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Networks are vital tools for understanding and modeling interac­
tions in complex systems in science and engineering, and direct 
and indirect interactions are pervasive in all types of networks. 
However, quantitatively disentangling direct and indirect relation­
ships in networks remains a formidable task. Here, we present a 
framework, called IDIRECT (Inference of Direct and Indirect Rela­
tionships with Effective Copula-based Transitivity), for quantita­
tively inferring direct dependencies in association networks. Using 
copula-based transitivity, i DIRECT eliminates/ameliorates several 
challenging mathematical problems, including ill-conditioning, 
self-looping, and interaction strength overflow. With simulation 
data as benchmark examples, IDIRECT showed high prediction 
accuracies. Application of IDIRECT to reconstruct gene regulatory 
networks in Escherichia coli also revealed considerably higher pre­
diction power than the best-performing approaches in the 
DREAMS (Dialogue on Reverse Engineering Assessment and Meth­
ods project, #5) Network Inference Challenge. In addition, applying 
IDIRECT to highly diverse grassland soil microbial communities in 
response to climate warming showed that the IDIRECT-processed 
networks were significantly different from the original networks, 
with considerably fewer nodes, links, and connectivity, but higher 
relative modularity. Further analysis revealed that the IDIRECT- 
processed network was more complex under warming than the 
control and more robust to both random and target species 
removal (P < 0.001). As a general approach, i DIRECT has great 
advantages for network inference, and it should be widely appli­
cable to infer direct relationships in association networks across 
diverse disciplines in science and engineering.
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Real-world systems in all areas of human endeavor, from biol­
ogy to medicine, economy, and climate change, are complex 
dynamical systems in which various components (e.g., members 

in a community) interact with one another through extensive 
exchange of materials, energy, and/or information (1-3). Such 
complex systems can be represented as networks with compo­
nents modeled as nodes and their connections as links or edges, 
which are typically weighted according to the strengths of the 
relationships (2, 4). Networks are fundamental units for under­
standing the dynamics and properties of complex systems (5). 
However, reconstructing networks (e.g., regulatory networks 
or microbial interaction networks) from large-scale datasets is 
a long-standing challenge in systems biology and microbial 
ecology (6). It is often unclear how accurately the reconst­
ructed networks represent the real-world systems (7). One of the 
major problems is that networks reconstructed with statistical 
approaches (e.g., Pearson correlation, mutual information, and 
other similarity metrics) contain both direct and indirect associa­
tions (8) (Fig. L4). Furthermore, even if there is a true associa­
tion between a pair of nodes, the strength of such an association

might be overestimated due to the influences of additional tran­
sitive associations from indirect relationships (indirect paths) at 
different orders (e.g., second, third, and higher orders) (4). The 
number of indirect relationships increase exponentially as the 
network size increases, and such a transitive problem appears 
intractable with traditional approaches in network inference. 
All of these could result in biased network structures with 
many spurious links and inaccurate weights in various practical 
applications (4, 7, 9).

Disentangling direct associations from indirect associations 
is a pervasive problem in network science because experimental 
techniques often have difficulty in distinguishing between direct 
and indirect effects (9). Various approaches have been devel­
oped to infer direct associations among measured variables (3, 
4, 6, 10, 11), such as partial correlation (PC) (12-14), Granger 
causality (15, 16), conditional mutual information (17), part 
mutual information (8), and Bayesian networks (18). However, 
the performance of individual inference methods varies 
substantially depending on different implementations and/or
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Fig. 1. Overview of iDIRECT. (A) An association network contains both direct (blue) and indirect (red) associations. Indirect associations include spurious 
links (solid lines) and overestimated direct links (dotted lines). (6) iDIRECT uses a copula-based addition © to combine association between two nodes 
through different paths, ensuring the interaction strengths to be within the range [0,1]. (Q iDIRECT introduces a transitivity matrix Tijkj (association 
between k and / excluding paths passing i) and uses SikTijkj to calculate indirect association strength between / and /, eliminating spurious self-looping 
paths like i-k-i-j. (D) iDIRECT uses nonlinear solvers to obtain direct association strengths of each link, without inverting the ill-conditioned association 
matrix. (£) Overall workflow for iDIRECT.

datasets (6). Furthermore, these methods are usually either 
time-consuming, restricted to specific applications, or limited to 
low-order indirect associations. Thus, more effective and gen­
eral approaches are desperately needed (6). Several more gen­
eral approaches that use the inverse of the association matrix 
were developed to better estimate direct dependencies, such 
as network deconvolution (ND) (3, 4), global silencing (GS) 
(19), and SPIEC-EASI (Sparse Inverse Covariance Estimation 
for Ecological Association Inference) (20). Although ND, GS, 
and SPIEC-EASI have several advantages over traditional 
approaches in terms of accuracy, generality, and efficiency (SI 
Appendix, section A.l), they suffer from inaccurate estimation 
of indirect relationships due to several problems related to ill- 
conditioning, self-looping, and interaction strength overflow 
(see SI Appendix, sections A.2-A.4 for details). Specifically, ill- 
conditioning means that the association matrix is close to singu­
lar and is highly unreliable to invert (SI Appendix, Fig. SL4). 
Self-looping refers to spurious indirect paths passing a node 
multiple times, leading to overestimation of the corresponding 
indirect association (SI Appendix, Fig. SIB). Interaction 
strength overflow indicates that the values of the total interac­
tion strengths are outside their natural range (SI Appendix, 
Fig. SIC) because simple addition (+) is not appropriate to 
combine direct and indirect associations.

The objective of this study was to develop a mathematically 
sound, general approach to disentangle direct from indirect 
relationships in association networks; we refer to this approach 
as iDIRECT (Inference of Direct and Indirect Relationships
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with Effective Copula-Based Transitivity). First, we developed 
mathematical and computational strategies to minimize or 
eliminate several problems associated with the ND and GS 
approaches. We then compared our method to ND and GS, as 
well as PC (7), based on synthetic network data. In addition, we 
used our approach to reconstruct gene regulatory networks 
in two applications: Escherichia coli using gene-expression data 
and microbial ecological networks for a grassland soil microbial 
community from a long-term warming site. Our results indicate 
that iDIRECT can distinguish direct and indirect relationships 
of arbitrary orders with high precision and sensitivity, and, 
hence, it is an effective, reliable, and robust approach for infer­
ring direct relationships and their strengths in association 
networks.

Results
Overview of iDIRECT. To ameliorate the problems encountered in 
ND (3, 4), GS (19), and SPIEC-EASI (20), such as interaction 
strength overflow, self-looping, and ill-conditioning, a general 
framework, iDIRECT, was developed (Fig. 1 B-D). First, iDIR­
ECT addresses the interaction strength overflow problem by 
introducing a copula-based addition ©, which guarantees u © v 
e [0,1] for all u,v e [0,1] (Fig. IB and SI Appendix, section B.l). 
iDIRECT also introduces a transitivity matrix (T,) to eliminate 
self-looping-induced indirect paths by considering the indirect 
association between two nodes i and j through one of fs neigh­
bors, k (Fig. 1C). The indirect association strength between i
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and j through k is SikTikj, where Sik is the direct association 
strength between i and k, and Tkkj is the association strength 
between nodes k and j, excluding paths passing i. SikTikj does 
not include any self-looping-induced indirect paths because 
they are explicitly excluded from TLkj (SI Appendix, section B.2). 
Finally, combining the results above, the total association G,j 
between nodes i and j is the sum of the direct association S,y 
between i and j and the indirect association SikTikj between i 
and j through one of fs neighbors, k (Fig. ID). To obtain the 
direct association S,y, iDIRECT uses two sets of nonlinear solv­
ers (see SI Appendix, section B.3 for details) with the goal of 
not inverting the association matrix, which is ill-conditioned 
and highly unreliable. As a result, iDIRECT provides a com­
prehensive, mathematically sound framework for disentangling 
direct from indirect effects in any association network. The 
overall workflow of iDIRECT is shown in Fig. IE.

Simulated Synthetic Association Networks. Since there is no gold- 
standard experiment for establishing a true network structure, 
using simulated networks and data is the dominant approach for 
assessing the performance of various network inference methods 
(6, 20, 21). In a simulated network, the ground truth of network 
structure is known a priori, and hence predictions can be system­
atically evaluated. To determine the performance of iDIRECT, 
we used synthetic 500-node networks with three distinct topolo­
gies: band-like, clustered, and scale-free (Fig. 2 A-C; see details 
in Materials and Methods). iDIRECT yielded a higher average 
precision (0.79) than ND (0.69), GS (0.72), and PC (0.02) for 
all three types of networks (Fig. 2 D-F) in terms of the Area 
Under PR curves (AUPR), which represents the average preci­
sion when recall varies from zero to one (see details in Materials 
and Methods). The above results indicate that iDIRECT yielded 
more consistent results with the simulated synthetic networks

than ND, GS, and PC. Because of the poor performance of PC, 
we did not include PC in the following examples.

Simulated Gene Regulatory Network from DREAMS. The perfor­
mance of iDIRECT and the other methods were further tested 
with an in silico gene regulatory network from the DREAMS 
(Dialogue on Reverse Engineering Assessment and Methods 
project, #5) Network Inference Challenge (22). Its correspond­
ing gene-expression data were simulated by using GeneNet- 
Weaver (GNW) version 3.0 (gnw.sourceforge.net/). We applied 
iDIRECT to the 100,000 links with the highest weights from 10 
submissions that were among the best-performing Challenge 
participants and reweighted those links based on direct associa­
tion strength. Those links were then scored based on the true 
network using the Challenge organizer’s script (details in Mate­
rials and Methods), which was just — log(p) of the empirical P 
values of the predicted AUPR from 1,000 random simulations. 
The same 10 submissions were also used in ND (4). iDIRECT 
performed better than all original submissions except for 
TIGRESS (trustful inference of gene regulation using stability 
selection), with the average AUPR score of 31% higher than 
the original submissions (Fig. 3A), although wide variations 
were observed. For examples, iDIRECT had 187% and 156% 
improvement over the Pearson and MI, but only 10.0% over 
Inferator, but —3.5% over TIGRESS (Fig. 3A).

Since different network inference methods are complementary, 
having different advantages and limitations in different contexts, it 
is expected that combining the results of multiple inference meth­
ods would be a good strategy for improving predictions (6). Thus, 
community networks were constructed by integrating the predic­
tions of all participating teams across all methods (6). Previous 
analysis indicated that community networks outperformed individ­
ual inference methods, and community-based methods provide a 
powerful, robust, preferred tool for inferring transcriptional gene
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- Fig. 2. Performance of iDIRECT on simulated networks in comparison with other methods. (A-C) Synthetic networks with three distinct topologies.
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Fig. 3. Regulatory networks from DREAMS network inference challenge. 
(A) In silico network score. iDIRECT (red) was compared with original 
submissions (purple). ***p < 0.001. Note that the numbers for Spearman 
(2.26 x 10 ^ for original and 2.90 x 10 ^ for iDIRECT) are too small to 
show. (6) PR curve for the E. coli network. (O Top 500 links in the E. coli 
networks obtained by iDIRECT. Four modules with one principal hub were 
highlighted. Nodes with orange color represent transcriptional factors, 
and those with gray color mean the regulated genes. Colors of the edges 
represent different types of supporting evidences: Cyan means links with 
evidences found in literature; blue means having a binding motif found in 
promoter; orange means involving either genes in the same operon or an 
antisigma factors; and gray means no information.

regulatory networks (6). Consistent with the comparable results 
from individual inference methods, iDIRECT considerably 
improved (26%) the community network (6). Similar results were 
obtained when only a subset of submissions was included in the 
community network integration (SIAppendix, Fig. S2).

We also applied ND and GS to process these submissions. 
The average increase was 18.8% for ND and 17.2% for GS 
over the original submissions (SI Appendix, Fig. S3). Although 
the performance of iDIRECT over ND and GS was less consis­
tent across different submissions (SI Appendix, Fig. S3), both 
ND and GS had poorer performance than iDIRECT for the 
community networks. ND had only a 0.4% increase, and GS 
had a 13.8% decrease over the original community network (SI 
Appendix, Fig. S3), which were much lower than the improve­
ment by iDIRECT. Collectively, our results indicated that iDIR­
ECT was generally better at distinguishing direct from indirect 
relationships in the in silico gene regulatory network.

Application to a Gene Regulatory Network in E. coli. The DREAMS 
Challenge (22) also included reconstruction of genome-scale 
transcriptional regulatory networks in E. coli from chip-based 
gene-expression data. We applied iDIRECT to rerank the 
100,000 edges submitted by the best-performing method, 
ANOVerence (23), based on direct association strength. Due to 
the lack of overlap between ANOVerence and other methods, 
such as TIGRESS, we could not perform a detailed analysis for 
other top-performing methods. Since the DREAMS project 
was accomplished several years ago, we updated the gold stan­
dard compiled from an updated version of RegulonDB (24) 
(version 10.0; Materials and Methods) to reassess iDIRECT, as 
well as ND and GS. Application of iDIRECT to these 100,000 
edges from ANOVerence resulted in an average 12.5% increase

in precision. In contrast, the average precision of ND and GS 
decreased by 30.9% and 27.0%, respectively, compared to 
ANOVerence (23) (Fig. 35). These results also suggested that 
iDIRECT was more effective in distinguishing true direct links 
from spurious/indirect links.

We further manually examined whether the links identified 
by iDIRECT were consistent with biological evidence by focus­
ing on the top 500 links. Overall, there were 28.0% of these 
links supported by RegulonDB (SI Appendix, Fig. S4), 7.6% by 
online databases or by experimental evidence in the literature, 
and 14.0% by the presence of a transcriptional factor binding 
motif in the promoter region (25); also, 4.8% of these links 
contained genes that were in the same transcriptional unit 
(TU), and 3.6% were between an antisigma factor and a target 
gene of the corresponding sigma factor. About 40% of these 
links had no supporting evidence available. For comparison, 
the top 500 links from ND and GS were also examined and 
compared with those from iDIRECT (SI Appendix, Fig. S4). 
The percentage of links that were most likely true (listed in 
RegulonDB, found in online databases or literature, or having 
a binding motif in the promoter region) was substantially 
higher in iDIRECT (49.4%) than ND (25.2%) or GS (31.0%). 
These results further supported that iDIRECT had a higher 
prediction power than ND and GS.

To demonstrate the effectiveness of iDIRECT, four modules 
in the iDIRECT network were examined in detail. The hubs of 
these modules were extensively studied regulatory factors, fliA, 
feci, rpoS, and bolA (Fig. 3C), allowing us to retrieve experi­
mental evidence and computational data. FliA (cr8) in Module 
1 (49 links) is a minor sigma factor required for flagellin pro­
duction. Among these, 34 links had experimental evidence in 
RegulonDB; 15 links contained the binding motif of cr8 
upstream of the target gene. Among these 15 links, experimen­
tal evidence was found in the literature for three target genes, 
yjdA (26), flgA (27), and yhjH (28), and nine target genes 
encoding flagellar biosynthesis-related proteins according to 
sequence annotation (SI Appendix, Table SI). Feci (o3% in 
Module 2 (25 links) is a sigma factor that regulates genes 
involved in the transportation of ferric citrate from the peri- 
plasmic space to the cytoplasm. No experimental evidence was 
found for these links, but the Feci binding motif (29) was found 
upstream of all 25 target genes, and most of these genes were 
related to ferric transport based on sequence annotation (SI 
Appendix, Table SI). RpoS (a38) in Module 3 (18 links) is the 
master regulator of general stress response, regulating up to 
10% of the genes in E. coli directly or indirectly (30, 31). Exper­
imental evidence was found for 1 target gene, yncL, in the liter­
ature (27), and the RpoS binding motif was found upstream of 
all 18 target genes (SI Appendix, Table SI). BolA in Module 4 
(11 links) is a transcriptional factor regulating genes involved in 
a range of cellular processes, including bacterial morphology, 
membrane permeability, motility, and biofilm formation (32). 
No experimental evidence was found for these links, but the 
perfect BolA core binding motif (GCCAG) (32) was found 
upstream of nine target genes, and imperfect core binding 
motifs (GCCA or CCAG) were found upstream of two target 
genes (SI Appendix, Table SI). The consensus sequences of the 
binding motifs of FliA, Feci, or RpoS were consistent with the 
literature (29) (SI Appendix, Fig. S5). Collectively, the above 
results suggested that iDIRECT had high accuracy when 
applied in reconstruction of bacterial regulatory networks.

Application to Microbial Community Networks in Response to 
Warming. To further explore whether iDIRECT was useful for 
analyzing microbial molecular ecological networks (MENs) (33, 
34), iDIRECT was applied to analyze the MENs of soil micro­
bial communities in response to in situ experimental warming. 
Our previous studies indicated that warming shifted the
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microbial community structure dramatically, led to divergent 
succession (35), accelerated microbial temporal turnover (36), 
and enhanced network complexity and stability (37). Thus, this 
experimental dataset was ideal to evaluate the performance of 
iDIRECT on community networks.

Two phylogenetic MENs under warming and control were 
constructed, respectively, using the random matrix theory 
(RMT)-based network approach (38). iDIRECT was then 
applied to these two MENs to remove spurious indirect links in 
the original networks. A considerable portion of the links were 
removed in networks under warming (27.5%) (SI Appendix, 
Table S2) or control (20.8%) (SI Appendix, Table S3). Conse­
quently, the average connectivity significantly decreased under 
warming (18%) or control (10.1%) compared to the corre­
sponding original networks (SI Appendix, Tables S2 and S3). 
Various network topological metrics were significantly (P < 0. 
001) different between the iDIRECT-derived networks and the 
original networks (SI Appendix, Tables S2 and S3). Most inter­
estingly, the relative modularity of the iDIRECT-derived net­
works increased significantly compared to the original networks 
(SIAppendix, Tables S2 and S3). In addition, the OTU (opera­
tional taxonomic unit) composition of network/module hubs 
and connectors were considerably different between the 
iDIRECT-derived networks and the original networks (SI 
Appendix, Table S4). These results suggested that use of iDIR­
ECT effectively removed spurious/indirect links in the MEN 
analysis. ND and GS were not used for comparison in this 
application because they do not provide a clear cutoff for net­
work reconstruction.

Both networks generated by iDIRECT were scale-free (33, 
34, 39) and exhibited small-world behavior (SI Appendix, Table 
S5 and Fig. S6), which are characteristics consistent with most 
molecular biology and technology networks (39-41). The 
iDIRECT-derived network was more complex under warming 
than control in terms of the number of nodes, links, and aver­
age connectivity (Fig. 4 A and B and SI Appendix, Table S5). 
Also, there were 166 nodes shared under warming and control, 
but no significant correlations of the connectivity were observed 
between shared OTUs (;- = 0.2775, P = 0.7817). All topological 
attributes were significantly (P < 0.05) different between warm­
ing and control, as well as from their corresponding random 
networks (SI Appendix, Table S5), suggesting that the network 
composition and structure were not conserved between warm­
ing and control. In addition, a total of 12 and 10 modules with 
more than five members were detected under warming and 
control, respectively. Fisher’s exact test (42) showed that many 
modules (14 of 22, 63.6%) could be paired together. Within the 
paired modules, only 22.9% of the total nodes shared between 
these two networks were identical (SI Appendix, Table S6). 
Eigengene network analysis showed that the eigengenes from 
the nine paired modules were clustered differently with other 
eigengenes (SI Appendix, Fig. S7), suggesting that these two 
networks were even less conserved at the modular level. Finally, 
a total of 8 and 22 keystone taxa were detected under warming 
and control, respectively (SI Appendix, Fig. S8), but very few of 
these (3, or 11.1%) were shared between warming and control 
(SI Appendix, Table S4). The keystone taxa from iDIRECT- 
processed networks had higher correlations with more soil, 
plant, and ecosystem functioning variables (8.4% more for 
warming and 2.4% more for control; SI Appendix, Fig. S9). The 
same was observed between several key network properties and 
soil, plant, and ecosystem functioning variables under warming 
(4.4% more; SI Appendix, Fig. S10). Collectively, the above 
results indicated that warming substantially altered the overall 
network composition, structure, higher-order organization, and 
topological roles of individual populations, which is in agree­
ment with our previous analyses (37) and similar to what we 
observed under elevated CCE (33, 34).
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Fig. 4. Soil microbial networks in response to experimental warming. 
(A and 6) Visualization of the microbial MENs under warming or control, n, 
node number; m, edge number; k, average connectivity; rm, relative modu­
larity. Network nodes were colored at the phylum level; edges were colored 
based on their module memberships. OTUs identified as module hubs or 
network hubs were labeled by numbers. (O Robustness to species removal 
of iDI RE OT-processed networks when 50% of the taxa were randomly 
removed. (D) Robustness to target taxa removal of i DI RE OT-p rocessed net­
works when four module hubs were removed. The error bars represent SD 
of 100 repetitions of each simulation. Significant differences are expressed. 
***P < 0.001. Detailed simulation results of robustness for both original 
iDIRECT-processed networks were seen in SI Appendix, Fig. S11.

Since relative modularity of the network under warming was 
more than two times higher than that under control (SI 
Appendix, Table S5), it is expected that the network under 
warming was more robust than that under control because the 
effects of a local perturbation on the whole system should be 
minimized if the network had high modularity (43-45). To test 
this prediction, robustness analysis was performed. Our results 
indicated that the robustness of the networks generated by 
iDIRECT to both random and targeted species removal 
was significantly higher (P < 0.01) under warming than control 
(Fig. 4 C and D), which is consistent with our general expecta­
tion. However, the robustness of the networks prior to applying 
iDIRECT to random and target species removal was lower 
under warming than control (13.5% for random and 15.6% for 
targeted) (SI Appendix, Fig. SUB), even though the relative 
modularity was higher under warming than control, countering 
our general expectation. These results further suggested the 
importance of removing spurious/indirect linkages in network 
analysis.

Discussion
One of the main challenges in network sciences is how to disen­
tangle direct and indirect relationships in a complex system. 
Although network studies have received great attention 
recently (46, 47), studies to effectively recognize and eliminate 
the effects of indirect interactions at a global scale are in their 
infancy (9). In this study, we developed iDIRECT to infer 
direct dependences in association networks by overcoming
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various mathematical problems inherent to the existing meth­
ods. Analyses with simulation, microbial gene expression, and 
microbial community data demonstrate that iDIRECT is a 
powerful, robust, and reliable tool in distinguishing direct and 
indirect relationships. Thus, we expect that iDIRECT will 
greatly enhance our capability to discern network interactions 
in microbial systems.

iDIRECT has several advantages over previous approaches. 
First, iDIRECT is more rigorous in its formulation than those 
from existing methods, such as ND, GS, and SPIEC-EASI. As 
the total association matrix G tends to be singular or ill condi­
tioned (48) due to the underdetermined nature of network infer­
ence (10, 19, 20), iDIRECT avoids inverting G directly and solves 
the direct association strengths through a set of nonlinear equa­
tions to minimize the impact of underdetermination. In contrast, 
ND (4), GS (19), and SPIEC-EASI (20) all use G 1 in their for­
mulations. When the singularity or ill-conditioning of G becomes 
a problem during implementation, other approaches use generic 
numerical analysis techniques to invert the association matrix G. 
For instance, ND uses a scaling factor and an eigen-decomposi- 
tion-based pseudoinverse. GS modifies G using a bootstrap ran­
domization, and SPIEC-EASI follows an optimization approach 
using the sparsity of G. These approaches failed to utilize the 
intrinsic network structure provided in G, which is used by iDIR­
ECT. Second, by introducing a copula-based addition, a two-step 
product-assembly strategy, and a transitivity matrix, iDIRECT 
eliminates the problems of self-looping and interaction strength 
overflow. With these mathematical improvements, it is expected 
that iDIRECT will perform better in distinguishing direct from 
indirect relationships than previous approaches. This is supported 
by both synthetic and empirical data. Third, the copula-based 
addition adopted by iDIRECT is designed for a variety of associ­
ation metrics. iDIRECT performs especially well with association 
metrics based on correlation, mutual information, and certain 
other approaches. In addition, the computation-efficiency 
enhancement techniques based on generator functions of Archi­
medean copulas is very effective, so that iDIRECT is able to pro­
cess synthetic and experimental datasets comprising hundreds to 
thousands of nodes. Finally, iDIRECT provides a robust and reli­
able framework to calculate both direct and indirect association 
strength in an association network. Therefore, it not only allows 
us to analyze the direct association network, but also the indirect 
association network, which can be useful in ecology (49, 50) and 
evolutionary biology, such as mutualistic coevolution (51).

For iDIRECT, several further improvements are needed. First, 
iDIRECT uses nonlinear solvers extensively, in calculating both 
the transitivity matrix and the direct association strength. Despite 
developments in recent decades, nonlinear solvers are still time- 
consuming and can fail to yield a converged solution when the 
initial guess is not close enough. Also, the introduction of the 
transitivity matrix costs more storage space and slows down com­
putation. If the problem is scaled up to tens or even hundreds of 
thousands of nodes, and the maximal connectivity substantially 
increases, the increase in storage and computational time may 
pose serious problems. In addition, the implementation of the 
binary operator u © v is relatively slow when compared with ordi­
nary addition +, despite the fact that we have accelerated it using 
the generator function of the corresponding Archimedean cop­
ula. In addition, it would be of interest to extend iDIRECT to 
directed networks that can describe asymmetric relationships in a 
community. In directed networks, the two combinatorial rules used 
in this paper, u <g> v = uv and u © v = (u + v — 2uv)/(l — uv), 
might not be applicable, and some of the key equations, such as 
the definition of the transitivity matrix, might need to be modi­
fied due to loss of symmetry. All these issues need to be 
addressed to further realize the full power of iDIRECT.

In conclusion, iDIRECT is a robust, reliable, and general 
tool to infer direct association networks from the total
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association matrix. By testing it against synthetic, experimental 
gene expression and microbial community data, we demon­
strate that iDIRECT is not only capable of effectively removing 
spurious links, but also overcoming overestimated direct associ­
ation strength caused by indirect influences. iDIRECT 
improves the prediction accuracy of a wide variety of associa­
tion measures in synthetic and experimental systems. There­
fore, it is expected that iDIRECT is generally applicable to 
many other association-based networks, as well as other types 
of networks, across different research fields. We expect that 
iDIRECT will have broad applications in network science, sys­
tems biology, and microbiome research.

Materials and Methods
Mathematical Framework. iDIRECT aims to separate direct associations from 
indirect associations without suffering problems in the existing approaches, 
such as ill-conditioning, self-looping, and interaction strength overflow (see 5/ 
Appendix, section A for details). To address the interaction strength overflow 
problem, we improved the algorithms to calculate indirect association from 
direct association by considering the ways how two nodes in a network are 
indirectly linked together (see SI Appendix, section B.1 for details). Basically, 
there are two ways through which two nodes are indirectly connected. One is 
sequential paths, i.e., two nodes are indirectly linked through a third node (5/ 
Appendix, Fig. S12A and section B.1.1 for details). Let u and v be the direct 
association strength, the indirect association strength u Q v = uv intuitively. 
The other is parallel paths, i.e., two nodes are linked through two different 
paths (SI Appendix, Fig. S12B and section B.1.2 for details). Let u and v be 
the association strength of those two paths; the combined association 
strength is termed as u © v. An intuitive choice u © v = u + v was used in 
previous approaches, such as ND and GS, resulting in the undesirable inter­
action strength overflow. To address this problem, iDIRECT uses the follow­
ing formula (Eq. 1) based on copulas from the probability theory, which 
guarantees u © v e [0,1] for all u,v e [0,1] (see SI Appendix, section C.1 for 
details).

This copula-based addition is developed from Archimedean copulas (5/ 
Appendix, section C.2). Archimedean copulas are associative and commuta­
tive, and they help to enhance the computational efficiency (SI Appendix, 
section C.3), which is very important when the sum contains lots of terms, as in 
the case of complex networks.

Based on the basic algorithms, the total association between two nodes / 
and j (G^) is the sum (using ©) of their direct association (S,y) and indirect asso­
ciation. The indirect association between / and j consists of many parallel
paths, each of which passes one of /'s neighbors (k2, k3........kd; SI Appendix,
Fig. S12Q. Therefore, the indirect association between / and j can be calcu­
lated as the sum (using ©) of the indirect association through each of i's neigh­
bors k(k = k2, k3....... /©.The indirect association through k appears to be the
product of the direct association between / and k (5,*) and the association 
strength between /cand j (Gkj), i.e., SikQ Gkj = SikGkj. But this actually overesti­
mates the indirect association through k because spurious indirect paths pass­
ing / twice are also included, i.e., the self-looping problem (SI Appendix, 
section A.3).

To eliminate all self-looping-induced indirect paths, iDIRECT introduced a 
transitivity matrix (see SI Appendix, section B.2 for details), whose (/, k, y)-th com­
ponent 7©y is the association strength between node k and j, excluding paths 
passing /. Therefore, the indirect association through k is Sik Q 7© = 5*7©, 
which contains no self-looping indirect paths, because we explicitly exclude 
them in the definition of 7©. The transitivity matrix 7© can be calculated with 
an indirect approach. Consider three nodes /, j, and kin a network (5/ Appendix, 
Fig. S12D). The total association between k and j is Gkk Gkj is expressed as the 
sum (using ©) of 7© (the association strength of paths not passing i) and 7©7© 
(the association strength of paths passing i). In the same way, Gki and G,y are 
expressed in terms of the transitivity matrix:

Gkj = Ti,kj®(TjkiTKij);
Gki = Tj,ki®(Tk,ijTijkj); [2]
<% = Tk,ij®(Ti,kjTj,ki).

which contain three equations to solve three unknown variables (7©y, 7©, and 
©,y). For each node /, we can iterate j and k over all i's neighbors to obtain the 
rest of the equations to solve all entries of each transitivity matrix. Combining 
the results above, we calculate the total association G,y from 5,y, Sik, and 7©,:
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Iterating / over all /'s neighbors will give us all the equations we need to solve 
all the direct association strength 5,, (collectively as a matrix S) from Gy (collec­
tively as a matrix G) and Tifkj (collectively as T,). Eq. 3 and its derived forms are 
the foundation of IDIRECT.

To ameliorate the problem of ill-conditioning caused by underdetermina­
tion of network inference, unlike previous methods such as ND (4), GS (19), 
and SPIEC-EASI (20), IDIRECT does not explicitly use G_1 in the formulation (SI 
Appendix, section B.3). The formulation starts from dividing the whole system 
into small subsystems. For a given node /, first, we select two of /'s neighbors, 
j and k, and calculate the transitivity matrix Tifjk by solving Eq. 2; then, we 
select all of i's neighbors, /q (/ = 1,2,, d) and calculate the direct association 
strength Siki by solving Eq. 3. The nonlinear systems in Eqs. 2 and 3 are solved 
by two nonlinear solvers (T-solver, using G to compute T,-, and S-solver, using G 
and T, to compute S) without calculating G-1. The T-solver is applied first (SI 
Appendix, section B.3.2):

( ij/( 1 - Gkj) = \jj( 1 — Tj'kj) +\jj( 1 - TjikjTkiij);
< ^(1 - GW = ^(1 - 7),%) + ^(1 - [4]
( !A(1 _ Gjj) = «A( 1 - Tkjj) + «A( 1 - TiikjTjiki),

where ijj(t) is the generator function associated with the corresponding copula 
of ®. Eq. 4 is solved by using Newton's method, where an initial guess is 
made, and the solution is iteratively improved until further improvement is 
too small (SIAppendix, section B.3.2). Then, the S-solver is applied,

( ij/( 1 - GjkA = \jj( 1 - %) + ^(1 - Tiik^k2Sik2J + ... + ^(1 - TjfakdSikd);
I «A(1 - Gik2) = - ^i,k2^ % ) + <A(1 - Stk2) + ••• + ^(1 - Tiik2kdSikd);
i *A(1 - = «A(1 - Tiikdk} %) +«A(1 - Tiikdk2Sik2) + ... + «A(1 ” 5*d).

Again, Newton's method is used for the S-solver (SI Appendix, section B.3.3). 
In brief, IDIRECT accepts the observable total association matrix G as input and 
returns the direct association matrix S as output. IDIRECT finished running in 
minutes for each network considered in this study.

Network Simulation. We developed a network simulator to generate abun­
dance profiles when an overall network topology is given. We tested three 
different network topologies: band-like (all nodes are connected to form a 
long band-like structure; Fig. 2A), clustered (all nodes are clustered into sev­
eral disjoint groups; Fig. 26), and scale-free [the degree distribution of nodes 
follow the power-law (20); Fig. 2Q. The generated abundance profiles of two 
nodes are designed to have high Pearson's correlation coefficients when those 
two nodes are directly linked. Therefore, we can directly use Pearson's correla­
tion coefficients to measure the association strength. The network simulator 
provides suitable synthetic datasets for inferring direct and indirect relation­
ships in association networks.

The first step of the network simulator is to generate an undirect 
unweighted network. We set the size (number of nodes, n) and average con­
nectivity (k, between two and three) of the network and choose a network 
topology: band-like, clustered, or scale-free (20). For a band-like network 
(Fig. 2A), we label all nodes from 1 to n. We connect node / to node / + 1 and 
randomly connect node / and node / + 2 with a probability of k— 2. For a clus­
tered network (Fig. 26), we divide all nodes into several clusters. Each cluster 
contains about 10 nodes. We connect nodes in each cluster into a circle, then 
add more edges (to reach an average connectivity k) and rewire existing edges 
randomly. For a scale-free network (Fig. 2Q, we start from one node, followed 
by consecutive random attachment of additional nodes (52). The probability 
of a new node attaching to an existing node is proportional to the cubic root 
of the connectivity of the existing node; that is, P,- ~ (/q)1/3. After enough 
nodes are attached, random edges are added, with the goal to reach an aver­
age connectivity k and to make the node degree distribution fitting the 
power law better.

The second step is to assign direction and weight to all edges of the 
obtained undirect unweighted network. The direction of an edge is always 
from high-connectivity node to low-connectivity node, avoiding any loops to 
make the algorithm in the third step feasible. The weight of an edge is ran­
domly selected from an interval that represents association strengths in real 
microbial communities.

The third step is to generate abundance profiles based on the directed 
weighted network obtained in step 2. We first locate nodes in the network that 
only have edges pointing from them and assign random values as their 
observed abundance across different samples. Then, we locate nodes that sat­
isfy the following conditions: 1) All the edges pointing to the node are from 
nodes that already have their abundance profiles, and 2) the remaining edges 
pointing away from the node. Then, we generate abundance profiles across dif­
ferent samples for those nodes. For instance, let the abundance profiles of

node A and 6 be vectors x and y, respectively, and node A and 6 has two edges 
pointing to node C. The association strength of A-C and 6-Care u and v, respec­
tively. To generate the abundance profile z of node C, let z = ax + /?y + w, 
where a and /? are variables to be determined, and w contains random values. 
To determine a and /?, we use the requirements that the correlation of A-C is u, 
and the correlation of 6-C is v. There are two equations to uniquely determine 
two unknown variables (a and /?). This can be extended to cases when a node 
has n edges pointing to it; we can always construct n equations originating 
from the correlation requirement to uniquely determine n unknown variables. 
We repeat this process until we obtain the abundance profiles for all the nodes. 
Because the network was constructed to contain no loops in step 2, this 
approach is always feasible. Because the AUPR results become stable after the 
sample size exceeds 100 (SI Appendix, Fig. S13), 100 samples were used in the 
analysis, with the networks containing 500 nodes.

Precision-Recall and Receiver Operating Characteristics Curves. Precision-Recall 
(PR) curves and Receiver Operating Characteristics (ROC) curves are utilized to eval­
uate the performance of network inference as described (4, 6,19). First, the preci­
sion, recall (true-positive rate), and false-positive rates are calculated as follow:

Precision 

Recall/true positive rate 

False positive rate

TP
TP + FP;

TP
TP + FN;

FP
FP+TN‘

[6]

where TP, FP, TN, and FN are true-positive, false-positive, true-negative, and 
false-negative link numbers, respectively. A link with association strength 
above a certain threshold is counted as true positive if the link is a true interac­
tion; otherwise, it is false positive. In contrast, a link with association strength 
below a certain threshold is false negative if the link is a true interaction; 
otherwise, it is true negative.

For each network, a series of precision, recall, and false-positive rates are 
generated by varying the threshold used in defining TP, FP, TN, and FN above. 
Then, the PR curve is obtained by plotting precision (y axis) against recall 
(true-positive rate, x axis); the ROC curve is obtained by plotting the true­
positive rate (y axis) against the false-positive rate (x axis). PR and ROC curves 
provide an overall evaluation of the trade-off between type I errors (false 
positive) and type II errors (false negative). The quality of the prediction can 
be further quantified by AUPR and Area Under ROC curves (AUROC), both of 
which range within [0, 1]. AUPR represents the average precision when recall 
(true-positive rate) varies from zero to one, and AUROC represents the average 
true positive rate when the false-negative rate varies from zero to one.

Gene Regulatory Networks: DREAMS Network Inference Challenge. The DREAMS 
network inference challenge (22) (https://www.synapse.Org/#ISynapse:syn2820440/ 
wiki/) is a benchmark example used in ND (4) and GS (19). The challenge orga­
nizer provided microarray compendia of four networks (6) for the partici­
pants to infer the structure of the underlying transcriptional regulatory 
networks, including an in silico network (53) and an E. coli network. For the 
in silico network, the corresponding gene-expression data were generated by 
GNW version 3.0 (gnw.sourceforge.net/). For in vivo E. coli networks, a set of 
experimentally validated interactions from the RegulonDB database (24) 
(regulondb.ccg.unam.mx, version 7.0) were provided as a gold standard. Reg­
ulonDB is a database of transcriptional regulation in E. coli manually curated 
from the literature, high-throughput datasets, and computational predic­
tions. Each predicted interaction is classified into one of three categories: 
weak (single evidence with ambiguous conclusions), strong (single evidence 
with direct physical interaction or solid genetic evidence), and confirmed 
(independent strong evidences with mutually excluding false positives). The 
classification of RegulonDB evidence types can be found in regulondb.ccg. 
unam.mx/evidenceclassification. The database includes interactions between 
transcription factor (TF)-gene, TF-operon, TF-TF, sigma factor-gene, and 
small RNA binding sites. Only those interactions that contained at least one 
strong evidence were included (2,066 interactions) in the DREAMS challenge 
gold standard. Each participant in the challenge was asked to submit 100,000 
edges with the highest confidence level. Each submission was compared to 
the gold standards and scored based on AUPR and AUROC. The final score 
was a logarithmic-scaled probability of achieving the same AUPR or AUROC 
based on 1,000 random simulations:

&pr = — I°9ioPpr<-
6roc = —1 o Proci [7]
9 total = (®PR + Qroc)/2.

In Eq. 7, pPR and pROc are the P values with respect to AUPR and AUROC val­
ues; 0PR, 6ROq and 0totai are the corresponding scores. RegulonDB has been
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updated several times since the DREAMS challenge. Therefore, we collected 
all the edges in the latest version of RegulonDB (version 10.0, containing 
2,692 interactions; compare with 2,066 interactions from version 7.0) that 
have at least one strong evidence. We then compiled them into an updated 
gold standard that was used to evaluate the performances of IDIRECT, ND, 
and GS.

In the evaluation (22), the submitted 100,000 edges from each participant 
were treated as the observable total association matrix. IDIRECT, ND (4), and 
GS (19) were applied to the first 3,000 edges to obtain their direct association 
strength, which were used to rerank those 3,000 edges in a descending order. 
These reranked edges, together with the remaining edges, were scored by 
using the same scoring script provided by the challenge organizer (6). This pro­
cedure was consistent with the practice of ND (4). ND- and GS-processed direct 
association strength were obtained by using the scripts posted online (4, 19). 
The community networks were integrated from the predictions of all partici­
pants by rescoring interactions according to their average rank and are the 
best performer in the DREAMS challenge (6). IDIRECT, ND, and GS were 
applied to individual submissions before community integration instead of 
being directly applied to the integrated community networks. Because only 
interactions between a transcriptional factor and a gene were considered, 
and the entailing association matrix was rectangular, PC was not applicable 
and was excluded in the comparison. To evaluate the significance of the dif­
ference between the AUPR scores obtained from each submission after proc­
essed by IDIRECT, ND, and GS for the in silico network, we randomly switched 
the weights of the true links and randomly switched the weights of the false 
links in the first 3,000 edges from each submission. The SDs of the AUPR scores 
obtained from 100 such randomizations were used as a proxy for the SD for 
the AUPR scores for each submission and method combination. Then, 
Student's t test was performed to evaluate whether the AUPR scores obtained 
from IDIRECT, ND, and GS were significantly different (SIAppendix, Fig. S3).

To assess whether edges identified by IDIRECT In the E. coli network from 
the DREAMS challenge are biologically meaningful, we examined the top 500 
links with the highest direct association strengths from IDIRECT (Fig. 3Q. For 
the links without any evidence in RegulonDB, we manually searched each pre­
dicted interaction to find supporting evidence by the following steps: 1) We 
manually searched online databases, including RegulonDB (54), EcoCyc (55) (a 
biological database of E. coli K-12 containing transcriptional regulation), 
RegPrecise (56) (a database of manually curated TF regulons reconstructed by 
comparative genomic approaches in prokaryotic genomes), and TEC (57) (tran­
scription profile of E. coli) to see whether these regulatory relationships were 
described in these databases; 2) if no evidence was found in these databases, 
we searched through the literature for experimental support; 3) if no evidence 
was found in any database or in the literature, we searched for the presence 
of a binding motif of the TF in the promoter region of the target genes; and 
4) lastly, If the predicted interaction involved two genes in the same operon, it 
was classified as the same TU and was unlikely a true direct link, but the 
expression level of each gene in a TU tends to change in the same direction as 
they are cotranscribed. If the link involved an antisigma factor, and supporting 
evidence was available for the interaction between the corresponding sigma 
factor and the target gene, it was classified as an antisigma factor interaction. 
These links might be true, but lack direct experimental evidence. If the target 
gene was involved in the same specific cellular pathway or stress-response 
pathway based on annotation, it was considered as supportive evidence of 
the predictive power of IDIRECT.

Microbial Community Network. We applied IDIRECT to MENs in microbial com­
munities from a long-term experimental warming site of native Oklahoma 
grasslands (38). A total of 240 surface soil samples were collected from 24 
warmed (+2 °C) plots and 24 unwarmed plots once a year for 5 y. DNA extrac­
tion, 16S ribosomal ribonucleic acid (rRNA) gene sequencing, and data process­
ing were performed as described (35, 36). The sequences were rarefied to the 
same sequencing depth in each sample (25,986 sequences per sample), and 
OTUs were generated with 97% identity. OTUs observed in less than 75% of 
samples were removed. Previously, we showed that the effects of the composi­
tional bias on the network structure of highly diverse microbial communities 
could be negligible (37), as evidenced by the very strong correlations of various 
topological properties between the networks based on log-transformation and 
central log-ratio transformation, which is expected to mitigate the bias induced 
by compositionality (58, 59). Thus, log-transformation of OTU abundances was 
used for calculating pairwise Spearman correlations. To minimize the influence 1 2
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Natl. Acad. Sci. U.S.A. 113, 1138-1143 (2016).

2. N. Przulj, N. Malod-Dognin, NETWORK ANALYSIS. Network analytics in the age of
big data. Science 353, 123-124 (2016).

of missing values on network construction, an OTU was removed from the cal­
culation if it was missing from both samples. A small value 0.01 was used to 
avoid indefinite value in the log-transformation if an OTU was missing only 
from one sample. Two MENs were constructed based on pairwise Spearman 
correlations. Each MEN contains edges with association strength above a certain 
threshold. The threshold was determined objectively by RMT (34). We applied 
IDIRECT to separate direct and indirect relationships in each MEN and focused 
on the direct associations in the network. Direct links are those with direct asso­
ciation strengths significantly (P < 0.05) different from background noises, 
which are estimated by computing the differences between the observed indi­
rect association strengths and the IDIRECT-predlcted indirect association 
strengths of random links below the RMT-determined cutoff.

Topological properties of the networks were calculated as reported (38, 
60, 61). Random networks were generated by following the Maslov-Sneppen 
procedure (62). We used the greedy modularity optimization (63) to divide 
the whole network into modules. The higher-order organization of the con­
structed direct MENs is revealed by eigengene network analysis (60, 64). The 
nodal topological role was defined by the within-module connectivity (Z,; 
how well a node is connected to other nodes in the same module) and inter­
module connectivity (P,; how well a node is connected to different modules) 
(65). The nodes are divided into four categories (66), including peripheral 
nodes (lowZ,- and low P,), connector (low Z,- but high P,), module hub (high Z,- 
and low P/), and network hub (high Zj and high P/).

The robustness of a network represents its resistance to external perturba­
tion and can be quantified as the proportion of remaining species in the net­
work after targeted or random species removal (67). In the targeted species 
removal, species with significant topological roles (e.g., module hubs) in the 
network were removed; in random species removal, species to be removed 
were randomly selected. After initial species removal, a species was considered 
extinct when it became isolated and lost all its connections to other species; 
then, this species was removed from the network. This process continued until 
all remaining species were connected to at least one other species, and the 
proportion of remaining species was recorded.

We have also attempted to apply ND and GS to the MENs for comparative 
purposes. For ND, we followed the procedure outlined in the coauthor collab­
oration network example (4). First, we removed nodes that had no links to 
other nodes; then, we constructed an unweighted input association matrix by 
setting the corresponding entries to one when two nodes are connected and 
setting them to zero when two nodes are not connected. Then, we ran the ND 
script to obtain a weighted ND-processed direct association matrix. The 
obtained direct association strengths varied from 0.5612 to 1 under control 
and from 0.6424 to 1 under warming. For GS, because using unweighted input 
association matrix resulted in singularity error, we used a weight-input associ­
ation matrix, with weights being the absolute value of the correlation coeffi­
cients. The obtained weight for the GS-processed direct association strength 
varied from 0.2438 to 0.9656 under control and varied from 0.4707 to 1 under 
warming. In both ND and GS, there were no clear cutoff values for the direct 
association strengths to qualitatively distinguish direct links from indirect 
links. Therefore, we could not construct ND-processed direct networks or 
GS-processed direct networks for the microbial community under experimental 
warming.

Data Availability. The method has been incorporated with our Molecular Eco­
logical Network Analysis Pipeline (http://ieg4.rccc.ou.edu/mena/login.cgi). The 
Python code is available for download at GItHub (https://github.com/nxiao6gt/ 
IDIRECT) (68). Previously published data were used for this work (22, 36). The 
DNA sequences of the 16$ rRNA gene and ITS amplicons were deposited in the 
National Center for Biotechnology Information (accession no. PRJNA331185).
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