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The emergence of data-intensive scientific discovery and machine learning has dramatically changed the
way in which scientists and engineers approach materials design. Nevertheless, for designing
macromolecules or polymers, one limitation is the lack of appropriate methods or standards for converting
systems into chemically informed, machine-readable representations. This featurization process is critical
to building predictive models that can guide polymer discovery. Although standard molecular featurization
techniques have been deployed on homopolymers, such approaches capture neither the multiscale nature
nor topological complexity of copolymers, and they have limited application to systems that cannot be
characterized by a single repeat unit. Herein, we present, evaluate, and analyze a series of featurization
strategies suitable for copolymer systems. These strategies are systematically examined in diverse
prediction tasks sourced from four distinct datasets that enable understanding of how featurization can
Received 3rd November 2021, impact copolymer property prediction. Based on this comparative analysis, we suggest directly encoding
Accepted 10th March 2022 polymer size in polymer representations when possible, adopting topological descriptors or convolutional
neural networks when the precise polymer sequence is known, and using chemically informed unit
representations when developing extrapolative models. These results provide guidance and future
rsc.li/molecular-engineering directions regarding polymer featurization for copolymer design by machine learning.
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Design, System, Application

Machine learning and artificial intelligence are revolutionizing paradigms for materials design, providing powerful and efficient tools to model materials
properties and accelerate discovery. Supplying informative, numerical representations of target systems—a process known as featurization—is critical to
usefully deploying machine learning in this context. Although there are myriad featurization methods for small molecules, identifying suitable methods of
representation and understanding their limitations is less developed for polymers, particularly systems with more than one constitutional unit. Herein we
present, explore, and evaluate the efficacy of multiple featurization strategies for copolymers in several distinct prediction tasks. By systematic controlled
comparisons over multiple datasets, we identify elements of copolymer featurization strategies that result in predictive machine learning models, which is
key to successful surrogate modeling by machine learning for design. Overall, this work provides examples of multiple copolymer featurization strategies,
baseline expectations for performance, and general guidance that can be leveraged in future copolymer design campaigns.

1 Introduction limited set of just three different monomer types, there are
on the order of 10" distinct copolymers that can be
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facilitate a wide range of complex tasks in biology, industry, Thus, while theory and modeling are invaluable for

1-4 . .
and beyond. ) However, the expan51'v<.e chemical, sequ'ence, understanding the origins of observed phenomena and
and. tqpologlcal space  that facﬂltates such .dlvertqe informing the design of specific, well-defined polymer
applications can obfuscate the design of next-generation, fit- systems,'®17 intricate studies may severely limit exposure to

. . 5-9 .
for-purpose polymeric materials.”” For example, using a o 0 b promising regions of design space.'® In

addition, resource limitations (time, monetary, or
computational) likely preclude exhaustive characterization of
Department of Chemical and Biological Engineering, Princeton University, combinatorial search spaces.19
Princeton, NJ, USA. E-mail: mawebb@princeton.edu Over the last two decades, artificial intelligence has
t Electronic supplementary information (ESI) available: Simulation details and emerged as a useful tool for accelerating materials design by

calculated properties for dataset A, a description of model architectures and ) facilitati £ t deli £ titati
hyperparameters, metadata for all machine learning models, IDP sequences and (l) acilitating accurate surrogate modeling ot quantitative

property labels forming dataset A, and a complete list of model performance structure-property relationShipS (QSPRS) and (ii) providing
metrics and machine learning models. See DOI: 10.1039/d1me00160d more efficient ways to explore chemical space.>*?’

This journal is © The Royal Society of Chemistry and IChemE 2022 Mol. Syst. Des. Eng., 2022, 7, 661-676 | 661


http://orcid.org/0000-0002-7420-4474
https://doi.org/10.1039/d1me00160d
https://pubs.rsc.org/en/journals/journal/ME
https://pubs.rsc.org/en/journals/journal/ME?issueid=ME007006

Published on 21 March 2022. Downloaded by Princeton University on 7/11/2022 11:13:51 PM.

Paper

Supervised machine learning (ML) models can be trained to
cheaply estimate properties of materials from known
examples; when used for screening or coupled to robust
optimization algorithms,”® such models can aid in efficiently
identifying promising candidate materials. While flourishing
in the domain of “hard” materials and small molecules,
applications of ML to polymer design have been relatively
limited by comparison for a number of practical and
technical reasons.'®*** For example, there are numerous
large, open-access databases for small molecules and ordered
materials, but data availability and accessibility remains a
major challenge for polymer ML.>>?**3¢ Presently, this
challenge is overcome by either (i) laborious, brute-force data
sourcing and curation or (ii) in-house data generation. The
former approach has been largely useful for polymer
informatics in the space of homopolymers,®” *° while the
latter has been typically necessary to design systems with
sequence® ™ or compositional control*>™*® over multiple
monomers or constitutional units®® (CUs). In the near term,
advancements in automated polymer synthesis®® and in
hierarchical polymer simulation,* coupled with efficient data
acquisition schemes,*® are likely to substantially enhance
capabilities to generate requisite data for training ML
models on-the-fly. With evident activity to facilitate
acquisition of suitable polymer data, a fundamental
consideration that follows is how to represent polymer data
to ML algorithms.

In the context of ML-guided design, the method of
featurization or representation, i.e., how a molecule or system
is converted into a numerical input, is a fundamental
consideration that not only dictates what information is
available for constructing QSPRs but also what ML
algorithms are suitable for the QSPR task.** In general,
featurization can profoundly impact what patterns are
extracted and exploited by ML algorithms,”* which can
subsequently affect how much data and time is required to
train accurate models. Because featurization also defines the
mapping of system chemistry to a vector space, it has clear
implications on the span of possible solutions for a given
optimization task. Consequently, the development and
investigation of machine-readable representations for
property prediction is of significant interest. Although there
are numerous viable strategies to facilitate ML on small
molecules and ordered materials,'*°*®  there is
comparatively little guidance regarding how to effectively
featurize polymers for ML.

The featurization of polymers has been mostly dictated by
the source of training data and the scope of intended design
space. One strategy that has enjoyed considerable success is
to simply adapt existing molecular featurization strategies to
describe constitutional repeat units*® (CRUs) of the polymer;
this approach has been wuseful for designing
homopolymers.****%” However, using only the CRU to define
QSPR neglects potential hierarchical and/or topological
complexity that may inform property prediction tasks. To
partially address this limitation, Ramprasad and coworkers
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have described hierarchical polymer fingerprints that

combine atomic-level connectivity descriptors, larger
lengthscale  property descriptors, and morphological
descriptors;®®*7° this approach has also been recently

extended to describe stochastic binary copolymers.*’”
Constructing a low-dimensional latent space embedding of
higher-dimensional  feature vectors using variational
autoencoders’*  (VAEs) is another attractive and
complementary approach to aforementioned techniques. This
has been recently exemplified by Shmilovich et al. to describe
the chemical space spanned by coarse-grained tripeptides for
the purpose of identifying peptides with specific self-
assembly behavior.*' Batra et al. have also demonstrated the
use of VAEs to translate a modified, polymer-based SMILES
grammar into a suitable vector space for constructing
Gaussian process regression models to predict glass-
transition temperatures and bandgaps of homopolymers.®”

Featurization for sequence-defined polymer systems can
be pursued in several ways. For example, feature extraction
architectures may be used to learn relevant sequence and
topological correlations during supervised ML. In this vein,
Webb et al. built ML models that leveraged recurrent and
convolutional neural network (CNN) architectures to predict
and later design the radii of gyration for CG polymers by
simply manipulating sequence.*> Mohapatra et al. similarly
combined Morgan fingerprints (a molecular featurization
strategy) with CNNs to optimize fast-flow peptide synthesis.**
The use of graph neural network architectures” to represent
macromolecular chemistry is also at early stages of
exploration.”> As an alternative to using feature extraction
architectures, Jablonka et al. generated a hand-crafted vector
of descriptors, which contained descriptions of composition,
sequence entropy, and sub-sequence clusters, to guide the in
silico design of coarse-grained (CG) polymer dispersants.”
While these developments are generally promising, it
remains unclear under what circumstances and to what
extent any given polymer featurization strategy outperforms
another.

We introduce a series of relatively simple featurization
strategies for copolymers and evaluate their performance in
supervised learning regression tasks derived from four
distinct datasets. Following the introduction of the datasets
and featurization approaches, we critically examine the role
of polymer size, the expression and manner of sequence
representation, and the impact of using chemically informed
CU descriptions in different prediction scenarios. Through
this comparative study, we identify key attributes amongst
successful strategies that can serve as guidance for future
ML-guided copolymer design problems.

2 Methodology
2.1 Datasets

To evaluate the efficacy of potential polymer featurization
strategies, we consider their performance in several, distinct
supervised regression tasks. These tasks are defined in the
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context of four datasets, which will be referenced as datasets
A, B, C, and D. Dataset A is introduced in the present paper
and comprises properties obtained by CG simulation for a set
of intrinsically disordered proteins (IDPs). The remaining
three datasets are obtained from literature sources (dataset B
from ref. 43, dataset C from ref. 48, and dataset D from ref.
74); these datasets feature different property labels, design
spaces, and CU metadata.

2.1.1 Dataset A: coarse-grained IDPs. Dataset A contains
simulation-derived properties for 2585 IDPs. The CUs for
IDPs correspond to the various amino acids, but their
disordered sequences precludes definition of a single CRU
for each sequence. The IDPs are thus fairly described as
linear, stochastic polymers with known sequence. The IDPs
within dataset A have a degree of polymerization, denoted as
N, between 20 and 600 CUs (amino acids). The specific
sequences were sourced from version 9.0 of the DisProt
database;”>”® upon initial acquisition, care was taken to
eliminate any duplicate sequences and ensure that all 2585
IDPs were unique.

Properties of the IDPs under infinite-dilution conditions
(i.e., single-chain properties) were computed at 300 K via
molecular dynamics (MD) with the LAMMPS simulation
package.”” All IDPs were modeled using the improved
hydropathy scale (HPS) CG model from Regy et al.”® Specific
properties extracted for use as labels in regression tasks
include the radius of gyration Ry, the heat capacity C,, and
the end-to-end decorrelation time 7y. Dataset A is provided in
the ESIt as well as additional details regarding the
simulations and calculations.

2.1.2 Dataset B: monodisperse coarse-grained polymers.
Dataset B is sourced from ref. 43, which used ML and
Bayesian optimization to direct the design of sequence-
defined polymers with target mean-square radius of gyration
(Ry*). The dataset contains 1540 regular copolymers (i.e., they
have a well-defined CRU) and 200 stochastic copolymers; for
each copolymer, the label is (R,”) obtained from CG
simulation. The copolymers contain up to four distinct CUs
from ten possible CUs, and each CU features one of two types
of backbone beads and up to two pendant beads, also of two
possible types; all copolymers have N = 400 CUs. Unless
otherwise noted, all performance metrics and models are
derived only from the regular copolymers of dataset B.

There are several notable differences between datasets A
and B. First, dataset B features CG polymers that are
monodisperse. Second, dataset B contains fewer total
possible CUs than dataset A, and the number of unique CUs
in any given polymer is restricted to a subset of that total in
dataset B but not in dataset A. Finally, the CG polymers in
dataset B are not necessarily linear, although the side-chains
are small. Like dataset A, the data originates from MD
simulation, such that the sequences and simulation
metadata are precisely known.

2.1.3 Dataset C: experimental methacrylate copolymers.
Dataset C is sourced from ref. 48, which uses a computer-
guided materials discovery approach to design statistical
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copolymers of methacrylates to serve as high contrast '°F
MRI agents.”® There are six possible CUs that can be
combined in varying proportions and degrees of
polymerization, but the polymer sequences are unknown. Of
the 397 unique copolymers reported in the study, we use 271
copolymers that were labeled with the signal-to-noise ratio
(SNR) from NMR experiments; the SNR is always treated as
the target output for our regression task. In addition, the
dataset describes the fractions of incorporation for each
possible methacrylate, the mean number-averaged molecular
weight of the polymers, and the polydispersity. Like dataset A
and in contrast to dataset B, the polymethacrylates are linear
copolymers. In contrast to all other datasets discussed, the
data is experimentally obtained. This dataset is also smallest
in size.

2.1.4 Dataset D: linear bipolymers with patterned surfaces.
Dataset D is sourced from ref. 74, which trains support vector
regression (SVR) models to predict the adhesion free energy
of CG copolymers on patterned surfaces as a function of
polymer sequence; a separate SVR model is developed for
each of four surfaces. The copolymers studied are comprised
of up to two distinct CUs and have N = 20. Considering all
four surfaces, dataset D contains 80000 data points with
known polymer sequence labeled with an adhesion free
energy AF,q for a given surface. Compared to datasets A and
B, which are also generated by CG MD simulation, the
copolymers in dataset D are shorter and have fewer unique
CUs. However, AF,q is comparatively more complex than the
single-chain properties reported in datasets A and B.

Rather than training separate ML models for each of the
surfaces present in dataset D, we pursue a different approach
that additionally uses the surface as an input feature. To
encode the identity of the surface for which the AF,q label is
computed, all polymer feature vectors are appended with a
four-dimensional one-hot vector prior to being passed to
densely connected neural network layers. For explicit-
sequence  featurization  strategies  (section = 2.3.1),
representations of the polymer are first processed with
feature-extraction architectures prior to concatenation with
the one-hot encoding vector that indicates the surface.

2.2 Overview of featurization strategies

Fig. 1 illustrates the origins and relationships amongst the
various polymer featurization strategies explored in this paper.
Common to all strategies is the essential characterization of
a polymer as a set of bonded or topologically connected CUs
(Fig. 1, left top and middle); the CUs can be numerically
described via a vector that distinguishes its chemical
characteristics from other CUs via what is colloquially
referred to as a “fingerprint” (Fig. 1, left bottom). Across
datasets A-D, the CUs are respectively amino acids, sets of
CG polymer beads, methacrylate monomers of differing
chemistry, and CG beads; the specific fingerprints employed
for these CUs are described in section 2.2.1. From this
starting point, we explore two broad paradigms of
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Fig. 1 Diagrammatic depiction of the relationships amongst various polymer featurization strategies used in this study. All strategies have a
common conceptual starting point of a polymer being a set of N topologically connected constitutional units (CUs); the constitutional units are
assigned types A, B, C, ..., T, depending on their chemistry. The chemistry of the various CUs can be numerically represented via fingerprints,
denoted as fi for a CU of type K. We consider featurization strategies that either explicitly represent the polymer sequence (blue) or those that do
not (green). In the figure, quantities subscripted with alphabetic characters are associated with CU types, quantities subscripted with arabic
numerals are associated with indexed CUs within the polymer, and quantities with no subscript are associated with the polymer.

featurization  strategies: those that explicitly represent
sequence information (Fig. 1, top in blue) and those that do
not (Fig. 1, bottom in green). While the latter may be
considered for most prediction/design tasks, the former may
not be viable, depending on data source or synthetic
limitations.

2.2.1 Fingerprints

2.2.1.1 One-hot encoding. We view one-hot encoding (OHE),
which is commonly used to represent categorical variables, as
the simplest of chemical fingerprints. In this approach, CU
fingerprints are Nr-dimensional vectors where Np is the
number of distinct CUs in the dataset. For notational
convenience, we will assume here and in subsequent sections
that CUs of type A, B, C, ..., T are numerically indexed by 1,
2, 3, ..., N.. The elements of the OHE fingerprint for a CU of
type K are thus given by

fxli] = Oy fori=1, ..., k, ..., Ny (1)
where k is the numerical index for the CU of type K, fif]

provides the value of the fingerprint in the ith dimension,
and 0Jy; is the Kronecker delta. The result is that the kth
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element of f; is equal to one, and all remaining are equal to
zero. Therefore, the dimensionality of OHE fingerprints are
20, 10, 6, and 2 for datasets A, B, C, and D, respectively.
Notably, the OHE fingerprint simply identifies CUs and does
not express chemical similarity. Within this representation,
one may view the different CUs as being orthogonal in
chemical space.

2.2.1.2 Molecular fingerprints. For datasets A and C, we also
make use of conventional molecular fingerprinting
techniques as applied to each of the various CUs. In
particular, we use RDKit’® to obtain Morgan fingerprints for
each CU.>* The Morgan fingerprint, like other extended-
connectivity fingerprints,®® generally denote the presence or
absence of chemical substructures. The uniqueness and
information content of the Morgan fingerprint depends on
both the vector dimensionality as well as the radius of the
substructure search. We find that the mean pairwise
geometric similarities amongst CUs approximately plateaus
at 2048 dimensions and 4 A for dataset A and 2048
dimensions and 5 A for dataset C. Therefore, we choose these
as the hyperparameters for CU fingerprint generation.
Following generation of fingerprints for all CUs in a given
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dataset, we remove dimensions that possess only zeros or
only ones. This yields a final dimensionality of 152 and 66
for the Morgan fingerprints used for dataset A and C,
respectively. This approach is not used for datasets B and D
as there are no underlying chemical structures to represent
the CUs.

2.2.1.3 Descriptor vectors. Describing molecules or systems
using a vector of physiochemical descriptors is another
common strategy in molecular featurization when
constructing QSPR. We adopt a similar strategy here as
applied to CUs.

For in silico-derived datasets (datasets A, B, and D), we use
simulation metadata by formulating vectors of force-field
parameters that are specific to each CU. Because the force-
field parameters express information such as the CU size or
its interaction with other moieties, they are somewhat similar
to common descriptors like accessible surface area,
partitioning coefficients, or properties derived from quantum
chemical calculations. The descriptor vector for the kth CU
formed from simulation metadata is given by

(mx, gy, Ok, - Okms A1, Axn) fOr Dataset A
(8](0‘1 ceey 8k0‘4)

Ely 1 veey 8k1‘4)
Eky vy 8k2,4)

for Dataset B.  (2)
O'km1 ceay O'k0>4)

(

= atten (
fi = { flatt (
(

O_k1,1 ceey O'k114)

(G']CZJ ceey Jk2,4>
for Dataset D

(gk,lv Ek2) T2 rkAZ)

For dataset A, my is the mass of the kth CU, gk is its charge,
or; and Ay ; respectively represent the pairwise Lennard-Jones
interaction diameter and strength of hydrophobic
interactions between the kth and ith CUs; in the HPS
model,”® arithmetic means are used to define cross
interactions. For dataset B, &k i and Ok, are the energy
minimum and diameter for the interaction between the CG
bead in position j of the kth CU and bead type i; there are
four dimension in each row to account for the four distinct
CG bead types that make up the ten possible CUs. Here, j is 0
for the backbone position, 1 for the first pendant position,
and 2 for the second pendant position. For CUs that do not
feature CG beads in one or both of the pendant positions,
the entries are zero. In ref. 43, Lorentz-Berthelot
combination rules define cross interactions. For dataset D,
& 1s the minimum pairwise interaction energy between the
kth and ith CUs and ry; is the cutoff distance for their
interaction. Cross interactions are defined as specified in ref.
74. In all cases, properties that do not vary amongst CUs
(e.g., the bead size for dataset B and D) are excluded from fx
as they would represent constants to the ML algorithm, but
they could be included if required for extensibility. Lower-
dimensional forms of the descriptor vectors in eqn (2) that
exclude cross interactions are also considered.
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While datasets B and D stem from properties of
phenomenological CG polymers of no specific chemistry, the
polymers in datasets A and C have CUs with underlying
chemical structures. Consequently, we also consider
descriptor vectors of nearly 1600 descriptors derived using
the Mordred python package.”® For a given set of CUs, we
remove any descriptors with zero variance. We also remove
descriptors that exhibit significant correlation with other
descriptors in stepwise fashion. Specifically, we compute the
number of instances for which a descriptor exhibits a
Pearson correlation coefficient >0.85 with the set of all
current descriptors, and then we remove the descriptor with
the greatest number of instances and repeat until all
descriptors possess pairwise Pearson correlation coefficients
less than 0.85. Although this process is not guaranteed to
retain the maximum number of uncorrelated features, it is a
reasonable approximation to the NP-hard problem of vertex
cover. This process yields a 257-dimensional descriptor vector
for dataset A and a 47-dimensional descriptor vector for
dataset C for use as CU fingerprints.

2.3 Featurization paradigms

We consider featurization strategies that both explicitly
represent polymer sequences as well as those that rely more
on composition-based or “scaled” representations. The
different approaches are shown in Fig. 1. In all cases,
property predictions are ultimately made based on the output
of a densely-connected deep neural network (DNN), and
predictions are made only for global polymer properties. The
polymer representations do not utilize or depend on the
coordinates of the CUs or their relative distances with respect
to other CUs in the polymer. For datasets A, B and D, we have
sequence information and expect the “reversed” sequences to
have identical properties as the forward sequence;
accordingly, predictions from the DNN should ideally be
invariant to sequence inversion. However, invariance to
sequence inversion is specific to the coarse-grained
representations of our polymers and does not universally
hold. For example, the asymmetry of amino acids or
nucleotides as CUs imparts directionality to the sequence,
such that the forward and reverse sequences do not have the
same bonding connectivity or geometric structure; therefore,
those sequences are not expected to exhibit the same global
polymer properties. Property invariance to sequence inversion
may be handled during construction of the feature vectors
themselves, enforced by use of specific ML algorithms and
architectures, or approximately addressed via data
augmentation.

2.3.1 Explicit sequence representation

2.3.1.1 Sequence graph. The sequence graph featurization
approach explicitly represents the polymer sequence and
connectivity amongst CUs. Specifically, the polymer is
represented as a graph G = (V, E). V is a set nodes that
contain fingerprint-embeddings of each CU within the
polymer, and E is a set of edges that indicate how CUs are
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topologically connected. To process this representation, a
graph convolutional network (GCN) is used to update the CU-
fingerprint embeddings, which are then aggregated and
passed to a DNN for final property prediction. We
hypothesized that this approach would encode useful
sequence information for the property prediction task and
tested this strategy for dataset A. We considered two graph
convolutional architectures: the graph convolutional layer®
and the graph attention layer.®" Both layers aggregate and
utilize neighbor embeddings when wupdating a node
embedding; however, the graph attention layer possesses
additional parameters that allow neighbors to have differing
levels of importance when performing the update. After a
maximum of two graph convolutions, the node embeddings
are aggregated and passed as input to a DNN.

A potential benefit of the sequence graph representation
strategy is that the outputs from both the graph
convolutional and graph attention layers are permutationally
equivariant, meaning the output of per-node features is not
sensitive to the order of graph nodes. Therefore, when paired
with subsequent sum or average pooling layers, the final
polymer property prediction is invariant to sequence
inversion. Accordingly, datasets A, B, and D do not require
data augmentation when training graph neural network
models.

2.3.1.2 Sequence tensor. We additionally consider
representations for which the CU fingerprints are stacked to
form a tensor. In this approach, one dimension tracks the
ordering of CUs within the polymer sequence, and the
remaining dimensions relate to the CU fingerprint. For
dataset A, where polymers have varying degrees of
polymerization, all sequences are padded with zeros to
match the length of the longest polymer.

To process the sequence tensor, we employ two
approaches. In the first, a one-dimensional convolutional
neural network (CNN) architecture leads into a DNN; this
strategy is analogous to the “property-coloring” scheme
discussed in ref. 43. The essential premise is that convolution
operations performed over windows of the sequence can
extract high-level, hierarchical feature correlations that may
be useful for polymer property prediction. The CNN works by
sliding a kernel over the numerical representation of the
polymer and extracting sequence-level features. This
operation, paired with pooling and subsequent convolutions,
allows the model to directly construct hierarchical features.
Inspired by demonstrated utility in modeling polymer
sequences,” we also test long-short term memory (LSTM)
architectures. The LSTM is a type of recurrent neural network
(RNN) that processes a sequence in a unit-by-unit fashion,
with model-specific parameters and operations that retain
information from previously processed units. Similarly to
CNNs, LSTMs can facilitate algorithmic identification and
extraction of sequence features that could relate to polymer
properties.

Notably, the sequence tensor representation does not
natively retain invariance to sequence inversion as processed
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by our current RNN and CNN architectures. While the
intermediate outputs of the CNN and pooling operations are
equivariant to sequence inversions, the subsequent flattening
operation and feeding into a DNN preserves the order of CU
features. Thus, the final output is not invariant to sequence
inversion. To address this, we take a two-fold approach when
training models that takes a sequence tensor as input. First,
we augment training data with inverted sequences labeled
with the same property value as the forward sequence.
Second, we average the output of the forward and reverse
sequence to make predictions during testing. The former
strategy acts as a form of regularization, whereas the latter
ensures invariance to sequence inversion and can be seen as
a type of testtime augmentation.”' Dataset B is further
augmented with sequences constructed from cyclic
permutations of the four CUs comprising the repeat pattern
of the polymer, as previously described.*

2.3.2 Scaled fingerprints. The scaled fingerprint approach
can be employed in settings when precise polymer sequence
is known as well as when such information is absent or
ambiguous. Here, the representation effectively constitutes a

weighted average of CU fingerprints f = > xifi where the
x

weight associated with the kth CU is determined based on,
e.g., its fraction of incorporation in the polymer x;; this
representation is effectively the same as that described by
Kuenneth et al*” This representation can be derived from
the sequence tensor by simply summing along the sequence
axis and dividing by N. In theory, it can also be obtained
from the graph of CU embeddings if there are no node
update operations and instead the embeddings are pooled
together using fractions of incorporation as attention-like
parameters. The lack of any graphical operations highlights
a potential limitation of such a polymer fingerprint:
information regarding polymer connectivity or CU patterning
is absent. Nevertheless, one advantage is that it can be
constructed in most experimental and in silico design
problems. For the polymers in dataset C, this is the only
viable option because no sequence information is present.
The scaled fingerprint f can be modified in several ways,
depending on the availability of other descriptors. One
common descriptor may be the size of the polymer, which is
observed to vary amongst polymers in datasets A and C, for
example. We consider two approaches to encoding the
information on polymer size. In the first, we simply multiply
f by the measure of polymer size (e.g., N) to obtain a final
polymer fingerprint f; we refer to this as a size-implicit scaled
fingerprint. We note that when the representation of size is
the degree of polymerization and the weights for computing
[ are fractions of incorporation, the resulting feature vector
is effectively a “Bag-of-features” or possibly “Bag-of-words”
representation. For example, if a dimension in the CU
fingerprint contains its average charge, then the size-implicit
scaled fingerprint will report the net charge of the polymer.
If the CU fingerprint is given by OHE and the CU is a
monomer, then one obtains an enumeration of how many
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monomers of each type are present in the polymer, or a “Bag-
of-monomers.” In the second approach, we add another
dimension to fto include the polymer size; we refer to this as
a size-explicit scaled fingerprint.

In addition to these (optional) modifications, we also
consider augmenting scaled fingerprints with additional
descriptors of the polymer. This approach can be used to
partially address the lack of connectivity information in the
scaled fingerprints by adding dimensions for sequence-level
or topological descriptions. We refer to this approach as an
augmented fingerprint and test it for the simulation-derived
datasets (datasets A, B, and D). For dataset A, we consider
sequence charge decoration (SCD), which captures the
spacing of charge along a polymer chain, and sequence
hydropathy decoration (SHD), which captures information
about the spacing of hydrophobic components along a
polymer chain.*> For datasets B and D, we compute
blockiness parameters for each polymer as

bj=1-p L L0 £+ 1), ()

with 1(fi(k), fi(k + 1)) as an indicator function that is equal to
one if and only if all dimensions of the CU fingerprints f;
and f;., related to position j of the CU are identical; it is zero
otherwise. In the context here, 1(fi(k), fi(k + 1)) = 1 implies
that the CG bead at position j in the kth CU is the same as
the CG bead at position j in the (k + 1)th CU. For polymers in
dataset B, j = 0, 1, or 2, such that the scaled fingerprint is
augmented by three dimensions. For polymers in dataset D, j
= 0 (they are linear polymers), such that the scaled
fingerprint is augmented by a single dimension.

Because scaled fingerprints are constructed by summation
of CU descriptors and augmentation with sequence-level
descriptors that are permutationally invariant, the polymer
representation itself is invariant to sequence inversion. Thus,
the output of any model using this featurization strategy will
also retain this property.

2.4 Model training and evaluation

The performance of each featurization strategy is obtained by
averaging performance metrics obtained using a nested, five-
fold cross-validation procedure. In particular, each dataset is
initially split into five outer folds. For each outer fold, a set
of optimal hyperparameters for the ML model is obtained by
an inner five-fold cross-validation. The hyperparameter
optimization is facilitated by using the tree-structured Parzen
estimator (TPE) approach as implemented in Hyperopt® to
minimize the average mean-squared-error (MSE) across inner
folds. The search is conducted in a staged fashion wherein
100 random sets of hyperparameter combinations and
evaluations are followed by 100 Bayesian optimization steps
with the TPE algorithm. For ML models using LSTMs,
hyperparameters were identified only using random search
due to the computational expense associated with their
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training. Using the best set of hyperparameters, a model is
trained and evaluated on the outer test fold. This process is
repeated until every fold has served as a test fold. Care is
taken to ensure augmented data variants do not
simultaneously appear in both the train and test splits. The
coefficient of determination, r?, and mean absolute error,
MAE, are used to assess model performance over all test sets.
Through exploratory analysis, we find that the predictive
performance of a model built with a particular featurization
strategy can be sensitive to changes in hyperparameters.
Thus, to best target comparisons between different
featurization strategies, all models are hyperparameter-
optimized before being tested for prediction. Additional
details and discussion can be found in section 2.5 of the
ESL{

All reported metrics represent the average values across
test sets, and errors indicate the standard error of the mean.
To represent variation of MAE over consistent scales, we also
introduce a normalized MAE, which corresponds to MAE
divided by the average property value in the given dataset.
The hyperparameter domains, performance metrics, and
other training settings are provided in the ESIj All neural
networks were trained using Tensorflow,** and Spektral®®
used to implement graph convolutional network layers.

was

3 Results and discussion
3.1 Representation of polymer size

Many polymer properties directly depend on the degree of
polymerization or molecular weight of a polymer,**®*” which
make it an important candidate descriptor in polymer
featurization. While the notion of polymer size is seemingly
already expressed in the explicit-sequence featurization
strategies, we sought to first quantify the impact of size
representation by comparing the performance of ML models
trained with scaled fingerprints (SFP), size-implicit SFPs, and
size-explicit SFPs for datasets A and B (Fig. 2).

Fig. 2A shows that fingerprints that use either size-explicit
or size-implicit representations of the polymer significantly
improve ML models trained to predict properties in dataset
A. In particular, we observe in excess of a 50% decrease in
MAE compared to using a simple scaled fingerprint for all
prediction tasks. In the case of the properties tested (R, C,,
and 1y), these results are overall expected because polymer
size has clear implications for each. However, for a given
fingerprint type, we generally do not observe a statistically
significant advantage to using size-explicit versus size-implicit
representations. Thus, for polymers in dataset A, the
inclusion of N is crucial to a successful polymer featurization,
but there is flexibility in the method of representation.

By comparison, Fig. 2B shows that there is no clear
advantage in providing a measure of polymer size in the
polymer fingerprint for ML prediction tasks over dataset C.
In this case, the representation of polymer size is the mean
number-averaged molecular weight, and we do not observe
statistically significant reductions in MAE compared to
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Fig. 2 Comparison of size-explicit versus size-implicit scaled fingerprint strategies for various fingerprints as applied to property prediction tasks
for (A) coarse-grained intrinsically disordered proteins in dataset A and (B) stochastic methacrylate copolymers as *°F MRI agents in dataset C. Both
panels illustrate the percent decrease in mean absolute error (MAE) for a simple scaled fingerprint compared to that with either size-explicit
representation (plain bars) or size-implicit representation (hatched bars). In (A), results are shown for ML models trained to predict the radius of
gyration R, the heat capacity C,, and the end-to-end decorrelation time 7y. In (B), the property label is an experimentally determined signal-to-
noise ratio (SNR) as reported in ref. 48. Both panels examine the effect on MAE using one-hot encoding (purple), molecular fingerprints (green),
and descriptor vector (orange) approaches to CU fingerprinting. In (A), three descriptor vectors are used. The first two are vectors of force-field
parameters (FFP); FFP1 excludes cross interactions while FFP2 additionally uses cross interaction parameters; the third is obtained from the

chemical structure using Mordred.>®

models trained using only scaled fingerprints, irrespective of
the CU fingerprinting technique. We speculate that the SNR
property label is not especially sensitive to polymer size over
the size-range explored in dataset C: the standard deviation
of molecular weight is 1100 g mol™ compared to the mean of
7770 g mol™ across the dataset. In contrast, the range of
polymer sizes in dataset A spans from N = 20 up to 600. In
addition to the lack of variability in molecular weight, other
factors may include the overall dataset size and statistical
noise associated with SNR, such that any potential effect of
molecular weight is obfuscated by measurement noise.
Nevertheless, inclusion of polymer size does not remarkably
decrease the performance of ML models compared to the
simple scaled fingerprint. Therefore, for most design tasks, it
seems generally advisable to include either an implicit or
explicit description of polymer size in the polymer feature
vector.

3.2 Effect of explicit sequence representation

Many polymer materials systems may have the opportunity to
exploit the sequential or topological arrangement of CUs to
tailor properties or enhance figures-of-merit. Previous studies
have variously explored both recurrent neural networks and
CNNs in polymer property prediction tasks, presumably to
extract and correlate sequence patterns with property labels;
however, such strategies are rarely compared. To provide
some guidance regarding polymer featurization when
sequence is known, we constructed and compared the
performance of three ML models that use explicit-sequence
representation for the IDPs in dataset A to predict their
radius of gyration R,. In particular, models are developed
using sequence tensors with one-dimensional CNNs,
sequence graphs with GCNs, and sequence tensors with long-
short-term memory (LSTM) networks. To control for any
potential role of different CU fingerprinting strategies, all
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comparisons are made between models that use OHE for the
CU fingerprints.

Fig. 3 summarizes the performance for the different
sequence-processing strategies, with panels A-C providing
correlation plots between ML predictions and the “ground
truth” results obtained from MD simulation and panel D
comparing the normalized MAE. We find that all
architectures perform respectably in predicting Ry, with r* in
excess of ~0.9. Among the various strategies compared in
Fig. 3, the CNN exhibits statistically lower MAE compared to
both the GCNs (22% lower) and the LSTM (18% lower).
Interestingly, comparison of Fig. 3B and C suggests that the
use of sequence graphs with GCNs is superior to using
sequence tensors and LSTMs, although Fig. 3D illustrates
slightly lower MAE for the LSTM architecture. The reason is
clear from inspection of Fig. 3C, which reveals that
processing sequence tensors with LSTMs provides reliable
predictions for short chains while
underestimating R, for larger chains. This suggests that the
LSTM  architecture may not encode an effective
representation of polymer size, which was shown to have
significant impact for dataset A prediction tasks in section
3.1. While we expected similar performance between CNN
and GCN, we believe that the GCN performance was
somewhat limited by the lengthscale of node embeddings
and the number of allowable graph convolutions in our
architectures. Conversely, the CNN could aggregate features
over much larger length scales by utilizing larger kernel
windows, which were found to span ~20 CUs after
hyperparameter optimization.

Based on the overall success of the explicit-sequence
representations, we also examined performance for dataset B,
for which similar architectures were examined in ref. 43. In
that study, Webb et al. developed an ML model that used a
two-dimensional CNN (labeled as property-coloring) to
process regular copolymer sequences; the performance of

systematically
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Fig. 3 Comparison of explicit-sequence featurization strategies for Ry
prediction tasks in dataset A. Note that the axes labels are shared for
panels (A)-(C); all data points in the correlation plots correspond to
when the given polymer is in the held-out test fold during cross
validation. Panel (D) reports the normalized MAE for sequence models
in the prediction task. Standard errors and means for all quantities are
obtained from the results of five-fold cross-validation. In the labels, {-)
denotes an ensemble average (obtained from statistical sampling from
simulation) and = denotes an average over the dataset.

that model for a simple 80/20 train/test split was reported as
r* = 0.958 and MAE = 106 2, where ¢ is the characteristic size
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of a CU with a single CG bead. In the present paper, we find
similarly good performance with a one-dimensional CNN
over OHE CU fingerprints (+* = 0.946 and MAE = 111 ¢°
obtained using five-fold cross-validation). Additionally, Webb
et al. reported r* = 0.895 and MAE = 130 ¢ for an LSTM
model that predicts (R,”) for stochastic copolymer sequences
using training data only from regular copolymer sequences.
Interestingly, for the same task, we find somewhat better
performance (> = 0.926 MAE of 110 ¢*) using an ensemble
model obtained from the five-fold cross-validation procedure,
i.e.,, the predicted labels are an average of predictions
generated by five separate models. Although hyperparameter
optimization was not reported in ref. 43, the present results
indicate that the CNN model can capture sequence
correlations and generalize these patterns to non-regular
sequences somewhat better than the LSTM architecture.

3.3 Sequence and topology representations

The results of section 3.2 demonstrate explicit-sequence
representations can be effective; however, it is not clear to
what extent the ML regression model efficiently leverages this
sequence-level information in its predictions. To assess the
importance of sequence information on property prediction,
we compared three featurization strategies that utilize
different levels of sequence information; we considered
prediction tasks on the simulation-derived datasets A, B, and
D because the sequences are precisely known. The first
strategy (CNN) uses a sequence tensor processed by a one-
dimensional CNN. The second strategy (SFP) uses a scaled
fingerprint, such that there is no explicit sequence
information. The third strategy (aug. SFP) uses the same
feature vector as the second strategy but the polymer
fingerprint is additionally augmented with some descriptors
(see section 2.3.2) that provide some characterization of
sequence and/or topology. All strategies use a OHE
fingerprint to distinguish the CUs. The results are provided
in Fig. 4.

Fig. 4A-D compare the performance of the three
featurization strategies for predicting R, for the polymers in
dataset A. Surprisingly, we find that the ML model that uses
size-implicit SFPs (effectively a “Bag-of-Amino Acids”)
statistically outperforms the sequence tensor/CNN model
both in terms of r* (0.952 for the CNN in Fig. 4A versus 0.972
in Fig. 4B) and MAE (see Fig. 4D). Meanwhile, using aug.
SFPs yields the most accurate models. In fact, simply adding
these descriptors reduces the MAE by 32% compared to the
simple SFP approach. Thus, while comparing Fig. 4A and B
suggests that R, in dataset A is primarily driven by CU
composition and polymer size, comparing Fig. 4B and C
indicates that there are sequence-level effects that can
influence R, within the dataset. In theory, both the model
derived from the simple scaled fingerprint as well as that
augmented with sequence descriptors are within the function
space of the sequence tensor/CNN model, which performs
the worst of the three. We speculate that this is primarily due
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to data limitations. In particular, the properties examined are
principally governed by composition and polymer size, and
sequence variation is perhaps a perturbative or noise-level
effect. Consequently, it is difficult to extract meaningful
sequence patterns on R, (or other properties in dataset A)
from the sequences in the DisProt database. Thus, it is more
data-efficient to directly encode descriptors of sequence in
the feature vector.

Fig. 4E-H compare the performance of the three
featurization strategies for predicting (R,”) for the polymers
in dataset B. The CNN strategy is comparable to the aug. SFP
strategy in terms of its performance metrics. Both are
statistically superior to the SFP strategy, reducing MAE by
14% and 11% upon including sequence-level information via
the CNN and sequence descriptors, respectively; the r?
improves from 0.932 to 0.946 and 0.949. We attribute the
relative success of the sequence tensor/CNN strategy, which
is not encountered for dataset A, to several factors. First, the
properties of polymers in dataset B likely exhibit amplified
sequence effects compared to those in dataset A. In
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particular, the polymers in dataset B experience variations to
intramolecular bonding potentials due to sequence,” while
this is not the case for the HPS model for CG IDPs.”®
Secondly, there are relatively fewer unique non-bonded
interactions amongst CG beads for polymers in dataset B
compared to those for polymers in dataset A. Thirdly, by
construction, there are well-defined, systematic sequence
patterns in dataset B, while the origin of sequences in dataset
A is comparatively uncontrolled. We believe the combination
of these factors facilitate feature extraction from polymers in
dataset B.

Fig. 4I-L compare the performance of the three
featurization strategies for predicting AF,q for the polymers
in dataset D. Analogously with the discussion surrounding
dataset B, we find that explicitly representing the sequence or
providing sequence-level descriptors statistically improves the
predictive capabilities of ML models compared to models
that do not possess sequence information. In particular,
there is a 34% reduction in MAE when using the CNN
strategy versus SFP and a 39% reduction when using aug. SFP
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versus simple SFP. Notably, both the CNN strategy and the
aug. SFP strategy exhibit 7> that rival the highest reported r*
in ref. 74, although here we develop a single model for all
surfaces based on DNN whereas Shi et al. develops separate
SVR models for each surface, such that direct comparisons
are difficult. The sequence tensor/CNN strategy likely again
performs well due to the relatively small number of CUs
and a comparatively abundant number of training examples,
which enables facile extraction of relevant sequence
patterns. Another contributing factor may be the
monodispersity of sequence length in dataset C compared
to that of dataset A.

Considering all the data in Fig. 4, ML models built with
aug. SFPs are consistently good across prediction tasks. This
suggests that this simple fingerprinting approach may be
preferred or at least a viable alternative to more complicated
strategies that use CNNs or GCNs, even when precise
sequence or topological information is known. From a
practical standpoint, such models would also be cheaper to
optimize. One potential advantage to the aug. SFP approach
is the opportunity to leverage domain-specific knowledge or
make use of well-known descriptors as we have here. On the

Dataset A

Dataset B
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other hand, this may also bias the ML models and limit the
information content of feature vectors to only human-crafted
descriptors. In principle, using sequence tensors or graphs
with convolutional networks provides an overall more
flexible, unbiased approach to featurizing polymers. Because
we do not observe remarkably poor performance with this
approach for any prediction task here, using explicit-
sequence featurization strategies are still likely viable, but
they may not immediately provide the most accurate property
predictions.

For design tasks, both explicit-sequence featurization or
aug. SFPs would be reasonable for use in surrogate modeling
during property optimization. A potential advantage of the
explicit-sequence featurization is that optimization to identify
a specific polymer is well defined. By contrast, additional
effort would be required to chemically invert the optimal
descriptor vectors into a sequence were one to optimize
directly in the feature space of an aug. SFP. Optimization
could be used in sequence space with surrogate evaluations
performed with the aug. SFP featurization strategy, but this
may undesirable due to possible degeneracy in the sequence-
to-aug. SFP mapping.
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Fig. 5 Comparison of CU fingerprints combined with different featurization strategies. Model performance given by the coefficient of
determination r? and the normalized mean absolute error (MAE) for prediction tasks on (A) datasets A, (B) dataset B, and (C) dataset C. Standard
errors are obtained from the results of five-fold cross-validation. The insets on all graphs range over the same intervals (0.5 to 1.0 for the abscissa
and 0.0 to 0.2 for the ordinate) for visual reference across panels. (D) The extrapolative ability of models using different CU fingerprints to make
predictions on polymers with previously unseen CUs. Each bar corresponds to a different featurization strategy; the analysis is based on dataset B.
(E) The correlation of extrapolation error with chemical dissimilarity of the unseen CUs in the test set to CUs present in the training set (Pearson's
correlation coefficient = 0.86) the chemical dissimilarity is quantified as the sum of Euclidean distances of a CU descriptor vector to all others in
the chemical space. The color and symbol legends apply to all panels, as relevant.
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3.4 Impact of constitutional unit fingerprints

In previous sections, we simplified comparisons by using
only OHE fingerprints of the CUs, achieving overall excellent
predictive accuracy. Still, OHE is a limited representation that
is deficient in any notion of chemical similarity amongst
CUs, such that all CUs are equidistant in the chemical
feature space. In addition, the dimensionality of OHE
fingerprints scales with the number of possible CUs, which
may be problematic for less restricted design spaces. Both
factors limit the transferability of ML models constructed
with OHE fingerprints of CUs. We hypothesized that using
chemical fingerprints or descriptor vectors would enhance
the predictive capabilities of ML models by allowing for a
better expression of chemical similarity. To investigate the
utility of these chemically-informed encodings, different
representations of CUs were used in conjunction with the
SFP and explicit-sequence featurization strategies for
regression tasks across datasets A, B, and C (Fig. 5). Because
datasets A and C have CUs that can be described by real
chemical structures, despite dataset A featuring CG polymers,
Fig. 5A and C compare OHE, molecular fingerprints, and
descriptor vectors for use as fingerprints of the CUs. For
dataset B, the comparison is limited to only OHE versus
descriptor vectors as there are no underlying chemical
structures for the CUs. We do not investigate this comparison
for dataset D since the two representations are identical for
this simple system: representations using OHE are related to
representations in the basis of force-field parameters by a
linear transformation.

Fig. 5A reveals that most SFP-based strategies with size
representation perform similarly, irrespective of the type of
CU fingerprint and the prediction task for dataset A.
Meanwhile, there is no evident systematic advantage for any
given CU fingerprint when used along with explicit-sequence
featurization strategies. In fact, the models utilizing the OHE
CU fingerprints are either the best or within statistical error
of the best-performing models (controlling for a given model
type and prediction task). The most noticeable result is that
graph-based models have generally larger errors, but overall,
all models exhibit overall high accuracy.

Examination of Fig. 5B, which considers OHE and
descriptor vector CU fingerprints in both SFP and sequence
graph/GCN featurization strategies for polymers in dataset B,
provides somewhat similar conclusions. In this case,
however, using descriptor vectors does consistently enhance
predictive capabilities compared to using OHE for the CU
fingerprints. While the advantage is more striking when
using SFPs than when using explicit-sequence featurization,
the differences remain overall modest when considering the
proximity of all points for generally accurate models.

In stark contrast, Fig. 5C clearly demonstrates relative
success of OHE fingerprints for CUs compared to either
molecular fingerprints or descriptor vectors. Between
molecular fingerprints and descriptor vectors as the CU
fingerprints, molecular fingerprints seem to provide overall
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more accurate models, but the advantage is not always
statistically significant. We note that the error bars are larger
here than in either Fig. 5A or B due to the dataset being
smaller and the labels being more prone to statistical noise.
Consequently, we expect that the low-dimensionality of SFP-
based models with OHE is an advantage in data-scarce
regimes and in prediction tasks with larger measurement
uncertainties.

To probe the utility of using chemically informed CU
feature vectors when constructing extrapolative ML models,
models were retrained and tested for the prediction task in
dataset B using alternative train-test splits. Specifically, train-
test splits were constructed such that a single CU type is
missing from all polymers in the training data but present in
all polymers in the test set. Only dataset B was used for this
investigation as it was the only dataset with data composition
such that reasonably sized train-test splits could be
constructed for all CUs. Fig. 5D shows that models trained
on polymer representations constructed using descriptor
vector CU fingerprints extrapolate to polymers with “unseen”
CUs significantly better than those constructed from simple
OHEs. We hypothesized that the model MAE would be closely
related to the chemical dissimilarity of the unseen CU to
those in the training data. To investigate this, we defined
chemical dissimilarity as the Euclidean distance of a chosen
CU to all other CUs in the chemical space and examined its
correlation with MAE; the results are shown in Fig. 5E.
Together, these results support the idea that representing a
CU in a chemically informed vector space can allow for the
ML model to extrapolate to new chemical systems by
encoding relationships between nominally distinct units.
Thus, when design tasks allow exploration outside of the
chemical space of the training data (e.g., in a generative
approach), we recommend the use of chemically specific CU
fingerprints.

Conclusions

In this paper, we introduced, examined, and compared the
performance of various polymer featurization strategies for
diverse ML regression tasks derived from four distinct
datasets. We considered polymer featurization from the
perspective that polymers are comprised of constitutional
units, which may be described in numerous ways, and that
the precise sequence or topology of CUs may or may not be
known, depending on the design space or synthetic
capabilities. Therefore, we outlined a series of approaches
that invoked varying degrees of sequence-level information.
We additionally considered the special role of polymer size in
property prediction when it is a known variable in the
dataset.

Our results indicate that the “best” polymer featurization
strategy is context-dependent, and its performance may also
be degenerate with other featurization strategies. For
example, in regression tasks associated with datasets A and
B, descriptor vectors performed as well as, if not better, than
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models that use OHE. However, for the lone experimental
dataset, OHE CU representations definitively outperformed
molecular fingerprinting or descriptor vector strategies,
although we expect this advantage to diminish for larger
datasets. Matching our intuition, we find that featurizing
polymers with chemically informed representations of
chemical units, as opposed to simple OHEs, facilitates
extrapolation, which may be wuseful in some design
paradigms.

In situations where sequence information is known, we
found consistent advantages to leveraging sequence
information compared to relying solely on composition.
However, explicit-sequence representations coupled with
feature extraction architectures did not outperform simpler
models built using fingerprints augmented with sequence
descriptors. Because sequence descriptors are derivable
from explicit sequence representations, this result likely
stems from data limitations. Here, scaled fingerprints
augmented with sequence descriptors seemingly provide a
data-efficient approach to encode essential sequence
characteristics for ML models, which is advantageous for
polymer design tasks. Finally, we find that some
representation of polymer size is either necessary to achieve
accurate ML models or, at worst, inconsequential,
depending on the property prediction task.

The current work also points to several interesting
questions for polymer featurization that can be considered
for future polymer design problems. For example, while we
found that processing sequence information through CNNs
was generally more effective and computationally expeditious
compared to GCNs or LSTMs, the performance limitations or
applicability of all these approaches are still not fully
understood. We also did not assess the performance or
viability of low-dimensional polymer embeddings achieved
using unsupervised ML techniques®® or variational
autoencoders.”"®” Another consistent theme uncovered by
exploration of multiple datasets is the potential sensitivity of
polymer featurization to dataset construction. For example,
we believe that the comparatively poor performance of
explicit-sequence models for dataset A is because sequence
effects must be ascertained from random occurrence of
sequence motifs across the dataset, and any relevant effects
are small by comparison to those arising from composition
or polymer size. This highlights a need to carefully consider
dataset construction, if one aims to use explicit-sequence
representations.
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