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ABSTRACT: We report a chemiresistive cyclohexanone sensor
on a flexible substrate based on single-walled carbon nanotubes
(SWCNTs) functionalized with thiourea (TU) derivatives. A
wrapper polymer containing both 4-vinylpyridine (4VP) groups
and azide groups (P(4VP-VBAz)) was employed to obtain a
homogeneous SWCNT dispersion via noncovalent functionaliza-
tion of SWCNTs. The P(4VP-VBAz)−SWCNT composite
dispersion was then spray-coated onto an organosilanized flexible
poly(ethylene terephthalate) (PET) film to achieve immobilizing
quaternization between the pyridyl groups from the polymer and
the functional PET substrate, thereby surface anchoring SWCNTs.
Subsequent surface functionalization was performed to incorporate
a TU selector into the composites, resulting in P(Q4VP-VBTU)−SWCNT, for the detection of cyclohexanone via hydrogen
bonding interactions. An increase in conductance was observed as a result of the hydrogen-bonded complex with cyclohexanone
resulting in a higher hole density and/or mobility in SWCNTs. As a result, a sensor device fabricated with P(Q4VP-VBTU)−
SWCNT composites exhibited chemiresistive responses (ΔG/G0) of 7.9 ± 0.6% in N2 (RH 0.1%) and 4.7 ± 0.4% in air (RH 5%),
respectively, upon exposure to 200 ppm cyclohexanone. Selective cyclohexanone detection was achieved with minor responses (ΔG/
G0 < 1.4% at 500 ppm) toward interfering volatile organic compounds (VOC). analytes. We demonstrate a robust sensing platform
using the polymer−SWCNT composites on a flexible PET substrate for potential application in wearable sensors.
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Trace detection of explosives is important in countering
weapons of mass destruction.1 There has been a growing

demand for selective and sensitive detection of explosives for
aviation security and ground package screening as well as for
warfighters on the battlefield.2−4 Explosive traces are typically
detected by sampling vapors or residue particulates left on
surfaces, and analyzing them with analytical methods such as
ion mobility spectrometry, mass spectrometry, gas chromatog-
raphy, and optical spectroscopy.5−7 Although the current
methods provide high sensitivity and selectivity, they are
cumbersome, expensive, and often require skilled operators.8,9

Therefore, it is desirable to develop explosive trace detectors
that are accurate, inexpensive, rapid, portable, and easy to
deploy with minimal training.
One of the most common energetic substances in plastic

explosive formulations is cyclotrimethylenetrinitramine
(RDX). As a result of its low vapor pressure at room
temperature, RDX sensing can be conducted by detecting
cyclohexanone, a nonexplosive vapor that is a residue from the
recrystallization of RDX.10−16 Previous efforts toward selective
detection of cyclic ketone vapors for RDX sensing include the
use of fluorescent dyes,10 colorimetric arrays,11,17 ionic
liquids,12 metal−organic frameworks,13 or carbon nano-
tubes.14−16 Among these materials, single-walled carbon

nanotubes (SWCNTs) have been recognized as excellent
chemical-sensing materials that display sensitive resistance
changes to target analytes with proper functionalization.18−24

In that regard, our group has previously reported on
cyclohexanone chemiresistive sensors based on SWCNTs
functionalized with a thiourea moiety, capable of binding
cyclohexanone via hydrogen bonding interaction.15,16

Although it has been demonstrated that covalently15 or
noncovalently16 functionalized SWCNT−thiourea composites
facilitate selective detection of trace cyclohexanone, the former
inevitably disrupts the extended π-electronic states in the
nanotube sidewalls. To avoid this electronic perturbation to
the SWCNTs, noncovalent functionalization is preferred, but
this approach often results in composites with low stability that
limit sensing performance and applications.19
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Here, we describe the adaptation of a modular SWCNT
chemiresistive sensor platform from our previous research,
wherein SWCNT dispersions stabilized with a poly(4-vinyl
pyridine) (P4VP) wrapper, or a copolymer thereof, are
covalently immobilized onto a glass substrate and function-
alized with an analyte selector.25−30 We hypothesized that
surface-anchored SWCNT composites functionalized with a
thiourea selector can address the aforementioned limitations of
noncovalent functionalization and provide stable chemiresis-
tive sensing performance for cyclohexanone.
We first prepared a SWCNT composite with a wrapper

copolymer, P(4VP-VBAz), containing both 4VP groups and
azide groups (Figure 1).28 To demonstrate the versatility of
our approach, we fabricated a sensor device on a surface-
functionalized flexible poly(ethylene terephthalate) (PET)
substrate, wherein the 4VP groups of the SWCNT composites
undergo a nucleophilic substitution reaction with surface alkyl
bromides. We then further quaternized the residual pyridyl
groups with bromoethane and subsequently introduced the
thiourea groups via a “click” reaction to produce P(Q4VP-
VBTU)−SWCNT composites for cyclohexanone detection
(Figure 1). The flexible chemiresistive cyclohexanone sensor
showed a reversible response with enhanced sensitivity to
cyclohexanone. In addition, the results confirm that our
modular polymer-wrapped SWCNTs create a versatile and
robust chemiresistive sensor platform for target analytes.

■ RESULTS AND DISCUSSION

The surface functionalization of a chemiresistive cyclo-
hexanone sensor on a flexible PET substrate is illustrated in
Figure 1. The precursor wrapper polymer P(4VP-VBAz)

bearing both 4VP and azide groups was synthesized via free
radical polymerization as reported previously,28 and is detailed
in the Supporting Information. The polymer molecular weight
determined by gel permeation chromatography is 33.90 kDa
with a Mw/Mn of 2.08 (Figure S1a). The molar ratio between
4VP and azide tethered groups was found to be 10:1 based on
NMR characterization (Figure S1b). We prepared a stable
P(4VP-VBAz)−SWCNT dispersion by sonicating a mixture of
polymers (50 mg) and CoMoCAT SWCNTs with an average
diameter of 0.82 nm (10 mg) in DMF (10 mL) for 1 h in an
ultrasonic bath chilled with ice, followed by centrifugation for
30 min at 15,000g to remove solids. The isolated supernatant
from the centrifuged suspension shows highly concentrated
SWCNTs (Figure S2a). A sharp structured UV−vis−NIR
spectrum of the P(4VP-VBAz)−SWCNT dispersion (1:3
dilution in DMF) further confirms that nanotubes are
individually debundled and stabilized through favorable
interactions between the pyridyl SWCNT dispersant groups
of the polymer and SWCNT sidewalls (Figure S2b). The
dispersion was stable for prolonged periods (>2 months) when
stored on the benchtop at room temperature.
In order to demonstrate the versatility of our approach on a

flexible substrate, we introduced alkyl bromide moieties on the
PET surface to covalently anchor the P(4VP-VBAz)−SWCNT
composites via an immobilizing quaternization. The surface
modification of PET with 3-aminopropyltriethoxysilane
(APTES) has been reported to create silica-like surface
functionalities, wherein the APTES primary amine undergoes
an amidation reaction and subsequent hydrolysis produces a
silanol surface.31−34 Fadeev and McCarthy have previously
reported PET modification procedures using APETS and

Figure 1. Schematic illustration of surface functionalization for a chemiresistive cyclohexanone sensor on a flexible PET substrate.

Figure 2. (a) Schematic illustration of the surface functionalization process of a PET substrate. (b) XPS survey spectra of bare PET, PET-APTES,
and PET-APTES-BPTS. (c) Photographs of the spray-coated P(Q4VP-VBAz)−SWCNT composites on treated and untreated PET films,
respectively, and photographs after sonication for 1 min in dichloromethane.
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confirmed each step of surface by water contact angle
measurements, which showed the increase in hydrophilicity
of the silanol-modified PET surface.31 We have followed the
literature procedures with slight modifications to create a
silanol surface on PET, then treated with 3-bromopropyltri-
chlorosilane (BPTS) to generate surface-bound alkyl bromide
groups (Figure 2a). The brief procedure is as follows: a PET
film is immersed in APTES solution in dry toluene (1:10, v/v)
at 80 °C for 2 days. After subsequent hydrolysis of
triethoxysilane terminal groups in acidic water (pH 5) for 1
h, the film is functionalized by immersion in a dry toluene
solution of BPTS (1:10, v/v) overnight at room temperature
under dry nitrogen atmosphere. The PET surface functional-
ization was confirmed by X-ray photoelectron spectroscopy
(XPS) analysis shown in Figure 2b. The XPS survey spectrum
of an untreated commercial PET sample revealed the presence
of trace nitrogen with 2.3 at. % N 1s on the surface, which
could be attributed to manufacturing additives. After the
APTES treatment followed by hydrolysis, the Si 2p peak and
increased N 1s peak intensity (4.2 at. %) were observed in the
XPS spectrum of PET-APTES, indicating the incorporation of
APTES to the PET surface. The introduction of alkyl bromide
groups was confirmed by the Br 3d peak (13.7 at. %) in the
PET-APTES-BPTS spectrum. The N 1s peak was not observed
for the resulting functionalized PET surface, which reveals that
the top BPTS layer attenuates the emission of elastic electrons
from the nitrogen groups. Detailed surface chemical
composition in at. % from the XPS data of the PET films is
summarized in Table S1. To assess the surface anchoring of
polymer−SWCNT composites on the PET-APTES-BPTS film,
0.5 mL of the P(4VP-VBAz)−SWCNT dispersion was loaded
into an airbrush and manually sprayed onto the PET-APTES-
BPTS film placed on a 130 °C hot plate. After overnight
thermal annealing at 60 °C to ensure the quaternization of 4VP
groups with the PET functional surfaces, the film was sonicated
in pure dichloromethane for 1 min to remove excess polymers
and non-immobilized polymer−SWCNT composites. As
shown in Figure 2c, a significant amount of the P(4VP-

VBAz)−SWCNT composite remains on the treated PET
substrate, whereas the composite sprayed and treated similarly
onto untreated bare PET only retained a trace amount of
physisorbed composite after the sonication.
To create a cyclohexanone selector on the flexible P(4VP-

VBAz)−SWCNT precursor platform, we first synthesized a
thiourea (TU) containing a 6-hexynyl group for click
chemistry and an electron-withdrawing 3,5-b is -
(trifluoromethyl)phenyl group for increased acidity of the
thiourea NH protons15,16 (synthetic details in the Supporting
Information). We performed 1H NMR binding studies and
density functional theory (DFT) calculations with TU and
cyclohexanone to determine the binding details (Figure 3).
The 1H NMR titrations in acetonitrile-d3 revealed a downfield
shift of the TU NH protons upon complexation with
cyclohexanone, thus confirming the expected two point
hydrogen bonding with cyclohexanone (Figure 3a). The
chemical shifts of the TU NHα to the 3,5-bis(trifluoromethyl)-
phenyl group were used to calculate an equilibrium constant
(K) of 0.17 M−1 (Figure 3b). The optimum geometry of the
TU-cyclohexanone complex obtained by DFT calculations is
shown in Figure 3c. The favorable complex of TU-cyclo-
hexanone is confirmed with a free energy change (ΔG) of
−2.76 kcal/mol and the bond distances of 2.07 Å for Hα···O
and 2.18 Å for Hβ···O. A shorter distance of the Hα···O bond is
a t t r ibuted to the e lec t ron-wi thdrawing 3 ,5-b i s -
(trifluoromethyl)phenyl moiety, which creates a more acidic
NH proton.
Chemiresistive cyclohexanone sensors were fabricated by

spray-coating a P(4VP-VBAz)−SWCNT dispersion on a
heated PET-APTES-BPTS substrate. The residual pyridyl
groups that are not consumed in the immobilizing quaterniza-
tion, were functionalized with bromoethane. The latter
liberates hole charge carriers in the SWCNTs, which were
pinned by the lone pairs of 4VP. Alkylation removes the
donating lone pairs and enhances the hole transport in the
SWCNTs. Finally, the TU substituent was introduced to the
surface-immobilized composite via a click reaction to form

Figure 3. (a) 1H NMR chemical shifts of the thiourea NH protons (α and β) of TU upon addition of increasing concentrations of cyclohexanone
(0−50 equiv). (b) Plot of 1H NMR chemical shifts of the thiourea NH proton (α) (highlighted in red in the inset) upon addition of
cyclohexanone. (c) DFT optimized molecular structure of the TU and cyclohexanone complex.
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Figure 4. (a) ATR-FTIR spectra of the polymer−SWCNT composite films on PET substrates. (b) XPS survey spectrum of the P(Q4VP-VBTU)−
SWCNT film. High-resolution XPS spectra of N 1s of (c) P(4VP-VBAz)-SWCNT, (d) P(Q4VP-VBAz)-SWCNT, and (e) P(Q4VP-VBTU)-
SWCNT films on PET substrates.

Figure 5. (a) Chemiresistive responses averaged over four devices of P(Q4VP-VBTU)-SWCNT in response to repeated 200 s exposure to 200
ppm cyclohexanone in N2. (b) Real-time average conductance traces and (c) average conductance responses of four P(Q4VP-VBTU)-SWCNT
devices in response to 200 s exposure of varying concentrations of cyclohexanone in N2. (d) Real-time average conductance traces and (e) average
conductance responses of four P(Q4VP-VBTU)-SWCNT devices in response to 200 s exposures of 200 ppm cyclohexanone and VOCs at a
concentration of 500 ppm in N2.
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P(Q4VP-VBTU)−SWCNT for cyclohexanone detection.
Individual functionalization steps were confirmed by the
attenuated total reflection-Fourier transform infrared (ATR-
FTIR) spectroscopy (Figure 4a). After quaternization with
bromoethane, P(Q4VP-VBAz)−SWCNT shows a shift of the
pyridyl CN stretching band to a higher frequency, from
1597 to 1640 cm−1, and the characteristic azide band at around
2100 cm−1 remains unchanged indicating orthogonal reactivity.
The subsequent surface click reaction with TU was confirmed
by the disappearance of the azide band, indicating the
formation of P(Q4VP-VBTU)−SWCNT.28

The two-step surface polymer−SWCNT functionalization
was further investigated by XPS (Figure 4b−e). From the XPS
survey scan of P(Q4VP-VBTU)−SWCNT, we observe
characteristic peaks related to TU after the click addition
including the N 1s, F 1s, and S 2p peaks, thereby supporting
successful functionalization (Figure 4b). The separate
functionalization steps were monitored by changes in the
high-resolution N 1s spectrum. The N 1s spectrum of P(4VP-
VBAz)−SWCNT displays a free pyridyl N peak at 398.9 eV
(Figure 4c). Two distinctive peaks at 400.5 and 404.1 eV with
a peak area ratio of 2:1 are attributed to the azide group.35

After the bromoethane treatment, the pyridyl N 1s peak shifts
to the higher binding energy at 401.7 eV and the azide peaks
are unchanged (Figure 4d).36 The quaternization yield is 95%
based on the integrated areas of the N 1s peak at 398.9 eV for
the residual pyridyl N and that at 401.7 eV for pyridinium N+

in P(Q4VP-VBAz)−SWCNT. Upon completion of the click
reaction, two deconvoluted triazole N peaks at 400.5 and 402.6
eV are observed and the absence of the 404.1 eV peak
corresponding to the azide group confirmed conversion to
P(Q4VP-VBTU)−SWCNT (Figure 4e). In addition, a new N
1s peak centered at 399.7 eV corresponding to the thiourea N
suggests that the TU has been added to the polymer−SWCNT
composite.
A PET-APTES-BPTS substrate patterned with gold electro-

des having an interelectrode spacing of 1 mm was function-
alized by the sequential two-step surface treatment to
immobilize P(Q4VP-VBTU)−SWCNT between the electro-
des (Figure S3). We tested the resultant devices for their
responses to 200 s exposures of 200 ppm cyclohexanone vapor
diluted in dry N2 (RH 0.1%), wherein the average baseline
conductance (I0) of four sensors is 0.9 ± 0.6 μA (V = 3 V) at
22 °C. As shown in Figure 5a, the sensors exhibited an increase
in conductance of 7.9 ± 0.6% (ΔG/G0 (%) = (I − I0)/I0 ×
100%) upon exposure to cyclohexanone. The conductance
changes were investigated for cyclohexanone concentrations of
25−200 ppm in dry N2 (Figure 5b,c). The experimental limit
of detection was found to be 25 ppm with a linear response
with respect to the concentration. The response ratio of the
P(Q4VP-VBTU)−SWCNT sensor, dividing the change in
conductance by the concentration in ppm [(ΔG/G0
(%))/ppm], shows an enhanced chemiresistive response of
0.041%/ppm compared to that of our previous sensors, 2.544
× 10−515 and 0.025%/ppm,16 respectively, when tested under
dry N2. Note that chemiresistive sensing cannot be performed
solely with P(Q4VP-VBTU) as a result of the highly
electrically resistive polymer. SWCNTs should be incorporated
with P(Q4VP-VBTU) as an electrically conductive component
to observe measurable chemiresistive sensing signals.
The conductance changes in the present study are in

contrast to our previous thiourea-utilized sensors, wherein the
decrease in conductance (−ΔG/G0 (%)) was observed in

response to cyclohexanone.15,16 This feature suggests an
enhanced hole density and/or mobility in the SWCNTs
occurs with hydrogen bonding of the cyclohexanone to the
TU. Such a change can infer a change in the collective dipole at
the nanotube surface.16 One feature that is different than
previous sensors is that alkylated pyridiniums may play a role
as well as the counterions.
The P(Q4VP-VBTU)−SWCNT sensors were also tested

under dry (RH 5%) air as a carrier gas. Upon the exposure to
air, the sensors exhibited a 1.6-fold increased baseline
conductance (I0 = 1.5 ± 0.8 μA), which is mainly resulted
from the adsorption of oxygen on the surface, which is known
to inject hole carriers.37,38 When compared with the response
in dry N2, the sensors show slightly decreased conductance
changes of 4.7 ± 0.4% upon 200 s exposure to 200 ppm
cyclohexanone (Figure S4), which is to be expected with an
increased hole density in the SWCNT. Simply put there are
more carriers, and the same amount of cyclohexanone will not
be as effective at changing the population or mobility as is
possible with less doping.
The effect on humidity was investigated using P(Q4VP-

VBTU)−SWCNT sensors under humid (RH 55%) air as a
carrier gas (Figure S4). In contrast to the dry conditions, the
sensors exhibited a decrease in conductance (−ΔG/G0 (%))
upon exposure to cyclohexanone. This transition is likely
related by the adsorption of water molecules on the SWCNT
surface. In general, the adsorption of water results in a decrease
in mobile hole concentration in CNTs as a result of electron
donation (carrier compensation and pinning).39,40 Some of the
water is likely in a hydrogen bonding complex with the TU,41

and cyclohexanone can in effect release the water to more
preferably interact with the SWCNT.42 It should be noted that
we lack enough information to be precisely sure about the
mechanism of action, and the above discussion is a working
hypothesis.
The selective cyclohexanone sensing of P(Q4VP-VBTU)−

SWCNT sensors to the various VOCs is summarized in Figure
5d,e. Among the tested VOCs, the sensor exhibits high
sensitivity and selectivity toward 200 ppm cyclohexanone over
the other nine interfering analytes (ΔG/G0 < 1.4%) even at
higher concentrations of 500 ppm. This result confirms the
utility of the strong hydrogen bonding in the TU-cyclo-
hexanone complex. Although acetone has a carbonyl group
that is capable of hydrogen-bonding interaction with thiourea
NH protons, the sensor showed a higher binding affinity
toward cyclohexanone. This feature reflects the reduced steric
hindrance provided by the cyclic structure of cyclohexanone.9

■ CONCLUSIONS
In summary, we developed a noncovalently functionalized
SWCNT having thiourea (TU)-based selectors on a flexible
PET substrate for selective detection of cyclohexanone. We
first prepared a precursor wrapper polymer, that is, P(4VP-
VBAz), composed of 4VP and azide groups. The wrapper
polymer was utilized for the homogenous dispersion of
SWCNTs to coat P(4VP-VBAz)−SWCNT on the PET film
by spray-coating. Mechanically strong adhesion was achieved
by the quaternization of 4VP groups with surface alkyl bromide
groups on the treated PET substrates. Subsequently, the
ketone-binding TU was added to the P(4VP-VBAz)−SWCNT
by a “click” reaction to obtain the final P(Q4VP-VBTU)−
SWCNT composite. P(Q4VP-VBTU)−SWCNT showed a
substantial increase in conductance (ΔG/G0) of 7.9 ± 0.6%
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upon 200 s exposure to 200 ppm cyclohexanone vapor diluted
in dry N2 (RH 0.1%). The limit of detection was confirmed to
be 25 ppm (ΔG/G0 = 0.8 ± 0.1%) with a response ratio (ΔG/
G0 (%)/ppm) of 0.041%/ppm. The sensor exhibited stable
cyclohexanone sensing property under dry air (RH 5%) with a
slight decrease in response (ΔG/G0 = 4.7 ± 0.4%) toward 200
ppm cyclohexanone. Selective cyclohexanone sensing perform-
ance was achieved with minor responses (ΔG/G0 < 1.4% at
500 ppm) toward interfering VOCs. The surface functionaliza-
tion technique of polymer−SWCNT composites on a flexible
PET substrate provides a robust wearable gas-sensing platform
that will find other applications.
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