VIA: Visibility-aware Web-based Virtual Reality

Carter Slocum
University of California, Riverside
Riverside, CA, USA
csloc001@ucr.edu

ABSTRACT

New standards such as WebXR enable cross-platform VR experi-
ences, relying on the ubiquity of the modern web browser. However,
upon measuring performance of WebXR scenes, we found users
can suffer from high latency while waiting for all 3D objects appear
in their field-of-view. This is because storage and fetching of 3D
objects in WebXR (and its underlying WebGL libraries) are agnostic
to the user’s orientation and location, leading to latency issues.
Specifically, fetching of texture files in arbitrary order results in
3D objects waiting on their texture dependencies, and the storage
of all objects’ geometry data in one large file blocks individual ob-
jects from rendering even if their texture dependencies are satisfied.
To address these issues, we propose a systematic prioritization of
which 3D objects and their dependencies should be fetched first,
based on the user’s position and orientation in the VR scene. To im-
prove efficiency, the geometry data belonging to each 3D object are
optimally grouped together to minimize the average latency. Our
experiments with various WebXR scenes under different network
conditions show that our scheme can significantly reduce the time
to all 3D objects appearing in the user’s field-of-view, by up to 50%,
compared the default WebXR behavior.

CCS CONCEPTS

« Networks; - Human-centered computing — Ubiquitous and
mobile computing;

KEYWORDS
Virtual reality, page load time, WebXR

ACM Reference Format:

Carter Slocum, Jingwen Huang, and Jiasi Chen. 2021. VIA: Visibility-aware
Web-based Virtual Reality. In The 26th International Conference on 3D Web
Technology (Web3D °21), November 8-12, 2021, Pisa, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3485444.3487641

1 INTRODUCTION

New standards such as WebXR [W3C 2021] enable cross-platform
augmented and virtual reality (AR/VR) experiences by processing
and displaying content through web browsers. This enables devel-
opers to write a single WebXR experience and have it work across
multiple AR/VR devices, such as Oculus Quest and HTC Vive. Un-
der the hood, WebXR works by calling WebGL Javascript libraries

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Web3D 21, November 8-12, 2021, Pisa, Italy

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9095-8/21/11.

https://doi.org/10.1145/3485444.3487641

Jingwen Huang
University of California, Riverside
Riverside, CA, USA
jhuan333@ucr.edu

Jiasi Chen
University of California, Riverside
Riverside, CA, USA
jlasi@cs.ucr.edu

User's view at t=3

— g ®®
satellite.pni . \.ﬁ »
| ﬁ moss TQ%

moss.png
L]l [N
geometry.bin
(a) Default WebXR.

User's view at t=3

Q
Y satellite

W

rock.png

moss.png

ground.bin

(b) Our approach, VIA.

Figure 1: By default, WebXR downloads the objects and their
dependencies in arbitrary order (a), while VIA prioritizes
downloading objects within the user’s FoV so they can ap-
pear sooner (b).

and retrieving the relevant assets from a remote web server. Once
an object has all its dependent assets (geometry and texture data),
the object is rendered on the VR display. WebXR is supported by
most modern web browsers including Chrome and Edge and is
standardized by the W3C.

Motivated by the current support and active development of
WebXR, we experimented with various WebXR sample scenes, and
observed significant performance issues in terms of latency. Users
loading a WebXR scene had to wait up to 9.86 seconds under a 69
Mbps connection until all objects were fully visible in the user’s
field-of-view (FoV), hurting user experience. The reason for these
high latencies is that WebXR is agnostic to the user’s current FoV,
and retrieves dependencies in an arbitrary order determined simply
by how they are listed in a metadata file. In the worst case, objects
that are behind a user might be downloaded and rendered first,
while objects that are directly in front of the user might be download
and rendered last, leaving the user to view a blank screen in the
meantime. Based on these observations, in this work we propose
reducing the load times of WebXR scenes, by optimizing how objects
are stored and retrieved from a server, as illustrated in Fig. 1.

However, this is not a straightforward problem to solve for the
following reasons. Firstly, it is not clear in what order objects should
be retrieved, as some objects are entirely contained within the FoV,

Web3D ’21, November 8-12, 2021, Pisa, Italy

while other objects may span the entire FoV, or even be out of the
FoV entirely. Secondly, the geometry data associated with WebXR
objects is stored in very coarse-grained format (one large binary
file), preventing fine-grained resource requests. To address the first
challenge, we propose a new scoring function that prioritizes which
objects to download, based on whether objects are potentially vis-
ible and their orientation from the center of the FoV. To address
the second challenge, we propose grouping geometry data together
into logically-meaningful chunks that minimize the average down-
load time of any object in a scene. Implementing these techniques
requires only changes to the server-side code, and works with
un-modified clients and browsers.

This project is related to research in viewport optimization for
web pages [Butkiewicz et al. 2015; Netravali et al. 2016] and 360°
videos [Corbillon et al. 2017; Guan et al. 2019; Qian et al. 2018;
Zhou et al. 2018] but differs in several major respects. Firstly, web
page optimizations that prioritize resources “above the fold” rely
on the DOM tree, which does not contain information about We-
bXR objects and their dependencies; furthermore, the implemen-
tation is very different as WebXR involves working with WebGL
and Javascript, rather than mainly HTML/Javascript/CSS. Secondly,
360° video optimizations prioritize 2D tiles in the user’s FoV from
a single user location, whereas our solution prioritizes 3D objects
and their dependencies, for any user location and orientation.

To the best of our knowledge, this is the first work to combine
page load reduction time reduction techniques with VR applica-
tions, improving the user experience for browser-based VR. We
call our system VIA, short for VIsibility-Aware Web-based VR. The
contributions of this paper can be summarized as:

o We showcase the latency issues of web-based VR by measuring
the page load times of several WebXR sample scenes, and find
that inefficient object download ordering is the root cause of the
observed high latencies. For example, the time until all content
is rendered in the user’s FoV for a Shack scene (details in §7.1) is
41.26 seconds under a 10 Mbps connection. However, the objects
in the FoV consumed only 64% of the total objects requested,
indicating there are opportunities for significant savings.

e We propose a scoring method to determine which objects should
receive priority downloads. The score is a combination of visibil-
ity and orientation from the center of the user’s FoV. Given these
scores, the WebGL metadata, geometry data, and and Javascript
code are minimally modified to request the objects and their
dependencies in the appropriate order. To enable fine-grained
retrieval of object dependencies, we group relevant geometry
data together on the server, enabling efficient download any
combination of objects.

e To implement the above techniques, we develop a parser to
determine WebXR dependencies. We experiment with various
WebXR scenes under different network conditions. Our results
show that our method reduces page load times by up to 50.3%,
compared to the default WebXR implementation. Furthermore,
our method works for different user FoVs and is robust to mis-
estimation of the user FoV.

Next, we discuss related work (§2), a brief background on WebXR
(§3), and the motivating measurements for our work (§4). Our

Carter Slocum, Jingwen Huang, and Jiasi Chen

problem setup and solutions are presented in §5, experimental
results in §7, and conclusions in §8. The technical report and open-
source code are provided on a website [Slocum and Huang 2021].

2 RELATED WORK

360° videos: Multiple papers study how to efficiently download
pixels within the FoV for 360° videos (e.g., [Corbillon et al. 2017;
Guan et al. 2019; Qian et al. 2018; Zhou et al. 2018]). However,
360° videos are different from the true 3D scenes we consider in
this work, as 360° videos only consist of 2D video data, and the
decision are which tiles to request, unlike the objects, images, data
buffers, and their dependencies that we have to consider in WebXR.
Furthermore, typically 360° video scenes can only be viewed from a
single position, whereas our method works for any initial viewing
positions and orientations.

Other VR FoV optimizations: FlashBack [Boos et al. 2016] pre-
renders 3D scenes to reduce latency in a thin-client design, whereas
this work follows the WebXR architecture where the client browser
performs rendering. Vivo [Han et al. 2020] optimizes fetching of
point cloud data based on visibility, whereas WebXR 3D objects we
consider in this work are typically stored as meshes plus textures
and normal maps that cover the meshes. WebXR objects thus re-
quire different splitting techniques to enable visibility awareness.
[Hu et al. 2017] has a similar approach of prioritising the download
of parts of a scene, using a different scoring heuristic and a more
coarse-grained object grouping. Our approach works with the re-
cent WebXR standard, is tested on more than one indoor scene,
and uses the standard HTTP client-server architecture rather than
relying on P2P torrents. Other space partitioning structures such
as k-d trees [Assarsson and Moller 2000] could produce alternative
object orderings than VIA’s scoring method; however, we believe
these gains would be incremental, as the majority of the latency
savings come simply doing some form of intelligent ordering.

Page load time: Klotski [Butkiewicz et al. 2015] and Polaris [Ne-
travali et al. 2016], among others, perform dependency analysis for
webpages in order re-order content delivery for faster rendering
“above the fold”, but cannot parse WebXR metadata for the unique
dependency structure of 3D models. Their proxy-based implemen-
tation could be adapted for use in VIA, rather than the server-based
mechanisms we propose. Tools such as Lighthouse [goo 2021] can
record various metrics related to page load time, but cannot ac-
curately capture when all 3D objects are visible in WebXR in our
experience (discussed in Section 7.1), and do not provide WebXR-
specific suggestions for page load time reduction.

3D scenes and models: Previous work has been done to optimise
page load times for streaming specific types of 3D models using the
gITF [Schilling et al. 2016]; however, our solution is more general
as it applies to arbitrary scenes and not just cities. 3D Tiles [Cesium
2017] has similar goals and methods as this project, but requires
converting 3D data to the 3D Tiles file format and using a cus-
tom Cesium viewer. VIA can be considered a more “lightweight”
version of 3D Tiles that works directly with WebXR. Multiple au-
thors [Lavoué et al. 2013; Limper et al. 2013] suggest 3d graphic
data compression and streaming standards, reducing the amount of
bytes sent over the wire while requiring the browser to decompress

VIA: Visibility-aware Web-based Virtual Reality

client server

T metadata.g
|_mesheslbin |
2“ satel
time
mos:
><‘A 3 rock.png

L A

Figure 2: WebXR retrieves metadata, objects, and their data
buffer and image dependencies from a remote server in or-
der to render a 3D scene.

lite.png
s.png

the data before rendering, which may be complementary in addition
to VIA. Several works consider 3D object streaming by modifying
the underlying content, such as using “geometry images” [Hu et al.
2008] or texture/mesh compression [Forgione et al. 2018; Hristova
et al. 2020], which are complementary to this work, which focuses
on the order in which to fetch those objects.

3 BACKGROUND

We first provide a brief background on WebXR. WebXR is an API for
web-based AR/VR that enables cross-platform support for different
hardware. It is the successor to WebVR, with contributors including
Google and Mozilla, and the latest W3C working draft was pub-
lished in July 2020 [W3C 2021]. WebXR operates as shown in Fig. 2.
On the client, a WebXR scene is loaded like a regular webpage, and
includes Javascript control code that handles frame updates, ren-
dering, input devices, etc. with the help with WebGL libraries. The
Javascript code first loads a metadata file (.gITF) that provides infor-
mation on what objects are present in the scene, their locations and
orientations, and their dependencies. These dependencies include
the data buffers and image URIs to be rendered, which are stored
on a remote server. In this paper, we call the geometry data and
its associated information (e.g., texture mappings, vertex positions,
etc.) as a “data buffer” (corresponding to a bufferView and its corre-
sponding accessor in the gITF standard). Once the Javascript has
retrieved the objects and their dependencies, they can be rendered
on the display. On the server, the data buffers for multiple objects
are stored by default in one large (.bin) binary file, and the texture
data are stored as individual image files (typically .png or .jpg).

4 MOTIVATION: HIGH LATENCY IN
DEFAULT WEBXR

In this section, we highlight the problems with the default loading
process of WebXR scenes and its root causes, based on our measure-
ments and analysis. We conducted experiments with the default
WebXR implementation in Google Chrome, viewing several sample
scenes and recording the latency until all the objects within the
FoV appeared on the screen (further details in Section 7). Our main
observations are that startup latency is 44.26 seconds on average

Web3D 21, November 8-12, 2021, Pisa, Italy

on a 10 Mbps connection, and the root causes of this latency are (a)
the initial view-agnostic object fetching order and (b) the coarse-
grained storage of data buffers on the server, as further described
below.

High latency: We first show that the time to first correct frame
(i.e., when all the objects appear in the FoV) which we hereafter
refer to as the latency, is high. Fig. 3a shows the average latency
for each test case, under a 10 Mbps or 3G connection. The latency
is up to 51 seconds for 10 Mbps and 350 seconds for 3G. Similar
multi-second load times have also been observed in 4G and 5G
networks [Nam et al. 2019]. Next, we unpack the root causes of
these high latencies.

User-agnostic object fetching order: We observed that when a
WebXR scene is loaded, all the object dependencies are downloaded
according to an arbitrary fixed order (based on the order they
are listed in the .gITF metadata). This causes problems because
the download order is agnostic to the user’s FoV. For example, as
shown in the network request trace in Fig. 3b, the texture files
belonging to objects behind the user (e.g., roof tiles) are fetched
earlier, while the texture files belonging to objects in front of the
user (e.g., satellite dish) are fetched later. This delays the rendering
of objects in front of the user. Such observations motivated our
object scoring strategy, which determines what objects to prioritize
in the user’s FoV and fetches their dependencies first, decreasing
the latency (see Section 5.2).

Coarse-grained data buffer storage: Besides image (texture and
normal) data, objects also require data buffers containing geometry
meshes and other related information in order to render the object
correctly. However, we observed that the data buffers are typically
stored in one large .bin file, causing issues, because a single object
cannot be rendered until the entire file has been downloaded. For
example, in Fig. 6c, the data buffer asset is the second-slowest
file to download under a 10 Mbps connection due to its size; no
objects can render before the data buffer finishes downloading at 39
seconds. These observations motivated us to consider splitting the
binary appropriately; however, the challenge is to determine the
split granularity - a fine granularity allows object fetching flexibility
but incurs an extra RTT for each request (see Section 5.3).

5 PROBLEM AND SOLUTIONS

5.1 Overview

To quickly download and render the objects within the user’s FoV,
we have to solve the two aforementioned problems of object depen-
dency fetching order, and coarse-grained asset storage. Our system
system, has two modules:

e Object scoring (Section 5.2): The Object Scoring module’s
task is to determine which objects are within the user’s FoV,
and assign scores to the objects and their dependencies for later
request order optimization. Here, the problem is to determine
in what order to request the objects, based on where they are
in the scene. The main idea is that objects within the user’s FoV
and directly centered in front should have higher priority. This
information needed to compute this can be obtained from the
gITF metadata for the scene.

Web3D ’21, November 8-12, 2021, Pisa, Italy

Fast 3G mEE 10 Mbps mEE 30 Mbps

8 8

g

Latency (seconds)
g 8 & 8

Solar
System

(a) Default WebXR load latency of

Future Shack

Sponza City
House Scene

Carter Slocum, Jingwen Huang, and Jiasi Chen

® download

asset ID

download completion time (s)

(b) User-agnostic dependency fetching order. The roof tiles are
fetched earlier despite being behind the user, and satellite dish
is fetched later despite being within the FoV.

0 10 20 30 40 50 60 70
Image O =
Image 1 ==
Image 2 m—
Image 3 m—
Image 4 m—
Image 5 E—
Image 6 E——

W queuing
® download

asset

Image 7 nE—
Data Buffer
Image 8

download completion time (s)

(c) The data buffer takes 39 s
to load, blocking all objects
from rendering,.

38-51 seconds under 10Mbps.

Figure 3: High latency in default WebXR (a) is due to user-agnostic dependency fetching order (b) and coarse-grained data

buffer storage (c).

Object Scoring (§V-B) Data Buffer Grouping (§V-C)

Scene metadata User'’s Position Sceni metadata Original data
el °°'e°“d.°‘aR") and Orientation ot °“°°“"."“"Ri) buffers (bin)

y by

~ ~

y v

p Alg. 1
" Parse (

M Rotation Score

Mesh Grouping

Axis-Aligned
|_Bounding Boxes))
iew Frustum - Compute New
{ Culling }—»‘ Score Heuristic | ‘ Metadata
\) I ') \ * >,
Sorted object Object j metadata File k
requests U (.gitf with objects Y,) (-bin with data buffers X,)
(.bin, .png) L 9

Figure 4: Overview of VIA.

e Data buffer grouping (Section 5.3): The Data Buffer Group-
ing module stores the data buffer dependencies in a finer-grained
fashion so that individual dependencies can be fetched in the
order prescribed by the Object Scoring module. The problem
here is to determine which data buffers to group together, to
enable fine-grained object requests, while preserving sufficient
aggregation for efficient downloads. The main idea is to define
an optimization problem to group data buffers in order to mini-
mize the average download time per object, and show that our
proposed solution is optimal.

The output of the Object Scoring module are the order in which
to request objects; these requests are sent to the server to retrieve
the relevant objects and their dependencies, as stored by the data
buffer Grouping module. A summary of the inputs, outputs, and
interactions between the modules are shown in Fig. 4, and their
details are provided next.

5.2 Object Scoring

The main intuitions behind our object scoring method are to de-
prioritize: (a) objects that have no vertices within the FoV and (b)
objects that are far from the center of the FoV in terms of angle.
This requires computing two weights in our method in Alg. 1: a
visibility weight, and an angle weight. Note that sometimes these
two objectives may be in conflict with each other. For instance,
there may be an object that is centered behind the user, but some
parts of the object are visible within the FoV (e.g., a ground object);

Table 1: Table of notation.

Symbol Definition

Aj axis aligned bounding box of object j

B Bandwidth

Cp,Co,CrF | camera position, orientation, and FoV parameters
ocu subset of objects in the user’s current FoV
R;;j Whether asset i is needed by object j

S size of asset i

Sk size of chunk k

T RTT/2

U complete set of objects in the scene

U sorted list of objects in the scene

Xik Whether asset i is in chunk k

Yij Whether object j requests chunk k

in such cases, our method returns a moderately high score due to
its visibility and because the bulk of the object is behind the user.

Visibility Check. The visibility check returns whether (any part
of) an object j is within the FoV, and penalizes any object that is
guaranteed not to be within the camera’s initial FoV by adding
7 to the object’s score. Specifically, the visibility check relies on
computing the viewing frustum (line 5), which is the area in the 3D
scene that will be projected onto the user’s 2D screen. Then, view
frustum culling [Assarsson and Moller 2000] (line 7) is performed
to see if an object is within the viewing frustum, by computing the
six planes of the viewing frustum from the initial camera view, and
checking whether the axis-aligned bounding boxes (A; intersect
with the area in between the planes. The bounding box centers
can be computed from the minimum and maximum vertex position
co-ordinate elements given by the glTF metadata.

Angle Check. The angle weight determines how far off an object
is from the center of the user’s FoV. This is done by calculating
the angle between the camera’s default forward vector and the
“look at” vector (the vector from the camera’s position to the center
of an object). This is performed by the LookAtAngle function in
line 13. The weights from the visiblity check and the angle check
are then added together to compute the total score for each object.
Finally, the objects are sorted by their scores in ascending order
(line 16). The overall algorithm has complexity O(Jlog(J)) due to
the sorting step.

VIA: Visibility-aware Web-based Virtual Reality

Algorithm 1 Object Scoring

1: Inputs: Set of objects in the scene U, axis aligned bounding
box Aj for each object j € U, camera position Cp, orientation
Co, and FoV parameters C.

: Variables: score score; of object j, view frustum F

: Outputs: Sorted list of objects U

0«90

: F « ViewFrustum(Cp,Cp, CF)

: for all j in U do

if A; intersects F then

scorej < 0

O«—O0Uj
else

scorej « 1

end if

0 < LookAtAngle(Cp,Cop, Aj.center)

14: scorej « scorej + 0

15: end for

16: U « sorted list of {score;}

> visibility check

N A

_ s ke
L e =

> angle check

5.3 Data Buffer Grouping

Setup. The Data Buffer Grouping module breaks down the single
data buffer file from a WebXR scene into its constituent data buffers,
so that the Object Scoring module can request object dependencies
at a finer granularity. However, deciding which data buffers to group
together is non-trivial because there are trade-offs between RTT
and propagation time. For example, grouping all data buffers into
a single file would cost only one RTT to retrieve from the server;
however, this would result in a longer propagation time (due to
constrained bandwidth) before rendering of any object could start
(as in the default WebXR). On the other hand, creating J files from J
data buffers would require a fresh RTT to retrieve each data buffer,
but each file would have a short propagation latency, ensuring that
objects could be independently downloaded and rendered.

Problem Formulation. We formalize this problem as follows. There
are N data buffers and J objects in the scene. We seek to group data
buffers into files. The scene construction from the WebXR metadata
tells us R;; € {0, 1}, whether data buffer i is needed for object j.
The problem is to determine the integer variables X;; (whether
data buffer i should be included in file k) and Yy ; (whether object j
requires file k). The objective is to minimize the download time of
the set of objects O visible within the FoV:

Sk
E max Y] ~(—+T) 1
T jeo ki B)

where si. is the size of file k, B is the current bandwidth, and T is
the current RTT/2. The second term (% + T) is the download time
of file k, so Y; (% +T) is non-zero only if object j is dependent
on file k. The max ¢ term accounts for browser caching within
the same session; i.e, we only need to count the latency of one
download of file k, if file k needed by more than one object ;.

If we knew O in advance, then we could optimize the data buffer
grouping for those objects within the FoV. However, in reality, O
could be anything, since the user’s initial position and orientation
could be set arbitrarily. It wouldn’t be scalable to create and store

Web3D 21, November 8-12, 2021, Pisa, Italy

objects:

data buffers:

Figure 5: Problem 1 can be viewed as a series of set cover (Y,
mapping objects to files) and set membership (Xj;, mapping
files to data buffers) problems.

files for every possible user position/orientation. Instead, we can
try to optimize for a typical case, by minimizing the average time
of all files, so that no matter the user’s position/orientation, the
relevant files can be retrieved quickly. Mathematically, we write:

sk Sk
> max Vi (K1) <3S ij(—+T) @)
% /€0 B k jeu B

where the LHS is (1) and the RHS is an upper bound where the
maximum is replaced with a summation based on the intuition
above. Using the RHS as our objective, the optimization problem is
as follows.

PrROBLEM 1. Data buffer grouping

minimize Z tj (3)
Xites Y j iu
subject to tj= Z Yij (%‘ + T) v ()
k
Sk = Z§ixik Yk (5)
i
D XiYij = Rij Vi, j (©)
k
Xik» Yiej € {0,1} Vi, j, k (7

The objective (3) is equivalent to the RHS of (2), and minimizes
the average time of retrieving all objects. Constraint (4) defines an
object’s download time as the sum of the transmission delay and the
RTT. Constraint (5) defines the file size as the sum of its constituent
data buffers. Constraint (6) states that every object must receive
all its required data buffers. X;; and Y ; are the integer decision
variables.

Solution. This is an integer linear program, which is generally
NP-hard. The problem can also be thought of as a variant of set
cover, where both the subset membership and multiple set covers
have to be determined. Namely, we have to determine the subset
memberships (X (which data buffers i should be included in subset
k), and then solve J set cover problems, one for each object j (Y
(which subsets object j needs to cover all the data buffers in its own
universe, {R;;};). This is illustrated in Fig. 5.

However, it turns out that X = R, Y =1 is an optimal solution to
the problem (where X, Y, R are the matrix versions of X, Y ;, Rij,
and [is the identity matrix). This solution corresponds to an easy-
to-implement grouping of placing all data buffers of an object into
a single file. Intuitively, it is possible to find a solution because

Web3D ’21, November 8-12, 2021, Pisa, Italy

the Xj; variable gives the ability to determine subset membership,
actually making the set cover problem easier. The main idea behind
the proof is that by requesting only one copy of each data buffer,
and incurring as few RTTs as possible (one request per object), then
the average latency per object is minimized. The proof is provided
in the technical report [Slocum and Huang 2021].

ProposITION 1. X = R, Y =1 is an optimal solution to Problem 1.

The algorithm is shown in Alg. 2, and runs in O(JN).

Algorithm 2 Data Buffer Grouping

1: Inputs: Whether object i needs data buffer j R;;
2: Outputs: Whether file k includes data buffer i X;;, whether
object j requests file k Y ;

3: forall j < J do

4 foralli < N do

5 if R;j == 1 then > object j needs data buffer i
6: Xjj 1 > store data buffer i in file j
7 Yjj—1 > object j requests file j
8 end if

9 end for

10: end for

Image re-ordering only. We also developed a simplified version of
VIA based on observations from certain test scenes where the total
data buffer size was much less than the total size of the textures and
images in the scene. In such cases, the data buffers did not impact
the latency much, since the images consumed most of the network
time. Therefore, we introduce a simplified version of VIA where
only the images are re-ordered according to the object scores, but
not the data buffers (essentially, running Alg. 1 but not Alg. 2). We
call this method VIA-Image.

6 VIA’S IMPLEMENTATION

VIA is implemented in approximately 700 lines of Python3 and
runs once per scene, when it is first placed on the server. It can
be run multiple times for different initial FoV’s expect from client
devices. The output of the script is the new data buffer files, new
metadata files. The WebGL library and a customized Javascript file
(containing the new request order) are also stored on the server. A
user wishing to reduce WebXR latency simply requests the new
Javascript file with an unmodified web browser, without needing
to make any other changes on the client side. Below, we briefly
overview the key implementation steps.

Parsing object dependencies. We developed a custom parser for
glTFs, which is a JSON-like object, and recorded the objects and
their dependent textures, normal maps, and data buffers into a
dictionary data structure. Parsing the axis-aligned bounding-boxes
for Alg. 1 required finding all bufferViews associated with an object,
and finding the minimum and maximum values of the vertex co-
ordinates along each axis. If any transformations are performed
on the geometry data in the gITF, this also needs to be taken into
account before computing the axis-aligned bounding boxes. All
gITF parsing and alteration was performed based on the gITF 2.0
standard [The Chronos Group 2021].

Carter Slocum, Jingwen Huang, and Jiasi Chen

Creating new (.gITF) metadata. Alg. 1 is run to score the 3D
objects, and using the scores, the images are re-ordered within
the dictionary. For VIA-Image, this new dictionary is immediately
written to file as a new .gltf. For the full VIA, Alg. 2 is also run and
the original dictionary is split into multiple dictionaries, one for
each object. Then new .gltf metadata files are written, one for each
object. The gITF files are given a suffix in the file name to denote
what order they should be requested in. The buffer attribute in each
new gITF points to the URI of the relevant data buffer file (.bin).

We also experimented with creating one combined metadata file
for all the re-ordered objects (instead of one metadata file for each
object), but this resulted in all the binaries being requested first
followed by all the images, due to the default behavior of the gITF
loader, thus destroying our object ordering. Therefore we settled
one glTF per object; however, a disadvantage was this resulted in a
“flattening” of the object hierarchy stored in the original metadata
file, which we plan to address in future work.

Creating new data buffer (.bin) files. The byte ranges for the data
buffer associated with each object are parsed from the original
gITF, and then copied over and combined into the new .bin files
in order of their parent object score. Special care must be taken to
maintain byte alignment (4, 8, or 16 byte-aligned) in order to allow
for efficient processing of the contained data.

WebXR scene alterations: For VIA-Image, no additional changes
to the Javascript code are needed. For the full VIA, a short loop in
the Javascript code must be added to request each glTF in the score
order. This is currently done manually in 4 lines of code, and is
potentially automatable in the future.

Priority hints. An initial problem existed even with the re-ordered
image requests, by default, the Chrome browser automatically
tagged images with “low” priority and the .bin files containing the
data buffers as “high” priority [Google Developers 2019], thereby
over-writing our careful ordering. To overcome this, we had to
explicitly tag all the glTFs, data buffer binaries, and images with
the same “low” priority by altering 2 lines of Javascript in the gITF
loader. Note that setting these priorities alone would not enable
implementation of our scheme, as there are only two priority levels,
dis-allowing fine-grained re-ordering.

7 EXPERIMENTS

We performed experiments to show the performance of VIA. The
latency improvement depends on the user’s viewpoint, network
conditions, and characteristics of the scene itself. We also show
that our methods are robust to small changes in initial orientation
without needing to re-compute the object request order.

7.1 Setup

Experiments were performed on Google Chrome, version 91.0.4472.124,

for different algorithms, test scenes, and network conditions. The
three algorithms were tested were:

e Control: The default operation of WebXR.

e VIA-Image: VIA with Alg. 1 only, so only image requests were
re-ordered, not data buffers.

VIA: Visibility-aware Web-based Virtual Reality

e VIA: VIA with Algs. 1 and 2, where the scene objects and their
image and data buffer dependencies were scored, sorted and
requested in order.

Our initial experiments were performed on four complex scenes
with varying sizes, number of objects, and sizes of binaries and im-
age files. We created three of the scenes based on publicly available
3D models, and the fourth scene is a WebXR test case.

e Solar System [Sol 2018]: A simple, open space with an ex-
tremely high image to .bin size (15.5:1 ratio). The scene contains
29 objects with a total size of 6.72MB.

e Future House [Fut 2016]: An enclosed indoor area with a mod-
erate image to .bin size (2.9:1 ratio). The scene contains 27
objects with a total size of 55MB.

e Bayou Shack [Bay 2021]: An outdoor scene with high image
to .bin ratio (6:1). The scene contains 425 objects with a total
size of 38.8MB.

e Sponza [spo 2019]: A walled-in area with a medium image to
.bin ratio (4.39:1). This is a sample WebXR scene. The scene
contains 103 objects with a total size of 50.2MB.

e City [Cit 2021]: An outdoor cityscape without any images, only
binaries. The scene contains 615 objects with total size 56 MB.

We tested on three simulated network conditions indicative of
mobile networks: 30 Mbps with a 30ms RTT, 10 Mbps with a 60 ms
RTT, and the “Fast3G” preset in Google Chrome DevTools, which
roughly corresponds to 1.44 Mbps and 12 ms RTT based on an
Internet speed test. All results were averaged across 3 trials for
each Network-Scene-Algorithm combination, for a total of 135
experiments for the main results. The standard deviation in terms
of latency across trials was less than 1%, and so are not shown.

Measuring latency (time to first correct frame): The main evalu-
ation metric was the latency from the page reload time to when
all objects in FoV were loaded. Caching was disabled across tri-
als. To measure this, we used the load time of the last object to
show up in the FoV. By experimentally comparing with screen
recordings we captured, we verified that the last object’s load time
corresponds very closely to its actual display time, with the render-
ing latency being negligible on the order of a few ms. We developed
this methodology because existing page load time tools such as
Lighthouse [goo 2021] do not capture the desired latency. For exam-
ple, for the Sponza scene, Lighthouse reported a Largest Contentful
Paint of 0.7 s, which only corresponded a system menu appearing,
while in reality the entire scene was not view-able for 9.86 s.

7.2 Overall performance

Performance of VIA. Figure 6b shows the latency of each scene
with a 10 Mbps connection. While VIA had strictly lower latency
than the control in all scenarios, the largest gains occurred in scene
with the fewest bytes, with Solar System, Future House and Shack
saving 26.08%, 48.52% and 36.17% of time compared to Control,
respectively. Sponza and City saw the least improvement due to
a large number of visible objects in the FoV, as well as the floor
beneath the camera having a moderate object score and thus loading
near the end of the trace, delaying the time to correct frame. In
fact, Sponza, due to its scene structure, required 88% of all bytes to

Web3D 21, November 8-12, 2021, Pisa, Italy

be loaded before a correct frame could be rendered, and thus is a
challenging test case.

Performance of VIA-Image. VIA-Image showed some gains as well,
significantly beating the control (going from ~40 to ~25 seconds)
for Bayou Shack , the scene with the second highest image size
to binary size ratio. This is because fetching Bayou Shack’s large
images in the correct order saved significant amounts of time. How-
ever, for all scenes besides Bayou Shack, the last resource to finish
downloading was typically the large binary file (for Control and
VIA-Image), meaning that all the objects had to wait for the binary to
finish downloading before they were rendered all at once. In other
words, the binary was the bottleneck, and hence the full VIA with
data buffer grouping was needed. The City scene was particularly
challenging, because the majority of the objects were within view
(only 50 objects were culled by the visibility check).

Example screenshots. Figure 7 shows screenshots of the Sponza
scene loading for the 10Mbps results discussed above. VIA is able
to render in the first 3D objects at the five second mark, while the
Control and VIA-Image are unable to render a single 3D object until
the 45 second mark. VIA was able to render a partial scene after
20 s. This is due to the binary file splitting allowing rendering of
individual objects earlier in VIA, rather than waiting the original
single, large binary file. Control finishes a fraction of a second
later than VIA-Image (bottom row), due to it downloading the lion’s
head textures (at the end of the corridor) last, whereas VIA-Image
downloads it early on and thus is able to render a complete frame
as soon as the binary finishes downloading.

Large objects. One particularly challenging type of scene is those
with large objects whose bounding boxes cover nearly the entirety
of the scene. In such cases, poor object scoring may cause bottle-
necks in the latency for VIA, such as in Sponza or City. For example,
objects may pass the view frustum check yet the center of their
bounding boxes are located behind the user (e.g., floors or building
walls), resulting in a low to medium request priority from the Object
Scoring module, despite them being visible in the FoV. On the other
hand, other objects may pass the view frustum check with their
centers directly in front of the user, thus receiving a higher priority
from the Object Scoring module, despite them not being visible in
the FoV because they are discontinuous (e.g., two windows on both
sides of a hallway). Scenes without large overlapping bounding
boxes, such as Solar System, do not have this issue and avoid these
potential bottlenecks.

System overheads. Here we briefly discuss the system overhead
of running VIA. One overhead is in terms of storage — a side effect of
splitting the large .bin of the original scene into many smaller .bins
results in a small storage overhead. For the four test scenes, the
average space overhead was an additional 3.3%, which is minimal.
In terms of runtime, the main Python script executed in at most
16 seconds on an Intel i7-10700K CPU @ 3.80 Ghz, with over 15
seconds of that consumed by file I/O (e.g., reading and writing the
new data buffer files). For extremely large scenes in the future, view
frustum culling may be accelerated with common space partitioning
structures like octrees [Wilhelms and Van Gelder 1992] or K-d trees.
Since the script only has to run once per WebXR scene, when it is

Web3D ’21, November 8-12, 2021, Pisa, Italy

B Control HE VIA-image . VIA mmm Control

H VIA-image

Carter Slocum, Jingwen Huang, and Jiasi Chen

. VIA

HE VIA-image

. VIA = Control

Time (seconds)
N w B w
o o o o

=
o

Solar Future
System House

Solar Future Bayou Sponza City
System House Shack

Viewpoint

(a) Time to first correct frame under Fast
3G network conditions.

Bayou Sponza City
Shack

Viewpoint

(b) Time to first correct frame under 10
Mbps and 60 ms RTT.

Solar Future Bayou Sponza City
System House Shack

Viewpoint

(c) Time to first correct frame under 30
Mbps and 30 ms RTT network conditions.

Figure 6: Time to first correct frame for different scenes under different network conditions. VIA improves load time by up to
50%, with greater improvement in scenes where there are fewer objects in the FoV.

Control VIA-Image VIA

Time = 5 seconds

Time = 20 seconds

Time = 45 seconds

Figure 7: Screenshots of the Sponza WebXR scene at three
different time instances, for the Control, VIA-Image, and
VIA methods. VIA loads objects into the user FoV the fastest,
while VIA-Image provides some benefits over Control.

first saved to the server, we consider this runtime acceptable and
did not implement acceleration structures.

7.3 Impact of different viewpoints

The above experiments were conducted at the default initial user
viewpoint. In this set of experiments, we examined the impact of
different user viewpoints on performance. In particular, we studied
the Bayou Shack scene at 10 Mbps in greater detail to show the
extreme impact that different initial viewpoints can have on time
to first correct frame. Three viewpoints were chosen: a viewpoint
at the edge of the scene with only two objects in view (labeled as
“forward”), a viewpoint in the center of the scene, similar to the

Emm Control MEE VIA-image HEE VIA

w B
S o
o w

Time (seconds)
S
|
N

~
o
Difference in Latency
|
w

from Control (seconds)
|

o

Forward Center Backward
Viewpoint

0 30 60 90 120 150 180
Rotation misestimation (Degrees)

Figure 8: Time to first cor- Figure 9: VIA Improvement
rect frame from different of VIA over Control for the
viewpoints, for Bayou Shack. Sponza scene, if the sys-
The improvement of VIA over tem mis-estimates the user’s
Control depends on the view- head orientation.

point.

earlier experiments (labeled as “center”), and a viewpoint near the
edge of the scene looking inwards with nearly all objects visible
(labeled as “backward”).

Figure 8 show the latency of Bayou Shack at these viewpoints.
The greatest gains are achieved by VIA in the “forward” viewpoint,
because there are only two objects in the FoV that need to be
downloaded, and thus the remaining 423 objects can be loaded
afterwards. The “backward” viewpoint is the worst case scenario,
as very little latency savings are possible due to all objects in the
scene being visible. The results show that if all the resources are
needed to render a frame correctly, VIA can actually perform slightly
worse than Control, due to the overhead incurred by extra RTTs
to the server for each additional object (metadata and binary file)
request. However, when few resources are needed, the gains can
be substantial, around a 90% reduction in latency.

7.4 Impact of network conditions

The latency savings with the various methods depends on the net-
work conditions, as shown in Figures 6b, 6a, and 6. When increasing
the bandwidth from Fast 3G to 10Mbps to 30Mbps, VIA and VIA-
Image were able to outperform Control, with the magnitude of
those improvements varying greatly; for example, going from ap-
proximately 125 to 20 to 9 seconds as network speeds increased for
the Future House scene.

VIA: Visibility-aware Web-based Virtual Reality

In general, the latency improvements of VIA over Control are
inversely proportional to the network bandwidth (i.e., greater im-
provement at slower speeds, which is exactly where we need the
most improvement). This is because as network bandwidth in-
creases, the overhead from extra RTTs (from the individual object
requests) gradually dominates the total latency, while the propaga-
tion time shrinks. Note that as network speeds change, the relative
improvement of VIA over Control may change (such as in Future
House from 10Mbps to 30Mbps). Based on our observation that the
last object to appear in the FOV depends on the network conditions,
we hypothesize this is because modern browsers typically make
parallel resource requests, so while the total latency tends to reflect
the network speed, it may not be perfectly proportional due to
changes in download completion order and other overheads.

We also examined performance under a fast wired network con-
nection (250 Mbps with 30ms RTT). In those experiments, the fast
data transfer speeds resulted in the scenes loading very quickly
(2.5 s on average for Control), so the extra RTTs from VIA method
dwarfed the overall download time for the scene (approximately
4 times as long on average). Consequently, we do not recommend
using VIA for extremely high speed connections (250Mbps+), as the
gains from the algorithms are minimized and the extra overhead
from the additional object requests could result in worse perfor-
mance than Control. However, in practical use cases, the VR devices
are wireless, and so the network speeds would not be as fast.

7.5 Impact of FoV orientation mis-estimate

Our last set of experiments examined the impact of user orienta-
tion changes. Due to user movement during the page load time or
incorrect orientation estimates from the VR device, it is possible
for the viewpoint at the time of first correct frame to be different
from the original viewpoint input to VIA. We performed experi-
ments to show that our methods are robust to slight changes in
the user’s viewpoint. We loaded the Sponza scene and recorded
the time to first correct frame with a user making a yaw rotation
(turning left to right) from 0° to 180°, at intervals of 15°. However,
the objects downloaded by VIA still used the object scores from the
mis-estimated 0° rotation.

On the x-axis of Fig. 9, we plot the amount of yaw rotation,
and on the y-axis, we plot the latency differences between VIA and
Control (a negative number indicates an improvement over Control).
The resulting plot has discrete jumps because the latency only
changes when the user has rotated enough that an object that was
not previously visible comes into view, or vice versa. The main
observation is that the VIA method continues to outperform the
Control, unless the user looks more than 90° away during the page
load time. This indicates that slight deviations from the user’s initial
viewpoint don’t significantly affect the performance of VIA.

8 CONCLUSIONS

This paper is the first study page load times for WebXR-based VR
scenes. Upon measuring the performance of the default WebXR, we
observed that the startup latency until all the 3D objects was quite
high, around 10 seconds on a 60 Mbps connection. Motivated by
this, we developed methods of fine-grained splitting and requests
of the objects within the user’s FoV. Experiments performed on a

Web3D 21, November 8-12, 2021, Pisa, Italy

working prototype indicated savings of more than 90% on some
test scenes, depending on the scene structure (number of objects
in the FoV). Future work includes generalizing our techniques to
other WebGL-based applications, and working with scenes with
more complex object hierarchies.

ACKNOWLEDGMENTS

This work has been supported in part by NSF CAREER 1942700
and a Google exploreCSR grant.

REFERENCES

2016. Future House. https://xeogl.org/examples/#importing_gltf BranchHouse. Ac-
cessed: 2021-06-27.

2018. Solar System. https://sketchfab.com/3d-models/solar-system-
b6b69a95a6f0426bb8bbc2e8cb7ff46a. Accessed: 2021-08-01.

2019. Sponza. https://immersive-web.github.io/webxr-samples/tests/sponza.html.

2021. City Grid Block. https://sketchfab.com/3d-models/city- grid-block-
3488e40ceca846bb9023f894a749c398. Accessed: 2021-06-27.

2021. Forest Loner. https://sketchfab.com/3d-models/forest-loner-
b914786647d54b979bc7021e69c0db2e. Accessed: 2021-06-27.

2021. Google Lighthouse. https://developers.google.com/web/tools/lighthouse.

Ulf Assarsson and Tomas Moller. 2000. Optimized View Frustum Culling Algorithms
for Bounding Boxes. Journal of Graphics Tools 5 (07 2000). https://doi.org/10.1080/
10867651.2000.10487517

Kevin Boos, David Chu, and Eduardo Cuervo. 2016. Flashback: Immersive virtual
reality on mobile devices via rendering memoization. ACM MobiSys (2016).

Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas Sekar.
2015. Klotski: Reprioritizing web content to improve user experience on mobile
devices. In USENIX NSDI. 439-453.

Cesium. 2017. Cesium 3D Tileset. https://github.com/CesiumGS/3d-tiles

Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017. Viewport-
adaptive navigable 360-degree video delivery. In IEEE ICC. IEEE, 1-7.

Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent Charvillat,
and Praveen Kumar Yadav. 2018. DASH for 3D networked virtual environment. In
ACM Multimedia. 1910-1918.

Google Developers. 2019. Get Ready for Priority Hints. https://developers.google.com/
web/updates/2019/02/priority-hints.

Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen Jiang.
2019. Pano: Optimizing 360 video streaming with a better understanding of quality
perception. In ACM SIGCOMM. 394-407.

Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-aware mobile volumetric video
streaming. In ACM MobiCom. 1-13.

Hristina Hristova, Gwendal Simon, Viswanathan Swaminathan, and Stefano Petrangeli.
2020. 3CPS: a novel supercompression for the delivery of 3D object textures. In
ACM MMSys. 66-76.

S-Y Hu, T-H Huang, S-C Chang, W-L Sung, J-R Jiang, and B-Y Chen. 2008. Flod: A
framework for peer-to-peer 3d streaming. In IEEE INFOCOM. IEEE, 1373-1381.
Yonghao Hu, Zhaohui Chen, Xiaojun Liu, Fei Huang, and Jinyuan Jia. 2017. WebTorrent
Based Fine-Grained P2P Transmission of Large-Scale WebVR Indoor Scenes. In

ACM Web3D.

Guillaume Lavoué, Laurent Chevalier, and Florent Dupont. 2013. Streaming Com-
pressed 3D Data on the Web Using JavaScript and WebGL. In ACM Web3D.

Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and André Stork. 2013. Fast
delivery of 3D Web content: A case study. ACM Web3D, 11-17.

Duckkyoun Nam, Daehyeon Lee, Seunghyun Lee, and Soonchul Kwon. 2019. A Com-
parative Study on 3D Data Performance in Mobile Web Browsers in 4G and 5G
Environments. International Journal of Internet, Broadcasting and Communication
11, 3 (2019), 8-19.

Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016. Polaris:
Faster Page Loads Using Fine-grained Dependency Tracking. USENIX NSDI (2016).

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices. In ACM MobiCom.
99-114.

Arne Schilling, Jannes Bolling, and Claus Nagel. 2016. Using gITF for streaming
CityGML 3D city models. ACM Web3D, 109-116.

Carter Slocum and Jingwen Huang. 2021. VIA GitHub Repository. https://github.com/
mavens-lab/webxr_latency.

The Chronos Group. 2021. The gITF standard. https://www.khronos.org/gltf/.

W3C. 2021. WebXR Device APL https://www.w3.org/TR/webxr/.

Jane Wilhelms and Allen Van Gelder. 1992. Octrees for Faster Isosurface Generation.
ACM Trans. Graph. 11, 3 (July 1992), 201-227. https://doi.org/10.1145/130881.130882

Chao Zhou, Mengbai Xiao, and Yao Liu. 2018. Clustile: Toward minimizing bandwidth
in 360-degree video streaming. In IEEE INFOCOM. IEEE, 962-970.

Web3D ’21, November 8-12, 2021, Pisa, Italy

APPENDIX

Proposition 1

Proor. The objective function (3) can be written as
1 -
EZZZXikijSHTZZij ®)
ij ok J kK

We will show that with X = R and Y = I, the first and second terms
are individually minimized, and hence their sum is also minimized.
First term in in (3): Using constraint (6), we can write:

1 1
Ezzzxikij§i > EZZRijS_i)
i j ok i
where the LHS is the first term in (3) and the RHS is a tight lower
bound (otherwise the solution would be infeasible). f X = R, Y =1,

Carter Slocum, Jingwen Huang, and Jiasi Chen

then the first term is % 2i 2 Xk Xik YejSi = % 2i 2 Xk Rig Y ;i =
% 2.i 2j RijSi, achieving that lower bound.

Second term in (3): We claim that T 3} ; 3ix Y; > TJ is a tight
lower bound on the second term in (3), and since Y = I satisfies
this lower bound, it minimizes the second term. To see the bound,
assume that 3} ; >ix Y ; < J. This implies 3 j such that:

Zij =0 (10)
3
D XY =0 (11)
T r
ZRU‘ =0 (12)

which contradicts the assumption that an object requires at least
one asset (otherwise we could just remove it from the problem). O

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Motivation: High Latency in Default WebXR
	5 Problem and Solutions
	5.1 Overview
	5.2 Object Scoring
	5.3 Data Buffer Grouping

	6 VIA's Implementation
	7 Experiments
	7.1 Setup
	7.2 Overall performance
	7.3 Impact of different viewpoints
	7.4 Impact of network conditions
	7.5 Impact of FoV orientation mis-estimate

	8 Conclusions
	Acknowledgments
	References

