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Abstract

We prove the uniform in space and time convergence of the scaled heights of
large classes of deterministic growth models that are monotone and equivariant
under translations by constants. The limits are characterized as the unique (viscos-
ity solutions) of first- or second-order partial differential equations depending on
whether the growth models are scaled hyperbolically or parabolically. One of the
novelties is that for many relevant models, the parabolic scaling limit yields new
equations with gradient discontinuities consistent with Finsler metrics, such as the
crystalline infinity Laplacian. The results greatly simplify and extend a recent work
by the first author to more general surface growth models, and are possibly the
first such complete results about deterministic growth. The proofs are based on the
methodology developed by Barles and the second author to prove convergence of
approximation schemes.

1. Introduction

In this note we prove the uniform in space and time convergence of the scaled
heights of large classes of deterministic growthmodels that aremonotone and equiv-
ariant under translations by constants. The limits are unique viscosity solutions of
first- or second-order partial differential equations (PDEs for short) depending on
whether the growth models are scaled hyperbolically or parabolically. Examples
of such equations in the parabolic scaling include the deterministic Kardar–Parisi–
Zhang (KPZ) equation, as well as new classes of nonlinear PDEs with discontinu-
ities in the gradient that are “compatible” with Finsler norms, such as the crystalline
infinity Laplacian (that is, the infinity Laplacian corresponding to the l1-metric in
Rd ).

Our results are based on nonlinear PDE techniques (viscosity solutions) and,
in particular, the methodology developed by Barles and Souganidis [1] to prove
convergence of monotone approximation schemes.
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Since regularity plays no role, we are able to study very general and broad
settings of deterministic growth models with nonsmooth generating (height) func-
tions. This leads in the limit to some unusual PDE with discontinuities. Moreover,
the scaling need not always be parabolic.

Ourmethod greatly simplifies a recent work of the first author (Chatterjee [3];
see also [5]), whose main focus was convergence of smooth height functions to the
deterministic Kardar–Parisi–Zhang (KPZ) equation. The results of [3], which
were based on linear PDE estimates requiring higher (C2) regularity, imposedmore
assumptions.

The investigation is motivated by activity surrounding the KPZ equation in
probability theory and mathematical physics, although the investigation in [3] and
in this paper are about deterministic, rather than random, surface growth. The KPZ
equation is a stochastic PDE, introduced by Kardar, Parisi and Zhang in [14],
which is conjectured to be the “universal scaling limit” of a large class of growing
random surfaces. In spite of tremendous progress in the last 20 years (for a very brief
survey, see [3, Section 1.4]), this conjecture remains largely open in dimensions
higher than one. In [3], it was shown that if the randomness is dropped, then a
general class of parabolically scaled deterministically growing surfaces converge
to the solution of a deterministic version of the KPZ equation.

As an example of the type of results obtained in this paper, we describe next
a version of the zero temperature Glauber dynamics of a gradient Gibbs measure
with potential V (see Sect. 5.2).

Suppose that we have a d-dimensional surface growing deterministically ac-
cording to the following rule: Let f (x, t) denote the height of the surface at a point
x ∈ Zd at time t ∈ Z+. Then f (x, t + 1) is the middle point of the values of y that
minimize

d∑

i=1

V (y − f (x + ei , t))+
d∑

i=1

V (y − f (x − ei , t)),

where e1, . . . , ed are the standard basis vectors ofRd and V is a convex symmetric
potential function.

We obtain scaling limits of such surfaces for a large class of potentials, both
smooth and non-smooth. For example, for the smooth potential V (x) = x4, the
parabolic scaling limit yields the PDE

ut =
∑d

i=1(Du, ei )2(D2u ei , ei )
2|Du|2 ,

where ut is the partial derivative of u with respect to time, Du and D2u are respec-
tively the gradient and Hessian of u with respect to x , and (·, ·) is the inner product
in Rd .

The PDE of the scaling limits for non-smooth V are more complicated. For
instance, when d = 2 and the potential is V (x) = |x | (coming from the solid-
on-solid model of statistical physics), the parabolically scaled limit is the viscosity
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solution (see Sect. 3 for the definition of the solution and the precise meaning of
the PDE) of

ut = F(D2u, Du) in R2 × (0, T ],

where

F(D2u, Du) =
{

1
2ux1x1 if |ux1 | > |ux2 |,
1
2ux2x2 if |ux2 | > |ux1 |.

This provides a vast generalization of the setting of [3],where only examples leading
to a deterministic KPZ scaling limit were considered.

The paper is organized as follows: in the next section we discuss the general
setting and describe the growth models we consider. In Sect. 3 we present a variant
of the argument of [1] which we use to prove our results in the next two sections.
Section 4 is about the hyperbolic scaling. The last section of the paper is devoted to
the parabolic scaling. Since the results depend on the regularity and the nature of
the minimum of the convex potential V , Sect. 5 is divided into several subsections.

2. The General Setup

We describe here the general scheme that will give convergence of the scaled
heights of deterministic surface growth models. The goal is to formulate the al-
gorithm yielding the convergence, as described in [3], in a way that will allow us
to use the methodology of [1] to prove convergence of approximation schemes.
The latter, which is described in the next section, yields the convergence of the
scaled height functions to the unique (viscosity) solution of PDE associated with
the specific growth model and scaling.

The approach put forward here provides a considerably simpler proof of the
main result of [3] and, more importantly, allows the study of more general deter-
ministic surface growth models with non-smooth generating functions which give
rise to “unusual” first- and second-order partial differential equations.

Our presentation of the scheme is based on the general setting of [3]. A d-
dimensional discrete surface is a function from Zd into R, whose value at a point
denotes the height of the surface at that point.We consider discrete surfaces evolving
over time according to some deterministic local rule, to be made precise below.

Let {e1, . . . , ed} be the standard basis vectors of Rd , Z+ the set of nonnegative
integers,R+ = (0,∞) andR+ = [0,∞).Wedenote by A the set {0,±e1, . . . ,±ed}
consisting of the origin and its 2d nearest neighbors in Zd . Let B = A \ {0}. A
surface growth model is described by some ϕ : RA → R, which is assumed to
be equivariant under constant shifts and monotone, properties which are explained
later in the paper.

We say that the evolution of a deterministically growing d-dimensional surface
u : Zd × Z+ → R is driven by ϕ if, for each (x, t) ∈ Zd × Z+,

u(x, t + 1) = ϕ((u(x + a, t))a∈A). (2.1)
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Throughout the discussion, we will be assuming that

ϕ(0, . . . , 0) = 0.

This causes no loss of generality, since the property of equivariance under constant
shifts (explained later) will ensure that, if we replace ϕ by

ϕ̃ = ϕ − ϕ(0, . . . , 0),

then the new surface v(x, t) is related to the old surface u by v(x, t) = u(x, t) −
tϕ(0, . . . , 0). Henceforth, we will write ϕ(0) instead of ϕ(0, . . . , 0), for ease of
notation.

We are interested in the long-time and large-space behavior of the height func-
tion u. For this, it is convenient to extend u to a function onRd ×[0,∞) and to scale
space–time either hyperbolically or parabolically. The choice of the scale depends
on properties of the generating function ϕ.

To describe the scalings and the extension, we recall that, given t ∈ R, [t]
denotes its integer part, and, for x ∈ Rd , [x] = ([x1] , . . . , [xd ]). We start with the
hyperbolic scaling. Given ε > 0, we assume that, for some given u0 : R → R,

u(x, 0) = u0(εx),

and generate u(x, t) for t > 0 by (2.1). Then, we define uε : Rd × [0,∞) → R
by

uε(x, t) = u
([ x

ε

]
,

[
t
ε

])
.

It is immediately apparent that

uε(x, t) = u0
(
ε
[ x
ε

])
if t ∈ [0, ε).

Next, we examine how uε evolves in time, in view of (2.1). We use the elementary
fact that [t + 1] = [t] + 1 and (2.1) to get, for t ≥ ε, the following string of
equalities:

uε(x, t) = u
([ x

ε

]
,

[
t
ε

])
= ϕ

((
u

([ x
ε

]
+ a,

[
t
ε

]
− 1

))

a∈A

)

= ϕ

((
u

([
x + εa

ε

]
,

[
t − ε

ε

]))

a∈A

)
.

(2.2)

Hence, we have

uε(x, t) = S(ε)uε(·, t − ε)(x),

where, given v : Rd → R,

S(ε)v(x) = ϕ((v(x + εa))a∈A).
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For the parabolic scaling, given ε > 0, we assume that

u(x, 0) = u0(
√

εx)

for some given u0 : R → R, generate u according to (2.1), and define uε :
Rd × [0,∞) → R by

uε(x, t) = u
([

x√
ε

]
,

[
t
ε

])
.

It is immediately apparent that

uε(x, t) = u0

(√
ε

[
x√
ε

])
if t ∈ [0, ε),

and, as above, we find that

uε(x, t) = S(ε)uε(·, t − ε)(x),

where, given v : Rd → R,

S(ε)v(x) = ϕ((v(x + √
εa))a∈A).

We note that we used the same notation for both the hyperbolic and parabolic
scalings.We expect this to create no difficulties in what follows since the arguments
and statements will always specify which case we work with. The benefit, however,
is that we do not need to introduce more notation.

Finally, we remark that, for all g ∈ BUC(Rd), as δ → 0 and uniformly in x ,

g
(
δ
[ x
δ

])
→ g(x),

where BUC(O) is the space of real-valued bounded uniformly continuous functions
onO ⊂ Rm for some m ∈ N. In this paper,O is either Rd or Rd × [0, T ] for some
T > 0.

The basic mathematical criterion about which scaling to use is how the scheme
propagates linear functions. If such functions move in time, then the correct scaling
is the hyperbolic one. If, however, linear functions remain the same, to see some
nontrivial behavior we need to scale parabolically.

The intuition behind the choice of scaling can also be described as follows.
The scaling limit describes the long time and large space behavior of the growth
process. The space scaling keeps the problem in a “compact” set in space while
the time scaling can be thought heuristically as an expansion in 1/t, 1/t2, . . .. The
hyperbolic scaling gives the 1/t term. If this is 0, which is the case when linear
functions do notmove, then one goes to the 1/t2 term, hence the parabolic rescaling.

Finally, from the modeling point of view, hyperbolic scaling may occur in any
growth mechanism where the growth at a point is affected by the heights at only
those neighboring points where the height is higher.



Sourav Chatterjee & Panagiotis E. Souganidis

3. The Approximation Scheme

We describe here a reformulation of the abstract method put forward in [1]
to establish the (local uniform) convergence of approximations to the (viscosity)
solution of the initial value problem

ut = F(D2u, Du) in Rd × (0, T ] u(·, 0) = u0 in Rd , (3.1)

with F : Sd × Rd → R degenerate elliptic, that is,

F = F(X, p) is increasing with respect to X ∈ Sd ,

whereSd is the space of symmetric d×dmatrices andmonotonicity is interpreted in
the sense of symmetricmatrices, that is, X ! Y if X−Y is positive semidefinite. The
scheme, presented below, asserts thatmonotone and translation equivariant schemes
that are consistent with (3.1) converge (locally uniformly) to the unique Crandall–
Lions viscosity solution u ∈ BUC(Rd ×[0, T ]) of (3.1). For the convenience of the
reader we recall the definition further down in this section. Notice that heretofore
when we refer to sub-, super- and solutions, we always mean in the viscosity sense,
that is, they are viscosity sub-, super- and solutions.

Note that, in view of the assumed degenerate ellipticity of F , the method also
works for first-order Hamilton-Jacobi initial value problems like

ut = H(Du) in Rd × (0, T ] u(·, 0) = u0 in Rd .

In many of the examples of surface growth models we study in this paper, the
parabolically rescaled limits give rise to equations like (3.1) with nonlinearities
F = F(X, p) which have discontinuities in the gradient component p. In such
cases, it is more convenient and actually necessary to reinterpret to and relax (3.1)
as two inequalities corresponding to sub- and super-solutions, that is, to consider
the “relaxed” initial value problem

ut ≤ F(D2u, Du) in Rd × (0, T ) ut ≥ F(D2u, Du) in Rd × (0, T ) u(·, 0) = u0,

(3.2)

where F ∈ USC(Sd × Rd) and F ∈ LSC(Sd × Rd). Here USC(U ) and LSC(U )

are respectively, the sets of upper and lower semicontinuous functions on U .

3.1. The general setting and assumptions

We work in B, the set of bounded functions u : Rd → Rd , that is, functions
satisfying

‖u‖ = sup
x∈Rd

|u(x)| < ∞.

For ε ∈ [0, 1], let S(ε) : B → B be such that, for all u, v ∈ B, k ∈ R and ε ∈ [0, 1],
S(0)u = u, (3.3)

S(ε)(u + k) = S(ε)u + k, (3.4)
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and

if u ≤ v, then S(ε)u ≤ S(ε)v. (3.5)

The last two conditions are referred to respectively as equivariance (or invari-
ance) under translation by constants and monotonicity. A well-known observation
of Crandall and Tartar [7] gives that, if (3.4) holds, then monotonicity is equiv-
alent to contraction, that is, for all u, v ∈ B and ε ∈ [0, 1],

‖S(ε)u − S(ε)v‖ ≤ ‖u − v‖. (3.6)

Next, we discuss the main assumption about S(ε), which connects it with (3.1).
Since we are aiming for some generality in order to incorporate all the examples
we have in mind, the following assumption may appear a bit cumbersome.

We assume that the family of operators (S(ε))ε∈[0,1] is such that





there exist degenerate elliptic F ∈ USC(Sd × Rd ) and F ∈ LSC(Sd × Rd ) such that,
for all φ ∈ C2(Rd ) and x ∈ Rd ,

lim sup
y→x,ε→0

S(ε)φ(y) − φ(y)
ε

" F(D2φ(x), Dφ(x))

and

lim inf
y→x,ε→0

S(ε)φ(y) − φ(y)
ε

! F(D2φ(x), Dφ(x)).

(3.7)

Next, we assume that the initial value problem (3.2) satisfies a comparison principle
between bounded upper semicontinuous (BUSC for sort) subsolutions and bounded
lower semicontinuous subsolutions (BLSC for short) supersolutions, that is,





if w ∈ BUSC(Rd × [0, T ]) and v ∈ BLSC(Rd × [0, T ]) satisfy
wt " F(D2w, Dw) and vt ! F(D2v, Dv) in Rd × (0, T ), and w(·, 0) " v(·, 0),
then w " v in Rd × [0, T ].

(3.8)

As already noted wework with the Crandall–Lions viscosity solutions of (3.1) with
F degenerate elliptic, and refer to the Crandall, Ishii and Lions “User’s Guide” [8]
for an extensive introduction to the theory. For the reader’s convenience, we recall
here the definition of subsolution (resp. subsolution) of (3.1).

We say that u ∈ USC(Rd × (0, T ]) (resp. u ∈ LSC(Rd × (0, T ]))) is a sub-
solution (resp. supersolution) of ut ≤ F(D2u, Du) (resp. ut ≥ F(D2u, Du)) if,
for every φ ∈ C2(Rd) and g ∈ C1((0, T ]) and a maximum (resp. minimum) point
(x0, t0) ∈ Rd × (0, T ] of u − φ − g,

g′(t0) ≤ F(D2φ(x0), Dφ(x0)) (resp. g′(t0) ≥ F(D2φ(x0), Dφ(x0))). (3.9)

A function that is both a subsolution and a supersolution is called a solution.
We remark here, and refer to [8] for more discussion and proofs, that in the

definition of a subsolution (resp. supersolution) maxima (resp. minima) can be
either local or global, and, finally, they can always be taken to be strict.

We also note and refer to [8] for more discussion that there is a great freedom
in choosing the regularity of the test function in (3.9), the general principle being
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that φ must be sufficiently regular so that (3.9) makes sense. As a consequence, if
F and F do not depend on the Hessian, it suffices to use test functions in C1(Rd).

Finally, as it will become clear later, (3.7) is used to check that a certain function
is a subsolution (resp. supersolution). Hence, the regularity of φ in (3.7) needs to
be the same as the one of the test function used in (3.9).

A few remarks are in order to explain the relationship between (3.1) and (3.8).
In all the examples we investigate in this note, either F = F = F in Sd ×Rd or in
Sd × (Rd \U ), where U is a subset of Rd . In the latter case, on Sd ×U we have

F(X, p) = F%(X, p) := lim sup
Sd×Rd,(Y,q)→(X,p)

F(Y, q) (3.10)

and

F(X, p) = F%(X, p) := lim inf
Sd×Rd,(Y,q)→(X,p)

F(Y, q). (3.11)

When F is continuous, that is, U = ∅ in (3.7), the comparison principle is a
classical fact in the theory of viscosity solutions; see, for example, see Theorem 8.3
in [8].

When F has discontinuities, the comparison principle, if true, depends very
much on the type of singularities. The folklore of the theory of viscosity solutions is
that discontinuities can be dealt with by identifying and using an appropriate class
of test functions which are consistent with the classical theory and “resolve the
discontinuities”. The latter means that F = F when evaluated along the Hessians
and gradients of the new test functions.

When F is discontinuous at p = 0, as in, for example, (5.21), the comparison
principle follows from the techniques developed by Chen, Giga and Goto [6],
Evans and Spruck [9] and Ishii and Souganidis [13]. When the singularities are
at p = 0, p1, . . . , pk , the comparison principle follows as in Gurtin, Soner and
Souganidis [10], Ohnuma and Sato [18] and Ishii [12]. The last reference treats
some F’s with singularities of the type arising in this paper with the restriction that
the set of discontinuities is smooth, which is not the case in dimensions higher than
2.

When d ≥ 3, the typicalU arising in this paper does not have smooth boundary
and new arguments are needed. The necessary comparison in this generality was
established recently by Morfe and the second author [17]. The key observation
of [17] is that gradient discontinuities are consistent with particular polyhedral
Finsler norms in Rd , like, for example, l1. This allows to construct the correct
test functions. Specific comments are made when necessary in the paper. More
discussion, however, on this subject is beyond the scope of the paper at hand.

3.2. Convergence of the approximation scheme

Let (S(ε))ε∈[0,1] be a family of maps as in the previous subsection. Fix T > 0.
Given u0 ∈ B and ε ∈ [0, 1], we assume that uε : B × [0, T ] → R is such that

{
uε(·, t) = u0 if t ∈ [0, ε],
uε(·, t) = S(ε)uε(·, t − ε) if t ∈ (ε, T ]. (3.12)
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The convergence result is stated next.

Theorem 3.1. Assume (3.3), (3.4), (3.5), (3.7), and (3.8), and, for u0 ∈ BUC(Rd),
let uε be defined by (3.12). Then, as ε → 0, uε → u ∈ BUC(Rd × [0, T ]) locally
uniformly in Rd × [0, T ], which is the unique solution of (3.1).

The proof of the theorem follows closely the arguments of the analogous theo-
rem of [1], thus we only sketch it next.

Proof. (Sketch of proof of Theorem 3.1) Since u0 is bounded, it follows from (3.3),
(3.4), and (3.5) that the uε’s are also bounded independently of ε in Rd × [0, T ].

Hence, the local uniform upper and lower limits u% ∈ BUSC(Rd × [0, T ]) and
u% ∈ BLSC(Rd × [0, T ]) of the uε’s given respectively by

u%(x, t) = lim sup
(y,s)→(x,t),ε→0

uε(y, s) and u%(x, t) = lim inf
(y,s)→(x,t),ε→0

uε(y, s)

(3.13)

are well-defined.
The goal is to show that u% is a subsolution and u% is a supersolution of (3.1).

Then the assumedcomparisonprinciple, combinedwith the obvious inequalityu% ≤
u%, imply that u% = u% and u = u% = u% is the unique solution of (3.1), the latter
being a consequence of the fact that u is both subsolution and supersolution. The
local uniformnature of the limits in (3.13) then yields the local uniform convergence
of the uε’s to u.

Since the arguments are similar, here we show only that u% is a subsolution.
For this, we assume that, for a given φ ∈ C2(Rd) and g ∈ C1(0, T ], (x0, t0) ∈
Rd × (0, T ] is a strict global maximum of u% − φ − g in Rd × (0, T ].

The definition of u% and some calculus considerations (see [8, Proposition 4.3])
yield εn → 0 and (xn, tn) ∈ Rd×(εn, T ] such that (xn, tn) → (x0, t0),uεn (xn, tn) →
u%(x0, t0) and uεn − φ − g achieves a global maximum at (xn, tn).

Since, in view of (3.12),

uεn (xn, tn) = S(εn)uεn (·, tn − εn)(xn)

and, for all x ∈ Rd ,

uεn (x, tn − εn) − uεn (xn, tn) ≤ φ(x) − φ(xn)+ g(tn − εn) − g(tn),

it follows from the equivariance of translations by constants and the monotonicity
of S that

S(εn)[φ − φ(xn)](xn)+ g(tn − εn) − g(tn)

≥ S(εn)[uεn (·, tn − εn) − uεn (xn, tn)](xn) = 0,

and, hence,

g′(tn)εn ≤ S(εn)[φ − φ(xn)](xn)+ o(εn).

Dividing by εn and letting n → ∞ yields the subsolution property. The other
inequality follows similarly. ./
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4. Hyperbolic Scaling Examples

We study here two models of deterministic surface growth with non-smooth
driving function which are related to the deterministic version of directed last-
passage percolation with driving function ϕ((ua)a∈A) = maxa∈A ua , which is
the multidimensional analogue of a one-dimensional deterministic growth model
considered by Krug and Spohn [16].

Webeginwith the directed last-passage percolationmodel,which, at the discrete
level, is given, for (x, t) ∈ Zd × Z+, by

u(x, t + 1) = ϕ((u(x + a, t))a∈A) = max
a∈A

u(x + a, t).

It is immediate that, if u : Zd → R is linear, that is, u(x) = p · x for some
p ∈ Rd \ {0}, then

max
a∈A

p · (x + a) = p · x +max
a∈A

p · a = p · x + max
i=1,...,d

|pi | 0= 0.

Thus it is appropriate to use scale hyperbolically. Note thatϕ(0) = 0.Moreover,
the scheme is obviously equivariant under translations by constants and monotone,
that is, for all u, v : Zd → R such that u ≤ v and k ∈ R,

ϕ((u(x + a)+ k)a∈A)

= ϕ((u(x + a))a∈A)+ k and ϕ((u(x + a))a∈A) ≤ ϕ((v(x + a))a∈A).

Following sect. 2, for ε > 0, u ∈ B, and x ∈ Rd , we define

S(ε)u(x) = ϕ((u(x + εa))a∈A),

and note that (3.3), (3.4) and (3.5) are satisfied.
Next we check the consistency. We fix φ smooth and look at the ε → 0 and

y → x limit of

S(ε)φ(y) − φ(y)
ε

= ϕ((φ(y + εa))a∈A) − φ(y)
ε

.

It is immediately apparent that

ϕ((φ(x + εa))a∈A) − φ(x)
ε

= 1
ε
max
a∈A

(φ(y + εa) − φ(y))

= 1
ε

max
i=1,...,d

(±φxi (y)ε + o(ε2))

= max
i=1,...,d

θ

Let H = H(p) : Rd → R be given by

H(p) = max
i=1,...,d

|pi |. (4.1)
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Since H ∈ C(Rd), it follows from [8], that, for each T > 0, the initial value
problem

ut = H(Du) in Rd × [0, T ] u(·, 0) = u0 (4.2)

admits a comparison principle in BUC(Rd × [0, T ]), and, thus, (3.8) is satisfied.
Moreover, for each u0 ∈ BUC(Rd), (4.2) has a unique solution u ∈ BUC(Rd ×
[0, T ]).

We have proved the following theorem:

Theorem 4.1. If uε : Rd × [0, T ] → R is defined by (2.2) starting with u0 ∈
BUC(Rd), then, as ε → 0 and locally uniformly in Rd × [0, T ], uε → u, the
unique solution u ∈ BUC(Rd × [0, T ]) of (4.2) with H as in (4.1) and initial data
u0.

Asmentioned above, this is also a scheme proposed in [16] to obtain at the limit
a deterministic KPZ-type nonlinearity with sublinear growth, that is, the PDE

ut = 'u + |Du|.

It is clear, in view of Theorem 4.1, that this conjecture in [16] is not possible even
when d = 1 in which case, of course, H(p) = |p|.

We consider next another scheme which, at the discrete level, is given, for
(x, t) ∈ Zd × Z+, by

u(x, t + 1) = ϕ((u(x + a, t))a∈A) = u(x, t)+ 1
2d

∑

a∈A

(u(x + a, t) − u(x, t))+.

(4.3)

This is a variant of example (1.5) from [3], where (u(x + a) − u(x))+ is replaced
by q(u(x + a) − u(x)) for an increasing C2 function q. Parabolic scaling applies
in that case, and the limit is the deterministic KPZ equation. As we will see below,
that is no longer the case for this variant, a fact that stresses the consequences of
the lack of differentiability of the driving function.

The fact that ϕ(0) = 0 as well as the equivariance under translations by con-
stants and the monotonicity are immediate.

As above, for ε > 0 and u ∈ B, we define

S(ε)u(x) = ϕ((u(x + εa))a∈A).

It is immediately apparent that (3.3), (3.4) and (3.5) are satisfied.
To check (3.7), we fix φ : Rd → R smooth and look at the ε → 0 and y → x

limit of

S(ε)φ(y) − φ(y)
ε

= ϕ((φ(y + εa))a∈A) − φ(y)
ε

.
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A straightforward computation and (4.3) yield the following string of equalities
and limits:

ϕ((φ(y + εa))a∈A) − φ(y)
ε

=
φ(y)+ 1

2d
∑

a∈A(φ(y + εa) − φ(y))+ − φ(y)

ε

= 1
2d

∑

a∈A

(Dφ(y) · a + o(ε))+ →
y→x,ε→0

1
2d

d∑

i=1

(φxi (x))+.

Let H = H(p) : Rd → R be given by

H(p) = 1
2d

d∑

i=1

(pi )+. (4.4)

Since H ∈ C(Rd), the initial value problem

ut = H(Du) in Rd × [0, T ], u(·, 0) = u0

admits a comparison principle in BUC(Rd × [0, T ]), and, thus, (3.8) is satisfied.
Moreover, for each u0 ∈ BUC(Rd), (4.2) has a unique solution u ∈ BUC(Rd ×
[0, T ]).

We thus have proved the following convergence result:

Theorem 4.2. For u0 ∈ BUC(Rd) and let u ∈ BUC(Rd × [0, T ]) be the unique
solution of (4.2) with H as in (4.4) and initial data u0. If uε : Rd × [0, T ] → R is
defined by (2.2), then, as ε → 0 and locally uniformly in Rd × [0, T ], uε → u.

5. Parabolic Scaling Examples

We divide this section into two subsections depending on the regularity and
properties of the generating function ϕ. In the first we generalize and give a much
simpler proof of the result of [3]. The second is about new results concerning zero
temperature dynamics of gradient Gibbs measures. This subsection is also divided
into three parts depending on the behavior of the underlying potential.

5.1. Generalization of deterministic KPZ-type models

We provide an extension of the main result of [3] by obtaining a generalized
deterministic KPZ scaling limit under the assumptions that the height function is
equivariant under constant shifts, monotone, and twice continuously differentiable.
The class of PDEs obtained in the limit contain as a very particular case the classical
deterministic KPZ equation.

We assume that the evolution of a deterministically growing d-dimensional
surface u : Zd × Z+ → R is as in (2.1) with ϕ given, for each x ∈ Zd and
v : Zd → R, by

ϕ((v(x + a))a∈A) = v(x)+ ((v(x ± e1) − v(x), . . . , v(x ± ed) − v(x)),
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where

( ∈ C2(R2d) and ((0, . . . , 0) = 0. (5.1)

The assumption that ((0, . . . , 0) = 0 is made only to simplify the presentation,
since, as discussed earlier, we can always work with (̃ = ( − ((0, . . . , 0). We
leave the details to the reader.

We also assume that, for each i = 1, . . . , d,

(vi (0, . . . , 0) = (v−i (0, . . . , 0), (5.2)

where (vi is shorthand for ∂(/∂vi . This is a relaxation of the “invariance under
lattice symmetries” assumption from [3].

We note that (5.2) is necessary to allow us to consider a parabolic scaling. As
discussed earlier, this is related to the fact that for such a scaling we need to have,
for all p ∈ Rd ,

lim
ε→0

ϕ((p · (x + εa))a∈A) − p · x
ε

= 0,

which follows from (5.2).
After rescaling and using the setup discussed in Sect. 2 we define the scheme

S(ε)v(x) = v(x)+ ((v(x ± √
εe1) − v(x), . . . , v(x ± √

εed) − v(x)). (5.3)

we immediately have that

S(0)v = v and S(ε)(v + k) = S(ε)v + k,

and, hence, (3.3) and (3.4) are satisfied.

For the monotonicity, it is enough to show that the map

(v0, v±1, . . . , v±d) 1→ S̃(v0, v±1, . . . , v±d) := v0 + ((v±1 − v0, . . . , v±d − v0)

is monotone with respect to all its argument. And for this, we need that for all
(v0, v±1, . . . , v±d) and i = 1, . . . , d,

∂ S̃
∂v0

(v0, v±1, . . . , v±d) ! 0 and
∂ S̃

∂v±i
(v0, v±1, . . . , v±d) ! 0.

we immediately have that

∂ S̃
∂v0

(v0, v±1, . . . , v±d) = 1 − div((v±1 − v0, . . . , v±d − v0),

and, for each i = 1, . . . , d,

∂ S̃
∂v±i

(v0, v±1, . . . , v±d) = (v±i (v±1 − v0, . . . , v±d − v0).



Sourav Chatterjee & Panagiotis E. Souganidis

Thus, the monotonicity of S at large is equivalent to the assumptions that, for
all v±1, . . . , v±d ∈ R,

1 − div((v±1, . . . , v±d) ! 0 and (v±i (v±1, . . . , v±d) ≥ 0. (5.4)

As an aside, we remark that, instead of (5.4), we may assume

1 − div((0, . . . , 0) > 0 and (v±i (0, . . . , 0) > 0. (5.5)

Indeed, recall that (3.6) preserves the Lipschitz continuity of the scheme. Thus, if
we assume that u0 is bounded andLipschitz continuous, then the scheme generates a
bounded andLipschitz continuous uε . It is then immediate that, for all i = 1, . . . , d,

uε(x ± √
εei , t) − uε(x) = O(

√
ε), (5.6)

with O depending only on the Lipschitz constant of u0.
If φ : Rd → R is a smooth function, we also have, for all i = 1, . . . , d,

φ(x ± √
εei , t) − φ(x) = O(

√
ε), (5.7)

with O depending only on the Lipschitz constant of φ.
Looking back at the proof of Theorem 3.1 we see that the monotonicity of the

scheme is only used to replace terms like uε(x ±√
εei , t)− uε(x, t) by terms like

φ(x ± √
εei , t) − φ(x), which, in view of (5.6) and (5.7), are of (uniform) order√

ε. It suffices then to have the monotonicity of the ( only in a
√

ε-neighborhood
of 0. Hence, it suffices to assume (5.5).

Once we have convergence for bounded and Lipschitz continuous u0, the result
for u0 ∈ BUC(Rd) follows again from the contraction property of the scheme and
the limit problem and an elementary density argument.

To make what follows easier to read, let

(ε(y) := ((φ(y ± √
εe1) − φ(y), . . . ,φ(y ± √

εed ) − φ(y)) = S(ε)φ(y) − φ(y).

(5.8)

Taylor’s expansion, for ε small and uniformly in y near x , gives

(ε(y) =
d∑

i=1

[(vi (0, . . . , 0)(φ(y +
√

εei ) − φ(y))+ (v−i (0, . . . , 0)(φ(y − √
εei ) − φ(y))]

+ 1
2

d∑

i=1

d∑

j=1

(vi v j (0, . . . , 0)(φ(y +
√

εei ) − φ(y))(φ(y + √
εe j ) − φ(y))

+ 1
2

d∑

i=1

d∑

j=1

(v−i v− j (0, . . . , 0)(φ(y − √
εei ) − φ(y))(φ(y − √

εe j ) − φ(y))

+
d∑

i=1

d∑

j=1

(vi v− j (0, . . . , 0)

(φ(y + √
εei ) − φ(y))(φ(y − √

εe j ) − φ(y))+ O(ε3/2),
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and

φ(y ± √
εei ) − φ(y) = ±√

εφxi (y)+
ε

2
φxi xi (y)+ O(ε3/2).

Substituting the last expression in the previous display, and using (5.2), we get

lim
y→x,ε→0

(ε(y)
ε

=
d∑

i=1

(vi (0, . . . , 0)φxi xi (x)+
1
2

d∑

i=1

d∑

j=1

(vi v j (0, . . . , 0)φxi (x)φx j (x)

+ 1
2

d∑

i=1

d∑

j=1

(v−i v− j (0, . . . , 0)φxi (x)φx j (x) −
d∑

i=1

d∑

j=1

(vi v− j (0, . . . , 0)φxi (x)φx j (x).

Note that, if (5.4) is assumed, then the map

M 1→
d∑

i=1

(vi (0, . . . , 0)Mii is degenerate elliptic in Sd , (5.9)

while, when (5.5) holds,

M 1→
d∑

i=1

(vi (0, . . . , 0)Mii is uniformly elliptic in Sd . (5.10)

Let the Hamiltonian H = H(p) = H(p1, . . . , pd) : Rd → R and the matrix
A = (Ai j )i, j=1,...,d ∈ Sd be defined by

Ai j = δi j(vi (0, . . . , 0) and

H(p) = 1
2

d∑

i=1

d∑

j=1

(
(vi v j (0, . . . , 0)+ (v−i v− j (0, . . . , 0) − 2(vi v− j (0, . . . , 0)

)
pi p j .
(5.11)

Clearly H ∈ C(Rd) and, in view of (5.9) and (5.10), the matrix A is either de-
generate elliptic or uniformly elliptic. It then follows from [8] that the initial value
problem

ut = trace(AD2u)+ H(Du) in Rd × (0, T ] u(·, 0) = u0 (5.12)

has, for every u0 ∈ BUC(Rd), a unique solution u ∈ BUC(Rd × [0, T ]), which is
classical for t > 0 if (5.5) holds, and, moreover, satisfies (3.8).

Note that the well-posedeness of (5.12) is a standard fact in the theory of
viscosity solutions, hence, we omit the details and instead we refer to Theorem 8.2
in [8].

Collecting all the hypotheses above and using Theorem 3.1 we have now the
following theorem which extends the corresponding result in [3]:

Theorem 5.1. Assume (5.1), (5.2), and either (5.4) or (5.5). Then the scheme de-
fined using (5.3) converges locally uniformly, as ε → 0, to the unique solution of
(3.1) with F as in (5.11).
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5.2. Zero temperature dynamics of gradient Gibbs measures

In this subsection, we study schemes generated by a different class of growth
models in which the location of the growing surface is determined by minimizing
the total potential energy between the point and its neighbors. This is motivated by
Glauber dynamics for gradient Gibbs measures at zero temperature.

Formally, a gradient Gibbs measure is probability measure on RZd
with prob-

ability density proportional to

exp
(

−β
∑

x,y∈Zd ,|x−y|=1

V (h(x) − h(y))
)
,

where β is the inverse temperature parameter, and V is a potential function, often
assumed to be convex and symmetric. We will assume that V is convex and sym-
metric throughout this subsection. For background on gradient Gibbs measures;
see [2,19].

The Glauber dynamics for a gradient Gibbs measure as above proceeds by
updating the height h(x) at a site x by regenerating h(x) from the conditional dis-
tribution given the heights at neighboring points. When the temperature is zero, or,
in other words, β = ∞, the Glauber dynamics simply chooses h(x) that minimizes

d∑

i=1

V (h(x) − h(x ± ei )).

If V has a strict minimum and is differentiable there, then the minimizing prob-
lem has a unique solution. Hence, the zero temperature dynamics becomes fully
deterministic. We will investigate this below.

When V either has a strict minimum but is not differentiable there, or the
minimum is not strict, the set of minimizers may be an interval of positive length.
In this case, the zero temperature dynamics will choose a point uniformly from
this interval. To avoid this randomness, we will simply choose the midpoint of the
interval as the updated height. We discuss two such examples later.

In the language of Sect. 2, the driving function ϕ : RA → R is

ϕ((ua)a∈A) = argminy∈R
∑

a∈A

V (y − ua),

where

V : R → R is a symmetric convex potential with minimum 0 at y = 0.

(5.13)

As mentioned above, depending on the properties of V , for each (ua)a∈A, the
minimum value of the map y 1→ ∑

a∈A V (y−ua) can be achieved at either a single
point or a closed interval. In the former case, argmin has its usual meaning. In the
latter, argmin is taken to be the middle point of the interval of minima.
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Next, we show that parabolic scaling is the correct scaling to study the asymp-
totic behavior. For this, we need to show that, for any p ∈ Rd , as ε → 0,

argminy∈R
∑d

i=1 V (y − p · (x ± εei )) − p · x
ε

→ 0. (5.14)

To show (5.14), we begin with the elementary observation that, for any v :
Rd → R,

argminy∈R

[
d∑

i=1

V (y − v(x ± εei ))

]

− v(x) = argminy∈R
d∑

i=1

V (y − (v(x ± εei ) − v(x))).

Next we observe that, since V is convex and even, so is the map

y 1→
d∑

i=1

V (y − (p · (x ± εei ) − p · x)) =
d∑

i=1

V (y ± εpi ).

and thus

argminy∈R
d∑

i=1

V (y − p · (x ± εei )) − p · x = 0.

Finally, to prove the convergence we introduce the maps (S(ε))ε∈[0,1], which, for
u ∈ B(Rd) and ε > 0, is given by

S(ε)φ(x) = φ(x)+
[
((φ(x ± √

εe1), . . . ,φ(x ± √
εed)) − φ(x)

]
, (5.15)

where, given v±i for i = 1, . . . , d,

((v±1, . . . , v±d) = argminy∈R

[
d∑

i=1

(V (y − v−i )+ V (y − vi ))

]

.

In view of (5.13), it is immediate that S(ε) satisfies (3.3), (3.4) and (3.5).
The consistency is more complicated and depends on the regularity of V at 0

and on whether 0 is a strict minimum or not. There are three different cases and we
study each one separately.

5.2.1. “Smooth” potentials with strict minimum In addition to (5.13), we as-
sume that






V is twice differentiable in a neighborhood of 0, which is a strict minimum, and

there exists σ > 0 and α 0= 0 such that lim
|y|→0

V (2)(y)
|y|σ = α,

(5.16)

where, for l ∈ Z+, V (l) denotes the l-th derivative if it exists.
For future reference, we record here the elementary fact that, in view of (5.16),

for each θ > 0 and |y| sufficiently small,

(α − θ)|y|σ ≤ V (2)(y) ≤ (α + θ)|y|σ . (5.17)
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An example of a potential satisfying (5.16) is a V : R → [0,∞) such that
{
there exists an even number k ! 2 such that V ∈ Ck+1, V (k)(0) > 0,
and V (1)(0) = · · · = V (k−1)(0) = 0.

(5.18)

Since V is even, all the odd derivatives at 0, if they exist, vanish. Hence, (5.18) is
about the existence of the k.

Another example is the potential

V (x) = |x |2+δ for some δ ∈ (0, 1). (5.19)

In view of the definition of the scheme generating (, for φ smooth, we have

d∑

i=1

V (1)(((φ(x ± √
εe1) − φ(x), . . . ,φ(x ± √

εed) − φ(x)) = 0

In what follows, to simpliy the notation, we write, as in (5.8),

(ε(y) := ((φ(y ± √
εe1) − φ(y), . . . ,φ(y ± √

εed) − φ(y)),

We study next the consistency of the scheme which follows from the asymptotic
behavior of ε−1(ε(y) as ε → 0 and y converges to some x . The main result needs
the following lemma, which is proven at the end of the ongoing subsection.

Lemma 5.2. Assume (5.13) and (5.16). Then, for any x ∈ Rd ,

1
2
min
i

φxi xi (x) " lim inf
y→x,ε→0

(ε(y)
ε

" lim sup
y→x,ε→0

(ε(y)
ε

" 1
2
max
i

φxi xi (x).

Moreover, if Dφ(x) 0= 0, then

lim
y→x,ε→0

(ε(y)
ε

=
∑d

i=1 |φxi (x)|σ φxi xi (x)

2
∑d

i=1 |φxi (x)|σ
. (5.20)

When the potential is as in (5.18), then (5.20) reads as

lim
y→x,ε→0

(ε(y)
ε

=
∑d

i=1 |φxi (x)|k−2φxi xi (x)

2
∑d

i=1 |φxi (x)|k−2
,

while, if V is as in (5.19),

lim
y→x,ε→0

(ε(y)
ε

=
∑d

i=1 |φxi (x)|δφxi xi (x)

2
∑d

i=1 |φxi (x)|δ
.

Next we introduce the equation satisfied by the limit of the scheme.
Let F : Sd × (Rd \ {0}) → R be given by

F(X, p) =
∑d

i=1 |pi |σ Xii

2
∑d

i=1 |pi |σ
. (5.21)
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It is immediately apparent that F ∈ C(Sd × (Rd \ {0})) is degenerate elliptic.
Moreover, since, in view of (5.21), for each p 0= 0 and each X , F(X, p) is a
weighted average of X11, . . . , Xdd , it is immediate that if (Yn, qn) ∈ Sd × (Rd \
{0}) → (X, 0), then

1
2
min
i

Xii " lim inf
n→∞ F(Yn, qn) " lim sup

n→∞
F(Yn, qn) " 1

2
max
i

Xii .

Finally, with appropriate choices of qn , it is easy to see that equality can be attained
in both cases. Thus, for F% and F% defined as in (3.10) and (3.11), we have

F%(X, 0) = 1
2
max
i

Xii and F%(X, 0) =
1
2
min
i

Xii . (5.22)

It follows from Theorem 5 in [17] that the initial value problem (3.2), with

F = F = F in Sd × (Rd \ {0}), (5.23)

and

F(X, 0) = F%(X, 0) and F(X, 0) = F%(X, 0) for X ∈ Sd , (5.24)

admits a comparison principle, that is, (3.8) is satisfied.
We may now apply Theorem 3.1 to state our second main result.

Theorem 5.3. Assume (5.13) and (5.16). Then, for every u0 ∈ BUC(Rd), the
scheme defined by (5.15) converges, as ε → 0 and locally uniformly inRd ×[0, T ],
to the unique solution of (3.2) with F given by (5.23) and (5.24).

We continue with the proof of the previous lemma.

Proof. (The proof of Lemma 5.2) Throughout the arguments below, ε is small
enough and y is close enough to x . Moreover, all the limits are taken with ε → 0
and y → x . Both facts will not be repeated from step to step.

In addition, to ease the notation, for i = 1, . . . , d, we set

ai (y) = φxi (y) and bi (y) =
1
2
φxi xi (y). (5.25)

It follows that

φ(y ± √
εei ) − φ(y) = ±√

εai (y)+ εbi (y)+ o(ε) = ±√
εai (y)+ εbε

i (y)
(5.26)

(where εbε
i (y) = εbi (y)+ o(ε)) and

φ(y + √
εei )+ φ(y − √

εei ) − 2φ(y) = 2εbi (y)+ O(ε3/2). (5.27)

Moreover,

ai (y) → ai (x) and bε
i (y) → bi (x).
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For z ∈ R, we set

f ε,y(z) =
d∑

i=1

V (φ(y + √
εei ) − φ(y) − z)+

d∑

i=1

V (φ(y − √
εei ) − φ(y) − z).

Then (ε(y) is a minimizer of the convex function f ε,y , and, hence,

( f ε,y)′((ε(y)) = 0. (5.28)

Since V ′ is an odd function, we find

( f ε,y)′(z) = −
d∑

i=1

V ′(φ(y + √
εei ) − φ(y) − z) −

d∑

i=1

V ′(φ(y − √
εei ) − φ(y) − z)

=
d∑

i=1

[V ′(z − φ(y + √
εei )+ φ(y)) − V ′(φ(y − √

εei ) − φ(y) − z)].

(5.29)

Suppose that

z >max
i

1
2
(φ(y + √

εei )+ φ(y − √
εei ) − 2φ(y))

(
resp. z < min

i

1
2
(φ(y + √

εei )+ φ(y − √
εei ) − 2φ(y)

)
,

Then, for each i ,

z − φ(y + √
εei )+ φ(y) > φ(y − √

εei ) − φ(y) − z

(resp. z − φ(y + √
εei )+ φ(y) < φ(y − √

εei ) − φ(y) − z),

and, hence, in view of (5.29) and the strictly increasing nature of V ′ in a neighbor-
hood of 0 (which follows, e.g., from (5.17)), we get, for ε small enough, that

( f ε,y)′(z) > 0 (resp. ( f ε,y)′(z) < 0).

The convexity of f ε,y and the observations above imply

min
i

1
2
(φ(y + √

εei )+ φ(y − √
εei ) − 2φ(y)) " (ε(y)

" max
i

1
2
(φ(y + √

εei )+ φ(y − √
εei ) − 2φ(y)).

(5.30)

The inequalities in (5.30), together with (5.27), immediately imply the first claim
of the lemma and the a priori estimate

(ε(y) = O(ε). (5.31)

To prove the second claim, we assume that Dφ(x) 0= 0, which yields that at least
one of the ai (x)’s is nonzero.
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Using (5.28), (5.29), and (5.26), we find that

d∑

i=1

[V (1)(
√

εai (y)+ (ε(y) − bε
i (y)) − V (1)(

√
εai (y) − ((ε(y) − bε

i (y)))] = 0.

(5.32)

The C2-regularity of V yields, for each i = 1, . . . , d,

V (1)(
√

εai (y)+ (ε(y) − εbε
i (y)) − V (1)(

√
εai (y) − ((ε(y) − εbε

i (y)))

= 2
∫ 1

0
V (2)(√εai (y) − ((ε(y) − εbε

i (y))+ 2λ((ε(y) − εbε
i (y))

)
dλ ((ε(y) − εbε

i (y)).
(5.33)

Combining (5.32) and (5.33), we get

d∑

i=1

[∫ 1

0
[V (2)(

√
εai (y) − ((ε(y) − εbε

i (y))+ 2λ((ε(y) − εbε
i (y))) dλ ((ε(y) − εbε

i (y))
]
= 0,

and, as long as

d∑

i=1

[∫ 1

0
V (2)(

√
εai (y) − ((ε(y) − εbε

i (y))+ 2λ((ε(y) − εbε
i (y))) dλ

]
0= 0,

(5.34)

we have

(ε(y)
ε

=
∑d

i=1
∫ 1
0 [V (2)(

√
εai (y) − ((ε(y) − εbε

i (y))+ 2λ((ε(y) − εbε
i (y))) dλ] bε

i (y)∑d
i=1

[ ∫ 1
0 [V (2)(

√
εai (y) − ((ε(y) − εbε

i (y))+ 2λ((ε(y) − εbε
i (y))) dλ

] .
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Next, we observe that (5.17) yields that, for each i = 1, . . . , d and uniformly
in λ ∈ [0, 1],

(α − θ)|√εai (y) − ((ε(y) − εbε
i (y))+ 2λ((ε(y) − εbε

i (y))|σ

≤ V (2)(
√

εai (y) − ((ε(y) − εbε
i (y))+ 2λ((ε(y) − εbε

i (y)))

≤ (α + θ)|√εai (y) − ((ε(y) − εbε
i (y))+ 2λ((ε(y) − εbε

i (y))|σ .
(5.35)

Since |Dφ(x)| 0= 0, we have

d∑

i=1

|ai (x)|σ > 0,

Finally, recall that by (5.31), (ε(y) = O(ε). Hence, (5.34) holds.
It then follows from (5.35) that, as ε → 0 and y → x ,

(ε(y)
ε

→
∑d

i=1 |ai (x)|σbi (x)∑d
i=1 |ai (x)|σ

,

and, hence, the claim. ./

5.2.2. Strict minimum but not smooth In this subsection we consider the po-
tential

V (y) = |y|1+δ with δ ∈ (0, 1). (5.36)

Let φ and (ε be as in the previous subsection, but with as above. Note that the
existence of (ε follows from the strict convexity of V .

For each nonempty E ⊆ {1, . . . , d}, set

VE = {p ∈ Rd : pi = 0 for all i ∈ E and pi 0= 0 for all i /∈ E},

and set

V∅ = {p ∈ Rd : pi 0= 0 for all 1 " i " d}.

Lemma 5.4. Fix x ∈ Rd . If Dφ(x) ∈ VE for some nonempty E ⊆ {1, . . . , d}, then

1
2
min
i∈E

φxi xi (x) " lim inf
y→x,ε→0

(ε(y)
ε

" lim sup
y→x,ε→0

(ε(y)
ε

" 1
2
max
i∈E

φxi xi (x), (5.37)

and, if Dφ(x) ∈ V∅, then

lim
y→x,ε→0

(ε(y)
ε

=
∑d

i=1 |φxi (x)|δ−1φxi xi (x)

2
∑d

i=1 |φxi (x)|δ−1
.
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Proof. Proceeding exactly as in the proof of Lemma 5.2, we end up, for ε small and
y near x , with the pair of inequalities displayed in (5.30) and the a priori estimate
(5.31).

Next fix x with Dφ(x) ∈ VE for some nonempty E . Then, for y sufficiently
close to x , there is some c > 0 such that |φxi (y)| > c when i /∈ E . Moreover, for
any η > 0, |φxi (y)| < η for all i ∈ E provided again that y sufficiently close to x .

Henceforth in this proof, C1,C2, . . .will denote positive constants that have no
dependence on the choice of η. Moreover, the notation O will be used only when
the implicit constants have no dependence on the choice of η.

For each i = 1, . . . , d, let ai and bi be defined as in (5.25), set

αε
i (y) = (ε(y) − φ(y + √

εei )+ φ(y),

βε
i (y) = φ(y − √

εei ) − φ(y) − (ε(y),

and

Qε
i (y) = V ′(αε

i (y)) − V ′(βε
i (y)),

and note that, in view of (5.28),

d∑

i=1

Qε
i (y) = 0, (5.38)

and, by (5.31),

αε
i (y) = −√

εφxi (y)+ O(ε) and βε
i (y) = −√

εφxi (y)+ O(ε).

It follows that, when i /∈ E and y is close to x and ε is close enough to 0, αε
i (y)

and βε
i (y) are both of order

√
ε on the same side of the origin.

Since V ′′(z) is of order |z|δ−1 when z is close to the origin, the observations
above yield that, when i /∈ E , as as y → x and ε → 0,

|Qε
i (y)| = O(ε(δ−1)/2)|αε

i (y) − βε
i (y)| " O(ε(δ+1)/2), (5.39)

where in the second step, we used (5.31) and Taylor’s expansion to deduce that

αε
i (y) − βε

i (y) = 2(ε(y) − (φ(y + √
εei )+ φ(y − √

εei ) − 2φ(y)) = O(ε).
(5.40)

Now, suppose that for all i ∈ E and along a sequence y → x and ε → 0

(ε(y) > εbi (y)+ εη(1−δ)/2. (5.41)

Then, along this sequence, for any i ∈ E ,

αε
i (y) − βε

i (y) = 2(ε(y) − (φ(y + √
εei )+ φ(y − √

εei ) − 2φ(y))

= 2(ε(y) − 2εbi (y)+ O(ε3/2)

> 2εη(1−δ)/2 + O(ε3/2),

(5.42)



Sourav Chatterjee & Panagiotis E. Souganidis

and

|αε
i (y)| = | − √

εφxi (y)+ O(ε)| " C1
√

εη + O(ε),

and

|βε
i (y)| = | − √

εφxi (y)+ O(ε)| " C1
√

εη + O(ε).

Then the properties of V ′ imply that

Qε
i (y) = V ′(αε

i (y)) − V ′(βε
i (y)) > C2(

√
εη)δ−1(αε

i (y) − βε
i (y))

≥ C3(
√

εη)δ−1(εη(1−δ)/2 + O(ε3/2))

= C3ε
(δ+1)/2η−(1−δ)/2 + O(ε(δ+2)/2)ηδ−1.

(5.43)

Combining (5.39) and (5.43), we see that, for all i ∈ E and any sequence y → x
and ε → 0 satisfying (5.41), we have

d∑

i=1

Qε
i (y) =

∑

i∈E
Qε

i (y)+
∑

i /∈E
Qε

i (y)

≥ C3ε
(δ+1)/2η−(1−δ)/2 + O(ε(δ+1)/2)

(
1+ ηδ−1);

Recall that the implicit constant in the O notation in the last line has no dependence
on the choice of η. Thus, if η is chosen small enough, the estimate above contradicts
(5.38) for sufficiently small ε.

Hence, for a small enough η, there is no sequence satisfying (5.41), and, thus,

lim sup
y→x,ε→0

(ε(y)
ε

≤ max
i∈E

bi (x)+ η(1−δ)/2.

Since η is arbitrary, the last estimate proves the leftmost inequality in (5.37). The
rightmost inequality may be proved by a similar argument, by just assuming the
reverse inequality in (5.41) and arriving at a contradiction.

Next, take any x such that Dφ(x) ∈ V∅. In the sequel all statements are supposed
to hold as y → x and ε → 0, a fact which will not be repeated from line to line.

Then arguing as above, it is easy to see that for any i , αε
i (y) and βε

i (y) are of
order

√
ε and, eventually, on the same side of the origin.

Therefore, by (5.38) and the smoothness of V in R \ {0}, we find

0 =
d∑

i=1

(αε
i (y) − βε

i (y))V
′′(βε

i (y))+ O
(
ε2ε(δ−2)/2),

where the remainder term was obtained using the fact that V ′′′(z) = O(|z|δ−2) near
zero, and (5.40).

Then, by (5.42), we get

(ε(y)
d∑

i=1

V ′′(βε
i (y)) = ε

d∑

i=1

bi (y)V ′′(βε
i (y))+ O(ε3/2)

d∑

i=1

V ′′(βε
i (y))+ O

(
ε(δ+2)/2),
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and consequently, since V ′′ is strictly positive everywhere,

(ε(y)
ε

=
∑d

i=1 bi (y)V
′′(βε

i (y))∑d
i=1 V ′′(βε

i (y))
+ O(

√
ε)+ O(εδ/2)

∑d
i=1 V ′′(βε

i (y))
.

Since βε
i (y) = −√

εφxi (y) + O(ε) and φxi (x) 0= 0 for all i , and V ′′(z) = (1 +
δ)δ|z|δ−1 for all z ∈ R, we have that

d∑

i=1

V ′′(βε
i (y)) = (1+ δ)δ

d∑

i=1

| − √
εφxi (y)+ O(ε)|δ−1

= (1+ δ)δε(δ−1)/2
d∑

i=1

|φxi (y)|δ−1 + O
(
ε(δ−1)/2ε

)
,

and, hence,

O(εδ/2)
∑d

i=1 V ′′(βε
i (y))

= O(
√

ε)

Finally, note that

d∑

i=1

bi (y)V ′′(βε
i (y)) = (1+ δ)δ

d∑

i=1

(bi (x)+ o(1))| − √
ε(φxi (x)+ o(1))+ O(ε)|δ−1

= (1+ δ)δε(δ−1)/2
d∑

i=1

bi (x)|φxi (x)|δ−1 + o(ε(δ−1)/2).

The second claim of the lemma is now proved by combining the last four displays.
./

Define F ∈ C(Sd × V∅) as

F(X, p) =
∑d

i=1 |pi |δ−1Xii

2
∑d

i=1 |pi |δ−1
. (5.44)

The boundary of V∅ is the union of VE over all nonempty E . Take any nonempty E
and any (X, p) ∈ VE . Take any sequence (Y, q) in Sd × V∅ converging to (X, p).
Since qi → 0 for i ∈ E and qi → pi 0= 0 for i /∈ E , the above formula for F makes
it clear that the lim sup of F(Y, q) as (Y, q) → (X, p) is at most 1

2 maxi∈E Xii .
Moreover, we can choose a sequence (Y, q) so that this value is achieved. In other
words, for (X, p) ∈ Sd × VE ,

F%(X, p) = 1
2
max
i∈E

Xii ,

where F% is defined as in (3.10). Similarly,

F%(X, p) =
1
2
min
i∈E

Xii .
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For u0 ∈ BUC(Rd) and F given by (5.44) we consider the initial value problem

ut = F(D2u, Du) in Rd × [0, T ] and u(·, 0) = u0, (5.45)

which can be formulated as (3.2) with

F = F = F in Sd × V∅ and F = F% and F = F% in Sd × ∂V∅. (5.46)

It follows from It follows from Theorem 5 in [17] that the initial value problem
(3.2) with F and F as in (5.46) satisfies (3.8).

For completeness, following [17], we remark that the geometry associated with
(5.45) and F , F and F is rather complicated. Indeed, the discontinuities of F , F
and F are characterized by a Finsler norm φ is defined implicitly through its dual
norm given, for each p ∈ Rd , by

φ%(p) = max





∑

e′∈A\{e,−e}
|(p, e′)| : e ∈ A




 ,

which defines a polyhedral Finsler norm. Above, A is the set used at the beginning
of Sect. 2 to define the schemes.

We may now apply Theorem 3.1 to state our second main result.

Theorem 5.5. Assume (5.36). Then, for every u0 ∈ BUC(Rd), the scheme defined
by (5.15) converges, as ε → 0 and locally uniformly in Rd × [0, T ], to the unique
solution of (3.2) with F, F and F given by (5.44) and (5.46).

5.2.3. The solid-on-solid potential We consider here the potential

V (y) = |y| (5.47)

which is the potential for the solid-on-solid (SOS) model. This model has attracted
considerable attention in the statistical physics literature. For a recent survey of
rigorous results about the SOS model and various applications of the model, see
the introduction of [11].

Next we introduce some more notation. Given v±1, . . . , v±d , we look at points
minimizing the map

y 1→
d∑

i=1

|y − vi | + |y − v−i |,

which, in view of the previous discussion about minima of convex functions, form
an interval [a, b] with the understanding that it may be the case that a = b, with
a = a(v±1, . . . , v±d) and b = b(v±1, . . . , v±d). We define ((v±1, . . . , v±d) as

((v±1, . . . , v±d) =
a(v±1, . . . , v±d)+ b(v±1, . . . , v±d)

2
. (5.48)
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We recall that, given real numbers x1, . . . , xn , its median is any number x that
minimizes the map

x 1→
n∑

i=1

|xi − x |.

Thus, ((v±1, . . . , v±d) is simply the midpoint of the set of medians of the
numbers v±1, . . . , v±d . Lemmas 5.8 and 5.9, which are stated and proved at the
end of the ongoing subsection, summarize the properties of medians used in the
proof of the convergence of the growth scheme generated by (5.47).

The scheme at scale one is defined by the rule

u(x, t + 1) = ϕ((u(x + a, t))a∈A) = u(x)+ ((u(x ± e1, t)

−u(x, t), . . . , u(x ± ed , t) − u(x, t)).

It is immediate that ϕ(0) = 0. Moreover, the scheme is clearly equivariant under
translations by constants and monotone.

At parabolic scale, the scheme S(ε) : B(Rd) → B(Rd) is given by

S(ε)v(x) = v(x)+ ((v(x ± √
εe1) − v(x), . . . , v(x ± √

εed) − v(x)).

To conclude we need to study, for φ : Rd → R smooth, the limit, as ε → 0
and y → x of

S(ε)φ(y) − φ(y)
ε

= ((φ(y ± √
εe1) − φ(y), . . . ,φ(y ± √

εed) − φ(y))
ε

= (ε(y)
ε

.

Thenext lemmagives the asymptotic behavior of(ε,y as ε → 0 and y → x . For this
it is convenient to introduce a partition of Rd . For each nonempty E ⊆ {1, . . . , d},
let

VE = {p ∈ Rd : |pi | = |p j | for all i, j ∈ E and |pi | < |p j | for all i ∈ E, j /∈ E}.

When E is a singleton set like {i}, we will write Vi instead of V{i}.

Lemma 5.6. Fix x and let φ : Rd → R be smooth. Let(ε be defined as in equation
(5.8). If Dφ(x) ∈ VE , then

1
2
min
i∈E

φxi xi (x) " lim inf
y→x,ε→0

(ε(y)
ε

" lim sup
y→x,ε→0

(ε(y)
ε

" 1
2
max
i∈E

φxi xi (x). (5.49)

Moreover, if Dφ(x) ∈ Vi for some i, then

lim
y→x,ε→0

(ε(y)
ε

= 1
2
φxi xi (x). (5.50)
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Proof. Assume that Dφ(x) ∈ VE and suppose that (y, ε) is sufficiently close to
(x, 0).

Since

φ(y ± √
εei ) − φ(y) = ±√

εφxi (y)+ O(ε), (5.51)

it is easy to see that the set of medians of φ(y±√
εe1)−φ(y), . . . ,φ(y±√

εed)−
φ(y) is the same as the set of medians of

(
φ(y ± √

εei ) − φ(y)
)
i∈E .

Let

ai =
1
2
(φ(y + √

εei )+ φ(y − √
εei ) − 2φ(y)) and bi =

1
2
(φ(y + √

εei ) − φ(y − √
εei )),

so that

φ(y ± √
εei ) − φ(y) = ai ± bi .

It follows from Lemma 5.9 (below) that

(ε(y) " max
i∈E

ai = max
i∈E

(
ε

2
φxi xi (y)+ o(ε)

)
= ε

2
max
i∈E

φxi xi (y)+ o(ε),

which proves the upper bound in (5.49). The lower bound follows similarly. If
E = {i} for some i , it is again easy to see from (5.51) that, if y is sufficiently close
to x and ε is sufficiently close to 0,

(ε(y) = 1
2
[(φ(y + √

εei ) − φ(y))+ (φ(y − √
εei ) − φ(y))] = ε

2
φxi xi (y)+ o(ε),

which proves the second claim. ./

Define F ∈ C(Sd × (
⋃d

i=1
Vi )) as

F(X, p) = Xii

2
if p ∈ Vi . (5.52)

Then (5.50) yields the consistency property if Dφ(x) ∈
⋃d

i=1
Vi .

To complete the argument, we need to analyze what happens on ∂
⋃d

i=1Vi . Note
that ∂

⋃d
i=1Vi can be written as a disjoint union of VE ’s over all E of size at least 2.

Fix (X, p) ∈ Sd × VE and suppose that (Y, q) ∈ Sd × (
⋃d

i=1 Vi ) converges
to (X, p). Passing to a subsequence, we may assume that there exists some i such
that q ∈ Vi . Thus, F(Y, q) = 1

2Yii , and, hence, F(Y, q) converges to
1
2 Xii . This

implies, in particular, that any such i must be a member of E .
Thus,

F%(X, p) ≤ 1
2
max
i∈E

Xii and F%(X, p) ≥ 1
2
min
i∈E

Xii .

If i∗ ∈ E is a coordinate at which Xii is maximized, then choosing (Y, q) →
(X, p) so that q ∈ Vi∗ always, we get F%(X, p) ! 1

2 maxi∈E Xii , and, similarly,
F%(X, p) " 1

2 mini∈E Xii .
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Thus, we conclude that, when p ∈ VE ,

F%(X, p) = 1
2
max
i∈E

Xii and F%(X, p) =
1
2
min
i∈E

Xii .

It is now easy to verify (3.7) usingLemma5.6 and takingM = Sd−1∩(⋃|E |!2 VE ).

For u0 ∈ BUC(Rd) and F given by (5.52) we consider the initial value problem

ut = F(D2u, Du) in Rd × [0, T ] and u(·, 0) = u0,

which can be formulated as (3.2) with

F = F = F in Sd × V∅ and F = F% and F = F% in Sd × ∂V∅.
(5.53)

It follows from It follows from Theorem 5 in [17] that the initial value problem
(3.2) with F and F as in (5.53) satisfies (3.8).

As explained in [17], the comparison principle for the initial value problem
with nonlinearity (5.52) is based on the fact that F is compatible with a particular
polyhedral Finsler norm whose dual is given, for p ∈ Rd and A as in the beginning
of Sect. 2, by

φ%(p) = max





∑

e′∈A\{e,−e}
|(p, e′)| : e ∈ A




 .

Combining all the above we have now the next result of the paper.

Theorem 5.7. Assume (5.47). Then the scheme defined using (5.48) converges, as
ε → 0 and locally uniformly, to the unique solution of (3.1) with F as in (5.52).

We conclude with the properties of the median of points x1, . . . , xn ∈ Rd .

Lemma 5.8. Let x1, . . . , xn be real numbers. Then:

(i) The set of medians is always a closed interval (which may be a single point).
(ii) Apoint x is amedian if andonly if |{i : xi ≥ x}| ≥ n/2and |{i : xi ≤ x}| ≥ n/2.
(iii) If the set of medians is an interval [a, b] with a < b, then n must be even, and

|{i : xi ≤ a}| = |{i : xi ≥ b}| = n/2, and no xi is in (a, b).

Proof. The arguments are easy and well known so we only present a sketch. The
first property is a simple consequence of the convexity of the map x 1→ ∑

i |xi −x |.
To prove the second property, take any x , and let k, l and m be respectively the
number of i such that xi is greater than, equal to, and less than x . Increasing x to
x + ε, for small enough ε > 0, increases

∑
i |xi − x | by (l + m − k)ε. Thus, if

x is a median, then l + m − k must be nonnegative, which is the same as saying
that |{i : xi ≤ x}| ≥ n/2. Similarly, it can be shown that decreasing x to x − ε

increases the sum by k + l − m, which implies that k + l − m ≥ 0, which is the
same as saying |{i : xi ≥ x}| ≥ n/2. Conversely, the same argument shows that
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if these two inequalities hold, then shifting x a little to the left or the right cannot
decrease

∑
i |xi − x |, and so, x is a median.

Finally, to prove the third property, suppose that the set of medians is an interval
[a, b] with a < b. Take any x ∈ (a, b). Let k, l and m be as above. Since [a, b]
is the set of medians, the above argument shows that k + l − m and l + m − k
must both be equal to zero, which implies that l = 0. Thus, no xi can belong to the
interval (a, b). Thus, for any x ∈ (a, b), the sets {i : xi ≤ x} and {i : xi ≥ x} are
disjoint. Since x is a median, (ii) now implies that both of these sets must have size
exactly n/2. ./

The next lemma yields yet another property of the median which is relevant for
the problem at hand.

Lemma 5.9. Let a1, . . . , ad , b1, . . . , bd ∈ R. Thenmaxi ai andmini ai are respec-
tively an upper and a lower bound for the midpoint of the set of medians of the 2d
numbers a1 ± b1, . . . , ad ± bd .

Proof. We prove the upper bound. Without loss of generality, we may assume that
a1 ≥ ai for all i , and b1, . . . , bd are nonnegative. For i = 1, . . . , d, let c2i−1 =
ai + bi and c2i = ai − bi .

If the median is a unique point x , then any y < x is not a median, and, hence,
|{i : ci ≤ y}| < d because |{i : ci ≥ y}| ≥ |{i : ci ≥ x}| ≥ d. Moreover, for any
i , we have ai − bi ≤ ai ≤ a1. Thus, |{i : ci ≤ a1}| ≥ d, and, therefore, a1 ≥ x .

Next, suppose that the set of medians is an interval [a, b] and let x = (a+b)/2
be the midpoint of this interval. If a1 < a, then, since a is a median, |{i : ci ≥
a1}| ≥ |{i : ci ≥ a}| ≥ d. It also follows from Lemma 5.8 that |{i : ci ≤ a1}| ≥ d.
Thus, a1 must be a median, which is a contradiction since a1 /∈ [a, b]. Hence,
a1 ! a.

Assume that a1 ∈ [a, x). Then ai < x for all i . We know, however, that exactly
d of the ci ’s are ≥ b, and this can happen only if ai + bi ≥ b for each i . Since
ai < x , this implies that ai −bi < a for each i , and, in particular, no ci can be equal
to a. But then a−ε is also a median for sufficiently small ε which is a contradiction.
Hence, a1 ≥ x , and the proof of the upper bound is complete.

For the lower bound, it is enough to work with −a1, . . . ,−ad ,−b1, . . . ,−bd
and apply the upper bound. ./

5.2.4. The non-strict minimum case We continue now with the case that 0 is
not a strict minimum of V , in which case, the symmetry of V implies that there
exists a > 0 such that

V = 0 in [−a, a] and V > 0 in R \ [−a, a]. (5.54)

This kind of potential arises in the so-called restricted solid-on-solid (RSOS) mod-
els, introduced byKim andKosterlitz [15]. The general principle ofRSOSmodels
is that the heights at neighboring points are restricted to be within some constant
of each other. Very little is known rigorously about these models (see [4] for some
recent results). In this subsection we will study a deterministic version of RSOS
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growth, induced by the potential displayed above. Fix v±1, . . . , v±d ∈ [−a, a]. It
follows that, for all y ∈ [maxi=1,...,d v±i − a,mini=1,...,d v±i + a],

d∑

i=1

V (y − v−i )+ V (y − vi ) = 0,

that is, the map y → ∑d
i=1 V (y − v−i )+ V (y − vi ) achieves a minimum, which

is 0, on the interval [maxi=1,...,d v±i − a,mini=1,...,d v±i + a].
Following the discussion at the beginning of the ongoing section, we choose

the middle point of this interval. Thus the scheme we are working with here at scale
one is defined, for u : Zd × Z+ → R, by

u(x, t + 1) = ϕ((u(x + a, t))a∈A)

= u(x, t)+ 1
2
[max
b∈B

(u(x + b, t) − u(x, t))+min
b∈B

(u(x + b, t) − u(x, t))]

(5.55)

(Recall that B = {±e1, . . . ,±ed} and A = B ∪ {0}.) That ϕ(0) = 0, and the
equivariance under translations by constants and monotonicity are immediate.

It is immediate from the discussion about the choice of scale that, in the setting
discussed here, the “correct scaling” is the parabolic one.

At the parabolic scale, the scheme is generated by the map ε → S(ε) : B → B,
given, for v ∈ B, by

S(ε)v(x) = v(x)+ 1
2

[
min

i=1,...,d
[φ(x ± √

εei ) − φ(x)] + max
i=1,...,d

[φ(x ± √
εei ) − φ(x)]

]
.

(5.56)

In what follows, to simplify the notation, we use the map ( : R2d → R give
by

((v−1, v1, . . . , v−d , vd) =
1
2

[
min

i=1,...,d
v±i + max

i=1,...,d
v±i

]
.

Then (5.56) can be rewritten as

((φ(x ± √
εe1) − φ(x), . . . ,φ(x ± √

εed) − φ(x))

= 1
2

[
min

i=1,...,d
[φ(x ± √

εei ) − φ(x)] + max
i=1,...,d

[φ(x ± √
εei ) − φ(x)]

]
.

In view of the previous observations, the only fact we need to check is the
consistency of the scheme, which is about the behavior, as (ε, y) → (0, x) and φ

smooth, of the ratio

S(ε)(φ)(y) − φ(y)
ε

= (ε(y)
ε

,
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where, to ease the notation, we write

(ε(y) = 1
2

[
min

i=1,...,d
[φ(y ± √

εei ) − φ(y)] + max
i=1,...,d

[φ(y ± √
εei ) − φ(y)]

]
.

(5.57)

The following lemma identifies the asymptotic behavior of ε−1(ε(y) as ε → 0
and y → x for some x .

For the statement, we introduce, for each nonempty E ⊆ {1, . . . , d}, the subset
VE of Rd given by

VE = {p ∈ Rd : |pi | = |p j | for all i, j ∈ E and |pi | > |p j | for all i ∈ E, j /∈ E};

when E is a singleton set like {i}, we will write Vi instead of V{i}. Although this
bears similarities with the one of the previous subsection, is just the “opposite”.
Nevertheless, to keep the notation under control we use the same symbols.

It follows immediately that the VE ’s form a partition of Rd .

Lemma 5.10. Let φ : Rd → R be smooth and x ∈ Rd . If Dφ(x) ∈ VE , then,
locally uniformly in x,

1
2
min
j∈E

φx j x j (x) ≤ lim inf
y→x,ε→0

(ε(y)
ε

≤ lim sup
y→x,ε→0

(ε(y)
ε

≤ 1
2
max
j∈E

φx j x j (x).

Moreover, if Dφ(x) ∈ Vi for some i, then

lim
y→x,ε→0

(ε(y)
ε

= 1
2
φxi xi (x). (5.58)

Proof. For y near x and ε small, we have

(ε(y) = 1
2

[
min

i=1,...,d

[
±√

εφxi (y)+
ε

2
φxi xi (y)+ o(ε)

]

+ max
i=1,...,d

[
±√

εφxi (y)+
ε

2
φxi xi (y)+ o(ε)

]]
.

First, suppose that Dφ(x) ∈ Vi for some i , which, by the definition of Vi ,
implies that φxi (x) > 0. Then the above expression shows that, when y and ε are
respectively sufficiently close to x and 0,

(ε(y) = 1
2

[
−√

εφxi (y)+
ε

2
φxi xi (y)+ o(ε)

]
+ 1

2

[√
εφxi (y)+

ε

2
φxi xi (y)+ o(ε)

]

= ε

2
φxi xi (y)+ o(ε),

which proves the second claim of the lemma.
Next, we assume that Dφ(x) ∈ VE for some E . When y and ε are sufficiently

close to x and 0 respectively, the maximum in (5.57) is attained at ei or −ei for
some i ∈ A, which possibly depends on y and ε.
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Suppose that the maximum is attained at ei for some i ∈ E . Then

(ε(y) = 1
2

min
j=1,...,d

[
±√

εφx j (y)+
ε

2
φx j x j (y)+ o(ε)

]
+ 1

2

[√
εφxi (y)+

ε

2
φxi xi (y)+ o(ε)

]

≤ 1
2

[
−√

εφxi (y)+
ε

2
φxi xi (y)+ o(ε)

]
+ 1

2

[√
εφxi (y)+

ε

2
φxi xi (y)+ o(ε)

]

= ε

2
φxi xi (y)+ o(ε) " ε

2
max
j∈E

φx j x j (y)+ o(ε).

Similarly, if the maximum is attained at −ei for some i ∈ E , then

(ε(y) = 1
2

min
j=1,...,d

[
±√

εφx j (y)+
ε

2
φx j x j (y)+ o(ε)

]
+ 1

2

[
−√

εφxi (y)+
ε

2
φxi xi (y)+ o(ε)

]

≤ 1
2

[√
εφxi (y)+

ε

2
φxi xi (y)+ o(ε)

]
+ 1

2

[
−√

εφxi (y)+
ε

2
φxi xi (y)+ o(ε)

]

= ε

2
φxi xi (y)+ o(ε) " ε

2
max
j∈E

φx j x j (y)+ o(ε).

A similar argument yields that

(ε(y) ≥ ε

2
min
j∈E

φx j x j (y)+ o(ε).

The proof is now complete. ./

We introduce next the limiting pde. Let F ∈ C(Sd ×
d⋃

i=1
Vi ) given by

F(X, p) = Xii

2
if p ∈ Vi . (5.59)

Then (5.58) yields the consistency property if Dφ(x) ∈ ⋃d
i=1Vi .

To complete the definition of F weneed to analyzewhat happens on ∂(
⋃d

i=1Vi ),
can be written as a disjoint union of VE over all E of size at least 2.

Fix (X, p) ∈ Sd × VE and consider a sequence (Y, q) ∈ Sd × ⋃d
i=1Vi con-

verging to (X, p). Passing to a subsequence, we may assume that there exists some
i such that q ∈ Vi always. Thus, F(Y, q) = 1

2Yii , and, hence, F(Y, q) converges to
1
2 Xii . This implies, in particular, that any such i must be a member of E . It follows
that

F%(X, p) ≤ 1
2
max
i∈E

Xii and F%(X, p) ≥ 1
2
min
i∈E

Xii .

If, however, i∗ ∈ E is a coordinate at which Xii is maximized, then it is easy
to see, and we leave the details to the reader, that we can choose (Y, q) → (X, p)
so that q ∈ Vi∗ always. It follows that

F%(X, p) ≥ 1
2
max
i∈E

Xii ,

and, similarly,

F%(X, p) ≤ 1
2
min
i∈E

Xii .
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Thus, we conclude that, when p ∈ VE ,

F%(X, p) = 1
2
max
i∈E

Xii and F%(X, p) =
1
2
min
i∈E

Xii . (5.60)

It is now easy to verify (3.7) using Lemma 5.10.
For u0 ∈ BUC(Rd) and F given by (5.59) we consider the initial value problem

(3.1) with F% and F% defined as in (5.60), which can be formulated as (3.2) with

F = F = F in Sd ×
d⋃

i=1

Vi and F = F% and F = F% in Sd × ∂

d⋃

i=1

Vi .

It follows from Theorem 5 in [17] that the initial value problem (3.2) with F and
F as in (5.53) satisfies (3.8).

It is shown in [17] (see Lemma 3) that the nonlinearity F defined above is
encodes an infinity Laplacian and is compatible with the polyhedral norm φA,
where again A is as in the beginning of Sect. 2, with dual

φ%
A(p) = max{(p, e) : e ∈ A}.

Hence, in view of Theorem5 in [17], the corresponding initial value problem admits
a comparison principle.

Combining all the above we have now the next result of the paper.

Theorem 5.11. Assume (5.13) and (5.54). Then the scheme defined using (5.56)
converges, as ε → 0 and locally uniformly in Rd × [0, T ], to the unique solution
of (3.1) with F as in (5.59).
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