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Abstract

We prove the uniform in space and time convergence of the scaled heights of
large classes of deterministic growth models that are monotone and equivariant
under translations by constants. The limits are characterized as the unique (viscos-
ity solutions) of first- or second-order partial differential equations depending on
whether the growth models are scaled hyperbolically or parabolically. One of the
novelties is that for many relevant models, the parabolic scaling limit yields new
equations with gradient discontinuities consistent with Finsler metrics, such as the
crystalline infinity Laplacian. The results greatly simplify and extend a recent work
by the first author to more general surface growth models, and are possibly the
first such complete results about deterministic growth. The proofs are based on the
methodology developed by Barles and the second author to prove convergence of
approximation schemes.

1. Introduction

In this note we prove the uniform in space and time convergence of the scaled
heights of large classes of deterministic growth models that are monotone and equiv-
ariant under translations by constants. The limits are unique viscosity solutions of
first- or second-order partial differential equations (PDEs for short) depending on
whether the growth models are scaled hyperbolically or parabolically. Examples
of such equations in the parabolic scaling include the deterministic Kardar—Parisi—
Zhang (KPZ) equation, as well as new classes of nonlinear PDEs with discontinu-
ities in the gradient that are “compatible” with Finsler norms, such as the crystalline
infinity Laplacian (that is, the infinity Laplacian corresponding to the /!'-metric in
RY).

Our results are based on nonlinear PDE techniques (viscosity solutions) and,
in particular, the methodology developed by Barles and Souganidis [1] to prove
convergence of monotone approximation schemes.
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Since regularity plays no role, we are able to study very general and broad
settings of deterministic growth models with nonsmooth generating (height) func-
tions. This leads in the limit to some unusual PDE with discontinuities. Moreover,
the scaling need not always be parabolic.

Our method greatly simplifies a recent work of the first author (CHATTERIJEE [3];
see also [5]), whose main focus was convergence of smooth height functions to the
deterministic KARDAR—PARISI-ZHANG (KPZ) equation. The results of [3], which
were based on linear PDE estimates requiring higher (C?) regularity, imposed more
assumptions.

The investigation is motivated by activity surrounding the KPZ equation in
probability theory and mathematical physics, although the investigation in [3] and
in this paper are about deterministic, rather than random, surface growth. The KPZ
equation is a stochastic PDE, introduced by KARDAR, PARIsI and ZHANG in [14],
which is conjectured to be the “universal scaling limit” of a large class of growing
random surfaces. In spite of tremendous progress in the last 20 years (for a very brief
survey, see [3, Section 1.4]), this conjecture remains largely open in dimensions
higher than one. In [3], it was shown that if the randomness is dropped, then a
general class of parabolically scaled deterministically growing surfaces converge
to the solution of a deterministic version of the KPZ equation.

As an example of the type of results obtained in this paper, we describe next
a version of the zero temperature Glauber dynamics of a gradient Gibbs measure
with potential V (see Sect. 5.2).

Suppose that we have a d-dimensional surface growing deterministically ac-
cording to the following rule: Let f (x, ¢) denote the height of the surface at a point
x € Z4 attime t € Z. Then f(x, r + 1) is the middle point of the values of y that
minimize

d d
DV —fte D)+ Viy—fx—e.n),

i=1 i=I

where ey, . . ., eg are the standard basis vectors of R? and V is a convex symmetric
potential function.

We obtain scaling limits of such surfaces for a large class of potentials, both
smooth and non-smooth. For example, for the smooth potential V (x) = x*, the
parabolic scaling limit yields the PDE

— Z,['l:l(Du, e))2(D?u ¢;, ¢;)
Z - 9

2|Dul?

where u; is the partial derivative of u with respect to time, Du and D?u are respec-
tively the gradient and Hessian of u with respect to x, and (-, -) is the inner product
in RY.

The PDE of the scaling limits for non-smooth V are more complicated. For
instance, when d = 2 and the potential is V(x) = |x| (coming from the solid-
on-solid model of statistical physics), the parabolically scaled limit is the viscosity
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solution (see Sect. 3 for the definition of the solution and the precise meaning of
the PDE) of

u; = F(D*u, Du) in R?> x (0, T,
where

1 .

U if |uy,| > |u
F(D*u, Duy = { 35 litx, | > Ju, |,

FUxyxo if |uy, | > [y |

This provides a vast generalization of the setting of [3], where only examples leading
to a deterministic KPZ scaling limit were considered.

The paper is organized as follows: in the next section we discuss the general
setting and describe the growth models we consider. In Sect. 3 we present a variant
of the argument of [1] which we use to prove our results in the next two sections.
Section 4 is about the hyperbolic scaling. The last section of the paper is devoted to
the parabolic scaling. Since the results depend on the regularity and the nature of
the minimum of the convex potential V, Sect. 5 is divided into several subsections.

2. The General Setup

We describe here the general scheme that will give convergence of the scaled
heights of deterministic surface growth models. The goal is to formulate the al-
gorithm yielding the convergence, as described in [3], in a way that will allow us
to use the methodology of [1] to prove convergence of approximation schemes.
The latter, which is described in the next section, yields the convergence of the
scaled height functions to the unique (viscosity) solution of PDE associated with
the specific growth model and scaling.

The approach put forward here provides a considerably simpler proof of the
main result of [3] and, more importantly, allows the study of more general deter-
ministic surface growth models with non-smooth generating functions which give
rise to “unusual” first- and second-order partial differential equations.

Our presentation of the scheme is based on the general setting of [3]. A d-
dimensional discrete surface is a function from Z¢ into R, whose value at a point
denotes the height of the surface at that point. We consider discrete surfaces evolving
over time according to some deterministic local rule, to be made precise below.

Let {eq, ..., eq} be the standard basis vectors of R4, Z the set of nonnegative
integers, Ry = (0, 0o) and@+ = [0, 00). Wedenote by A theset {0, ey, ..., Lteq}
consisting of the origin and its 2d nearest neighbors in Z¢. Let B = A \ {0}. A
surface growth model is described by some ¢ : R* — R, which is assumed to
be equivariant under constant shifts and monotone, properties which are explained
later in the paper.

We say that the evolution of a deterministically growing d-dimensional surface
u:Z4 x 7, — Ris driven by ¢ if, for each (x, 1) € Z¢ x Z,

ux,t+1) = o(ux +a,t))aea)- 2.1)
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Throughout the discussion, we will be assuming that
00,...,0)=0.

This causes no loss of generality, since the property of equivariance under constant
shifts (explained later) will ensure that, if we replace ¢ by

o=¢—9¢0,...,0),

then the new surface v(x, t) is related to the old surface u by v(x, t) = u(x,t) —
tp(0, ..., 0). Henceforth, we will write ¢(0) instead of ¢(0, ..., 0), for ease of
notation.

We are interested in the long-time and large-space behavior of the height func-
tion u. For this, it is convenient to extend u to a function on R x [0, c0) and to scale
space—time either hyperbolically or parabolically. The choice of the scale depends
on properties of the generating function ¢.

To describe the scalings and the extension, we recall that, given ¢ € R, [¢]
denotes its integer part, and, for x € R?, [x] = ([x1], ..., [x4]). We start with the
hyperbolic scaling. Given ¢ > 0, we assume that, for some given ug : R — R,

u(x,0) = up(ex),

and generate u(x, t) for t > 0 by (2.1). Then, we define u® : R? x [0,00) —> R

con=u([2][2]):

It is immediately apparent that
X .
W (x, 1) = ug <s [—]) if 1 €0,8).
e
Next, we examine how u® evolves in time, in view of (2.1). We use the elementary

fact that [ + 1] = [t] + 1| and (2.1) to get, for + > ¢, the following string of
equalities:

coo=u(ED) = (e [E]-)),.)

(2.2)

Hence, we have
ut(x, 1) = SEu (-, t —&)(x),
where, given v : RY - R,

Se)vx) = o((v(x + €a))aea)-
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For the parabolic scaling, given ¢ > 0, we assume that

u(x,0) = uo(v/ex)

for some given ug : R — R, generate u according to (2.1), and define u® :

R4 x [0, o0) — R by
e Y N I
oo =u([ 7] [2])

It is immediately apparent that

W (x, 1) = o <J§[%D ifr [0, ¢),

and, as above, we find that
Mg(x’ t) = S(g)ug(., r— 8)()(),
where, given v : RY - R,

S(E(x) = p((V(x + +/ea))aea)-

We note that we used the same notation for both the hyperbolic and parabolic
scalings. We expect this to create no difficulties in what follows since the arguments
and statements will always specify which case we work with. The benefit, however,
is that we do not need to introduce more notation.

Finally, we remark that, for all g € BUC(Rd), as § — 0 and uniformly in x,

(L)~ s

where BUC(Q) is the space of real-valued bounded uniformly continuous functions
on O C R™ for some m € N. In this paper, O is either R? or R? x [0, T'] for some
T > 0.

The basic mathematical criterion about which scaling to use is how the scheme
propagates linear functions. If such functions move in time, then the correct scaling
is the hyperbolic one. If, however, linear functions remain the same, to see some
nontrivial behavior we need to scale parabolically.

The intuition behind the choice of scaling can also be described as follows.
The scaling limit describes the long time and large space behavior of the growth
process. The space scaling keeps the problem in a “compact” set in space while
the time scaling can be thought heuristically as an expansion in 1/z, 1/¢2, . ... The
hyperbolic scaling gives the 1/¢ term. If this is 0, which is the case when linear
functions do not move, then one goes to the 1/ t% term, hence the parabolic rescaling.

Finally, from the modeling point of view, hyperbolic scaling may occur in any
growth mechanism where the growth at a point is affected by the heights at only
those neighboring points where the height is higher.
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3. The Approximation Scheme

We describe here a reformulation of the abstract method put forward in [1]
to establish the (local uniform) convergence of approximations to the (viscosity)
solution of the initial value problem

u; = F(D*u, Du) in R x (0,T]  u(-,0) = ug in RY, (3.1)
with F : 8¢ x RY — R degenerate elliptic, that is,
F = F(X, p) is increasing with respect to X € 8%,

where S is the space of symmetric d x d matrices and monotonicity is interpreted in
the sense of symmetric matrices, thatis, X = Y if X —Y is positive semidefinite. The
scheme, presented below, asserts that monotone and translation equivariant schemes
that are consistent with (3.1) converge (locally uniformly) to the unique Crandall—
Lions viscosity solutionu € BUC(R? x [0, T]) of (3.1). For the convenience of the
reader we recall the definition further down in this section. Notice that heretofore
when we refer to sub-, super- and solutions, we always mean in the viscosity sense,
that is, they are viscosity sub-, super- and solutions.

Note that, in view of the assumed degenerate ellipticity of F, the method also
works for first-order Hamilton-Jacobi initial value problems like

u; = HDu) in RY x (0,T]  u(-,0) =up in RY.

In many of the examples of surface growth models we study in this paper, the
parabolically rescaled limits give rise to equations like (3.1) with nonlinearities
F = F(X, p) which have discontinuities in the gradient component p. In such
cases, it is more convenient and actually necessary to reinterpret to and relax (3.1)
as two inequalities corresponding to sub- and super-solutions, that is, to consider
the “relaxed” initial value problem

u; < F(D*u, Du) in R x (0, T) u; > F(D*u, Du) in R? x (0, T) u(-,0) = uo,
(3.2)

where F € USC(S? x R?) and F € LSC(S¢ x R?). Here USC(U) and LSC(U)
are respectively, the sets of upper and lower semicontinuous functions on U.
3.1. The general setting and assumptions

We work in B, the set of bounded functions u : RY — R¥, that is, functions
satisfying
lull = sup |u(x)| < oo.
xeRd
Fore € [0, 1],1et S(¢) : B — Bbesuchthat,forallu,v € B,k € Rande € [0, 1],
SOu =u, 3.3)
S(e)(u + k) = S(e)u + k, (34
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and
if u <wv, then S(e)u < S(e)v. 3.5)

The last two conditions are referred to respectively as equivariance (or invari-
ance) under translation by constants and monotonicity. A well-known observation
of CRANDALL and TARTAR [7] gives that, if (3.4) holds, then monotonicity is equiv-
alent to contraction, that is, for all u, v € B and ¢ € [0, 1],

[S(&)u = SE)vl < llu — vl (3.6)

Next, we discuss the main assumption about S(¢), which connects it with (3.1).
Since we are aiming for some generality in order to incorporate all the examples
we have in mind, the following assumption may appear a bit cuambersome.

We assume that the family of operators (S(¢))¢eo,1] 1S such that

there exist degenerate elliptic F € USC(S? x RY) and F € LSC(S¢ x R?) such that,
forall ¢ € C2(R?) and x € RY,

lim sup 5@ = o) S F(D%¢(x), Do (x))

Yo x,60 & 3.7)
and

1iminf0w > F(D*¢(x), Dp(x)).

Next, we assume that the initial value problem (3.2) satisfies a comparison principle
between bounded upper semicontinuous (BUSC for sort) subsolutions and bounded
lower semicontinuous subsolutions (BLSC for short) supersolutions, that is,

if w € BUSC(RY x [0, T]) and v € BLSC(R? x [0, T1) satisfy
w; < F(D*w, Dw) and v; = F(D?v, Dv) in R? x (0, T), and w(-,0) < (-, 0),
then w < v in RY x [0, T].

(3.8)

As already noted we work with the Crandall-Lions viscosity solutions of (3.1) with
F degenerate elliptic, and refer to the Crandall, Ishii and Lions “User’s Guide” [8]
for an extensive introduction to the theory. For the reader’s convenience, we recall
here the definition of subsolution (resp. subsolution) of (3.1).

We say that u € USC(R? x (0, T1]) (resp. u € LSC(R? x (0, T1]))) is a sub-
solution (resp. supersolution) of u; < F(D*u, Du) (resp. u; > E(Dzu, Du)) if,
forevery ¢ € C 2(Rd) andg e C 1((0, T1) and a maximum (resp. minimum) point
(x0,70) € RY x (0, T]of u — ¢ — g,

g'(ty) < F(D*¢(x0), Dg(x0)) (resp. g'(to) = F(D*¢(x0), D (x0))). (3.9)

A function that is both a subsolution and a supersolution is called a solution.

We remark here, and refer to [8] for more discussion and proofs, that in the
definition of a subsolution (resp. supersolution) maxima (resp. minima) can be
either local or global, and, finally, they can always be taken to be strict.

We also note and refer to [8] for more discussion that there is a great freedom
in choosing the regularity of the test function in (3.9), the general principle being



SoURAV CHATTERJEE & PANAGIOTIS E. SOUGANIDIS

that ¢ must be sufficiently regular so that (3.9) makes sense. As a consequence if
F and F do not depend on the Hessian, it suffices to use test functions in C!(R?).

Finally, as it will become clear later, (3.7) is used to check that a certain function
is a subsolution (resp. supersolution). Hence, the regularity of ¢ in (3.7) needs to
be the same as the one of the test function used in (3.9).

A few remarks are in order to explain the relationship between (3.1) and (3.8).
In all the examples we investigate in this note, either F = F = F in S¢ x R? orin
89 x (Rd \U), where U is a subset of R?. In the latter case, on Sd x U we have

FX,p)=F*(X,p):=  limsup  F(Y,q) (3.10)
SdxRI3(Y,q)—(X,p)

and

F(X,p)=F.(X, p):= lim inf F(Y,q). (3.11)
S9xRI3(Y,q)— (X, p)

When F is continuous, that is, U = @ in (3.7), the comparison principle is a
classical fact in the theory of viscosity solutions; see, for example, see Theorem 8.3
in [8].

When F has discontinuities, the comparison principle, if true, depends very
much on the type of singularities. The folklore of the theory of viscosity solutions is
that discontinuities can be dealt with by identifying and using an appropriate class
of test functions which are consistent with the classical theory and “resolve the
discontinuities”. The latter means that F = F when evaluated along the Hessians
and gradients of the new test functions.

When F is discontinuous at p = 0, as in, for example, (5.21), the comparison
principle follows from the techniques developed by CHEN, GiGA and Goto [6],
Evans and Spruck [9] and IsHi1 and SOUuGANIDIS [13]. When the singularities are
at p =0, p1, ..., pk, the comparison principle follows as in GURTIN, SONER and
SoucaNIDIs [10], OHNUMA and SaTo [18] and IsHi1 [12]. The last reference treats
some F’s with singularities of the type arising in this paper with the restriction that
the set of discontinuities is smooth, which is not the case in dimensions higher than
2.

When d > 3, the typical U arising in this paper does not have smooth boundary
and new arguments are needed. The necessary comparison in this generality was
established recently by Morfe and the second author [17]. The key observation
of [17] is that gradient discontinuities are consistent with particular polyhedral
Finsler norms in R4, like, for example, [ ! This allows to construct the correct
test functions. Specific comments are made when necessary in the paper. More
discussion, however, on this subject is beyond the scope of the paper at hand.

3.2. Convergence of the approximation scheme

Let (S(€))eefo0,17 be a family of maps as in the previous subsection. Fix 7' > 0.
Given ug € B and ¢ € [0, 1], we assume that u® : B x [0, T] — R is such that

{us(-,t) — uo ifr e [0, ],

. (3.12)
uf (1) = St (-t —e) ift e (e Tl
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The convergence result is stated next.

Theorem 3.1. Assume (3.3), (3.4), (3.5), (3.7), and (3.8), and, for ug € BUC(RY),
let u® be defined by (3.12). Then, as ¢ — 0, u® — u € BUC(R? x [0, T']) locally
uniformly in R? x [0, T, which is the unique solution of (3.1).

The proof of the theorem follows closely the arguments of the analogous theo-
rem of [1], thus we only sketch it next.

Proof. (Sketch of proof of Theorem 3.1) Since u is bounded, it follows from (3.3),
(3.4), and (3.5) that the u®’s are also bounded independently of ¢ in R4 x [0, T).

Hence, the local uniform upper and lower limits u* € BUSC(Rd x [0, T']) and
u, € BLSC(R? x [0, T']) of the u®’s given respectively by
u*(x,t) = limsup u®(y,s) and u.(x,r) = liminf  u®(y,s)
(y,8)—>(x,1),e—0 (y,8)—>(x,1),e—0

(3.13)

are well-defined.

The goal is to show that u* is a subsolution and u, is a supersolution of (3.1).
Then the assumed comparison principle, combined with the obvious inequality u, <
u*, imply that u* = u, and u = u* = u, is the unique solution of (3.1), the latter
being a consequence of the fact that u is both subsolution and supersolution. The
local uniform nature of the limits in (3.13) then yields the local uniform convergence
of the u®’s to u.

Since the arguments are similar, here we show only that u* is a subsolution.
For this, we assume that, for a given ¢ € C?(R% and g € C(0, T1, (x0,10) €
R? x (0, T is a strict global maximum of u* — ¢ — g in R? x (0, T'].

The definition of u* and some calculus considerations (see [8, Proposition 4.3])
yielde,;, — Oand (x,, t,) € Rdx(sn, T1suchthat (x,, t,) — (xo, fo), u®" (x,, t,) —
u*(xg, to) and u®r — ¢ — g achieves a global maximum at (x,, t,).

Since, in view of (3.12),
U (X, tn) = S(en)™ (-, ty — €n)(xn)
and, for all x € R,
U (x, ty — &) — U™ (Xp, tn) < P(x) — P (xn) + gty — n) — g(tn),

it follows from the equivariance of translations by constants and the monotonicity
of S that

S(e)led — d(x)1(xn) + gty — &) — (1)

= S(gn)[ugn (o ty —&p) — u (xn, t2)]1(xp) =0,
and, hence,

g (tn)en < S(en)e — ¢ (xp)](xn) + 0(ey).

Dividing by ¢, and letting n — oo yields the subsolution property. The other
inequality follows similarly. O
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4. Hyperbolic Scaling Examples

We study here two models of deterministic surface growth with non-smooth
driving function which are related to the deterministic version of directed last-
passage percolation with driving function ¢((ug)aca) = maxgea Uy, Which is
the multidimensional analogue of a one-dimensional deterministic growth model
considered by KRUG and SPOHN [16].

We begin with the directed last-passage percolation model, which, at the discrete
level, is given, for (x,t) € 74 x Zy, by

ux,t+ 1) =¢p((ux+a,t))aeca) = maf)x( u(x +a,t).
aec

It is immediate that, if u : Z¢ — R is linear, that is, u(x) = p - x for some
p € R?\ {0}, then

.....

Thus it is appropriate to use scale hyperbolically. Note that ¢ (0) = 0. Moreover,
the scheme is obviously equivariant under translations by constants and monotone,
that is, for all u, v : Z¢ — R such thatu < vandk € R,

@((u(x +a) +k)aca)
= @((x + a))aeca) +k and ¢((u(x +a))aca) = @((V(x + a))aca)-

Following sect. 2, fore > 0, u € 3, and x € R4, we define
S(eu(x) = p((u(x + £a))aea),

and note that (3.3), (3.4) and (3.5) are satisfied.
Next we check the consistency. We fix ¢ smooth and look at the ¢ — 0 and
y — x limit of

5@ —¢() _ p((@0 +6a)aca) =G

& &

It is immediately apparent that

ae B 1
p((p(x + sa)g) A)— o) - r(?Ea;(@s(y +ea) — ¢(y))

1
= — max (F¢(y)e + o(e?))
gi=l1,..d

H(p) =i:rr11axd|pi|. 4.1

.....
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Since H € C (Rd ), it follows from [8], that, for each 7" > 0, the initial value
problem

u; = H(Du) in RY x [0, T] u(-,0) = up (4.2)

admits a comparison principle in BUC(]Rd x [0, T]), and, thus, (3.8) is satisfied.
Moreover, for each uy € BUC(R?), (4.2) has a unique solution u € BUC(R? x
[0, 7).

We have proved the following theorem:

Theorem 4.1. If u® : R? x [0, T] — R is defined by (2.2) starting with uy €
BUC(RY), then, as ¢ — 0 and locally uniformly in R¢ x [0, T1, u® — u, the
unique solution u € BUC(R? x [0, T]) of (4.2) with H as in (4.1) and initial data
uo.

As mentioned above, this is also a scheme proposed in [16] to obtain at the limit
a deterministic KPZ-type nonlinearity with sublinear growth, that is, the PDE

u; = Au + |Du|.

It is clear, in view of Theorem 4.1, that this conjecture in [16] is not possible even
when d = 1 in which case, of course, H(p) = |p|.

We consider next another scheme which, at the discrete level, is given, for
(x,1) € Z¢ x 7, by

ulx, r+1) =@(ux +a,1))aes) =ulx, 1)+ %;(u(x ta.t) —ulx, 1)y

4.3)

This is a variant of example (1.5) from [3], where (u(x + a) — u(x))+ is replaced
by q(u(x 4+ a) — u(x)) for an increasing C 2 function ¢. Parabolic scaling applies
in that case, and the limit is the deterministic KPZ equation. As we will see below,
that is no longer the case for this variant, a fact that stresses the consequences of
the lack of differentiability of the driving function.

The fact that ¢(0) = 0 as well as the equivariance under translations by con-
stants and the monotonicity are immediate.

As above, for ¢ > 0 and u € B, we define

S(e)u(x) = ¢((u(x +&a))aca)-

It is immediately apparent that (3.3), (3.4) and (3.5) are satisfied.
To check (3.7), we fix ¢ : R? — R smooth and look at the ¢ — 0 and y — x
limit of

5@ — 6 _ p((@0 +ea)aca) = ()

& &
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A straightforward computation and (4.3) yield the following string of equalities
and limits:

1
0@ +2@)aea) = () _ o)+ 2 2 aea@y +ea) —d ()4 — ()

& &

1 d
D (@ ()4
=1

> _
y—x,e—0 2d £
i

1
=272 _(D$() -a+o@)y

acA

Let H=H(p): R — R be given by
1 d
H(p) =+ E(pm. (4.4)
i=

Since H € C(R?), the initial value problem
u; = HDu)inR? x [0, T], u(-,0) = ug

admits a comparison principle in BUC(R? x [0, T]), and, thus, (3.8) is satisfied.
Moreover, for each ug € BUC(]Rd ), (4.2) has a unique solution u € BUC(]Rd X
[0, T]).

We thus have proved the following convergence result:

Theorem 4.2. For ug € BUC(R?) and let u € BUC(RY x [0, T) be the unique
solution of (4.2) with H as in (4.4) and initial data ug. If u® : R x [0, T] — Ris
defined by (2.2), then, as ¢ — 0 and locally uniformly in R? x [0, T1, u® — u.

5. Parabolic Scaling Examples

We divide this section into two subsections depending on the regularity and
properties of the generating function ¢. In the first we generalize and give a much
simpler proof of the result of [3]. The second is about new results concerning zero
temperature dynamics of gradient Gibbs measures. This subsection is also divided
into three parts depending on the behavior of the underlying potential.

5.1. Generalization of deterministic KPZ-type models

We provide an extension of the main result of [3] by obtaining a generalized
deterministic KPZ scaling limit under the assumptions that the height function is
equivariant under constant shifts, monotone, and twice continuously differentiable.
The class of PDEs obtained in the limit contain as a very particular case the classical
deterministic KPZ equation.

We assume that the evolution of a deterministically growing d-dimensional
surface u : Z¢ x Z, — R is as in (2.1) with ¢ given, for each x € Z< and
v:7Z¢ — R, by

e((W(x +a))aea) = v(x) + P(w(x Ley) —v(x), ..., v(x £ eg) — v(x)),
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where
® € C2(R*!) and ®(0,...,0) =0. (5.1)
The assumption that ¢(0, ..., 0) = 0 is made only to simplify the presentation,
since, as discussed earlier, we can always work with ® = & — (0, ...,0). We
leave the details to the reader.
We also assume that, foreachi =1, ...,d,
®,,0,...,00 =9, ,(0,...,0), (5.2)

where ®,, is shorthand for 0®/dv;. This is a relaxation of the “invariance under
lattice symmetries” assumption from [3].

We note that (5.2) is necessary to allow us to consider a parabolic scaling. As
discussed earlier, this is related to the fact that for such a scaling we need to have,
forall p € R?,

. o((p-(x+ea))gea) —p-x
1m

e—0 &

=0,

which follows from (5.2).
After rescaling and using the setup discussed in Sect. 2 we define the scheme

S (x) = vx) + P(v(x £ eer) —v(x), ..., v(x £ eeg) — v(x)). (5.3)
we immediately have that
S(O)v =vand S(e)(v+ k) = S(e)v + &,
and, hence, (3.3) and (3.4) are satisfied.
For the monotonicity, it is enough to show that the map
(Vo5 V1s -+, Vtg) §(v0, V1, oo, Vig) = V0 + (V1 — Vo, ..., V+4 — V0)

is monotone with respect to all its argument. And for this, we need that for all
(vo, V41, ..., vxg)andi =1,...,d,

as 3
—(V0, V1, ..., V+q) = 0 and ——(vo, V1, ..., V+q) = 0.
v vy

we immediately have that

as )
— (o, V£1, ..., V+g) =1 — div®(ve) — vo, ..., V+g — Vo),
dvg
and, foreachi =1, ...,d,
as

(o, V£1, ...y V1g) = Py, (V11 — V0, ..., Vg — V0).
0V
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Thus, the monotonicity of § at large is equivalent to the assumptions that, for
all U£]y...,VU4+q € R,

1 —div® (v, ..., v1g) z 0 and (Dvi,'(v:tls e, U1g) > 0. 5.4
As an aside, we remark that, instead of (5.4), we may assume
1 —div®(,...,0) >0 and &,,,(0,...,0) > 0. (5.5)

Indeed, recall that (3.6) preserves the Lipschitz continuity of the scheme. Thus, if
we assume that u is bounded and Lipschitz continuous, then the scheme generates a

bounded and Lipschitz continuous u®. Itis then immediate that, foralli = 1, ..., d,
ut (x £ \eej, 1) —u (x) = O(Ve), (5.6)
with O depending only on the Lipschitz constant of uy.
Ifo: RY — R is a smooth function, we also have, foralli =1, ....d,
¢ (x £ Veei, 1) — p(x) = O(Ve), (5.7

with O depending only on the Lipschitz constant of ¢.

Looking back at the proof of Theorem 3.1 we see that the monotonicity of the
scheme is only used to replace terms like u® (x £ /ee;, t) — u®(x, t) by terms like
¢ (x & /ee;, t) — ¢(x), which, in view of (5.6) and (5.7), are of (uniform) order
€. It suffices then to have the monotonicity of the ® only in a »/e-neighborhood
of 0. Hence, it suffices to assume (5.5).

Once we have convergence for bounded and Lipschitz continuous u, the result
for ug € BUC(R?) follows again from the contraction property of the scheme and
the limit problem and an elementary density argument.

To make what follows easier to read, let

() 1= PPy EVee) = (), ...y £ Veea) — P (») = S()p(y) — P ().
(5.8)

Taylor’s expansion, for ¢ small and uniformly in y near x, gives

d
D (y) = Y [0y (0, ..., 0)( Py + Veer) — $(3) + Py, (0, ..., 0)($(y — Veer) — ()]
i=1

1
F 5D Dy (0, 0By + VEe) — (DY + Vee) — P ()

@O+ Vee) —d() (D (y — Vee)) — () + 0¥,
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and
By £ Vee) — p(y) = £edy, (v) + §¢>x,.x,. () + O(e3/2).

Substituting the last expression in the previous display, and using (5.2), we get

d d
(ol 1
tim & Z (0. 0 (¥) + 5 D D Dy 0. Oy ()b, ()

y—>x,6—0 izt =1
[ A d d d
5220 Pun 0 0 (D (1) = 3 Y Pu (0 00y ()b, ().
i=1 j=1 i=1 j=1
Note that, if (5.4) is assumed, then the map
d
M +— Z ®,,(0,...,0)M;; is degenerate elliptic in Sd, 5.9)
i=1
while, when (5.5) holds,
d
M — Z ®,, (0,...,0)M;; is uniformly elliptic in s4. (5.10)
i=1
Let the Hamiltonian H = H(p) = H(p1,..., pd) : R? — R and the matrix

A = (Aij)i j=1,..a € S¢ be defined by

Aij = 8ijq>v,‘ (0, N 0) and

5.11
))PL(P] )

d d
1
Hp) =333 (@vil,/(o, 0 Dy (0, 0) =20y, (O, ..

i=1 j=1

Clearly H € C (R?) and, in view of (5.9) and (5.10), the matrix A is either de-
generate elliptic or uniformly elliptic. It then follows from [8] that the initial value
problem

u; = trace(ADu) + H(Du) in R¢ x (0, T] u(-,0) = uo (5.12)

has, for every ug € BUC(Rd), a unique solution u € BUC(R" x [0, T]), which is
classical for t > 0 if (5.5) holds, and, moreover, satisfies (3.8).

Note that the well-posedeness of (5.12) is a standard fact in the theory of
viscosity solutions, hence, we omit the details and instead we refer to Theorem 8.2
in [8].

Collecting all the hypotheses above and using Theorem 3.1 we have now the
following theorem which extends the corresponding result in [3]:

Theorem 5.1. Assume (5.1), (5.2), and either (5.4) or (5.5). Then the scheme de-
fined using (5.3) converges locally uniformly, as ¢ — 0, to the unique solution of
(3.1) with F as in (5.11).
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5.2. Zero temperature dynamics of gradient Gibbs measures

In this subsection, we study schemes generated by a different class of growth
models in which the location of the growing surface is determined by minimizing
the total potential energy between the point and its neighbors. This is motivated by
Glauber dynamics for gradient Gibbs measures at zero temperature.

Formally, a gradient Gibbs measure is probability measure on RZ’ with prob-
ability density proportional to

exp(—ﬁ Y Vi) - h<y>>>,

x,yeZd |x—y|=1

where f is the inverse temperature parameter, and V is a potential function, often
assumed to be convex and symmetric. We will assume that V is convex and sym-
metric throughout this subsection. For background on gradient Gibbs measures;
see [2,19].

The Glauber dynamics for a gradient Gibbs measure as above proceeds by
updating the height /(x) at a site x by regenerating 4 (x) from the conditional dis-
tribution given the heights at neighboring points. When the temperature is zero, or,
in other words, B = oo, the Glauber dynamics simply chooses /(x) that minimizes

d
D V(h(x) — h(x £ e)).

i=1

If V has a strict minimum and is differentiable there, then the minimizing prob-
lem has a unique solution. Hence, the zero temperature dynamics becomes fully
deterministic. We will investigate this below.

When V either has a strict minimum but is not differentiable there, or the
minimum is not strict, the set of minimizers may be an interval of positive length.
In this case, the zero temperature dynamics will choose a point uniformly from
this interval. To avoid this randomness, we will simply choose the midpoint of the
interval as the updated height. We discuss two such examples later.

In the language of Sect. 2, the driving function ¢ : R4 — Riis

0((a)aca) = argminycp YV (y — ug),

acA

where

V : R — R is a symmetric convex potential with minimum 0 at y = 0.
(5.13)

As mentioned above, depending on the properties of V, for each (u,),c4, the
minimum value of themap y — )", V(¥ —u,) can be achieved at either a single
point or a closed interval. In the former case, argmin has its usual meaning. In the
latter, argmin is taken to be the middle point of the interval of minima.
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Next, we show that parabolic scaling is the correct scaling to study the asymp-
totic behavior. For this, we need to show that, for any p € RY ase — 0,

argmin,, g YL Vy—p-(xEee)) —p-x
)

— 0. (5.14)

To show (5.14), we begin with the elementary observation that, for any v :
RY — R,

d d
argmin,, [Z V(y—v(x + 8e,~))i| —v(x) = argmin,cp Y V(y — Wx £ e¢;) — v(x)).

i=1 i=1

Next we observe that, since V is convex and even, so is the map

d d
Y Y VO —(p-(xtee)—p-x) =Y V(yep).
i=1 i=1

and thus

d
argminye]R Z Viy—p-(xxee)—p-x=0.

i=1

Finally, to prove the convergence we introduce the maps (S(¢))¢co,1], Which, for
u € B(RY) and ¢ > 0, is given by

SE)P(x) = ¢ x) + [PD(x £ Veer), ..., p(x £ Veea) —p)], (5.15)

where, given v4; fori = 1,...,d,

d
D+, ..., Vrg) = argminyeR |:Z(V(y —v_)+ V(i — vi)):| .
i=1

In view of (5.13), it is immediate that S(e) satisfies (3.3), (3.4) and (3.5).

The consistency is more complicated and depends on the regularity of V at 0
and on whether 0 is a strict minimum or not. There are three different cases and we
study each one separately.

5.2.1. “Smooth” potentials with strict minimum In addition to (5.13), we as-
sume that

V is twice differentiable in a neighborhood of 0, which is a strict minimum, and

V@ (y) B (5.16)

}

there exists 0 > 0 and a # 0 such that lim
IyI=0 [y|”

where, forl € Z, VO denotes the I-th derivative if it exists.
For future reference, we record here the elementary fact that, in view of (5.16),

for each 6 > 0 and |y| sufficiently small,

@—0)yl° < VP < (@+0)y°. (5.17)
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An example of a potential satisfying (5.16)isa V : R — [0, 0o) such that

{there exists an even number k = 2 such that V € ck+l y® ) > 0, (5.18)

and VD) = ... = v&=D) = 0.

Since V is even, all the odd derivatives at 0, if they exist, vanish. Hence, (5.18) is
about the existence of the k.
Another example is the potential

V(x) = |x|*™ for some § € (0, 1). (5.19)

In view of the definition of the scheme generating @, for ¢ smooth, we have

d
Y V@@ £ V) = p(x), ., dx £ Veen) — p(x) =0

i=1
In what follows, to simpliy the notation, we write, as in (5.8),
D°(y) := P(Pp(y £ Vee) — P (), ..., d(y £ Veeq) — p (),

We study next the consistency of the scheme which follows from the asymptotic
behavior of e ~!®?(y) as ¢ — 0 and y converges to some x. The main result needs
the following lemma, which is proven at the end of the ongoing subsection.

&€

Lemma 5.2. Assume (5.13) and (5.16). Then, for any x € R?,
'

! m [0
5 in @y, (x) < liminf < limsup ) <
1

1
y—=x,e—0 & yox,e—>0 € 2

max @y, y; (x).
i

Moreover, if D¢ (x) # O, then

O () _ i 16 (DI i, ()

lim 7 (5.20)
yox,e>0 & 23 i lw (0)I°
When the potential is as in (5.18), then (5.20) reads as
i 20 _ X 18 OF P ()
yoxes0 g 23 1y (0)F2
while, if V is as in (5.19),
i 20 X 18 (0P B ()
yoxe0 g 25 g ()8
Next we introduce the equation satisfied by the limit of the scheme.
Let F : 8¢ x (R?\ {0}) — R be given by
d o
: o X
F(X, p) = Liz il Xii (5.21)

2 pile
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It is immediately apparent that F € C(S4 x (R4 \ {0})) is degenerate elliptic.
Moreover, since, in view of (5.21), for each p # 0 and each X, F(X, p) is a
weighted average of X1, ..., X44, it is immediate that if (Y,, g,,) € 89 x (Rd \
{0}) — (X, 0), then

L. .. . 1
—min X;; < liminf F(Y,, g,) < limsup F(Yy, g,) < = max Xj;.
i n—00 2

n—o00

Finally, with appropriate choices of g,, it is easy to see that equality can be attained
in both cases. Thus, for F* and F, defined as in (3.10) and (3.11), we have

1 1
F*(X,0) = Emiax X;; and F,(X,0) = Emiin Xi;. (5.22)

It follows from Theorem 5 in [17] that the initial value problem (3.2), with
F=F=F in 8 x (RY\ {0}, (5.23)
and
F(X,0) = F*(X,0) and F(X,0)= F,(X,0) for X € S?, (524

admits a comparison principle, that is, (3.8) is satisfied.
We may now apply Theorem 3.1 to state our second main result.

Theorem 5.3. Assume (5.13) and (5.16). Then, for every uy € BUC(RY), the
scheme defined by (5.15) converges, as ¢ — 0 and locally uniformly in R? x [0, T,
to the unique solution of (3.2) with F given by (5.23) and (5.24).

We continue with the proof of the previous lemma.

Proof. (The proof of Lemma 5.2) Throughout the arguments below, ¢ is small
enough and y is close enough to x. Moreover, all the limits are taken with ¢ — 0
and y — x. Both facts will not be repeated from step to step.

In addition, to ease the notation, fori =1, ..., d, we set

1
a;(y) = ¢, (y) and b;(y) = z(px,-x,- ). (5.25)
It follows that

¢y £ Vee) —d(y) = £/ea;(y) + ebi(y) + o(e) = £/ea;(y) + ebf (y)
(5.26)

(where eb? (y) = eb;(y) + o(e)) and
(v + Vee) + (v — Vee) — 2¢(y) = 2eb;(y) + Oe¥?). (5.27)
Moreover,

a;(y) = a;(x) and bi(y) — b;i(x).
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For z € R, we set

) = ZV(¢(y+fe,>—¢(y> —z)+ZV<¢>(y—fe,> — ¢ — 2.

i=1 i=1

Then ®°(y) is a minimizer of the convex function f*7, and, hence,
(f) (@ () = 0. (5.28)
Since V' is an odd function, we find
d d
F @ ==Y V@ +Vee) =) —2) =D _ V'($(y — Vee) —d(y) —2)
dizl = (5.29)
=) V(2= ¢+ Vee) + () — V'p(y — Vee) — p(») — 2.
i=1

Suppose that
1
2 >max S(p(y + Vee) + ¢y — Vee) —20(»)

(resp. z < miin %(qb(y +Vee) + oy — Vee) —2¢(y)),
Then, for each i,
2=y +Vee) + o) > by — Vee) —p(y) —z
(resp. z — ¢(y +Vee) + ¢ () < d(y — Vee) — p(y) — 2),

and, hence, in view of (5.29) and the strictly increasing nature of V' in a neighbor-
hood of 0 (which follows, e.g., from (5.17)), we get, for ¢ small enough, that

(f*)'(2) > 0 (resp. () (z) <0).
€ convexity o > and the observations above 1m
Th ity of £ and the ob ions above imply

1
min (¢ (y + Vee) + ¢y — Vee) —26(y) = @ (y)
(5.30)

1
< max (¢ (y + Vee) + ¢y — Veei) —2¢(y)).

The inequalities in (5.30), together with (5.27), immediately imply the first claim
of the lemma and the a priori estimate

@°(y) = O(e). (5.31)

To prove the second claim, we assume that D¢ (x) # 0, which yields that at least
one of the a; (x)’s is nonzero.
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Using (5.28), (5.29), and (5.26), we find that

d
DIV Veai(y) + () — b () — VO (Veai(y) — (@°(y) — b (»)] = 0.

i=1

(5.32)

The C2-regularity of V yields, foreachi =1, ..., d,

VD (Vea; (y) + @ (y) — ebf () — VI (Vea; (y) — (@ (y) — ebf (1))

| (5.33)
=2 /0 V@ (Vea;(y) — (9°(y) — ebf () + 2A(DF (y) — ebf () di (P (y) — bt ().

Combining (5.32) and (5.33), we get

1
> [ /0 [V (Veai (y) — (D°(y) — ebf (1)) + 24(D°(y) — b} ())) dh (BF(y) — sbf(y))] =0,

i=1

and, as long as

1
> [ /0 VO (Jeai(y) — (P°(y) — £bf (1)) + 2L(D° () — b () dX} #0,

i=1
(5.34)

we have

O () _ Xy Jo VP (VEai () — () — £bf (3)) + 20(P* (y) — bf (1)) di] b ()
¢ S Lo V@ (Veai () = (95 () — ebf (3)) + 21 (3) = eb{ (1)) di]
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Next, we observe that (5.17) yields that, for eachi = 1, ..., d and uniformly
inA € [0, 1],

(a — 0)|Veai (y) — (D°(y) — ebf () + 20(D°(y) — ebf (0)|”
< VO (Jea;(y) — (9°(y) — ebf () + 20(DF(y) — ebf () (5.35)
< (¢ + 0)|Vea;(y) — (®°(y) — &b () + 24(P° (y) — ebf (y)|7.

Since | D¢ (x)| # 0, we have

d
Y lai®)l” >0,
i=1

Finally, recall that by (5.31), ®°(y) = O(e). Hence, (5.34) holds.
It then follows from (5.35) that,as ¢ — O and y — x,

O () i lai()|7bix)
¢ it lai (ol

and, hence, the claim. O

5.2.2. Strict minimum but not smooth In this subsection we consider the po-
tential

V(y) = |y|'*t® with § € (0, 1). (5.36)

Let ¢ and ®° be as in the previous subsection, but with as above. Note that the
existence of ®¢ follows from the strict convexity of V.
For each nonempty E C {1, ..., d}, set

Ve={peR?:pi=0foralli € E and p; # 0 foralli ¢ E},
and set

Vog={peR?: p; £0forall1 <i <d}.

Lemma 5.4. Fixx € RY. If D¢ (x) € Vi for some nonempty E C {1, ..., d}, then

1 ®° ®° 1
—min @y, y, (x) £ liminf ) < limsup ) < —max ¢y, (x), (5.37)
2 ieE y—=x,e—=0 & y—>x,e—>0 € 2 ieE

and, if D¢ (x) € Vg, then

i 2O 1k (0P i ()

) d N
)—>x,8—>0 & 221:1 |¢Xl' (-x)|(S !
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Proof. Proceeding exactly as in the proof of Lemma 5.2, we end up, for ¢ small and
y near x, with the pair of inequalities displayed in (5.30) and the a priori estimate
(5.30).

Next fix x with D¢ (x) € Vg for some nonempty E. Then, for y sufficiently
close to x, there is some ¢ > 0 such that |¢,, (y)| > ¢ when i ¢ E. Moreover, for
any n > 0, |¢y, (y)| < nforalli € E provided again that y sufficiently close to x.

Henceforth in this proof, C1, C3, . .. will denote positive constants that have no
dependence on the choice of 1. Moreover, the notation O will be used only when
the implicit constants have no dependence on the choice of 7.

Foreachi =1, ...,d, let q; and b; be defined as in (5.25), set

af (y) = °(y) — d(y + Vee) + d(y),
Bi(y) = ¢(y — Veei) — p(y) — °(y),
and
Qi (y) = V(e (y)) — V(B (),

and note that, in view of (5.28),
d
D05 =0, (5.38)
i=1

and, by (5.31),

@ (y) = —edy, (y) +O(e) and B (y) = =&y, (y) + O(e).

It follows that, when i ¢ E and y is close to x and ¢ is close enough to 0, o ()
and g7 (y) are both of order /¢ on the same side of the origin.

Since V" (z) is of order |z|°~! when z is close to the origin, the observations
above yield that, wheni ¢ E,asasy — x and ¢ — 0,

107 (1 =0 )lef (v) = B (] £ OETD), (5.39)
where in the second step, we used (5.31) and Taylor’s expansion to deduce that

af (y) — BE(y) =20°(y) — (p(y + Vee) + ¢ (y — Vee) —2¢(y)) = O(e).
(5.40)

Now, suppose that for all i € E and along a sequence y — x and ¢ — 0
D (y) > ebi(y) + en1 /2, (5.41)
Then, along this sequence, for any i € E,

af () — B (3) =20°(y) — (p(y + Vee) + ¢ (y — Vee) —2¢(y)
= 20°(y) — 2eb; (y) 4+ O(e3/?) (5.42)
> 2en1 792 L O(e3/?),
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and

lof (D) = | — Vepy, (y) + O(e)| < Ci1v/en + O(e),

and

1B ()| = | = Vebr, () + O(e)| £ C14/en + O(e).
Then the properties of V/ imply that

0f(y) = V(@ () — V/(BE) > Ca(en)’ et (v) — BE (1)
> C3(Ven)?Hen1792 £ 0(e32))  (5.43)
_ C38(5+1)/2n7(175)/2 + 0(8(8+2)/2)n6—]'

Combining (5.39) and (5.43), we see that, for all i € E and any sequence y — x
and ¢ — 0 satisfying (5.41), we have

d
DM =) 0+ 0
i=1

ieE i¢E
Z C38(5+])/2n7(]78)/2 +O(8(5+1)/2)(1 + ’7571);

Recall that the implicit constant in the O notation in the last line has no dependence
on the choice of n. Thus, if 1 is chosen small enough, the estimate above contradicts
(5.38) for sufficiently small €.

Hence, for a small enough », there is no sequence satisfying (5.41), and, thus,

&

lim sup

< max b; (x) + n1 7972,
y—ox.e—0 € i€E

Since 7 is arbitrary, the last estimate proves the leftmost inequality in (5.37). The
rightmost inequality may be proved by a similar argument, by just assuming the
reverse inequality in (5.41) and arriving at a contradiction.

Next, take any x such that D¢ (x) € Vj. Inthe sequel all statements are supposed
to hold as y — x and ¢ — 0, a fact which will not be repeated from line to line.

Then arguing as above, it is easy to see that for any i, o (y) and B/ (y) are of
order 4/¢ and, eventually, on the same side of the origin.

Therefore, by (5.38) and the smoothness of V in R \ {0}, we find

d
0=> (@) =B NV (B () +0(e7D72),

i=1

where the remainder term was obtained using the fact that V" (z) = O(|z|*~2) near
zero, and (5.40).
Then, by (5.42), we get

d d d
O (y) Y V(B =2 Y binV"(BF (1)) +0E?) Y V(B (y) +O(eCTP72),

i=1 i=1 i=1
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and consequently, since V" is strictly positive everywhere,
) _ T VB | 0(*?)
g S VB () i VI BEG)

Since Bf(y) = —/&¢x, (y) + O(e) and ¢, (x) # O for all i, and V"(z) = (1 +
8)8]z|%~! for all z € R, we have that

(Ve) +

d d
D VIBEGN =A+8)8 Y | — Vepy, () + O

i=1 i=1

d
=1 +8)87 23 g, 0P +0(eC 7D 2%),
i=1
and, hence,
0(88/2)
————— =0(/?)
Y VB ()

Finally, note that

d d
S bV B = (1+8)8 Y (bi(x) + o(1)] — V@, (x) + (1)) + O(e) P!

i=1 i=1

d
= (1+8)8:0 D2 b (), (0! +0(e6D/2),

i=1

The second claim of the lemma is now proved by combining the last four displays.
O

Define F € C(S? x Vy) as

Pl i,
2 iy Ipil!

The boundary of Vj is the union of Vg over all nonempty E. Take any nonempty E
and any (X, p) € V. Take any sequence (Y, ¢) in S¢ x Vj converging to (X, p).
Sinceg; — Ofori € Eandq; — p; # Ofori ¢ E, the above formula for F makes
it clear that the lim sup of F (Y, q) as (Y,q) — (X, p) is at most %maxieE Xii.
Moreover, we can choose a sequence (Y, ¢) so that this value is achieved. In other
words, for (X, p) € 8¢ x Vg,

F(X,p)= (5.44)

1
F*(X, = - Xii,
(X, p) 5 max Xii
where F* is defined as in (3.10). Similarly,

I
F.(X, p) = Erirélgxii-
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For ug € BUC(R?) and F given by (5.44) we consider the initial value problem
ur = F(D*u, Du) in R? x [0, T] and u(-,0) = uo, (5.45)
which can be formulated as (3.2) with
F=F=F in 8 xVyand F=F* and F = F, in S x 3Vy. (5.46)

It follows from It follows from Theorem 5 in [17] that the initial value problem
(3.2) with F and F as in (5.46) satisfies (3.8).

For completeness, following [17], we remark that the geometry associated with
(5.45) and F, F and F is rather complicated. Indeed, the discontinuities of F, F
and F are characterized by a Finsler norm ¢ is defined implicitly through its dual
norm given, for each p € RY, by

¢*(p)=max{ > [(p.e)l recAp,

e'eA\fe,—e}

which defines a polyhedral Finsler norm. Above, A is the set used at the beginning
of Sect. 2 to define the schemes.
We may now apply Theorem 3.1 to state our second main result.

Theorem 5.5. Assume (5.36). Then, for every ug € BUC(R?), the scheme defined
by (5.15) converges, as ¢ — 0 and locally uniformly in R? x [0, T, to the unique
solution of (3.2) with F, F and F given by (5.44) and (5.46).

5.2.3. The solid-on-solid potential We consider here the potential

V(y) =yl (5.47)

which is the potential for the solid-on-solid (SOS) model. This model has attracted
considerable attention in the statistical physics literature. For a recent survey of
rigorous results about the SOS model and various applications of the model, see
the introduction of [11].

Next we introduce some more notation. Given v41, ..., v+4, we look at points
minimizing the map

d
Yy Y Iy —vil+ 1y — vl

i=1

which, in view of the previous discussion about minima of convex functions, form
an interval [a, b] with the understanding that it may be the case that a = b, with
a=a(+y,...,V+q) and b = b(v4q, ..., v+g). We define ®(v4q, ..., v4y) as

a(Vsl, ..., Vxq) +b(Vxr, .., Vag)
5 )

D1y .., V1) = (5.48)
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We recall that, given real numbers x, . . ., x,, its median is any number x that
minimizes the map

n
X = Z |xi — x|.
i=1

Thus, ®(v41, ..., v+g) is simply the midpoint of the set of medians of the
numbers v4i, ..., v+4. Lemmas 5.8 and 5.9, which are stated and proved at the
end of the ongoing subsection, summarize the properties of medians used in the
proof of the convergence of the growth scheme generated by (5.47).

The scheme at scale one is defined by the rule

ux,t+1) =o((u(x+a,)aea) = ulx) + ®u(x +ey,t)
—u(x,t),...,u(x eq,t) —u(x,t)).

It is immediate that ¢(0) = 0. Moreover, the scheme is clearly equivariant under
translations by constants and monotone.
At parabolic scale, the scheme S(¢) : B(RY) — B(R?) is given by

Se)vx) =vx)+d(vx £ \/561) —v(x), ..., v(x £ Jegeg) — v(x)).

To conclude we need to study, for ¢ : RY — R smooth, the limit, as ¢ — 0
and y — x of

SE¢() — o) _ Q@O EVee) =), ... d(y £ Veea) — ¢(1) _2®W

& & &

The nextlemma gives the asymptotic behavior of ®*¥ ase — Oand y — x.Forthis
it is convenient to introduce a partition of R?. For each nonempty E C {1, ..., d},
let

Ve={p eR?: |pil = |pjlforalli, j € E and |p;| < |pj| foralli € E, j ¢ E}.

When E is a singleton set like {i}, we will write V; instead of V;;.

Lemma 5.6. Fix x and let ¢ : RY — R be smooth. Let ®¢ be defined as in equation
(5.8). If D¢ (x) € Vg, then

1 ol il 1
D ingen 0 < timinf 2 < timsup T < Lnavg ). (5.49)
2 ieE y—x,e—>0 & yoxe—0 € 2 ieE
Moreover, if D¢ (x) € V; for some i, then
(of 1
lim W _ ~ e (X). (5.50)
y—>x,e—=0 & 2
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Proof. Assume that D¢ (x) € Vg and suppose that (y, ¢) is sufficiently close to
(x,0).
Since

Py £ Vee) —d(y) = £V/edy (») + O(e), (5.51)

it is easy to see that the set of medians of ¢ (y = /ee;) — @ (¥), ..., d(y £/ ceq) —
¢ (y) is the same as the set of medians of (¢ (y £ /g¢;) — ¢ (»))
Let

ieE’

1 1
a; = §(¢>(y +Vee) + ¢ (y — Vee) —2¢(y) and b; = §(¢(y + Vee) — ¢y — Veey)),
so that
(v £ Veei) —p(y) = a; £ b;.

It follows from Lemma 5.9 (below) that
e e
PE(y) = max a; = rirlea}§<<§¢xixi » + 0(8)) = 7 max bxix; (¥) +0(e),

which proves the upper bound in (5.49). The lower bound follows similarly. If
E = {i} for some i, it is again easy to see from (5.51) that, if y is sufficiently close
to x and ¢ is sufficiently close to O,

1
Pe(y) = E[(¢(y +/ee) —¢() + (@0 — Vee) — ()] = §¢x,'x,- () +o(e),

which proves the second claim. O

d
Define F € C(S x (|_J. Vi) as
=
Xii .
F(X,p):T if peV;. (5.52)

d
Then (5.50) yields the consistency property if D¢ (x) € U lVi.
i=

To complete the argument, we need to analyze what happens on 8Uf=1 Vi.Note
that E)U?ZI V; can be written as a disjoint union of Vg’s over all E of size at least 2.

Fix (X, p) € S? x Vg and suppose that (Y, g) € S¢ x (Uf=1 Vi) converges
to (X, p). Passing to a subsequence, we may assume that there exists some i such
that g € V;. Thus, F(Y,q) = %Yii, and, hence, F(Y, gq) converges to %X,-i. This
implies, in particular, that any such i must be a member of E.

Thus,

. 1 1 .
F*(X,p) < Erféaé(x“ and Fi(X, p) > Eriréngu.
If i* € E is a coordinate at which X;; is maximized, then choosing (Y, ¢) —

(X, p) so that g € V;+ always, we get F*(X, p) >1 max;cr X;;, and, similarly,
Y g =7 Y.
F (X, P) Sf %nlinieE Xij.
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Thus, we conclude that, when p € Vg,
F*(X, p) ! X d F.(X, p) L i X
, p) = = max X;; an , p) = = min X;;.
Pr= o Rep AP = S

Itis now easy to verify (3.7) using Lemma 5.6 and taking M = S¢~'n (UlEl >, VE).
For ug € BUC(RY) and F given by (5.52) we consider the initial value problem

u; = F(D*u, Du) in RY x [0, T] and u(-,0) = uo,
which can be formulated as (3.2) with

F=F=F in S8 xVyand F=F* and F=F, in 8 x aVj.
(5.53)

It follows from It follows from Theorem 5 in [17] that the initial value problem
(3.2) with F and F as in (5.53) satisfies (3.8).

As explained in [17], the comparison principle for the initial value problem
with nonlinearity (5.52) is based on the fact that F is compatible with a particular
polyhedral Finsler norm whose dual is given, for p € R¢ and A as in the beginning
of Sect. 2, by

¢*(p) = max Z [(p,e)] e A

e'eA\fe,—e}
Combining all the above we have now the next result of the paper.

Theorem 5.7. Assume (5.47). Then the scheme defined using (5.48) converges, as
& — 0 and locally uniformly, to the unique solution of (3.1) with F as in (5.52).

We conclude with the properties of the median of points xi, ..., x, € R,
Lemma 5.8. Let x1, . .., x,, be real numbers. Then:

(i) The set of medians is always a closed interval (which may be a single point).
(i) A point x isamedianifandonly if |{i : x; > x}| > n/2and|{i : x; < x}| > n/2.
(iii) If the set of medians is an interval [a, b] with a < b, then n must be even, and
Hi :x; <a}| =I|{i : x; = b}| =n/2, and no x; is in (a, b).

Proof. The arguments are easy and well known so we only present a sketch. The
first property is a simple consequence of the convexity of the map x +— Y, |x; —x|.
To prove the second property, take any x, and let k, [ and m be respectively the
number of i such that x; is greater than, equal to, and less than x. Increasing x to
x + ¢, for small enough ¢ > 0, increases ) ; |x; — x| by (I + m — k)e. Thus, if
x is a median, then / + m — k must be nonnegative, which is the same as saying
that |{i : x; < x}| > n/2. Similarly, it can be shown that decreasing x to x — &
increases the sum by k 4 [ — m, which implies that k + 1 — m > 0, which is the
same as saying |{i : x; > x}| > n/2. Conversely, the same argument shows that
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if these two inequalities hold, then shifting x a little to the left or the right cannot
decrease Zi |x; — x|, and so, x is a median.

Finally, to prove the third property, suppose that the set of medians is an interval
[a, b] with a < b. Take any x € (a, b). Let k, [ and m be as above. Since [a, b]
is the set of medians, the above argument shows that k +/ —m and [/ +m — k
must both be equal to zero, which implies that / = 0. Thus, no x; can belong to the
interval (a, b). Thus, for any x € (a, b), the sets {i : x; < x} and {i : x; > x} are
disjoint. Since x is a median, (ii) now implies that both of these sets must have size
exactly n/2. O

The next lemma yields yet another property of the median which is relevant for
the problem at hand.

Lemma5.9. Letay, ...,a4,b1,...,bs € R. Then max; a; and min; a; are respec-
tively an upper and a lower bound for the midpoint of the set of medians of the 2d
numbers ay £ by, ...,aq £ by.

Proof. We prove the upper bound. Without loss of generality, we may assume that
a; > a; for all i, and by, ..., by are nonnegative. Fori = 1,...,d, let cp;_1 =
a; + b; and ¢o; = a; — b;.

If the median is a unique point x, then any y < x is not a median, and, hence,
{i : ¢; < y}| <dbecause |{i : ¢c; > y}| > |{i : ¢; = x}| = d. Moreover, for any
i,wehave a; — b; < a; < ay. Thus, |{i : ¢; < a}| > d, and, therefore, a; > x.

Next, suppose that the set of medians is an interval [a, b] and let x = (a + D) /2
be the midpoint of this interval. If a; < a, then, since a is a median, |{i : ¢; >
ai}| = {i : ¢; = a}| = d. It also follows from Lemma 5.8 that |{i : ¢; < a1}| > d.
Thus, a; must be a median, which is a contradiction since a; ¢ [a, b]. Hence,
ap = a.

Assume that a; € [a, x). Then a; < x for all i. We know, however, that exactly
d of the ¢;’s are > b, and this can happen only if @; + b; > b for each i. Since
a; < x,thisimplies that a; —b; < a for each i, and, in particular, no ¢; can be equal
to a. But then a — ¢ is also a median for sufficiently small ¢ which is a contradiction.
Hence, a; > x, and the proof of the upper bound is complete.

For the lower bound, it is enough to work with —ay, ..., —aq, —b1, ..., —by
and apply the upper bound. O

5.2.4. The non-strict minimum case We continue now with the case that O is
not a strict minimum of V, in which case, the symmetry of V implies that there
exists a > 0 such that

V=0in [—a,a] and V >0 in R\ [—a,a]. (5.54)

This kind of potential arises in the so-called restricted solid-on-solid (RSOS) mod-
els, introduced by Kim and KoSTERLITZ [15]. The general principle of RSOS models
is that the heights at neighboring points are restricted to be within some constant
of each other. Very little is known rigorously about these models (see [4] for some
recent results). In this subsection we will study a deterministic version of RSOS
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growth, induced by the potential displayed above. Fix v4q, ..., v1qg € [—a,a]. It
follows that, for all y € [max;—1 . 4 V+i —a, min;—y, g4 V+; + al,
d

D VO —v) + Vi —v) =0,
i=1
that is, the map y — Zle V(y —v_;) + V(y — v;) achieves a minimum, which
is 0, on the interval [max;—=1, 4 v+; —a, minj=1, 4 v+; + al.
Following the discussion at the beginning of the ongoing section, we choose
the middle point of this interval. Thus the scheme we are working with here at scale
one is defined, for u : Z9 x Z4+ — R, by

ulx,t+1) =@(ux+a,1)aea)
1
=u(x,t)+ —[max (u(x +b,t) —u(x,t)) + min (u(x + b, t) — u(x,1))]
2 beB beB
(5.55)
(Recall that B = {%eq,...,%eq} and A = B U {0}.) That ¢(0) = 0, and the
equivariance under translations by constants and monotonicity are immediate.
It is immediate from the discussion about the choice of scale that, in the setting
discussed here, the “correct scaling” is the parabolic one.

At the parabolic scale, the scheme is generated by the map e — S(¢) : B — B,
given, for v € 5, by

1
S(e)(x) = v() + 5 [izn{lindkﬁ(x +ee) —p(x)] + ,max [¢(x £ Jeei) — ¢(X)]] .
(5.56)

In what follows, to simplify the notation, we use the map ® : R*? — R give
by

1 .
d(v_1,v1,...,V_¢,V7) = = | min vy; + max vy |.
2 d i=1,..d

i=l,...,
Then (5.56) can be rewritten as

D(p(x £ ee) —p(x), ..., 0(x £ eeq) — P (x))

1
= 3 [i:r?ind[fb(x + Jee;) — ¢ (x)] + i:nlqaxdw)(x + Jee) — ¢>(x)]:| )

..........

In view of the previous observations, the only fact we need to check is the
consistency of the scheme, which is about the behavior, as (¢, y) — (0, x) and ¢
smooth, of the ratio

SE@ —9G) _ 2°0)

& &
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where, to ease the notation, we write

1
P°(y) = E[i_nfin PLICES Vee) — ()] + max [¢(y+ Veep) — ¢(y)]].
(5.57)

The following lemma identifies the asymptotic behavior of e~ ®¢(y) ase — 0
and y — x for some x.

For the statement, we introduce, for each nonempty E C {1, ..., d}, the subset
Ve of R given by

Vi ={p€Rd t|pil = |pjlforalli, j € E and |p;| > |p;| foralli € E, j ¢ E};

when E is a singleton set like {i}, we will write V; instead of V|;;. Although this
bears similarities with the one of the previous subsection, is just the “opposite”.
Nevertheless, to keep the notation under control we use the same symbols.

It follows immediately that the V’s form a partition of RY.

Lemma 5.10. Let ¢ : RY — R be smooth and x € R?. If D¢ (x) € Vg, then,
locally uniformly in x,

L minge o () < timinf 2 < gimeup 200 < Lo v )
— min @y, imin imsup —— < —max ¢y .. (x).
7 e Pt = A T e = y_m;fo e =2 jer Pt
Moreover, if D¢ (x) € V; for some i, then
(o} 1
lim W) _ ~r v (X). (5.58)
y—>x,e—0 & 2

Proof. For y near x and ¢ small, we have
1 . £
() = 5[[:‘{““51[**/5‘1’%' () + 3005, 0) + o(e)}

e
+ max +Vedy, () + §¢x,-x,- () +o(e) ||

First, suppose that D¢ (x) € V; for some i, which, by the definition of V;,
implies that ¢y, (x) > 0. Then the above expression shows that, when y and ¢ are
respectively sufficiently close to x and 0,

1 1
() = 5 [—J&mi ) + %%i )+ o(e)] + E[ﬁcpx,. )+ §¢ () + o(e)}
= 9un () +0),

which proves the second claim of the lemma.

Next, we assume that D¢ (x) € Vg for some E. When y and ¢ are sufficiently
close to x and 0 respectively, the maximum in (5.57) is attained at ¢; or —e; for
some i € A, which possibly depends on y and ¢.
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Suppose that the maximum is attained at e; for some i € E. Then

1 1
=3 |:_\/g¢x,~ )+ %(bx;xi O+ 0(8)] T35 [«/Ecﬁx,» M+ %qu,»x,» O+ 0(8)]
£ <t
2¢x:‘X[ (y) +o(e) = ) Ijneag_(d)x,x, (y) +o(e).
Similarly, if the maximum is attained at —e; for some i € E, then

1
®*(y) =5 min d[iﬁ«m, () + 5ay, () + o(a)] +3 [—JE@[ () + 3 () + o(s)]

=

J
1
[ﬁ@, ) + ggbxl.x,. ) + o(e)] +3 [f\/abx,. ) + gqb ) + o(s)]

M N = N =

&
. <2
7 %xix (¥) +0(6) = 5 max bxjx; (¥) +0(e).
A similar argument yields that
& .
() Z 5 min gy () + 0(e).

The proof is now complete. O

d
We introduce next the limiting pde. Let F € C(S¢ x (U Vi) given by

i=1
Xii .
F(X,p):7 if peV;. (5.59)

Then (5.58) yields the consistency property if D¢ (x) € U;i: Vi

To complete the definition of F we need to analyze what happens on 9 (U;i:1 Vi),
can be written as a disjoint union of Vg over all E of size at least 2.

Fix (X, p) € S? x Vg and consider a sequence (Y, ¢) € S? x Ul‘-l=1 Vi con-
verging to (X, p). Passing to a subsequence, we may assume that there exists some
i such thatg € V; always. Thus, F(Y, g) = %Yii, and, hence, F (Y, g¢) converges to
%X ii- This implies, in particular, that any such i must be a member of E. It follows
that

1 1
F*(X,p) < 5 max Xi; and F, (X, p) > 5 min X;;.
If, however, i* € E is a coordinate at which X;; is maximized, then it is easy
to see, and we leave the details to the reader, that we can choose (Y, ¢) — (X, p)
so that g € V= always. It follows that
1
F*(X,p) > = Xii,
(X, p) > 3 rlneag( ii
and, similarly,

1
F.(X, p) < — min X;;.
( ’p)—z?élé‘ ii
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Thus, we conclude that, when p € Vg,
R 1 1 .
F*(X, p) = ErlneaEx Xii and F.(X, p) = 3 Ilrélél Xii. (5.60)

It is now easy to verify (3.7) using Lemma 5.10.
For ug € BUC(R?) and F given by (5.59) we consider the initial value problem
(3.1) with F* and F, defined as in (5.60), which can be formulated as (3.2) with

d d
f:ﬁ:FindeUVi and F=F* and F =F, in SdXGUV,-.

i=1 i=l1

It follows from Theorem 5 in [17] that the initial value problem (3.2) with F and
F as in (5.53) satisfies (3.8).

It is shown in [17] (see Lemma 3) that the nonlinearity F defined above is
encodes an infinity Laplacian and is compatible with the polyhedral norm ¢4,
where again A is as in the beginning of Sect. 2, with dual

¢4 (p) = max{(p,e) :e € A}.

Hence, in view of Theorem 5 in [17], the corresponding initial value problem admits
a comparison principle.
Combining all the above we have now the next result of the paper.

Theorem 5.11. Assume (5.13) and (5.54). Then the scheme defined using (5.56)
converges, as ¢ — 0 and locally uniformly in R x [0, T, to the unique solution

of (3.1) with F as in (5.59).
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