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Abstract. The field of dynamical systems is being transformed by the mathematical tools and al-
gorithms emerging from modern computing and data science. First-principles derivations
and asymptotic reductions are giving way to data-driven approaches that formulate models
in operator-theoretic or probabilistic frameworks. Koopman spectral theory has emerged
as a dominant perspective over the past decade, in which nonlinear dynamics are repre-
sented in terms of an infinite-dimensional linear operator acting on the space of all possible
measurement functions of the system. This linear representation of nonlinear dynamics
has tremendous potential to enable the prediction, estimation, and control of nonlinear
systems with standard textbook methods developed for linear systems. However, obtain-
ing finite-dimensional coordinate systems and embeddings in which the dynamics appear
approximately linear remains a central open challenge. The success of Koopman analysis
is due primarily to three key factors: (1) there exists rigorous theory connecting it to clas-
sical geometric approaches for dynamical systems; (2) the approach is formulated in terms
of measurements, making it ideal for leveraging big data and machine learning techniques;
and (3) simple, yet powerful numerical algorithms, such as the dynamic mode decompo-
sition (DMD), have been developed and extended to reduce Koopman theory to practice
in real-world applications. In this review, we provide an overview of modern Koopman
operator theory, describing recent theoretical and algorithmic developments and highlight-
ing these methods with a diverse range of applications. We also discuss key advances and
challenges in the rapidly growing field of machine learning that are likely to drive future
developments and significantly transform the theoretical landscape of dynamical systems.
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1. Introduction. Nonlinearity is a central challenge in dynamical systems, result-
ing in diverse phenomena, from bifurcations to chaos, that manifest across a range
of disciplines. However, there is currently no overarching mathematical framework
for the explicit and general characterization of nonlinear systems. In contrast, linear
systems are completely characterized by their spectral decomposition (i.e., eigenval-
ues and eigenvectors), leading to generic and computationally efficient algorithms for
prediction, estimation, and control. Importantly, linear superposition fails for non-
linear dynamical systems, leading to a variety of interesting phenomena including
frequency shifts and the generation of harmonics. The Koopman operator theory of
dynamical systems provides a promising alternative perspective, in which superposi-
tion may be possible even for strongly nonlinear dynamics via the infinite-dimensional,
but linear, Koopman operator. The Koopman operator is linear, advancing measure-
ment functions of the system, and its spectral decomposition completely characterizes
the behavior of the nonlinear system. Finding tractable finite-dimensional represen-
tations of the Koopman operator is closely related to finding effective coordinate
transformations in which the nonlinear dynamics appear linear. Koopman analysis
has recently gained renewed interest with the pioneering work of Mezi\'c and collab-
orators [294, 290, 368, 70, 69, 291] and its strong connections to data-driven mod-
eling [381, 368, 225]. This review provides an overview of modern Koopman theory
for dynamical systems, including an in-depth analysis of leading computational algo-
rithms, such as the dynamic mode decomposition (DMD) of Schmid [381].

Koopman introduced his operator-theoretic perspective of dynamical systems in
1931 to describe the evolution of measurements of Hamiltonian systems [214], and this
theory was generalized by Koopman and von Neumann to systems with a continuous
eigenvalue spectrum in 1932 [215]. Koopman's 1931 paper was central to the cele-
brated proofs of the ergodic theorem by von Neumann [317] and Birkhoff [40, 41]. The
history of these developments is fraught with intrigue, as discussed by Moore [302];
a comprehensive survey of the operator-theoretic developments in ergodic theory can
be found in [117]. In his original paper [214], Koopman drew connections between
the Koopman eigenvalue spectrum and conserved quantities, integrability, and er-
godicity. For Hamiltonian flows, the Koopman operator is unitary. Efforts in the
past two decades by Mezi\'c and colleagues have extended this theory from Hamilto-
nian systems with measure-preserving dynamics to dissipative and nonsmooth dy-
namics [294, 290, 291]. Furthermore, Rowley et al. [368] rigorously connected the
Koopman mode decomposition, introduced by Mezi\'c in 2005 [290], with the DMD
algorithm, introduced by Schmid in the fluid mechanics community [380, 381]. This
serendipitous connection justified the application of DMD to nonlinear systems and
provided a powerful data-driven algorithm for the approximation of the Koopman
operator. This confluence of modern Koopman theory with a simple and effective nu-
merical realization has resulted in rapid progress in the past decade, which is the main
focus of this review. It is important to note that this is not a comprehensive history of
modern developments, which is beyond the scope of the present review. Interestingly,
DMD, the leading numerical algorithm for approximating the Koopman operator, is
built on the discrete Fourier transform and the singular value decomposition (SVD),
both of which provide unitary coordinate transformations [63].

The operator-theoretic framework discussed here complements the traditional ge-
ometric and probabilistic perspectives on dynamical systems. For example, level sets
of Koopman eigenfunctions form invariant partitions of the state space of a dynami-
cal system [69]; in particular, eigenfunctions of the Koopman operator may be used
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to analyze the ergodic partition [297, 68, 365]. Koopman analysis has also been
shown to generalize the Hartman--Grobman theorem to the entire basin of attrac-
tion of a stable or unstable equilibrium point or periodic orbit [231]. The Koopman
operator is also known as the composition operator, which is formally the pull-back
operator on the space of scalar observable functions [5], and it is the dual, or left-
adjoint, of the Perron--Frobenius (PF) operator, or transfer operator, which is the
push-forward operator on the space of probability density functions. When a poly-
nomial basis is chosen to represent the Koopman operator, then it is closely related
to Carleman linearization [76, 77, 78], which has been used extensively in nonlinear
control [402, 221, 27, 418]. This review complements several other excellent reviews
published in the last ten years [69, 291, 419, 420, 331], and a detailed comparison with
them is given in subsection 1.5.

1.1. An Overview of Koopman Theory. In this review, we will consider dynam-
ical systems of the form

d

dt
x(t) = f(x(t)),(1.1)

where x \in \scrX \subseteq Rn is the state of the system, possibly living on an submanifold \scrX 
of an n-dimensional vector space Rn, and f is a vector field describing the dynamics.
In general, the dynamics may also depend on time t, parameters \bfitbeta , and external
actuation or control u(t). Although we omit these here for simplicity, they will be
considered in later sections.

A major goal of modern dynamical systems is to find a new vector of coordinates
z such that either

(1.2) x = \bfitvarphi (z) or z = \bfitvarphi (x),

where the dynamics are simplified or, ideally, linearized:

d

dt
z = Lz.(1.3)

In these new linearizing coordinates, the dynamics of z are entirely determined by
the matrix L. The future evolution of the system in these coordinates may be fully
characterized by the eigendecomposition of L. While in geometric dynamics, one asks
for homeomorphic (continuously invertible) or even diffeomorphic coordinate maps,
which trivialize the choice between the two options in (1.2), there is little hope for
global coordinate maps of this sort. Rather, we contend with embeddings \bfitvarphi that
lift the dynamics into a higher-dimensional space of z variables, allowing for the
``unfolding"" of nonlinearities.

In practice, we typically have access to measurement data of our system, discretely
sampled in time. This data is governed by the discrete-time dynamical system

xk+1 = F(xk),(1.4)

where xk = x(tk) = x(k\Delta t). Also known as a flow map, the discrete-time dynamics
are more general than the continuous-time formulation in (1.1), encompassing discon-
tinuous and hybrid systems as well. In this case, the goal is still to find a linearizing
coordinate transform so that zk+1 = Kzk, where the matrix K is the discrete-time
analogue of the continuous-time matrix L. These coordinates are given by eigen-
functions of the discrete-time Koopman operator, \scrK , which advances a measurement
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function g(x) of the state forward in time through the dynamics:

\scrK g(xk) := g(F(xk)) = g(xk+1).(1.5)

For an eigenfunction \varphi of \scrK , corresponding to an eigenvalue \lambda , this becomes

\scrK \varphi (xk) = \lambda \varphi (xk) = \varphi (xk+1).(1.6)

Thus, a tremendous amount of effort has gone into characterizing the Koopman op-
erator and approximating its spectral decomposition from measurement data.

The coordinates \bfitvarphi and the matrix L are closely related to the continuous-time
analogue \scrL of the discrete-time Koopman operator \scrK , which will both be introduced
in more detail in section 2. In particular, eigenfunctions \varphi j of \scrL provide such a
linearizing coordinate system, and the matrix L is obtained by restricting the operator
\scrL to the span of these functions. Spectral theory provides a complete description of
the dynamics in terms of the eigenstructure of L. Thus, transforming the system into
coordinates where the dynamics are linear dramatically simplifies all downstream
analysis and control efforts.

In the following, we will generally use calligraphic symbols for operators (e.g., \scrL 
or \scrK ) and bold capital letters for matrices (e.g., L or K). It should be noted that
matrices are representations of finite-dimensional linear operators in a particular basis,
and so we will occasionally refer to multiplication by a matrix as a linear operator.
Much of modern Koopman theory is concerned with uncovering the intrinsic spectral
properties of an operator up to conjugacy or change of coordinates.

1.2. An Illustrative Example: The Duffing Oscillator. Although the objective
of Koopman theory is easily expressed mathematically, it is helpful to explore its
application to a simple dynamical system. Consider the nonlinear Duffing system
\"x = x - x3 with state-space representation

\.x1 = x2,(1.7a)

\.x2 = x1  - x31,(1.7b)

and the corresponding phase portrait in Figure 1.1. This example has three fixed
points: a saddle at the origin with Jacobian eigenvalues \lambda \pm = \pm 1 and two centers
at (x1, x2) = (\pm 1, 0) with eigenvalues \pm 

\surd 
2i. These results, shown in Figure 1.1(a),

can be obtained by a local phase-plane analysis [49], and these local linearizations are
valid in a small neighborhood of each fixed point, illustrated by the shaded regions.

The Duffing oscillator is a classic textbook example of a weakly nonlinear system,
where fixed points may be identified and linearized about, and the stable and unstable
manifolds emanating from these points organize the entire phase space structure.
This so-called geometric perspective on dynamical systems has become the dominant
viewpoint over the past century, and powerful techniques have been developed to
analyze and visualize these systems [154, 157, 389, 127, 175, 425, 158, 407]. However,
this example, even in its simplicity, highlights many of the challenges and subtleties of
Koopman operator theory. For example, the Duffing oscillator exhibits a continuous
spectrum of frequencies, as can be seen by increasing the energy from one of the center
fixed points, where the frequency is determined by the linearized eigenvalues, up to the
saddle point, where the period of oscillation tends toward infinity. However, for the
Koopman operator acting on the ``usual"" function spaces, the only eigenspace is the
one at \lambda = 0, containing the conserved Hamiltonian energy of the system, indicator
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(c)   Global Koopman eigenfunction (energy)

H(x, ·x = 0)H

(a)   Linearization domains (b)   Koopman linearization domains

(d)   Coordinate transformation to linearize

φ1

φ2

x

·x

x

·x

x

·x

φ1

φ2

t

�퓓1
�퓓2 �퓓3 �퓓1

�퓓2 �퓓3

Fig. 1.1 Different Koopman perspectives for the Duffing oscillator, \"x = x  - x3, the equation for
a particle in a double potential well. (a) Traditional linearization near the fixed points
gives small regions where the system is approximately linear. (b) Koopman theory can
extend the Hartman--Grobman theorem to enlarge the domain of linearity until the next
fixed point [231]. (c) There are also global Koopman eigenfunctions, like the Hamiltonian
energy, although these lose information about which basin the solution is in. (d) Yet a third
perspective seeks a coordinate transformation to rescale space and time until the dynamics
live on a hypertoroid.

functions associated with invariant sets of positive area, such as ``bands"" of periodic
orbits, and other invariant functions. Adding dissipation to the system regularizes
the problem, at the expense of removing the continuous spectrum of frequencies.
Mezi\'c recently conducted an in-depth study of these subtleties that appear even in
simpler systems, such as the nonlinear pendulum [292], which we summarize in section
4.4.

There is no homeomorphic coordinate transformation that captures the global
dynamics of this system with a linear operator, since any such linear operator has
either one fixed point at the origin or a subspace of infinitely many fixed points [62],
but never three isolated fixed points. Instead, the Koopman operator can provide a
system of coordinate transformations that extend the local neighborhoods where a
linear model is valid to the full basin around them [231], as shown in Figure 1.1(b).
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This interpretation may lead to seemingly unintuitive results, as even the most
obvious observables, such as g(x) = x, may require different expansions in different
areas of the state space, as recently explored by Page and Kerswell [333]. Indeed,
systems that possess multiple simple invariant solutions cannot be represented by a
Koopman expansion that is globally uniformly convergent, implying that any choice
of a representation of the Koopman operator \scrK in a system of coordinates may not
hold everywhere, for any given observable of interest.

Even if there are no globally convergent linear Koopman representations, the
Koopman eigenfunctions may be globally well defined and even regular in the entire
phase space. For example, the Hamiltonian energy function H = x22  - x21/2 + x41/4
is a Koopman eigenfunction for this conservative system, with eigenvalue \lambda = 0, as
shown in Figure 1.1(c). In a sense, this global eigenfunction exploits symmetry in
the dynamics to represent a global dynamic quantity, valid in all regions of phase
space. This example establishes a connection between the Koopman operator and
Noether's theorem [322], as a symmetry in the dynamics gives rise to a new Koopman
eigenfunction with eigenvalue \lambda = 0. In addition, the constant function \varphi \equiv 1 is a
trivial eigenfunction corresponding to \lambda = 0 for every dynamical system, which is a
consequence of area preservation of the system. The eigenspace at \lambda = 0 is rich, as the
characteristic function of any invariant set of positive area, for example, an annular
band around either equilibrium, acts as an eigenfunction. At the same time, the
minimal invariant sets, corresponding to individual orbits, are of area-zero, and their
characteristic functions are neither continuous nor members of any Lp space. Instead,
they give rise to Dirac-\delta distributions that can be considered as eigenfunctions only
in the appropriate function space; for more on this see subsection 4.4.

A final interpretation of Koopman theory is shown in Figure 1.1(d), related to
Figure 1.1(b). In this case, we see that the Koopman operator establishes a change
of coordinates, in space and time, in which the original nonlinear trajectories become
linear. When obtaining these approximate coordinate systems from data, only ap-
proximately periodic dynamics will persist for long times. Rescaling space and time
to make dynamics approximately periodic is the approach taken in [255, 232]; Gian-
nakis also performed a nonlinear time transformation to study mixing systems [144],
while Bollt and coauthors studied the finite-time blowup in the context of Koopman
theory [46].

1.3. Dynamics in the Big Data Era. The recent interest in Koopman operator
theory is inherently linked to a growing wealth of data. Measurement technologies
across every discipline of the engineering, biological, and physical sciences have rev-
olutionized our ability to interrogate and extract quantities of interest from com-
plex systems in real time with rich multimodal and multifidelity time-series data.
From broadband sensors that measure at exceptionally high sampling rates to high-
resolution imaging, the front lines of modern science are being transformed by the
unprecedented quality and quantity of data. These advances are based on three
foundational technologies: (i) improved sensors capable of measurement with higher
quality and quantity; (ii) improved hardware for high-performance computing, data
storage, and transfer; and (iii) improved algorithms for processing the data. Taken to-
gether, these advances form the underpinnings of the big data era and are driving the
fourth paradigm of scientific discovery [170], whereby the data itself drives discovery.

Data science is now a targeted growth area across almost all academic disciplines.
However, it has been almost six decades since John Tukey, codeveloper of the fast
Fourier transform with James Cooley, first advocated for data science as its own
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discipline [436, 105]. Not surprisingly, the 1960s also coincided with pioneering de-
velopments of Gene Golub and coworkers on numerical algorithms for computing the
SVD of a matrix [403], enabling one of the earliest data science exploration tools:
principal component analysis. Thus the mathematical foundations for the big data
era have long been in development. Indeed, its maturity is reflected in the emergence
of the two cultures [50] of statistical learning and machine learning. In the former,
the primary focus is on the development of interpretable models of data, while in the
latter, accuracy is of paramount importance. Although accuracy and interpretability
are not mutually exclusive, often the refinement of one comes at the expense of the
other. For example, modern machine learning and artificial intelligence algorithms are
revolutionizing computer vision and speech processing through deep neural network
(DNN) architectures. DNNs have produced performance metrics in these fields far
beyond any previous algorithms. Although individual components of DNNs may be
interpretable, the integration across many layers with nonlinear activation functions
typically renders them opaque and uninterpretable. In contrast, sparsity promoting
algorithms, such as the LASSO [429], are examples of statistical learning where inter-
pretable variable selection is achieved. As will be highlighted throughout this review,
Koopman theory is amenable to many of the diverse algorithms developed in both
statistical learning and machine learning.

Dynamical systems theory has a long history of leveraging data for improving
modeling insights, promoting parsimonious and interpretable models, and generating
forecasting capabilities. In the 1960s, Kalman introduced a rigorous mathematical
architecture [196, 197] whereby data and models could be combined through data
assimilation techniques [125, 234], which is especially useful for forecasting and con-
trol. Thus the integration of streaming data and dynamical models has a nearly seven
decade history. In the modern era, it is increasingly common to build dynamical mod-
els from the data directly using machine learning [384, 31, 360, 321, 361, 28, 91, 372,
239, 254, 245, 246, 247, 358, 90, 443]. This is especially important in complex systems
where first-principles models are not available or where it is not even known what the
correct state-space variable should be. Biological systems, such as those that arise in
neuronal recordings in the brain, are well suited for such data-driven model discovery
techniques, since whole-brain imaging provides insight into how the microscale dy-
namics of individual neurons produces large scale patterns of spatio-temporal brain
activity. Such systems are ideally suited for leveraging the modern data-driven model-
ing tools of machine learning to produce dynamical models characterizing the observed
data.

1.4. Koopman Objectives and Applications. The ultimate promise of Koopman
spectral theory is the ability to analyze, predict, and control nonlinear systems with
the wealth of powerful techniques from linear systems theory. This overarching goal
may be broken down into several specific goals:

Diagnostics. Spectral properties of the Koopman operator may be used effectively
to characterize complex, high-dimensional dynamical systems. For example, in fluid
mechanics, DMD is used to approximate the Koopman mode decomposition, resulting
in an expansion of the flow as a linear combination of dominant coherent structures.
Thus, Koopman mode decomposition can be used for dimensionality reduction and
model reduction, generalizing the space-time separation of variables that is classically
obtained via either Fourier transform or SVD [63].
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Prediction. One of the major benefits of dynamical systems over other statistical
models is that they provide a mechanistic understanding of how the future evolves,
based on the current state of a system. Prediction is thus one of the central goals
of any dynamical system framework. The prediction of a nonlinear system presents
numerous challenges, such as sensitive dependence on initial conditions, parameter
uncertainty, and bifurcations. Koopman operator theory provides insights into which
observables are easier or harder to predict, and it suggests robust numerical algorithms
for such time-series prediction.

Estimation and Control. In many systems, we seek not only to understand the dynam-
ics, but also to modify, or control, their behavior for some engineering goal. In modern
applications, it is rare to have complete measurements of a high-dimensional system,
necessitating the estimation of these quantities from limited sensor measurements.
By viewing the system through the linearizing lens of Koopman eigenfunctions, it is
possible to leverage decades of results from linear estimation and control theory for
the analysis of nonlinear systems. Indeed, linear systems are by far the most well
studied and completely characterized class of dynamical systems for control.

Uncertainty Quantification and Management. Uncertainty is a hallmark feature of the
real world, and dynamical systems provide us with a framework to forecast, quantify,
and manage uncertainty. However, modeling uncertainty is challenging for strongly
nonlinear and chaotic systems. Integrating uncertainty quantification into the transfer
operator framework was connected early with the modern applications of Koopman
analysis [295, 296, 295] and remains a topic of ongoing research [308, 405].

Understanding. Beyond the practical value of prediction and control, dynamical sys-
tems provide a compelling framework within which to understand and model complex
systems. Normal forms, for example, distill essential structural information about the
dynamics, while remaining as simple as possible. For Koopman theory to be em-
braced, it will need to facilitate similar intuition and understanding.

Across a wide range of applications, researchers are developing and advancing
Koopman operator theory to address these challenges. Some of these applications
include fluid dynamics [381, 368, 291], epidemiology [353], neuroscience [60, 8], plasma
physics [428, 199], finance [268], robotics [39, 4, 59, 57], and the power grid [416, 412];
a number of these are shown in Figure 1.2 and will be explored further in section 3.

1.5. Organization and Goals of Review. A primary goal of this review is to
make modern Koopman operator theory accessible to researchers in many diverse
fields. We seek to provide the reader with a big-picture overview of the state of the art,
expediting the process of getting up to speed in this rapidly developing field. Further,
we explore the dual theoretical and applied perspectives for understanding Koopman
operator theory. To this end, each section will be approached from the perspective
of providing a unified overview of major theoretical, methodological, numerical, and
applied developments. Furthermore, we have compiled a number of striking success
stories along with several outstanding challenges to help guide readers wishing to enter
this field. Finally, it is our goal to highlight connections with existing and emerging
methods from other fields, including geometric and probabilistic dynamical systems,
computational science and engineering, and machine learning.

There have been several excellent reviews focusing on Koopman operator theory
and related methodologies published during the past ten years [69, 291, 419, 420, 331].
This review is similar in spirit to [69], but surveys the considerable body of litera-
ture published in the decade since [69]. For example, the present review establishes
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(a) Fluids (b) Epidemiology (c) Plasmas (d) Video

(e) Neuroscience (f) Chemistry (g) Power Grid (h) Robotics

Fig. 1.2 Overview of applications of data-driven Koopman analysis via DMD. Figures reproduced
with permission from (a) top [381], bottom [368]; (b) [353]; (c) [199]; (d) [121]; (e) [60];
(f) Emw, https:// commons.wikimedia.org/wiki/File:Protein PCMT1 PDB 1i1n.png; (g)
Henk Monster, https://commons.wikimedia.org/wiki/File:Power grid masts besides the
new Waalbridge Nijmegen - panoramio.jpg; (h) Daderot, https://commons.wikimedia.org/
wiki/File:Minsky's robot arm, late 1960s, view 2 - MIT Museum - DSC03759.JPG.

connections between the Koopman operator theory and classical nonlinear dynamics
(see section 4) and, in particular, modern control theory (see section 6). The review
by Mezi\'c [291] and the two broader reviews that surveyed Koopman and DMD tech-
niques [419, 420] focused on developments associated with fluid dynamics; while the
original applications of Koopman and DMD were to problems of fluid motion, these
techniques were shown to be useful in a broader range of fields which we highlight
here. The review by Otto and Rowley [331] focuses mainly on connections to control
theory, and although section 6 of the present review overlaps with this material, it
is placed in the broader context of connections to nonlinear systems and data-driven
numerical implementations. Finally, we envisioned that this article would serve as a
guide to the body of work published within the last decade, but also as a practical
introduction to techniques associated with the Koopman operator for those that are
new to the field (particularly section 2).

This review begins with relatively standard material and builds up to advanced
concepts. Section 2 provides a practical introduction Koopman operator theory, in-
cluding simple examples, the Koopman mode decomposition, and spectral theory.
Similarly, section 3 provides an overview of DMD, which is the most simple and
widely used numerical algorithm to approximate the Koopman operator. Section 4
then introduces many of the most important concepts in modern Koopman theory.
Advanced numerical and data-driven algorithms for representing the Koopman op-
erator are presented in section 5. Thus, sections 4 and 5 provide advanced material
extending sections 2 and 3, respectively. Section 6 investigates how Koopman the-
ory is currently extended for advanced estimation and control. Section 7 provides a
discussion and concluding remarks. This section also describes several ongoing chal-
lenges in the community, along with recent extensions and motivating applications.
The goal here is to provide researchers with a quick sketch of the state of the art, so
that they may quickly reach the frontier of research.
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2. A Practical Introduction to the Koopman Operator Framework.

2.1. Definitions and Vocabulary. The Koopman operator advances measure-
ment functions of the state of a dynamical system with the flow of the dynamics. To
explain the basic properties of the Koopman operator, we begin with an autonomous
ordinary differential equation (ODE) (1.1) on a finite-dimensional state space \scrX \subseteq Rn.
The flow map operator, or time-t map, Ft : \scrX \rightarrow \scrX advances initial conditions x(0)
forward along the trajectory by a time t, so that trajectories evolve according to

(2.1) x(t) = Ft(x(0)).

The family of Koopman operators \scrK t : \scrG (\scrX ) \rightarrow \scrG (\scrX ), parameterized by t, are given
by

(2.2) \scrK tg(x) = g(Ft(x)),

where \scrG (\scrX ) is a set of measurement functions g : \scrX \rightarrow C. Another name for g,
derived from this framework's origin in quantum mechanics, is an observable function,
although this should not be confused with the unrelated observability from control
theory. We can interpret (2.2) as defining a family of functions

(2.3) gt := \scrK tg, g0 := g

that corresponds to the trajectory t \mapsto \rightarrow gt in the set \scrG (\scrX ) of measurement functions.
In most applications, the set of functions \scrG (\scrX ) is not defined a priori, but is loosely

specified by a set of properties it should satisfy, e.g., that it is a vector space, that it
possesses an inner product, that it is complete, or that it contains certain functions
of interest, such as continuous functions on \scrX . Hilbert spaces, such as L2(\scrX , d\mu ) or
reproducing kernel Hilbert spaces (RKHS), are a common choice in modern applied
mathematics, although historically other Banach spaces, such as integrable functions
L1 or continuous functions C(\scrX ), have also been used. The choice of the space,
whether explicit or implicit, can have consequences on the properties of the operator
and its approximations. In all cases, however, \scrG (\scrX ) is of significantly higher dimension
than \scrX , i.e., countably or uncountably infinite.

The most significant property of the Koopman operator is that it is linear when
\scrG (\scrX ) is a linear (vector) space of functions:

(2.4)
\scrK t (\alpha 1g1(x) + \alpha 2g2(x)) = \alpha 1g1

\bigl( 
Ft(x)

\bigr) 
+ \alpha 2g2

\bigl( 
Ft(x)

\bigr) 

= \alpha 1\scrK tg1(x) + \alpha 2\scrK tg2(x).

This property holds regardless of whether Ft : \scrX \rightarrow \scrX is linear itself, as it is simply a
consequence of definition (2.2), since the argument function g is on the ``outside"" of the
composition, allowing linearity to carry over from the vector space of observables. In
this sense, the Koopman framework obtains linearity of \scrK t despite the nonlinearity of
Ft by trading the finite-dimensional state space \scrX for an infinite-dimensional function
space \scrG (\scrX ).

When time t is discrete, t \in N, and the dynamics are autonomous, then Ft is a
repeated t-fold composition of F \equiv F1 given by Ft(x) = F(F(\cdot \cdot \cdot (F(x)))), so that
\scrK tg is likewise generated by repeated application of \scrK \equiv \scrK 1. The generator \scrK of
the (countable) composition semigroup is then called the Koopman operator, which
results in a dynamical system

(2.5) gk+1 = \scrK gk,
analogous to xk+1 = F(xk), except that (2.5) is linear and infinite-dimensional.
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When time t is continuous, the flow map family satisfies the semigroup property

(2.6) Ft+s(x) = Ft(Fs(x)) \forall x, t, s \geq 0,

which can be strengthened to a group property t, s \in R if the flow map is invertible.
The Koopman operator family \scrK t inherits these properties as well. Given a continuous
and sufficiently smooth dynamics, it is also possible to define the continuous-time
infinitesimal generator \scrL of the Koopman operator family as

(2.7) \scrL g := lim
t\rightarrow 0

\scrK tg  - g

t
= lim

t\rightarrow 0

g \circ Ft  - g

t
.

As our goal here is to provide an introduction, we omit the mathematical scaffolding
that accompanies a careful definition of an operator derivative; all details in the
context of Koopman operator theory are available in [233, sect. 7.5].

The generator \scrL has been called the Lie operator [214], as it is the Lie derivative
of g along the vector field f(x) when the dynamics is given by (1.1) [5, 83]. This
follows from applying the chain rule to the time derivative of g(x),

d

dt
g(x(t)) = \nabla g \cdot \.x(t) = \nabla g \cdot f(x(t)),(2.8)

and equating with

d

dt
g(x(t)) = lim

\tau \rightarrow 0

g(x(t+ \tau )) - g(x(t))

\tau 
= \scrL (g(x(t))),(2.9)

resulting in

\scrL g = \nabla g \cdot f .(2.10)

The adjoint of the Lie operator is called the Liouville operator, especially in
Hamiltonian dynamics [141, 142], while the adjoint of the Koopman operator is the
Perron--Frobenius operator [101, 98, 133, 134]. In many ways, the operator-theoretic
framework for applied dynamical systems has two dual perspectives, corresponding
either to the Koopman operator or the Perron--Frobenius operator. In subsection 4.3
we discuss these parallels in more detail.

Similar to (2.5), \scrL induces a linear dynamical system in continuous time:

d

dt
g = \scrL g.(2.11)

The linear dynamical systems in (2.5) and (2.11) are analogous to the dynamical
systems in (1.1) and (1.4), respectively.

An important special case of an observable function is the projection onto a
component of the state g(x) = xi or, with a slight abuse of notation, g(x) = x. In
this case, the left-hand side of (2.11) is plainly \.x, but the right-hand side \scrL x may
not be simple to represent in a chosen basis for the space \scrG (\scrX ). It is typical in real
problems that representing \scrL x will involve an infinite number of terms. For certain
special structures, this may not be the case, as will be demonstrated in subsection 2.4.

In summary, the Koopman operator is linear, which is appealing, but is infinite-
dimensional, posing issues for representation and computation. Instead of capturing
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the evolution of all measurement functions in a function space, applied Koopman
analysis attempts to identify key measurement functions that evolve linearly with the
flow of the dynamics. Eigenfunctions of the Koopman operator provide just such a set
of special measurements that behave linearly in time. In fact, a primary motivation
to adopting the Koopman framework is the ability to simplify the dynamics through
the eigendecomposition of the operator.

2.2. Eigenfunctions and the Spectrum of Eigenvalues. A Koopman eigenfunc-
tion \varphi (x) corresponding to an eigenvalue \lambda satisfies

(2.12) \varphi (xk+1) = \scrK \varphi (xk) = \lambda \varphi (xk).

In continuous time, a Lie operator eigenfunction \varphi (x) satisfies

(2.13)
d

dt
\varphi (x) = \scrL \varphi (x) = \mu \varphi (x),

where \mu is a continuous-time eigenvalue. In general, eigenvalues and eigenvectors are
complex-valued scalars and functions, respectively, even when the state space \scrX and
dynamics F(x) are real-valued.

It is simple to show that Koopman eigenfunctions \varphi (x) that satisfy (2.12) for
\lambda \not = 0 are also eigenfunctions of the Lie operator, although with a different eigenvalue.
Applying the Lie operator (2.7) to such a \varphi leads to

(2.14) \scrK t\varphi = \lambda t\varphi =\Rightarrow \scrL \varphi = lim
t\rightarrow 0

\scrK t\varphi  - \varphi 

t
= lim

t\rightarrow 0

\lambda t  - 1

t
\varphi = log(\lambda )\varphi .

Conversely, the induced dynamics (2.11) applied to an eigenfunction of \scrL leads to

(2.15) \scrL \varphi = \mu \varphi =\Rightarrow d

dt
\varphi = \scrL \varphi = \mu \varphi .

An eigenfunction \varphi of \scrL with eigenvalue \mu is then an eigenfunction of \scrK t with eigen-
value \lambda t = exp(\mu t). Thus, we will typically not make a distinction between Lie and
Koopman eigenfunctions in the context of autonomous dynamical systems.

Eigenfunctions of \scrK ,\scrL that are induced by already-linear dynamics further illus-
trate the connection between linear discrete dynamics xn+1 = Axn and analogous
concepts for gn+1 = \scrK gn. Given a left-eigenvector \bfitxi \top A = \lambda \bfitxi \top of the matrix A, we
form a corresponding Koopman eigenfunction as

\varphi (x) := \bfitxi \top x,(2.16)

since

\scrK \varphi (x) = \varphi (Ax) = \bfitxi \top Ax = \lambda \bfitxi \top x = \lambda \varphi (x).(2.17)

In other words, while right-eigenvectors of A give rise to time-invariant directions
in the state space \scrX , which will be known as Koopman modes or dynamic modes,
the left-eigenvectors give rise to Koopman eigenfunctions, which are similarly time-
invariant directions in the space of observables \scrG (\scrX ).

In general systems, a set of Koopman eigenfunctions may be used to generate
more eigenfunctions. In discrete time, we find that the product of two eigenfunctions
\varphi 1(x) and \varphi 2(x) is also an eigenfunction,

(2.18)
\scrK (\varphi 1(x)\varphi 2(x)) = \varphi 1(F(x))\varphi 2(F(x))

= \lambda 1\lambda 2\varphi 1(x)\varphi 2(x),
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with a new eigenvalue \lambda 1\lambda 2 given by the product of the two eigenvalues of \varphi 1(x) and
\varphi 2(x). This argument assumes implicitly that the product of the two eigenfunctions
is again an eigenfunction or, more strongly, that the space of observables is closed
under multiplication. The corresponding relationship for \scrL can be found by applying
(2.14),

(2.19) \lambda 1\lambda 2 = e\mu 1e\mu 2 = e\mu 1+\mu 2 ,

resulting in

(2.20) \scrL (\varphi 1(x)\varphi 2(x)) = (\mu 1 + \mu 2)\varphi 1(x)\varphi 2(x).

A simple consequence is that a complex conjugate pair of eigenfunctions of \scrL , (\mu , \varphi ),
(\=\mu and \=\varphi ), additionally implies the existence of a real-valued eigenfunction | \varphi | =\surd 
\varphi \=\varphi with an associated eigenvalue (\mu + \=\mu )/2 = Re\mu , thus leading to nonoscillatory

growth/decay of the eigenvalue.
Algebraically, when the space of observables is closed under multiplication, the

set of Koopman eigenfunctions establishes a commutative monoid1 under pointwise
multiplication. Thus, depending on the dynamical system, there may be a finite set
of generator eigenfunction elements that may be used to construct all other eigen-
functions. Cardinality of the set of eigenfunctions and the relationships among them
are further explored in [45]. The corresponding Koopman eigenvalues form a multi-
plicative lattice, or an additive lattice for Lie eigenvalues due to (2.14).

Observables that can be formed as linear combinations of eigenfunctions, i.e.,
g \in span\{ \varphi k\} Kk=1, have a particularly simple evolution under the Koopman operator:

(2.21) g(x) =
\sum 

k

vk\varphi k =\Rightarrow \scrK tg(x) =
\sum 

k

vk\lambda 
t
k\varphi k.

This implies that the subspace span\{ \varphi k\} Kk=1 is invariant under the action of \scrK .
These simple relationships enable the analysis of the phase portrait of a dynamical

system in terms of level sets. They also enable the analysis of the evolution of general
observables through the lens of their decomposition into eigenfunctions, which will
provide the foundation for the Koopman mode decomposition of subsection 2.3 and
the DMD of section 3.

2.2.1. Level Sets of Eigenfunctions. Level sets of eigenfunctions can clarify the
relationships among sets in the domain \scrX . In particular, (sub)level sets associated
with eigenfunctions map into each other. To see this, we write the eigenvalue and the
eigenfunction in polar form,

\varphi (x) = R(x)ei\Theta (\bfx ),(2.22)

\lambda = rei\theta ,(2.23)

and define the associated sublevel sets to be

M\varphi (C) := \{ x \in \scrX : R(x) \leq C\} ,(2.24)

A\varphi (\alpha ) := \{ x \in \scrX : \Theta (x) \leq \alpha \} .(2.25)

1Monoids are groups without guaranteed inverses, or semigroups with an identity element.
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Given x \in \scrX , we can evaluate the eigenfunction on its successor x+ = F(x) to find

\varphi (x+) = \scrK \varphi (x) = \lambda \varphi (x) = (rR(x))ei(\theta +\Theta (\bfx )),(2.26)

so that if x \in M\varphi (C), then x+ \in M\varphi (rC), and if x \in A\varphi (\alpha ), then x+ \in A\varphi (\alpha + \theta ),
or more succinctly

(2.27) F(M\varphi (C)) =M\varphi (rC), F(A\varphi (\alpha )) = A\varphi (\alpha + \theta ).

For the particular case of \lambda = 1 these relationships simplify to

(2.28) F(M\varphi (C)) =M\varphi (C), F(A\varphi (\alpha )) = A\varphi (\alpha ),

implying that level sets of invariant eigenfunctions are invariant sets.
When the eigenvalue is on the unit circle, with a phase \theta /2\pi = p/q \in Q, then the

level sets of phase satisfy

(2.29) F(A\varphi (\alpha )) = A\varphi 

\biggl( 
\alpha +

2\pi p

q

\biggr) 
, Fq(A\varphi (\alpha )) = A\varphi (\alpha + 2\pi p) = A\varphi (\alpha )

and, therefore, identify chains of q-periodic sets where the value of the phase indicates
the order in which they are visited by a trajectory xk.

To illustrate these concepts, Figure 2.1 shows two eigenfunctions constructed from
two left-eigenvectors of a planar linear system \.x = Ax with saddle-type dynamics,
as in (2.16). In contrast to right-eigenvectors of A, which act as invariant manifolds
attracting/repelling the trajectories, Koopman eigenfunctions foliate the space into
leaves (level sets), providing a time-ordering on the domain associated with each
eigenvalue.

When the system matrix A has complex conjugate eigenvalues \lambda , \=\lambda , the associ-

ated eigenfunctions \bfitxi \top x and \=\bfitxi 
\top 
x are themselves complex conjugates. Visualizing the

associated modulus R(x) and phase \Theta (x) (2.22) for planar dynamics with a focus
equilibrium, as in Figure 2.2, demonstrates that the modulus acts as a Lyapunov
function for the stable focus, as sublevel sets provide a time-ordering on the plane im-
plying that trajectories converge to the origin. Indeed, | \bfitxi \top x| is itself an eigenfunction
of the Koopman operator \scrK t associated with eigenvalues et\Re \lambda , therefore capturing the
exponential envelope of oscillating trajectories. Level sets of | \bfitxi \top x| are called isosta-
bles [283]. An analogous definition of an isostable for real-valued eigenvalues gives
points that converge to the same trajectory in the stable/unstable manifold.

Level sets of the argument (angle) provide a cyclic foliation of the domain, acting
as isochrons [283], i.e., collections of initial conditions that converge to the origin
with a common phase. We will revisit the concepts of isochrons and isostables as
tools for nonlinear reduction of order, in particular as a foundation for understanding
the synchronization and control of oscillators, in subsection 4.1.

2.2.2. Computing Eigenfunctions. There are several approaches to approximat-
ing Koopman eigenfunctions computationally. Given the evolution of an observable
g(x(t)) = g (Ft(x)), it is possible to compute an eigenfunction associated with an
eigenvalue ei\omega by forming the following long-term harmonic or Fourier average:

(2.30) \~g\omega (x) := lim
T\rightarrow \infty 

1

T

\int T

0

g
\bigl( 
Ft(x)

\bigr) 
e - i\omega tdt.

D
ow

nl
oa

de
d 

07
/1

1/
22

 to
 2

05
.1

75
.1

06
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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Fig. 2.1 Koopman eigenfunctions constructed as (2.16) for a linear matrix ODE \.\bfx = \bfA \bfx with a
saddle-type fixed point at the origin. Velocity field and sample orbits are overlaid in white.

Fig. 2.2 Modulus R(\bfx ) and argument \Theta (\bfx ) of the Koopman eigenfunction constructed from a com-
plex eigenvector of a linear matrix ODE \.\bfx = \bfA \bfx with a focus-type fixed point at the origin.

If \omega = 0, harmonic averages reduce to the trajectory (ergodic) average. When the
space of observables \scrG (\scrX ) is taken as the L1 space of integrable functions with re-
spect to a dynamically preserved measure \mu , then pointwise convergence \mu -almost
everywhere is guaranteed by the Birkhoff ergodic theorem [40].

More generally, Yosida's theorem [70] implies that in Banach spaces the limit
not only exists, but that g \mapsto \rightarrow \~g\omega is a projection onto the eigenspace associated with
the eigenvalue ei\omega . Said another way, eigenfunctions associated with eigenvalues on
the unit circle | \lambda | = 1 can be computationally approximated through (2.30), as is
done in [294, 290, 69, 241]. Since such eigenvalues correspond to neutrally stable
steady-state behavior, they are of practical importance to analyzing dynamics. This
approach can, in principle, be extended to compute eigenfunctions associated with
other eigenvalues as well, with conditions and restrictions given in [300, 301]. Recently,
[95] also provided an extension and reframing of such results to RKHS, including both
theoretical and computational results. The existence and uniqueness of Ck-regular
eigenfunctions was established in [229], which has further implications on the use of
such eigenfunctions in conjugacy arguments (see subsection 4.1).

Instead of the iteration (2.30) that requires simulating the evolution gt, in certain
cases it is possible to solve for eigenfunctions directly. The eigenfunction relation
\scrK \varphi (x) = \varphi (F(x)) = \lambda \varphi (x) is a compositional algebraic equation that is challenging
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to solve directly. The relation (2.10) implies that the analogous relation for eigen-
functions of \scrL is the PDE

(2.31) \nabla \varphi (x) \cdot f(x) = \lambda \varphi (x).

With this PDE, it is possible to approximate eigenfunctions, either by solving for the
Laurent series as in subsection 2.5 or with data via regression as in section 5. This
formulation assumes that the dynamics are both continuous and differentiable.

2.3. Koopman Mode Decomposition and Finite Representations. Until now,
we have considered scalar measurements of a system and explored special eigen-
measurements (i.e., Koopman eigenfunctions) that evolve linearly in time. However,
we often take multiple measurements of a system, which we will arrange in a vector
g:

g(x) =

\left[ 
    

g1(x)
g2(x)

...
gp(x)

\right] 
    .(2.32)

Each of the individual measurements may be expanded in terms of a basis of eigen-
functions \varphi j(x):

gi(x) =

\infty \sum 

j=1

vij\varphi j(x).(2.33)

Thus, the vector of observables, g, may be similarly expanded as

g(x) =

\left[ 
    

g1(x)
g2(x)

...
gp(x)

\right] 
    =

\infty \sum 

j=1

\varphi j(x)vj ,(2.34)

where vj is known as the jth Koopman mode associated with the eigenfunction \varphi j .
For conservative dynamical systems, such as those governed by Hamiltonian dy-

namics, the Koopman operator is unitary on the space \scrG (\scrX ) of square-integrable
functions with respect to the conserved measure. Thus, the Koopman eigenfunctions
form an orthonormal basis for conservative systems, and it is possible to compute the
Koopman modes vj directly by projection:

vj =

\left[ 
    

\langle \varphi j , g1\rangle 
\langle \varphi j , g2\rangle 

...
\langle \varphi j , gp\rangle 

\right] 
    ,(2.35)

where \langle \cdot , \cdot \rangle is the standard inner product of functions in \scrG (\scrX ). Thus, the expansion
of the observable function in (2.34) may be thought of as a change of basis into
eigenfunction coordinates. These Koopman modes have a physical interpretation in
the case of direct spatial measurements of a system, g(x) = x, in which case they are
coherent spatial modes that behave linearly with the same temporal dynamics (i.e.,
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oscillations, possibly with linear growth or decay). The Koopman modes v are also
known as dynamic modes, and their computation is discussed in section 3.

Given the decomposition in (2.34), it is possible to represent the dynamics of the
measurements g as follows:

g(x(t)) = \scrK tg(x0) = \scrK t
\infty \sum 

j=1

\varphi j(x0)vj(2.36a)

=
\infty \sum 

j=1

\scrK t\varphi j(x0)vj(2.36b)

=
\infty \sum 

j=1

\lambda tj\varphi j(x0)vj .(2.36c)

This sequence of triples \{ (\lambda j , \varphi j ,vj)\} \infty j=1 is the Koopman mode decomposition and was
introduced by Mezi\'c in 2005 [290]. Often, it is possible to approximate this expansion
as a truncated sum of only a few dominant terms. The Koopman mode decomposition
was later connected to data-driven regression via the DMD [368], which is explored
in section 3. The DMD eigenvalues will approximate the Koopman eigenvalues \lambda j ,
the DMD modes will approximate the Koopman modes vj , and the DMD mode
amplitudes will approximate the corresponding Koopman eigenfunctions evaluated
at the initial condition \varphi j(x0). It is important to note that the Koopman modes
and eigenfunctions are distinct mathematical objects, requiring different approaches
for approximation. Koopman eigenfunctions are often more challenging to compute
than Koopman modes, motivating advanced techniques such as the extended DMD
algorithm [448] in subsection 5.1.

2.3.1. Invariant Eigenspaces and Finite-Dimensional Models. Instead of cap-
turing the evolution of all measurement functions in a Hilbert space, applied Koopman
analysis approximates the evolution on an invariant subspace spanned by a finite set
of measurement functions. A Koopman-invariant subspace is defined as the span of a
set of functions \{ g1, g2, . . . , gp\} if all functions g in this subspace

g = \alpha 1g1 + \alpha 2g2 + \cdot \cdot \cdot + \alpha pgp(2.37)

remain in this subspace after being acted on by the Koopman operator \scrK :

\scrK g = \beta 1g1 + \beta 2g2 + \cdot \cdot \cdot + \beta pgp.(2.38)

It is possible to obtain a finite-dimensional matrix representation of the Koopman
operator by restricting it to an invariant subspace spanned by a finite number of
functions \{ gj\} pj=1. The matrix representation K acts on a vector space Rp, with the
coordinates given by the values of gj(x). This induces a finite-dimensional linear
system.

Any finite set of eigenfunctions of the Koopman operator will span an invariant
subspace. Discovering these eigenfunction coordinates is, therefore, a central chal-
lenge, as they provide intrinsic coordinates along which the dynamics behave linearly.
In practice, it is more likely that we will identify an approximately invariant subspace
given by a set of functions \{ gj\} pj=1, where each of the functions gj is well approximated

by a finite sum of eigenfunctions: gj \approx 
\sum p

k=1 vjk\varphi k.
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2.4. Example of a Simple Koopman Embedding. Here, we consider an example
system with a single fixed point from Tu et al. [435] that is explored in more detail
in Brunton et al. [62], given by

\.x1 = \mu x1,(2.39a)

\.x2 = \lambda (x2  - x21).(2.39b)

For \lambda < \mu < 0, the system exhibits a slow attracting manifold given by x2 = x21. It is
possible to augment the state x with the nonlinear measurement g = x21 to define a
three-dimensional Koopman invariant subspace. In these coordinates, the dynamics
become linear:

(2.40)
d

dt

\left[ 
 
y1
y2
y3

\right] 
 =

\left[ 
 
\mu 0 0
0 \lambda  - \lambda 
0 0 2\mu 

\right] 
 
\left[ 
 
y1
y2
y3

\right] 
 for

\left[ 
 
y1
y2
y3

\right] 
 =

\left[ 
 
x1
x2
x21

\right] 
 .

The full three-dimensional Koopman observable vector space is visualized in Fig-
ure 2.3. Trajectories that start on the invariant manifold y3 = y21 , visualized by the
blue surface, are constrained to stay on this manifold. There is a slow subspace,
spanned by the eigenvectors corresponding to the slow eigenvalues \mu and 2\mu ; this sub-
space is visualized by the green surface. Finally, there is the original asymptotically
attracting manifold of the original system, y2 = y21 , which is visualized as the red
surface. The blue and red parabolic surfaces always intersect in a parabola that is
inclined at a 45\circ angle in the y2-y3 direction. The green surface approaches this 45\circ 

inclination as the ratio of fast to slow dynamics becomes increasingly large. In the full
three-dimensional Koopman observable space, the dynamics produce a single stable
node, with trajectories rapidly attracting onto the green subspace and then slowly
approaching the fixed point.

The left-eigenvectors of the Koopman operator yield Koopman eigenfunctions.
The Koopman eigenfunctions of (2.40) corresponding to eigenvalues \mu and \lambda are

\varphi \mu = x1 and \varphi \lambda = x2  - bx21 with b =
\lambda 

\lambda  - 2\mu 
.(2.41)

The constant b in \varphi \lambda captures the fact that for a finite ratio \lambda /\mu , the dynamics
only shadow the asymptotically attracting slow manifold x2 = x21, and in fact follow
neighboring parabolic trajectories. This is illustrated more clearly by the various
surfaces in Figure 2.3 for different ratios \lambda /\mu .

In this way, a set of intrinsic coordinates may be determined from the observable
functions defined by the left-eigenvectors of the matrix representation of the Koopman
operator on an invariant subspace. Explicitly,

\varphi \alpha (x) = \bfitxi 
\top 
\alpha z(x), where \bfitxi \top \alpha K = \alpha \bfitxi \top \alpha .(2.42)

These eigenobservables define observable subspaces that remain invariant under the
Koopman operator, even after coordinate transformations. As such, they may be
regarded as intrinsic coordinates [448] on the Koopman-invariant subspace.

2.5. Analytic Series Expansions for Eigenfunctions. Given the dynamics in
(1.1), it is possible to solve the PDE in (2.31) using standard techniques, such as
recursively solving for the terms in a Taylor or Laurent series. A number of simple
examples are explored below.
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Fig. 2.3 Visualization of three-dimensional linear Koopman system from (2.40) along with projec-
tion of dynamics onto the x1-x2 plane. The attracting slow manifold is shown in red, the
constraint y3 = y21 is shown in blue, and the slow unstable subspace of (2.40) is shown in
green. Black trajectories of the linear Koopman system in \bfy project onto trajectories of
the full nonlinear system in \bfx in the y1-y2 plane. Here, \mu =  - 0.05 and \lambda = 1. Reproduced
with permission from Brunton et al. [62].

2.5.1. Linear Dynamics. Consider the simple linear dynamics

(2.43)
d

dt
x = x.

Assuming a Taylor series expansion for \varphi (x),

\varphi (x) = c0 + c1x+ c2x
2 + c3x

3 + \cdot \cdot \cdot ,
then the gradient and directional derivatives are given by

\nabla \varphi = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + \cdot \cdot \cdot ,
\nabla \varphi \cdot f = c1x+ 2c2x

2 + 3c3x
3 + 4c4x

4 + \cdot \cdot \cdot .
Solving for terms in the Koopman eigenfunction PDE (2.31), we see that c0 = 0 must
hold. For any positive integer \lambda in (2.31), only one of the coefficients may be nonzero.
Specifically, for \lambda = k \in Z+, \varphi (x) = cxk is an eigenfunction for any constant c. For
instance, if \lambda = 1, then \varphi (x) = x.

2.5.2. Quadratic Nonlinear Dynamics. Consider a nonlinear dynamical system

d

dt
x = x2.(2.44)

There is no Taylor series that satisfies (2.31) except the trivial solution \varphi = 0 for
\lambda = 0. Instead, we assume a Laurent series:

\varphi (x) = \cdot \cdot \cdot + c - 3x
 - 3 + c - 2x

 - 2 + c - 1x
 - 1 + c0 + c1x+ c2x

2 + c3x
3 + \cdot \cdot \cdot .
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The gradient and directional derivatives are given by

\nabla \varphi = \cdot \cdot \cdot  - 3c - 3x
 - 4  - 2c - 2x

 - 3  - c - 1x
 - 2 + c1 + 2c2x+ 3c3x

2 + 4c4x
3 + \cdot \cdot \cdot ,

\nabla \varphi \cdot f = \cdot \cdot \cdot  - 3c - 3x
 - 2  - 2c - 2x

 - 1  - c - 1 + c1x
2 + 2c2x

3 + 3c3x
4 + 4c4x

5 + \cdot \cdot \cdot .

Solving for the coefficients of the Laurent series that satisfy (2.31), we find that all
coefficients with positive index are zero, i.e., ck = 0 for all k \geq 1. However, the
nonpositive index coefficients are given by the recursion \lambda ck+1 = kck for negative
k \leq  - 1. Thus, the Laurent series is

\varphi (x) = c0

\biggl( 
1 - \lambda x - 1 +

\lambda 2

2
x - 2  - \lambda 3

3!
x - 3 + \cdot \cdot \cdot 

\biggr) 
= c0e

 - \lambda /x.

This holds for all values of \lambda \in C. There are also other Koopman eigenfunctions that
can be identified from the Laurent series.

2.5.3. Polynomial Nonlinear Dynamics. For a more general nonlinear dynami-
cal system

d

dt
x = axn,(2.45)

\varphi (x) = e
\lambda 

(1 - n)a
x1 - n

is an eigenfunction for all \lambda \in C.
As mentioned in subsection 2.2, it is also possible to generate new eigenfunctions

by taking powers of these primitive eigenfunctions; the resulting eigenvalues generate
a lattice in the complex plane.

3. Dynamic Mode Decomposition. Dynamic mode decomposition (DMD), orig-
inally introduced by Schmid [382, 381] in the fluid dynamics community, has rapidly
become the standard algorithm used to approximate the Koopman operator from
data [368, 435, 225]. Rowley et al. [368] established the first connection between
DMD and the Koopman operator. The DMD algorithm was originally developed to
identify spatio-temporal coherent structures from high-dimensional time-series data,
which are commonly found in fluid dynamics. DMD is based on the computationally
efficient SVD, also known as proper orthogonal decomposition (POD) in fluid dynam-
ics, so that it provides scalable dimensionality reduction for high-dimensional data.
The SVD orders modes hierarchically based on how much of the variance of the origi-
nal data is captured by each mode; these modes remain invariant even when the order
of the data is shuffled in time. In contrast, the DMD modes are linear combinations of
the SVD modes that are chosen specifically to extract spatially correlated structures
that have the same coherent linear behavior in time, given by oscillations at a fixed
frequency with growth or decay. Thus, DMD provides dimensionality reduction in
terms of a low-dimensional set of spatial modes along with a linear model for how the
amplitudes of these modes evolve in time. In this way, DMD may be thought of as
a combination of SVD/POD in space with the Fourier transform in time, combining
the strengths of each approach [82, 225].

Several leading DMD variants, especially DMD with control and delay DMD,
are closely related to subspace system identification methods, many of which predate
DMD by decades. However, modern Koopman theory provides a new interpretation
for these methods when applied to nonlinear systems. For example, there are close
connections between delay DMD and the eigensystem realization algorithm (ERA),
although the classical theory of ERA is only valid for strictly linear systems, while
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delay DMD approaches may be applied more broadly to nonlinear and even chaotic
systems. Similarly, DMD- and Koopman-based approaches tend to also have the
perspective of applying to very high-dimensional systems, including handling the nu-
merical considerations that must be accounted for.

There are a number of factors that have led to the widespread adoption of DMD
as a workhorse algorithm for processing high-dimensional spatio-temporal data. The
DMD algorithm approximates the best-fit linear matrix operator that advances high-
dimensional measurements of a system forward in time [435]. Thus, DMD approxi-
mates the Koopman operator restricted to the measurement subspace given by direct
measurements of the state of a system. DMD is valid for both experimental and
simulated data, as it is based entirely on measurement data and does not require
knowledge of the governing equations. In addition, DMD is highly extensible because
of its simple formulation in terms of linear algebra, resulting in innovations related
to control, compressed sensing, and multiresolution, among others. Because of these
strengths, DMD has been applied to a wide range of diverse applications beyond
fluid mechanics, including neuroscience, disease modeling, robotics, video processing,
power grids, financial markets, and plasma physics. Many of these extensions and
applications will be discussed further here and in section 5.

3.1. The DMD Algorithm. The DMD algorithm seeks a best-fit linear matrix
operator A that approximately advances the state of a system, x \in Rn, forward in
time according to the linear dynamical system

xk+1 = Axk,(3.1)

where xk = x(k\Delta t) and \Delta t denotes a fixed time step that is small enough to resolve
the highest frequencies in the dynamics. Thus, the matrix A is an approximation
of the Koopman operator \scrK restricted to a measurement subspace spanned by direct
measurements of the state x.

DMD is fundamentally a data-driven algorithm, and the matrix A is approx-
imated from a collection of snapshot pairs of the system, \{ (x(tk),x(t\prime k)\} mk=1, where
t\prime k = tk+\Delta t. A snapshot is typically a measurement of the full state of the system, such
as a fluid velocity field sampled at a large number of spatially discretized locations,
that is reshaped into a column vector of high dimension. The original formulation of
Schmid [381] required data from a single trajectory with uniform sampling in time,
so that tk = k\Delta t. Here we present the exact DMD algorithm of Tu et al. [435], which
works for irregularly spaced data and data concatenated from multiple different time
series. Thus, in exact DMD, the times tk need not be sequential or evenly spaced,
but for each snapshot x(tk) there is a corresponding snapshot x(t\prime k) one time step \Delta t
in the future. These snapshots are arranged into two data matrices, X and X\prime :

X =

\left[ 
 x(t1) x(t2) \cdot \cdot \cdot x(tm)

\right] 
 ,(3.2a)

X\prime =

\left[ 
 x(t\prime 1) x(t\prime 2) \cdot \cdot \cdot x(t\prime m)

\right] 
 .(3.2b)

Equation (3.1) may be written in terms of these data matrices as

X\prime \approx AX.(3.3)
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The best-fit matrix A establishes a linear dynamical system that approximately ad-
vances snapshot measurements forward in time, which may be formulated as an opti-
mization problem

A = argmin
\bfA 

\| X\prime  - AX\| F = X\prime X\dagger ,(3.4)

where \| \cdot \| F is the Frobenius norm and \dagger denotes the pseudoinverse. The pseudoinverse
may be computed using the SVD of X = U\Sigma V\ast as X\dagger = V\Sigma  - 1U\ast . The matrices
U \in Cn\times n and Vm\times m are unitary, so that U\ast U = I and V\ast V = I, where \ast denotes
complex conjugate transpose. The columns of U are known as POD modes [419, 420].

Because A is an approximate representation of the Koopman operator restricted
to a finite-dimensional subspace of linear measurements, we are often interested in
the eigenvectors \Phi and eigenvalues \Lambda of A:

A\Phi = \Phi \Lambda .(3.5)

However, the matrix A has n2 elements, so for high-dimensional data it may be
intractable to represent, let alone compute, its eigendecomposition. Instead, the DMD
algorithm seeks the leading spectral decomposition (i.e., eigenvalues and eigenvectors)
of A without ever explicitly constructing it. The data matrices X and X\prime typically
have far more rows than columns, i.e., m\ll n, so that A will have at most m nonzero
eigenvalues and nontrivial eigenvectors. In practice, the effective rank of the data
matrices, and hence the matrix A, may be even lower, given by r < m. Instead of
computing A in (3.4), we may project A onto the first r POD modes in Ur and
approximate the pseudoinverse using the rank-r SVD approximation X \approx Ur\Sigma rV

\ast 
r :

\~A = U\ast 
rAUr(3.6a)

= U\ast 
rX

\prime X\dagger Ur(3.6b)

= U\ast 
rX

\prime Vr\Sigma 
 - 1
r U\ast 

rUr(3.6c)

= U\ast 
rX

\prime Vr\Sigma 
 - 1
r .(3.6d)

The leading spectral decomposition of A may be approximated from the spectral
decomposition of the much smaller \~A:

\~AW = W\Lambda .(3.7)

The diagonal matrix \Lambda contains the DMD eigenvalues, which correspond to eigenval-
ues of the high-dimensional matrix A. The columns of W are eigenvectors of \~A and
provide a coordinate transformation that diagonalizes the matrix. These columns may
be thought of as linear combinations of POD mode amplitudes that behave linearly
with a single temporal pattern given by the corresponding eigenvalue \lambda .

The eigenvectors of A are the DMD modes \Phi , and they are reconstructed using
the eigenvectors W of the reduced system and the time-shifted data matrix X\prime :

\Phi = X\prime \~V\~\Sigma 
 - 1

W.(3.8)

Tu et al. [435] proved that these DMD modes are eigenvectors of the full A matrix
under certain conditions. This approach is illustrated for a fluid flow in Figure 3.1.
There are also several open-source DMD implementations [225, 102].
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Fig. 3.1 Overview of DMD illustrated on the fluid flow past a circular cylinder at Reynolds number
100. Reproduced with permission from Kutz et al. [225].

3.1.1. Spectral Decomposition and the DMD Expansion. Once the DMD
modes and eigenvalues are computed, it is possible to represent the system state
in terms of the DMD expansion

xk =
r\sum 

j=1

\bfitphi j\lambda 
k - 1
j bj = \Phi \Lambda k - 1b,(3.9)

where \bfitphi j are eigenvectors of A (DMD modes), \lambda j are eigenvalues of A (DMD eigen-
values), and bj are the mode amplitudes. The DMD expansion (3.9) is directly analo-
gous to the Koopman mode decomposition (2.36). The DMD modes \bfitphi j approximate
the Koopman modes vj , the DMD eigenvalues \lambda j approximate the corresponding
Koopman eigenvalues, and the mode amplitudes bj approximate the Koopman eigen-
functions evaluated at the initial condition \varphi j(x0).

To directly connect the DMD expansion to the Koopman mode decomposition
(2.36), we may write the Koopman mode decomposition explicitly in matrix form for
the observable g(x) = x as

xk \approx 
r\sum 

j=1

\lambda k - 1
j \varphi j(x1)vj =

\left[ 
 

| | 
v1 \cdot \cdot \cdot vr

| | 

\right] 
 

\underbrace{}  \underbrace{}  
\bfPhi 

\left[ 
  
\lambda 1

. . .

\lambda r

\right] 
  

\underbrace{}  \underbrace{}  
\bfLambda 

\left[ 
  
\varphi 1(x1)

...
\varphi r(x1)

\right] 
  

\underbrace{}  \underbrace{}  
\bfb 

.(3.10)

Thus, comparing with the DMD expansion (3.9), the correspondence of terms is clear.
The Koopman mode decomposition expansion may be written equivalently as

xk \approx 
r\sum 

j=1

\lambda k - 1
j \varphi j(x1)vj =

\left[ 
 

| | 
v1 \cdot \cdot \cdot vr

| | 

\right] 
 

\left[ 
  
\varphi 1(x1)

. . .

\varphi r(x1)

\right] 
  

\left[ 
  
\lambda 1
...
\lambda r

\right] 
  ,

(3.11)
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which makes it possible to express the data matrix X as

X =

\left[ 
 

| | 
\bfitphi 1 \cdot \cdot \cdot \bfitphi r

| | 

\right] 
 

\left[ 
  
b1

. . .

br

\right] 
  

\left[ 
  
\lambda 1 \cdot \cdot \cdot \lambda m - 1

1
...

. . .
...

\lambda r \cdot \cdot \cdot \lambda m - 1
r

\right] 
  .(3.12)

The amplitudes in b are often given by

b = \Phi \dagger x1,(3.13)

using the first snapshot to determine the mixture of DMD mode amplitudes; note
that this first snapshot x1 from DMD is equivalent to the initial condition used to
evaluate the Koopman eigenfunction in (2.36). Alternative approaches to computing
b [82, 186, 18] will be discussed in subsection 3.1.2.

The spectral expansion in (3.9) may be converted to continuous time by intro-
ducing the continuous eigenvalues \omega = log(\lambda )/\Delta t:

x(t) =

r\sum 

j=1

\bfitphi je
\omega jtbj = \Phi exp(\Omega t)b,(3.14)

where \Omega is a diagonal matrix containing the continuous-time eigenvalues \omega j . Thus,
the data matrix X may be represented as
(3.15)

X \approx 

\left[ 
 

| | 
\bfitphi 1 \cdot \cdot \cdot \bfitphi r

| | 

\right] 
 

\left[ 
  
b1

. . .

br

\right] 
  

\left[ 
  
e\omega 1t1 \cdot \cdot \cdot e\omega 1tm

...
. . .

...
e\omega rt1 \cdot \cdot \cdot e\omega rtm

\right] 
  = \Phi diag(b)T(\bfitomega ).

3.1.2. Alternative Optimizations for DMD. The DMD algorithm is purely data-
driven and is thus equally applicable to experimental and numerical data. When
characterizing experimental data with DMD, the effects of sensor noise and stochas-
tic disturbances must be accounted for. Bagheri [24] showed that DMD is particularly
sensitive to the effects of noisy data, and it has been shown that significant and system-
atic biases are introduced into the eigenvalue distribution [112, 23, 97, 166]. Although
increased sampling decreases the variance of the eigenvalue distribution, it does not
remove the bias [166]. This noise sensitivity has motivated several alternative opti-
mization algorithms for DMD to improve the quality and performance of DMD over
the standard optimization in (3.4), which is a least-squares fitting procedure involv-
ing the Frobenius norm. These algorithms include the total least-squares DMD [166],
forward-backward DMD [97], variable projection [18], and robust principal component
analysis [378].

One of the simplest ways to remove the systematic bias of the DMD algorithm
is by computing it both forward and backward in time and averaging the equivalent
matrices, as proposed by Dawson et al. [97]. Thus the following two approximations
are considered:

X\prime \approx A1X and X \approx A2X
\prime ,(3.16)

where A - 1
2 \approx A1 for noise-free data. Thus the matrix A2 is the inverse or backward

time step, mapping the snapshots from tk+1 to tk. The forward and backward time
matrices are then averaged, removing the systematic bias from the measurement noise:

(3.17) A =
1

2

\bigl( 
A1 +A - 1

2

\bigr) 
,
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where the optimization (3.4) can be used to compute both the forward and backward
mappings A1 and A2. This optimization can be formulated as

(3.18) A = argmin
\bfA 

1

2

\bigl( 
\| X\prime  - AX\| F + \| X - A - 1X\prime \| F

\bigr) 
,

which is highly nonlinear and nonconvex due to the inverse A - 1. An improved opti-
mization framework was developed by Azencot, Yin, and Bertozzi [21] that proposes

(3.19) A = argmin
\bfA 1,\bfA 2

1

2
(\| X\prime  - A1X\| F + \| X - A2X

\prime \| F ) s.t. A1A2 = I, A2A1 = I,

to circumvent some of the difficulties of the optimization in (3.18).
Hemati et al. [166] formulated another DMD algorithm, replacing the original

least-squares regression with a total least-squares regression to account for the possi-
bility of noisy measurements and disturbances to the state. This work also provides
an excellent discussion on the sources of noise and a comparison of various denoising
algorithms. The subspace DMD algorithm of Takeishi, Kawahara, and Yairi [423]
compensates for measurement noise by computing an orthogonal projection of fu-
ture snapshots onto the space of previous snapshots and then constructing a linear
model. Extensions that combine DMD with Bayesian approaches have also been
developed [421].

Good approximations for the mode amplitudes b in (3.15) have also proven to
be difficult to achieve, with and without noise. Jovanovi\'c, Schmid, and Nichols [186]
developed the first algorithm to improve the estimate of the modal amplitudes by
promoting sparsity. In this case, the underlying optimization algorithm is framed
around improving the approximation (3.15) using the formulation

(3.20) argmin
\bfb 

(\| X - \Phi diag(b)T(\bfitomega )\| F + \gamma \| b\| 1) ,

where \| \cdot \| 1 denotes the \ell 1-norm penalization which promotes sparsity of the vector
b. More recently, Askham and Kutz [18] introduced the optimized DMD algorithm,
which uses a variable projection method for nonlinear least squares to compute the
DMD for unevenly timed samples, significantly mitigating the bias due to noise. The
optimized DMD algorithm solves the exponential fitting problem directly:

(3.21) argmin
\bfitomega ,\bfPhi \bfb 

\| X - \Phi \bfb T(\bfitomega )\| F .

This has been shown to provide a superior decomposition due to its ability to optimally
suppress bias and handle snapshots collected at arbitrary times. The disadvantage of
optimized DMD is that one must solve a nonlinear optimization problem. However, by
using statistical bagging methods, the optimized DMD algorithm can be stabilized and
the boosted optimized DMD (BOP-DMD) method can not only improve performance
of the decomposition, but also produce UQ metrics for the DMD eigenvalues and
DMD eigenmodes [375]. This provides a nearly optimal linear model for forecasting
of dynamics.

DMD is able to accurately identify an approximate linear model for dynamics
that are linear, periodic, or quasi-periodic. However, DMD is fundamentally unable
to capture a linear dynamical system model with essential nonlinear features, such as
multiple fixed points, unstable periodic orbits, or chaos [62]. As an example, DMD
trained on data from the chaotic Lorenz system will fail to yield a reasonable linear
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model, and the resulting DMD matrix will also not capture important features of the
linear portion of the Lorenz model. The sparse identification of nonlinear dynamics
(SINDy) [65] is a related algorithm that identifies fully nonlinear dynamical systems
models from data. However, SINDy often faces scaling issues for high-dimensional
systems that do not admit a low-dimensional subspace or submanifold. In this case,
the recent linear and nonlinear disambiguation optimization (LANDO) algorithm [22]
leverages kernel methods to identify an implicit model for the full nonlinear dynamics,
where it is then possible to extract a low-rank DMD approximation for the linear
portion linearized about some specified operating condition. In this way, the LANDO
algorithm robustly extracts the linear DMD dynamics even from strongly nonlinear
systems. This work is part of a much larger effort to use kernels for learning dynamical
systems and Koopman representations [449, 138, 95, 210, 207, 72, 22].

3.1.3. Krylov Subspace Perspective. In the original formulation [381, 368], the
matrices X and X\prime were formed from sequential snapshots, evenly spaced in time:

X =

\left[ 
 x1 x2 \cdot \cdot \cdot xm

\right] 
 ,(3.22a)

X\prime =

\left[ 
 x2 x3 \cdot \cdot \cdot xm+1

\right] 
 .(3.22b)

The columns of X belong to a Krylov subspace generated by A and x1:

X \approx 

\left[ 
 x1 Ax1 \cdot \cdot \cdot Am - 1x1

\right] 
 .(3.23)

Thus, DMD is related to Arnoldi iteration to find the dominant eigenvalues and
eigenvectors of a matrix A.

The matrices X and X\prime are also related through the shift matrix S,

X\prime = XS,(3.24)

which is a finite-dimensional representation of the shift operator. Thus, S acts on
columns of X, as opposed to A, which acts on rows of X. The shift matrix S has the
form of a companion matrix and is given by

(3.25) S =

\left[ 
      

0 0 0 \cdot \cdot \cdot 0 a1
1 0 0 \cdot \cdot \cdot 0 a2
0 1 0 \cdot \cdot \cdot 0 a3
...

...
...

. . .
...

...
0 0 0 \cdot \cdot \cdot 1 am

\right] 
      
.

In other words, the first m - 1 columns of X\prime are obtained by shifting the last m - 1
columns of X, and the last column is obtained as a best-fit combination of the m
columns of X that minimizes the residual. The shift matrix may be viewed as a
matrix representation of the Koopman operator, as it advances snapshots forward in
time. The m\times m matrix S has the same nonzero eigenvalues as A, so that S may be
used to obtain dynamic modes and eigenvalues. However, computations based on S
are not as numerically stable as the DMD algorithm presented above.
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3.2. Methodological Extensions. The DMD algorithm has been successful in
large part because of its simple formulation in terms of linear regression and because
it does not require knowledge of the governing equations. For these reasons, DMD has
been extended to include several methodological innovations [225] presented below.
Several of these extensions, including to nonlinear systems, delay measurements, and
control, will be explored in much more detail in later sections. Algorithms to handle
noisy data have been discussed in subsection 3.1.2.

3.2.1. Including Inputs and Control. Often, the goal of obtaining reduced-order
models is to eventually design more effective controllers to manipulate the behavior of
the system. Similarly, in many systems, such as the climate, there are external forcing
variables that make it difficult to identify the underlying unforced dynamics. Proctor,
Brunton, and Kutz [351] introduced the DMD with control (DMDc) algorithm to
disambiguate the natural unforced dynamics and the effect of forcing or actuation
given by the variable u. This algorithm is based on

xk+1 \approx Axk +Buk,(3.26)

which results in another linear regression problem. It was motivated by epidemio-
logical systems (e.g., malaria or polio), where it is not possible to stop intervention
efforts such as vaccinations and bed nets in order to characterize the unforced dynam-
ics [350]. DMDc will be explored extensively in subsection 6.2.1. An input-output
DMD [37] has also been formulated recently that fits into broader reduced-order mod-
eling efforts [36, 337, 354, 35].

3.2.2. Compression and Randomized Linear Algebra. Fundamentally, the
DMD algorithm is based on the assumption that there are dominant low-dimensional
patterns even in high-dimensional data such as fluid flow fields. Randomized al-
gorithms [156] are designed to exploit these patterns to accelerate numerical linear
algebra. In the randomized DMD algorithm [42, 123] data is randomly projected into
a lower-dimensional subspace where computations may be performed more efficiently.
The existence of patterns also facilitates more efficient measurement strategies based
on principles of sparsity to reduce the number of measurements required in time [434]
and space [66, 155, 121]. This has the broad potential to enable high-resolution
characterization of systems from underresolved measurements. In 2014, Jovanovi\'c,
Schmid, and Nichols [186] used sparsity promoting optimization to identify the fewest
DMD modes required to describe a data set; the alternative, testing and comparing
all subsets of DMD modes, is computationally intractable. Finally, libraries of DMD
modes have also been used to identify dynamical regimes [222], based on the sparse
representation for classification [454] which was used earlier to identify dynamical
regimes using libraries of POD modes [52, 67].

3.2.3. Nonlinear Measurements and Latent Variables. The connection be-
tween DMD and the Koopman operator [368, 435, 225] has motivated several ex-
tensions for strongly nonlinear systems. The standard DMD algorithm is able to ac-
curately characterize periodic and quasi-periodic behavior, even in nonlinear systems.
However, DMD models based on linear measurements of the system are generally not
sufficient to characterize truly nonlinear phenomena, such as transients, intermittent
phenomena, or broadband frequency cross-talk. In Williams et al. [448, 449], DMD
measurements were augmented to include nonlinear measurements of the system, en-
riching the basis used to represent the Koopman operator. There are also important
extensions of DMD to systems with latent variables. Although DMD was developed

D
ow

nl
oa

de
d 

07
/1

1/
22

 to
 2

05
.1

75
.1

06
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MODERN KOOPMAN THEORY FOR DYNAMICAL SYSTEMS 257

for high-dimensional data, it is often desirable to characterize systems with incom-
plete measurements. As an extreme example, consider a single measurement that
oscillates as a sinusoid, x(t) = sin(\omega t). Although this would appear to be a perfect
candidate for DMD, the algorithm incorrectly identifies a real eigenvalue because the
data does not have sufficient rank to extract a complex conjugate pair of eigenvalues
\pm i\omega . This paradox was first explored by Tu et al. [435], where it was discovered that a
solution is to stack delayed measurements into a larger matrix to augment the rank of
the data and extract phase information. Delay coordinates have also been used effec-
tively to extract coherent patterns in neural recordings [60]. The connections between
delay DMD and Koopman were subsequently investigated [61, 16, 94, 198]. Nonlinear
measurements and latent variables will both be explored extensively in section 5.

3.2.4. Multiresolution. DMD is often applied to complex, high-dimensional dy-
namical systems such as fluid turbulence or epidemiological systems that exhibit mul-
tiscale dynamics in both space and time. Many multiscale systems exhibit transient or
intermittent phenomena, such as the El Ni\~no observed in global climate data. These
transient dynamics are not captured accurately by DMD, which seeks spatio-temporal
modes that are globally coherent across the entire time series of data. To address this
challenge, the multiresolution DMD (mrDMD) algorithm was introduced [226], which
effectively decomposes the dynamics into different timescales, isolating transient and
intermittent patterns. mrDMD modes were recently shown to be advantageous for
sparse sensor placement by Manohar et al. [270].

3.2.5. Streaming and Parallelized Codes. Because of the computational burden
of computing the DMD on high-resolution data, several advances have been made to
accelerate DMD in streaming applications and with parallelized algorithms. DMD is
often used in a streaming setting, where a moving window of snapshots is processed
continuously, resulting in savings by eliminating redundant computations when new
data becomes available. Several algorithms exist for streaming DMD, based on the
incremental SVD [167], a streaming method of snapshots SVD [342], and rank-one
updates to the DMD matrix [463]. The DMD algorithm is also readily parallelized,
since it is based on the SVD. Several parallelized codes are available, based on the
QR [376] and SVD [123, 124, 122].

3.2.6. Tensor Formulations. Most data used to compute DMD has additional
spatial structure that is discarded when the data is reshaped into column vectors. The
tensor DMD extension of Klus et al. [205] performs DMD on a tensorial, rather than
vectorized, representation of the data, retaining this additional structure. In addi-
tion, this approach reduces the memory requirements and computational complexity
for large-scale systems. Extensions to this approach have been introduced based on
RKHS [138] and the extended DMD [325], and additional connections have recently
been made between the Koopman mode decomposition and tensor factorizations [362].
Tensor approaches to related methods, such as SINDy [65], have also been developed
recently [143].

3.3. Domain Applications. DMD has been applied widely to a diverse range
of applications. We will explore key applications in fluid dynamics, epidemiology,
neuroscience, and video processing. In addition, DMD has been used for robotics [39,
4, 59, 266], finance [268], power grids [394, 412, 416, 413, 220], and plasma physics [428,
199].
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Figure 4. (a) Sketch of cavity geometry with subdomain indicated by the blue dashed line.
(b) Residual history of the dynamic mode decomposition for cavity flow.

−15 −10 −5 0 5 10 15
−3

−2

−1

0

1

2

λi

λr

Figure 5. DMD spectrum for cavity flow at a Reynolds number Re = 4500. The colour and
symbol size of the eigenvalues indicate the coherence of the associated dynamic modes.

of the number of included snapshots. Rapid convergence is observed; only about
20 snapshots are needed to determine the growth rates and phase velocities with
sufficient accuracy. The extracted spectrum (i.e. the spectrum of S̃) is displayed in
figure 5. The spectrum appears symmetric with respect to the imaginary axis λi = 0,
which is a consequence of processing real-valued data. If general complex-valued data
are processed (e.g. after a Fourier transformation along a homogeneous or periodic
direction), the spectrum will generally appear asymmetric with respect to λi = 0.
For the chosen parameters (Re = 4500 based on the uniform inflow velocity and the
cavity length), a pair of unstable modes has been identified. In addition, we observe a
typical spectrum for a cavity, consisting of a parabolic branch containing the unstable
eigenvalues (the unstable branches) and a parabolic branch describing the dynamics
inside the cavity (the stable branch). This type of spectrum should be compared
with spectra from a global stability analysis for similar flow configurations (see e.g.
Åkervik et al. 2007 for a shallow cavity, and Sipp & Lebedev 2007 and Barbagallo
et al. 2009 for a square cavity). The symbol size and colouring of the eigenvalues
in figure 5 indicates a coherence measure of the associated modes and is intended
to separate large-scale energetic structures (in red) from smaller-scale less-energetic

Dynamic mode decomposition of numerical and experimental data 17

(a) (b)

(c) (d)

(e) (f)

Figure 6. Representative dynamic modes, visualized by the streamwise velocity component,
for flow over a cavity at Re = 4500. (a) Most unstable dynamic mode, (b–d ) dynamic mode
from the unstable branch, (e, f ) dynamic modes from the stable branch. Because data from
linearized Navier–Stokes simulations have been processes, the dynamic modes are equivalent
to global modes.

structures. The criterion is given by a projection of a specific dynamic modes Φi

onto the POD basis U, computed from the data sequence VN−1
1 ; the modulus of the

coefficients of this projection measures the presence of various POD modes and thus
gives a measure of coherence. It is important to realize, however, that modes with
a moderate to small projection onto a POD basis (blue symbols) can still play a
significant dynamic role within the snapshot sequence.
Representative dynamic modes are displayed in figure 6 using the streamwise

velocity component; their respective eigenvalues are given in table 1 (second and third
columns). The unstable mode (figure 6a) is clearly located in the shear layer of the
flow and shows the characteristic streamwise wavelength of the observed instability.
Other modes from the unstable branch (figure 6b–d ) have significant components in
the shear layer, but also show features inside the cavity. These features are related
to the instability of the shear layer detaching from the right edge of the cavity.
Dynamic modes from the stable branch (figure 6e, f ) contain similar characteristics:
vortical structures coincidental with the mean shear layer on top of the cavity and
features linked to the vortex inside the cavity. Modes from the stable branch show
increasingly more small-scale features inside the cavity, as the frequency λi increases,
which is consistent with observations of Barbagallo et al. (2009).

Fig. 3.2 (top) DMD eigenvalue spectrum for the cavity flow at Reynolds number Re = 4500. (bot-
tom) Corresponding DMD modes, visualized by the streamwise velocity. (a) Most unstable
dynamic mode; (b)--(d) DMD modes from the unstable branch; (e)--(f) DMD modes from
the stable branch. Modified with permission from Schmid (2010 Journal of Fluid Mechan-
ics) [381].

3.3.1. Fluid Dynamics. DMD originated in the fluid dynamics community [381]
and has since been applied to a wide range of flow geometries (jets, cavity flow,
wakes, channel flow, boundary layers, etc.), to study mixing, acoustics, and combus-
tion, among other phenomena. In Schmid [382, 381], both a cavity flow and a jet
were considered; the cavity flow example is shown in Figure 3.2. Rowley et al. [368]
investigated a jet in cross-flow; modes are shown in Figure 3.3 with the corresponding
eigenvalue spectrum. Thus, it is no surprise that DMD has subsequently been used
broadly in both cavity flows [381, 256, 387, 30, 29] and jets [34, 388, 383, 379].

DMD has also been applied to wake flows, including the investigation of fre-
quency lock-on [433], the wake past a gurney flap [334], the cylinder wake [23],
and dynamic stall [113]. Boundary layers have also been extensively studied with
DMD [329, 377, 298]. In acoustics, DMD has been used to capture the near-field
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Fig. 3.3 DMD eigenvalues for jet-in-crossflow plotted on the unit circle (a) and as a power spectrum
versus Strouhal number (b). Two DMD modes (m1) and (m2) are pictured below. Modified
with permission from Rowley et al. (2009 Journal of Fluid Mechanics) [368].

and far-field acoustics that result from instabilities observed in shear flows [399]. In
combustion, DMD has been used to understand the coherent heat release in turbulent
swirl flames [299] and to analyze a rocket combustor [179] and has been used to an-
alyze nonnormal growth mechanisms in thermoacoustic interactions in a Rijke tube.
DMD has been compared with POD for reacting flows [369] and has been used to ana-
lyze more exotic flows, including a simulated model of a high-speed train [309]. Shock
turbulent boundary layer interaction (STBLI) has been investigated with DMD to
identify a pulsating separation bubble that is accompanied by shockwave motion [152].
DMD has also been used to study self-excited fluctuations in detonation waves [277].
Other problems include identifying hairpin vortices [426], decomposing the flow past
a surface mounted cube [310], modeling shallow water equations [43], studying the
flow of nano fluids past a square cylinder [374], fluid-structure interaction [151], and
measuring the growth rate of instabilities in annular liquid sheets [111]. A modi-
fied recursive DMD algorithm was also formulated by Noack et al. [319] to provide
an orthogonal basis for empirical Galerkin models in fluids. The use of DMD in
fluids fits into a broader effort to leverage machine learning for improved models
and controllers [51, 28, 64, 372, 245, 212], especially for turbulence closure model-
ing [249, 224, 114, 278, 32, 33].

It is interesting to note that the noise effects that were carefully analyzed by
Bagheri [24] explain the eigenvalue spectrum observed earlier by Schmid, Juniper,
and Pust [379] for a turbulent jet. This comparison is shown in Figure 3.4.

3.3.2. Epidemiology. Epidemiological data often consists of high-dimensional
spatio-temporal time-series measurements, such as the number of infections in a given
neighborhood or city. Thus, DMD provides particularly interpretable decompositions
for these systems, as was explored by Proctor and Eckhoff [353] and illustrated in
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094104-2 Shervin Bagheri Phys. Fluids 26, 094104 (2014)

period—on the degree of non-normality4 of the linearized and deterministic Floquet system. As we
show herein and first derived in Gaspard,5

Q ≈ T 2

πε

1
|S|

, (2)

where S is the “sensitivity” to white Gaussian noise of amplitude ε " 1. It can be shown5 that the
expression for S is given by

S = − fT1 ũ(T )
fT1 e1

, (3)

where ũ(T ) is obtained by integrating the linearized equations (presented in Sec. III C). The vectors
f1 and e1 are the first left (i.e., adjoint) and right eigenvectors of the linearized Floquet system.
In particular, if the system is highly non-normal then fT1 e1 " 1, giving S $ 1, e.g., a very large
sensitivity of the limit cycle period to noise. Thus, although phase diffusion is a stochastic effect
observed in the nonlinear system, Q is directly dependent on the local linear stability properties
of the deterministic limit cycle. This suggests that some oscillators may in fact be very sensitive
to external fluctuations, despite the common viewpoint that oscillators are “insensitive” to small
amplitude external forcing (in contrast to noise amplifiers).6

The second objective of this paper is to use the presented theory to show the effects of weak
noise on the spectrum of the Koopman operator.7, 8 This linear operator describes the evolution of
observables and provides a full description of nonlinear dynamics. In Figure 1, the spectrum of the
operator for an oscillator is shown in the absence (square symbols/red ) and presence (circles/black
symbols) of noise. In the former case, the eigenvalues are integer multiples of the fundamental
frequency, i.e.,

λm = imω,

where m = 0, ±1, ±2, . . . . As shown in Bagheri,9 these Koopman eigenvalues10 can be computed
using the dynamic mode decomposition (DMD) algorithm.11 The eigenvalues correspond to global
modes, characterizing the different harmonics of the oscillating flow. In the presence of noise
however, the eigenvalues can be approximated by

λm = imω − ε
|S|
2T

ω2m2 +O(ε2), (4)

where S was defined in (3). For a noisy dynamical system containing a limit cycle, the spectrum
(at the leading order) given by (4) becomes damped, i.e., the eigenvalues have a nonzero real part,
which is proportional to the sensitivity S and increases quadratically with higher harmonics of ω.
Since any experiment—numerical or laboratory—is subject to some level of random perturbations,
we may—in practice—expect damped Koopman eigenvalues more often than eigenvalues on the
imaginary axis (or on the unit circle). Thus, in the presence of noise one should observe parabolic
shapes in the spectrum, which happens to be the form of many DMD spectra in literature.12, 13 The
reason for damped eigenvalues is that the Koopman operator—which in the absence of noise is linear
advection operator—becomes a linear advection-diffusion operator in the presence of noise.

Noisy limit cycle
 Deterministic limit cycle

 

Spectrum of evolution operator

0

0

1 2-1-2

1/τ
Re(λ  )

x iω

Τ

1

m

FIG. 1. Koopman eigenvalues λm of an oscillator with period T = 2π /ω1 in the presence and absence of noise.

094104-8 Shervin Bagheri Phys. Fluids 26, 094104 (2014)

FIG. 6. The top frame shows four snapshots of a helium jet; it uses Schlieren techniques to visualize the dynamics of the
fluid structure; thus, only a scalar field—proportional to the density gradient and quantified by its location on a grey-scale
colormap—is being processed. The first snapshot (most left) also contains the size and location (box marked with an arrow)
of the interrogation window for the subsequent DMD-analysis. Note from this snapshots that the flow is turbulent away from
the nozzle, but initially shows very well structured coherent motion, that is also oscillatory in time. The bottom frame in the
figure shows the spectrum extracted using the DMD algorithm. Figure taken from Schmid et al.12 Reprinted with permission
from P. Schmid et al. Copyright 2009 Springer Science and Business Media.

the eigenvalues associated with the deterministic limit cycle obtained from the DMD in Bagheri9
where all located on the imaginary axis. However, in practice and often for experimental data,
the DMD spectrum shows damped eigenvalues. We show in Figure 6 a typical DMD spectrum
found in literature.12 The spectrum shows the trait of an advection-diffusion operator, i.e., parabolic
branches are clearly observed. These parabolic shapes are indeed very similar to the spectrum of
a noisy limit cycle as outlined in Sec. II B. In the context of the theory presented herein, one may
hypothesize that the parabolic branches observed in DMD spectra are due to the presence of noise.
In that case, one would further expect that the decay rate of the first eigenvalue in the spectrum
provides an estimate of the quality factor. However, whereas the parabolic shapes in the spectrum of
A defined by (10) are related to expected values of an observable, classical DMD is often based on
sampling directly the observable (not its statistics). As shown in this paper, for a noisy and nonlinear
oscillator, each realization of a trajectory (even with the same initial condition) is different, and
hence the DMD spectrum will vary for different realizations of the same system. One way to make
the algorithm robust and the spectrum unique is to use statistical observables, such as expectation
values and correlation functions. Using such a probabilistic approach, one is effectively investigating
the evolution of a set of trajectories. One effort to generalize DMD to datasets based on more than
one trajectory is the recent DMD theory presented in Tu et al.,16 which provides Ritz vectors and
values of multiple trajectories.

III. WEAK-NOISE THEORY

This section provides the necessary theory to derive Eqs. (3) and (4). In places where lengthy
but rather straightforward derivations are required, we refer to other papers. This is because the
key points of this paper are the consequences of weak-noise theory linking quality factor, Floquet
analysis and Koopman spectrum. The main theory in a more general and rigorous form can be found
in Gaspard.5 Specifically, the structure of this section is as follows. The first part shows that Q in (1)
may be approximated by the first eigenvalue λ1 of an evolution operator. Moreover, Q depends on

Fig. 3.4 (top) Koopman eigenvalue spectrum for oscillator with noise. (middle, bottom) DMD
spectrum for jet flow, exhibiting similar noise pattern. Reproduced with permission from
Bagheri (2014 Physics of Fluids) [24]; (bottom, middle) panels originally from Schmid,
Juniper, and Pust (2011 Theoretical and Computational Fluid Dynamics) [379].

Figure 3.5. Modal frequencies often correspond to yearly or seasonal fluctuations.
Moreover, the phase of DMD modes gives insight into how disease fronts propagate
spatially, potentially informing future intervention efforts. The application of DMD
to disease systems also motivated the DMDc algorithm [351], since it is infeasible to
stop vaccinations in order to identify the unforced dynamics.

3.3.3. Neuroscience. Complex signals from neural recordings are increasingly
high-fidelity and high-dimensional, with advances in hardware pushing the frontiers
of data collection. DMD has the potential to transform the analysis of such neural
recordings, as evidenced in a recent study by B. Brunton et al. [60] that identified
dynamically relevant features in ECOG data of sleeping patients, shown in Figure 3.6.
Since then, several works have applied DMD to neural recordings or suggested possible
implementation in hardware [6, 53, 430, 276].

3.3.4. Video Processing. DMD has also been used for segmentation in video
processing, as a video may be thought of as a time series of high-dimensional snapshots
(images) evolving in time. Separating foreground and background objects in video is
a common task in surveillance applications. Real-time separation is a challenge that
is only exacerbated by increasing video resolutions. DMD provides a flexible approach
to video separation, as the background may be approximated by a DMD mode with
zero eigenvalue [153, 121, 342], as illustrated in Figure 3.7.
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Fig. 3.5 Results of DMD analysis for polio cases in Nigeria. Reproduced with permission from
Proctor and Eckhoff (2015 International Health) [353].

Fig. 3.6 Illustration of DMD applied to human brain data from electroencephalogram (ECOG) mea-
surements. Reproduced with permission from B. Brunton et al. (2016 Journal of Neuro-
science Methods) [60].

3.4. Connections to Other Methods. Linear regression models are common
throughout the sciences, and so it is not surprising to find many methods that are
closely related to DMD. These related methods have been developed in a diverse set of
scientific and mathematical disciplines, using a range of mathematical formulations.

3.4.1. System Identification. DMD may be viewed as a form of system identi-
fication, which is a mature subfield of control theory. Tu et al. [435] established a
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Fig. 3.7 DMD may be used to process videos, extracting dominant background modes with zero
frequency. Reproduced with permission from Erichson, Brunton, and Kutz (2019 Journal
of Real-Time Image Processing) [121].

connection between DMD and the ERA [188]. Subsequently, DMDc [351] was also
linked to ERA and the observer Kalman identification methods (OKID) [347, 346].
ERA and OKID construct input-output models using impulse response data and
continuous disturbance data, respectively [188, 189, 347, 346, 187]. Both of these
methods were developed to construct input-output state-space models for aerospace
applications where the systems tend to have higher rank than the number of sensor
measurements [172, 188]. In contrast, DMD and DMDc were developed for systems
with a large number of measurements and low-rank dynamics. ERA and OKID have
also been categorized as subspace identification methods [355], which include the nu-
merical algorithms for subspace system identification (N4SID), multivariable output
error state space (MOESP), and canonical variate analysis (CVA) [441, 442, 200, 355].
Algorithmically, these methods involve regression, model reduction, and parameter es-
timation steps, similar to DMDc. There are important contrasts to be made regarding
the projection scaling among all of these diverse methods [351], but the overall view-
point is similar among them. Recently, DMD has also been combined with an extended
Kalman filter to simultaneously denoise and estimate parameters [323, 324]. The prob-
lem of data assimilation, which arose in geosciences [234, 14], is closely related to the
construction of the state observer in control theory. DMD- and POD-based data-
driven model reduction was successfully combined with model-based Kalman filters
to yield state and uncertainty estimates [181, 287]. Furthermore, such models were
shown to be highly effective even for model dimensions out of the reach of classical
particle filtering techniques [7].

It is important to note that these subspace system identification approaches are
designed to model linear systems, and it is unclear how to interpret the results when
they are applied to nonlinear systems. However, the strong connection between DMD
and the Koopman operator provides a valuable new perspective on how to interpret
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these approaches, even when used to model data from nonlinear dynamical systems.
For example, we will see in subsection 5.2 that ERA, which is valid for linear systems,
may be applied to nonlinear systems with a modern Koopman interpretation.

3.4.2. ARIMA: Autoregressive Integrating Moving Average. Autoregressive
moving average (ARMA) models and the generalized autoregressive integrated mov-
ing average (ARIMA) models [48] are commonly used in statistics and econometrics.
These models leverage time-series data to build models to forecast predictions into
the future. ARIMA models are often applied to data that are nonstationary. Like
DMD, ARMA and ARIMA models are characterized by a number of key parameters,
one of them being the number of past time points used for forecasting a future point.
However, DMD correlates each time snapshot directly to the previous time snapshot.
Autoregressive models have a number of useful variants, including a generalization to
a vector framework, i.e., the VARIMA (vector ARIMA) model, and a generalization
which includes seasonal effects, i.e., the SARIMA (seasonal ARIMA) model. In the
DMD architecture, seasonal variations are automatically included. Moreover, if the
mean of the data matrix X is subtracted, then the companion matrix DMD formula-
tion from subsection 3.1.3 has been shown to be equivalent to a Fourier decomposition
of the vector field in time [82, 171]. DMD can be thought of as taking advantage of
both the vector nature of the data and any oscillatory (seasonal) variations. Further,
the real part of the DMD spectra allows one to automatically capture exponential
trends in the data.

3.4.3. LIM: Linear Inverse Modeling. Linear inverse models (LIMs) have been
developed in the climate science community. LIMs are essentially identical to the
DMD architecture under certain assumptions [435]. By construction, LIMs rely on
low-rank modeling, like DMD, using low-rank truncations that are known as empirical
orthogonal functions (EOFs) [253]. Using EOFs, Penland [343] derived a method to
compute a linear dynamical system that approximates data from a stochastic linear
Markov system, which later came to be known as LIM [344]. Under certain circum-
stances, DMD and LIM may be considered equivalent algorithms. The equivalence of
projected DMD and LIM gives us yet another way to interpret DMD analysis. If the
mean of the data is removed, then the low-rank map that generates the DMD eigen-
values and eigenvectors is simply the same map that yields the statistically most likely
state in the future. This is the case for both the exact and projected DMD algorithms,
as both are built on the same low-order linear map. LIM is typically performed for
data where the mean has been subtracted, whereas DMD is valid with or without mean
subtraction. Regardless, there is a strong enough similarity between the two methods
that the communities may find their particular innovations mutually valuable.

3.4.4. PCR: Principal Component Regression. In the statistical sciences, prin-
cipal component regression (PCR) [183] is a regression analysis technique that is once
again based on the SVD (specifically, principal component analysis). PCR regresses
the outcome (also known as the response or the dependent variable) on the principal
components of a set of covariates (also known as predictors or explanatory variables
or independent variables) based on a standard linear regression model. Instead of
regressing the dependent variable on the explanatory variables directly, PCR uses the
principal components of the explanatory variables as regressors. One typically uses
only a subset of all the principal components for regression, thus making PCR a regu-
larized procedure. Often the principal components with larger variances are selected
as regressors; these principal components correspond to eigenvectors with larger eigen-
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values of the sample variance-covariance matrix of the explanatory variables. However,
for the purpose of predicting the outcome, the principal components with low vari-
ances may also be important, in some cases even more important [183, 182]. Unlike the
DMD/LIM literature, which has been traditionally steeped in dynamics, the statistics
literature is often concerned with regression of static data, mapping generic input data
to target data. Thus PCR is typically not specifically applied to time-series data, but
is instead a general regression procedure that may or may not be applied to data from
a dynamical system. In some sense, the first two steps of the DMD algorithm may
be viewed as performing PCR on snapshot data from a high-dimensional dynamical
system. However, PCR does not include the additional steps of eigendecomposition
of the matrix \~A or the reconstruction of high-dimensional coherent modes. This last
step is what relates DMD to the Koopman operator, connecting the data analysis to
nonlinear dynamics.

3.4.5. Resolvent Analysis. DMD and Koopman operator theory have also been
connected to the resolvent analysis from fluid mechanics [390, 169]. Resolvent analysis
seeks to find the most receptive states of a dynamical system that will be most ampli-
fied by forcing, along with the corresponding most responsive forcings [432, 185, 286,
184]. Sharma, Mezi\'c, and McKeon [390] established several important connections be-
tween DMD, Koopman theory, and the resolvent operator, including a generalization
of DMD to enforce symmetries and traveling wave structures. They also showed that
the resolvent modes provide an optimal basis for the Koopman mode decomposition.
Typically, resolvent analysis is performed by linearizing the governing equations about
a base state, often a turbulent mean flow. However, this approach is invasive, requir-
ing a working Navier--Stokes solver. Herrmann et al. [169] have recently developed a
purely data-driven resolvent algorithm, based on DMD, that bypasses knowledge of
the governing equations. DMD and resolvent analysis are also both closely related
to the spectral POD [431, 385, 419], which is related to the classical POD of Lumley
and provides time-harmonic modes at a set of discrete frequencies.

4. Koopman Operator and Modern Nonlinear Dynamics.

4.1. Eigenfunctions as Nonlinear Coordinate Changes. Koopman eigenfunc-
tions provide an explicit coordinate transformation between the nonlinear dynamical
system \.x = f(x) (1.1) and a factor of the Koopman (Lie) dynamical system \.g = \scrL g
(2.11), where functions g are restricted to the span of a subset of Koopman eigenfunc-
tions. In this section, we provide an overview of results that exploit the linearity of
Koopman dynamics to arrive at conclusions about the original nonlinear dynamical
system.

Consider a more general setting between two dynamical systems \.x1 = f1(x1) for
x1 \in \scrX 1 and \.x2 = f2(x2) for x2 \in \scrX 2, respectively, inducing flows Fk : \scrX k \rightarrow \scrX k

given by xk(t) = Ft
k(xk(0)), k = 1, 2. If there exists a homeomorphism (continuous

function with a continuous inverse) h : \scrX 1 \rightarrow \scrX 2 such that its composition with the
flows

(4.1) h \circ Ft
1 \equiv Ft

2 \circ h

holds everywhere, the two dynamical systems are topologically conjugate.2 The orbit

2Restricting the domain to a strict subset of \scrX 1,2 leads to local conjugacy. Requiring higher
regularity (differentiability, smoothness, analyticity) of h and h - 1, or extending h to also convert
between the time domains of two systems, leads to related concepts in the theory of differential
equations and dynamical systems covered by standard textbooks such as [446, 345, 288].
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structure of two topologically conjugate dynamical systems is qualitatively the same.
Therefore, if one identifies a pair of such systems where one of them is easier to
analyze analytically or numerically, or is already familiar, it makes it possible to
port results from the ``simpler"" to the more complicated system. One seminal result
of this sort is the Hartman--Grobman theorem [446, sect. 19.12A], which establishes
that a nonlinear system \.x = f(x) in an open neighborhood of a hyperbolic fixed point
x0 is locally topologically conjugate to its linearization \.z = Az, where A = Df(x0),
formally justifying the use of the Jacobian in inferring stability of hyperbolic nonlinear
equilibria.

Lan and Mezi\'c [231] recognized that the conjugacy relationship resulting from
the Hartman--Grobman theorem

(4.2) h(Ft(x)) = e\bfA th(x),

where e\bfA t is the flow of the linearization, implies the existence of a (vector-valued)
Koopman eigenfunction h, as it matches the definition (2.12). By diagonalization of
A, the components hk of h are precisely scalar-valued Koopman eigenfunctions. Al-
though Hartman--Grobman establishes that (4.2) holds only in some neighborhood of
the origin, [231] shows that trajectories emanating from the boundary of that neigh-
borhood (backward in time) can be used to extend the definition of eigenfunctions hk
up to the edge of the basin of attraction or up to the end of the interval of existence
of trajectories, therefore proving an extension of the Hartman--Grobman theorem to
the entire basin of attraction. Additional results by Eldering, Kvalheim, and Revzen
further extend these results to normally attracting invariant manifolds [119]. By anal-
ogous results for discrete-time dynamics, linearization of periodic and periodically
forced dynamical systems follows.

In [46], this idea is extended to construct the conjugacy h(\cdot ) between two non-
linear systems that are known to be topologically conjugate. Explicit construction of
conjugacies is generally a difficult task that is often eschewed when existence of con-
jugacy can be inferred from other properties of the system. It is demonstrated that
while for one-dimensional systems the construction is straightforward, conjugacies on
state spaces in Rn require a more delicate approach, especially when dealing with
eigenvalues with nontrivial geometric multiplicity.

In the setting of model/order reduction, relations (4.1) and (4.2) are required to
hold for noninvertible maps or on closed (or even singular) subsets of the domain. In
this case the full orbit structure of systems is not typically qualitatively the same; how-
ever, much can be gained by studying a simpler, often significantly lower-dimensional
system and transporting its properties onto the original dynamics.

In this context, Mauroy et al. [280, 283] demonstrated that the coordinate trans-
formations hk can be numerically computed by forward integration of a trajectory
and a Laplace average of an observable,

(4.3) \~g\lambda (x) := lim
T\rightarrow \infty 

1

T

\int T

0

gt(x)e
\=\lambda tdt,

which is an extension of the harmonic Fourier average (2.30). The existence and
uniqueness of Ck Koopman eigenfunctions has been established around stable fixed
points and periodic orbits by Kvalheim et al. [229, 228], rigorously justifying their use
as conjugacies.

The isostables (level sets of the absolute value of eigenfunctions) and isochrons
(level sets of the arguments of complex eigenfunctions) act either as rectifiable Carte-
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28 A. Mauroy et al. / Physica D 261 (2013) 19–30

Fig. 8. For a fixed point with a complex eigenvalue �1, the isostables (black curves)
and the isochrons (red curves) of the fixed point are the level sets of |s1(x)| and
6 s1(x), respectively. In the vicinity of the fixed point, the isostables are ellipses and
the isochrons are straight lines. (The numerical computations are performed for the
FitzHugh–Nagumomodel,with the parameters considered in Section 4.1.2; the blue
dot represents the fixed point.) (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

determined by their topological properties: they define the unique
periodic partition of the state space (of period T1). In contrast,more
care was needed to define the isostables as the level sets of the
unique smooth Koopman eigenfunction s1.

Isostables and isochrons appear to be two different but
complementary notions. On one hand, the isostables are related
to the stability property of the system and provide information
on how fast the trajectories converge toward the attractor. On the
other hand, the isochrons are related to a notion of phase and
provide information on the asymptotic behavior of the trajectories
on the attractor. Given (11), the isostables are related to the
property
d

dt
|s1(�t(x))| = �1|s1(�t(x))| (22)

while the isochrons are characterized by
d

dt

6 s1(�t(x)) = !1. (23)

In the case of fixed points, it is clear that the isochrons are
not relevant to characterize the synchronous convergence of the
trajectories, a fact that stresses the importance of considering the
isostables instead.

5.2. Action–angle coordinates and global linearization

For a two-dimensional dynamical system which admits a
spiral sink (i.e. with two complex eigenvalues), the two families
of isostables and isochrons provide an action–angle coordinates
representation of the dynamics. More precisely, (22) and (23)
imply that, with the variables (r, ✓) = (|s1(x)|, 6 s1(x)), the system
is characterized by the (action–angle) dynamics
ṙ = �1r

✓̇ = !1

in the basin of attraction of the fixed point. For systems of higher
dimension, the action–angle dynamics are obtained with several
Koopman eigenfunctions, i.e. (rj, ✓j) = (|sj(x)|, 6 sj(x)) leads to
ṙj = �jrj, ✓̇j = !j. Note that this was also shown in Section 2.1.2 in
the case of linear systems with �1 62 R.

When expressed in the action–angle coordinates, the dynamics
become linear. This is in agreement with the recent work [20]
showing that a coordinate systemwhich linearizes the dynamics is
naturally provided by the eigenfunctions of the Koopman operator

Fig. 9. The coordinates z1 (black curves) and z2 (red curves) correspond to Cartesian
coordinates in the vicinity of the fixed point but are deformed when far from the
fixed point. (The numerical computations are performed for the FitzHugh–Nagumo
model, with the parameters considered in Section 4.1.2; the blue dot represents the
fixed point.) (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(see also the Appendix). Namely, in the new variables yj = sj(x),
the system dynamics are given by

d

dt

0

B@
y1
...
yn

1

CA =

0

B@
�1 0

. . .

0 �2

1

CA

0

B@
y1
...
yn

1

CA .

Moreover, the linear change of coordinates
0

B@
z1
...
zn

1

CA = V

0

B@
y1
...
yn

1

CA , (24)

where the columns of V are the eigenvectors vj of the Jacobian
matrix J at the fixed point, leads to the linear dynamics

d

dt

0

B@
z1
...
zn

1

CA = J

0

B@
z1
...
z2

1

CA .

For the two-dimensional FitzHugh–Nagumo model, the coordi-
nates (z1, z2) are represented in Fig. 9 and are equivalent to the ac-
tion–angle coordinates (r, ✓) (Fig. 8). They correspond to Cartesian
coordinates in the vicinity of the fixed point, where the linearized
dynamics are a good approximation of the nonlinear dynamics (see
also (A.3) in the Appendix). But owing to the nonlinearity, the co-
ordinates are deformed as their distance from the fixed point in-
creases. The comparison between these coordinates and regular
Cartesian coordinates therefore appears as ameasure of the system

nonlinearity.
In the case of two-dimensional systemswith a stable spiral sink,

the derivation of action–angle coordinates and the global lineariza-
tion are obtained through the isostables and the isochrons, that
is, with only the first Koopman eigenfunction s1(x). For higher-
dimensional systems (or two-dimensional systems with a sink
node), global linearization involves several Koopman eigenfunc-
tions sj(x) (see [20] for a detailed study), which can be obtained
through the generalized Laplace averages (see Remark 3). In the
context ofmodel reduction, orwhen the dynamics are significantly
slow in one particular direction, the first eigenfunction—related to
the isostable—is however sufficient to retain the main information
on the system behavior.

Fig. 4.1 Isostables and isochrons for the FitzHugh--Nagumo model acting as a deformed rectifiable
coordinate system in the vicinity of a focus (left) and node (right). Reproduced with per-
mission from Mauroy, Mezi\'c, and Moehlis (2013 Physica D) [283].

sian coordinate systems for node equilibria or as rectifiable polar (action-angle) coor-
dinate systems for focus-type equilibria, as shown in Figure 4.1, with clear general-
izations to higher-dimensional systems.

Further theoretical developments have led to extensions to nonlinear stability
analysis and optimal control of systems [401, 279, 282, 400, 281]. The papers [450, 453]
apply this concept to synchronization of oscillators by extending the phase-response
curves using isostables and isochrons computed as Koopman eigenfunctions. Notably,
these developments demonstrate that Koopman eigenfunctions are a viable and practi-
cal path both in analytic [452] and in data-driven approaches [451] to synchronization
of oscillators.

4.2. Phase Portrait and Symmetries. Discussions of Hartman--Grobman theory
and conjugacies are typically concerned with the behavior of two dynamical systems
in the vicinity of an object of interest, such as a basin of attraction/repulsion of a fixed
point or periodic orbit. Here we describe how Koopman eigenfunctions can reflect the
structure of the entire phase portrait of the dynamical system.

The phase portrait of a dynamical system on state space \scrX is a collection of all
orbits o(x) = \{ Ft(x)\} t\in R emanating from each initial condition x by the flow map Ft.
It is immediately clear that two initial conditions y, z on the same orbit o(x) generate
the same orbit, o(x) = o(y) = o(z). However, computationally pointwise equality
between orbits may be challenging to verify when orbits are merely approximated
by numerical integration, and when orbits contain thousands of points. Instead, it
may be practical to verify that the orbital averages of a subset of functions \scrG (\scrX ) are
sufficiently close (resp., distant) to declare that two collections of points belong (resp.,
do not belong) to the same orbit.

As mentioned in subsection 2.2, the orbital average, or ergodic average, of any ob-
servable g \in \scrG (\scrX ) projects the observable on the invariant eigenspace of the Koopman
operator. Therefore, the heuristic technique for comparing orbits described above can
be interpreted by comparing whether points y and z are mapped to the same point
by a vector-valued function P : \scrX \rightarrow Rp, p \leq \infty , whose components are all invariant
Koopman eigenfunctions:

(4.4) Q(x) =
\bigl[ 
q1(x) q2(x) \cdot \cdot \cdot qp(x)

\bigr] 
, where \scrK qj \equiv qj .

Mezi\'c and Wiggins [297] showed that when the number of averaged functions grows
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(a) (b)

Fig. 4.2 (a) Approximate ergodic partition of the Chirikov Standard Map. Reproduced with per-
mission from Levnaji\'c and Mezi\'c (2010 Chaos) [240]. (b) Sketch of ordering of orbits by
ergodic quotient trajectories. Reproduced with permission from Budi\v si\'c and Mezi\'c (2012
Physica D) [69].

to infinity, this procedure manages to separate ergodic sets that are measure-theoretic
counterparts to orbits. This approach was applied to visualize the phase portrait [297,
240, 69], where it is possible to assign pseudocolors to trajectories, generating visually
appealing and detailed figures as in Figure 4.2(a).

Using the embedding function (4.4) it is further possible to treat the ergodic
quotient as a geometric object and compute its local coordinates. Such coordinates
parameterize the space of invariant (ergodic) sets; when continuous, they act as a
way of ordering level sets of conserved quantities, even when no explicit (or global)
formula for conserved quantities is known. The crucial step is to treat the elements
qi(x) in (4.4) as Fourier coefficients and define a metric using a Sobolev norm on
the associated space. The resulting geometric space can then be coordinatized using
manifold learning algorithms.

The ergodic partition is a process of classifying global information, assuming ac-
cess to many trajectories, into how they relate locally. The opposite direction, where
local information is stitched into a global picture, is equally as relevant. Consider two
disjoint invariant sets A,B \subset \scrX of the dynamics Ft : \scrX \rightarrow \scrX . A typical application
of DMD starts from a single trajectory and constructs a finite-dimensional approxi-
mation of the Koopman operator. Depending on whether the initial condition is in
A or in B, any single trajectory based computation can at best approximate the re-
stricted Koopman operators \scrK A and \scrK B that do not have to have direct connections,
except as restrictions of the Koopman operator associated with the dynamics on the
entire space. Indeed, it was typical of early papers to either assume that the system
has a quasi-periodic attractor, so that all trajectories quickly converge to this set, or
to assume that the trajectory used for DMD is ergodic, so that it visits close to any
other point in the state space, ruling out the existence of disjoint invariant sets A,B
of positive measure.

If DMD is indeed computed twice, based on trajectories contained in disjoint
ergodic sets, it is possible to ``stitch"" the two operators \scrK A, \scrK B together by placing
them into a block-diagonal stitched Koopman operator. Assuming that the respective
spaces of observables are L2(A,\mu A), L

2(B,\mu B), the joint space over \scrX = A \cup B can
be taken as

(4.5) \scrG (\scrX ) = L2(A \cup B,\mu A + \mu B) = L2(A,\mu A)\oplus L2(B,\mu B),
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since any function f \in \scrG (\scrX ) can be decomposed into disjoint components owing to
A,B being disjoint. Reference [314] gives further theoretical backing to this process,
as well as an incremental and a nonincremental version of the data-driven DMD
procedure built in this fashion. For practical purposes, the assumption that A and B
are truly dynamically separate is not needed; rather, it is simply sufficient to choose
pairs of DMD trajectory samples in a trajectory from two disjoint sets in order to
construct such restricted approximations that can be stitched [395].

A particularly important application of stitching across invariant sets concerns
phase spaces of systems with symmetries. When the orbit structure is symmetric with
respect to a transformation, the analysis of the entire phase space can be dramatically
simplified. Symmetry of the differential equations (1.1) with respect to a symmetry
group \Gamma , or \Gamma -equivariance, is defined as a conjugacy

(4.6) f(\gamma x) = \gamma f(x) \forall \gamma \in \Gamma ,

where \gamma represents action by a group element on the state space. An analogous re-
lationship holds for discrete dynamics (1.4). In both cases, the implication is that
given any orbit \{ x(t)\} t\in R, there exist symmetry-related counterparts \{ \gamma x(t)\} t\in R gen-
erated by applying any \gamma \in \Gamma to the orbit. Stability and asymptotic properties of the
symmetry-related orbits are the same, which allows us to study just a portion of the
state space in detail and then export those results to other parts of the state space
by symmetry.

Although symmetry-based arguments have long been used to simplify dynami-
cal systems, especially in classification of bifurcations, explicit connections with the
Koopman operator framework are fairly recent [191, 371, 289, 395]. In all cases, the
central role is played by connections between the definition of the Koopman operator
and the conjugacy in the definition of equivariance. The following two theorems ap-
pear as Theorem III.1 and its corollary in [371], and Theorem 1 and Proposition 2 in
[395].

Theorem 4.1. For a \Gamma -equivariant dynamical system, \scrK commutes with the ac-
tion of all \gamma \in \Gamma for any observable g \in \scrG (\scrX ),

(4.7) [\gamma \circ (\scrK g)](x) = [\scrK (\gamma \circ g)](x).
Proposition 4.2. Any eigenspace of \scrK for a \Gamma -equivariant dynamical system is

\Gamma -invariant.

Proofs of both statements follow by manipulation of the definitions of an eigen-
function (2.12) and equivariance (4.6), and we omit them here. For cyclic groups, i.e.,
finite groups Zn = \{ 1, \gamma , \gamma 2, . . . , \gamma n - 1\} , a more detailed argument is given in [289], in
particular, stating that Koopman modes associated with a particular eigenvalue are
similarly symmetric.

The symmetry arguments fit well with the idea of ``stitching"" the global Koopman
operator from ``local"" Koopman operators, because symmetry removes the need for
simulating additional trajectories in order to explore various invariant sets. Consider
two disjoint invariant sets A,B \subset \scrX that are related by a linear group action \tau \gamma , i.e.,
A = \tau \gamma B. An example of such a phase portrait is shown in Figure 4.3. Choosing
a common finite set (dictionary) of observables, Koopman operators may be given
(approximate) representations on each of these sets by computing the approximations
from trajectories in A and B, yielding Koopman matrices KA,KB . These matrices
are conjugate (similar),

(4.8) KA = T - 1
\gamma KBT\gamma ,
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Fig. 4.3 Invariant sets for a dynamical system with Z2 \times Z2 symmetry whose Hamiltonian is
H(p, q) = p4/4  - 9p2/2  - q4/4 + 9q2/2. Reproduced with permission from Sinha, Nan-
danoori, and Yeung [395].

where the conjugating matrix T is the group action on the space of observables, as
Sinha, Nandanoori, and Yeung [395] show. As a result, assuming that KA can be
computed, the matrix KB can then be computed without additional simulations.

Even in the case that the full Koopman operator approximation may be directly
computed, converting it to a block-diagonal form simplifies the task of computing its
spectral properties since eigendecomposition may be performed on individual blocks
instead of the entire operator. Commutativity of two linear operators, the full Koop-
man operator and the multiplication by its approximate matrix representation, implies
that they preserve each other's eigenspaces, further implying that even when the space
of observables \scrG (\scrX ) is not constructed as a direct product (4.5), it is possible to per-
form a change of basis based on the symmetry group such that \scrG (\scrX ) decomposes into
so-called isotypic subspaces, invariant with respect to \scrK . Consequently, this block-
diagonalizes a finite-dimensional representation of the Koopman operator. In [371],
this idea is taken as a starting point for a practical block-diagonalization of matrices
appearing in DMD. Figure 4.4 demonstrates how the structure of a DMD matrix can
be simplified using the known symmetries.

An example of isotypic decomposition of functions g \in \scrG (\scrX ) associated with the
group Z2, where \gamma (x) =  - x, is a decomposition into odd and even components

(4.9) g(x) =
g(x) + g( - x)

2\underbrace{}  \underbrace{}  
=:ge(x)

+
g(x) - g( - x)

2\underbrace{}  \underbrace{}  
=:go(x)

.

A generalization of this procedure to arbitrary finite groups is used as a precon-
ditioning step in a modified eDMD (see subsection 5.1) procedure in [371], resulting
in a block-diagonalized form of the associated DMD matrix that approximates the
Koopman operator. Consequently, this reduces the computational effort needed to
compute eigenvalues of the Koopman operator.

4.3. Adjoint: The Perron–Frobenius Operator. The Perron--Frobenius (PF)
operator, also known as the Ruelle transfer operator, is a linear representation of
nonlinear dynamics that traces its roots to the mathematics underpinning statistical
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Fig. 4.4 Sparsity structure of DMD matrices before (left) and after (right) a block-diagonalization
procedure applied to a coupled Duffing oscillator system with Z2 \times D3 symmetry. Repro-
duced with permission from Salova et al. (2019 Chaos) [371].

and quantum physics, paralleling the development of the Koopman operator. Instead
of evolving measurement functions (observables) taking values from the domain of
the dynamics, as the Koopman operator does, the PF operator evolves measures
(distributions) supported on the domain of the dynamics. As the PF and Koopman
operators can be shown to be formally adjoint in appropriately defined function spaces,
we summarize the basic concepts related to the PF operator here. The fundamentals
are well documented in textbooks and monographs [233, 47, 141, 93], and we point
to them for a more precise and general introduction of these topics.

Let the domain of dynamics \scrX be given the structure of a Borel measurable space.
Given a probability measure \mu , and any measurable set A, define the PF operator as

(4.10) \scrP t\mu (A) := \mu (F - t(A)),

where F - t(A) := \{ x \in \scrX : Ft(x) \in A\} is the preimage of A through the dynamics.
Similar to the Koopman operator, the family \scrP t forms a monoid. An alternative
formulation by Lasota and Mackey [233] replaces the action on the space of probability
measures with an action on a function space. This assumes that the flow map Ft

is nonsingular with respect to some ground measure m, e.g., a Lebesgue measure,
meaning

(4.11) m(A) \not = 0 =\Rightarrow m(F - t(\scrA )) \not = 0.

Interpreting g \in L1(\scrX , dm) as densities of measures, i.e., d\mu = gdm, it is possible to
define the PF operator \scrP t : L1(\scrX , dm) \rightarrow L1(\scrX , dm) as

(4.12)

\int 

A

\scrP tg(x)dm =

\int 

\bfF  - t(A)

g(x)dm

for any Borel set A. If the flow map is additionally smooth, this definition is equivalent
to

(4.13) \scrP tg(x) =

\int 

\bfF  - t(\bfx )

g(s)

| \nabla Ft(s)| dm(s),

where | \nabla Ft| indicates the determinant of the Jacobian matrix of derivatives of the
flow map.
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The two formulations (4.10) and (4.12) are connected by interpreting g \in L1 as
densities defining probability measures absolutely continuous with respect to dm, i.e.,
d\mu = gdm.

Assuming that the dynamics can be restricted to a space of finite measure, it
holds that L\infty (\scrX , dm) \subset L2(\scrX , dm) \subset L1(\scrX , dm). In this setting, the Koopman and
PF operators can be defined, respectively, on L\infty (\scrX , dm) and L1(\scrX , dm), or both on
L2(\scrX , dm), and one can show that they are adjoint to each other:

(4.14)
\bigl\langle 
\scrP tf, g

\bigr\rangle 
=

\bigl\langle 
f,\scrK tg

\bigr\rangle 
, where \langle f, g\rangle :=

\int 

\scrX 
\=f(x)g(x)dm.

Since the proof [233, sect. 3.3] proceeds by the standard argument of approximation by
simple functions, i.e., linear combinations of indicator functions, this relationship ex-
tends to a wider range of spaces. Adjoint operators have the same spectrum, although
their eigenfunctions do differ, as is the case in general for eigenvectors of matrices and
their adjoints (transposes). This connection is partially responsible for the parallel de-
velopment of Koopman and PF techniques in various contexts of applied mathematics.
For invertible nonsingular dynamics that preserve the Lebesgue measure, [233, Cor.
3.2.1] shows that the PF operator of the time-forward map Ft is precisely the Koop-
man operator of the time-backward map F - t. Several papers [213, 208, 206, 44, 150]
have treated both transfer operators, that is, Koopman and PF operators, using the
same formalism, especially in the contexts of volume-preserving invertible dynamics
and stochastic differential equations (SDCs).

An early, but still used, technique to approximate the PF operator by a stochastic
matrix is termed Ulam's method after a conjecture by Ulam [437, sect. IV.4], ulti-
mately proved to be correct by T.-Y. Li [243]. First, assume that the flow Ft preserves
a finite probability measure m on a bounded set \scrX , and partition \scrX into subsets \{ Si\} ,
each with the associated characteristic function \chi i. Choosing a fixed time T , we then
form the stochastic Ulam matrix

(4.15) U = (uij), uij := m(F - T (Si) \cap Sj).

Entries uij can be approximately computed by seeding a random (large) collection of
initial values in each set Sj and evolving by FT . The proportion of resulting endpoints
of trajectories that land in a set Si is entered in uij .

The described process amounts to a Monte Carlo integration of the integral
m(F - T (Si) \cap Sj) =

\int 
Sj
\chi (\bfF  - T (Si))dm(x) [100, 99] or, more generally, a procedure

to compute a Galerkin approximation of the PF operator using piecewise constant
functions [101]. A computationally efficient implementation as a code GAIO [98] was
shown to be able to approximate the eigenvalue spectrum of the PF operator and
its eigenfunctions [101] both in the L2 space and in fractional Sobolev spaces [134].
These set-oriented methods have also been connected with more classical geometric
structures, such as finite-time Lyapunov exponents [425].

An alternative to the Ulam approximation is the so-called periodic approximation
of the transfer operators, where a permutation matrix is used instead of the more
general stochastic matrix. While this approach dates back to the classical theory of
measure-preserving transformations in [159, 201, 237] and [89, Part IV], it has been
computationally revisited recently by [150] to approximate the continuous spectrum
of Koopman and PF operators and compute their spectral projectors.
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Eigenfunctions of the PF operator correspond to complex-valued distributions of
points in state space that evolve according to the associated eigenvalue

(4.16) \scrP t\rho = \lambda t\rho .

When \lambda = 1, \rho are invariant densities, which can be used to estimate the sets contain-
ing dynamical attractors, Sinai--Ruelle--Bowen measures, and partition the dynamics
into invariant sets. Even away from the limit of the Galerkin approximation, the
Ulam matrix U can be interpreted as a Markov chain transition matrix on a directed
graph, which allows for a definition of almost-invariant sets in the state space [133]
and a variational formulation of the problem of locating invariant sets in the state
space. Eigenfunctions for eigenvalues with | \lambda | \not = 1 are associated with the mixing
properties and escape rates in the state space of dynamical systems [137].

The infinitesimal generator for PF is the Liouville operator \scrA , defined analogously
to (2.7), which satisfies

(4.17) \scrP t = et\scrA .

Similar to the Lie generator of the Koopman operator (2.10), when dynamics are
specified using a velocity field \.x = f(x), the Liouville operator can be shown to
satisfy

(4.18) \scrA \rho =  - div(\rho f),

further leading to a PDE that eigenfunctions of the Liouville operator and PF operator
must satisfy,

(4.19) \mu \rho + div(\rho f) = 0,

whenever (4.16) is satisfied with \lambda = e\mu \in C/\{ 0\} .
Approximating \scrA instead of \scrP leads to so-called simulation-free numerical tech-

niques that can be interpreted either as finite-volume methods for the advection of
PDEs or as spectral collocation methods [136, 44].

Invariant eigenfunctions of both the Koopman and PF operators have been used
to extract invariant sets in the state space of dynamical systems. In function spaces
where these operators are dual, eigenfunctions of both operators theoretically contain
the same information. However, in reality, the choice may be made based on practical
constraints. For example, approximation of invariant sets via Koopman eigenfunctions
in [69, 240, 241] relies on long-duration trajectories, while Ulam's approximation of
PF typically requires short bursts of trajectories seeded densely in the domain.

4.4. Spectrum beyond Eigenvalues. Spectral characterization of infinite-dimen-
sional operators requires a separate treatment of two concepts: the spectrum, which
generalizes the set of eigenvalues of finite-dimensional operators, and integration
against spectral measures, which takes the role of the eigenvalue-weighted summa-
tion appearing in the spectral decomposition theorem for normal matrices. Standard
textbooks on functional analysis commonly provide an introductory treatment of these
concepts; however, among them we highlight [363, 364, 235], which include examples
relating to the Koopman operator.

In linear algebra, that is, for operators induced by matrix multiplication, the
spectrum \sigma (T) is synonymous with the set of eigenvalues \lambda , that is, scalars \lambda such
that

(4.20) T\bfitxi = \lambda \bfitxi or (T - \lambda I)\bfitxi = 0
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for some vector \bfitxi \in \scrG , termed the eigenvector. To extend the concept of a spectrum
to operators \scrT : \scrG \rightarrow \scrG on Banach spaces, we interpret (4.20) as a statement that
eigenvalues \lambda are those scalars for which the operator \scrT  - \lambda \scrI does not have a bounded
inverse. The spectrum \sigma (\scrT ) can be further classified into subsets based on the reason
for why (\scrT  - \lambda \scrI ) - 1 (the resolvent) fails to exist as a bounded operator.

For \lambda \in \sigma p(\scrT ) (the point spectrum) \scrT  - \lambda \scrI is noninjective; this coincides with
eigenvalues and is equivalent to a finite-dimensional spectrum.

For \lambda \in \sigma c(\scrT ) (the continuous spectrum) the range of \scrT  - \lambda \scrI is not the whole
codomain (nonsurjective); however, it is dense in the codomain. This amounts to
showing that for \varepsilon , there exists an observable g\varepsilon such that the analogue to the rela-
tionship (4.20) holds approximately \| \scrT g\varepsilon  - \lambda g\varepsilon \| < \varepsilon . In the context of Koopman
theory, this was studied classically by Rokhlin; see [365, 311], with more examples
in [89, sect. 13].

For \lambda \in \sigma r(\scrT ) (the residual spectrum) the range of \scrT  - \lambda \scrI is not the whole
codomain (nonsurjective), and it is not even dense in the codomain. There are stan-
dard examples of Koopman operators that have continuous and residual spectra, e.g.,
those equivalent to multiplication operators and shift operators. The spectral decom-
position theorem for normal matrices, which have orthogonal eigenvectors, states that
the action of the matrix can be represented by the decomposition

(4.21) Tng =
\sum 

\lambda \in \sigma (\bfT )

\lambda n\bfitxi \lambda \langle \bfitxi \lambda ,g\rangle ,

where \bfitxi \lambda \langle \bfitxi \lambda , \cdot \rangle are orthogonal spectral projections onto eigenvectors \bfitxi \lambda . Generaliz-
ing (4.21) to (infinite-dimensional) Koopman operators requires that the operators
are normal, which holds for certain dynamical systems. For example, when the flow
F is invertible and preserves a finite measure \mu , e.g., when the associated velocity
field is divergence-free on a bounded domain, working with the Hilbert space \scrH of
square-integrable observables g \in \scrH = L2(\scrX , \mu ) results in a unitary, and therefore
normal, Koopman operator [318]. Then the classical spectral resolution theorem (due
to Hilbert, Stone, and Hellinger) applies to \scrK [294, 290, 235] as

(4.22) \scrK ng =

\int \pi 

 - \pi 

ein\omega d[E(\omega )g] =
\sum 

k

ein\omega kPkg

\underbrace{}  \underbrace{}  
atomic

+

\int \pi 

 - \pi 

ein\omega d[Ec(\omega )g]

\underbrace{}  \underbrace{}  
continuous

,

where the operator-valued spectral measure E forms a partition of unity and can be
separated into atomic projections Pk and the continuous part Ec. This setting covers
a wide range of steady-state dynamics [116, 233, 89].

The atomic part of the spectral measure E(\omega ) is supported on frequencies \omega k that
yield eigenvalues ei\omega k of \scrK and are associated with regular dynamics. As for matrices,
when the eigenvalues are simple, the eigenspace projections Pk can be written using
eigenfunctions \varphi k of \scrK as

(4.23) Pkg = \langle g, \varphi k\rangle \varphi k.

The atomic part of the spectral decomposition therefore aligns with the framework
described in section 2.

There is no counterpart to the continuous spectral measure Ec(\omega ) in finite-dimen-
sional settings; therefore, interpreting Ec(\omega ) and its connections to the dynamics
requires routes that do not involve eigenvalues. In the remainder of this section
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we summarize (a) how existence/nonexistence of Ec(\omega ) is connected to asymptotic
statistical properties of the dynamics, (b) how the local structure of Ec(\omega ) connects
to evolution of Koopman on subspaces of observables, and (c) how to modify the
space of observables in order to convert the continuous spectrum into a continuum of
eigenvalues.

4.4.1. Global Properties. An operator-valued measure Ec(\omega ) can be converted
to a ``plain"" scalar measure by choosing a function (observable) g \in L2(\scrX , \mu ) and
studying its autocorrelation sequence \langle \scrK ng, g\rangle . Applying (4.22) here yields

(4.24) \langle \scrK ng, g\rangle =
\int \pi 

 - \pi 

ein\omega d \langle E(\omega )g, g\rangle \underbrace{}  \underbrace{}  
=:\sigma g(\omega )

,

where \sigma g(\omega ) is the Fourier or spectral measure for the evolution of g.
If the space L2(\scrX , \mu ) is defined with respect to an ergodic measure \mu , the auto-

correlation function of the observable can be computed along a trajectory initialized
at any x,

(4.25) Cg(n) := lim
K\rightarrow \infty 

1

K

K - 1\sum 

k=0

g(xk+n)g(xk) = lim
K\rightarrow \infty 

1

K

K - 1\sum 

k=0

[\scrK ng](xk)g(xk),

and is directly related to the Fourier coefficients of \sigma g,

\int \pi 

 - \pi 

ein\omega d\sigma g(\omega ) = \langle \scrK ng, g\rangle = lim
K\rightarrow \infty 

1

K

K - 1\sum 

k=0

[\scrK ng](xk)g(xk) = Cg(n).(4.26)

In other words, the Fourier measure \sigma g(\omega ) is the Fourier transform of the autocorrela-
tion function Cg(n), which allows for characterization of irregular dynamics in terms
of the measure \sigma g [215].

In general, E, and therefore some \sigma g, contains all three components that are
mutually singular (e.g., the Lebesgue decomposition of a measure [406]):

\bullet atomic component, supported on frequencies of eigenvalues;
\bullet absolutely continuous component, with a spectral density and corresponding
to mixing (stochastic-like) behavior [365, 117];

\bullet singularly continuous component, with a fractal structure and corresponding
to weakly anomalous transport [460, 348].

If \sigma g is absolutely continuous, it has a spectral density (the Radon--Nikodym deriva-
tive) and then Cg(n) \rightarrow 0, so the time-separated samples g(xk) will be asymptotically
equivalent to independent random variables. If the same holds for all nonconstant
observables g \in 1\bot , the dynamics is mixing. If \sigma g has neither atomic components nor
a spectral density, it is singularly continuous. In this case, samples in the time trace
are correlated infinitely often no matter their separation in time, but the correlation
occurs rarely enough that on average they appear uncorrelated. In this case, the
measure can be thought of as having a fractal structure since its support is neither
a full interval nor a collection of discrete points. If this holds for all g \in 1\bot , then
the dynamics is weakly mixing; this is the signature behavior of the so-called weakly
anomalous transport [462, 461, 211, 173].

4.4.2. Local Properties. To interpret how the local variation of \sigma g(\omega ) is associ-
ated with the dynamics, we investigate integrals over spectral intervals [a, b] \subset [ - \pi , \pi ],

D
ow

nl
oa

de
d 

07
/1

1/
22

 to
 2

05
.1

75
.1

06
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MODERN KOOPMAN THEORY FOR DYNAMICAL SYSTEMS 275

\int b

a
ein\omega d\sigma g(\omega ). It can be shown that such restrictions on the spectral domain are

equivalent to restrictions of \scrK to certain subspaces of observables [357, Prop. 2.7].
More precisely, there exists an orthogonal projection P[a,b] such that the following
equality holds:

(4.27)

\int b

a

ein\omega d\sigma g(\omega ) =

\int \pi 

 - \pi 

ein\omega 1[a,b]d\sigma g(\omega ) = \langle \scrK nP[a,b]g, P[a,b]g\rangle .

The range of the projection P[a,b] is the invariant subspace

(4.28) \scrH [a,b] = \{ g \in L2(\scrX , d\mu ) : \sigma g(T/[a, b]) = 0\} .

In other words, localizing the spectral integral results in a compression of \scrK t to some
dynamically invariant subspace of the space of observables. This holds more generally
not only for intervals, but also for arbitrary measurable sets in the spectral domain.

In applications, the selection of observables often comes before the analysis of dy-
namics. If the chosen observable happens to already be in some subspace \scrH [a,b], the re-
stricted integral would be equivalent to its full evolution \langle \scrK ng, g\rangle = \langle \scrK nP[a,b]g, P[a,b]g\rangle .
In other words, if one tried to infer the ``full"" evolution of the \scrK from a single ob-
servable, an unintentional choice of the observable g from an invariant subspace \scrH [a,b]

might result that instead of the full operator, \scrK , only its compression P\top 
[a,b]\scrK P[a,b]

may be reconstructed. On the other hand, there exists a subspace of observables for
which associated Fourier measures are ``maximal,"" in the sense that any zero set for
a maximal measure, i.e., spectral ``bandwidth"" exhibiting no dynamics, is a zero set
for any other Fourier measure. This implies that a judicious choice of observable can
make it possible to fully characterize statistical properties of the system from the
autocorrelation time series of a single observable.

If the content for many spectral intervals [a, b] \subset T is of interest, we may want
to approximate the weak derivative d\sigma g/d\theta and visualize it. In [219] the Fourier co-
efficients (or trigonometric moments) computed by ergodic averages (4.26) are used
to formulate the moment problem for the density d\sigma g/d\theta , which is solved using a
variational approach based on the Christoffel--Darboux kernel. Based on the approxi-
mated density, for any given interval [a, b] in the spectral domain one can construct a
type of an ergodic average that computes the associated projection P[a,b] of the evo-
lution, resulting in the analogue of eigenvectors for the continuous spectral measure.
Constructions involved relate to the HAVOK algorithm [61, 16] (see subsection 5.2)
due to the correlation function that connects time-delayed samples of the observable.
Figure 4.5 demonstrates this approach on an example of the Lorenz '63 dynamical
system that is known to be mixing on the attractor [257] by computing its spectral
density and a spectral projection for a spectral interval containing significant dynam-
ical content.

4.4.3. Removing the Continuous Spectrum by “Rigging.” To illustrate that
existence of the continuous spectrum (as defined by nonsurjectivity of \scrK  - \lambda \scrI ) is not
necessarily connected with irregular behavior, [292] studies in detail the pendulum

(4.29) \.\alpha = v, \.v =  - sin \theta ,

which can be converted to action-angle variables with I \geq 0 representing the conserved
quantity and a periodic variable \theta \in S1 the momentum,

(4.30) \.I = 0, \.\theta = I.
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Fig. 11. Lorenz system – N = 100. Left: density approximation with the CD kernel. Middle: distribution function approximation. 
Right: Singularity indicator ∆N defined in (37).

Fig. 12. Lorenz system – Observable f(x) = x3. Left: approximation of the atomic part ζN/(N + 1). Middle: approximation of the 
density ζN . Right: singularity indicator ∆N .

with an almost-periodic motion of the x3 component during the time that the state resides in either of 
the two lobes, with switches between the lobes occurring in a chaotic manner. In Fig. 13 we depict the 
approximation of the spectral projection P[a,b)f (see Section 5.2) with [a, b) = [0 .24, 0 .28] and f(x) = x3, 
i.e., we are projecting on a small interval around the peak in the spectrum of x3. This function will evolve 
almost linearly with frequency of the peak, i.e., (P[a,b)f)(x(t +τ)) ≈ eiωτ (P[a,b)f)(x(t)) with ω ≈ 8.17 rad/s.

626 M. Korda et al. / Appl. Comput. Harmon. Anal. 48 (2020) 599–629

Fig. 13. Lorenz system – Approximation of the spectral projection P[a,b)f with f(x) = x3 and [a, b] = [0.24, 0.28] and N = 100, 
M = 105.

7.3. Cavity flow

In this example we study the 2-D model of a lid-driven cavity flow; see [2] for a detailed description of the 
example and the data generating process. As in [2], the goal is to document the changes in the spectrum of the 
Koopman operator with increasing Reynolds number which are manifestations of the underlying bifurcations, 
going from periodic through quasi-periodic to fully chaotic behavior. For each Reynolds number, the data 
available to us is in the form of the so called stream function of the flow evaluated on a uniform grid 
of points in the 2-D domain with equidistant temporal sampling. This leaves us with a very large choice 
of observables since the value of the stream function at any of the grid points (as well as any nonlinear 
function of the values of the stream function) is a candidate observable. In general, one wishes to choose 
the observable f such that its spectral content is as rich as possible, preferably such that f is ∗-cyclic (see 
Eq. (9)), which is, however difficult to test numerically. For example, for Re = 13  · 10 3, exhibit periodic 
behavior with a single (or very dominant) harmonic component and hence might not contain the full spectral 
content of the operator (i.e., f is not ∗-cyclic). Therefore, for each value of the Reynolds number we chose 
as the observable the stream function at a grid point where the time evolution is complex and hence the 
spectral content of this observable is likely to be rich. A more careful numerical study, such as the one 
carried out in [2], should analyze a whole range of observables (perhaps the values of the stream function 
at all grid points). However, here, already one suitably chosen observable allows us to draw interesting 
conclusions on the behavior of the spectrum of the operator as a function of the Reynolds number. The 
point spectrum approximation results ζN/(N + 1) are depicted in Fig. 14. Since the observable f is real, 
the spectrum is symmetric around the point θ = 0 .5 and hence we depict it only for θ ∈ [0 , 0 .5]; in addition, 
we change coordinates from θ to ω = 2πθ/Ts, where Ts = 0 .5 s is the sampling period. Finally, in order to 
better discern very small atoms, we also show the point spectrum approximation on a logarithmic scale. 
Based on Theorem 1, whether or not there is an atom at a given frequency ω, can be assessed based on 
the proximity of the values of ζN/(N + 1) for two different N : When there is an atom, we expect the two 
values to be closed to each other; otherwise we expect the value of ζN/(N + 1) to be significantly smaller 
since in that case ζN/(N + 1) → 0 . Fig. 14 suggests that there is a very strong atomic component of the 
spectrum for Re = 13  · 10 3 and Re = 16 · 10 3 and even for Re = 19 · 10 3 as the atomic part accounts for 
at least 80 % of the energy of the given observable (i.e., 80 % of the mass of µf ). This is confirmed by the 
approximations of the distribution function which are piecewise constant for these values of the Reynolds 
number. For Re = 3 0  · 10 3, on the other hand, the spectrum appears to be purely continuous. In order to 
assess whether the spectrum is purely absolutely continuous or has a singular continuous part, we also plot 

Fig. 4.5 Approximation to the density of spectral measure for the Lorenz '63 model (left) and the
real part of the projection of the evolution onto the cyclic vector of the subspace associated
with spectral interval [0.24, 0.28] (right). Reproduced with permission from Korda, Putinar,
and Mezi\'c (2020 Appl. Comput. Harmon. Anal.) [219].

The exact solution is

(4.31) I(t) = I0, \theta (t) = I0t+ \theta 0 (mod 2\pi ).

Any observable g : R+\times S1 \rightarrow R with no dependence on the angle coordinate g(I, \theta ) =
g(I) is clearly an eigenfunction of \scrK t with \lambda = 1, since

(4.32) \scrK tg(I0) = g(I(t)) = g(I0),

implying that the eigenvalue \lambda = 1 has an infinite multiplicity. This rules out ergod-
icity, and therefore mixing, with respect to the L2 space of observables defined over
any annulus [I1, I2]\times S1 of positive area. In other words, the atomic spectrum detects
regular behavior of dynamics.

At the same time, no function with a variation in the angular direction is an
eigenfunction, since the only translation-invariant function on S1 is a constant, despite
all trajectories being clearly periodic. However, if observables are taken from a space
that includes generalized functions (distributions), then a Dirac-\delta supported on a
single level set of I,

(4.33) gc(I, \theta ) = \delta (I  - c)ei\theta ,

would indeed be a (generalized) eigenfunction since

(4.34) \scrK tgc(I, \theta ) = \delta (I  - c)eiIt+\theta = eict\delta (I  - c)ei\theta = eictgc(I, \theta ).

This example has also been revisited in [45].
The example above illustrates how a rigged3 or equipped Hilbert space can con-

vert a continuous spectrum (containing no eigenvalues) to a continuum of eigenval-
ues [13, 408, 427, 262]. Instead of a single L2 space of observables, the approach
employs a so-called Gelfand triple \Gamma \subset L2 \subset \Gamma \dagger , where ``the rigging"" consists of \Gamma ,
a subset of judiciously chosen test functions, and its dual \Gamma \dagger . In the example above,

3This metaphor is intended to evoke a utilitarian rigging of a ship, rather than a nefarious rigging
of a match.
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\Gamma \dagger contains generalized functions (distributions). By enlarging the domain of the
Koopman operator, surjectivity of (\scrK  - \lambda \scrI ) can be mostly restored, resulting in the
shrinking of the continuous spectrum to a set of discrete values [397].

As a result, the continuous projection measure in the Hellinger--Stone spectral
theorem (4.22) can be replaced by an integral against eigenvector-based projections,
analogous to (4.21),

(4.35) \langle \rho ,\scrK g\rangle =
\sum 

\lambda 

\lambda \langle \rho , \psi \lambda \rangle \langle \varphi \lambda , g\rangle 

for an observable g \in \Gamma and a density \rho \in \Gamma \dagger , while \varphi \lambda , \psi \lambda are elements of a biorthonor-
mal basis in L2. The extended spectrum \lambda now contains both the L2 eigenvalues of
\scrK and Ruelle--Pollicott resonances [370, 349] associated with infinitesimal stochastic
perturbations of the Koopman operator [80, 81]. For example, while the map x \mapsto \rightarrow 2x
on S1 has only a constant eigenfunction and only the eigenvalue at 1, a representation
in the rigged Hilbert space where \Gamma are analytic functions yields functions \varphi k, \psi k that
are related to Bernoulli polynomials, and values \lambda k = 2 - k [12].

While the rigged Hilbert space framework has existed since the 1950s and Gelfand,
the approach has been used to analyze the Koopman and PF operators only since the
1990s, and the approach was used for quantum theory a decade later [261, 262]. Only
in the past two years have the modern numerical approaches such as DMD started to
connect to this theory [292, 397], so we expect growth of interest in this area in the
coming years.

4.5. Koopman Operators for Nonautonomous and Stochastic Dynam-
ics. The theory developed so far was based on the time-independent or autonomous
dynamics (1.1) and (1.4). This clearly does not cover most models used in prac-
tice. Common sources of time variability include changes in system parameters, the
presence of input forcing, stochastic noise, and control or actuation. Time variabil-
ity induced by feedback control is highly structured, and thus Koopman theory can
be developed in more detail depending on the structure, as described in section 6.
Even though the original justification for DMD-style algorithms was based on the
autonomous Koopman framework, the algorithms were applied to data generated by
nonautonomous dynamics, either by tacitly assuming that the time variation is neg-
ligible, or by employing various sliding window techniques.

4.5.1. Sliding and Multiresolution Analysis. Consider the nonautonomous dy-
namics

(4.36) \.x = F(x, t), x \in \scrX ,

and assume that over a time window t \in [\tau , \tau + T ] the function F remains approxi-
mately constant,

(4.37) F(\cdot , t) \approx F(\cdot , \tau ).

Furthermore, assume that this holds over a continuous range of starting points \tau ,
while maintaining a constant window size T .

A sliding window implies that the snapshots of observations generated by data
collected over each time window [\tau i, \tau i + T ], for some i = 1, 2, . . . , are separately
processed by a DMD algorithm to produce eigenvalues \lambda k(\tau , T ) and DMD modes
\phi k(\tau , T ) that depend on the parameters of the time window. This approach is neither
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new nor unique to Koopman analysis. In signal processing, computing the discrete
Fourier transform over a sliding window goes under several names, including the
short time Fourier transform, spectrogram, sliding discrete Fourier transform, or time-
dependent Fourier transform, and it is a standard topic in many signal processing
textbooks [328, 404]. If, in addition to the starting point \tau , the length of the window T
is systematically varied as well, this is known as multiresolution or multiscale analysis.

The first systematic treatment of multiresolution analysis in the context of DMD
presented the basic sliding strategy of computing DMD in several passes over the same
set of snapshots [225, 226]. Within each pass, the window size was kept constant, and
the starting point of the window was moved in a nonoverlapping fashion. Several
additional strategies for sampling the data and moving the window were discussed,
including connections to classical signal processing techniques such as the Gabor trans-
form [226, 60]. The overlap between consecutive windows can be exploited to compute
a more accurate global reconstruction [115] and to reduce the computational effort
required to compute the DMD [463]. Sliding window strategies have been found use-
ful even in autonomous systems [82]; for example, analytic solutions of autonomous
dynamics that follow heteroclinic connections between an unstable and a stable fixed
point have been analyzed, where a well-tuned sliding window is able to discern the
difference in DMD spectra near each of the fixed points [333].

4.5.2. Process Formulation for the Nonautonomous Koopman Opera-
tor. The extension of definitions associated with the Koopman operator follows two
paths for extending the general theory of dynamical systems: the so-called process
formulation or the skew-product formulation.

For an autonomous system such as \.x(t) = Ax(t),x(t0) = x0, the time dependence
of the corresponding flow map x0 \mapsto \rightarrow x0e

\bfA (t - t0) can be written in terms of the dura-
tion t  - t0 of the time interval over which the dynamics is evolving. The semigroup
property (2.6) captures the consistency between advancing dynamics t \rightarrow t + \Delta t in
one step, or in two steps t\rightarrow t+\Delta t/2 and then t+\Delta t/2 \rightarrow t+\Delta t.

To illustrate the process formulation of nonautonomous systems [204, 75, 260],
consider the simple nonautonomous ODE

\.x(t) = cos(t)x, x(t0) = x0,(4.38)

solved by

x(t) = Ft
t0(x0) = x0e

sin(t0) - sin(t).(4.39)

The time dependence of the flow map cannot be expressed simply in terms of the
duration t - t0. The consistency of advancing dynamics across adjoining time intervals
is now captured by the cocycle property

(4.40) Ft
t0(x) = Ft

\tau (F
\tau 
t0(x)) \forall x, 0 \leq t0 \leq \tau \leq t.

The Koopman operator can now be formed naturally as a composition operator
with this two-parameter flow map [260],

(4.41) \scrK t
t0g = g \circ Ft

\tau .

Its Lie generator, given by

(4.42) \scrL t0g := lim
t\rightarrow t0

\scrK t
t - t0g  - g

t
,
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itself depends on time t0, in contrast to the autonomous case, and in turn eigenvalues
and eigenvectors also depend on time. Such a construction of the Koopman operator
appears to match the sliding window approaches to DMD discussed earlier. How-
ever, [260] demonstrates that a sliding window approach may make large mistakes,
especially when the window overlaps the region of rapid change in system parameters;
the same source describes an algorithm that is able to detect the local error of a DMD
approximation and adjust accordingly, which is particularly effective for so-called hy-
brid systems, in which the time dependency of the equations is discontinuous.

A word of caution is needed here; in nonautonomous systems (finite- or infinite-
dimensional) eigenvalues of the system matrix do not always correctly predict the
stability of trajectories. For example, it is possible to formulate a finite-dimensional
dynamical system \.x = A(t)x such that eigenvalues of A(t) (the generator of the flow)
are time independent and have negative real value, while the system admits a subspace
of unstable solutions [275, 288]. Furthermore, [260] finds that methods based on
Krylov subspaces, e.g., snapshot-based DMD algorithms, result in substantial errors
in the real parts of eigenvalues when the time dependence of eigenvalues is pronounced,
and suggests that the problem can be mitigated by a guided selection of observables.

4.5.3. Skew-Product Formulation for the Nonautonomous Koopman Oper-
ator. We turn now to the skew-product formulation, which can incorporate both de-
terministic and stochastic nonautonomous systems. Consider again the ODE (4.38)
but now introduce an additional periodic variable y \in S1,

(4.43)
\.x(t) = cos(y)x,

\.y(t) = 1.

The added variable plays the role of time, reestablishing the semigroup property of
the associated flow map which now acts on the extended space Ft : \scrX \times S1 \rightarrow \scrX \times S1.
The dynamics of y(t) is itself autonomous and is sometimes referred to as the driver
for the driven dynamics of x(t). The skew-product construction appeared in classical
ergodic theory, for example, in [89].

General analysis of skew products does not require that y(t) is as simple as
in (4.43); rather, an extension of (1.4) to the more general skew form

(4.44)
xk+1 = F(xk,yk),

yk+1 = G(yk),

can be treated in an analogous fashion. The assumption that the driving dynamics
evolves on a compact state space, or otherwise is measurable with a well-defined
invariant measure, is sufficient to justify computation of eigenfunctions using ergodic
averages (2.30) for time-periodic systems and for systems driven by quasi-periodic
dynamics [69, 415].

There are two possible formulations of the Koopman operator associated with
(4.44). The first formulation treats the skew flow as an autonomous system on the
extended state space and acts by composing an observable g \in \scrG (\scrX \times \scrY ) with the
flow

(4.45) [\scrK g](x,y) := g(F(x,y),G(y)).

Since any particular observable on the original state space h : \scrX \mapsto \rightarrow C can be trivially
extended to h(x,y) = h(x), this formulation is sufficient for studying the dynamics
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of a finite collection of observables. However, since the space \scrG (\scrX \times \scrY ) is larger
than \scrG (\scrX ), representing \scrK in a particular basis of observables requires working with
a practically larger set, e.g., instead of monomials xk, k = 1, 2, . . . , one has to work
with xkyj , k = 1, 2, . . . , j = 1, 2, . . . . The problem is, of course, more acute the higher
the dimension of \scrY .

4.5.4. Stochastic Koopman Operator. An alternative formulation of the Koop-
man operator for (4.44) acts on the observables in the original state variable only,
\scrG (\scrX ), but retains a parametric dependence of the Koopman operator on the ini-
tial condition of the driving system. The skew-flow map used in this case is the
interpretation of the second argument in F(x,y) as a parameter for the flow map
F\bfy (x) := F(x,y). The replacement for the semigroup property of autonomous sys-
tems is then the skew-flow property

(4.46) Ft+s
\bfy = Ft

\bfG s(\bfy ) \circ Fs
\bfy .

The Koopman operator is then defined as the composition operator with respect to
the flow,

(4.47) [\scrK t
\bfy g](x) := g(Ft

\bfy (x)).

In contrast to the ``cocycle Koopman operator"" (4.41), in which time dependence is
represented by an additional time-like parameter, in this ``skew Koopman operator""
the time dependence is an added state-like parameter.

Depending on the properties of the driving system, this framework can encom-
pass not only systems such as (4.43), but also so-called random dynamical systems
(RDS) [17, 75] for which the driving system on \scrY is simply assumed to be a measure-
preserving dynamical system [259, 92].

While several special cases have been discussed in recent literature [92], we focus
here on the case of Markovian RDS. This is the case for dynamics generated by a
nonlinear SDE

(4.48) dx(t) = f(x)dt+ \sigma (x)dw(t).

It is then possible to define a stochastic Koopman operator by computing the expec-
tation of the skew-Koopman operator (4.47) (with continuous time domain) over the
invariant probability of the driving flow [17, 294]:

(4.49) [\scrK t
Sg](x) := E\bfy \{ g(Ft

\bfy (x))\} .

When the driving system is a stochastic system, this establishes the Koopman operator
as the action of the dynamics, averaged over the distribution of the stochastic input.

Furthermore, assuming continuous and bounded functions on the right-hand side
of the SDE (4.48), it can be shown that (4.49) is a strongly continuous semigroup,
which is a consequence of the Chapman--Kolmogorov equation, with a well-defined
generator \scrL S acting on a space of twice-differentiable observables. In this case, the
analogue of the PDE formulation of the generator (2.10) is given by

(4.50) \scrL Sg = \nabla g f +
1

2
Tr(\bfitsigma \nabla 2g\bfitsigma \top ).

The generator-based approach to the Koopman operator for SDEs has been pursued
in [209], which includes several applications and discusses the model-predictive control
(MPC) framework based on the Koopman generator.
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Several DMD algorithms have been adapted to the RDS setting for the Koop-
man operator [92, 423], with convergence assurances. An explicit optimization-based
approximation of the Koopman operator in the RDS context has been given in [393].

In summary, the theory behind DMD-style algorithms for nonautonomous and
stochastic dynamical systems has seen a rapid development in recent years, bringing
about justification for applying such algorithms at first glance ``off the label,"" as well
as providing additional guidance for reduction of bias and errors in computation of
eigenvalues and eigenmodes.

4.6. Partial Differential Equations. There already exists a clear connection of
Koopman theory to PDEs [227]. Just as with ODEs, the goal is to discover a lin-
earizing transformation of the governing nonlinear PDE to a new PDE model which
evolves linearly in the new coordinate system. Thus, instead of a finite-dimensional
autonomous ODE (1.1) on a state space \scrX \subseteq Rn, we instead generate a Koopman
operator that maps functions to functions, i.e., infinite-dimensional spaces to infinite-
dimensional spaces. Thus the flow map operator, or time-t map, Ft : \scrX \rightarrow \scrX advances
initial conditions forward along the trajectory by a time t, where \scrG (\scrX ) is again a set
of measurement functions g : \scrX \rightarrow C. Such a transformation is no different from, for
instance, a Fourier transform that maps a spatially dependent PDE to a wavenumber
representation. This is a common solution technique for linear PDEs since the map-
ping to the wavenumber representation also diagonalizes the evolution dynamics so
that each Fourier mode satisfies an ODE. Importantly, PDEs generically have both a
discrete and a continuous spectrum, unlike the discrete spectrum of finite-dimensional
dynamical systems. In practice, however, computing solutions of PDEs requires dis-
cretization of the solution, thus rendering the evolution dynamics finite-dimensional.

Linearizing transforms for nonlinear PDEs have historically been carried out in a
number of contexts, specifically the Cole--Hopf transformation for Burgers' equation
with diffusive regularization and the inverse scattering transform (IST) for completely
integrable PDEs. For the IST, for instance, a rigorous analytic formulation can be
explicitly constructed that maps infinite-dimensional function spaces to new infinite-
dimensional function spaces whose evolution dynamics is given by a linear operator [1].
The connection between these two analytic transformations is considered below. Such
linearizing transformations have been difficult to achieve in practice; however, data-
driven methods have opened new pathways for constructing them. Neural networks,
diffusion maps, and time-delay embeddings all allow for the data-driven construction
of mappings capable of transforming nonlinear PDEs into linear PDEs whose Koop-
man operator can be constructed. In this section, we consider the connection of some
of the historically developed methods to Koopman theory. In section 5, we show how
such linearizing embeddings are constructed with modern data-driven methods.

The dynamics of nonlinear PDEs evolve on manifolds which are often difficult
to characterize and are rarely known analytically. However, an appropriate choice of
coordinates can, in some cases, linearize the dynamics. For instance, the nonlinear
evolution governed by Burgers' PDE equation can be linearized by the Cole--Hopf
transformation [176, 87], thus providing a linear model that can trivially describe the
evolution dynamics. Such exact solutions to nonlinear PDEs are extremely rare and do
not often exist in practice, with the IST for Korteweg--deVries, nonlinear Schr\"odinger,
and other integrable PDEs being the notable exceptions [2]. As will be shown in
subsection 5.4, neural networks provide a data-driven method to learn coordinate
embeddings such as those analytically available from the Cole--Hopf transform and
the IST.
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To demonstrate the construction of a specific and exact Koopman operator, we
consider Burgers' equation with diffusive regularization and its associated Koopman
embedding [227, 333, 332, 26]. The evolution is governed by diffusion with a nonlinear
advection [71]:

(4.51) ut + uux  - \epsilon uxx = 0, \epsilon > 0, x \in [ - \infty ,\infty ].

When \epsilon = 0, the evolution can lead to shock formation in finite time. The presence of
the diffusion term regularizes the PDE, ensuring continuous solutions for all time. In
independent, seminal contributions, Hopf [176] and Cole [87] derived a transformation
that linearizes the PDE. The Cole--Hopf transformation is defined as follows:

(4.52) u =  - 2\epsilon vx/v .

The transformation to the new variable v(x, t) replaces the nonlinear PDE (4.51) with
the linear diffusion equation

(4.53) vt = \epsilon vxx,

where it is noted that \epsilon > 0 in (4.51) in order to produce a well-posed PDE. Denoting
\^v = \^v(k, t) as the Fourier transform of v(x, t) with wavenumber k gives the analytic
solution

(4.54) \^v = \^v0 exp( - \epsilon k2t),

where \^v0 = \^v(k, 0) is the Fourier transform of the initial condition v(x, 0). Thus to
construct the Koopman operator, we can then combine the transform to the variable
v(x, t) from (4.52) with the Fourier transform to define the observable g(u) = \^v. This
gives the Koopman operator

(4.55) \scrK = exp( - \epsilon k2t) .

This is one of the rare instances where an explicit expression for the Koopman oper-
ator and the observables can be constructed analytically. As such, Burgers' equation
allows one to build explicit representations of Koopman operators that characterize
its nonlinear evolution [227, 332].

The IST [2] for other canonical and integrable PDEs, such as the Korteweg--
deVries and nonlinear Schr\"odinger equations, also can lead to an explicit expression
for the Koopman operator, but the scattering transform and its inversion are much
more difficult to construct in practice. Peter Lax developed a general mathematical
framework that preceded IST theory and provided a general principle for associating
nonlinear evolutions with linear operators so that the eigenvalues of the linear operator
are integrals of the nonlinear equation [236]. The scattering theory and its association
with nonlinear evolution equations was then placed on more rigorous foundations by
the seminal contribution of Ablowitz, Kaup, Newell, and Segur known as the AKNS
scheme [1].

In brief, the method developed by Lax for constructing analytic solutions for
nonlinear evolution equations involved constructing suitable linear operators whose
compatibility condition was the evolution equation itself. For a given nonlinear evo-
lution equation

(4.56) ut = N(u, ux, uxx, . . .),

D
ow

nl
oa

de
d 

07
/1

1/
22

 to
 2

05
.1

75
.1

06
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MODERN KOOPMAN THEORY FOR DYNAMICAL SYSTEMS 283

the goal is to posit a Lax pair of operators

(4.57)
\scrA \phi = \lambda \phi ,

d

dt
\phi = \scrB \phi ,

where \scrA and \scrB are linear operators. Specifically, the operator \scrA is a spatial operator
that is self-adjoint and does not depend explicitly on t, while the operator \scrB is a
time-evolution linear operator. In the context of Koopman theory, the time evolution
d
dt\phi = \scrB \phi can be taken to be equivalent to d

dtg = \scrL g in (2.11).4 Importantly, \scrA , \scrB , and
the evolution equation for u(x, t) must be all self-consistent, or compatible, in order
for the Lax theory to hold. Self-consistency is achieved by taking the time derivative of
(4.57) with respect to time and enforcing solutions that have an isospectral evolution
with respect to these operators so that \lambda t = 0. This then gives

(4.58)
d

dt
\scrA + [\scrA ,\scrB ] = 0,

where [\scrA ,\scrB ] = \scrA \scrB  - \scrB \scrA represents the commutator of the operators. Importantly,
within this framework, the operators \scrA and \scrB are linear. Thus, once found, the
evolution dynamics in the transformed coordinate system is linear, much like what
occurs in the Burgers example. Of course, such a general mathematical framework
only holds for integrable PDEs [1]. However, it does show that the Koopman operator
framework is directly associated with the Lax pairs, and in particular with the linear
time-evolution operator \scrB = \scrL , connecting the IST and Koopman theory explicitly.
Parker and Page [336] recently developed a detailed analysis of fronts and solitons in
a variety of systems and explicitly connected their findings to the IST. Moreover, they
showed how two Koopman decompositions, upstream and downstream of the localized
structure, can be used to derive a full Koopman decomposition that leverages the IST
mathematical machinery.

In addition to the explicit Koopman representations provided by the Cole--Hopf
transformation and the IST for a class of PDEs, data-driven methods provide a suite
of techniques for constructing Koopman operators for PDEs. DMD provides an ef-
ficient algorithm to do so [227, 333, 332, 26]. More recently, Nakao and Mezi\'c [313]
introduced the concept of Koopman eigenfunctionals of PDEs and used the notion of
conjugacy to develop the spectral expansion of the Koopman operator. Their method-
ology is developed on a number of PDEs and demonstrates a promising direction of
research for constructing Koopman PDE representations. Finally, as will be shown
in subsection 5.4, neural networks provide an ideal, data-driven mathematical con-
struct to learn coordinate embeddings such as those analytically available from the
Cole--Hopf transform and the IST. Indeed, this has been done for the Kuramoto--
Sivashinsky equation [147]. Additional connections between the Cole--Hopf transform
and Koopman eigenfunctions in the context of ODEs are discussed in [46].

5. Data-Driven Observable Selection and Embeddings. Linearizing a nonlin-
ear dynamical system near fixed points or periodic orbits provides a locally linear
representation of the dynamics [154], enabling the limited use of linear techniques
for prediction, estimation, and control [63]. The Koopman operator seeks globally
linear representations that are valid far from fixed points and periodic orbits. In the

4It is typical to denote the spatial Lax operators by \scrL ; in our case this may lead to confusion
with the Koopman generator.
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data-driven era, this amounts to finding a coordinate system, or embedding, defined
by nonlinear observable functions that span a Koopman-invariant subspace. Finding,
approximating, and representing these observables and embeddings is still a central
challenge in modern Koopman theory. DMD [381, 368, 225] from section 3 approxi-
mates the Koopman operator restricted to a space of linear measurements with a best-
fit linear model advancing these measurements from one time to the next. However,
linear DMD alone is unable to capture many essential features of nonlinear systems,
such as multiple fixed points and transients. It is thus common to augment DMD with
nonlinear functions of the measurements [448], although there is no guarantee that
these functions will form a closed subspace under the Koopman operator [62]. In this
section, we cover several leading approaches to identifying and representing Koopman
embeddings from data, including the extended DMD [448] and methods to directly
identify eigenfunctions [194], the use of time-delay coordinates [61], and machine learn-
ing approaches such as diffusion maps [144] and DNNs [444, 274, 422, 457, 330, 255].
The convergence and robustness of these data-driven approximation algorithms are
also discussed.

5.1. Extended DMD. Although DMD [381] has become a standard numerical
approach to approximating the Koopman operator [368, 435, 225], it is based on
linear measurements of the system and is unable to identify the nonlinear changes of
coordinates necessary to approximate the Koopman operator for strongly nonlinear
systems. The extended DMD (eDMD) [448, 449, 206] was introduced by Williams
et al. to address this issue, so that the best-fit linear DMD regression is performed
on an augmented vector containing nonlinear measurements of the state. The eDMD
approach was recently shown to be equivalent to the earlier variational approach
of conformation dynamics [320, 326, 327, 456, 455] from the molecular dynamics
literature, as explored in the excellent review by Klus et al. [208].

In eDMD, an augmented state z \in Rp is constructed from nonlinear measurements
of the state x given by the functions gk:

(5.1) z = g(x) =

\left[ 
    

g1(x)
g2(x)

...
gp(x)

\right] 
    .

The vector z may contain the original state x as well as nonlinear measurements, so
often p\gg n. Next, two data matrices are constructed as in DMD:

Z =

\left[ 
 z1 z2 \cdot \cdot \cdot zm

\right] 
 , Z\prime =

\left[ 
 z2 z3 \cdot \cdot \cdot zm+1

\right] 
 .(5.2)

Here zk = g(xk) = g(x(k\Delta t)), where we assume data is sampled at regular intervals
in time, for simplicity. As in DMD, a best-fit linear matrix operator A\bfZ is constructed
that maps Z into Z\prime :

A\bfZ = argmin
\bfA \bfZ 

\| Z\prime  - A\bfZ Z\| F = Z\prime Z\dagger .(5.3)

Because the augmented vector z may be significantly larger than the state x, it is
typically necessary to employ kernel methods to compute this regression [449]. The
use of kernel methods to approximate the Koopman operator with DMD has become
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an important research topic in recent years [449, 138, 95, 210, 207, 72, 22]. In principle,
the functions \{ gk\} pk=1 form an enriched basis in which to approximate the Koopman
operator. In the limit of infinite data, the eDMD matrix converges to the Koopman
operator projected onto the subspace spanned by these functions [217]. However,
if these functions do not span a Koopman invariant subspace, then the projected
operator will have spurious eigenvalues and eigenvectors that differ from the true
Koopman operator [62].

For example, consider the trivial example of a diagonalized linear system with
eigenvalues \lambda \in \{ 1, 2, 5\} , eigenvectors \bfitxi j in the coordinate directions xj , and a naive
measurement that mixes the first two eigenvectors:

d

dt

\left[ 
 
x1
x2
x3

\right] 
 =

\left[ 
 
1 0 0
0 2 0
0 0 5

\right] 
 
\left[ 
 
x1
x2
x3

\right] 
 with y =

\bigl[ 
1 1 0

\bigr] 
\left[ 
 
x1
x2
x3

\right] 
 .(5.4)

In this case, DMD will predict a spurious eigenvalue of 3, which is the sum of the
first two eigenvalues \lambda = 1 and \lambda = 2, since the measurement is a sum of the first two
eigenvectors. Therefore, it is essential to use validation and cross-validation techniques
to ensure that eDMD models are not overfitted, as discussed below.

Eigenfunctions of the Koopman operator form a Koopman invariant subspace
and provide an ideal basis, or coordinate system, in which to represent the dynamics.
However, Koopman eigenfunctions may not admit a finite representation in any stan-
dard basis. Thus, these eigenfunctions may only be approximately represented in a
given finite basis. It is possible to approximate an eigenfunction \varphi (x) as an expansion
in terms of the set of candidate functions \{ gk(x)\} pk=1 from (5.1) as

(5.5) \varphi (x) \approx 
p\sum 

k=1

\xi kgk(x) = \bfitxi 
Tg(x).

In discrete time, a Koopman eigenfunction \varphi (x) evaluated on a trajectory of snapshots
\{ x1, . . . ,xm\} will satisfy

\lambda 
\bigl[ 
\varphi (x1) \varphi (x2) \cdot \cdot \cdot \varphi (xm)

\bigr] 
=

\bigl[ 
\varphi (x2) \varphi (x3) \cdot \cdot \cdot \varphi (xm+1)

\bigr] 
.(5.6)

Expanding the eigenfunction \varphi using (5.5), this equality becomes

\lambda 
\bigl[ 
\bfitxi T z1 \bfitxi T z2 \cdot \cdot \cdot \bfitxi T zm

\bigr] 
=

\bigl[ 
\bfitxi T z2 \bfitxi T z3 \cdot \cdot \cdot \bfitxi T zm+1

\bigr] 
,(5.7)

which is possible to write as a matrix system of equations in terms of the data matrices
Z and Z\prime :

(5.8) \lambda \bfitxi TZ - \bfitxi TZ\prime = 0.

If we seek a least-squares fit to (5.8), this reduces to eDMD [449, 448]:

(5.9) \lambda \bfitxi T = \bfitxi TZ\prime Z\dagger .

The eigenfunctions \varphi (x) are formed from left eDMD eigenvectors \bfitxi T of Z\prime Z\dagger as
\varphi \approx \bfitxi T z in the basis \{ gk(x)\} pk=1. The right-eigenvectors are the eDMD modes , similar
to DMD modes.

It is essential to confirm that predicted eigenfunctions actually behave linearly
on trajectories, by comparing them with the predicted dynamics \varphi (xk+1) = \lambda \varphi (xk),
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as the regression above will result in spurious eigenvalues and eigenvectors unless the
basis elements gk span a Koopman invariant subspace [62]. It is common to include
the original state x in the augmented eDMD vector z. However, it was shown that
including the state x in eDMD results in closure issues for systems with multiple
fixed points, periodic orbits, or other attractors, because these systems cannot be
topologically conjugate to a finite-dimensional linear eDMD system with a single fixed
point [62]. For example, the Duffing oscillator in Figure 1.1 has three fixed points, so
no finite linear system can accurately evolve the state x near all three of these fixed
points. However, eigenfunctions like the Hamiltonian may be accurately expanded
in a basis. Thus, it is critical to sort out the accurate and spurious eigenfunctions
in eDMD; often eigenfunctions corresponding to lightly damped eigenvalues can be
better approximated, as they have a significant signature in the data.

One approach to prevent overfitting is to promote sparsity, as in SINDy [65].
This principle of parsimony may also be used to identify Koopman eigenfunctions
by selecting only the few most important terms in the basis \{ gk(x)\} pk=1 needed to
approximate \varphi [194].

As with standard DMD, the data in Z does not need to be generated from a single
trajectory, but can instead be sampled more efficiently, such as with Latin hypercube
sampling or sampling from a distribution over the phase space. In this case, the data
in Z\prime must be obtained by advancing the data in Z one time step forward. Moreover,
RKHS can be employed to ensure that the regularity of \varphi (x) allows one to extend the
computations on samples locally, to patches of state space.

For continuous-time dynamics, the eigenfunction dynamics

d

dt
\varphi (x) = \lambda \varphi (x)(5.10)

may be written in terms of the approximation \varphi (x) \approx \bfitxi Tg(x):

d

dt
\bfitxi Tg(x) = \lambda \bfitxi Tg(x).(5.11)

Applying the chain rule results in

\bfitxi T\Gamma (x, \.x) = \lambda \bfitxi Tg(x),(5.12)

where \Gamma is given by

\Gamma (x, \.x) =

\left[ 
    

\nabla g1(x) \cdot \.x
\nabla g2(x) \cdot \.x

...
\nabla gp(x) \cdot \.x

\right] 
    .(5.13)

Each term is a directional derivative, representing the possible terms in \nabla \varphi (x) \cdot f(x)
from (2.31). It is then possible to construct a data matrix \Gamma evaluated on the trajec-
tories from X and \.X:

\Gamma =

\left[ 
    

\nabla g1(x1) \cdot \.x1 \nabla g1(x2) \cdot \.x2 \cdot \cdot \cdot \nabla g1(xm) \cdot \.xm

\nabla g2(x1) \cdot \.x1 \nabla g2(x2) \cdot \.x2 \cdot \cdot \cdot \nabla g2(xm) \cdot \.xm

...
...

. . .
...

\nabla gp(x1) \cdot \.x1 \nabla gp(x2) \cdot \.x2 \cdot \cdot \cdot \nabla gp(xm) \cdot \.xm

\right] 
    .
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The Koopman eigenfunction equation then becomes

(5.14) \lambda \bfitxi TZ - \bfitxi T\Gamma = 0.

Note that here we use notation such that \Gamma is the transpose of the notation in Kaiser,
Kutz, and Brunton [194] to be consistent with the eDMD notation above.

5.2. Time-Delay Coordinates. The DMD and eDMD algorithms are based on
the availability of full-state measurements, which are typically quite high-dimensional.
However, it is often the case that only partial observations of the system are available,
so that there are hidden, or latent, variables. In this case, it is possible to use time-
delayed measurements of the system to build an augmented state vector, resulting in
an intrinsic coordinate system that forms a Koopman-invariant subspace [61]. The
use of time-delay coordinates as a Koopman coordinate system relies on the conditions
of the Takens embedding theorem [424] being satisfied, so that the delay-embedded
attractor is diffeomorphic to the attractor in the original full-state coordinates.

The time-delay measurement scheme is illustrated schematically in Figure 5.1 on
the Lorenz '63 system. In this example, we have a single scalar measurement signal
x(t) from the original three-state Lorenz system. It is possible to construct a Hankel
matrix H from a time series of this scalar measurement:

H =

\left[ 
    

x(t1) x(t2) \cdot \cdot \cdot x(tp)
x(t2) x(t3) \cdot \cdot \cdot x(tp+1)
...

...
. . .

...
x(tq) x(tq+1) \cdot \cdot \cdot x(tm)

\right] 
    .(5.15)

Each column of H may be obtained by advancing the previous column forward in time
by one time step. Thus, we may rewrite (5.15) in terms of the Koopman operator \scrK :

H =

\left[ 
    

x(t1) \scrK x(t1) \cdot \cdot \cdot \scrK p - 1x(t1)
\scrK x(t1) \scrK 2x(t1) \cdot \cdot \cdot \scrK px(t1)

...
...

. . .
...

\scrK q - 1x(t1) \scrK qx(t1) \cdot \cdot \cdot \scrK m - 1x(t1)

\right] 
    .(5.16)

For a sufficient volume of data, the system will converge to an attractor, so that the
columns of H become approximately linearly dependent. In this case, it is possible
to obtain a Koopman-invariant subspace by computing the SVD of H:

H = U\Sigma V\ast .(5.17)

The columns of U and V from the SVD are arranged hierarchically by their ability
to model the columns and rows of H, respectively. The low-rank approximation in
(5.17) provides a data-driven measurement system that is approximately invariant
to the Koopman operator for states on the attractor. By definition, the dynamics
map the attractor into itself, making it invariant to the flow. Often, H will admit
a low-rank approximation by the first r columns of U and V, so that these columns
approximate a Koopman-invariant subspace. Thus, the columns of (5.15) are well
approximated by the first r columns of U. The first r columns of V provide a time
series of the magnitude of each of the columns of U\Sigma in the data. By plotting the
first three columns of V, we obtain an embedded attractor for the Lorenz system, as
in Figure 5.1.
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Fig. 5.1 Decomposition of chaos into a linear system with forcing. A time series x(t) is stacked into
a Hankel matrix \bfH . The SVD of \bfH yields a hierarchy of eigen time series that produce
a delay-embedded attractor. A best-fit linear regression model is obtained on the delay
coordinates \bfv ; the linear fit for the first r - 1 variables is excellent, but the last coordinate
vr is not well modeled as linear. Instead, vr is an input that forces the first r  - 1 variables.
Rare forcing events correspond to lobe switching in the chaotic dynamics. This architecture
is called the Hankel alternative view of Koopman (HAVOK) analysis, from [61]. Figure
modified with permission from Brunton et al. [61].

Because the columns of H, and hence U, form a Koopman-invariant subspace, it
is possible to perform DMD on the two matrices formed from the first p - 1 and last
p  - 1 columns of H. In practice, we recommend performing DMD on a similar set
of two matrices formed from the first p  - 1 and last p  - 1 columns of V, since the
columns of V are the coordinates of the system in the U\Sigma frame. This results in a
linear regression model on the variables in V,

d

dt
v(t) = Av(t).(5.18)

Champion, Brunton, and Kutz [79] showed that this linear system captures the dy-
namics of weakly nonlinear systems. For chaotic systems, however, even with an
approximately Koopman-invariant measurement system, there remain challenges to
identifying a closed linear model. A linear model, however detailed, cannot capture
multiple fixed points or the unpredictable behavior characteristic of chaos with a pos-
itive Lyapunov exponent [62]. Instead of constructing a closed linear model for the
first r variables in V, we build a linear model on the first r  - 1 variables and impose
the last variable, vr, as a forcing term [61]:

d

dt
v(t) = Av(t) +Bvr(t),(5.19)

where v =
\bigl[ 
v1 v2 \cdot \cdot \cdot vr - 1

\bigr] T
is a vector of the first r  - 1 eigen-time-delay coor-

dinates. In all of the chaotic examples explored [61], the linear model on the first
r  - 1 terms is accurate, while no linear model represents vr. Instead, vr is an input
forcing to the linear dynamics in (5.19), which approximates the nonlinear dynamics.
The statistics of vr(t) are non-Gaussian, with long tails corresponding to rare-event
forcing that drives lobe switching in the Lorenz system; this is related to rare-event
forcing distributions observed and modeled by others [263, 373, 264].
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The Hankel matrix has been used for decades in system identification, for ex-
ample, in the ERA [188] and singular spectrum analysis (SSA) [56]. These early
algorithms were developed specifically for linear systems, and although they were of-
ten applied to weakly nonlinear systems, it was unclear how to interpret the resulting
models and decompositions. Modern Koopman operator theory has provided a valu-
able new perspective on how to interpret the results of these classical Hankel-based
approaches when applied to nonlinear systems. Computing DMD on a Hankel ma-
trix was first introduced by Tu et al. [435] and was used by B. Brunton et al. [60] in
the field of neuroscience. The connection between the Hankel matrix and the Koop-
man operator, along with the linear regression models in (5.19), was established by
Brunton et al. [61] in the Hankel alternative view of the Koopman (HAVOK) frame-
work. Several subsequent works have provided additional theoretical foundations for
this approach [16, 94, 198, 79, 171]. Hirsh et al. [171] established connections be-
tween HAVOK and the Frenet--Serret frame from differential geometry, motivating
a more accurate computational modeling approach. The HAVOK approach is also
often referred to as delay-DMD [435] or Hankel-DMD [16]. A connection between
delay embeddings and the Koopman operator was established as early as 2004 by
Mezi\'c and Banaszuk [294], where a stochastic Koopman operator is defined and a
statistical Takens theorem is proven. Other work has investigated the splitting of
dynamics into deterministic linear and chaotic stochastic dynamics [290]. The use
of delay coordinates may be especially important for systems with long-term mem-
ory effects and where the Koopman approach has recently been shown to provide a
successful analysis tool [417].

5.3. Diffusion Maps for Koopman Embeddings. Diffusion maps are a recently
developed nonlinear dimensionality-reduction technique for embedding high-dimen-
sional data on nonlinear manifolds [86, 85, 84, 312]. Diffusion maps leverage the
underlying geometry, and in particular its local similarity structure, to create an
organization of data that is heavily influenced by local structures. The distance
between data is measured by a kernel, for example, the Gaussian kernel, which takes
the form of the fundamental Green's function solution of the heat equation and is
proportional to the connectivity between two data points. The diffusion kernel is
given by

(5.20) k(xj ,xk) = exp

\biggl( 
 - \| xj  - xk\| 

\alpha 

\biggr) 
,

where xj and xk are two data points and \alpha determines the range of influence of
the kernel. Thus, points that are not sufficiently close have an approximately zero
connectivity since the kernel decays as a Gaussian between data points.

The diffusion kernel plays the role of a normalized likelihood function. It also has
important properties when performing spectral analysis of the distance matrix con-
structed from the embedding. These properties include symmetry, k(x,y) = k(y,x),
and positivity preserving, k(x,y) \geq 0. The basic diffusion mapping algorithm com-
putes a kernel matrix K whose elements are given by Kj,k = k(xj ,xk). After nor-
malization of the rows of the kernel matrix, the eigenvalues and eigenvectors of K are
computed and the data is projected onto the dominant r-modes. This r-dimensional
subspace is the low-dimensional embedding of the diffusion map. Coifman and La-
fon [85] demonstrated that this mapping gives a low-dimensional parameterization of
the geometry and density of the data. In the field of data analysis, this construction
is known as the normalized graph Laplacian.
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(a) (b)

xk

zk zk+1
xk+1 xk

zk zk+1

xk+1

\bfitvarphi K \bfitpsi \bfitvarphi K \bfitpsi 

Fig. 5.2 Competing neural network architectures to approximate the Koopman operator. (a) Key
Koopman eigenfunctions are extracted with a deep autoencoder network. (b) Alternatively,
the system is lifted to a higher dimension where a linear model is identified. In these
architectures \bfitvarphi is the encoder and \bfitpsi is the decoder.

Diffusion maps thus provide a dimensionality reduction method that exploits the
geometry and density of the data. The diffusion map can be used directly to con-
struct a Koopman model by using a DMD regression on the time evolution in the
diffusion coordinates. The methodology can also be used for forecasting [72], for
example, leveraging time-delay embeddings to provide a nonparametric forecasting
method for data generated by ergodic dynamical systems [144]. Such a represen-
tation is based upon the Koopman and PF groups of unitary operators in a smooth
orthonormal basis that is acquired from time-ordered data through the diffusion maps
algorithm. Giannakis [144] establishes in such a representation a correspondence be-
tween Koopman operators and Laplace--Beltrami operators constructed from data in
Takens delay-coordinate space, using this correspondence to provide an interpretation
of diffusion-mapped delay coordinates for ergodic systems.

5.4. Neural Networks for Koopman Embeddings. Despite the promise of Koop-
man embeddings, obtaining tractable representations has remained a central chal-
lenge. Even for relatively simple dynamical systems, the eigenfunctions of the Koop-
man operator may be arbitrarily complex and will only be approximately represented
in a finite basis. Deep learning is well suited for representing such arbitrarily complex
functions, and has recently shown tremendous promise for discovering and represent-
ing Koopman embeddings and Koopman forecasts [444, 274, 422, 457, 330, 242, 255,
273, 20, 232, 118]. In addition to leveraging neural networks to learn Koopman embed-
dings, Koopman theory is also being applied to understand neural networks [272, 104],
and algorithms more generally [103].

There are two leading DNN architectures that have been proposed for Koopman
embeddings, shown in Figure 5.2. In the first architecture, the deep autoencoder
architecture extracts a few key latent variables z = \bfitvarphi (x) to parameterize the dynam-
ics. In the second architecture, the high-dimensional input data is lifted to an even
higher dimension, where the evolution is approximately linear. In either Koopman
neural network, an additional constraint is enforced so that the dynamics must be
linear on these latent variables, given by the matrix K. The constraint of linear dy-
namics is enforced by the loss function \| \bfitvarphi (xk+1)  - K\bfitvarphi (xk)\| , where K is a matrix.
In general, linearity is enforced over multiple time steps, so that additional terms
\| \bfitvarphi (xk+p) - Kp\bfitvarphi (xk)\| are added to the loss function.

Autoencoder networks have the advantage of a low-dimensional latent space,
which may promote interpretable solutions. Autoencoders are already widely used
to model complex systems, for example, in fluid mechanics [64], and they may be
viewed as nonlinear extensions of the SVD, which is central to the DMD algorithm.
In this way, a deep Koopman network based on an autoencoder may be viewed as a
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Fig. 5.3 Comparison of discrete vs. continuous spectrum dynamics. Right panel reproduced with
permission from Lusch, Kutz, and Brunton [255].

nonlinear generalization of DMD. Similarly, if the matrix K is diagonalized, then the
embedding functions \bfitvarphi correspond to Koopman eigenfunctions [255, 147]. Variational
autoencoders are also used for stochastic dynamical systems, such as molecular dy-
namics, where the map back to physical configuration space from the latent variables
is probabilistic [444, 274]. In contrast, the second paradigm, where measurements are
lifted to a higher-dimensional space, is related to many results in machine learning
such as Cover's theorem [232], where nonlinear problems tend to become more linear
in higher-dimensional embeddings.

For simple systems with a discrete eigenvalue spectrum, a compact representation
may be obtained in terms of a few autoencoder variables. However, dynamics with
continuous eigenvalue spectra defy standard low-dimensional Koopman representa-
tions, including the autoencoder network above. Continuous spectrum dynamics are
ubiquitous, ranging from the simple pendulum to nonlinear optics and broadband
turbulence. For example, the classical pendulum, given by

\"x =  - sin(\omega x),(5.21)

exhibits a continuous range of frequencies, from \omega to 0, as the amplitude of the
pendulum oscillation is increased, as illustrated in Figure 5.3. Thus, the continuous
spectrum confounds a simple description in terms of a few Koopman eigenfunctions.
Indeed, away from the linear regime, an infinite Fourier sum is required to approximate
the continuous shift in frequency, which may explain why the high-dimensional lifting
approach has been widely used in Koopman neural networks.

In a recent work by Lusch, Kutz, and Brunton [255], an auxiliary network is used
to parameterize the continuously varying eigenvalue, enabling a network structure
that is both parsimonious and interpretable. In contrast to other network structures,
which require a large autoencoder layer to encode the continuous frequency shift with
an asymptotic expansion in terms of harmonics of the natural frequency, the param-
eterized network is able to identify a single complex conjugate pair of eigenfunctions
with a varying imaginary eigenvalue pair. If this explicit frequency dependence is un-
accounted for, then a high-dimensional network is necessary to account for the shifting
frequency and eigenvalues. Recently, this framework has been generalized to identify
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linearizing coordinate transformations for PDE systems [147], such as the Cole--Hopf
transform of the nonlinear Burgers' equation into the linear heat equation. Related
work has been developed to identify the analogues of Green's functions for nonlinear
systems [148].

5.5. Convergence of Data-Driven Koopman Approximations. The DMD has
been viewed, almost from its beginning, as an algorithm for computational Koopman
analysis, giving it strong connections to the theory of dynamical systems [368, 290].
The computationally effective DMD explicitly avoids approximating the Koopman
operator, but instead enables the approximation of its eigenvalues and eigenmodes.
In this section, we summarize research efforts to establish the convergence and effec-
tiveness of DMD and other techniques in approximating the Koopman operator and
its spectral decomposition (2.36). At the time of writing, the study of the quality of
Koopman approximations remains a vigorous area of research, with many contribu-
tions available only in preprint format.

The original snapshot DMD was interpreted as an Arnoldi iteration of the Koop-
man operator on the set of observables (see subsection 3.1.3). In this formulation,
the problem of accurate computation of eigenvalues of the Koopman operator is re-
placed by the problem of computing eigenvalues of the companion matrix (3.25).
Computations involving the companion matrix and its diagonalizing transform, the
Vandermonde matrix, are ill-conditioned; an excellent summary of the delicateness of
working with companion matrices from the perspective of numerical linear algebra is
given in a sequence of papers by Drma\v c, Mezi\'c, and Mohr [108, 109, 110]. Despite
numerical fragility, the Vandermonde matrix interpretation leads to valuable insights
into connections among DMD, the discrete Fourier transform [82], and Prony analy-
sis [414, 464, 16]. The optimized DMD [82], and more recently the stabilization of the
Vandermonde interpretation of DMD [110, 109], have made the Arnoldi interpretation
a practically viable approach to computing DMD.

The convergence and robustness of DMD-based algorithms has benefited from
the interpretation of exact DMD [381, 435] as computing spectral data of a low-rank
approximation of the Koopman operator via regression on a subspace of observables.
The eDMD [448] (see subsection 5.1) enables this argument by augmenting the state
vector, amounting to the vector-valued observable g(x) = x, with nonlinear trans-
formations of the input data, typically chosen from a basis of functions spanning the
space of observables. This in turn allows one to interpret the DMD regression (3.4) as
a regression on a subspace whose dimension can now be tuned to include more or less
of the full function space. Initial convergence arguments by Williams, Kevrekidis, and
Rowley [448] and Klus, Koltai, and Sch\"utte [206] showed that eDMD is equivalent to
a Galerkin projection of the Koopman operator onto a subspace of the L2 space with
respect to an ergodic measure. This was further refined and improved upon by Korda
and Mezi\'c [217], showing that the eDMD approximation converges in operator norm
to the compression of the Koopman operator to a chosen subspace of observables for
ergodic dynamics in the limit of long trajectories. When the sequence of observable
subspaces limits to the entire L2 space, the projections converge in the strong oper-
ator topology (SOT), i.e., pointwise with respect to any observable, to the Koopman
operator. While SOT is not enough to guarantee convergence of the spectrum, the
eigenvalues of the Koopman operator are among the accumulation points of eDMD
eigenvalues [217].

Instead of targeting the Koopman operator directly, several approaches have
sought to approximate its infinitesimal generator (2.7), which satisfies the evolution
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equation (2.9) \.gt = \scrL gt. Since many models of physics are stated as differential
equations, the generator may have a direct link to the physics or may be more easily
exploited for control [209, 386, 279]. Additionally, in certain contexts it is possible to
establish stronger convergence results when working with the generator instead of the
Koopman operator itself [366]. Similar arguments apply to the approximation of the
PF operator and its generator [135, 136], discussed in subsection 4.3. The Koopman
generator can be approximated by exploiting any of its connections to the Koop-
man operator. One approach is to first approximate the Koopman operator family
and then use a finite-difference approximation to compute the Lie derivative of the
Koopman operator [145, 386]. Alternatively, the relationship between the Koopman
operator and its generator

(5.22) \scrK t = exp[t\scrL ]

can be inverted and the generator computed by approximating the matrix logarithm
of the Koopman operator [279]. Another approach is to apply the eDMD regression
to (2.9) by computing time derivatives of the basis of observables [209, 207, 366, 367].
Finally, Giannakis and Das [94, 144, 146] approach the problem of approximation of
the Koopman and its generator as a manifold-learning problem on a space-time man-
ifold. This gives rise to an approximation problem for the generators of the evolution
on the manifold, which is successfully resolved for ergodic dynamical systems, such as
those evolving on a chaotic attractor.

In certain contexts it is possible to study the quality of an approximation to the
Koopman spectrum and eigenfunctions directly, without appeal to the convergence of
the operator approximation. Early approximations of spectral properties in this man-
ner date back to von Neumann [317] and Wiener and Wintner [445] and appear com-
putationally in the modern context in [297, 294]. For the Koopman operator defined
on an Lp space of functions with respect to an ergodic measure, harmonic/Fourier av-
erages (2.30) converge to a projection of an observable onto an eigenspace associated
with a chosen eigenvalue \omega . Spatially, the convergence of such averages is assured with
respect to the Lp norm, and the p = 2 case corresponds to the orthogonal projection
onto the eigenspace associated with ei\omega ; if ei\omega is not an eigenvalue, the averages con-
verge to the value zero almost everywhere. Temporally, the rate of convergence can
be arbitrarily slow; however, in the case of regular discrete-time dynamics it scales as
\scrO (N - 1) with the number of iterates N , and for mixing dynamics \scrO (N - 1/2), with more
detailed results available [19, 190, 293]. While it is possible to investigate such con-
vergence numerically starting with an arbitrary continuous observable, as was done in
[240, 241, 70], pointwise evaluations of functions in Lp spaces are ill-defined, and there-
fore insufficient for theoretical guarantees. In the RKHS formulation of the Koopman
operator [95], harmonic averaging can be used to compute the RKHS norm of the
projection that can be used to detect the eigenvalue spectrum. The harmonic averag-
ing can, in principle, be established for eigenvalues off the unit circle, although such
an algorithm is numerically unfavorable [300, 301, 229, 228]. Furthermore, successive
projections using ergodic averages, termed generalized Laplace analysis (GLA), can
be used to incrementally account for all (quasi-)regular components of the evolution
of observables [300]. While the GLA process is ill-conditioned if the infinite ergodic
averages are truncated, it is possible to provide an analogous process for the case of
finite-length data [109].

As discussed in subsection 4.4, the spectral measure of the Koopman opera-
tor (4.22) can have a continuous component, in addition to the atomic (eigenvalue)
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spectrum. Approximation of the noneigenvalue spectrum was studied in the context
of the DMD on time-delayed observables [61, 16]. Whereas eDMD builds up the
space of observables using an explicit choice of basis functions, the delay DMD (a.k.a.
HAVOK or Hankel DMD from subsection 5.2) instead uses delayed copies of state
observations, which connects the DMD formalism with auto- and cross-correlations of
observables (4.25). The distribution of eigenvalues of delay DMD [16] cannot be used
to approximate the continuous spectral density, as eigenvalues will form accumulations
only around Koopman eigenvalues, but in the limit will distribute uniformly [219].

Instead, the approximation of the continuous spectral measure can be posed as
a truncated moment problem [219]. The moments of the spectral measure for er-
godic systems, computed using autocorrelations of trajectories, are used as inputs
into the algorithm with the reconstruction of the atomic and absolutely continuous
components achieved using Christoffel--Darboux kernels. Additional results concern-
ing convergence of the delay DMD can be found in [464]. Koopman modes were
initially conceived as projections of a chosen set of observables onto individual eigen-
functions.

While the nonatomic spectrum does not have eigenfunctions associated with it,
it is possible to compute the mode-analogues for the continuous spectrum via spec-
tral projections [219], ultimately leading to approximations of the operator itself. For
measure-preserving dynamics, spectral projectors can be computed using the periodic
approximation [150], related to the Ulam approximation discussed in subsection 4.3.
An alternative interpretation of modes for the nonatomic spectrum is offered by Gi-
annakis in [145], which searches for approximately coherent observables over a chosen
window of observation, demonstrating their construction even for systems where no
true coherent observables, that is, eigenfunctions, exist.

Koopman operator theory was initially developed for observables chosen from
a Lebesgue space Lp. Unfortunately, elements of Lp spaces are equivalence classes
that are specified only up to a measure-zero set; consequently, computations based
on finite pointwise samples of a function cannot be naively linked to strong conver-
gence results based on Lp arguments. Inferring the behavior of an observable from
a finite pointwise sample requires working with a more restrictive set of observables,
typically continuous functions with additional regularity properties. These proper-
ties are formally incorporated through the language of RKHS, which afford both a
sufficient regularity and the inner-product structure. An added benefit of working
with RKHS is that the observables do not need to take values from a linear space; for
example, angle-valued observables taking values from S1 or direction-valued observ-
ables taking values from projective spaces can be handled in this setting [210, 95].
Kernel-based DMD, introduced by Williams, Rowley, and Kevrekidis in [449] and,
in parallel, by Kawahara [202], were the first computational efforts in this direction.
More recent results [210] demonstrate decompositions that apply to both Koopman
and PF operators. Establishing the existence of the spectrum for Koopman operators
on Hardy-type spaces [300] was the first theoretical step in the pursuit of RKHS-
based Koopman theory, with a more broad and rigorous theoretical basis presented
by Mezi\'c in [292]. As mentioned, computational approximation of harmonic averages
is set on firmer ground in RKHS [95]. More recent results pursue the convergence of
approximations to Koopman operators and its generators in this setting [96, 366].

6. Koopman Theory for Control. The Koopman operator framework is espe-
cially relevant for engineering applications in control [284, 331], for which it offers
new opportunities for the control of nonlinear systems by circumventing theoreti-
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cal and computational limitations due to nonlinearity. Nonlinear control methods,
such as feedback linearization and sliding mode control, overcome some of these lim-
itations. However, these approaches often do not generalize beyond a narrow class
of systems, and deriving stability and robustness conditions, for instance, can be-
come a demanding exercise. Koopman-based methods provide a linear framework
that can exploit mature theoretical and computational methods, with successes al-
ready demonstrated in a wide range of challenging applications, including fluid dy-
namics [15, 340], robotics [3, 4, 59, 266], power grids [220, 316], traffic [248], biol-
ogy [163], logistics [174], and chemical processes [315]. Koopman analysis achieves
this by representing the nonlinear dynamics in a globally linear framework, without
linearization. Thus Koopman analysis is able to generalize the Hartman--Grobman
theorem to the entire basin of attraction of a stable or unstable equilibrium or periodic
point [231]. Further, as the Koopman operator acts on observables, it is amenable
to data-driven (model-free) approaches which have been extensively developed in re-
cent years [351, 447, 216, 352, 409, 194, 191, 339, 4]. The resulting models have
been shown to reveal insights into global stability properties [400, 282], observabil-
ity/controllability [439, 149, 458], and sensor/actuator placement [396, 392] for the
underlying nonlinear system.

Koopman theory is closely related to Carleman linearization [76], which also em-
beds finite-dimensional dynamics into infinite-dimensional linear systems. Carleman
linearization has been used for decades to obtain truncated linear (and bilinear) state
estimators [223, 54, 10] and to examine stability, observability, and controllability
of the underlying nonlinear system [252, 27, 306, 307]. However, the applicabil-
ity is restricted to polynomial (or analytical) systems. In contrast, the Koopman
operator framework does not rely on the analyticity of the vector field, but ap-
plies to general nonlinear systems, including systems with discontinuities. Extend-
ing Koopman operator theory for actuated systems was first noted in [294], which
interpreted the stochastic forcing in random dynamical systems as actuation. The
first Koopman-based control schemes were published more than a decade later, pow-
ered by the algorithmic development of DMD [351]. More recently, Koopman mod-
els have been increasingly used in combination with LQR (linear quadratic regula-
tor) [62, 266, 267], state-dependent LQR [194], and MPC [216, 192]. Other directions
include optimal control for switching control problems [339, 340], Lyapunov-based
stabilization [177, 178], eigenstructure assignment [165], and, more recently, active
learning [4]. MPC [140, 238, 285, 304, 356, 139, 73, 9, 120] stands out as a main fa-
cilitator for the success of Koopman-based control, with applications including power
grids [220], high-dimensional fluid flows [15, 305], and electrical drives [161].

In this section, we review the mathematical formulation for a Koopman operator
control framework, beginning with model-based control and moving to data-driven
methods. We will describe several approaches for identifying control-oriented models
including DMDc, eDMD with control (eDMDc), extensions based on SINDy, and the
use of delay coordinates. Further, we compare these approaches on numerical exam-
ples and discuss the use of the Koopman operator for analyzing important properties
such as stability, observability, and controllability of the underlying system.

6.1. Model-Based Control. Beginning with model-based control theory, con-
sider the nonaffine nonlinear control system

\.x = f(x,u), x(0) = x0,(6.1a)

y = c(x,u),(6.1b)
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Fig. 6.1 Schematic of the receding horizon model predictive control framework.

where x \in \scrX \subseteq Rn is the state vector, u \in \scrU \subseteq Rq is the vector of control inputs, and
y \in \scrY \subseteq Rp is the output. Unless noted otherwise, we assume full-state measurements
y = x. Equation (6.1) represents a nonautonomous dynamical system, where the
input u may be interpreted as a perturbed parameter or control actuation. In the
context of control, typically we seek to determine a feedback control law d : \scrY \rightarrow \scrU ,

(6.2) u = d(y),

that maps measurements y to control inputs u to modify the behavior of the closed-
loop system.

6.1.1. Model Predictive Control. MPC is one of the most successful model-
based control schemes [140, 238, 285, 304, 356, 139, 73, 9, 120]. Over the last two
decades, MPC has gained increasing popularity due to its success in a wide range of
applications, its ability to incorporate customized cost functions and constraints, and
its extensions to nonlinear systems. In particular, it has become the de facto stan-
dard advanced control method in process industries [356] and has gained considerable
traction in the aerospace industry due to its versatility [120]. Many of the successes
of Koopman-based controls leverage the MPC framework, with its adaptive nature
allowing one to compensate for modeling discrepancies and account for disturbances.

MPC is an adaptive control procedure solving an open-loop optimization problem
over a receding horizon (see schematic in Figure 6.1). The optimization problem aims
to solve for a sequence of control inputs \{ \^u0, \^u2, . . . , \^uN - 1\} over the time horizon
T = N\Delta t that minimizes a predefined objective function J . Typically, only the first
control input \^uopt

0 is applied and then a new measurement is collected. At each time
instant a new measurement is collected and the optimization problem is re-initialized
and, thus, adaptively determines optimal control actions adjusting to model inaccu-
racies and changing conditions in the environment. The most critical part of MPC
is the identification of a dynamical model that accurately and efficiently represents
the system behavior in the presence of actuation. If the model is linear, minimization
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of a quadratic cost functional subject to linear constraints results in a tractable con-
vex problem. There exist several variants of MPC, including nonlinear MPC, robust
MPC, and explicit MPC, which are, however, more computationally expensive and
thus limit their real-time applicability. Combining Koopman-based models with linear
MPC has the potential to significantly extend the reach of linear MPC for nonlinear
systems.

The receding-horizon optimization problem can be stated as follows. Linear MPC
aims to minimize the quadratic objective function

min
\^\bfu (\cdot | \bfy )\in U

J = min
\^\bfu (\cdot | \bfy )\in U

N - 1\sum 

k=0

| | \^yk  - rk| | 2\bfQ + | | \^uk| | 2\bfR + | | \Delta \^uk| | 2\bfR \Delta 
(6.3)

subject to discrete-time linear system dynamics

\^xk+1 = A\^xk +B\^uk,(6.4a)

\^yk = C\^xk,(6.4b)

and state and input constraints

ymin \leq \^yk \leq ymax,(6.5a)

umin \leq \^uk \leq umax,(6.5b)

where \Delta \^uk := \^uk - \^uk - 1 is the control input rate. Each term in the cost function (6.3)
is computed as the weighted norm of a vector, i.e., | | y| | 2\bfQ := yTQy. In the model (6.4),
A : \scrX \rightarrow \scrX is the state transition matrix, B : \scrU \rightarrow \scrX is the control matrix, and
C : \scrX \rightarrow \scrY the measurement matrix. The weight matrices R \in Rq\times q, R\Delta \in Rq\times q,
and Q \in Rn\times n are positive semidefinite and penalize the inputs, input rates, and
deviations of the predicted output \^y along a trajectory r, respectively, and set their
relative importance. We define the control sequence to be solved over the receding
horizon as \^u(0, . . . , N  - 1| y) := \{ \^u0, \^u2, . . . , \^uN - 1\} given the measurement y. The
measurement y is the current output of the plant, whose dynamics are governed by
a generally nonlinear system (6.1), and it is used to estimate the initial condition \^x0

for the optimization problem. The general feedback control law (6.2) is then

(6.6) d(y) = \^uopt(0| y) = \^uopt
0 ,

given a specific y and selecting the first entry of the optimized control sequence.
Two primary research thrusts, which can be roughly categorized into approaches

for either discrete or continuous inputs, have integrated Koopman theory and MPC.
For the latter, the Koopman-MPC framework is depicted in Figure 6.2. Output mea-
surements are lifted into a higher-dimensional space using a nonlinear transformation.
Dynamics are modeled in the lifted space, typically by solving a linear least-squares
regression problem, and the resulting model is employed in the MPC optimization pro-
cedure. Besides the goal of achieving increased predictive power via a Koopman-based
model, this approach further provides the option to readily incorporate nonlinear cost
functions and constraints in a linear fashion by incorporating them directly in the set
of observables [447].

6.1.2. Koopman Operator Theory for Control Systems. Koopman theory for
control requires disambiguating the unforced dynamics from the effect of actuation.
The first Koopman-based approaches were developed for discrete-time systems, which
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Fig. 6.2 Schematic of the model predictive control framework incorporating a model based on the
Koopman operator.

are more general and form a superset containing those induced by continuous-time
dynamics. Such discrete-time dynamics are often more consistent with experimental
measurements and actuation and may be preferred for numerical analysis. However,
there has been increasing effort made in developing formulations building on the Lie
operator, i.e., the infinitesimal generator of the semigroup of Koopman operators, for
system identification and control.

Consider the nonaffine, continuous-time control system given by (6.1a) that is
fully observable, i.e., y = x in (6.1b). For every initial condition x \in \scrX and control
function u \in \scrU , there exists a unique solution Ft(x,u) at time t with initial condition
F0(x,u) = x. System (6.1) represents a family of differential equations parameterized
by the control functions u. In order to analyze this from a Koopman perspective, it
is convenient to introduce the control flow, which defines (6.1) as a single dynamical
system (for more details about the dynamical systems perspective of control theory,
we refer the reader to Colonius and Kliemann [88]). The control flow \~Ft(x,u) :
R\times \scrX \times \scrU \rightarrow \scrX \times \scrU associated with (6.1) is given by the map

(6.7) \~Ft(x,u) = (Ft(x,u),\Theta t(u)),

where \Theta t(u) is the shift on \scrU , so that \Theta t(u)(s) = u(s + t), s \in R. Skew-product
flows, such as \~Ft(x,u), arise in topological dynamics to study nonautonomous sys-
tems, e.g., with explicit time dependency or parameter dependency. Actuation renders
the dynamical system and its associated Koopman family (or its generator) nonau-
tonomous. By defining the Koopman operator on the extended state \~x := [xT ,uT ]T ,
the Koopman operator becomes autonomous and is equivalent to the Koopman op-
erator associated with the unforced dynamics. Under further special considerations,
standard numerical schemes for autonomous systems become readily applicable for
system identification. Beyond considering the extended state \~x, we also make the
dependency on x and u explicit to disambiguate the state and inputs.

Let g(x,u) : \scrX \times \scrU \rightarrow C be a scalar observable function of the extended state
space. Each observable is an element of an infinite-dimensional Hilbert space and the
semigroup of Koopman operators \scrK t : \scrG (\scrX ,\scrU ) \rightarrow \scrG (\scrX ,\scrU ) acts on these observables
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according to

(6.8) g(x(t),u(t)) = \scrK tg(x0,u0) = g(\~Ft(x0,u0)).

Here, it is assumed that the Koopman operator acts on the extended state space in
the same manner as the Koopman operator associated with the unforced, autonomous
dynamical system. A Koopman eigenfunction \varphi (x,u) corresponding to eigenvalue \lambda 
then satisfies

(6.9) \varphi (x(t),u(t)) = \scrK t\varphi (x0,u0) = \lambda t\varphi (x0,u0).

Further, a vector-valued observable

(6.10) g(x,u) :=

\left[ 
  
g1(x,u)

...
gp(x,u)

\right] 
  

can be written in terms of the infinite Koopman expansion as

(6.11) g(x(t),u(t)) = \scrK tg(x(0),u(0)) =

\infty \sum 

j=1

\lambda tj\varphi j(x0,u0)vj ,

where vj = [\langle \varphi j , g1\rangle , . . . , \langle \varphi j , gp\rangle ]. This representation encompasses dynamics on u
itself, which may appear due to external perturbations when u is interpreted as a per-
turbed parameter to the system. While the actuation dynamics are typically known
or set for both open-loop and closed-loop control, it provides a convenient starting
point for system identification. Indeed, it is a useful representation for data-driven
approaches that identify the underlying system dynamics and control simultaneously.
Depending on the choice of observable functions, further simplifications are possible
to identify a model for the state dynamics by incorporating the effect of control, which
is discussed in subsection 6.2.

We consider special cases in the discrete-time and continuous-time settings which
are modeled within the Koopman with inputs and control (KIC) framework [352]. The
time-varying actuation input may evolve dynamically according to \.u = h(u) or it may
be governed by a state-feedback control law (6.2), u = d(x), as in closed-loop control
applications.

Discrete-Time Formulation. For a discrete-time control system

(6.12) xk+1 = F(xk,uk),

with initial condition x0, the Koopman operator advances measurement functions
according to

(6.13) \scrK g(xk,uk) = g(F(xk,uk),uk+1) = g(xk+1,uk+1).

Koopman eigenpairs (\varphi , \lambda ) associated with (6.13) satisfy

(6.14) \scrK \varphi (xk,uk) = \varphi (F(xk,uk),uk+1) = \varphi (xk+1,uk+1) = \lambda \varphi (xk,uk).

By defining the control flow \~F on the extended state space \~x := [xT ,uT ]T , the dy-
namics become autonomous and can be written as

(6.15) \scrK g(\~xk) = g(\~F(\~xk)) = g(\~xk+1).
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If uk+1 = H(uk), then g(F(xk),H(uk)) = g(xk+1,uk+1), thus allowing for a suitable
choice of observable functions that can simultaneously model and identify dynamics
for x and u. In many situations, we are not interested in the dynamics of u itself
but only of x, e.g., in control, where u is usually a design variable. For instance,
if the dynamics of u is prescribed by a specific state-feedback law uk = D(xk),
then \scrK g(xk,uk) = g(F(xk,uk),D(xk)) = g(xk+1,D(xk+1)). By defining F\bfD (x) :=
F(x,D(x)) and restricting the observable to be a function solely of the state, the
Koopman operator is associated with the autonomous dynamics F\bfD for a given control
law D: \scrK g(xk) = g(F\bfD (xk)) = g(xk+1). If, instead, we consider a constant exogenous
forcing or discrete control action \=u \in \scrU , where \scrU is the set of discrete inputs, the
Koopman operator may be defined for each discrete input separately: \scrK \=\bfu g(xk, \=u) =
g(F(xk, \=u), \=u) = g(xk+1, \=u). In general, the Koopman operator and its associated
eigenfunctions are parameterized by the discrete control input \=u and the dynamics
are autonomous for each \=u. The flow map F\=\bfu (x) := F(x, \=u) is then defined for each
\=u. Considering only the reduced dynamics on observable functions of the state, we
then obtain

(6.16) \scrK \=\bfu g(xk) = g(F\=\bfu (xk)) = g(xk+1).

By switching from continuous to discrete inputs, a single model is replaced with a
family of models, so that the specific control dependency of the state does not have
to be captured. Instead of optimizing the input itself, one may then optimize the
switching times between inputs, as in Peitz and Klus [339].

Lie Operator Formulation. There has been increasing interest in the control formu-
lation for the infinitesimal generator of the Koopman operator family. It can be
shown [233] that if observables g are continuously differentiable with compact sup-
port, then they satisfy the first-order PDE (2.31). The Lie operator \scrL g = \nabla \~\bfx g \cdot \~f
associated with the dynamics of the control system (6.1) induces the dynamics

(6.17)
d

dt
g(x,u) = \scrL g(x,u).

Similarly, smooth eigenfunctions corresponding to the eigenvalue \mu satisfy

(6.18)
d

dt
\varphi (x,u) = \scrL \varphi (x,u) = \mu \varphi (x,u).

Note that the smooth eigenfunction of the generator is also a Koopman eigenfunc-
tion (6.9) and their eigenvalues are connected via \mu = log(\lambda ) (see also section 2).

We may rewrite the Lie operator in (6.17) explicitly using the chain rule

(6.19) \scrL g(x,u) = \nabla \bfx g(x,u) \cdot \.x+\nabla \bfu g(x,u) \cdot \.u.

The derivatives \.x = f and \.u = h are both velocity vectors (state or action change
per time unit) and generally depend on x and u. They describe local changes in
the observable function due to local changes in x and external forcing via u. For
a dynamically evolving u it may be possible to approximate the Koopman opera-
tor on the extended state using the system identification framework based on the
generator formulation [279]. It is also possible to consider \.u as the new input to
the system [303], while applying more traditional methods. Equation (6.19) repre-
sents the adjoint equation of the controlled Liouville equation (see, e.g., [55]), which
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describes how a density function evolves in state space under the effect of exter-
nal forcing. Using the analogy to the scattering of particles, these transport op-
erators have been used to model and derive optimal control for agent-based sys-
tems [230]. For the state-feedback law u = d(x), the right-hand side of (6.17)
becomes \scrL g(x,u) = [\nabla \bfx g(x,d(x)) +\nabla \bfd g(x,d(x)) \cdot \nabla \bfx d(x)] \cdot f(x,d(x)). Since this
is solely a function of the state, the (autonomous) Koopman operator associated
with a particular state-feedback law d(x) can be defined on the reduced state x:
\scrL g(x) = \nabla \bfx g(x) \cdot f(x,d(x)).

Constant exogenous forcing or discrete control actions \=u \in \scrU render the system
autonomous for each \=u, so that \scrL \=\bfu g(x, \=u) = \nabla \bfx g(x, \=u) \cdot f(x, \=u) with \.u = 0. In order
to apply most control methods a model for the reduced state x is required. Thus, by
restricting the space of observables defined on the reduced state x, we obtain

(6.20) \scrL g(x) = \nabla \bfx g(x) \cdot f(x, \=u).
This representation is the starting point for data-driven formulations, e.g., to estimate
the associated Koopman operator by assuming the zero-order holds for the input
across consecutive snapshots, or Koopman operators parameterized by the discrete
control input so that a gain-scheduled or interpolated controller may be enacted.

Bilinearization. Many applications are modeled by control-affine systems

(6.21) \.x = f0(x) +

q\sum 

j=1

fj(x)uj .

Using Carleman linearization, it is possible to transform this system into a (generally
infinite-dimensional) bilinear model using multivariable monomials of the state as ob-
servables, which is then truncated at a suitable order. However, this may nevertheless
lead to systems with an undesirably high dimensionality for the required accuracy. A
general nonlinear system \.x = f(x,u) with analytic f can also be transformed into an
infinite-dimensional bilinear system of the form \.z = Az + \.uBz, where components
of z consist of multivariable monomials xki u

l
j . Note the similarity to the Koopman

generator PDE (6.19): considering a smooth vector-valued observable g(x,u), inter-
preting \.u as new input, and assuming that \nabla \bfu g(x,u) lies in the span of g(x,u), this
too leads to a bilinear equation and is equivalent to Carleman linearization.

In general, any vector-valued smooth observable with compact support that is
solely a function of the state x, which evolves according to (6.21), satisfies

(6.22)
d

dt
g(x) = \scrL \bfu g(x) = \nabla \bfx g(x) \cdot f0(x) +\nabla \bfx g(x) \cdot 

\left( 
 

q\sum 

j=1

fj(x)uj

\right) 
 ,

where \scrL \bfu denotes the nonautonomous Lie operator due to the external control input
u. If \nabla \bfx g(x) \cdot fj(x) lies in the span of g(x) for all j = 1, . . . , q, then there exists a set
of constant matrices Bj so that

(6.23)
d

dt
g(x) = Ag(x) +

q\sum 

j=1

ujBjg(x),

leading to a bilinear equation for the observable g. Here, A and Bj decompose the
matrix representation of the Lie operator into an unforced term A and forcing terms
Bj (compare also Figure 6.3). The following theorem appears as Theorem 2 in [149]
and states the bilinearizability condition for (6.21) and (6.23).
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Fig. 6.3 Data-driven finite-dimensional approximation of the Koopman operator defined on the
extended state space (\bfx ,\bfu ) in practice. As with eDMDc, it is also possible to identify
evolution dynamics \bfu \prime = \bfH (\bfx ,\bfu ) for the control input within the KIC framework. A
state-feedback law \bfu = \bfD (\bfx ) may be hidden within \bfA and can be identified with knowl-
edge of \bfu . Vector-valued observables are split into a linear \bfL and nonlinear \bfN part, e.g.,
\bfg (\bfx ) := [\bfL T (\bfx ) \bfN T (\bfx )]T .

Theorem 6.1. Suppose there is a finite set of Koopman eigenfunctions associated
with the unforced vector field f0, \varphi j(x) for j = 1, . . . , n, and that these form an
invariant subspace of the Lie derivatives \scrL \bff j , j = 1, . . . , q. Then there exists a finite-
dimensional bilinear representation for (6.21), and in turn also for (6.23).

A special class of observables is that of Koopman eigenfunctions (or eigenfunc-
tions of the Lie operator), which behave linearly in time by definition. Specifically,
smooth eigenfunctions of the Koopman operator associated with the uncontrolled
system satisfy

(6.24)
d

dt
\varphi (x) = \mu \varphi (x) +\nabla \bfx \varphi (x) \cdot 

\left( 
 

q\sum 

j=1

fj(x)uj

\right) 
 ,

with unforced dynamics determined by its associated eigenvalue \mu and where the sec-
ond term reflects explicitly how the control input affects these eigenfunctions. Koop-
man eigenfunctions are associated with the global behavior of the system and represent
a Koopman-invariant subspace. Equation (6.24) may also represent a bilinear equa-
tion (for further details see subsection 6.2.4). Importantly, for systems with low-rank
structure it is possible to describe the dynamics in terms of a small number of eigen-
functions which sufficiently well describe the global behavior and avoid the explosion
of observables of the Carleman linearization. Even though the system may not be
completely bilinearizable, approximate bilinearizability may be sufficient for accurate
prediction [149]. Furthermore, there exists a vast literature of diagnostic and control
techniques tailored to bilinear systems that can be utilized.

6.2. Data-Driven Control. In contrast to model-based control, there are many
emerging advances in equation-free, data-driven system identification that leverage
Koopman theory. The relationships among some of the more prominent methods and
their connection to the Koopman operator are shown in Figure 6.3.

6.2.1. Dynamic Mode Decomposition with Control. Amajor strength of DMD
is its ability to describe complex and high-dimensional dynamical systems in terms of
a small number of dominant modes, which represent spatio-temporal coherent struc-
tures. Reducing the dimensionality of the system from n (often millions or billions) to
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r (tens or hundreds) enables faster and lower-latency prediction and estimation, which
generally translates directly into controllers with higher performance and robustness.
Thus, compact and efficient representations of complex systems such as fluid flows
have been long sought, resulting in the field of reduced-order modeling. However,
the original DMD algorithm was designed to characterize naturally evolving systems,
without accounting for the effects of actuation and control.

The DMDc algorithm by Proctor, Brunton, and Kutz [351] extends DMD to
disambiguate between the natural unforced dynamics and the effect of actuation.
This generalizes the DMD regression to the control form

xk+1 \approx Axk +Buk.(6.25)

For DMDc, snapshot pairs \{ xj ,xj+1,uj\} mj=1 of the state variable x and actuation
command u are collected and organized into the following data matrices:

(6.26) X =

\left[ 
 

| | 
x1 \cdot \cdot \cdot xm - 1

| | 

\right] 
 , X\prime =

\left[ 
 

| | 
x2 \cdot \cdot \cdot xm

| | 

\right] 
 , \Upsilon =

\left[ 
 

| | 
u1 \cdot \cdot \cdot um - 1

| | 

\right] 
 ,

where X\prime is a time-shifted version of X. Then the system matrices A and B are
determined jointly by solving the following least-squares optimization problem:

min
[\bfA \bfB ]

\bigm\| \bigm\| \bigm\| X\prime  - 
\bigl[ 
A B

\bigr] \biggl[ X
\Upsilon 

\biggr] \bigm\| \bigm\| \bigm\| 
2

2
,(6.27)

where the solution is given as [A B] = X\prime [\bfX \bfUpsilon ]\dagger .
Originally motivated by intervention efforts in epidemiology [350], DMDc based

on linear and nonlinear measurements of the system has since been used with MPC for
enhanced control of nonlinear systems by Korda and Mezi\'c [216] and by Kaiser, Kutz,
and Brunton [192], with the DMDc method performing surprisingly well, even for
strongly nonlinear systems. DMDc allows for a flexible regression framework, which
can accommodate undersampled measurements of an actuated system and identify an
accurate and efficient low-order model using compressive system identification [25],
which is closely related to the ERA [188].

6.2.2. Extended Dynamic Mode Decomposition with Control. The DMDc
framework provides a simple and efficient numerical approach for system identifi-
cation, in which the Koopman operator is approximated with a best-fit linear model
advancing linear observables and linear actuation variables. As discussed in subsec-
tion 5.1, eDMD is an equivalent approach to DMD that builds on nonlinear observ-
ables. An extension of eDMD for controlled systems was first introduced in Williams
et al. [447] to approximate the Koopman operator associated with the unforced sys-
tem and to correct for inputs affecting the system dynamics and data. Inputs are
handled as time-varying system parameters and the Koopman operator is modeled
as a parameter-varying operator drawing inspiration from linear parameter varying
(LPV) models. This approach has been generalized in Korda and Mezi\'c [216] to
identify the system matrices A and B in the higher-dimensional observable space,
which disambiguates the unforced dynamics and control on observables. In partic-
ular, the Koopman operator is defined as an autonomous operator on the extended
state \~x := [xT ,uT ]T as in (6.15) and observables can be nonlinear functions of the
state and input, i.e., g(x,u). However, in practice, simplifications are employed to
allow for convex formulations of the control problem.
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Assuming that the observables are nonlinear functions of the state and linear
functions of the control input, i.e., g(x,u) := [\theta 1(x), . . . , \theta p(x), u1, . . . , uq]

T \in Rp+q,
and restricting the dynamics of interest to the state observables \theta (x) themselves, the
linear evolution equation to be determined is

zk+1 \approx Azk +Buk,(6.28)

where z \in Rp is the vector-valued observable as in subsection 5.1 defined as

z := \Theta T (x) =

\left[ 
    

\theta 1(x)
\theta 2(x)

...
\theta p(x)

\right] 
    .(6.29)

Analogous to DMDc (6.26), the (time-shifted) data matrices in the lifted space, Z =
\Theta T (X) and Z\prime = \Theta T (X\prime ), are evaluated given data X\prime ,X,\Upsilon . The system matrices
A,B are determined from the least-squares regression problem

min
[\bfA \bfB ]

\bigm\| \bigm\| \bigm\| Z\prime  - 
\bigl[ 
A B

\bigr] \biggl[ Z
\Upsilon 

\biggr] \bigm\| \bigm\| \bigm\| 
2

2
,(6.30)

where the solution is given as [A B] = Z\prime [ \bfZ \bfUpsilon ]\dagger = \Theta T (X\prime )[\bfTheta 
T (\bfX )
\bfUpsilon 

]\dagger . The state x is

often included in the basis or space of observables, e.g., z = [xT , \Theta (x)]T , and can
then be estimated by selecting the appropriate elements of the observable vector z,
so that x = Cz with the measurement matrix C = [In\times n 0]. If the state vector is not
included as an observable, one may approximate the measurement matrix by solving
an equivalent least-squares problem

min
\bfC 

\bigm\| \bigm\| \bigm\| X - CZ
\bigm\| \bigm\| \bigm\| 
2

2
.(6.31)

Alternatively, it has been shown that the state can be estimated using, e.g., multi-
dimensional scaling [202]. If full-state information is not available, but only input-
output data is available, the observable vector z often needs to be augmented with past
input and output values, as is typically done in system identification [251], following
attractor reconstruction methods such as the Takens embedding theorem [424].

As eDMD is known to suffer from overfitting, it is important to regularize the
problem based on, for instance, the L1,2-norm for group sparsity [447] or the L1-
norm [194]. eDMDc yields a linear model for the controlled dynamics in the space of
observables through a nonlinear transformation of the state. As with DMDc, it can be
combined with any model-based control approach. In particular, when combined with
MPC for a quadratic cost function, the resulting MPC optimization problem can be
shown [216] to lead to a convex quadratic programming problem whose computational
cost remains comparable to that of linear MPC and is independent of the number of
observables, and to outperform MPC with a model based on a local linearization or
Carleman linearization.

The advantage of a linear representation can also represent a restriction for some
systems in the sense that only linear control methods can be applied. Bruder, Fu,
and Vasudevan [58] recently demonstrated that the accuracy of approximate bilinear
approximations improves with increasing number of basis functions, while that of
linear approximations does not necessarily, limiting their control performance. For
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instance, all control-affine systems can be reformulated as an infinite-dimensional
bilinear system (see also section 6.1.2), but not necessarily as an equivalent linear
one. As a consequence, bilinear Koopman control can represent a balancing middle
ground outperforming linear Koopman-based MPC performance-wise and nonlinear
MPC computationally-wise.

6.2.3. Generalizations of DMDc and eDMDc. The simple formulation of DMDc
and eDMDc as a linear regression problem allows for a number of generalizations
that can be easily exploited for integration into existing linear model-based control
methods. A number of these generalizations are highlighted here.

Mixed Observables. eDMDc allows for generalization by using a suitable choice
of observable functions. It has also been proposed [216, 352] to include nonlinear
observables of the input, e.g., g(u) = u2, or mixed observables of the state and
input, e.g., g(x, u) = xu. The advantage of incorporating these measurements has
yet to be demonstrated and a subsequent control optimization is not straightforward.
However, for systems forced by external inputs or parameters this may provide new
opportunities to identify their underlying dynamics, e.g., \.u = h(x,u) or a state-
feedback law u = d(x) (see also Figure 6.3).

Input and Output Spaces. Within the KIC framework [352], different domain and
output spaces of the Koopman operator approximation have been examined. This
develops more formally what has been implicitly carried out in eDMDc-like methods
to obtain models for only the state itself. If only observables that are functions of the
state and not of the input are considered, the output space of the Koopman operator
can be restricted to a subspace of the Hilbert space spanned by observables which are
solely functions of the state and not of the extended state space:

(6.32) z\bfx ,k+1 = K\bfx zk = K\bfx 

\left[ 
 

g(xk)
g(xk,uk)
g(uk)

\right] 
 ,

with vector-valued observables z\bfx := g(x) and z := [gT (x), gT (x,u), gT (u)]T . This
is reasonable since the prediction of the future actuation input u is not of interest for
the purpose of control. Analogously, Koopman eigenfunction expansions of observ-
ables must be distinguished based on the domain and output spaces.

Time-Delay Coordinates. Time-delay coordinates provide an important and univer-
sal class of measurement functions for systems which display long-term memory ef-
fects. They are especially important in real-world applications where limited access
to full-state measurements is available (see subsection 5.2), and they have demon-
strated superior performance for control compared with models using monomials
as observables [192]. For simplicity, we will consider a sequence of scalar input-
output measurements u(t) and x(t). From these, we may construct a delay vec-
tor of inputs uk := [uk, uk - 1, uk - 2, . . . , uk - mu

]T and outputs zk := g(xk) =
[xk, xk - 1, xk - 2, . . . , xk - mx

]T , respectively. Here, m = mx = mu is assumed for
simplicity. The dynamics may then be represented as

zk+1 = Azk +Buk,(6.33a)

yk =
\bigl[ 
1 0 . . . 0

\bigr] 
zk = xk,(6.33b)

where the current state x is recovered from the first component of zk. Both the system
matrix A and the control matrix B must satisfy an upper triangular structure to not

D
ow

nl
oa

de
d 

07
/1

1/
22

 to
 2

05
.1

75
.1

06
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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violate causality; otherwise, current states will depend on future states and inputs.
Here, uk is constructed from past inputs, while effectively the system has only a
single input. Thus, it is recommended to augment z with past inputs, i.e., zk :=
g(xk,uk - 1) = [xk, (x, u)k - 1, (x, u)k - 2, . . . , (x, u)k - m], so that the current actuation
value uk appears as a single input to the system [216, 193]:

zk+1 = \^Azk + \^buk,(6.34a)

yk =
\bigl[ 
1 0 . . . 0

\bigr] 
zk = xk.(6.34b)

This delay observable zk = g(xk,uk - 1) has also been used in eDMDc if only input-
output data is available [216]. Without the delay information, eDMDc may fail despite
the lifting into a higher-dimensional observable space (as for the examples in subsec-
tion 6.3). By combining (6.33a) and (6.33b) into a single equation, we obtain an
equivalent description to (6.32) with different domain and output spaces:

(6.35) z1,k+1 = yk+1 =
\bigl[ 
CA CB

\bigr] \biggl[ zk
uk

\biggr] 
.

This formulation is analogous to autoregressive-exogenous (ARX) models in linear
system identification [251], where the current output is represented as a linear super-
position of past measurements and inputs.

Parameterized Models. The control input can also be restricted to a finite set of dis-
crete values. The dynamics are then modeled as a linear parameter-varying model, so
that each discrete input is associated with an autonomous Koopman operator (6.16),
which is approximated using either DMD or eDMD [339]. The control input is thus
not modeled explicitly, but implicitly, by switching the model whenever the actuation
command switches. The advantage of this formulation is that each model associated
with a discrete control input remains autonomous. Recently, this approach has been
extended to continuous control input by interpolating between the finite set of control
actions, so that the system dynamics are predicted using interpolated models based on
the infinitesimal generator of the Koopman operator, leading to bilinear models [341]
similar to (6.23). This also alleviates performance issues associated with the time
discretization of the models when optimizing their switching times [341, 209].

Deep Koopman Models for Control. Finding a suitable basis or feature space that fa-
cilitates a Koopman-invariant subspace remains challenging. Due to their flexibility
and rich expressivity [359], there is increased interest in using neural networks to
learn complex Koopman representations (see also subsection 5.4). Extending these
architectures to incorporate the effect of control requires careful handling of the con-
trol variable to ensure tractability of the subsequent control optimization, which a
nonlinear transformation of the control variable generally impedes. Building on their
work on deep DMD [457] and Koopman Gramians [458], Liu et al. [250] proposed to
decompose the space of observables as three independent neural networks, associated
with parameters \bfittheta x, \bfittheta xu, and \bfittheta u, respectively, to which the input is either the state
variable alone, the control variable alone, or both:

(6.36) z\bfx ,k+1 = Kzk =
\bigl[ 
Kx Kxu Ku

\bigr] 
\left[ 
 
z\bfx ,k
z\bfx \bfu ,k
z\bfu ,k

\right] 
 with

z\bfx := g(x, \bfittheta x),
z\bfx \bfu := g(x,u,\bfittheta xu),
z\bfu := g(u, \bfittheta u).

The unknown Koopman matrices K\bullet and neural network parameters \bfittheta \bullet , where \bullet = x,
xu, or u, can then be optimized jointly [250] or separately by switching alternately
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between model update and parameter update, as in [160, 244]. While the model
is linear in the latent space, it is not tractable for prediction and control of the
original system. In order to map back to the original state for predictions and to
solve the control optimization problem, the states and control inputs are also directly
included as observables, so that z\bfx := [x,g(x, \bfittheta x)]

T and z\bfu := [u,g(u, \bfittheta u)]
T . While

z\bfx \bfu := gT (\bfittheta xu) is kept the same, it is also possible to neglect Kxu under certain
conditions. In subsequent work [459, 163], slightly modified approaches are studied
while maintaining the tractability of the control synthesis problem.

Analogous to eDMDc, a multilayer perceptron neural network can be used solely
to lift the state space, while the effect of the control input in the lifted space re-
mains linear [160], i.e., z\bfx ,k+1 = Az\bfx ,k + Bu, where Kx = A, Ku = B, Kxu = 0,
z\bfx := g(x, \bfittheta x), and z\bfu := u. The transformation from the latent space to the origi-
nal state is determined via a least-squares optimization problem analogous to (6.31),
where Z then represents the output of the neural network z\bfx . Autoencoders provide
a natural framework for learning Koopman representations [255] (see also subsec-
tion 5.4) combining the state lifting operation and inverse transformation. Recently,
this approach has been extended for control by incorporating the control term [160],
so that only the state is encoded into z\bfx ,k and the shifted feature state z\bfx ,k+1 is de-
coded. These formulations facilitate immediate application of standard linear control
methods. Graph neural networks (GNNs) [244] have also been exploited to encode
and decode the compositional structure of the system, modeling similar physical inter-
actions with the same parameters, resulting in a block-structured, scalable Koopman
matrix. The GNNs yield a nonlinear transformation of the state, while the effect of
the control input is assumed to be linear in the transformed latent space as above,
resulting in a quadratic program for control synthesis.

6.2.4. Control in Intrinsic Koopman Eigenfunction Coordinates. Eigenfunc-
tions of the Koopman operator represent a natural set of observables, as their temporal
behavior is linear by design. Furthermore, these intrinsic observables are associated
with global properties of the underlying system. Koopman eigenfunctions have been
used for observer design within the Koopman canonical transform (KCT) [409, 410]
and within the Koopman reduced-order nonlinear identification and control (KRO-
NIC) framework [194], which both typically yield a global bilinear representation of
the underlying system. The Koopman eigenfunctions that are used to construct a
reduced description are those associated with the point spectrum of the Koopman
operator and are restricted to the unactuated, autonomous dynamics. In particular,
we consider control-affine systems of the form

\.x = f(x) +
l\sum 

j=1

hj(x)uj ,(6.37)

where hj(x) are the control vector fields.
The observable vector is defined as

z := \scrT (x) =

\left[ 
    

\varphi 1(x)
\varphi 2(x)

...
\varphi p(x)

\right] 
    ,(6.38)

where \scrT : Rn \rightarrow C represents a nonlinear transformation of the state x into eigenfunc-
tion coordinates \varphi (x), which are associated with the unforced dynamics \.x = f(x). If
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the \varphi 's are differentiable at x, their evolution equation can be written in terms of the
Lie operator (2.15), i.e., \.\varphi (x) = \scrL \bff \varphi (x) = f(x) \cdot \nabla \varphi (x) = \mu \varphi (x). Hence, we obtain

(6.39) \scrL \bff \scrT (x) = \Lambda \scrT (x),

where\Lambda = diag(\lambda 1, . . . , \lambda p) is a matrix, with diagonal elements consisting of the eigen-
values \lambda i associated with the eigenfunctions \varphi j . Then the dynamics for observables
z for the controlled system satisfy (see also (6.24))

\.z =

\left( 
 f(x) +

l\sum 

j=1

hj(x)uj

\right) 
 \cdot \nabla \scrT (x) = \scrL \bff \scrT (x) +

l\sum 

j=1

\scrL \bfh j\scrT (x)uj(6.40a)

= \Lambda z+
l\sum 

j=1

bj(z)uj = \Lambda z+B(z)u,(6.40b)

where bj(z) := \scrL \bfh j\scrT (x)| \bfx =\bfC \bfz and x = Cz estimates the state x from observables z.
The system (6.40) is bilinearizable under certain conditions, e.g., if \scrL \bfh j\scrT (x) lies in the
span of the set of eigenfunctions for all j [177]. This admits a representation of the Lie
operators of the control vector fields in terms of the Koopman eigenfunctions [409].

For u = 0 the dynamics (6.40b) are represented in a Koopman-invariant subspace
associated with the unforced system. For u \not = 0 the control term B(z) describes how
these eigenfunctions are affected by u. The advantage of this formulation is that the
dimension of the system scales with the number of eigenfunctions, and often a few
dominant eigenfunctions may be sufficient to capture the principal behavior. In gen-
eral, the eigenfunctions can be identified using eDMD, kernel-DMD, or other variants,
and the model (6.40b) may be well represented as long as their span contains f(x),
hj(x), and x [411]. Alternatively, the KRONIC framework seeks to learn eigenfunc-
tions directly, which are sparsely represented in a dictionary of basis functions. The
control term B(z) can be either determined from the gradient of the identified eigen-
functions for known hj(x) or identified directly [191] for unknown hj(x) by similarly
expanding it in terms of a dictionary. Multiple works have since been published fo-
cusing on the direct identification of Koopman eigenfunctions [218, 162, 335]. In any
case, validating the discovered eigenfunctions, i.e., ensuring that they behave linearly
as predicted by their associated eigenvalue, is critical for prediction tasks.

6.3. Koopman-Based Control Strategies. In contrast to linear systems, the
control of nonlinear systems remains an engineering grand challenge. Many real-world
systems represent a significant hurdle to nonlinear control design, leading to linear ap-
proximations that produce suboptimal solutions. Linear Koopman-based models aim
to capture the dynamics of a nonlinear system and thus leverage linear control meth-
ods. The predictive power of linear models is increased within the Koopman operator
framework by replacing (or augmenting) the state space with nonlinear observables.
Nonlinear observables are not completely new in the context of control theory, but
also appear as the (control) Lyapunov function for stability, the value function in
optimal control, or as measurement functions in input-output linearization. Normally
the state itself is included in the set of observables. While this is problematic from the
perspective of finding a linear, closed-form approximation to the Koopman operator
associated with the underlying nonlinear system [62], it allows one to easily measure
the state given the model output and the cost function associated with the original
control problem. If the state is not included, a measurement matrix or function map-
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Fig. 6.4 Tail-actuated robotic fish (top left corner) developed by the Smart Microsystems Lab at
Michigan State University for trajectory tracking using Koopman LQR (top row) and back-
stepping (bottom row). Reference trajectory is displayed in blue, controlled trajectory in
red. Reproduced with permission from Mamakoukas et al. (2019 Robotics: Science and
Systems) [266].

ping from the nonlinear observables to the state vector needs to be estimated along
with the system matrices, typically introducing additional errors.

Koopman-based frameworks are amenable to the application of standard linear
estimation and control theory and have been increasingly used in combination with
optimal control [62, 266, 4, 194, 216, 191, 15, 339, 3]. In the simplest case, a linear
quadratic regulator may be used, which has been successfully demonstrated in exper-
imental robotics [266, 267], as in Figure 6.4. In addition to modifying the eigenvalues
of the closed-loop system as in pole placement, the shape of Koopman eigenfunctions
may be modified directly using eigenstructure assignment [165]. Several other ap-
proaches build on a global bilinearization [409, 194, 177] of the underlying system in
terms of Koopman eigenfunctions (see subsection 6.2.4). Under certain conditions,
this may allow one to stabilize the underlying dynamical system with feedback lin-
earization [149]. Feedback stabilization for nonlinear systems can also be achieved via
a control Lyapunov function [409] expressed in Koopman eigenfunctions, for which
the search can be formulated as a convex optimization [177, 178]. Stabilizing solutions
have also been determined by constructing a Lyapunov function from stable Koop-
man models obtained by imposing stability constraints on the Koopman matrix [265].
Sequential action control [11] is an alternative to MPC in experimental robotics [3, 4]
that optimizes both the control input and the control duration. This is a convex ap-
proach applicable to control-affine systems, and, as such, may also be combined with
Koopman bilinearizations.

Although the predictive power of Koopman models can be sensitive to the particu-
lar choice of observables and the training data, in particular, receding-horizon methods
such as MPC (see subsection 6.1.1) provide a robust control framework that systemat-
ically compensates for model uncertainties by continually updating the optimization
problem and taking into account new measurements. Incorporating Koopman-based
models into MPC was first introduced in Korda and Mezi\'c [216] using eDMDc and has
subsequently been used for control in Koopman eigenfunction coordinates [194, 191]
and interpolated Koopman models [338, 341] extending to continuous control inputs.
The latter approach combines the data efficiency of estimating autonomous Koop-
man models associated with discrete control inputs with continuous control, which is
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Fig. 6.5 Model predictive control of compositional systems by combining Koopman operators with
graph neural networks for an object-centric embedding. Reproduced with permission from
Li et al. (2019 ICLR) [244].

achieved by relaxation of a switching control approach. Convergence can be proven,
albeit assuming an infinite data limit and an infinite number of basis functions. In
general, guarantees on optimality, stability, and robustness of the controlled dynam-
ical system remain limited. Of note is Koopman Lyapunov-based MPC that guar-
antees closed-loop stability and controller feasability [315, 398]. More recently, deep
learning architectures have been increasingly used to represent the nonlinear mapping
into the observable space. These have also been combined with MPC with promising
results [244] (see also Figure 6.5).

The success of Koopman-based MPC belies the practical difficulties of approx-
imating the Koopman operator. On the one hand, there exist only a few systems
with a known Koopman-invariant subspace and eigenfunctions on which models could
be analyzed and evaluated. On the other hand, even the linearity property of the
Koopman eigenfunctions associated with the model is rarely validated and MPC ex-
hibits an impressive robustness when handling models with very limited predictive
power. Thus, there have been impressive practical successes, but there are gaps
in our understanding of how well the Koopman operator is actually approximated
and what possible error bounds can be given. In addition to theoretical advances,
Koopman-based control has been increasingly applied in real-world problems such
as power grids [220, 316], high-dimensional fluid flows [258, 15, 340, 341], biologi-
cal systems [163], chemical processes [315, 398], human-machine systems [53], and
experimental robotic systems [4, 59, 266, 57, 128, 129, 130, 131].

Multiple variants of Koopman-based control have been demonstrated in numerical
and experimental settings. Here, we illustrate MPC (see subsection 6.1.1 for details)
combined with different Koopman-based models for several nonlinear systems includ-
ing a bilinear DC motor (see also [216]), the forced Duffing oscillator, and the van der
Pol oscillator. An overview of the parameters, models, and controls is presented in
Table 6.1, with results summarized in Figures 6.6 and 6.7. Consider the single-input
single-output (SISO) system

\.x = f(x, u, t),(6.41a)

y = Cx,(6.41b)
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Table 6.1 Parameters for numerical control examples.

Examples

\bfB \bfi \bfl \bfi \bfn \bfe \bfa \bfr \bfF \bfo \bfr \bfc \bfe \bfd \bfD \bfu ffi\bfn \bfg \bfV \bfa \bfn \bfd \bfe \bfr \bfP \bfo \bfl 
\bfD \bfC \bfm \bfo \bft \bfo \bfr \bfo \bfs \bfc \bfi \bfl \bfl \bfa \bft \bfo \bfr \bfo \bfs \bfc \bfi \bfl \bfl \bfa \bft \bfo \bfr 
La = 0.314, a = 1, b =  - 1, \mu = 2
Ra = 12.345, d =  - 0.3, f0 = 0.5,
km = 0.253, \omega = 1.2
J = 0.00441,
B = 0.00732,
\tau l = 1.47, ua = 60

T
ra
in
in
g Timestep \Delta t = 0.01 \Delta t = 0.1 \Delta t = 0.1

Domain \bfx \in [ - 1, 1]2 \bfx \in [ - 1.5, - 1]2 \bfx \in [ - 2, 2]2

Input u \in [ - 1, 1] u \in [ - 0.5, 0.5] u \in [ - 5, 5]

M
o
d
el

DMDc \bfz = \bfx \bfz = \bfx \bfz = \bfx 
p = 3 p = 3 p = 3

DDMDc \bfz = \bfg 1(y, u) \bfz = \bfg 1(y, u) \bfz = \bfg 1(y, u)
p = 3 p = 3 p = 3
\bfz = \bfg 16(y, u) --- \bfz = \bfg 8(y, u)
p = 33 p = 17

eDMDc \bfz = [\bfg 1, \bfitxi ] \bfz = [\bfg 1, \bfitxi ] \bfz = [\bfg 1, \bfitxi ]

p = 103 p = 103 p = 103

C
o
n
tr
o
l Reference r(t) = 1

2
cos( 2

3
\pi t) r(t) =  - sin(t) r(t) =  - sin(t)

Horizon T = 0.1 T = 1 T = 3
Weights Q = 1, R = 0.1 Q = 1, R = 0.1 Q = 1, R = 0.01

Constraints  - 0.4 \leq x2 \leq 0.4  - 0.8 \leq x2 \leq 0.8  - 0.8 \leq x2 \leq 0.8
 - 1 \leq u \leq 1  - 0.5 \leq u \leq 0.5  - 5 \leq u \leq 5

to be controlled using MPC to track a time-varying reference signal r(t). The cost
function is defined as

(6.42) J = | | yN  - rN | | 2\bfQ +
N - 1\sum 

k=0

| | yk  - rk| | 2\bfQ +R| | uk| | 2,

where the first term represents the terminal cost and the subscript k corresponds
to the kth timestep tk := k\Delta t. The control sequence \{ u0, u1, . . . , uN - 1\} over the
N -step horizon is determined by minimizing the cost function subject to the model
dynamics and state and control constraints, ymin \leq y \leq ymax and umin \leq u \leq umax,
respectively. These results are compared with a local linearization of the system
dynamics (referred to as LMPC in what follows).

While DMDc relies on full-state measurements, only the output y = Cx is eval-
uated in the cost function (6.42). For the remaining models, time-delay coordinates
are employed and we define the time-delayed observable vector as

(6.43) gm(y, u) = [yk, (y, u)k - 1, . . . , (y, u)k - m]T

with (y, u)k := [yk, uk] and where m denotes the number of delays. The DDMDc
model, which is short for DMDc applied to delay coordinates, is based on time-
delay coordinates discussed in subsection 6.2.3. However, past control values are also
included in the observable vector gm(y, u). The observable vector associated with
the eDMDc models is defined as z = [gm(y, u), \bfitxi (y, u)]T (analogous to [216]), so that
the output y itself is a coordinate of the observable. The variable \bfitxi (y, u) represents
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(b) Forced Duffing Osc.(a) Bilinear DC motor

Pr
ed

ict
io

n
Co

nt
ro

l

<latexit sha1_base64="aQR76CiPPgeuTDflNSatR2dBZ/w=">AAAChnicbZFda9swFIZlp93StFvT7bI3oqFjIzTYWUt3MwjLzQi7SMfyAXEwsiK3IvIH0tFoMP4p+1O967+Z7DgjS3rA5uU5530tHwWp4Aoc59myaweHr17XjxrHJ2/enjbP3o1VoiVlI5qIRE4DopjgMRsBB8GmqWQkCgSbBMt+0Z/8ZlLxJP4Fq5TNI3If85BTAgb5zT/eIoHsMfdd/OErvvJCSWj20yd59sO8Hg2+wmu49KMN7GKN2xXWm1nPa2yyultZ3/JsUFra2zmDMlr/C/eAaF8U3MSsCruxeJ7fbDkdpyy8L9xKtFBVQ7/5ZM5AdcRioIIoNXOdFOYZkcCpYHnD04qlhC7JPZsZGZOIqXlWrjHHl4YscJhI88SAS7rtyEik1CoKzGRE4EHt9gr4Um+mIfwyz3icamAxXX8o1AJDgos7wQsuGQWxMoJQyc1ZMX0gZi9gbq5hluDu/vK+GHc77k3Hubtu9frVOuroHF2gj8hFt6iHvqMhGiFq1axPVtf6bNftjn1j365HbavyvEf/ld37C9kXwPk=</latexit>

ẋ1 = �Ra

La
x1 �

km
La

x2u+
ua

La

ẋ2 = �B

J
x2 +

km
J

x1u� ⌧l
J

y = x2

(c) Van der Pol Oscillator

<latexit sha1_base64="YG6j8zXs2bcrOJio3loHBkQp1x0="></latexit>

ẋ1 = x2

ẋ2 = ax1 + bx3
1 + dx2 + f0 cos(!t)

+ (3 + cos(x1))u

y = x2

<latexit sha1_base64="jbK9NBCqfgUdaLb6isr43tzmZIg="></latexit>

ẋ1 = x2

ẋ2 = �x1 � µ(x2
1 � 1)x2 + u

y = x2

/

J

Fig. 6.6 Reference tracking using MPC combined with different Koopman operator models illustrated
for three dynamical systems.

a particular choice of lifted nonlinear observables. Here, we employ thin plate spline
radial basis functions \xi j = r2 ln | | gm(y, u) - cj | | with r = 1 and 100 randomly sampled
centers within the considered domain. If the output is not included as an observable,
an estimate of the mapping from \bfitxi (y, u) to the output y is required in order to
evaluate the cost function. By incorporating the output in the model this can be
avoided; however, this also restricts the model [62].
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(b) Forced Duffing Osc.(a) Bilinear DC motor (c) Van der Pol Oscillator

L-
M

PC
DM

Dc
ED

M
Dc

DD
M

Dc
(m

=
1)

Fig. 6.7 N-step controllable set for the reference tracking problems in Figure 6.6. The trajectory of
the unforced system is displayed in gray in the top row. The same initial condition (gray
circle) is used in Figure 6.6.

Training data for all examples is collected from 102 initial conditions uniformly
distributed within the examined domain stated in Table 6.1. A different random,
binary actuation signal within the range of the input constraints is applied to sample
each trajectory in the training set. Each trajectory consists of 103 samples, so that in
total the training set consists of 105 samples. Data efficiency in system identification
is an important topic, as only limited measurements may be available to train models
and each model may have different requirements. For instance, as few as 10 samples
may be sufficient to train a DMDc model that successfully stabilizes an unstable fixed
point using MPC (see, e.g., Figure 7 in [192]).

The prediction and control performance is summarized in Figure 6.6. The first
part illustrates the prediction accuracy for a single trajectory and shows the mean
relative prediction error e = 1

N

\sum N
k=1 (yk  - \^yk)/yk with N = T/\delta t, where y and \^y

are the true and predicted values, respectively. The bar displays the median value
of e for each model evaluated over 300 random initial conditions, and the black lines
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indicate extremal values. The second part shows the control performance for the
same initial condition. The cost is evaluated by (6.42) and shown in the sixth row
of Figure 6.6. We note that the model based on a local linearization (LMPC) can
be used to successfully control the bilinear DC motor without constraint violations
or infeasibility issues, in contrast to [216], by using a smaller prediction horizon for
MPC. A significantly larger horizon would exceed the predictability of the model and
result in infeasibility and performance issues. While the prediction accuracy may be
comparable with other models, DMDc-MPC fails for the DC motor and is inferior
in the other examples for tracking a time-varying reference signal. However, it may
be possible to stabilize an unstable fixed point using DMDc in certain cases, despite
it having limited predictive power [192]. DDMDc-m models, where m denotes the
number of delays, achieve comparable predictive and control capabilities as eDMDc;
intriguingly, even with only one delay m = 1 for the Duffing and van der Pol systems.
MPC is surprisingly robust with respect to model errors. Even in cases with limited
predictive power (compare, e.g., the early divergence of LMPC for the van der Pol
oscillator), the system is successfully controlled with MPC. The robustness of MPC
with respect to modeling inaccuracies may hide the fact that the model may actually
be a poor representation of the underlying dynamics or its Koopman operator.

In Figure 6.7, the control performance is assessed over the domain of the training
data, as the prediction performance can vary significantly depending on the initial
condition. Each initial condition is color-coded with the cost J (6.42), which is eval-
uated for a duration of 1, 4, and 3 time units for the three examples (left to right),
respectively. DDMDc-1 and eDMDc, both using m = 1 delays, are nearly indistin-
guishable, while the model dimension is p = 3 for the first and p = 103 for the latter.
This raises the important, and so far relatively unanswered, question of which set
of basis functions should be employed to train a Koopman model. Time-delay co-
ordinates perform extremely well for prediction and control in a variety of systems
and have the benefit of well-developed theoretical foundations. More sophisticated
basis functions may perform similarly well, but it is not clear that they warrant the
increased design effort given the comparable performance.

6.4. Stability. Stability is central in the analysis and control of real-world sys-
tems. The Lyapunov function plays an essential role in global stability analysis and
control design of nonlinear systems. Finding or constructing a Lyapunov function
poses a significant challenge for general nonlinear systems. Importantly, spectral prop-
erties of the Koopman operator have been associated with geometric properties such
as Lyapunov functions and measures, the contracting metric, and isostables which
are used to study global stability of the underlying nonlinear system. For instance,
building on [438], it has been shown [283, 281] that Lyapunov's second method im-
plicitly uses an operator-theoretic approach and Lyapunov functions represent special
observables advanced through the Koopman operator.

Consider a dynamical system \.x = f(x) with fixed point x\ast . A Lyapunov function
V : Rn \rightarrow R must satisfy

(6.44) \.V (x) = \nabla V \cdot f(x) \leq 0 for all x\not =x\ast .

If \.V (x) \leq 0, the system is asymptotically stable in the sense of Lyapunov. There is
also an equivalent definition of the Lyapunov function for discrete-time systems. The
dynamics of the Lyapunov equation (6.44) can be formulated directly in terms of the
generator of the Koopman operator family acting on a nonnegative observable (6.19)
(here without input u = 0). Thus, the Lyapunov function decays everywhere under

D
ow

nl
oa

de
d 

07
/1

1/
22

 to
 2

05
.1

75
.1

06
.8

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MODERN KOOPMAN THEORY FOR DYNAMICAL SYSTEMS 315

action of the Lie operator and is related to its spectral properties and those of the
Koopman operator semigroup. The global stability of a fixed point can be estab-
lished through the existence of a set of C1 eigenfunctions of the Koopman operator
associated with the eigenvalues of the Jacobian of the vector field with the Koopman
eigenfunctions being used to define a Lyapunov function and contracting metric [281].
A corresponding numerical scheme based on a Taylor expansion may then be used
to compute stability properties, including the domain of attraction. These methods
have been extended to characterize the global stability properties of hyperbolic fixed
points, limit cycles, and nonanalytical eigenfunctions [282].

6.5. Observability and Controllability. Observability and controllability play a
crucial role in the design of sensor-based estimation and control. However, they have
limited validity when applied to linearized nonlinear systems. There exist analogous
(local) controllability and observability criteria for nonlinear systems using Lie deriva-
tives [168, 203]. However, these criteria are typically restricted to a specific class
of systems and their evaluation remains challenging for even low-dimensional sys-
tems, becoming computationally intractable for high-dimensional systems. Operator-
theoretic approaches provide new opportunities to assess observability and control-
lability of high-dimensional nonlinear systems using linear techniques and obtaining
corresponding estimates from given data. Generally, two states are indistinguishable
if their future output sequences are identical. Thus, a nonlinear system is considered
nonlinearly observable if any pair of states is distinguishable. Common criteria may
be divided into two classes: rank conditions and Gramians [63]. Rank conditions yield
a binary decision, while Gramians are used to examine the degree of observability and
controllability. The latter is also used for balanced truncation to obtain reduced-order
models that balance a joint observability and controllability measure. In contrast, cor-
responding metrics for nonlinear systems rely on the derivation of its linear equivalent
using Lie derivatives, which can be challenging. Reformulating a nonlinear system into
a linear system allows one to apply linear criteria in a straightforward manner. Thus,
Koopman operator-theoretic techniques have been increasingly studied in the context
of observability and controllability of nonlinear systems.

An immediate extension of linear rank conditions to nonlinear systems is achieved
by applying the linear criteria to the representation in the lifted state space. In [410],
nonlinear observability is evaluated in a Koopman-based observer, which provides
a linear representation of the underlying system in Koopman eigenfunction coordi-
nates (see also subsection 6.2.4). The underlying nonlinear system is then considered
nonlinearly observable if the pair (A,CH) is observable, which can be determined
via the rank condition of the corresponding observability matrix. These ideas have
been applied to study pedestrian crowd flow [38], extended further to input-output
nonlinear systems resulting in bilinear or Lipschitz formulations [409], and used to
compute controllability and reachability [149]. The observability and controllability
Gramians can also be computed in the lifted observable space [410]. In this case,
the observability/controllability of the underlying system is related to the observabil-
ity/controllability of the observables. The underlying assumption is that the state,
input, and output are representable in terms of a few Koopman eigenfunctions. More
recently, a deep learning DMD framework [457] has been extended to incorporate
Koopman Gramians to maximize internal subsystem observability and disturbance
rejection from unwanted noise from other subsystems [250].

As shown in the following example, if a system can be represented in a Koopman-
invariant subspace, linear criteria applied to the Koopman representation can be
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equivalent to the corresponding nonlinear criteria applied to analyze the underly-
ing nonlinear system. However, a Koopman-invariant subspace is rarely obtained and
open questions remain, e.g., whether an approximate Koopman-invariant subspace
may be sufficient and how observability and controllability estimates depend on the
specific choice of observable functions.

Example: Nonlinear System with Single Fixed Point and a Slow Manifold. We examine the
relationship between controllability of the original nonlinear system and the Koop-
man system using the corresponding controllability criteria. We consider the system
examined in subsection 2.4, with the addition of control:

(6.45) \.x = f0(x) + f1(x)u =

\biggl[ 
\mu x1

\lambda (x2  - x21)

\biggr] 
+

\biggl[ 
0
1

\biggr] 
u.

The additional control input u actuates only the second state x2. The system becomes
unstable for either \lambda > 0 or \mu > 0. Choosing observables y = (x1, x2, x

2
1)

T , the system
admits a fully linear, closed description in a three-dimensional Koopman invariant
subspace:

(6.46)
d

dt

\left[ 
 
y1
y2
y3

\right] 
 = A

\left[ 
 
y1
y2
y3

\right] 
 +Bu =

\left[ 
 
\mu 0 0
0 \lambda  - \lambda 
0 0 2\mu 

\right] 
 
\left[ 
 
y1
y2
y3

\right] 
 +

\left[ 
 
0
1
0

\right] 
 u

with constant control vector B.
The controllability for a control-affine system \.x = f0(x) +

\sum q
j=1 fj(x)uj can be

assessed through the following theorem. We define the Lie derivative of g with re-
spect to f as L\bff g := \nabla g \cdot f , the Lie bracket as [f ,g] := \nabla g \cdot f  - \nabla f \cdot g, and the
recursive Lie bracket as ad\bff g = [f ,g] = \nabla g \cdot f  - \nabla f \cdot g. Hunt's theorem (1982) [180]
states that a nonlinear system is (locally) controllable if there exists an index k such
that \scrC = [f0, f1, . . . , fq, ad\bff 0 f1, . . . , ad\bff 0 fq, . . . , ad\bff k0 f1, . . . , ad\bff k0 fq] has n linearly inde-

pendent columns. The controllability matrix for the nonlinear system (6.45) is given
by

(6.47) \scrC =
\bigl[ 
f0 ad\bff 0 f1 . . . ad\bff k0 f1

\bigr] 
=

\biggl[ \biggl[ 
0
1

\biggr] \biggl[ 
0
 - \lambda 

\biggr] \biggl[ 
0
\lambda 2

\biggr] 
. . .

\biggl[ 
0

( - 1)k\lambda k

\biggr] \biggr] 
,

which has rank 1 for any k. The system is uncontrollable in the x1 direction.
Analogously, we can construct the linear controllability matrix for the Koopman

system (6.46),

(6.48) \scrC =
\bigl[ 
B AB A2B

\bigr] 
=

\left[ 
 
0 0 0
1 \lambda \lambda 2

0 0 0

\right] 
 ,

which is also of rank 1. Another very useful test is the Popov--Belevitch--Hautus
(PBH) test connecting controllability to a relationship between the columns of B and
the eigenspace of A. The PBH test states that the pair (A,B) is controllable iff the
column rank of [(A  - \alpha I) B] is equal to n for all eigenvalues \alpha (A) \in C. This test
confirms that the rank is n = 3 for the eigenvalue \lambda and 1 for both eigenvalues \mu 
and 2\mu associated with (6.46). Note that (6.45) can still be stabilized as long as \mu is
stable.
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6.6. Sensor and Actuator Placement. Optimizing sensor and actuator loca-
tions for data collection and decision-making is a crucial and challenging task in
any real-world application. Optimal placement of sensors and actuators amounts to
an intractable brute force search, as these represent combinatorial problems suffer-
ing from the curse of dimensionality. Rigorous optimization remains an open chal-
lenge for even linear problems; thus, approaches generally rely on heuristics. In this
realm, sparse sampling and greedy selection techniques, such as gappy POD [126]
and DEIM [107] and, more recently sparsity-promoting algorithms, such as com-
pressed sensing [74, 106], have played an increasingly important role in the context
of sensor/actuator selection [269]. These methods rely on exploiting the ubiquitous
low-rank structure of data typically found in high-dimensional systems. Operator-
theoretic methods fit well into this perspective, as they are able to provide a tailored
feature basis capturing global, dynamically persistent structures from data. This
can be combined with existing heuristic selection/sampling methods which have been
demonstrated on a range of practical applications, such as environmental controls in
buildings [440, 132, 391], fluid dynamics [195, 270], and biology [164].

Importantly, operator-theoretic methods generalize to nonlinear systems, e.g.,
for estimating nonlinear observability and controllability, providing practical means
to systematically exploit nonlinear system properties for sensor/actuator placement
within a linear framework. As already noted, controllability and observability Grami-
ans can be generalized for nonlinear systems based on the Koopman and PF operators
(or Liouville and adjoint Liouville operators as their continuous-time counterparts)
and subsequently used for sensor and actuator placement by maximizing the support
(or the L2-norm) of the finite-time Gramians. In [440, 396], set-oriented methods have
been utilized to approximate the (adjoint) Lie operators, i.e., the domain is discretized
into small cells and a few cells are selected as sensors/actuators, and the location can
be optimized by solving a convex optimization problem. A greedy heuristic approach
based on these ideas is proposed in [132], which further investigates different criteria
such as maximizing the sensing volume (sensor coverage), response time and accu-
racy (relative measure transported to the sensor in finite time), and incorporating
spatial constraints. The framework has been further extended to incorporate uncer-
tainty [391]. More recently, observability Gramians based on the Koopman operator
have been used to inform optimal sensor placement in the presence of noisy and tem-
porally sparse data [163]. Sensor placement is here facilitated by maximizing the
finite-time output energy in the lifted space. More broadly, balanced truncation and
model reduction have recently been used for efficient placement of sensors and actua-
tors to simultaneously maximize the controllability and observability Gramians [271],
which may be promising directions to extend to nonlinear systems by using Gramians
in the lifted observable space.

7. Discussion and Outlook. In this review, we have explored the use of Koop-
man operator theory to characterize and approximate nonlinear dynamical systems in
a linear framework. Finding linear representations of nonlinear systems has a broad
appeal, because of its potential to enable advanced prediction, estimation, and con-
trol using powerful and standardized linear techniques. However, there appears to
be a conservation of difficulty with Koopman theory, where nonlinear dynamics are
traded for linear but infinite-dimensional dynamics, with their own associated chal-
lenges. Thus, a central focus of modern Koopman analysis is to find a finite set of
nonlinear measurement functions, or coordinate transformations, in which the dy-
namics appear linear, the span of which may be used to approximate other quantities
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of interest. In this way, Koopman theory follows in the tradition of centuries of work
in mathematical physics to find effective coordinate systems to simplify the dynam-
ics. Now, these approaches are augmented with data-driven modeling, leveraging
the wealth of measurement data available for modern systems of interest along with
high-performance computing and machine learning architectures to process this data.

This review has also described several leading data-driven algorithms to approx-
imate the Koopman operator, based on the dynamic mode decomposition (DMD)
and variants. DMD has several advantages that have made it widely adopted in a
variety of disciplines. First, DMD is purely data-driven as it does not require govern-
ing equations, making it equally applicable to fluid dynamics and neuroscience. In
addition, the DMD algorithm is formulated in terms of simple linear algebra, so that
it is highly extensible, for example, to include control. For these reasons, DMD has
been applied broadly in several fields. Although it is possible to apply DMD to most
time-series data, researchers are still developing diagnostics to assess when the DMD
approximation is valid and to what extent it is useful for prediction and control.

Despite the widespread use of DMD, there are still considerable challenges as-
sociated with applying DMD to strongly nonlinear systems, as linear measurements
are often insufficient to span a Koopman-invariant subspace. Although significant
progress has been made in connecting DMD to nonlinear systems [449], choosing
nonlinear measurements to augment the DMD regression is still not an exact science.
Identifying measurement subspaces that remain closed under the Koopman operator is
an ongoing challenge [62]. In the past decade, several approaches have been proposed
to extend DMD, including using nonlinear measurements, time-delayed observations,
and deep neural networks to learn nonlinear coordinate transformations. These ap-
proaches have had varying degrees of success for systems characterized by transients
and intermittent phenomena, as well as systems with broadband frequency content
associated with a continuous eigenvalue spectrum. It is expected that neural network
representations of dynamical systems, and Koopman embeddings in particular, will
remain a growing area of interest in data-driven dynamics. Combining the representa-
tional power of deep learning with the elegance and simplicity of Koopman embeddings
has the potential to transform the analysis and control of complex systems.

One of the most exciting areas of development in modern Koopman theory is its
use for the control of nonlinear systems [331]. Koopman-based control is an area of in-
tense focus, as even a small amount of nonlinearity often makes control quite challeng-
ing, and an alternative linear representation may enable dramatic improvements to
robust control performance with relatively standard linear control techniques. Model
predictive control using DMD and Koopman approximations is particularly interest-
ing and has been applied to several challenging systems in recent years. However,
there are still open questions about how much of this impressive performance is due
to the incredible robustness of MPC as opposed to the improved predictive capabil-
ities of approximate Koopman models. The goal of more effective nonlinear control
will likely continue to drive applied Koopman research.

Despite the incredible promise of Koopman operator theory, there are still several
significant challenges that face the field. In a sense, these challenges guarantee that
there will be interesting and important work done in this field for decades to come.
There are still open questions about how the choice of observables impacts what can
be observed in the spectrum. Similarly, there is no return path from a Koopman repre-
sentation back to the governing nonlinear equations. More generally, there is still little
known about how properties of the nonlinear system \.x = f(x) carry over to the Koop-
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man operator, and vice versa. For example, relationships between symmetries in the
nonlinear dynamics and how they manifest in the Koopman spectrum are at the cusp
of current knowledge. A better understanding about how to factor out symmetries
and generalize the notions of conserved quantities and symmetries to near-invariances
may provide insights into considerably more complex systems. The community is still
just now beginning to rectify the local and global perspectives on Koopman. In addi-
tion, most theory has been formulated for ODEs, and connections to spatio-temporal
systems are still being developed. Finally, there are open questions around whether
or not there is a Heisenberg uncertainty principle for the Koopman operator.

In addition to these theoretical open questions, there are several areas of applied
research that are under active development. Applied Koopman theory, driven by the
DMD, has largely been applied within the fluid dynamics community. Koopman's
original theory was a critical piece in resolving Boltzmann's ergodic hypothesis for
gas dynamics. It is likely that Koopman theory will provide similar enabling tech-
nology for the characterization of fully turbulent fluid dynamics, which have defied
macroscopic coarse-graining for over a century. Unifying algorithmic innovations is
also an ongoing challenge, as it is not always obvious which algorithm should be used
for a particular problem. Several open source software libraries are being developed
to ease this burden, including

\bullet PyDMD (https://github.com/mathLab/PyDMD);
\bullet PyKoopman (https://github.com/dynamicslab/pykoopman);
\bullet data-driven dynamical systems toolbox (https://github.com/sklus/d3s);
\bullet deeptime (https://github.com/deeptime-ml/deeptime).

As a parting thought, it is important to note that nonlinearity is one of the most fas-
cinating features of dynamical systems, providing a wealth of rich phenomena. In a
sense, nonlinearity provides an amazing way to parameterize dynamics in an extremely
compact and efficient manner. For example, with a small amount of cubic nonlinear-
ity in the Duffing equation, it is possible to parameterize continuous frequency shifts
and harmonics, whereas this may require a comparatively complex Koopman param-
eterization. Realistically, the future of dynamical systems will utilize the strengths
of both traditional nonlinear, geometric representations along with emerging linear,
operator-theoretic representations.
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