We have
transformed the formulated non-convex optimization problem
and designed an iterative method to find the local optima.
Moreover, we have provided numerical results showing that
the proposed method can mitigate the bias and the proposed
algorithm has better performance than GA in the convergence
speed, solution quality and algorithm stability.
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