

Web3D ’21, November 8–12, 2021, Pisa, Italy Carter Slocum, Jingwen Huang, and Jiasi Chen

while other objects may span the entire FoV, or even be out of the

FoV entirely. Secondly, the geometry data associated with WebXR

objects is stored in very coarse-grained format (one large binary

file), preventing fine-grained resource requests. To address the first

challenge, we propose a new scoring function that prioritizes which

objects to download, based on whether objects are potentially vis-

ible and their orientation from the center of the FoV. To address

the second challenge, we propose grouping geometry data together

into logically-meaningful chunks that minimize the average down-

load time of any object in a scene. Implementing these techniques

requires only changes to the server-side code, and works with

un-modified clients and browsers.

This project is related to research in viewport optimization for

web pages [Butkiewicz et al. 2015; Netravali et al. 2016] and 360◦

videos [Corbillon et al. 2017; Guan et al. 2019; Qian et al. 2018;

Zhou et al. 2018] but differs in several major respects. Firstly, web

page optimizations that prioritize resources łabove the foldž rely

on the DOM tree, which does not contain information about We-

bXR objects and their dependencies; furthermore, the implemen-

tation is very different as WebXR involves working with WebGL

and Javascript, rather than mainly HTML/Javascript/CSS. Secondly,

360◦ video optimizations prioritize 2D tiles in the user’s FoV from

a single user location, whereas our solution prioritizes 3D objects

and their dependencies, for any user location and orientation.

To the best of our knowledge, this is the first work to combine

page load reduction time reduction techniques with VR applica-

tions, improving the user experience for browser-based VR. We

call our system VIA, short for VIsibility-Aware Web-based VR. The

contributions of this paper can be summarized as:

• We showcase the latency issues of web-based VR by measuring

the page load times of several WebXR sample scenes, and find

that inefficient object download ordering is the root cause of the

observed high latencies. For example, the time until all content

is rendered in the user’s FoV for a Shack scene (details in ğ7.1) is

41.26 seconds under a 10Mbps connection. However, the objects

in the FoV consumed only 64% of the total objects requested,

indicating there are opportunities for significant savings.

• Wepropose a scoringmethod to determinewhich objects should

receive priority downloads. The score is a combination of visibil-

ity and orientation from the center of the user’s FoV. Given these

scores, the WebGL metadata, geometry data, and and Javascript

code are minimally modified to request the objects and their

dependencies in the appropriate order. To enable fine-grained

retrieval of object dependencies, we group relevant geometry

data together on the server, enabling efficient download any

combination of objects.

• To implement the above techniques, we develop a parser to

determine WebXR dependencies. We experiment with various

WebXR scenes under different network conditions. Our results

show that our method reduces page load times by up to 50.3%,

compared to the default WebXR implementation. Furthermore,

our method works for different user FoVs and is robust to mis-

estimation of the user FoV.

Next, we discuss related work (ğ2), a brief background onWebXR

(ğ3), and the motivating measurements for our work (ğ4). Our

problem setup and solutions are presented in ğ5, experimental

results in ğ7, and conclusions in ğ8. The technical report and open-

source code are provided on a website [Slocum and Huang 2021].

2 RELATED WORK

360◦ videos: Multiple papers study how to efficiently download

pixels within the FoV for 360◦ videos (e.g., [Corbillon et al. 2017;

Guan et al. 2019; Qian et al. 2018; Zhou et al. 2018]). However,

360◦ videos are different from the true 3D scenes we consider in

this work, as 360◦ videos only consist of 2D video data, and the

decision are which tiles to request, unlike the objects, images, data

buffers, and their dependencies that we have to consider in WebXR.

Furthermore, typically 360◦ video scenes can only be viewed from a

single position, whereas our method works for any initial viewing

positions and orientations.

Other VR FoV optimizations: FlashBack [Boos et al. 2016] pre-

renders 3D scenes to reduce latency in a thin-client design, whereas

this work follows the WebXR architecture where the client browser

performs rendering. Vivo [Han et al. 2020] optimizes fetching of

point cloud data based on visibility, whereas WebXR 3D objects we

consider in this work are typically stored as meshes plus textures

and normal maps that cover the meshes. WebXR objects thus re-

quire different splitting techniques to enable visibility awareness.

[Hu et al. 2017] has a similar approach of prioritising the download

of parts of a scene, using a different scoring heuristic and a more

coarse-grained object grouping. Our approach works with the re-

cent WebXR standard, is tested on more than one indoor scene,

and uses the standard HTTP client-server architecture rather than

relying on P2P torrents. Other space partitioning structures such

as k-d trees [Assarsson and Moller 2000] could produce alternative

object orderings than VIA’s scoring method; however, we believe

these gains would be incremental, as the majority of the latency

savings come simply doing some form of intelligent ordering.

Page load time: Klotski [Butkiewicz et al. 2015] and Polaris [Ne-

travali et al. 2016], among others, perform dependency analysis for

webpages in order re-order content delivery for faster rendering

łabove the foldž, but cannot parse WebXR metadata for the unique

dependency structure of 3D models. Their proxy-based implemen-

tation could be adapted for use in VIA, rather than the server-based

mechanisms we propose. Tools such as Lighthouse [goo 2021] can

record various metrics related to page load time, but cannot ac-

curately capture when all 3D objects are visible in WebXR in our

experience (discussed in Section 7.1), and do not provide WebXR-

specific suggestions for page load time reduction.

3D scenes and models: Previous work has been done to optimise

page load times for streaming specific types of 3D models using the

glTF [Schilling et al. 2016]; however, our solution is more general

as it applies to arbitrary scenes and not just cities. 3D Tiles [Cesium

2017] has similar goals and methods as this project, but requires

converting 3D data to the 3D Tiles file format and using a cus-

tom Cesium viewer. VIA can be considered a more łlightweightž

version of 3D Tiles that works directly with WebXR. Multiple au-

thors [Lavoué et al. 2013; Limper et al. 2013] suggest 3d graphic

data compression and streaming standards, reducing the amount of

bytes sent over the wire while requiring the browser to decompress

Web3D ’21, November 8–12, 2021, Pisa, Italy Carter Slocum, Jingwen Huang, and Jiasi Chen

the 𝑋𝑖𝑘 variable gives the ability to determine subset membership,

actually making the set cover problem easier. The main idea behind

the proof is that by requesting only one copy of each data buffer,

and incurring as few RTTs as possible (one request per object), then

the average latency per object is minimized. The proof is provided

in the technical report [Slocum and Huang 2021].

Proposition 1. 𝑋 = 𝑅,𝑌 = 𝐼 is an optimal solution to Problem 1.

The algorithm is shown in Alg. 2, and runs in 𝑂 (𝐽𝑁).

Algorithm 2 Data Buffer Grouping

1: Inputs:Whether object 𝑖 needs data buffer 𝑗 𝑅𝑖 𝑗
2: Outputs: Whether file 𝑘 includes data buffer 𝑖 𝑋𝑖𝑘 , whether

object 𝑗 requests file 𝑘 𝑌𝑘 𝑗
3: for all 𝑗 < 𝐽 do

4: for all 𝑖 < 𝑁 do

5: if 𝑅𝑖 𝑗 == 1 then ⊲ object 𝑗 needs data buffer 𝑖

6: 𝑋𝑖 𝑗 ← 1 ⊲ store data buffer 𝑖 in file 𝑗

7: 𝑌𝑗 𝑗 ← 1 ⊲ object 𝑗 requests file 𝑗

8: end if

9: end for

10: end for

Image re-ordering only. We also developed a simplified version of

VIA based on observations from certain test scenes where the total

data buffer size was much less than the total size of the textures and

images in the scene. In such cases, the data buffers did not impact

the latency much, since the images consumed most of the network

time. Therefore, we introduce a simplified version of VIA where

only the images are re-ordered according to the object scores, but

not the data buffers (essentially, running Alg. 1 but not Alg. 2). We

call this method VIA-Image.

6 VIA’S IMPLEMENTATION

VIA is implemented in approximately 700 lines of Python3 and

runs once per scene, when it is first placed on the server. It can

be run multiple times for different initial FoV’s expect from client

devices. The output of the script is the new data buffer files, new

metadata files. The WebGL library and a customized Javascript file

(containing the new request order) are also stored on the server. A

user wishing to reduce WebXR latency simply requests the new

Javascript file with an unmodified web browser, without needing

to make any other changes on the client side. Below, we briefly

overview the key implementation steps.

Parsing object dependencies. We developed a custom parser for

glTFs, which is a JSON-like object, and recorded the objects and

their dependent textures, normal maps, and data buffers into a

dictionary data structure. Parsing the axis-aligned bounding-boxes

for Alg. 1 required finding all bufferViews associated with an object,

and finding the minimum and maximum values of the vertex co-

ordinates along each axis. If any transformations are performed

on the geometry data in the glTF, this also needs to be taken into

account before computing the axis-aligned bounding boxes. All

glTF parsing and alteration was performed based on the glTF 2.0

standard [The Chronos Group 2021].

Creating new (.glTF) metadata. Alg. 1 is run to score the 3D

objects, and using the scores, the images are re-ordered within

the dictionary. For VIA-Image, this new dictionary is immediately

written to file as a new .gltf. For the full VIA, Alg. 2 is also run and

the original dictionary is split into multiple dictionaries, one for

each object. Then new .gltf metadata files are written, one for each

object. The glTF files are given a suffix in the file name to denote

what order they should be requested in. The buffer attribute in each

new glTF points to the URI of the relevant data buffer file (.bin).

We also experimented with creating one combined metadata file

for all the re-ordered objects (instead of one metadata file for each

object), but this resulted in all the binaries being requested first

followed by all the images, due to the default behavior of the glTF

loader, thus destroying our object ordering. Therefore we settled

one glTF per object; however, a disadvantage was this resulted in a

łflatteningž of the object hierarchy stored in the original metadata

file, which we plan to address in future work.

Creating new data buffer (.bin) files. The byte ranges for the data

buffer associated with each object are parsed from the original

glTF, and then copied over and combined into the new .bin files

in order of their parent object score. Special care must be taken to

maintain byte alignment (4, 8, or 16 byte-aligned) in order to allow

for efficient processing of the contained data.

WebXR scene alterations: For VIA-Image, no additional changes

to the Javascript code are needed. For the full VIA, a short loop in

the Javascript code must be added to request each glTF in the score

order. This is currently done manually in 4 lines of code, and is

potentially automatable in the future.

Priority hints. An initial problem existed evenwith the re-ordered

image requests, by default, the Chrome browser automatically

tagged images with łlowž priority and the .bin files containing the

data buffers as łhighž priority [Google Developers 2019], thereby

over-writing our careful ordering. To overcome this, we had to

explicitly tag all the glTFs, data buffer binaries, and images with

the same łlowž priority by altering 2 lines of Javascript in the glTF

loader. Note that setting these priorities alone would not enable

implementation of our scheme, as there are only two priority levels,

dis-allowing fine-grained re-ordering.

7 EXPERIMENTS

We performed experiments to show the performance of VIA. The

latency improvement depends on the user’s viewpoint, network

conditions, and characteristics of the scene itself. We also show

that our methods are robust to small changes in initial orientation

without needing to re-compute the object request order.

7.1 Setup

Experimentswere performed onGoogle Chrome, version 91.0.4472.124,

for different algorithms, test scenes, and network conditions. The

three algorithms were tested were:

• Control: The default operation of WebXR.

• VIA-Image: VIA with Alg. 1 only, so only image requests were

re-ordered, not data buffers.

VIA: Visibility-aware Web-based Virtual Reality Web3D ’21, November 8–12, 2021, Pisa, Italy

• VIA: VIA with Algs. 1 and 2, where the scene objects and their

image and data buffer dependencies were scored, sorted and

requested in order.

Our initial experiments were performed on four complex scenes

with varying sizes, number of objects, and sizes of binaries and im-

age files. We created three of the scenes based on publicly available

3D models, and the fourth scene is a WebXR test case.

• Solar System [Sol 2018]: A simple, open space with an ex-

tremely high image to .bin size (15.5:1 ratio). The scene contains

29 objects with a total size of 6.72MB.

• Future House [Fut 2016]: An enclosed indoor area with a mod-

erate image to .bin size (2.9:1 ratio). The scene contains 27

objects with a total size of 55MB.

• Bayou Shack [Bay 2021]: An outdoor scene with high image

to .bin ratio (6:1). The scene contains 425 objects with a total

size of 38.8MB.

• Sponza [spo 2019]: A walled-in area with a medium image to

.bin ratio (4.39:1). This is a sample WebXR scene. The scene

contains 103 objects with a total size of 50.2MB.

• City [Cit 2021]: An outdoor cityscape without any images, only

binaries. The scene contains 615 objects with total size 56MB.

We tested on three simulated network conditions indicative of

mobile networks: 30 Mbps with a 30ms RTT, 10 Mbps with a 60 ms

RTT, and the łFast3Gž preset in Google Chrome DevTools, which

roughly corresponds to 1.44 Mbps and 12 ms RTT based on an

Internet speed test. All results were averaged across 3 trials for

each Network-Scene-Algorithm combination, for a total of 135

experiments for the main results. The standard deviation in terms

of latency across trials was less than 1%, and so are not shown.

Measuring latency (time to first correct frame): The main evalu-

ation metric was the latency from the page reload time to when

all objects in FoV were loaded. Caching was disabled across tri-

als. To measure this, we used the load time of the last object to

show up in the FoV. By experimentally comparing with screen

recordings we captured, we verified that the last object’s load time

corresponds very closely to its actual display time, with the render-

ing latency being negligible on the order of a few ms. We developed

this methodology because existing page load time tools such as

Lighthouse [goo 2021] do not capture the desired latency. For exam-

ple, for the Sponza scene, Lighthouse reported a Largest Contentful

Paint of 0.7 s, which only corresponded a system menu appearing,

while in reality the entire scene was not view-able for 9.86 s.

7.2 Overall performance

Performance of VIA. Figure 6b shows the latency of each scene

with a 10 Mbps connection. While VIA had strictly lower latency

than the control in all scenarios, the largest gains occurred in scene

with the fewest bytes, with Solar System, Future House and Shack

saving 26.08%, 48.52% and 36.17% of time compared to Control,

respectively. Sponza and City saw the least improvement due to

a large number of visible objects in the FoV, as well as the floor

beneath the camera having amoderate object score and thus loading

near the end of the trace, delaying the time to correct frame. In

fact, Sponza, due to its scene structure, required 88% of all bytes to

be loaded before a correct frame could be rendered, and thus is a

challenging test case.

Performance of VIA-Image. VIA-Image showed some gains as well,

significantly beating the control (going from ~40 to ~25 seconds)

for Bayou Shack , the scene with the second highest image size

to binary size ratio. This is because fetching Bayou Shack’s large

images in the correct order saved significant amounts of time. How-

ever, for all scenes besides Bayou Shack, the last resource to finish

downloading was typically the large binary file (for Control and

VIA-Image), meaning that all the objects had to wait for the binary to

finish downloading before they were rendered all at once. In other

words, the binary was the bottleneck, and hence the full VIA with

data buffer grouping was needed. The City scene was particularly

challenging, because the majority of the objects were within view

(only 50 objects were culled by the visibility check).

Example screenshots. Figure 7 shows screenshots of the Sponza

scene loading for the 10Mbps results discussed above. VIA is able

to render in the first 3D objects at the five second mark, while the

Control and VIA-Image are unable to render a single 3D object until

the 45 second mark. VIA was able to render a partial scene after

20 s. This is due to the binary file splitting allowing rendering of

individual objects earlier in VIA, rather than waiting the original

single, large binary file. Control finishes a fraction of a second

later than VIA-Image (bottom row), due to it downloading the lion’s

head textures (at the end of the corridor) last, whereas VIA-Image

downloads it early on and thus is able to render a complete frame

as soon as the binary finishes downloading.

Large objects. One particularly challenging type of scene is those

with large objects whose bounding boxes cover nearly the entirety

of the scene. In such cases, poor object scoring may cause bottle-

necks in the latency for VIA, such as in Sponza or City. For example,

objects may pass the view frustum check yet the center of their

bounding boxes are located behind the user (e.g., floors or building

walls), resulting in a low tomedium request priority from the Object

Scoring module, despite them being visible in the FoV. On the other

hand, other objects may pass the view frustum check with their

centers directly in front of the user, thus receiving a higher priority

from the Object Scoring module, despite them not being visible in

the FoV because they are discontinuous (e.g., two windows on both

sides of a hallway). Scenes without large overlapping bounding

boxes, such as Solar System, do not have this issue and avoid these

potential bottlenecks.

System overheads. Here we briefly discuss the system overhead

of running VIA. One overhead is in terms of storage ś a side effect of

splitting the large .bin of the original scene into many smaller .bins

results in a small storage overhead. For the four test scenes, the

average space overhead was an additional 3.3%, which is minimal.

In terms of runtime, the main Python script executed in at most

16 seconds on an Intel i7-10700K CPU @ 3.80 Ghz, with over 15

seconds of that consumed by file I/O (e.g., reading and writing the

new data buffer files). For extremely large scenes in the future, view

frustum cullingmay be accelerated with common space partitioning

structures like octrees [Wilhelms and Van Gelder 1992] or K-d trees.

Since the script only has to run once per WebXR scene, when it is

VIA: Visibility-aware Web-based Virtual Reality Web3D ’21, November 8–12, 2021, Pisa, Italy

In general, the latency improvements of VIA over Control are

inversely proportional to the network bandwidth (i.e., greater im-

provement at slower speeds, which is exactly where we need the

most improvement). This is because as network bandwidth in-

creases, the overhead from extra RTTs (from the individual object

requests) gradually dominates the total latency, while the propaga-

tion time shrinks. Note that as network speeds change, the relative

improvement of VIA over Control may change (such as in Future

House from 10Mbps to 30Mbps). Based on our observation that the

last object to appear in the FOV depends on the network conditions,

we hypothesize this is because modern browsers typically make

parallel resource requests, so while the total latency tends to reflect

the network speed, it may not be perfectly proportional due to

changes in download completion order and other overheads.

We also examined performance under a fast wired network con-

nection (250 Mbps with 30ms RTT). In those experiments, the fast

data transfer speeds resulted in the scenes loading very quickly

(2.5 s on average for Control), so the extra RTTs from VIA method

dwarfed the overall download time for the scene (approximately

4 times as long on average). Consequently, we do not recommend

using VIA for extremely high speed connections (250Mbps+), as the

gains from the algorithms are minimized and the extra overhead

from the additional object requests could result in worse perfor-

mance than Control. However, in practical use cases, the VR devices

are wireless, and so the network speeds would not be as fast.

7.5 Impact of FoV orientation mis-estimate

Our last set of experiments examined the impact of user orienta-

tion changes. Due to user movement during the page load time or

incorrect orientation estimates from the VR device, it is possible

for the viewpoint at the time of first correct frame to be different

from the original viewpoint input to VIA. We performed experi-

ments to show that our methods are robust to slight changes in

the user’s viewpoint. We loaded the Sponza scene and recorded

the time to first correct frame with a user making a yaw rotation

(turning left to right) from 0◦ to 180◦, at intervals of 15◦. However,

the objects downloaded by VIA still used the object scores from the

mis-estimated 0◦ rotation.

On the x-axis of Fig. 9, we plot the amount of yaw rotation,

and on the y-axis, we plot the latency differences between VIA and

Control (a negative number indicates an improvement over Control).

The resulting plot has discrete jumps because the latency only

changes when the user has rotated enough that an object that was

not previously visible comes into view, or vice versa. The main

observation is that the VIA method continues to outperform the

Control, unless the user looks more than 90◦ away during the page

load time. This indicates that slight deviations from the user’s initial

viewpoint don’t significantly affect the performance of VIA.

8 CONCLUSIONS

This paper is the first study page load times for WebXR-based VR

scenes. Upon measuring the performance of the default WebXR, we

observed that the startup latency until all the 3D objects was quite

high, around 10 seconds on a 60 Mbps connection. Motivated by

this, we developed methods of fine-grained splitting and requests

of the objects within the user’s FoV. Experiments performed on a

working prototype indicated savings of more than 90% on some

test scenes, depending on the scene structure (number of objects

in the FoV). Future work includes generalizing our techniques to

other WebGL-based applications, and working with scenes with

more complex object hierarchies.

ACKNOWLEDGMENTS

This work has been supported in part by NSF CAREER 1942700

and a Google exploreCSR grant.

REFERENCES
2016. Future House. https://xeogl.org/examples/#importing_gltf_BranchHouse. Ac-

cessed: 2021-06-27.
2018. Solar System. https://sketchfab.com/3d-models/solar-system-

b6b69a95a6f0426bb8bbc2e8cb7ff46a. Accessed: 2021-08-01.
2019. Sponza. https://immersive-web.github.io/webxr-samples/tests/sponza.html.
2021. City Grid Block. https://sketchfab.com/3d-models/city-grid-block-

3488e40ceca846bb9023f894a749c398. Accessed: 2021-06-27.
2021. Forest Loner. https://sketchfab.com/3d-models/forest-loner-

b914786647d54b979bc7021e69c0db2e. Accessed: 2021-06-27.
2021. Google Lighthouse. https://developers.google.com/web/tools/lighthouse.
Ulf Assarsson and Tomas Moller. 2000. Optimized View Frustum Culling Algorithms

for Bounding Boxes. Journal of Graphics Tools 5 (07 2000). https://doi.org/10.1080/
10867651.2000.10487517

Kevin Boos, David Chu, and Eduardo Cuervo. 2016. Flashback: Immersive virtual
reality on mobile devices via rendering memoization. ACM MobiSys (2016).

Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas Sekar.
2015. Klotski: Reprioritizing web content to improve user experience on mobile
devices. In USENIX NSDI. 439ś453.

Cesium. 2017. Cesium 3D Tileset. https://github.com/CesiumGS/3d-tiles
Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017. Viewport-

adaptive navigable 360-degree video delivery. In IEEE ICC. IEEE, 1ś7.
Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent Charvillat,

and Praveen Kumar Yadav. 2018. DASH for 3D networked virtual environment. In
ACM Multimedia. 1910ś1918.

Google Developers. 2019. Get Ready for Priority Hints. https://developers.google.com/
web/updates/2019/02/priority-hints.

Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang.
2019. Pano: Optimizing 360 video streaming with a better understanding of quality
perception. In ACM SIGCOMM. 394ś407.

Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-aware mobile volumetric video
streaming. In ACM MobiCom. 1ś13.

Hristina Hristova, Gwendal Simon, Viswanathan Swaminathan, and Stefano Petrangeli.
2020. 3CPS: a novel supercompression for the delivery of 3D object textures. In
ACM MMSys. 66ś76.

S-Y Hu, T-H Huang, S-C Chang, W-L Sung, J-R Jiang, and B-Y Chen. 2008. Flod: A
framework for peer-to-peer 3d streaming. In IEEE INFOCOM. IEEE, 1373ś1381.

Yonghao Hu, Zhaohui Chen, Xiaojun Liu, Fei Huang, and Jinyuan Jia. 2017. WebTorrent
Based Fine-Grained P2P Transmission of Large-Scale WebVR Indoor Scenes. In
ACM Web3D.

Guillaume Lavoué, Laurent Chevalier, and Florent Dupont. 2013. Streaming Com-
pressed 3D Data on the Web Using JavaScript and WebGL. In ACM Web3D.

Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and André Stork. 2013. Fast
delivery of 3D Web content: A case study. ACM Web3D, 11ś17.

Duckkyoun Nam, Daehyeon Lee, Seunghyun Lee, and Soonchul Kwon. 2019. A Com-
parative Study on 3D Data Performance in Mobile Web Browsers in 4G and 5G
Environments. International Journal of Internet, Broadcasting and Communication
11, 3 (2019), 8ś19.

Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016. Polaris:
Faster Page Loads Using Fine-grained Dependency Tracking. USENIX NSDI (2016).

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices. InACMMobiCom.
99ś114.

Arne Schilling, Jannes Bolling, and Claus Nagel. 2016. Using glTF for streaming
CityGML 3D city models. ACM Web3D, 109ś116.

Carter Slocum and Jingwen Huang. 2021. VIA GitHub Repository. https://github.com/
mavens-lab/webxr_latency.

The Chronos Group. 2021. The glTF standard. https://www.khronos.org/gltf/.
W3C. 2021. WebXR Device API. https://www.w3.org/TR/webxr/.
Jane Wilhelms and Allen Van Gelder. 1992. Octrees for Faster Isosurface Generation.

ACMTrans. Graph. 11, 3 (July 1992), 201ś227. https://doi.org/10.1145/130881.130882
Chao Zhou, Mengbai Xiao, and Yao Liu. 2018. Clustile: Toward minimizing bandwidth

in 360-degree video streaming. In IEEE INFOCOM. IEEE, 962ś970.

Web3D ’21, November 8–12, 2021, Pisa, Italy Carter Slocum, Jingwen Huang, and Jiasi Chen

APPENDIX

Proposition 1

Proof. The objective function (3) can be written as

1

𝐵

∑

𝑖

∑

𝑗

∑

𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 +𝑇
∑

𝑗

∑

𝑘

𝑌𝑘 𝑗 (8)

We will show that with 𝑋 = 𝑅 and 𝑌 = 𝐼 , the first and second terms

are individually minimized, and hence their sum is also minimized.

First term in in (3): Using constraint (6), we can write:

1

𝐵

∑

𝑖

∑

𝑗

∑

𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 ≥
1

𝐵

∑

𝑖

∑

𝑗

𝑅𝑖 𝑗𝑠𝑖 (9)

where the LHS is the first term in (3) and the RHS is a tight lower

bound (otherwise the solution would be infeasible). If 𝑋 = 𝑅,𝑌 = 𝐼 ,

then the first term is 1
𝐵

∑
𝑖

∑
𝑗

∑
𝑘 𝑋𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 =

1
𝐵

∑
𝑖

∑
𝑗

∑
𝑘 𝑅𝑖𝑘𝑌𝑘 𝑗𝑠𝑖 =

1
𝐵

∑
𝑖

∑
𝑗 𝑅𝑖 𝑗𝑠𝑖 , achieving that lower bound.

Second term in (3): We claim that 𝑇
∑

𝑗

∑
𝑘 𝑌𝑘 𝑗 ≥ 𝑇 𝐽 is a tight

lower bound on the second term in (3), and since 𝑌 = 𝐼 satisfies

this lower bound, it minimizes the second term. To see the bound,

assume that
∑

𝑗

∑
𝑘 𝑌𝑘 𝑗 < 𝐽 . This implies ∃ 𝑗 such that:

∑

𝑘

𝑌𝑘 𝑗 = 0 (10)

∑

𝑖

∑

𝑘

𝑋𝑖𝑘𝑌𝑘 𝑗 = 0 (11)

∑

𝑖

𝑅𝑖 𝑗 = 0 (12)

which contradicts the assumption that an object requires at least

one asset (otherwise we could just remove it from the problem). □

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Motivation: High Latency in Default WebXR
	5 Problem and Solutions
	5.1 Overview
	5.2 Object Scoring
	5.3 Data Buffer Grouping

	6 VIA's Implementation
	7 Experiments
	7.1 Setup
	7.2 Overall performance
	7.3 Impact of different viewpoints
	7.4 Impact of network conditions
	7.5 Impact of FoV orientation mis-estimate

	8 Conclusions
	Acknowledgments
	References

