AlP

Publishing

Supervised Learning for Accurate Mesoscale Simulations of Suspension
Flow in Wall-bounded Geometries

Erika |. Barcelos,''2 Shaghayegh Khani,! Ménica F. Naccache,? and Joao Maia*!

D Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Rd, Cleveland,OH,
USA

2>Department of Mechanical Engineering, PUC - Rio, 225 Marqués de Sao Vicente, Gdvea, Rio de Janeiro, RJ,

Brazil

(*Electronic mail: joao.maia@case.edu)
(Dated: 24 March 2022)

Herein we have employed a supervised learning approach combined with Core-Modified Dissipative Particle Dynamics
Simulations (CM-DPD) in order to develop and design a reliable physics-based computational model that will be used
in studying confined flow of suspensions. CM-DPD was recently developed and has shown promising performance
in capturing rheological behavior of colloidal suspensions; however, the model becomes problematic when the flow
of the material is confined between two walls. Wall-penetration by the particles is an unphysical phenomenon that
occurs in coarse-grained simulations such as Dissipative Particle Dynamics (DPD) that mostly rely on soft inter-particle
interactions. Different solutions to this problem have been proposed in the literature; however, no reports have been
given on how to deal with walls using CM-DPD. Due to complexity of interactions and system parameters, designing
a realistic simulation model is not a trivial task. Therefore, in this work we have trained a Random Forest (RF)
for predicting wall penetration as we vary input parameters such as interaction potentials, flow rate, volume fraction
of colloidal particles, confinement ratio and etc. The RF predictions were compared against simulation tests and a
sufficiently high accuracy and low errors were obtained. This study shows the viability and potentiality of ML combined

with DPD to perform parametric studies in complex fluids.

I. INTRODUCTION

Studying physical properties and transport phenomena in
particulate flows is a multiscale problem encompassing a fun-
damental understanding of the connection between molecu-
lar physical phenomena and fluid macroscopic behavior. To
bridge the gap between microscopic and macroscopic proper-
ties, mesoscale modeling approaches can be successfully ap-
plied in modeling fluid flows.

As a mesoscale particle-based method, Dissipative Par-
ticle Dynamics has been extremely successful in modeling
soft matter and has successfully captured physics of complex
fluids'~7.

By utilizing soft potentials, DPD has shown extremely ver-
satile and flexible in the modeling of different soft matter sys-
tems including but not limited to polymers!>$-13, gels71413,
and suspensions>*1%. In most industrial, biomedical, phar-
maceutical applications and many biological systems such as
blood flow, fluid is flown through a confined geometry. DPD
despite its advantages could be associated with artifacts when
modelling wall-bounded systems such as density oscillations
at the wall'7-!8, This matter has been a subject of study and
many solutions have been developed for parametrizing DPD
to avoid numerical artifacts'’~22,

Different boundary conditions have been proposed for re-
alistic modeling of fluid motion in between the walls?!-23-26,
However, traditionally, the walls are made out of frozen parti-
cles which are still free to interact with the fluid particles. This
approach is associated with challenges which are mainly due
to the soft inter-particle interactions. Penetration of fluid par-
ticles in the walls is inevitable and avoiding penetration and
controlling density fluctuations in the vicinity of the walls is
an extremely difficult task which requires extensive theoreti-

cal and parametric studies.

Preventing wall penetration in DPD-based walls was first
addressed nearly three decades ago by?’. Posterior to this ini-
tial study, Pivkin and co-workers proposed a series of relevant
studies targeting the nonphysical phenomena taking place at
the wall'”>1%20_ In those studies, several alternative strategies
were introduced, including testing different boundary condi-
tions, modifying wall forces, controlling density fluctuations
and evaluating different wall densities and repulsion interac-
tions. Additionally, walls adopting different geometries have
been addressed in the past years?!. In this particular work, the
walls were not predefined, instead, local fluid particles were
made in a way that they were able to detect the wall on-the-fly
based on neighbouring particles. Previously, we explored?
the effect of fluid-wall interactions and wall density on con-
trolling wall penetration and density fluctuations as these two
parameters have been shown to have the most impact in deter-
mining a realistic physics-based simulation set up.

In the current study we expand upon our previous inves-
tigations of wall-bounded flows and we would like to pro-
pose a model for simulating flow of colloidal suspensions in
a confined geometry. For this purpose, we have employed
the framework proposed by Whittle and Travis?® named Core-
Modified Dissipative Particle Dynamics CM-DPD, which rep-
resents colloidal particles with a rigid core and a soft hydrody-
namic shell. This method has been evaluated and expanded by
our group in multiple studies>>”-'% and has been found to be
very advantageous and promising in capturing the full spec-
trum of suspension rheology with much lower computational
cost compared to models based on standard DPD simulations.

Reports of DPD applied to complex fluids in wall geome-
tries can be found in the literature?’-231. In suspensions,
however, the number of works is not as extensive, maybe be-
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cause an additional complexity appears in setting the inter-
actions since there are parameters at the particle level, such
as rigidity and concentration, that may also play an unknown
role in particle penetration. In other words, setting the wall-
particle interactions might not be as trivial as in the case of
pure solvent and wall system.

Adjusting colloid and solvent interactions in suspensions
in a way that it prevents nonphysical effects is a key aspect
in creating a successful simulating system for studying fluid
properties. Since there are other parameters, in addition to
wall repulsion, which play a role in particle penetration a
systematic study about the individual and collective effect of
those variables is essential to a better understanding of the
problem and to the creation of a more reliable system.

Understanding the extension to which particle parameters
and flow properties impact particle migration and wall pene-
tration in DPD-based suspensions has not been addressed yet
even though it is essential in the establishment of a geometry
that can be posteriorly used to study the physical properties of
a system. Adjusting colloidal and solvent interactions to avoid
penetration is a key aspect in creating a successful simulating
geometry for a reproducible study.

Exploring the essential relationships and associations be-
tween the parameters affecting penetration is a challenge in
two aspects. First, there might exist interactions between the
parameters that influence the response variable, thus, not only
individual effects must be taken into account but also possible
interactions between them. Secondly, particle penetration po-
tentially varies in a non-linear way depending on the levels of
the parameters adopted. Therefore, developing a strategy to
quantify penetration would be an extremely complex task.

Due to the vast variety of data and the great number of Ma-
chine Learning (ML) algorithms, today it is possible to solve
an enormous range of problems. Therefore, Machine Learn-
ing algorithms can be used as a powerful tool for understand-
ing correlations between different parameters and hidden pat-
terns withing data through statistical analysis and decoupling
of combined effect. Machine Learning, in a time efficient
manner, provides a systematic understanding of individual ef-
fects and combined responses especially in cases when the
response variable depends in an unknown and complex way
on the original variables. There has been a plethora of interest
in using Machine Learning in material science for making fast
predictions about materials’ behavior as introduced in recent
review studies®”°. ML has also been combined with DPD
simulations for modelling different fluid properties>¢40.

As described earlier in the Manuscript, accurate definition
of system parameters in confined flow of fluids in DPD sim-
ulations on its own is a difficult task and is still a subject of
research. CM-DPD simulations of colloidal suspension flow
between walls introduces more complexities in wall descrip-
tion. In particular, wall-particle and wall-solvent interactions,
concentration of colloids, rigidity of the particles and flow rate
are the main deterministic factors that give rise to the artifacts
caused due to presence of the walls. In a highly concentrated
system, for example, the overall motion of particles will be
slowed down, since there is a higher number of colloidal par-
ticles that have real masses. More rigid particles are likely to

have an influence in penetration, since they are more viscous
and more repulsive than soft ones. Flow rate and confinement
ratio may also play a role in particle distribution in migration,
and when all these factors are present, quantifying penetration
in order to control the magnitude of the interactions become a
very challenging task.

To the best of our knowledge, there has not been a report of
accurate modeling CM-DPD suspensions in a wall-bounded
flow which systematically studies the effect of simulation pa-
rameters on wall-penetration. It is, however, an exceptionally
important study at the core development of a trustworthy sim-
ulated system. Therefore, the objective of this work is to un-
derstand how individual and collective effects in terms of par-
ticle and flow characteristics will influence wall penetration
by solvent and colloidal particles. Intuitively, solvent penetra-
tion relies uniquely on wall-solvent interaction parameters®?,
however we intend to investigate if different properties of
colloidal particles influence how solvent particles migrate to-
wards the walls. Quantifying colloidal penetration and under-
standing how colloidal parameters affect penetration is also a
key goal of this study. Developing a mathematical expression
enabling quantification of penetration for both colloid and sol-
vent would be a challenge. Therefore, we propose a machine
learning approach to make predictions about penetration con-
sidering a series of input parameters.

Herein, a supervised learning approach is applied to pre-
dict solvent and colloid penetration in a pressure driven flow.
In order to understand how particle rigidity, concentration,
body force, confinement ratio and interaction parameters in-
fluence solvent penetration, and most importantly, to which
extent colloidal penetration is affected when those variables
are tuned. This work is organized as follows: Initially, the
computational method behind the simulated system as well as
the machine learning architecture used are introduced. De-
tails of the chosen algorithm as well as the performance met-
rics used to evaluate the model accuracy are also highlighted.
Next, the results of the training process are presented for col-
loid and solvent penetration. The choice of the best hyperpa-
rameters for each model was also performed and a systematic
discussion of the results is carried out.

Il.  SIMULATION BACKGROUND

A. Dissipative Particle Dynamics

Dissipative Particle Dynamics*! is a particle-based simula-
tion approach popularly employed to model complex fluids.
One of the main advantages of DPD is the flexibility and ver-
satility in modeling a large variety of structures. DPD parti-
cles in its essence are not actual real particles, but points in
the space having an interaction range defined as r., represent-
ing the maximum distance in which particle interactions are
active and it is commonly set to . =1. In DPD, the Newton
equation of motion Eq.(1) is solved for pairwise interaction
between DPD particles according to three forces:
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The conservative force FlC described in Eq.(2) expresses
the repulsive character of the DPD particles and it governs
the interactions between the components in the system. The
strength of the interactions is controlled by the magnitude
of the repulsive parameter, @;;. rij =|r;| and |y = |r;| —|rj]
which expresses the calculated distance between the particles.
The unit vector ej; is given by ej=rj;/r;; and wf‘}is a weight
function.

fj(rij) = {(I_TI) rij <re s

0 r,-j>rL.

Groot and Warren*?, in their pioneer work in DPD, em-
ployed an equation of state to map the repulsion parameters to
the compressibility of different systems. In order to keep the
water compressibility, the repulsion parameter between DPD
particles have to be set at a=25kgT when system density p; is
constant at 3.

The random force, Fil} in Eq.(3), represents the thermal fluc-
tuations and works as a heat source in system. To compensate
the energy added by this force a dissipative force is also in-
troduced. The dissipative force, Fi[j’ Eq.(9), expresses the vis-
cous forces and it controls the relative velocities of the par-
ticles. Additionally, it removes the energy added by the ran-
dom force. In the equations, ¥;; and o;; represent the dissipa-
tive and random coefficients, vjj is the relative velocity of the
pair of particles i and j, vij = v — vj and 6;; is the white noise
that introduces randomness in the system. The random and
dissipative force combined form a canonical ensemble NVT
and are related by the fluctuation-dissipation theorem as de-
scribe by Espanol*?, which states that the following relation-
ships must be valid in order to preserve the correct thermody-
namics:

2

o (rij) = [0"(rij)] (©)

0% = 2vkgT )

 is the weight function, ¢ and 7 are, respectively, the ran-
dom and dissipative coefficients.

Modified Velocity Verlet Algoritm*? was used to integrate
the equation of motion and calculate and update the particles
positions and velocities.

B. Core-Modified Dissipative Particle Dynamics

As an alternative approach to the traditional freezing
method to model suspensions, CM-DPD was introduced in
2010 by Whittle and Travis?®. This method consists in rep-
resenting the colloidal particles as a rigid core with an at-
tached outer dissipative coating; this is added to make the par-
ticles more closely related to real physical particles. In con-
trast to traditional DPD, in which the interactions are soft and
center-to-center, in CM-DPD they are semi-hard and surface-
to-surface. As a consequence, the traditional r, is replaced by
a h;j term, given by h;; = r;; — R; — R;, which is the surface-
surface distance equivalent version accounting for colloid in-
teractions. R, and R, are the radii of the pair of particles and
the weight function takes the form:

i g
wu':{(l rf) o ®)

0 hij > 1e

There are three different type of interactions present in
the system: DPD-DPD, which represents solvent-solvent
and solvent-wall interactions, DPD-colloid, given by solvent-
colloid and wall-colloid interactions and finally, colloid-
colloid. In the first case the forces taking place are the reg-
ular ones for DPD interactions (Eq.1). In the second case, the
interaction when the distances between the center of the DPD
particle and the core surface of the colloidal particle is approx-
imately zero the repulsion forces are maximum and it vanishes
when the distance between them are beyond 14;;. Fig. lail-
lustrates the scenario where the interaction is maximum and
Fig. 1b minimum. In the colloid-colloid case, the forces are
maximum when the cores are about to form a contact (Fig. 1c)
and vanishes as a function of the ranges in which the colloidal
forces are applied.

[c]

FIG. 1. Interactions between DPD-colloid and colloid-colloid parti-
cles. White beads represent DPD particles and pink and blue spheres
constitute the colloidal particles having a size ratio difference of 1.4.
Interaction between a DPD bead and a colloid particle when the re-
pulsion is maximum (a) and minimum (b). (c) Maximum interaction
between two colloidal particles.

The physical phenomena in the colloidal world is driven by
colloidal forces*. In a simulated environment, not all of them
can be evaluated. Instead, the most significant ones for the
phenomena of interest are usually included in the system. Hy-
drodynamic interactions, as one of the most relevant forces in



AlP

Publishing

colloidal mixtures, are typically considered**. In short, it de-
scribes the flow disturbance promoted by the presence of the
particles. In CM-DPD the short-range hydrodynamic interac-
tions are given as:

Fl = —£f (e viy)eyj ©

where ff1 is the pair-drag term*

37noR?
- {7( Tl hy>8 (10)
i 2
! 7(37[;73R ) 0< h,‘j <6

The hydrodynamic force is much stronger at very close sep-
aration distances, and although it is always active in the sys-
tem it becomes very week at i;; > 1r.. For this reason, in this
model it is accounted only short-range hydrodynamic force,
i.e. lubrication. At contact point (h;; = 0) the force diverges
to infinity, thus, a § term is added to truncate the force at 6=
0.000001

To replicate the repulsive character of the interactions and
avoid cores overlapping, a core force is also introduced in
the system (Eq.11). In opposition to the hydrodynamic force,
this force is active in a very narrow window, limited to when
the particles are in near contact. The force has been slightly
modified by? and accordingly, it is the version adopted in this
work. In*® the core force was mapped to physical units by
the shear modulus; the softest particles( f{7"* = 100) corre-
spond to 400MPa and the most rigid ones ( ffjl"” =25,000) to

100GPa3.

Ficjore — { }90reeij hij <0.02 (11)

0 hyj>002

C. Predictive Modeling

Machine learning consists of data-driven approaches to
support the decision-making process in a recurrent problem.
Basically, a model can learn and understand how to solve
complex problems from data reflecting past experiences [42].
Essentially, an input matrix containing the features and their
associated values is fed in a pre-determined machine learning
algorithm and the model will make predictions from it. To
compute how accurate the predictions are a performance met-
ric is used, in which the differences between true values and
predictions are computed. At first the predictive power will be
poor and the outputs will be the result of a random guess, but
as the model keeps receiving new data it starts learning from
it and eventually it will improve the output prediction.

Depending on the problem to be solved and the type of data
different ML approaches can be used. Supervised learning,
which corresponds to the class of algorithms with the goal of
making predictions, can be classified into two tasks accord-
ing to desired predicted output. In classification tasks, the al-
gorithm predicts a categorical variable from the independent

4

variables while in regression tasks the response is a continu-
ous value. Several ML models can be applied to a specific
problem and the choice of the most appropriate one depends,
essentially, on the type of data and type of problem.

Decision learning tree is one of the Machine Learning al-
gorithms that enables developing predictive models via data
observation. Herein, we train a Random Forest (RF), which is
a learning method that is mostly used for classification and
regression constituted of ensembles of decision trees. RF
are used to predict solvent and wall penetration value from
a collection of input parameters. A detailed description of the
method is given in following.

D. Random Forests

Random forests RE, introduced in 1995° and extended in
2001 by*” is a very popular machine learning model able to
solve regression and classification problems. As an ensem-
ble method, RF combine decisions trees that work as weak
learners and return predictions based on the average results
returned by the individual trees. The fundamental concept is
that these uncorrelated trees when combined will most fre-
quently outperform the individual components and will yield
more accurate predictions.

RF are essentially a modification of the bagging
technique®®, which is particularly useful in reducing the
model variance and therefore, it is very effective in preventing
overfitting. The overall idea behind bagging is that by com-
bining multiple and uncorrelated predictors a more stable and
assertive prediction can be obtained. Bagging is often used in
decision trees, that are considered high variance algorithms.

Decision trees are the constituents of RF. The fundamental
idea behind them is that if a model can learn certain rules from
the training data it will be able to make predictions on new and
unseen data. In short, they are built from the root node, corre-
sponding to the attribute that best separates the observations.
From the root nodes the tree is split in smaller subsets (nodes)
until it reaches a decision node. An important step in building
a decision tree is selecting the attribute to be used in the root
node as well as in the branches. A random selection would
yield bad accuracy results, thus, a common criterion for split-
ting the trees is the Gini index and Entropy.

The most used performance metrics to evaluate how accu-
rate the model predictions are, which, in regression, means
how close the predictions made by the model are compared to
the simulated results are mean squared error MSE, root mean
squared error RMSE and R?.

l m
MSE =—¥ (y=)® 12)
i=1
1 m
RMSE = [~} (v=i) a3)
i=1
R (14)
SSior
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yis the actual value obtained by the simulations and y; is the
model predicted output. SS,.; is the sum of squared residuals
and SS;,4 the total sum of squares.

11l.  SIMULATION DETAILS

The simulation box was built by placing the walls at the
edges of the computational domain. The number of solvent
DPD particles, colloids, and wall DPD particles were calcu-
lated to ensure a constant density in the entire system of ap-
proximately p; = 3. The box size used was regulated accord-
ing to the desired confinement ratio. Once the y-direction was
fixed, the other two dimensions were set in a way that the in
all the cases the box volume remained practically unchanged.
Periodic boundary conditions were applied in the x and z di-
rections and no wall boundary condition was employed.

The wall design was inspired by the previous works!'”!?, in
which a double layer of symmetrically spaced DPD particles
were frozen to represent it. These particles are not allowed
to move neither interact among themselves, and therefore are
excluded from the calculations. However, they are free to in-
teract with the remaining particles in the system.

Colloidal particles were built as Core-Modified particles
having a size ratio difference of 1.4 and masses calculated as
PA-%H'R{ where d; is the system density. A bimodal suspen-
sion was used and to achieve the desired global concentration
the number of particles was calculated in a way that:

VFglobtll = VF;‘)'pel + VFIypeZ (15)

given

VFrypel = VF;ypeZ (16)

VFiype1 and V Fyy e are, respectively, the volume fraction of
colloidal particle type 1 and type 2. The solvent assumes the
water compressibility, and hence the a;; between solvent DPD
particles remained fixed at a;;=25. For DPD-colloid interac-
tions, the a;; used was 100°. The dissipative ¥ and random &
coefficients adopted are 50 and 10°. It is important to empha-
size that the a;; that was varied, as shown in Tablel, is the one
between wall/solvent and wall/colloids. In this work, these
two wall interactions varied by the same proportion. The time
step used was 5x10-52 and the simulations ran for 500,000
time steps, after an equilibrium step of 100,000 time steps.
Five input variables were used with varying levels, as showed
in Table II. Combining all of them resulted in the total of 558
simulations. An uniform body force is applied to all solvent
particles which is equivalent to a pressure drop in a Poiseuille
flow.

The box dimensions differs according to the confinement
ratio, however an approximate volume of 21,600r, was em-
ployed in all cases. The number of colloidal and solvent par-
ticles respective to each VF is displaced in Table II.

Wall penetration is calculated as:

Body Force | [Rigidity

0.1 100
1 1000
10 25,000

TABLE 1. Parameters with the respective levels adopted in the
simulations. a;; refers to the interactions between wall/DPD and
wall/colloids. y/D represents the confinement ratio, y is the box
width and D is DPD particle diameter. Rigidity is set by the strength
of the core force f,oe in colloid-colloid interactions.

VF |Number of Colloidal Particles| Number of Solvent Particles
0.08 93 19872
0.28 327 15552
0.48 562 11232
0.58 679 9072

TABLE II. Total number of colloidal and solvent particles with the
corresponding VF for y/D=10. In the other confinement ratios the
number is slightly different considering that the box volume is not
precisely the same.

Penetration = (17)
100%
where
Napa
= 18
ndpd Viayer (18
dnm[ _ NeotMcol 1 +NL'()[ML'()[2 (19)

Vlayer

Viayer is the volume of the layer expressed as
Viayer = Viox/Niayers and nygye, is the number of layer in
which the box is divided, being the first and last layer of the
channel corresponding to the wall. djgyg corresponds to the
layer density considering 100% of penetration. Ng,q is the
number of DPD particles; for simplification, since the DPD
mass is one, the mass term is not included in the equation.
N, is the number of colloids an M., is the colloid mass. In
order to compute penetration, the densities were calculated in
the wall layers and penetration was calculated according to
Eq. (17).

A schematic representation of the simulation box with an
example of a case when interactions are not adjusted correctly
leading to penetration is illustrated in Fig. 2.

For predictive modeling, the data was randomly split in
70% for training and 20% for testing. The data was normal-
ized to avoid scaling problems using MinMaxScaler class in
sklearn library and log transformations were also applied to
the output columns. The model performance was measured by
calculating MSE and RMSE and R?. The predictive power of
several ML models was compared and RF was the one yield-
ing the highest accuracy and performance, which explains our
choice for this specific model.
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FIG. 2. Illustration of a scenario when the simulation parameters
are not adjusted appropriately resulting in wall penetration. In the
Figure, blue and pink particles represent the two type of colloidal
particles in the system. For a clearer visualization DPD particles are
not represented. fp=1, VF=0.48 and rigidity=25,000.

IV. RESULTS
A. EXPLORATORY AND STATISTICAL ANALYSIS

As previously stated, solvent particles represented as DPD
beads, are, in reality, single points in space with a r, interac-
tion range. Hence, there is no direct particle parameter that
could be affecting particle penetration. Yet, the presence of
colloidal particles in the system is likely to influence the way
solvent particles move across the channel and migrate towards
the walls. In this case, although there is no direct relationship,
colloidal particles properties may impact solvent penetration
in different levels.

Fig. 3 illustrate penetration of colloidal particle at two dif-
ferent body forces, all rigidities and volume fractions evalu-
ated. For simplicity, only colloidal penetration is shown her;
a similar behavior for solvent penetration was also observed.

FIG. 3. Mean colloidal penetration shown for different VF and par-
ticle rigidities. The right figure corresponds to a fg = 0.1 and left
fB = 1. The data points are averages over all repulsion and confine-
ment ratios for the parameter at interest. That explain the large error
bars. For this analysis, only the mean values should be, therefore,
considered for comparison.

It can be clearly observed that colloidal penetration is
strongly dependent on the VF. Colloidal particles, as opposite
to DPD particles have masses and sizes and the force neces-
sary to keep them away from the walls has to be greater than
in fluid DPD particles. Particle rigidity also affect penetration,
specially evidenced at a stronger volume fraction. Rigid parti-
cles are more viscous and the energy necessary to avoid their
penetration has to be higher comparative to the soft ones. In
terms of body force comparison, it seems that the change in
magnitude is not significantly affecting particle penetration.

A second analysis was carried out varying, this time, the
repulsion between wall and colloidal particles and the results
are displayed in Fig. 4. As expected, an increasing in the
repulsion(a;;) has a significant effect on particle penetration.
Regardless the particle rigidity of body force employed, when
a strong interaction is applied a low number of particles will
migrate towards the walls. Stronger repulsion combined with
small rigidities leads to an nonexistent particle penetration.

es/aij .pdf

FIG. 4. Mean colloidal penetration shown for different a;; at different
rigidities. The right figure corresponds to a fg = 0.1 and left fg =
1. As in the previous Figure, the data points are averages over all
VF and confinement ratios for the parameter at interest, explaining
the large error bars. Only the mean values should be considered for
comparison.

In order to complement and extend this analyses to all pa-
rameters and levels for the two different cases, a correlation
analysis can be performed to gain more insights about the re-
lationship between input parameters and final outcomes (pen-
etration).

Correlations and statistical analysis are extremely useful
when one wants to investigate associations and dependencies
between variables. Spearman correlation [46] represented in
Eq. 20 is a bivariate analysis based on creating ranks in the
variables and measuring the strength of the monotonic rela-
tionship between pairs of them. In the Spearman correlation,
as opposite to the traditional Pearson correlation, the associ-
ation does not need to be linear neither normally distributed,
as it expresses only the direction of the relationship. The cor-
relations coefficients for all the pairs of variables is illustrated

as a heatmap in Fig. 5.
lations .pdf

FIG. 5. Heatmap showing the Spearman correlation coefficients ob-
tained for pairs of variables

6y D?
=l 20)

Where D? is the difference between ranks of the variables
and n the total number of observations.

It can be observed that while a moderate negative correla-
tion exists between a;; and colloid penetration in the solvent
case it is negatively strong. The closer the coefficient values
are to +1 or -1, the stronger the correlation. That means that
the higher the a;; the weaker the penetration. Volume fraction
is moderately correlated with penetration for both solvent and
colloids, being stronger in the colloidal case. Particle rigidity,
on the other hand, only correlates moderately with colloidal
penetration and does not have a very strong effect in solvent
penetration. Confinement and body forces do not show a sig-
nificant correlation with neither of the response variables.
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Metric| Solvent | Colloid
Train | Test | Train | Test
MSE | 0.05 |0.18] 0.12 |0.34
RMSE| 0.22 |0.43| 0.35 |0.35

2 10.97[0.92]0.95[0.89

TABLE III. Model performance obtained for the train and test sets in
each estimator

B. MACHINE LEARNING MODELING

Tuning the parameters to obtain a desired penetration is not
a trivial task since several factors may play a role in parti-
cle penetration. ML offers a very good alternative to track
and predict penetration given a set of initial parameters. It
learns the non-linear dependencies between the variables and
how they operate together to return the final predictions. Ini-
tially the predictions are not accurate but as more data is fed
in the model, the performance improves gradually and even-
tually the model become highly performant. In addition to
adding more data, there are alternative techniques to improve
a model overall accuracy. One of the most important and pop-
ular is hyperparameters tuning, which is based on selecting the
best parameters that optimize a given model response. A key
parameter in random forest is the number of trees, especially
if one considers the computational cost associated in the mod-
eling step. Usually, the higher the number of trees the better
the model performance, but when a threshold is reached the
addition of more trees has no further influence on the model
predictive power.

The results of the training process for both cases with the
optimized hyperparameters selection is depicted in Table III.
For a better visualization Fig. 6 illustrates the predicted versus
true values for the train and test sets. The errors found are
considerably low for both cases, and the fit of the data to the
model is pretty satisfactory. Some data dispersion is seen in
the two cases, being more evident in the colloid penetration
model, where the performance was slightly worse. > for the
training set was above 0.95 and for the test set 0.89, which
indicate that the results are valid although a slightly overfitting
is taking place. That is not the case for solvent penetration,
where not overfitting is observed as the 72 as well as the errors
between train and test sets were not very high.

Tree based methods calculates internally the feature impor-
tance, which expresses the magnitude of the contribution of
a variable in predicting the output. The main idea behind the
concept is that a variable that affects significantly the error
when permuted is assumed to be important. Consequently,
features that do not influence the error are seen as not relevant
for making predictions. RF assigns a score to each feature
based on how big the errors in the predictions are. Fig. 7
shows the ranking of the top features for solvent and colloids
returned by the model.

In the solvent case, a;; is the most useful attribute in predict-
ing penetration. This result is expected once solvent particles
do not have any parameters other than the repulsive interac-
tions that can affect penetration directly. Colloid volume frac-
tion is the second most relevant variable in predicting solvent

training_solvent.pdf

[a]l

training_col.pdf

[b]

FIG. 6. Predicted outputs versus ground truth. a) Solvent, b)Colloid.
Simulation values are plotted against the model predictions. For a
perfect fit (=1 and MSE=0) all points should lie on the line x=y.
The variance was low for both cases, indicating the quality of the
predictions. The units of x and y axis are a result of the predictions
on the data that was normalized and the response (penetration) log
transformed. penetration predictions.

penetration. By having a rigid core, colloidal particles may
push the solvent ones towards the wall leading to an increase
in penetration, as previously highlighted. In colloidal pene-
tration, more parameters come to play. The concentration of
particles in the system is the most important attribute deter-
mining penetration. As more particles are added the repulsive
interaction needs to be higher to compensate for the increase
in particle number and to prevent their migration inside the
wall. VF is followed by a;; and rigidity.

Body force does not seem to be a relevant attribute in pre-
dicting penetration, not being the case for confinement. From
the correlations analysis previously discussed (Fig. 5), it was
seen that there is no monotonic relationship between confine-
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feature_importance_solvent.pdf

[a]

feature_importance_colloid.pdf

[b]

FIG. 7. Feature importance ranked by the Random Forest model. a)
Solvent Model, b) Colloid Model.

ment and penetration, and yet, herein it is clear that confine-
ment does play a role in predicting penetration. The effects
of confinement in a system depends on many factors, such as
particle volume fraction, confinement ratios, particle rigidity,
shape, etc**!. Particle aggregation might be taking place
specially in highly concentrated systems and in some confine-
ment ratios; therefore the agglomerated structures formation
will depend on many factors ant those might be affecting indi-
rectly the model predictive power. A more in depth study on
the confinement effect on the physics of the system is neces-
sary; this will be addressed in a future work.

V. CONCLUDING REMARKS

Setting up the appropriate parameters in a computational
system is a crucial step in the development of a successful

simulated system. Particularly, in DPD based models, pre-
venting wall penetration from all the components present in
the system is a fundamental step towards reproducing real
physical phenomena in confined geometries. The traditional
methodologies adopted to prevent DPD penetration are well
studied and understood. In the presence of a second compo-
nent, such as colloidal particles, additional phenomenological
effects might take place that can impact the way particles pen-
etrate the walls. Understanding the factors associated and tune
them in order to control penetration is a challenge task due to
the complex relationships between the parameters. Statisti-
cal analysis and ML represents a very powerful approach to
deal with those challenges, providing a deeper understanding
of the data and the relationships between the input parame-
ters. With ML it is possible to make penetration predictions
based on the selection of numerical values of the input pa-
rameters. Using RF, we were able to develop successfully a
highly performant predictive model displaying low errors and
low overfitting. Additionally, it was possible to understand
the most relevant features in predicting outputs. This study
showed the enormous potentially of data-driven models and
ML tools to systematically study complex systems. In effect,
the model developed in this study will be employed to set up
properly our wall-solvent and wall-particle interactions in the
subsequent works.
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