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Let x1,...,x, be a fixed sequence of real numbers. At each stage, pick
two indices / and J uniformly at random, and replace xy, xj by (x; +x7)/2,
(x7 +x7)/2. Clearly, all the coordinates converge to (x| + --- + x,)/n. We
determine the rate of convergence, establishing a sharp “cutoff” transition
answering a question of Jean Bourgain.

1. Introduction. Around 1980, Jean Bourgain asked one of us (personal communica-
tion to P. D.) the question in the abstract. It recently resurfaced via a question in quantum
computing (thanks to Ramis Movassagh). We record some convergence theorems.

Fix xo = (x0.1, ..., X0,n) € R", and define a Markov chain as follows: given x4, pick two
distinct coordinates / and J uniformly at random, and replace both xi ; and xi ; by (xk,; +
Xk, 7)/2, kee;iing all other coordinates the same, to obtain xj1.

n

Let Xo = 5 > _i_ x0,i- We study the rate of convergence of x to the vector (Xo, ..., X0)-

The expected L? norm can be computed exactly. In Section 2 we show that

: -2 1L\ —\2
(L1) E( 3 s — o) =(1—nj> 3 (o, — o)
i=1

i=1

giving convergence in L? for k > n. Convergence in L!, however, happens in time of order
nlogn. The majority of the paper is devoted to the question of establishing that this transition
occurs with cutoff and determining its location and window.

We will mostly focus on the initial condition xg = (1,0, ..., 0) where all of the mass is
concentrated on a single entry. This is a worst case as will be seen below. We denote the
L' distance from convergence by T (k) = > 1xk,i — Xol. An immediate consequence of
equation (1.1) is that, for k =nlogn 4 cn with ¢ > 0, we have that

E(T (k)) < e™¢/?,

giving L! convergence shortly after nlogn. On the other hand, a simple counting argument
shows that, for k = (% — €)nlogn, there are only o(n) number of nonzero entries, and, hence,
Tk)=2—-o0(1).

It is natural to ask whether either %n logn or nlogn gives the cutoff location. In fact, we
establish that cutoff occurs strictly in between and that the leading order constant is @.

. P . .y
Below and for the rest of this paper, we use — to denote convergence in probability.

THEOREM 1.1. Forxg=(1,0,...,0),as n — oo, we have

T@nlogn) > 2,
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F1G. 1. Graph of T (k) against k/n, with n = 107 and xg=(1,0,...,0).
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As we will explain in Section 1.2, the time %nlogzn corresponds to the time at which a
size-biased coordinate of xi is O(1/n). Given that there is a sharp transition, it is natural
to ask, “How sharp?” In the following theorem we show that the window is order n./logn
and characterise the descent of 7 (k) in terms of the cumulative distribution function of the
standard normal.

THEOREM 1.2. Let ® : R — [0, 1] be the cumulative distribution function of the stan-
dard normal distribution N (0, 1). For xo = (1,0, ...,0) and any a € R, as n — 00, we have

T (In(logy(n) + ay/Togy ())/2)) = 2®(—a).

In a first version of this paper, we proved that the mixing time was between %n logn and
nlogn. To try to determine things, we ran a simulation with n = 10”. Figure 1 shows the
result. It is not clear from these numerics if there is a cut off or not. Our results show the
cutoff window is unusually large, making it very difficult to see from simulation.

One may also consider different general initial conditions, say, being nonnegative with the
same total mass; that is, for initial conditions in the simplex

n

P, ={x0=(x0,1,...,X0) : min xo; >0, xo;=1¢.
1<i<n i1

The decay of the L' distance for some initial conditions could be much faster if initially
the mass is more equality distributed; see, for example, Figure 2. Also, the decay does not
necessarily have a cutoff. For example, if the initial condition has a quarter of the coordinates
equal to %, one coordinate equals to % and the remaining coordinates are zero, we would

expect that there are “two sharp cutoffs,” around the beginning and time ;}gi; respectively.
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FI1G. 2. Graphof T (k) against k/n, withn = 107, and half the coordinates of xo equal to 2/n and the remaining
half equal to 0.

However, it is natural ask if the initial condition of all mass concentrated on one entry is the
worst case. We confirm this by proving the following asymptotic upper bound in probability.

THEOREM 1.3.  We use Ty, (k) to denote T (k) with initial condition xq. For any € > 0,
as n — oo, we have

sup P[Ty,(|n(logy(n) +a,/logy(n))/2]) > 2®(—a) + €] — 0.

xo€eP,

Finally, one might wonder if x; is ultimately exactly equal to the constant vector
(*0, X0, - . -, X0). We show that for every choice of xg if and only if » is a power of 2.

Overview of this paper. Section 1.1 contains a literature review pointing out occurrences
of repeated averaging processes in economics, game theory, actuarial science and mathemat-
ics. An outline of the proof is in Section 1.2. The proof itself is in Section 2 which gives
additional results-in L2, the upper bound under general initial conditions and a necessary and
sufficient condition for repeated averages to become constant is a finite number of steps.

1.1. Background. Bourgain asked this question because of the second author’s previous
work on the random transpositions Markov chain. This evolves on the symmetric group S,, by
repeatedly picking /, J uniformly at random and transposing these two labels in the current
permutation. In joint work with Shahshahani [11], we showed %n logn steps are necessary

and sufficient for convergence to the uniform distribution in both L! and L?. Map the sym-
metric group into the set of n x n doubly stochastic matrices by sending (7, j) to the matrix

E lf(a’b):(l’l)’(]’])’(ls .])’(.]sl)’
Mab =11 ifa=b#iorj,
0  otherwise.

The successive images of the random transformations are exactly our averaging operators.
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It seemed difficult to transform the results for the random transpositions walk into useful
results for random averages. It is worth noting that very sharp refinements have recently been
proved for transpositions; sharp numerical bounds like

1
|Q* — Uy <2¢7¢  fork = Sn(logn +c)

are in [22] (where Q*k is the law of walk after k steps, U is the uniform distribution on S,
and TV is the total variation norm) and even the limiting shape of the error is now under-
stood [27]. Good results for random k-cycles [6] suggest results for averaging over larger
random sets which should be accessible with present techniques. Finally, the “shape” of the
nonrandomness for random transpositions if shuffling only O(n) steps is of current inter-
est because of its connection to spatial random permutations and the “exchange process” of
mathematical physics (see [4, 23]).

The L? convergence of a more general version of our repeated averaging process was
studied by Aldous and Lanoue [2] a few years ago. Aldous and Lanoue worked on an edge
weighted graph with numbers at the vertices. At each step, an edge is picked with probability
proportional to its weight, and the two numbers on the vertices of the edge are replaced by
their average. The “random transpositions” version of this process was treated in [9].

Related processes, under the name of gossip algorithms, have been studied by Shah [25].
Such processes are also known as distributed consensus algorithms [20]. The Deffuant model
from the sociology literature is a closely related model where averaging takes place only
if the two values differ by less than a specified threshold [3, 13, 17]. Acemoglu et al. [1]
analyze a model where some agents have fixed opinions and other agents update according
to an averaging process.

When xg lies in the positive orthant, the behavior of T (k) has an amusing interpretation
in terms of a toy model of reduction in wealth inequality in a socialist regime. Suppose that
there are n individuals (or entities) in the population, and the coordinates of x; denote the
wealths of these n individuals at time k. The socialist regime tries to redistribute wealth by
picking two individuals uniformly at random at each time point and making them equally
distribute their wealths among themselves. This is our repeated averaging process. It is not
hard to show that at time k, %T(k) is the amount of wealth that remains to be redistributed
to attain perfect equality. This is actually a well-known measure of wealth inequality in the
economics literature, known as the Hoover index [16] or Schutz index [24].

What our results show is that if we start from the initial configuration where one individual
has all the wealth, then for a long time this index of inequality does not decrease to any
appreciable degree and then starts decreasing gradually to zero. On the other hand, if we start
from a wealth distribution where the wealth of the wealthiest individual is comparable to
the average wealth, then the Hoover index decreases much faster, as shown by the following
calculation. Suppose that the total wealth is 1 (so that the average wealth is 1/n) and the
maximum wealth is C/n for some C > 1. Then, by the results stated before,

n 1/2
E(T (k) < E[(n > ki — fo)z) ]
i=1

n 1/2
< [nE(Z(xk,i —~ )_Co)zﬂ
i=1
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< f<1 — —)k/Z(Z(xo, —X0) )

/2

C n
< Jne K/ (; > lxoi — fol) </Ce k™,
i=1

1/2

A numerical example of this second scenario is shown in Figure 2.

Iterated local averages have a long tradition in the actuarial literature going back to Charles
Peirce and de Forest; see [10] for a survey. Replacing “averages of 3” by “median of 3” gives
the “3RSSH smoother.” William Feller ([12], p. 333, p. 425) studies repeated averages for
examples of the renewal theorem and Markov chains. An interesting literature on getting
experts to reach consensus is surveyed and developed by Chatterjee and Seneta [7]. Finally,
our work can be set in the space of random walk on the semigroup of doubly stochastic
matrices [15]. This subject does not seem to focus on the rates of convergence. The present
paper suggests there is much to do.

One mathematical use of iterated averages appears in summability theory [14]. Let
X1, X2, ... be a real sequence. Let c,ll (x) = %(xl + -+ 4+ xp), the first Cesaro average, and

let ck+1(x) = 1(c (x) 4 ---ck(x)). Often, x, is 1 or 0 as n € A or not, where A C {1,2,...}.
If hmc ,(x) exists, this assigns a density to A. For k > 1, it can be shown that if {c"‘Jrl ()}
has a limit, then {cﬁ(x)}n: has a limit. However, hmmfc’,j(x) is increasing in k, and
lim sup c’,; (x) is decreasing in k. If these meet as k — oo, {xn},‘f’:1 is called H,, summable.
The sequence

1 iflead digitof n is 1,

Xn = .
0 otherwise

is not c* summable for any k but has H., density log;0(2) =0.301.... For proofs and refer-
ences, see [8].

The repeated averaging process has an interesting connection with Schur convexity. The
majorization partial order on R” is defined as follows. Call x = (x1,...,x,) < (V1, ..., Yn) =
y if YK xi) < XKL, v for all 1 <k < n, where x(1) > x@2) > - -+ > x(y) is a decreasing
rearrangement of xi,...,x, and y() > y2) = -+ > y(») 1s a decreasing rearrangement of
Y1, ..., Y. If all the entries are nonnegative and sum to s, the largest vector is (s, 0, ..., 0),
and the smallest vector is (s/n,s/n,...,s/n). An encyclopedic treatise on majorization is
in [19]. A function f :R"” — R is called Schur convex if x < y implies f(x) < f(y). Itis
easy to see that a symmetric convex function is Schur convex and that one moves down in the
order by replacing x;, x; by (x; +x;)/2, (x; +x;)/2. Therefore, the relevance for the present
paper is clear: each step of the Markov chain moves down in the order. Moreover, for any
symmetric convex function f, f(xx+1) < f(xx) for all k. Thus, for instance, > | |xx ;|7 is
monotone decreasing in k for any p > 1.

The repeated averaging process has similarities with two familiar Markov chains. The first
is the Kac walk—a toy model for the Boltzmann equation that is widely studied in the physics
and probability literatures. The walk proceeds on the unit sphere 8" ~! = {x e R" : L xi2 =
1}. From x € S"~!, choose distinct I and J uniformly at random, and replace x; and x; by
xycosf + xysinf and —x; sin@ + xj cos @ with 6 chosen uniformly from [0, 277). This is a
surrogate for “random particles collide and exchange energy at random.” This Markov chain
has a uniform stationary distribution on 8”~!. Following a long series of improvements, the
current best results on the rate of convergence of this walk are due to Pillai and Smith [21].
They show that order nlogn steps are necessary and sufficient for mixing in total variation
distance (indeed, %n logn is not enough and 200n log n is enough). Aside from differences in
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state space and dynamics, the Kac walk has a uniform stationary distribution while repeated
averaging is absorbing at a single point.

The second Markov chain that is similar to repeated averaging is the Gibbs sampler for
the uniform distribution on the simplex A,_; ={x e R" : x; > 0Vi,x; 4+ --- + x, = 1}. The
explicit description of this chain is as follows. From x € A, _1, choose I and J uniformly
at random, and replace x;, x; by x}, x;, with x; chosen uniformly from [0, x; + x;] and
x/J =Xx7+x5— x}. Settling a conjecture of Aldous, Aaron Smith [26] showed that order
nlogn steps are necessary and sufficient for convergence in total variation. Cutoff remains
an open problem.

1.2. Proof sketch. The proof of the expected L? distance in equation (1.1) is given by a
direct computation in Proposition 2.1. One might wonder why this does not give the sharp
L' upper bound. The reason is that at time (1 — €)n log, n a small fraction of the coordinates,
which have o(1) of the total mass, have large enough values that they give the dominant
contribution to the L? norm while making a negligible contribution to the L' norm. A similar
phenomena happens when analysing the mixing time of random walks on random graphs,
such as random d-regular and Erd6s—Renyi random graphs, where standard spectral methods
overestimate the mixing time. It is from this analogy to random walks that our proof of
Theorems 1.1 and 1.2 draws inspiration.

Let us explain this further in the case of random d-regular graphs where at time
ﬁlogd_l n the random walk has L! cutoff [18]. By the locally treelike nature of the
graph, the walk can be coupled with a random walk on a d regular tree up to time
(1 —o0(1)) ddj log,;_ n. This is the time at which the walk reaches the diameter of the graph
log,_; n. There is, however, a large deviation event that the walk does not move as far away
from the root and that it only travels (1 — §)log,_; n. Since the distance from the start-
ing location is a biased random walk, one can check that the probability of this event is
roughly ¢=¢8102n There are n! = vertices at distance (1 —8)log,_; n so the transition prob-
ability to such a vertex is n—1+8=c8>+o() Their total contribution to the L2 norm is thus
n1 =8 (nd=c8*+0(10)2, =1 _ ;,8=2¢6*+0(1) For small positive § this diverges, and so the contri-
bution from this rare event blows up the L? norm.

The above observation suggest that one should study the walk conditional that it travels
the typical distance from the origin. This approach was introduced in [5] to prove cutoff on
the Erd6s—Renyi random graph from almost all starting points. At the typical mixing time,
it was shown that the distribution at time (1 — o(1))#yix could be coupled to one with L
distance n°() from the stationary distribution. This gives an L? bound of n°(", and, using
the spectral gap, this can be reduced to o(1) with a further time o(logn) establishing cutoff.

The repeated averaging process can be treated in a similar two step approach. Just as the
random walk on the random graphs initially can be coupled with a random walk on a tree,
the repeated averaging process can initially be coupled with a fragmentation process where
particles split exactly in two at rate 1/n. We will make this coupling even more explicit by
Poissonizing the repeated averaging process, randomizing the number of particles. The cutoff
location is not when the number of particles becomes order n but when most of the mass is
in particles of size n~1t°(1)_ This involves taking a size biased approach to the analysis.

We will now sketch how we carry out this analysis. We imagine that the initial mass of
1 actually consists of a pile of 2/ individual particles, each of mass 2~ where 2/ =
n'=°() When an averaging occurs, we split the pile of particles in two. When a single particle
is to be split or when two nonzero piles are to be averaged, we instead discard all these
particles. Hence, a particle is in, at most, H,, averagings. At time (% —o(1))nlog, n, we show
that most particles are in piles of, at most, n°(!) by tracking how many averagings in which a
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given particle has participated. At this time, particles in bigger piles are then also discarded,
and we show that only a negligible fraction of the particles are discarded.

If we take the final set of particles, we get a weight vector w; whose maximal value is
bounded by n~!+°() and whose L! distance to x; is o(1). The argument is then completed by
applying the L? analysis to the vector w; with its L? norm becoming o(1//n) in additional
time o(logn), giving an L! distance of o(1) and establishing the upper bound of Theorem 1.1.
The lower bound on T (k) can be recovered directly from the fragmentation process, as before
time %n log, n most of the mass is in piles of size much larger than nl.

Our actual analysis is a little more complicated in order to establish the cutoff window and
Theorem 1.2. Essentially, we split particles in groups according to when their pile becomes
small and apply L? separately to each. The number of averagings that a particle has partic-
ipated in is Poisson, and so its fluctuations are given by the Central Limit Theorem. This
explains the CDF in the statement of Theorem 1.2.

2. Proofs. Define a Markov chain {x;}72,, as in Section 1. It is not difficult to see
that, without loss of generality, we can assume Xy = 0. We will work under this assump-
tion throughout this section.

2.1. Decay of expected L* distance. For each k, let

Sk) =Y xi;.

i=1
Let F be the o-algebra generated by the history up to time k.

PROPOSITION 2.1. Forany k >0,

1
E(SCk + DIF) = ( - —l)sac)

PROOF. For any i, the probability that it is one of the chosen coordinates is 2/n. If it
is chosen, then the other coordinate is uniformly chosen among the remaining coordinates.
Therefore,

2 2 Xi,i + Xk, 2
(w1, k) = (1 - ;)xlg,i + nn—1) > <%>

nn =15
2 1 1
— 1——>x2-+—x2-+— x2»+2xk-xk-.
( n) T 2R dp(n—1) 15,;57#,-( ki %)

Since Y_7_; xx,; =0, we have
Z Xk,j = ~Xkii-
I<j=n, j#i
Thus, we get the further simplification

2 1 1 1
E(x2,, | F =(1—— —_7) 2 1 2

_(1_%+L_ S )2+;S(k)
- n 2n nn—-1) 2nn-1) i 2n(n — 1)

- 3\ 1
_(1 2(n —1>> it o= &

Summing over i, we get the required identity. [J
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COROLLARY 2.2. Let T := 1 — —L-. Then, E(S(k)) = t*S(0). Moreover, lim S(k)/*
exists and is finite almost surely.

PROOF. The claim E(S(k)) = t¥S(0) is immediate by Proposition 2.1 and induction.
Proposition 2.1 also shows that M := S(k)/t* is a nonnegative martingale, and so its limit
exists and is finite almost surely. [

Incidentally, the argument works for more general methods of averaging. For example,
if x; and x; are replaced by 6x; + 0x; and 6x;7 + 60x;5, where 0 <0 <l and 8 =1 —0,
Proposition 2.1 becomes
4060
B(st -+ DIF) = (125 )0,

Corollary 2.2 shows that S(k) is small when k/n > 1.

2.2. Cutoff in decay of L' distance. Let us now investigate the decay of the L' norm of
xx. Throughout this subsection we assume that the starting state is xo = (1 — L1 —%).

n’ n’
For each k, let

n
T(k) = |x.il-
i=1
In Theorems 1.1 and 1.2 we claim that the “cutoff phenomenon” holds for the decay of
T (k), around k = %nlogz(n) with cutoff window of order of n./log(n). Note that T (k) is
decreasing in k, and so Theorem 1.2 implies Theorem 1.1.

It will be more convenient for the proof to work in continuous time R instead, and so we
introduce a rate 1 Poisson clock on R so that, when the clock rings at time ¢, we uniformly
choose two different coordinates and replace them by their average. This is equivalent to
giving each pair of coordinates an independent Poisson clock with rate (g)_l, for the times
at which the pairs are averaged. For any time # € R, we denote x; = (x; |, ..., %/ ,), T'(?)
and S’() to be the corresponding quantities for the continuous time model. Similarly to the
discrete case, T'(¢) and S’(t) are decreasing in ¢ and, analogously to Proposition 2.1, we have
that, for s <,

@.1) E(S' (1)) F;) = exp(—%)S/(s).

The following theorem is the continuous time version of Theorem 1.2.

THEOREM 2.3. Take ® : R — [0, 1], as in Theorem 1.2. For any a € R, as n — 00, we

have T'(n(log, (n) + a,/log,(n))/2) X 2®(—a).

It is not hard to see that Theorem 1.2 and Theorem 2.3 are equivalent, due to concentration
of Poisson random variables and the fact that T (k) decreases in k.

For the convenience of notations, for the rest of this section we denote 7(a) =t(n,a) :=
n(log,(n) + a/log,(n))/2.

Now, we prove Theorem 2.3. To analyze the evolution of x;, we couple it to a simpler
repeated averaging process.

DEFINITION 2.4. We define w; = (w1, ..., W ), for t € Ry coupled with the process
x; as follows. We let wo = (1,0, ..., 0) and let it evolve by repeated averages, using the the
same Poisson point processes as x;. In addition, at any time 7, if w;; and w; ; are chosen
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to average with both w, ;, wy ; > 0, we replace both w; ; and w, ; by zero. Furthermore, let
H, = log,(n) — (logz(n))1/3j, ifw,; =w; ;< 2~ Hn after the average; we also replace both
of them by zero.

Under this construction and by induction in time, we always have that w;; < xt’ i+ %,
and each nonzero wy ; is a (nonpositive) integer power of 2. To analyze this w; process, we
further define another process called the “particle model.”

DEFINITION 2.5. Consider 2/ particles indexed by u € {1, ...,2"}. Let {¢; ,} be the
label of particle u at time ¢ as they evolve over time, and take values in {0, 1,...,n}. We
set eg, =1 forall u e {1,..., 2} as the initial values. Location 0 will correspond to a
graveyard site for removed particles. We further denote P; ; := {u : ¢; , = i}. Then, these sets
{P,i}ier, 0<i<n €ncode the same information as {et,u}teR%lSuSzH,,.

Given the same Poisson clocks as in the repeated averaging process, we define the evo-
lution of the particles, according to them, to ensure that there is always |P; ;| = 2Hnw, ;.
Suppose at time ¢ the clock rings for edge (7, j), then we apply a “splitting” in the particle
model as follows. If {|P;_;|, |P,— ;|} = {2L, 0} for some L € Z, we uniformly randomly
divide the particles such that half remain and the other half move to the other location giving
[P il =P ;| =L.

In all other cases, that is, both |P;_ ;|, |P;— ;| are positive, or one of them is one; the
particles are discarded to location 0, and we have that | P ;| = | P, ;| = 0.

By induction we always have that | P; ;| is power of 2, so it is odd only when it equals 1.
Moreover, the coupling with the repeated averaging process satisfies | P, ;| = 2w, ;. Using
this particle model, we prove the following “weighted estimate” on the process wy.

We define p;; € Z=( such that w; ; =274 if w;; # 0; otherwise, we let p; ; = oo. For
simplicity of notations, we also let p; y = py.,, if e;,u #0, and p; , = 0o otherwise.

PROPOSITION 2.6. Take a € R and § > 0, then we have, as n — oo,

n
P
> wia),i L[ Pray.i <logy(n) — 8\/logy(n)] > D (—a — ).

i=1

We set up some further notations before the proof.

Foreach 1 <u <2Hn and r e R4, let oy, € {0, 1,..., H, + 1} be the number of times
0 < t' < t, where the pair (er u, J) 1s chosen to average, for some j # ey ,, 1 < j <n, and
wy j =0, and let B; , € {0, 1} be the number of times t" < t, where the pair (e, ,, j) is chosen
to average, for some j # ey, 1 < j <nand wy ; > 0.

From the above definitions, if §; , =1 or o , = H, 4 1, we have ¢; , = 0; otherwise, we
have ¢; , > 0 and p; , = o 4.

LEMMA 2.7. Asn — oo, we have P[B;(a),u = 11 — O uniformly for each u € Z.

PROOF. Atany time 0 <1’ <1(a), we have |{j : wy ; > 0}] < 2 50

PlBi@).u =11=1—exp <—2H”t(a) (g) ) <28t (a) (g) )

By 2/ = plloga(m)—(logy(M)'/?] < o —(ogzs (' a0 the definition of 7(a), we have that
limy— 00 2P (@) ()~ =0. O
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PROOF OF PROPOSITION 2.6. Using the particle model and the definitions above, we
have

n
> Wil Priayi <logy(n) — 8,/log,(n)]

i=1
2 Hp
= 27Hn Z ]l[ﬁ[(a)’u E logz(n) — 8‘/ logz(n)]
u=1
2Hn
=273 1B (@) = 011 et (a).u < (logy(n) — 8,/log, (n)) A H,).
u=1

Here and below, A denotes taking the minimum of two numbers. By Lemma 2.7 it suffices to
show that

2Hn
(2.2) 270 3" 1[04y 0 < (logy(n) — 8,/logy (1)) A Hy] = ®(—a — 8).
u=1

We will show that the expectation converges to the desired values, and the variance decays to
Zero.

We consider the distribution of oy (4),, and o (4),,7, for some 1 <u < u' <2t Atany time
0 < t' < t(a), the number of empty sites satisfies n — 2 < |{j : wy j = 0}| < n. This means
that, conditioned on B;(4),u = Br(a),u’ =0, at any time 0 < ' <t(a), oy, and o,y grow with
rate between (n — 2H")(;)_1 and n(;)_l, unless they equal H, + 1.

To study the joint law of o (4),, and o4 .7, We let

y :=inf{t e Ry e,y # e} U{t(a)}.

Conditioned on B (4),u = Br(a).w’ =0, for any y <t < t(a), we must have that e, , # ey,
unless oy, =y, = H, + 1 and ey, = ey, = 0. Thus, conditioned on By ).y = Bi(a),u’ =
0, we can couple the joint distribution of &),y — @y, u» ¥t (a),u’ — &y, With some o, o’ such
that

Hﬂ

/
(2.3) o= Ur(a),u — Ayu and o < At (a),u’ — Cyu's

where « and o’ are independent Poiss((n — 257)(t (a) — y)(’;)_l) upper truncated by H, + 1.
We can also couple the joint distribution of o;(4),u — @y u, % (a),u’ — &y, With some @, &’
such that

—_ —
(2.4) A= Arayu — Ay and & > o) — Ay

where @ and @’ are independent Poiss(n(f (a) — y)(g)_l) upper truncated by H,, + 1.

Next, we control y. We show that, as n — oo, P[y > n(log,(n))!/3] — 0 uniformly in
u, u'. Indeed, at any time ¢', if e, , = e, is chosen to average with some j such that
wy j = 0, then, with probability > %, ey, 1s going to be different from ¢,/. Thus, e, and e,
become different at rate lower bounded by %(n - 2H")(;)_1, and this implies that P[y >
n(log,(n))!/?] < exp(—%(n — 2H")(';) 111(10g2(n))1/3) which decays to zero as n — o0.

At the same time, given y, the law of «) , = a, , is stochastically dominated by
Poiss(ny (’;)_1) + 1. Thus, we have that

oy oy P
Y, =

2.5 —
- v1og,(n)

uniformly in u, u’.
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a—log, (n)—a/log,(n)

«/ log, (n) ’

jointly converge in law to two independent standard Gaussian ran-

a—log,(n)—a4/log,(n)

From the law of «, o, and the estimate on y, we have

o’ —log, (n)—a/logy(n)

J log, (n)

dom variables, each upper truncated by —a; the same is true for

A/1ogy (1)
a1 —a /1 1 —a /1
and L08RV g5 3y (24) and (2.5), we have Z@u oM aVion®) 4
\/logz(n) \/logz(n)
/=1 —a /1 . . . .
e ig/zlc(:: (a) °2® also jointly converge in law to two independent standard Gaussian
2(n

random variables, each upper truncated by —a. Thus, as n — oo, for § > 0, uniformly in u,
u’ we have

Pl (a).u < logy(n) — 8,/logy(n)] = ®(—a —9),
Plets ()0 < logy(n) — 8,/log,(n)] - ®(—a — ),
Pl (a).> Ut ay.u <105 () — 8,/log, (n)] — @ (—a — 8)*.
For the case where § = 0, we also have that
Pla = H, +11,Pl¢/ = H, + 1],Pla= H, + 11,P[@' = H, + 1] > 1 — ®(—a),
Pla =o' =H, +1].Pla=a = H, + 1] > (1 — d(—a))*,
SO
Plotay,u = Hy + 11, Platy (), = Hy + 1] > 1 — &(—a),
Plats (a).u = X (ayr = Hn + 11— (1 — (—a))”.
Thus, for either § > 0 or § =0, we have
Plats (@) < (logy () — 8,/logy () A Hy] — ®(—a —§).
P[ats (a).u> % ayr < (l0go(n) — 8,/logy(n)) A Hy] — ®(—a — 8),

uniformly in u, u’. By summing over u and u, u’, we have

2Hn
E[zH” > ey = (logy () — 8,/log, (m)) A Hn]] > ®(=a—9),
u=1

2Hn 2
E|:(2_H" Z 1ot (a).u < (logy(n) — 8,/log, (n)) A Hn]) ] — ®(—a —8)>.
u=1

These imply (2.2), so our conclusion follows. [
From this we immediately get one side of Theorem 2.3.

COROLLARY 2.8. For any n > 0, we have

nllngoP[T/(t(a)) >2®(—a) —n]=1.
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PROOF. From the construction of w;, for any 1 <i < n, we have x[’(a) it % > Wi (a),is
and we have either wy(4),; = 0 or wy(g); > 27 > % Thus, we have

n

n
2
T/(l‘(a)) = ZZ(xt/(a),i)+ > ZZw;(a)J‘ — ;|{1 <iSniWe),i # O}|

i=1 i=1

Since 0 < [{l <i <n:wi), #0} < 2Hn the second term converges to zero as n — 00.
For the first term, by Proposition 2.6 it converges to ®(—a) in probability which completes
the corollary. [J

For the other side of Theorem 2.3, we need to bound Zi:w, (@.=0 |x¢(a),i|. To do this, we
split the process x; into ones with fast-decaying L norm.

DEFINITION 2.9. Given é§ > 0 and m € Z,, define a sequence of times #[1], ..., f[m] as
tlk]:=t(a — w). For each 1 < u < 2Hn  we define

ky :=min{l <k <m :log,(n) — §,/10g,(n) < Prx).u < 00} U {o0}.

For each 1 < k <m, we define a repeated averaging process {xt(k)}tzt[k] as following. We
let
(k) ._ »—Hy Hy .7 _ _;
X =2 {1 <u=<2"™ 1k, =k, eqyu=1i}
and, since times #[k], we let x,(k) evolve using the same averaging pairs as x,. We also denote

=) . 1 (k)
¥ = S e

’

From these definitions we have the following results.

§4/logy (n)
LEMMA 2.10. We have x[({{k)]l. <2 £ .

n

PROOF. From the definition above, if p;x),; <log,(n) — §,/log,(n), then for any u with
e[k« = I, we must have k, # k, so we have xt(((k)]’l. = (. Otherwise, since we have x,({(k)]’i <

2~ Hnj Piik).i| = wepk),i = 27 P18i, our conclusion follows as well. [
LEMMA 2.11. Almost surely we have

’

1
(2.6) xih—= Y x ol <u <2tk > 1 e = i)
n k:t[k]<t

where we assume that t[o0] = 00.

PROOF. Denote the right-hand side by Z; ;. First note that at times ¢[k] the right-hand
side does not change since almost surely there are no clock rings and the extra term xt(,kl.) in
the sum is exactly compensated for by the decrease in the second term from particles with
ky=k.

We establish the lemma by considering the evolution of the averaging process. If the clock

. .. . . . L XX .
rings for (i, j) at time ¢, the pair (xt/_’i + %, x;_’j + %) is replaced with —————% 4 % at i

and j. The right-hand side also undergoes an averaging but sometimes when particles collide
or are singletons. In any cases we have that

Zi—i+Zi—j _ Xp_tx
- 2
Thus, by induction we have that (2.6) holds. [J

/

i1
tJ+;=ﬁ~+

Zii <
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LEMMA 2.12. Given any n € R4 and a € R, we can take & small enough, then m large
enough so that P[Y 7" >, xt(?k)]’i <1—®(—a)—n]—>0asn— oo.

PROOF. From the definition we have
_Hn H,, .
D2 xp =271 su <2k # 00},
k=1i=1

For any 1 <u <2/, p, , is nondecreasing in . Thus, if k, = oo, we must have one of the
following cases:

e Either ]/)}[1],,4 = 00, that is, e1u = 0;

e Or ﬁt[m],u <log,(n) — Sy log,(n);

e Or, forsome 1 <k <m—1, we have that p;[x],, <log,(n)—§/log,(n) and p[x+17,u = 00,
that is, etlk+1],u = 0.

By Proposition 2.6,
“ 8(m +3)
m
2.7) il Z 1les 17,0 = 0] E) 1-— CIJ(—a + 7),
2
u=1
and
2Hn
— —~ P
(2.8) 27N 1 Bipmy.u < logy(n) — 8,/logy(n)] > (—a +28).
u=1

Now, we take 1 <k <m — 1 and estimate

2fin

(2.9) 2753 1 Bippg.u < logy(n) — 8,/1ogy (1), erir11,u = 0]-

u=1

For each u we have

1 Prtk1,u <logy(n) — 8\/1ogy(n), efi+11,u = O]
< UBtk+11.u = 1]

+ 1[Brik+11.0 = 0, si).u < logy (n) — 8\/1ogy (1), Asj+11.u = Ha +1].
By Lemma 2.7 we have 1[B;k+1),u = 1] — O uniformly in u. Also, conditioned on

Biik+11,u = 0, we have that o[ 4-17,u — %[k, 15 dominated by Poiss(n(¢[k+1]— t[k])(g)_l) =

2
Poiss(w(g)fl). This implies that Ploygriu — e > 8v/logy(n) —

(log,(n))!/3] — 0 as n — oo, uniformly in u. Thus, (2.9) decays to zero in probability as
n— 00.
Summing over 1 <k <m — 1 and using (2.7) and (2.8), for any € > 0, we have

Nk 8(m+3)

IP’|:Z th([k)],i < <I><—a + T) — O(—a+26) — e:| — 0.
k=1i=1

By choosing € < n, taking § small, then m large, we have ®(—a + W) — O(—a+26) —

€ > 1— ®(—a) — n, and our conclusion follows. [

PROOF OF THEOREM 2.3. According to Corollary 2.8, it suffices to show that, for any
n > 0, we have lim,,_, oo P[T'(t (a)) > 2®(—a) +n] =0.
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We have

n

T'(1(@) =) _|x{ ().l

i=1
n m
<Y @i+ Z(x(k) 1((3 )|+ Z!x,&ﬁ),i —x®].
izl =1

For each 1 <i <n, we denote r; := xt’(a) + % — > xt(g) ;- By (2.6) we have r; > 0 and

Z”z— Z Hani ¥~ = 2 X | == ¥
k=1 k=1

i=1

Then, we have

n

2

i=1

—(k) (k)
xt(a) i+ Z - xt(a),i)
k=1

n
= lri =7l
i=1
<2Zr, =2 222)5}8)’1..

k=1i=1

By Lemma 2.12, if we take § small enough, then m large enough, the right-hand side is
asymptotically bounded by 2®(—a) + %
For any 1 < k < m, by the continuous time version of Proposition 2.1, (2.1), we have

n
k - k
Z E[}xz((;),i —-x® | |xt([k)]]

n
k - (k

= |n ZE[(X;@?)J - x(k)) X, )]

—

t(a) — t[k] k —(\2
= nexp(——n 1 ) Z( t([k)] i x(k))
N\ i=1

- exp(_ dn,/log,(n) )25 /10g, (1) Zx(k)
- n—1 tIkl.it

Where in the last inequality we used (a) — t[k] > t(a) — t[m] = én,/log,(n) and Lemma
2.10, now, summing over k, we get

R *) x
ZZEH%(@J —x®]

k=1i=1

B [ EE 0]

_ t[k],i
1 k=1i=1

< \/exp(— onylogs (n) )2‘3\’ log2(m) 1y

n—1

Here, we used Y ;" | Y7 1x =) (k) < t(a)l + % = 1 in the last in-

(l
equality. For any fixed & and m asn — oo the a ove converges to zero. This implies that

D2ty |xt(a i x(k)l — 0. Thus, asymptotically, 7’(¢(a)) is bounded by 2®(—a) + n
in probability. ﬁ
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2.3. Anupper bound on L' decay for general initial conditions. We now prove Theorem
1.3, using Theorem 1.2 and linearity of the repeated averaging process.

We work with all initial states xo € P, that is, xo; > 0 for each i and Z _1 %0, = 1.
Let Ty, (k) =27 |xk,i — ﬁ| be the L! distance starting from xg. For eachi =1,...,n, we
denote e; € R" as the vector with 1 at the ith coordinate and 0 at all other coordinates. Then,
P, is the convex hull of eq, ..., e,.

PROOF OF THEOREM 1.3.  We couple the repeated average processes, starting from each
xo € Py, so that all of them use the same pair of indices to average at each step. Thus, we get a
coupling of all 7. By linearity of the repeated average, we have that, under this coupling, xi,
starting from X, is a linear combination of those xj, starting from ey, ..., e,, with weights
X0,15 - - - » X0,n, respectively. So we have

n
Too (k) < Ty (k) := ) x0,i Te; (K),
i=1
for each xo € P, and each k. Using that 37| xo; = 1 and that E[T, (k)] and E[(Te, (k)2
are independent of i, we have E[T , (k)] = E[Te, (k)] and

E[(T .+ (K)*] Z x0,i%0, E[Te, () Te, (k)] < E[(Te, (K))°].

i,j=1
By Theorem 1.2, as n — oo, we have
x(}gan[ Tx([n(logy(n) +ay/log,(n))/2])] — 2®(~a),
and
sup E[(Tx, (|2 (logy (n) 4 a\/log, (1)) /2]))*] = (29 (—a))*.

Xo€lky,
These imply that, for any € > 0,

sug P[Ty, (| n(log, (1) + a /logy(n))/2]) > 2®(—a) + €] — 0,

RGOS 97

and the conclusion follows. [l

2.4. An exact result for finite termination. One can also ask whether T (k) eventually
attains the value 0. Of course, this is trivially true if the initial vector is zero. But, in general,
this is impossible, unless n is a power of 2.

PROPOSITION 2.13.  Suppose that n is not a power of 2. Then, there is a vector xo such
that if xi is defined as above, then xi # 0 for all k.

PROOF. Let xg = (1 — —, —%, e —%). We claim that for any k and any i, x4 ; equals
m/2" — 1/n for some nonnegative integers m and [ where m is odd or zero. This is true for
k = 0 by definition. Suppose that this holds for some k. To produce xj41, suppose that we
choose two coordinates i and j. Suppose that x; ; = m/2" — 1/n and Xk, j = m//21, —1/n.

Without loss of generality, suppose that / > I’. Then,

1/m m 1

xk+1,i=Xk+1,j=§ ?4‘? -
B m+2""m 1
o+l
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If/ > ', then m 4+ 2'~"'m’ is 0dd, and our claim is proved. If [ =1’, then the above expression
reduces to m” /2! — 1/n, where m” = (m + m')/2. Since m” = 2/r for some j and some
odd r, this expression becomes r/ pLat | /n. Note that [ — j > 0, because, otherwise, xx+1;
would be greater than 1 which is impossible because we are always averaging quantities that
are in [—1, 1]. This completes the induction step. This also completes the proof of the lemma,
because a quantity like m /2! — 1/n, where m is odd, cannot be zero unless 7 is a power of 2.

O

On the other hand, if n is a power of 2, then x; eventually becomes zero for any starting
state.

PROPOSITION 2.14. If n is a power of 2, then, with probability 1, x; = 0 for all large
enough k.

PROOF. If n is a power of 2, then it is easy to see that there is a particular sequence
of steps that produces the vector of all 0’s starting from any xg. For example, consider the
case n = 4. We can first average coordinates 1 and 2, then 3 and 4, then 1 and 3 and then 1
and 4 which will render all coordinates equal and hence zero. The scheme for n equal to a
general power of 2 is similar: we do averages so that coordinates in successive blocks of size
2! become equal, for / =1, 2, ..., until all coordinates become equal. Note that this scheme
has nothing to do with the initial state.

Since the above scheme has a fixed number of steps, it occurs sooner or later as we go
along. Thus, sooner or later, x; =0. [
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