Review for Comprehensive Inorganic Chemistry III

Solution NMR of Transition Metal Complexes

Zi-Ling Xue, Department of Chemistry, University of Tennessee, Knoxville, TN, United States

Tabitha M. Cook, Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA,

United States

Emails: <u>xue@utk.edu;</u> ORCID No.: 0000-0001-7401-9933

tcook@berry.edu; ORCID No.: 0000-0001-6572-2539

Abstract

This review covers the literature between 1990 and 2019. NMR of transition metal

nuclides, such as 45 Sc and 199 Hg, and α -atoms of ligands is discussed, with the exception of 1 H,

¹³C, ¹⁹F and ³¹P. Complexes of the 32 transition metals, including La, Lu and Ac, are arranged

into ten sections based on the groups in the periodic table. Later, properties (and features)

shared by complexes of three or more transition metals are summarized. At the end, an

overview is given about advanced NMR techniques and methods.

Table of Contents

1. Introduction

2. Group 3 (Sc, Y, La, Lu and Ac)

2.1. Scandium complexes

2.2. Yttrium complexes

2.3. Lanthanum complexes

2.4. Lutetium complexes

2.5. Actinium complex

3. Group 4 (Ti, Zr and Hf)

1

- 3.1. Titanium complexes
- 3.2. Zirconium complexes
- 3.3. Hafnium complexes
- 4. Group 5 (V, Nb and Ta)
 - 4.1. Vanadium complexes
 - 4.2. Niobium complexes
 - 4.3. Tantalum complexes
- 5. Group 6 (Cr, Mo and W)
 - 5.1. Chromium complexes
 - 5.2. Molybdenum complexes
 - 5.3. Tungsten complexes
- 6. Group 7 (Mn, Tc and Re)
 - 6.1. Manganese complexes
 - 6.2. Technetium complexes
 - 6.3. Rhenium complexes
- 7. Group 8 (Fe, Ru and Os)
 - 7.1. Iron complexes
 - 7.2. Ruthenium complexes
 - 7.3. Osmium complexes
- 8. Group 9 (Co, Rh and Ir)
 - 8.1. Cobalt complexes
 - 8.2. Rhodium complexes
 - 8.3. Iridium complexes
- 9. Group 10 (Ni, Pd and Pt)
 - 9.1. Nickel complexes
 - 9.2. Palladium complexes

- 9.3. Platinum complexes
- 10. Group 11 (Cu, Ag and Au)
 - 10.1. Copper complexes
 - 10.2. Silver complexes
 - 10.3. Gold complexes
- 11. Group 12 (Zn, Cd and Hg)
 - 11.1. Zinc complexes
 - 11.2. Cadmium complexes
 - 11.3. Mercury complexes
- 12. NMR properties shared by complexes of more than two transition metals. Experimental and theoretical/computational studies
 - 12.1. NMR of metals in the complexes
 - 12.2. NMR of ligand nuclides in the complexes
 - 12.3. Theoretical and computational studies of NMR
- 13. Advanced NMR techniques and methods
 - 13.1. 2-D NMR
 - 13.2. PGSE and DOSY
 - 13.3. EDNMR, HYSCORE and ENDOR
 - 13.4. Measurement of the relaxation time
 - 13.5. Dynamic and variable-temperature NMR from chemical exchanges and reactions
 - 13.6. NMR studies using parahydrogen (p-H₂)
 - 13.7. High-pressure NMR
 - 13.8. Rapid-injection NMR
 - 13.9. Other advanced NMR techniques and methods
- 14. Conclusions

1. Introduction

Solution NMR, especially ¹H, ¹³C, ¹⁹F and ³¹P NMR of ligands, is now among the most widely used spectroscopies to characterize transition metal complexes - their structures and reaction mechanisms. Many methods, including those to obtain NMR of metal nuclides, became fairly mature before 1990, leading to their extensive uses over the past 30 years.

NMR of transition metal nuclides can provide direct information about physical and chemical environments of the metal centers, and it was the subject of a 1991 book edited by Pregosin and completed in 1990.¹ Earlier, Harris and Mann edited the 1978 book "NMR and the Periodic Table",² and Mason edited the 1987 book "Multinuclear NMR",³ summarizing the achievements on NMR of transition metal compounds to the times. Since 1991, there have been books⁴-8 and reviews⁰-1¹ on fundamentals of NMR as well as selected subjects, including a 2016 book on NMR of paramagnetic molecules⁵ and a 1993 review on paramagnetic metalloproteins⁰ by Bertini and coworkers, a 2013 book on NMR in organometallic chemistry by Pregosin,⁶ a 2011 review on NMR applications in inorganic chemistry,¹¹ a 2004 book about how to conduct >200 NMR experiments by Berger and Braun,⁶ a 1997 book on NMR of non-metallic elements,¹² a 1996 book on applications of NMR to organometallic chemistry,¹³ a 1996 article on NMR of metallic nuclei in clusters,¹⁴ and a 1991 review on transition metal NMR of organometallic compounds.¹⁰ A special 2008 issue of *Coord. Chem. Rev.* edited by Pregosin was published on the applications of NMR to inorganic and organometallic chemistry, covering some 15 topics.¹⁵

Solution NMR of transition metal complexes was not covered in Comprehensive Inorganic Chemistry II published in 2013.¹⁶ The first edition, Comprehensive Inorganic Chemistry, was published in 1973.¹⁷ Given that the 1991 book on the NMR of transition metal nuclides reviewed the literature till early 1990,¹ we decided to cover the literature on the solution NMR of transition metal complexes between 1990 to 2019. Publications on the subject in SciFinder over the 30-year period were selected for consideration here. For each transition

metal, nuclear properties of NMR-active nuclide(s) are briefly reviewed, followed by discussion of main papers on the NMR of the metal nuclide(s). Given the large number of papers on the solution NMR of complexes of 32 transition metals (including La, Lu¹⁸⁻¹⁹ and Ac) over the 30 years, we were able to review only part of the literature on the subject. In other words, this is not a comprehensive review. Our goal is to give an overview of the solution NMR of transition metal compounds reported in 1990-2019, providing the reader a general understanding of the developments during the period.

For the 4th-row transition metals including Lr (lawrencium), other than one paper on the ³¹P NMR spectrum of a ligand in an Ac complex,²⁰ we did not find papers on NMR of these elements.

For the ligands in metal complexes, the focus of the current review is on NMR of α -atoms on the ligands bound to the metal atom. Since 1 H, 13 C, 19 F and 31 P NMR is extensively used, these nuclides are generally not discussed in this review, except when they are part of special techniques or rarely used for the transition metals. The reader may find more detailed discussion of NMR of the non-metallic elements in the 1997 book by Berger, Braun, and Kalinowski, 12 and a 1996 article on the 29 Si NMR in organometallic compounds. 21

Unless noted, the chemical shifts cited in this review are at room temperature.

Quadrupolar nuclides [nuclear spin >1/2; $^{22-23}$ quadrupole moment Q (or more precisely the geometrical part of the quadrupole moment eQ) $\neq 0$] in non-cubic (i.e., non- T_d or non- O_h) complexes usually give relatively broad NMR peaks of the nuclides, as a result of short T_1 and T_2 (relaxation times) from efficient quadrupolar relaxation processes. 22 Among the 43 NMR-active, transition metal nuclides, 32 have a quadrupole moment. 24 NMR properties of complexes with these quadrupolar nuclides were a subject of a 2007 review. 24

Peak widths and errors in the chemical shifts and other properties, including natural abundances of nuclides²⁵ and kinetic and thermodynamic parameters of chemical reactions, are not listed in the current review. Certain details, such as solvents used to make the NMR

solutions and coupling constants are generally not provided. The author may find the information in the references. For coupling constants J_{A-B} listed in the current review, the mass numbers of the element A or B are not listed (as in ${}^{1}J_{Nb-F}$), unless there is more than one NMR-active nuclide for A or B (as in ${}^{1}J_{51}_{V-C}$ or ${}^{1}J_{51}_{V-15}$).

After NMR of each transition metal is discussed, a section is devoted to the properties (and features) shared by complexes of three or more transition metals. Afterwards, advanced NMR techniques and methods are summarized.

IUPAC (International Union of Pure and Applied Chemistry) made recommendations in 2001 (IUPAC Recommendations 2001) about a unified scale to report the NMR chemical shifts of all nuclides relative to the 1 H resonance of SiMe₄ (tetramethylsilane or TMS). Additional recommendations for NMR shielding and chemical shifts (IUPAC Recommendations 2008) were published in 2008. The unified scale is based on a precise ratio (in %), Ξ , of the resonance frequency of a given nuclide to that of the 1 H resonance of TMS in dilute solution (volume fraction < 1%) in chloroform. In essence, Ξ is the frequency (MHz) of the nuclide relative to that of 1 H at 100.000000 MHz. Advantage of the unified scale that its use avoids direct handling of any secondary references. For example, this unified scale for 103 Rh NMR [Ξ = 3.186447% for Rh(acac)₃ in saturated CDCl₃]²⁷ has been used in reporting shifts of Rh complexes. Rh-1H resonance of Rh(acac)₃ at 0 ppm in the same magnetic field where the 1 H resonance of SiMe₄ occurs at 100.000000 MHz.

2. Group 3 (Sc, Y, La, Lu and Ac)

For Sc, Y and La, NMR of both the metals (45Sc, 89Y, 139La) and ligands have been reported. For Lu and Ac, we found only papers on NMR of ligands. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 1.

Table 1.26 Nuclear and NMR properties of 45Sc, 89Y, 139La, 175Lu and 227Ac

	Natural abun- dance (%) ^a	Spin	Relative receptivity ^b		Gyromagnetic	Quadrupole	<i>Ξ</i> (and frequency	
Nuclide			<i>D</i> ^H (¹ H = 1.00)	D^{C} (13C = 1.00)	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100 MHz, 2.3488 T) ^c	Reference sample
⁴⁵ Sc	100	7/2	0.302	1.78 x 10 ³	6.5087973	-22.0	24.291747	Sc(NO ₄) ₃ (aq)
89 Y	100	1/2	1.19 x 10 ⁻⁴	0.700	-1.3162791	_	4.900198	Y(NO₃)₃ (aq)
¹³⁸ La	0.08881	5	8.46 x 10 ⁻⁵	0.497	3.557239	45.0	13.194300	
¹³⁹ La	99.91119	7/2	6.05 x 10 ⁻²	356	3.8083318	20.0	14.125641	LaCl₃ (aq)
¹⁷⁵ Lu ^d	97.401	7/2	3.12 x 10 ^{-2 e}	156 ^e	3.0552	349.0	(11.404)e	_
²²⁷ Ac (t _{1/2} = 21.772 year) ³²	_	3/2	_	_	3.5	170	13.1	_

^a Unless noted, the isotopes are stable. The natural abundances are based on the data by the US National Institute of Standards and Technology (NIST).²⁵

2.1. Scandium complexes

 45 Sc NMR is feasible because of 100% natural abundance of 45 Sc nuclide, its NMR frequency (close to that of 13 C NMR), and high relative sensitivity (Table 1). In addition to $Sc(CIO_4)_3$ (aq), aqueous solutions of $Sc(NO_3)_3$ and $ScCl_3$ (including in D_2O) were used as

^b D^H and D^C are receptivities relative to those of ¹H and ¹³C, respectively. ²⁶

 $^{^{}c}$ \varXi is the ratio of the secondary (isotope-specific) frequency to that of 1 H in SiMe₄ (TMS) in dilute solution (volume fraction, ϕ < 1%) in chloroform in the same magnetic field. 26 It is used for a recommended unified scale for reporting the NMR chemical shifts of all nuclei relative to the 1 H resonance of TMS.

^d Although we did not find reports of ¹⁷⁵Lu and ²²⁷Ac NMR, they are listed here for comparison.

^e Values in brackets are approximate (calculated from the gyromagnetic ratios).

standards or external standards.^{1,33} In low pH, dilute (≤ 0.1 M) solution of Sc(H₂O)₆³⁺, the nearly ideal O_h symmetry of the cation minimizes ⁴⁵Sc peak broadening by quadrupole relaxation. For diamagnetic compounds, ⁴⁵Sc shifts of diamagnetic complexes typically range from 396 ppm for Sc[N(SiMe₃)₂]₃ to -50 ppm for Sc[(Me₂N)₂C=O]₆³⁺.³⁴ Line widths of ⁴⁵Sc peaks are often reported mostly because of quadrupole-dominated relaxation.¹

 45 Sc NMR of scandium salts, including halides, nitrate, sulfate, and phosphate, was discussed in a 2017 review. 35 Periodate [Sc(H₂O)₃][IO₄(OH)₂] in aqueous periodic acid showed a broad 45 Sc peak (δ 22) at 77 °C. 36

⁴⁵Sc NMR was used to characterize halide and nitrate complexes with additional ligands listed below: (a) Phosphines, phosphine oxides and arsine oxides, including Sc(dmpe)₂l₃ (δ 361; dmpe = Me₂PCH₂CH₂PMe₂),³⁷ Sc(O=PPh₃)₃Cl₃ (δ 121),³⁸ Sc(O=PPh₃)₂(NO₃)₃ (δ -7.5),³⁹ and [Sc(O=AsMe₃)₆](NO₃)₃ (δ 58.0);⁴⁰ (b) Oxo-,⁴¹⁻⁴² thio-,⁴³ seleno-⁴³ and aza-crowns,⁴¹ including [Sc(15-crown-5)Cl₂]SbCl₆ (δ 127.6),⁴¹ [Sc(18-crown-6)Cl₂]FeCl₄ (δ 132),⁴² and its S- and Seanalogs [Sc([18]aneO₄E₂)Cl₂]FeCl₄ [E = S, δ 204; Se, δ 205; [18]aneO₄E₂ (**1**)];⁴³ (c) N,N,N ligands, including Sc(terpyridine)Cl₃ (δ 254)⁴⁴ and R₃-tacn [1,4,7-trisubstituted-1,4,7-triazacyclononane (**2**)] such as Sc(R₃-tacn)F₃ [R₃ = Me₃ or Me₂(CH₂Ph), both δ 104],⁴⁴ Sc(Me₃-tacn)Cl₃ (δ 300),⁴⁴ and Sc(Me₃-tacn)Me₃ (δ 626) as an organometallic derivative.⁴⁵

[18]aneO₄E₂ (E = S, Se)
$$R-N$$
 $N-R$ O O O (3)

 45 Sc NMR properties of several new organometallic complexes, including ScMe₃(THF)_x (δ 601.7) and Sc(CH₂SiMe₃)₃(THF)₂ (δ 745.0), were summarized and compared with those

reported before $1990.^{34}$ ScX₃ [X = 1,3-bis(1,3-dimethyl-1H-pyrazol-4-yl)-1,3-propanedionate (**3**); 45 Sc δ = 96.9] with dipyrazole-substituted 1,3-diketonate ligands was found to have unusual electroluminescent properties for organic light-emitting diode (OLED) applications.⁴⁶

Endofullerenes, i.e., fullerenes containing atoms, ions or clusters enclosed within their inner spheres, are one major focus of research using ⁴⁵Sc NMR. ⁴⁷⁻⁴⁸ Sc-containing endofullerenes, include those with Sc-carbide, ⁴⁷ -nitride (such as Sc₃N@ *I*_h-C₈₀ ⁴⁹), ⁴⁷ -oxide, ⁴⁷ -sulfide, ⁵⁰⁻⁵¹ and -cyanide ⁵² clusters. These endofullerenes were the focus of a 2014 ⁴⁷ and a 2015 ⁴⁸ monograph, including a review on NMR properties, ⁴⁸ and a 2014 review on redox properties. ⁵³ Several publications on the subject have been published since 2014. ⁵⁴⁻⁵⁹ Both size and symmetry of the fullerene cages significantly affect ⁴⁵Sc shifts of encapsulated clusters. ^{55,58} Often the Sc clusters rotate inside the cages, leading to broad ⁴⁵Sc NMR peaks. ⁵⁹ Motion of the cluster in Sc₃N@ *I_n*-C₈₀ was probed by variable-temperature (VT) ⁴⁵Sc NMR and compared with dynamics of other endofullerenes. ⁵⁴

⁴⁵Sc and ¹³C NMR studies of MSc₂N@ I_h -C₈₀ (M = Y, lanthanide) were performed to study the effect of unpaired f electrons on the NMR properties.⁶⁰ Here, the endofullerenes, some with paramagnetic cages, were classified into three groups: (a) Diamagnetic M^{III} (Y, La, Lu); (b) M^{III} with oblate-shape 4f density (Ce, Pr, Nd, Tb, Dy, Ho); (c) M^{III} with prolate-shape 4f density (Er, Tm). For lanthanide M(III) ions with oblate and prolate 4f electron densities, see Reference ⁶¹. While ⁴⁵Sc NMR shifts of diamagnetic MSc₂N@ I_h -C₈₀ are in the range noted earlier in this section, paramagnetic DySc₂N@ I_h -C₈₀ and ErSc₂N@ I_h -C₈₀ are at δ 1892 and δ -233, respectively.⁶⁰ In addition, for paramagnetic MSc₂N@ I_h -C₈₀ containing M^{III} ions with oblate and prolate f electron densities, ⁴⁵Sc peaks are more deshielded and shielded, respectively, than those of the diamagnetic analogs.⁶⁰ The paramagnetic NMR data were interpreted by ligand field calculations.

The cage complex $Sc_3N@I_h-C_{80}$ was synthesized in another study and the complex was investigated via ^{45}Sc and ^{14}N NMR. 62 The ^{14}N NMR spectroscopy was utilized to probe the

dynamic motional processes inside the cage at room temperature. $M_3N@I_{h}$ - C_{80} (M = Y and Lu) were synthesized and studied as well.⁶² The ¹⁴N signals for the Sc(III), Y(III), and Lu(III) complexes were observed at δ 292.0, 381.7 and 395.9, respectively.⁶² In variable-temperature (VT) NMR studies of the Sc(III) complex, the ¹⁴N signal became slightly more shielded (δ 394.1-397.7) and narrower.⁶²

Radionuclides ⁴⁴Sc (β^+ , $t_{1/2}$ = 3.97 h) and ⁴⁷Sc (β^- , $t_{1/2}$ = 3.35 day) are of interest for therapeutic and medical imaging applications.⁶³ Thermodynamics and kinetics of coordination between Sc(III) ion and a variety of ligands, such as tetraaza-12-crown-4-tetraacetic acid [dota (**4**)],³³ its monophosphorus acid derivatives⁶³ and diethylenetriamine pentaacetic acid [dtpa (**5**)],³³ was studied, including by ⁴⁵Sc NMR, for the potential applications of the Sc complexes as radiopharmaceuticals.

In two 1994 papers, studies of Sc³⁺ binding to ovotransferrin, which are proteins with two high-affinity Fe³⁺-binding sites, using ⁴⁵Sc⁶⁴⁻⁶⁵ and ¹³C⁶⁴ NMR were reported. Sc³⁺ with ionic radius slightly larger than that of Fe³⁺ was found to be a good probe for the Fe³⁺-binding sites.

For NMR of ligands, ¹¹B NMR was used to characterize the new half-sandwich scandium boryl complex Me₂Si(C₅Me₄)(NPh)Sc[B(NDippCH)₂](μ -Cl)Li(thf)₃ (**6**, Dipp = 2,6-Pri₂-C₆H₃, δ 37.0). ⁶⁶ Reaction of **6** with CO led to CO insertion into the Sc-B bond in **6** (**Figure 1**) yielding the Sc(III) boryl oxycarbene complex Me₂Si(C₅Me₄)(NPh)Sc[η ²-OCB(NDippCH)₂](thf) (**7**, δ 16.9). ⁶⁷

$$\begin{array}{c} Ar \\ Ar \\ Ar \end{array}$$

$$Ar = 2.6 - Pr_2^i - C_6H_3$$

$$(6)$$

$$Ar = CO \\ Ar = CO$$

Figure 1. Formation of 7 from 6.

2.2. Yttrium complexes

89Y NMR is attractive, as 89Y is a spin 1/2 nuclide at 100% natural abundance, leading to sharp peaks and observations of small couplings with other nuclides.¹ In addition, large nuclear Overhauser enhancement factor (NOEF) values are possible,⁶⁸ when ⁸⁹Y is relaxed by dipolar interactions with other nuclei. However, a few properties of the nuclide (Table 1) make ⁸⁹Y NMR challenging, including slow spin-lattice relaxation, a low magnetic moment, low receptivity, and low measuring frequency.⁶⁹ ⁸⁹Y shifts of diamagnetic organometallic complexes mostly fall within δ 895.0⁷⁰⁻⁸¹ and δ -169.5 for Cp₂Y[N(PPh₂S)₂] [with a chelating ligand N(PPh₂S)₂- (8)].⁷⁹

⁸⁹Y NMR has been used to probe coordination of Y(III) ions to N- and O-containing ligands, including macrocyclic ligands⁸²⁻⁸³ [such as N,N'-bis(propylamide)ethylenediamine-N,N'-diacetic acid (**9**)],⁸⁴ NCS⁻,⁸⁵ and solvent mixtures of dimethylformamide (dmf), as well as dimethylacetamide,⁸⁶ and Y(thd)₃ [⁸⁹Y δ 163; thd = Bu^tC(=O)CHC(=O)Bu^{t-}].⁸⁷ ⁸⁹Y shifts of

complexes with phosphine oxide (O=PR₃),³⁹ arsine oxide (O=AsR₃)⁴⁰ and derivative⁸⁸ ligands were reported. ³¹P-⁸⁹Y shift correlation was used to probe speciation of Y(NO₃)₃·6H₂O with O=PPh₃.⁸⁹ Shifts of Y alkoxide⁹⁰⁻⁹¹ and siloxide⁹² complexes were also reported. These ⁸⁹Y shifts are within the δ 895.0 to -169.5 range noted above.

 $[Y(H_2O)_3][IO_4(OH)_2]$ dissolved in excess hot aqueous H_5IO_6 and recorded at 350 K gave the ^{89}Y resonance at δ 10. 36

Organometallic complexes comprise a large of number of papers. ⁷⁰⁻⁸¹ ⁸⁹Y NMR was found to be a potentially useful diagnostic probe of the ligand environment. ⁷⁰ The ⁸⁹Y shifts of a series complexes such as Cp*₂Y(OAr) (δ -129.3; Cp* = η⁵-C₅Me₅⁻; Ar = 2,6-But₂-C₆H₃), Cp*Y(OAr)₂ (δ 21.0), Cp*₂YCH(SiMe₃)₂ (δ 78.9), Y[N(SiMe₃)₂]₃ (δ 570.0), Y(OAr)₃ (δ 168.4), and Y[CH(SiMe₃)₂]₃ (δ 895.0) led to calculated group contributions to the ⁸⁹Y shift of, e.g., -100 ppm for Cp*, 56 ppm for OAr, 190 ppm for N(SiMe₃)₂, and 298 ppm for CH(SiMe₃)₂. ⁷⁰ Application of Y complexes with metallocene, linked Cp-amide, methyl or their analog ligands as olefin polymerization catalysts was a driving force. ⁷¹⁻⁷⁴ DFT methods were used to calculated ⁸⁹Y NMR shifts in organometallic complexes containing Cp, alkyl, hydride, and aryloxide ligands with agreement between predicted and experimental shifts typically within ±70 ppm (~5% of ca. 1300 ppm range). ⁹³

⁸⁹Y NMR was one of techniques to probe speciation of $[Y_2(bet)_6(H_2O)_4](NTf_2)_6$ (Hbet⁺ = betainium) in ionic liquid betainium bis(trifluoromethylsulfonyl)imide $[(Hbet)(NTf_2)(10)]$ at 363 K with one ⁸⁹Y peak at δ 37.7.⁹⁴

 $[Y_6O(OH)_8(NO_3)_6(H_2O)_{12}]^{2+}$ stabilized as nanoaggregates in ethylene glycol (EG) showed liquid-state of ⁸⁹Y resonance at δ 78 at 50 °C, comparing to δ -22 for Y(NO₃)₃·6H₂O in EG.⁹⁵

⁸⁹Y data on carboxylate and aminocarboxylate complexes in aqueous solution, such as $Y(\text{edta})^-$ (δ 129.6), $Y(\text{dtpa})^{2-}$ (δ 82.2) and Y^{3+} :malonate (δ 7.9), were summarized. ⁹⁶ Adding to $4f^7$ Gd(ham)³⁺ [ham = hexaazamacrocycle (**11**)] or Gd(dtpa)²⁻ as a paramagnetic relaxation agent to $Y(\text{dtpa})^{2-}$ solution in D_2O led to shortening of the spin-lattice relaxation time T_1 and signal/noise (S/N) enhancement of the ⁸⁹Y peak. ⁹⁷ ⁸⁹Y NMR was used to probe Y^{3+} binding to parvalbumin, a calcium-binding protein involved in calcium signaling, with the assistance of Gd(dtpa)²⁻. ⁹⁶ ⁸⁹Y and ¹³C T_1 relaxation times in a mixed Gd^{III}/Y^{III} complex ligand containing two monophosphinate triacetate dota-like units provided useful structural information. ⁹⁸

Dynamic nuclear polarization NMR (DNP NMR) was developed to significantly increase ⁸⁹Y sensitivity by creating nuclear spin polarization levels much higher than Boltzmann levels at ambient temperature. ⁹⁹⁻¹⁰⁰ DNP was based on the transfer of electron spin polarization from a stable free organic radical, which had been irradiated by microwave near the EPR frequency, to coupled ⁸⁹Y nuclei in a frozen glass matrix at ~1 K. The radical included TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (12)]¹⁰⁰⁻¹⁰¹ and hydroxyethyl tetrathiatriarylmethyl radical OX063 (13). ¹⁰⁰ In the so-called "dissolution-DNP" process, the frozen sample was then rapidly dissolved and warmed up to room temperature before collecting NMR data, while retaining much of the polarization built up in the solid state. ¹⁰⁰⁻¹⁰¹ DNP NMR may lead to >60,000-fold enhancement of ⁸⁹Y NMR signal. ¹⁰⁰ Such hyperpolarized Y complexes were pH-sensitive NMR probes ⁹⁹ and used to probe kinetics of Y-ligand complexation ¹⁰¹ with potential for direct imaging of metal ions in biological systems by magnetic resonance. ¹⁰⁰

For NMR of ligands, the dissociation of dimer (Cp*₂YH)₂ to the monomer was studied via VT ¹H NMR.¹⁰² Below -40 °C, the hydride ligand was coupled to two ⁸⁹Y nuclei making a sharp triplet. As the temperature was raised, the hydride resonance shifted and broadened. This was attributed to the increasing rate of dissociation and the loss of the hydride coupling to the ⁸⁹Y nuclei.¹⁰²

2.3. Lanthanum complexes

 139 La is one of two NMR-active nuclides and the only one used in studies of La complexes that we found in 1990-2019, as indicated in Table 1. The other nuclide, 138 La (spin 5) 32 with low (0.08881%) natural abundance and a fairly large quadrupole moment, is not practical for NMR studies. 1 139 La shifts of diamagnetic complexes are typically between δ 1090 for (Bu n 4N) $_{3}$ (LaBr $_{6}$) and δ -772 as one of two peaks for Cp $_{4}$ La $^{-}$ anion. 1 Line widths of 139 La peaks were often reported mostly because of quadrupole-dominated relaxation. 1

¹³⁹La NMR was used to probe coordination of La(III) ions to N- and O-containing ligands, including macrocyclic ligands, ⁸² D-ribose with LaCl₃ in aqueous solution, ¹⁰³ acetohydroxamic acid [MeC(=O)NHOH] with La(ClO₄)₃, ¹⁰⁴ and *p*-sulfonatocalix[4]arene with LaCl₃. ¹⁰⁵ ¹³⁹La NMR was also used to study MeOH-substituted lanthanum halides, including [La(H₂O)₇(MeOH)₂]Br₃ (δ -32.7), LaBr₃(MeOH)₅ (δ -34.7), [(MeOH)₄Cl₂La(μ-Cl)]₂ (δ -31.2), and [La(MeOH)₉]I₃•MeOH (δ -35.1). ¹⁰⁶ Interactions of ZnCl₂ with La(dtpa) and other La(III) complexes containing dtpa

derivative ligands have been probed by ¹³⁹La NMR. ¹⁰⁷ Multinuclear NMR study, including the use of ¹³⁹La NMR, was performed to study the La(III)-catalyzed alkylation of ethylene glycol with maleate. ¹⁰⁸

Addition of H_5IO_6 to aqueous solution of $La(NO_3)_3$ gave a ^{139}La resonance at δ 11. 36 Organometallic complexes studied by ^{139}La NMR include those with allyl ligands $La(\eta^3-C_3H_5)_2X\cdot 2THF$ (X = CI-, δ 520; Br-, δ 550; I-, 585), $^{109}La(\eta^3-C_3H_5)_3\cdot L$ [L = MeOCH $_2$ CH $_2$ OMe (dme), δ 440; $^{110}Me_2NCH_2CH_2NMe_2$ (tmed), δ 475; $^{110}2O=P(NMe_2)_3$, δ 285; $^{110}1$,5-dioxan, δ 440 109], and Cp and Cp* allyl complexes, CpLa($\eta^3-C_3H_5$) $_2$ (1,5-dioxan) $_{0.2}$ (δ 13), Cp*La($\eta^3-C_3H_5$) $_2$ (δ 95), Cp $_2La(\eta^3-C_3H_5)$ (δ -214), and Cp* $_2La(\eta^3-C_3H_5)$ (δ -167). $^{111}La_3$ a shift of Cp $_3La_3$ L are δ -560 for L = thf 111 and δ -558 for triindenyl complex (C $_7H_9$) $_3La_3$ thf. $^{112}La_3$ NMR was used to study Schlenk-type equilibria for cyclopentadienyl complexes Cp $_3La$, CpLa $_2$, and [(η^5 -1,3-R $_2C_5H_3$) $_2La(\mu-CI)$] $_2$ (R = SiMe $_3$) as well as with bimetallic complexes X $_2La_3$ -Ru(CO) $_2$ Cp (X = Cp $_3$ -1,3-R $_2C_5H_3$). 113

 ^{139}La NMR of endofullerenes was reported, including La₂@C₇₂ (δ -575.6), 114 La₂@C_s(17490)-C₇₆ (δ -617.8), 115 La₂@C₈₀ (δ -402.6) 114 and silylated 116 and pyrrolidine 117 derivatives as well as the anion of La@C₈₂ (δ -470) and derivatives. 118

Binding of La(III) ions in La(NO₃)₃ to aqualysin I, a heat-stable protease with two Ca²⁺-binding sites, was probed by ¹³⁹La NMR.¹¹⁹

For NMR of ligands, La(III) was added to a solution containing dcf [dcf = methyl dicarboxy- α -D-fructofuranoside (**14**)] and the product was studied via ¹⁷O NMR in order to seek evidence of a fourth donor cite in this ligand in the complex La(dcf)₂-.¹²⁰ The dihedral angles of the protons were estimated from the coupling constants J. From the J values, it was determined that the arrangement of the ligand around the metal ion effectively allowed for a fourth coordination site for the La(dcf) moiety in La(dcf)₂- as shown in **15**.¹²⁰

2.4. Lutetium complexes

We did not find reports of ¹⁷⁵Lu NMR which was also not discussed in the 1991 book edited by Pregosin¹ or the 1987 book on multinuclear NMR edited by Mason.³

For NMR of ligands, ¹⁵N and ¹³C NMR was used to characterize Lu isocyanate complexes [(H₂O)₅Lu(NCS)]²⁺ through [(H₂O)Lu(NCS)₅]²⁻.¹²¹ The ¹³C and ¹⁵N signals showed a noticeable concentration dependence, which was used to identify the signals of the five complexes. The ¹³C and ¹⁵N shifts of the mono- to penta-isothiocyanato complexes were all more shielded than that of free NCS⁻ (δ -165 referenced to ¹⁵NO₃-).¹²¹

2.5. Actinium complex

We did not find reports of 227 Ac NMR which was also not discussed in the 1987 and 1991 books edited by Mason³ and Pregosin,¹ respectively. Among Ac isotopes which are all radioactive, 227 Ac has the longest half-life of $t_{1/2} = 21.772$ years²⁰ and is found in traces in uranium and thorium ores along with traces of 228 Ac ($t_{1/2} = 6.15$ hours¹²²).

Reaction of Ac(III) in nitric acid with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylene)phosphonic acid [H₈dotp (**16**)] gave Ac(dotp)⁵⁻ which showed a sharp ³¹P NMR resonance at δ 20.2. This peak was 3 ppm deshielded from that of its La(III) analog La(dotp)⁵⁻.²⁰ The NMR spectrum was collected with microscopic reagent quantities (27.8 μ g of Ac³⁺ and 67 μ g dotp⁸⁻ in 25 μ L), giving reasonable S/N within 12 hours.²⁰

3. Group 4 (Ti, Zr and Hf)

For Ti and Zr, NMR of both the metals (twinned ⁴⁷Ti and ⁴⁹Ti, ⁹¹Zr) and ligands have been reported. For Hf, we have found only papers on NMR of ligands. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 2.

Table 2.26 Nuclear and NMR properties of 47Ti, 49Ti, 91Zr, 177Hf and 179Hf

	Natural abun- dance (%) ^a	Spin	Relative receptivity		Gyromagnetic		<i>Ξ</i> (and	
Nuclide			D ^H	D c	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	Quadrupole moment <i>Q</i> (fm²)	frequency, MHz; ¹ H = 100 MHz, 2.3488 T)	Reference sample
			(¹ H = 1.00)	(¹³ C = 1.00)				
⁴⁷ Ti	7.44	5/2	1.56 x 10 ⁻⁴	0.918	-1.5105	30.2	5.637534	
⁴⁹ Ti	5.41	7/2	2.05 x 10 ⁻⁴	1.20	-1.51095	24.7	5.639037	TiCl ₄ (neat)
⁹¹ Zr	11.22	5/2	1.07 x 10 ⁻³	6.26	-2.49743	-17.6	9.296298	Cp ₂ ZrCl ₂ (CH ₂ Cl ₂)
¹⁷⁷ Hf ^b	18.60	7/2	2.61 x 10 ⁻⁴	1.54	1.086	336.5	(4.007)°	
¹⁷⁹ Hf ^b	13.62	9/2	7.45 x 10 ⁻⁵	0.438	-0.6821	379.3	(2.517)°	_

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

3.1. Titanium complexes

Ti NMR spectra show both 47 Ti and 49 Ti peaks with the 49 Ti peak more deshielded by 266 ppm from the 47 Ti peak. 1 The twinning is a result of very similar gyromagnetic ratios and thus NMR frequencies. The 49 Ti peak has a better S/N ratio even though the 49 Ti natural abundance is smaller. The sharper 49 Ti signal is a consequence of the larger 49 Ti nuclear spin and its slightly smaller quadrupole moment. Because of the quadrupole moments, sharp 47 Ti and 49 Ti signals with well-resolved multiplets were only observed for complexes with cubic O_h or T_d symmetry such as TiF_6^2 . Line widths of 47,49 Ti peaks were often reported mostly because of quadrupole-dominated relaxation. 1 The range of 47,49 Ti shifts for diamagnetic complexes spans 5 1375 for $Ti(CH_2CMe_2Ph)_4^{123}$ to 5 -1389 for Ti(-II) $Ti(^{13}CO)_6^{2-}$ [with K(2.2.2-cryptand)+ cation]. 1 Selected complexes with reported 47,49 Ti shifts are listed in Table 3. 47,49 Ti and 13 C NMR spectra of Ti-containing catalysts were reported, many of which were in Table 3. 123 It should be noted that shifts of same Ti complexes in different papers may be slightly different. $^{124-128}$

Table 3. 47,49 Ti chemical shifts of selected Ti complexes

Complexes	^{47,49} Ti shifts (δ)
TiCl ₄ ¹²³	0.0
TiBr ₄ 123	471.3
(NH ₄) ₂ TiF ₆ ¹²³	-1160.9
Ti(NMe ₂) ₄ ¹²³	-230
Ti(NEt ₂) ₄ ¹²³	-216

^b Although we did not find reports of ¹⁷⁷Hf and ¹⁷⁹Hf NMR, they are listed here for comparison.

^c Value in parenthesis was calculated from literature data on nuclear magnetic moments.²⁶

Ti(OEt) ₄ ¹²⁹	-825 (CH ₂ Cl ₂)		
Ti(OPr ⁱ) ₄ 123	-856		
Ti(OPr ⁱ) ₃ Cl ¹²³	-749		
Ti(OPr ⁱ) ₂ Cl ₂ ¹²³	-598		
Ti(OPr ⁱ)Cl ₃ ¹²³	-358		
Ti(OBu ^t) ₄ 123	-896		
Ti(OCH₂Bu ^t)₄ ¹²³	-851		
Ti(CH ₂ CMe ₂ Ph) ₄ ¹²³	1375		
CpTiCl ₃ ¹²⁷	-396.5		
(η ⁵ -C ₅ H ₄ Me)TiCl ₃ ¹²⁴	-332		
(η ⁵ -C ₅ H ₄ SiMe ₃)TiCl ₃ ¹²⁴	-361		
Cp*TiCl ₃ ¹²⁴	-85		
Cp*TiMe ₃ ¹²⁶	551		
Tp*TiCl ₃ [Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate] ¹²⁹	-406		
Cp ₂ TiCl ₂ ¹²³	-769		
Cp* ₂ TiCl ₂ ¹²³	-439		
Cp ₂ Ti ^{II} (CO) ₂ ¹²⁹	-1156		
[K(2.2.2-cryptand)] ₂ [Ti(¹³ CO) ₆] ¹	-1389		

 49 Ti shifts of half-sandwich complexes, including those listed above, were reported in several papers. $^{124-128}$ 47,49 Ti shifts of (η 5 -C $_5$ H $_4$ X)TiCl $_3$ with a silyl-substituted cyclopentadienyl ligand (X = SiR $_3$; R $_3$ = Me $_3$, Me $_2$ Cl, MeCl $_2$, Cl $_3$, Me $_2$ F, MeF $_2$, F $_3$) showed a nearly linear relationship with λ_{max} (wavelength of the first charge-transfer band in the UV-visible spectra) of the complexes, revealing that both 49 Ti NMR shifts and λ_{max} demonstrated the electron-releasing

and -withdrawing nature of the X substituents. These $(\eta^5-C_5H_4X)$ TiCl₃¹²⁸ and Cp*TiMeX'₂ [X'₂ = $(Me)C_6F_5^{2-}$, $(Me)OC_6F_5^{2-}$, $(OC_6F_5)_2^{2-}$] were initiators for olefin polymerization. Half-sandwich complexes with allyl and enantiomeric alkoxide ligands were used in the enantioselective allyltitanation of aldehydes.

 49 Ti shift of TiCl₄ in ambient-temperature ionic liquid (also known as molten salt), AlCl₃-1-ethyl-3-methylimidazolium chloride (ImCl), was δ -4, while in basic (chloride-rich) liquids, 49 Ti shift of TiCl₆²⁻ was δ -237. 130

^{47,49}Ti shifts of electron donor-acceptor complexes between 9-methylanthracene and TiCl₄ were reported.¹³¹

Spin-lattice relaxation times T_1 for several complexes were reported: TiCl₄ (⁴⁷Ti: 86.1 ms; ⁴⁹Ti: 265 ms), TiBr₄ (⁴⁷Ti: 90.4 ms; ⁴⁹Ti: 303 ms), Ti(OBu^t)₄ (⁴⁷Ti: 9.74 ms) and Ti(OPrⁱ)₄ (⁴⁷Ti: 3.67 ms). ¹²³ Spin-spin relaxation times T_2 have also been reported for TiCl₄ (⁴⁷Ti: 72 ms; ⁴⁹Ti: 191 ms). ¹²³

 49 Ti shifts of TiX₄ (X = Cl⁻, Br⁻, F⁻), TiCl_nMe_{4-n} (n = 0–3), Cp₂TiX₂ (X = F⁻, Cl⁻, Br⁻) and Ti(CO)₆²⁻ were calculated by a DFT method. 132

For NMR of ligands, dmf exchange on $[Ti(dmf)_6]^{3+}$ was studied as a function of temperature and pressure by 1H and ^{17}O NMR in order to expand upon the trend in exchange in hexa-solvated, trivalent, first-row transition metal cations. 133 Along this row of metal ions and Ga(III), the mechanism changed from an associative activation mode for the earlier elements, such as Ta(III), to a dissociative activation mode for the later elements and Ga(III). 133 ^{17}O NMR was used to analyze Ti(IV) tartrates and alkoxides, such as $[Ti(dipt)(OPr^i)_2]_2$ [δ 293, 268, 180 and 177; dipt = (+)-diisopropyl tartrate (17) enriched with ^{17}O at the hydroxyl positions] and $Ti(OPr^i)_4$ (δ 295). 134

In order to gain an understanding about the reactivity of metal peroxo complexes, such as those containing Ti(IV), V(V), Mo(VI), and W(VI), several complexes were studied via ¹⁷O NMR the electronic charge transfer band, the O-O vibrational frequency, and the length of the

oxygen-oxygen bond in the peroxo ligand. The peroxo ligands of $Ti(O_2)(C_2O_4)_2^{2-}$ and $Ti(O_2)(dipic)(H_2O)_2$ (dipic = pyridine-2,6-dicarboxylate) had To shifts of δ 591 and 585, and 585, the respectively. The other metalloperoxide complexes will be discussed in sections of other transition metals in the current review.

¹⁷O shifts of Ti(IV) oxo porphyrin complexes, such as Ti(TMP)(=O) (δ 1010 referenced to H₂O; H₂TMP = 5,10,15,20-tetramesitylporphyrin, also known as tetramesitylporphyrin), were probed. ¹³⁷ Diphenylchalcogenoate complexes (μ , η ⁵: η ⁵-Pn)₂[Ti(EPh)]₂ [**18**, Pn = 1,4-(SiPrⁱ₃)₂-C₈H₄, E = S, Se, Te] were analyzed via ²⁹Si NMR (δ in the 2.74-5.20 range). ¹³⁸ The Se and Te complexes were also studied via ⁷⁷Se and ¹²⁵Te NMR, respectively. The resonances at δ_{Se} 511 and δ_{Te} 418 were both more shielded compared to those of most other Ti(IV) selenolate and tellurolate complexes such as Cp₂Ti(SePh)₂ (δ_{Se} 847) and Cp₂Ti(TeSiPh₃)₂ (δ_{Te} 709). ¹³⁸

The NMR studies of several Ti σ-borane complexes were discussed in a 2008 review. 139

3.2. Zirconium complexes

⁹¹Zr NMR is more favorable than ⁴⁹Ti, as the ⁹¹Zr nuclide (Table 2) has higher natural abundance, larger relative sensitivity and receptivity, and smaller quadrupole moment with a larger resonance frequency (closer to that of ¹H NMR). Line widths of ⁹¹Zr peaks were often reported mostly because of quadrupole-dominated relaxation. ¹⁹¹Zr shifts of diamagnetic

complexes are typically in the range of δ 893 for Zr(NMe₂)₄¹⁴⁰ to δ -348 for Cp₂Zr(η ⁴-butadiene).¹

Hydrolysis of Cs_2ZrF_6 (δ -191) in aqueous solution and in 30% H_2O_2 solution was probed using ^{91}Zr and ^{19}F NMR. 141 In aqueous solutions, only ZrF_6^{2-} and F^- ions were observed. However, in the water-peroxide medium, a peroxo intermediate (dimer F_5Zr -OO- ZrF_5^{4-}) was detected. 141

⁹¹Zr shifts and line widths were used as indicators of coordination geometry distortions in 32 zirconocene complexes, ¹⁴⁰ including Cp₂ZrCl₂ (δ -112), Cp₂Zr(Cl)Me (δ 126), Cp₂ZrMe₂ (δ 386), (η⁵-C₅H₄Me)₂ZrCl₂ (δ -69), (η⁵-C₅H₄Me)₂ZrMe₂ (δ 401), Cp*₂ZrCl₂ (δ 85), Cp*₂ZrMe₂ (δ 443) and a number of other ring-substituted and -bridged zirconocene complexes. They were compared with those of Zr(NMe₂)₄ listed above and ZrCl₄•2THF (δ 628). ¹⁴⁰ For Cp'₂ZrX₂ (Cp' = substituted and -bridged cyclopentadienyl; X = Br', Cl', Me'), ab initio computations suggested that the magnitude of the electric field gradient (EFG) at the Zr atom dominated line widths when the ligands X were varied, while substituents at Cp' rings affected much less the computed EFGs. ¹⁴⁰ ⁹¹Zr shifts of additional non-ansa alkyl-substituted cyclopentadienyl and phospholyl complexes, which were used in the ethylene polymerization, were reported. ¹⁴²⁻¹⁴³

Reactions of Cp_2ZrMe_2 with fluorocarbon acids such as $H_2C(SO_2CF_3)_2$ were studied, giving, e.g., $Cp_2ZrMe[HC(SO_2CF_3)_2]$ (δ 20) and $Cp_2Zr[HC(SO_2CF_3)_2]_2$ (δ -331). ¹⁴⁴ ⁹¹Zr shifts of a series of zirconocene products were given. ¹⁴⁴ The newly compounds from the reactions with fluorocarbon acids were compared with those of Cp_2ZrCl_2 , $Cp_2Zr(Cl)Me$, and Cp_2ZrMe_2 . ¹⁴⁴

 91 Zr shifts of CpTpZrCl₂ [Tp = hydrotris(pyrazolyl)borate, HB(C₃H₃N₂)₃-; δ 22] and Cp[H₂B(C₃H₃N₂)₂]ZrCl₂ (δ 53) were studied. 145 The complexes, when activated by methylalumoxane (MAO), became catalysts for olefin polymerization. 145

⁹¹Zr shifts of acetylacetonate (acac) complexes, (acac)₃ZrCl (δ 77) and Zr(acac)₄ (δ -46), were also reported in the study of their potentials, when activated by MAO, as catalysts for olefin polymerization.¹⁴⁵ After reacting with MAO, ⁹¹Zr shifts are as follows: (acac)₂ZrCl₂/MAO (δ 9.2), (acac)₃ZrCl/MAO (δ 156.6), and (acac)₄Zr/MAO (δ 147.5) in toluene solution at the Al:Zr

ratio of 1000:1.¹⁴⁵ In comparison, (dbm)₃ZrCl/MAO [δ 35.7; dbm = dibenzoylmethanate = 1,3-diphenylpropanedionate (**19**)].¹⁴⁵

DFT calculations predicted δ -1500 for Zr@C₂₈ endohedral compound, after it was detected by mass spectrometry. ¹⁴⁶

For NMR of ligands, the tetrameric Zr(IV) cation $[Zr_4(OH)_8(H_2O)_8(H_2O)_8]^{8+}$ was studied via several spectral methods including ^{17}O NMR ($\delta \sim 180$). 147 In this cation, there are two labile and two inert water molecules per Zr atom. 147 ^{11}B and ^{31}P NMR were used to analyze Zr and Hf polyhydride complexes $M_3H_6(BH_4)_6(PMe_3)_4$ and $M_2H_4(BH_4)(dmpe)_2$ (M = Zr, Hf). 148 B-containing diamide complexes (Bu^tN-BPh-NBu^t)₂M(THF) and Li₂[M(Bu^tN-BPh-NBu^t)₃] (M = Zr, Hf) were synthesized from the reacitons of PhB(Bu^tNLi)₂ with the metal halides. 149 These complexes were analyzed via ^{1}H and ^{11}B NMR and X-ray crystallography. 149 A large series of zirconocene and hafnocene silyl complexes were synthesized and analyzed via ^{1}H , ^{13}C , and ^{29}Si NMR. 150

The *in-situ* polymerization of hyperpolarized 1-hexene with either [(EBI)ZrMe]B(C_6F_5)₄ [EBI = rac- C_2H_4 (1-indenyI)₂] or (Cp_2ZrMe)B(C_6F_5)₄ was analyzed via dissolution DNP NMR.¹⁵¹ With this technique, several aspects of the reaction such as stereochemistry, measurement of kinetic rate constants, and identification of deactivation processes could be studied simultaneously.¹⁵¹ Stop-flow NMR was also used to directly observe the kinetics of 1-hexene polymerization with either [(EBI)ZrMe]B(C_6F_5)₄.¹⁵¹ Diffusion NMR was used to study the individual components and combinations of a ternary system containing Cp_2ZrMe_2/MAO (DMAO) in 2,6-Bu t 2-phenol (MAO = methylaluminoxane, DMAO = AlMe3-depleted MAO).¹⁵² Variable-pressure 2-D (2-dimensional) 1 H Exchange Spectroscopy (EXSY) was used in the

assignment for the *cis/trans*-isomerization of ZrCl₄[O=P(OMe)₃]₂.¹⁵³ For an overview of EXSY, see Section 13.1.

Heptacoordinated Zr and Hf complexes M[MeC(NPrⁱ)₂]₃Cl (M = Zr, Hf) and M[MeC(NPrⁱ)₂]₃R (M = Zr, Hf; R = Me, Et) were analyzed via several methods including ¹H-¹⁵N gHMBC NMR.¹⁵⁴ The average bond lengths of M-N in the M[MeC(NPrⁱ)₂]₃Cl were shorter than those in the M[MeC(NPrⁱ)₂]₃Et as observed in their crystal structures. Since fast exchange was needed to detect the HMBC cross peaks, the 2-D NMR experiments for M[MeC(NPrⁱ)₂]₃Cl were performed at an elevated temperature (60 °C).¹⁵⁴ The ¹H-¹⁵N gHMBC NMR of M[MeC(NⁱPr)₂]₃Me was also obtained at elevated temperatures (45 °C).¹⁵⁴

The ^{11}B NMR spectrum was obtained for the complex $[(Zr_6BI_{12})(H_2O)_6]^+$ (δ 215.2) which was formed from the dissolution of KZr_6BI_{14} in deoxygenated water. 155

3.3. Hafnium complexes

We did not find reports of ¹⁷⁷Hf or ¹⁷⁹Hf NMR which were also not discussed in the 1991 book edited by Pregosin¹ or a 1987 book on multinuclear NMR edited by Mason.³

For NMR of ligands, the silvene complex $(\eta-C_5H_4-Et)_2(PMe_3)Hf=Si(SiMeBu^t_2)_2$ was analyzed via 1H , ^{13}C , ^{31}P , and ^{29}Si NMR. 156 This was the first example of a stable Schrock-type silvene complex and the first complex with a Hf=Si double bond. 156

For the discussion of polyhydride complexes $Hf_3H_6(BH_4)_6(PMe_3)_4$, 148 $Hf_2H_4(BH_4)(dmpe)_2$, 148 B-containing diamide complexes $(Bu^tN-BPh-NBu^t)_2Hf(thf)$ and $Li_2[Hf(Bu^tN-BPh-NBu^t)_3]$, 149 and heptacoordinated $Hf[MeC(NPr^i)_2]_3CI$, 154 see previous Section 3.2 on their Zr analogs.

4. Group 5 (V, Nb and Ta)

For V and Nb, NMR of both the metals (51V, 93Nb) and ligands have been reported. For Ta, we found only papers on NMR of ligands in 1990-2019. It should be pointed out that solution

¹⁸¹Ta NMR of the TaF_{6}^{-} anion prepared by dissolving Ta metal in HF/HNO₃ was reported in 1973 in order to determine the ¹⁸¹Ta nuclear gyromagnetic ratio and its magnetic moment. ¹⁵⁷ Later, ¹⁸¹Ta NMR spectra of (Et₄N)(TaCl₆), (Et₄N)[Ta(CO)₆], and K₂(TaF₇) in solution were published in 1986. ¹⁵⁸

Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 4.

Table 4.26 Nuclear and NMR properties of 51V, 93Nb, and 181Ta

Nuclide	Natural abun- dance (%) ^a	Spin	Relative receptivity		Gyromagnetic	Quadrupole	<i>Ξ</i> (and frequency,	Reference
			D^{H} (¹ H = 1.00)	D^{C} (13C = 1.00)	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100 MHz, 2.3488 T)	sample
(⁵⁰ V) ^{b,c}	0.250	6	1.39 × 10 ⁻⁴	0.818	2.6706490	21.0	9.970309	VOCI ₃
51 V	99.750	7/2	0.383	2.25 x 10 ³	7.0455117	-5.2	26.302948	(neat/C ₆ D ₆)
⁹³ Nb	100	9/2	0.488	2.87 x 10 ³	6.5674	-32.0	24.476170	KNbCl ₆ (MeCN) or NEt ₄ (NbCl ₆) ¹⁵⁹⁻¹⁶⁰ (MeCN or CD ₃ CN)
¹⁸¹ Ta	99.98799	7/2	3.74 x 10 ⁻²	220	3.2438	317.0	11.989600	KTaCl ₆ (MeCN) or NEt ₄ (TaCl ₆) (1:1 MeCN:Me ₂ CO ¹⁵⁸)

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

4.1. Vanadium complexes

^b 50V is radioactive with $t_{1/2} > 3.9 \times 10^{17}$ years.³²

 $^{^{\}mathrm{c}}$ 50V in parenthesis is considered to be the less favorable of the element for NMR. $^{\mathrm{26}}$

We did not find papers published in 1990-2019 on ⁵⁰V NMR. The reader may find a summary of ⁵⁰V NMR work published by 1990 in Reference 1.

⁵¹V NMR is one of mostly used metal NMR spectroscopies with many papers. In fact, ⁵¹V nuclear properties in Table 4 make its NMR among the easiest in transition metals even for compounds with nearly no symmetry. ¹ Solution ⁵¹V shifts of diamagnetic complexes are typically in the range of δ 2375 for Cp*₂V₂(μ,η²-Se₂)(μ-Te)₂¹ to -2054 for (NEt₄)[CpV(CO)₃(SnPh₃)]. ¹⁶¹ ⁵¹V NMR studies of V^V, V^{III}, V^I and V^{-I} complexes up to 1990 were reviewed in detail in References 1 and ¹⁶². Biological applications of ⁵¹V NMR were discussed in another 1990 review. ¹⁶³ In addition, ⁵¹V NMR of organometallic complexes at V^V, V^{IV} (in V-V bonded dimers), V^{III}, V^I, and V^{-I} oxidation states was surveyed in depth in a 2008 review. ¹⁶⁴ ⁵¹V NMR developments during 1997-2008 were reviewed in 2008. ¹⁶⁵

Complexes with V-O bonds, including vanadate (VO₄³-) derivatives, polyoxometalates, and peroxo derivatives, continue to be a focus of ⁵¹V NMR studies driven in large part to find insulin-mimetic V compounds in diabetic treatments.

Vanadate derivatives typically contain N,O, $^{166-167}$ O,O, $^{168-170}$ O,N,O $^{171-173}$ and O,N,N 174 ligands. Reported complexes with N,O ligands included those with NH $_2$ OH, 166 MeNHOH, 166 and 8-hydroxyquinoline-5-sulfonic acid [H(8-HQS) (**20**)], 167 suggesting, e.g., that 5- (δ -527) and 6-coordinated (δ -537 and -540 from isomers) V centers were present in the 8-HQS complexes. 167 The equilibria of vanadate with β -alaninehydroxamic acid (H $_2$ NCH $_2$ CH $_2$ CONHOH), 168 aldaric acids (*D*-saccharic acid and mucic acid), 169 1,2-dimethyl-3-hydroxy-4-pyridinone 175 in aqueous solution, giving O,O complexes, were studied by 51 V NMR, showing, e.g., δ -520 and -450 for 1:1 and 1:2 V:ligand (ligand = β -alaninehydroxamate) complexes, respectively. 168 Interactions of vanadate with adenosine, and imidazoles in aqueous solution were probed by potentiometry and 51 V NMR. 176

O,N,O complexes included those from vanadate reactions with iminodiacetic acid [HN(CH₂CO₂H)₂], *N*-(2-hydroxyethyl)iminodiacetic acid [HOCH₂CH₂N(CH₂CO₂H)₂], ¹⁷¹ *N*,*N*-bis(2-

hydroxyethyl)glycine [(HOCH₂CH₂)₂NCH₂CO₂H],¹⁷¹ 2,6-pyridinedicarboxylate,¹⁷³ and 4-hydroxypyridine-2,6-dicarboxylic acid (H₂-dipic-OH),¹⁷² forming products with tridentate ligands such as Na[VO₂(dipic-OH)] (δ -529.0).¹⁷² Tridentate O,N,O complexes **21** with (*E*)-*N*'-[1-(5-acetyl-2,4-dihydroxyphenyl)ethylidene] hydrazide-type ligands were synthesized and characterized, including by single-crystal diffraction for a few complexes.¹⁷⁷ Their ⁵¹V NMR showed resonances in the δ -534.0 to -547.8 range.¹⁷⁷ O,N,N complexes include those from the reactions of vanadate(V) with dipeptides (Val-Gln, Ala-Gln, Gly-Gln, Gly-Glu, and Ala-Gly), which were characterized by multinuclear (⁵¹V, ¹⁴N, ¹³C) NMR.¹⁷⁴

⁵¹V NMR was used as a pH-dependent probe for acidification of reverse micellar nanodroplets by CO_2 in the confined space. ¹⁷⁸ Multinuclear NMR approaches, in particular ⁵¹V, were employed to elucidate the nature of vanadates and peroxovanadates in hydrophilic ionic liquids, (bmim)BF₄ and (bmim)(OTf) [bmim⁺ = 1-n-butyl-3-methylimidazolium (**22**)], indicating that ionic liquids had a strong influence on the vanadate chemistry both for the formation of the aggregates (with and without H_2O_2) and the rate of peroxide consumption catalyzed by vanadium. ¹⁷⁹ V_2O_5 was dissolved at >70 °C in, e.g., (bmim)AlCl₄ ionic liquid, giving different species as a function of melt acidity. ¹⁸⁰ ⁵¹V, ¹H, and ¹³C NMR and IR indicated that, in basic and neutral melts, VO_2Cl_2 - and a metavanadate species, $[(VO_3)_n]^{n-}$ were the products. While VO_2Cl_2 -

was prominent in basic melts, but as the melt became neutral or as the concentration of V_2O_5 was increased, the concentration of $[(VO_3)_n]^{n-}$ increased.¹⁸⁰

Vanadate (VO_4^{3-}), stable in the highly alkaline region (pH >13) oligomerized as basicity was reduced and at pH 2-6, the main species was polyoxovanadate V₁₀O₂₈6-, which could exist in several protonated forms. 181 Structural studies of polyoxometalates by 51V and 17O NMR were reviewed in 2006.182 Time-resolved 51V NMR EXSY was used to probe kinetics of the oligomerization of vanadate into dimer, tetramer, and pentamer in aqueous solutions, giving rate constants. 183 The existence of linear tri- and tetra-vanadate anions, $V_3O_{10}^{5-}$ [51V δ -554.3 $(V_{terminal})$, -586.6 $(V_{central})$; 273 K] and $V_4O_{13}^{6-}$ [51V δ -554.3 $(V_{terminal})$, -585.4 $(V_{central})$], in aqueous solution were confirmed by ⁵¹V and ¹⁷O NMR and potentiometry, yielding constants of their formation from H⁺ and HVO₄²⁻ (δ -537.2) through dimer intermediates V₂O₇⁴⁻ (δ -558.8) and $HV_2O_7^{3-}$ (δ -559.9) in 5% ¹⁷O-riched solution. ¹⁸⁴ ¹⁷O NMR resonances were in the δ 920-360 range. ¹⁷O magnetization-transfer experiments indicated that the O atoms in V₃O₁₀⁵⁻ and V₄O₁₃⁶⁻ underwent exchanges likely through intramolecular processes. 184 When a neutral, 3% 17Oriched aqueous vanadate solution in NaCl was rapidly acidified at room temperature to pH 1.5, transient tridecavanadate $H_{12}V_{13}O_{40}^{3-}$, containing 12 V atoms (δ -538.0) around a central, tetrahedrally coordinated V atom (δ -523.3) in a Keggin structure, was identified by ⁵¹V and ¹⁷O NMR. 185 17O NMR peaks at δ 981, 853, and 575 from solvent O atoms were observed. The tridecavanadate had a half-life of 80 min at 298 K. 185 Dodecavanadate, V₁₂O₃₂4-, is a bowl-type host with a 4.4-Å-diameter cavity entrance that reacted with guest anion X^{-} (X^{-} = CN^{-} , OCN^{-} , NO₂-, NO₃-, HCO₂-, and CH₃CO₂-) to form host–guest complexes, V₁₂O₃₂(X)⁵-, as ⁵¹V NMR and

X-ray crystallographic analyses showed. 186

Vanadate could also form mixed-metal polyoxometalates such as α -H₂W₁₁VO₄₀⁷⁻ (δ -543)¹⁸⁷ and heteropolymetalates with main group oxyanions such as the Keggin-type α-SiVW₁₁O₄₀⁵⁻ (Na⁺ salt; ⁵¹V δ -551.3; ²⁹Si δ -81.87). ¹⁸⁸ Two tungstovanadates, WV₉O₂₉⁵⁻ and *mer*-W₃V₃O₁₉⁵⁻, were identified in equilibrated aqueous solution of WO₄²⁻ and VO₃⁻ using ⁵¹V NMR and ⁵¹V-⁵¹V COSY (Correlation Spectroscopy) which supported structures analogous to known molybdovanadates. 189 51V and 17O NMR showed that silicate anions reacted with HVO₄2- in aqueous alkaline solution, forming H₂VSiO₇³-, H₃VSiO₇²- and related monovanadooligosilicates. 190 Molybdovanadates with high Mo:V ratios in aqueous solution, such as *cis*-Mo₄V₂O₁₉⁴⁻, *cis*-HMo₄V₂O₁₉³⁻, Mo₅VO₁₉³⁻, Mo₄V₅O₂₇⁵⁻, HMo₄V₅O₂₇⁴⁻, and β-Mo₇VO₂₆⁵⁻, were characterized by ⁵¹V and ¹⁷O NMR as well as ⁹⁵Mo NMR for some species. ¹⁹¹ Reaction of NaVO₃ with Na₂WO₄ in NaCl-containing aqueous solution yielded several tungstovanadates, such as *cis*-W₄V₂O₁₉⁴⁻ (51 V δ -511.3), WV₉O₂₈⁵⁻ (51 V δ in the range of -428.2 to -525.7), and α - $H_2W_{11}VO_{40}^{7-}$ (51V δ -544.3) in equilibrium with $H_2V_{10}O_{28}^{4-}$ and VO_4^{3-} . 192 51V, 183W and 17O NMR and potentiometry were used to characterize the mixtures. 192 Mixing of Na₂HVO₄ with varying proportions of Na₂WO₄ and Na₂MoO₄ in NaCl-containing water, followed by acidification with HCl, yielded the complete series of hexametalate anions $V_2Mo_nW_{4-n}O_{19}^{4-}$ (n = 0-4) in the Lindqvist structure with two *cis* V atoms. ¹⁹³ ⁵¹V shifts of the species in the δ -497.9 to -513.7 range and their monoprotonated tetraanions in the δ -511 to -541 range were assigned. 193 Reaction of hydrous niobium oxide with V₂O₅, H₃PO₄ and NMe₄OH in water at 130 °C gave a Keggin-type polyoxoniobate (NMe₄)₉[PV₂Nb₁₂O₄₂] (51 V δ -540; 31 P δ 2.4; pH 7.3) containing a central P site and two capping V sites. 194 51V NMR (for VV component), EPR (for VIV component) and voltammetry were used to study the initial reduction of 1- and 4-[S₂VW₁₇O₆₂]⁵⁻ forming V^{IV} products.¹⁹⁵ When a mixture of Na₇H(Nb₆O₁₉), NaVO₃, and NaHCO₃ in water was heated at 220 °C in an autoclave, the reaction gave a bicapped α-Keggin vanadododecaniobate, Na₉H₄[VNb₁₂O₄₀[NbO(CO₃)]₂]. 196 51V NMR and ESI-MS data indicated that this anion in solution

was in equilibrium with VNb₁₂O₄₀¹⁵⁻ and oligomeric species from dissociation of the NbO(CO₃)⁺ fragments.¹⁹⁶ In the presence of K⁺, the same reaction gave $V_xNb_{24}O_{76}^{n-}$ (x = 4, n = 12; x = 3, n = 17).¹⁹⁶ A V-Co cluster, $[Co_4(tacn)_4V_4O_{12}(OH)_4](OTf)_4$ [tacn = 1,4,7-triazacyclononane (**2**, R₃ = H₃)], was prepared from the reaction of Na₃VO₄ with $[Co(tacn)(H_2O)_3](OTf)_3$ (whose ⁵⁹Co NMR was given below) in aqueous triflic acid solution.¹⁹⁷ The triflate product could be converted to Cl⁻, Br or ClO₄⁻ derivatives. ⁵¹V and ⁵⁹Co NMR of the cation solution show δ -380 and 9,650, respectively.¹⁹⁷

For the use of electron-electron double resonance (ELDOR)-detected NMR (EDNMR), hyperfine sub-level correlation (HYSCORE), and electron-nuclear double resonance (ENDOR) to study hyperfine interactions in polyoxometalate PV₂Mo₁₀O₄₀⁶⁻ with one reduced V(IV) ion, ¹⁹⁸ see Section 13.3.

Vanadium peroxo compounds were of interest mainly due to their role in biological systems and their application in oxidation reactions. ¹⁹⁹ Vanadium peroxo compounds were identified as a new class of powerful insulin mimetic agents. ²⁰⁰ Vanadium peroxo materials were also found to be in haloperoxidases that likely play a key role in the production of biogenic organohalogens in the environment. ²⁰¹ Addition of H₂O₂ to NH₄VO₃ in acid aqueous solutions gave monoperoxo VO(O₂)⁺ (δ_V -540.5) or diperoxo VO(O₂)₂⁻ (δ_V -693.1) complexes. ²⁰² In the presence of bidentate ligands L, e.g., picolinic or pyrazinic acid (HL), complexed peroxo vanadium species such as VO(O₂)L, VO(O₂)L₂⁻, and VO(O₂)₂L²- were identified by ⁵¹V NMR, ²⁰² and their shifts in twelve solvents were also studied. ²⁰³ In MeCN, the picolinate complex, VO(O₂)(picolinate)(H₂O)₂•MeCN was found to oxidize hydrocarbons and the spin trap 3,3,5,5-tetramethyl-pyrroline-N-oxide (TMPO), forming V(IV) species, as ⁵¹V NMR and EPR studies showed. ²⁰⁴

⁵¹V NMR revealed that reactions of aqueous monoperoxo VO(O₂)⁺ with amino acids such as glycine or proline gave two types of bis(amino acid) products, in which the two amino acid ligands were either bidentate or one bidentate and one monodentate through the amino

group.²⁰¹ No reaction of $VO(O_2)^+$ with imidazole or the imidazole ring of histidine was observed. In contrast, reactions of aqueous diperoxo $VO(O_2)_2$ with amino acids give monodentate products either the carboxyl or the amino groups, with bonding by the amines favored. Imidazole, as the free ligand or as the side chain in histidine, complexed strongly to diperoxovanadate, as did N-methylimidazole and also pyridine.²⁰¹ Quantitative ⁵¹V NMR and potentiometric studies of the speciation in the vanadate-peroxide-imidazole systems also showed that imidazole binds strongly to diperoxovanadate.²⁰⁵ When L-lactic acid [CH₃CH(OH)COOH] and H₂O₂ at pH 1-7 was added ammonium vanadate(V), the reaction gave three dimers - Two are 2:2:1 (metal:ligand:peroxo) isomers and the third is a 2:2:2 species. 199 At pH < 2, an additional 1:1:1 complex was formed. 199 Similar reactions with glycolic acid 206 and Lmalic acid²⁰⁷ were studied. The speciation of H_2VO_4 and H_2O_2 with L- α -alanyl-L-histidine (23) in acidic aqueous solution was studied by quantitative ⁵¹V NMR and potentiometry, showing the formation of four 1:1:1 (metal:ligand:peroxo) and four 1:1:2 products.²⁰⁸ Reaction of $K_3[VO(O_2)_2(oxalate)]$ or $VO(O_2)_2(D_2O)^-/VO(O_2)_2(HOD)^-$ with glycyl-histidine (24) in aqueous (H₂O or D₂O) solution gave two VO(O₂)₂(glycyl-histidine)⁻ isomers with V-N bonds to either the ε-N or δ-N atom in the imidazole ring, as VT NMR, Diffusion-Ordered Spectroscopy (DOSY), HMQC and DFT calculations showed.²⁰⁹ Additional discussion of HMQC⁴ and DOSY⁴ is given in Section 13.1 below. NMR studies (including ¹H, ¹³C, ¹⁴N, ⁵¹V and DOSY) of the reaction between $K_3[VO(O_2)_2(oxalate)]$ with ethylenediamine ($H_2NCH_2CH_2NH_2 = en$) in aqueous solution indicated the formation of 6-coordinated [OV(O₂)₂(en)]⁻ with one V-N bond.²¹⁰ In contrast, a similar mixture with HNEt₂ instead did not lead to the formation of a new complex.²¹⁰ Reaction of siloxy $VO_2(OSiPh_3)_2$ with H_2O_2 gave oxoperoxo complex $VO(O_2)(OSiPh_3)_2$ (δ -596.8). 211 51V NMR, ESI-MS, and ab initio calculations techniques were used to study vanadium triperoxo complexes such as V(O₂)₃- in protic solvents, showing a step-by-step decomposition process.²¹² When Na[V(O₂)₃]•3H₂O was dissolved in strongly basic water (pH 14), its decomposition from the blue-violet (triperoxo vanadte; δ -847) to yellow (diperoxo vanadate) was slowed down,

allowing the characterization by ⁵¹V NMR.²¹²

Cysteine oxidation to cystine by oxo diperoxo complexes $[VO(O_2)_2(L)]^{n-}$ (L = oxalate, n = 3; L = picolinate, n = 2; L = bipyridil, phenanthroline, n = 1) with insulin-mimetic activity was studied by ⁵¹V NMR, UV, and stopped-flow techniques.²⁰⁰ The oxalate ligand underwent a total ligand dissociation during the reaction, while the other three complexes held their ligands in solution.²⁰⁰ DNA-photocleavage by peroxo V(V) complexes irradiated at 365 nm in aqueous solution was studied by ⁵¹V NMR, showing VO₃- as the vanadium product.²¹³ Photolysis-EPR spin-trapping experiments supported the notion that singlet oxygen was the reactive species.²¹³

Nuclease activity of VO(acac)₂ and its derivatives was studied by several techniques including ⁵¹V NMR, showing that the mechanism was oxidative and associated with the formation of reactive oxygen species (ROS).²¹⁴ Interactions of vanadate with bovine Cu,Zn-superoxide dismutase was probed by ⁵¹V NMR, suggesting that the vanadate tetramer bound to the two lysine residues in the solvent channel of Cu,Zn-SOD.²¹⁵

⁵¹V NMR of organometallic complexes was discussed in a 2008 review, as indicated earlier. ¹⁶⁴ ⁵¹V shifts of selected complexes are listed in Table 5. ¹⁶⁴ ⁵¹V NMR was used to characterize [VO(μ -OCH₂CF₃)(OCH₂CF₃)(C₆F₅)]₂ (δ -481), [VO(μ -OCH₂CF₃)(OCH₂CF₃)₂]₂ (δ -570), O=V(NEt₂)₃ (δ -205), and (F₅C₆)₃B←O=V(NEt₂)₃ (δ 57). ²¹⁶

Table 5. 51V chemical shifts of selected V organometallic complexes from Reference 164

Complexes	⁵¹ V shifts (δ)		
Bu ^t -N=V(CH ₂ Bu ^t) ₃	879		
Bu ^t -N=V(CH ₂ SiMe ₃) ₃	877, ¹ J _{V-N} = 86 Hz		
Bu ^t -N=V(OBu ^t) ₃	-751		
O=V(CH ₂ SiMe ₃) ₃	1205		
O=V(OSiPh ₃) ₃ 164	-723		
$(Bu^tCH_2)_3V=N-N=V(CH_2Bu^t)_3$	1237, ${}^{1}J_{51}{}_{V_{-}}{}^{14}{}_{N} = 48 \text{ Hz},$ ${}^{1}J_{51}{}_{V_{-}}{}^{15}{}_{N} = 76 \text{ Hz}$		
CpV(CO)₄	-1534, ¹ J ⁵¹ V-C = 107 Hz		

Catalytic activities of vanadium complexes were studied by 51 V NMR. $^{217-219}$ Cyclohexene oxidation by cumyl or t-butyl hydroperoxides to cyclohexene oxide, catalyzed by VO(acac)₂(OR) (R = Bu^t, δ -477; CMe₂Ph, δ -475), was probed by 51 V NMR. 217 The alkoxides were converted to peroxide complexes VO(acac)₂(OOR) (R = Bu^t, δ -351; CMe₂Ph, δ -365) which then transferred an O atom to cyclohexene. In acid isopropanol/water solution under aerobic conditions, Buⁿ₄NVO₃ catalyzed autoxidation of PrⁱOH to acetone and O₂ reduction to H₂O₂. 218 The V-substituted, Lindqvist-type polyoxotungstate VW₅O₁₉³⁻ in MeCN promoted cyclooctene epoxidation by H₂O₂ into cyclooctene oxide. 219 Oxidative carbonylation of toluene to *p*-toluic acid by CO and O₂ using Rh(CO)₂(CF₃COO)₃ as catalyst and [V(μ -O)O(CF₃COO)]₂ (δ -634 in toluene; -545 in D₂O) as co-catalyst were studied by 103 Rh, 51 V and 13 C NMR. 220 In the catalytic cycle, [V^V(μ -O)O(CF₃COO)]₂ reoxidized Rh(I) to Rh(III), forming V^{IV}O(CF₃COO)₂, and the dimer structure of the former was based on DFT calculations.

DFT calculations were performed to obtain the geometry and electronic structures and solution ⁵¹V and ¹⁷O NMR shifts of a series of 7 oxo-peroxo V(V) complexes with tetradentate

tripodal amine ligands, which mimicked the active site of vanadium bromoperoxidase.²²¹ The more reactive complexes for bromide oxidation contained weakly electron donating amine ligands and more deshielded ⁵¹V and ¹⁷O resonances.

For ligands, ¹⁷O NMR of oxo complexes was discussed earlier. In addition, ¹⁷O NMR of peroxide ligands in monomer V(V) complexes ¹³⁵⁻¹³⁶ and diperoxyo vanadium complexes were obtained to probe the complexes. ¹³⁵⁻¹³⁶ ¹⁷O and ^{35/37}Cl NMR spectroscopies were used to study the hexa-aqua V(III) cation structure in various mixed acid-based electrolyte solutions used in vanadium redox flow batteries. ²²²

4.2. Niobium complexes

⁹³Nb NMR was used to characterize [NbF₄(diphosphine)₂](NbF₆) [diphosphine = o-(PMe₂)₂-C₆H₄, Me₂P(CH₂)₂PMe₂ (dimethylphosphinoethane or dmpe)] produced from the reactions of NbF₅ with diphosphine in MeCN, showing the binomial septet at δ -1553 for the anion NbF₆ and a broad peak at δ -1110 and -1062 for the cations, respectively (Table 6). 160 ⁹³Nb shifts of NbF₅(SMe₂) and NbF₅(SeMe₂) (⁷⁷Se) were also reported (Table 6).²²³ In [NbF₄(dithioether)₂](NbF₆) [dithioether = RS(CH₂)₂SR (R = Me, Et or Prⁱ)], the anion NbF₆⁻ was observed as a binomial septet at δ -1551 to -1554 (J_{Nb-F} = 335 Hz) at 220 or 243 K (Table 6).²²³ The ⁹³Nb shifts of the cations [NbF₄(SMe₂)₄]⁺ and [NbF₄(dithioether)₂]⁺ at 295 K are listed in Table 6.²²³ Chalcogenoether complexes NbCl₅(SBuⁿ₂) and NbCl₅(SeBuⁿ₂) and dinuclear (NbCl₅)₂[µ-o-(CH₂SEt)₂-C₆H₄] were prepared from the reactions of NbCl₅ with respective chalcogenoethers, and they were characterized by ⁹³Nb and ⁷⁷Se NMR (Table 6).²²⁴ These complexes were tested as potential single source precursors for chemical vapor deposition of NbS₂ or NbSe₂ films. NbCl₃(S₂CNEt₂)₂ and [Nb(S₂CNEt₂)₄](NbCl₆) were prepared from the reaction of NbCI₅ with dithiocarbamate Me₃SiSC(=S)NEt₂.²²⁵ 93Nb shifts of NbCI₃(S₂CNEt₂)₂,²²⁵ $NbCl_{2}(S_{2}CNEt_{2})_{3}, {}^{226}\ NbBr_{2}(S_{2}CNEt_{2})_{3}, {}^{226}\ and\ [Nb(S_{2}CNEt_{2})_{4}](NbCl_{6})^{225}\ are\ given\ in\ Table\ 6.$ [NbCl₃(thf)₂]₂(µ-N₂) was prepared from NbCl₅ and (Me₃Si)₂NN(SiMe₃)₂, and its ⁹³Nb resonance is

Table 6. 93Nb chemical shifts of selected Nb compounds

Compleyes	⁹³ Nb sh	77Ca abifta (\$)		
Complexes	Cation	Aniona	⁷⁷ Se shifts (δ)	
[NbF ₄ [o-(PMe ₂) ₂ -C ₆ H ₄] ₂](NbF ₆) ¹⁶⁰	-1110	-1553	-	
[NbF ₄ (dmpe) ₂](NbF ₆) ¹⁶⁰	-1062	-1553	-	
[NbF ₄ (dithioether) ₂](NbF ₆) [dithioether = RS(CH ₂) ₂ SR (R = Me, Et or Pr ⁱ)] ²²³	-1540 to -1550	-1551 to -1554	-	
[Nb(S ₂ CNEt ₂) ₄](NbCl ₆) ²²⁵	-325	0		
NbF ₅ (SMe ₂) ²²³	-1440		-	
NbF₅(SeMe₂) ²²³	-1509		247.2	
NbCl ₅ (SBu ⁿ ₂) ²²⁴	97		-	
NbCl ₅ (SeBu ⁿ ₂) ²²⁴	123		273.6	
(NbCl ₅) ₂ [μ-ο-(CH ₂ SEt) ₂ -C ₆ H ₄] ²²⁴	94			
NbCl ₃ (S ₂ CNEt ₂) ₂ ²²⁵	-418			
NbCl ₂ (S ₂ CNEt ₂) ₃ ²²⁶	-315			
NbBr ₂ (S ₂ CNEt ₂) ₃ ²²⁶	-545			
[NbCl ₃ (thf) ₂] ₂ (µ-N ₂) ²²⁶	-532			

^a The anion NbF₆ appeared as a binomial septet with ${}^{1}J_{\text{Nb-F}}$ = 335 Hz.

Alcoholysis of NbCl₅ (δ 2.6) by MeOH was probed by ⁹³Nb NMR in benzene, showing formation of NbCl_{5-x}(OMe)_x (x = 1, δ -497; 3, δ -810; 4, δ -1010; 5, δ -1160) with increasing shielding of the Nb atom with replacement of Cl⁻ by OMe⁻ ligands.²²⁷ Similar NMR properties were also observed in MeOD solution.²²⁸ In a mixture of NbCl₅(CD₃CN), MeOH and H₂O, ⁹³Nb resonances of NbCl₄(OMe)(MeCN) and NbCl₄(OH)(MeCN) were found to be at δ -560 and -495,

respectively. Quinolinol derivatives Nb₄(μ -O)₄(μ -OEt)₂(ONC₁₀H₈)₂(OEt)₈ and Nb₄(μ -O)₄(μ -OEt)₂(ONC₉H₅CI)₂(OEt)₈, prepared from the reaction of Nb(OEt)₅ with 8-hydroxy-2-methylquinoline (HONC₁₀H₈) and 5-chloro-8-hydroxyquinoline (HONC₉H₅CI), showed ⁹³Nb resonances at δ 206, 131 for the former and 197, 122 for the latter. Both peroxo complexes K[Nb(OH)(O₂)₂(8-quinolinolate)] and K[Nb(O₂)₂(8-quinolinolate)₂] in D₂O give ⁹³Nb resonances at δ -739. Polyoxoanion complex (Buⁿ₄N)₄(NbW₅O₁₈)₂O with a Nb-O-Nb oxo bridge gave a broad ⁹³Nb resonance at δ -975. ²³¹ ¹⁷O-enriched sample (Buⁿ₄N)₃[Nb(¹⁷O)W₅O₁₈] showed the ¹⁷O resonance at δ 795. ²³¹

A 1991 review summarized ⁹³Nb NMR of organometallic compounds by then,¹⁰ showing its chemical shift range of ca. 3,000 ppm. The subject was discussed in a 1996 article.²³²

when the halide ligand X changed from Cl⁻ (δ -799.4) to Br⁻ (δ -834.3) and l⁻ (δ -931.4), the least electronegative of the three halogen elements.²³³ d² (η^5 -MeC₅H₄)₂Nb(η^3 -allyl) gave a ⁹³Nb resonance at δ -1738.²³⁴ ⁹³Nb shifts were reported for a series of d⁰ (silox)₃NbX₂ and d² (silox)₃NbL complexes (silox = Bu^t₃SiO).²³⁵ A few (referenced to saturated NbCl₅ in acetonitrile) are selected here: X₂ = =NN=CHSiMe₃ (δ -965), =O (δ -947), Cl₂ (δ -755), ½(μ:η¹,η¹-N₂) (as a dimer with N₂ bridging ligand, δ -570), =CH₂ (δ 11.1), =PMe (δ 660). For d² (silox)₃Nb(CH₂=CH₂) with both olefin and metalacyclopropane character, δ 296.²³⁵ DFT-calculated ⁹³Nb shifts correlated with the experimental values, and indicated that, in the (silox)₃NbX₂ complexes, δ was generally proportional to 1/χ (χ = Pauling electronegativity of the atoms bonded to Nb), with most electronegative more shielded from the shifts of other complexes. This trend was derived from the paramagnetic contribution.²³⁵

 93 Nb shifts in 19 Nb complexes, NbX_{6-n}Y_n- (n = 0-6; X, Y = F-, Cl-, and Br-) were calculated by the *ab initio* Hartree-Fock method, giving calculated values in very good agreement with the experimental data. 236 93 Nb shifts were found to be dominated by the paramagnetic contributions and were due to the d-d* transition and excitation energy ΔE . The

computations also showed that the 93 Nb shift was related to the electronegativity of the ligand atom, net charge, and the d-electron population of the Nb atom. 236 DFT computations of 93 Nb shifts of a series of complexes, such as NbF₆-, NbCl₆-, Nb(CO)₆-, Nb₂(OMe)₁₀, CpNb(CO)₄, and Cp₂NbH₃, were performed and the calculated shifts were compared with experimental shifts. 237 Trends in the 93 Nb peak line widths for anionic Nb(CO)₅³-, Nb(CO)₅H²-, and Nb(CO)₅(NH₃)- were rationalized in terms of computed electric field gradients at the Nb atom.

Nb oxoclusters stabilized by ionic liquid (Bu₄ⁿN)(lactate) were probed by ⁹³Nb NMR, showing three resonances at δ -849, -1108, and -1036 in D₂O.²³⁸ The stabilized oxoclusters catalyzed epoxidation of olefins and allylic alcohols by H₂O₂, and catalytic cycle was followed by ⁹³Nb NMR, including the identification of a peroxo intermediate.

For NMR of ligands, reactions of (Me₄N)₆Nb₁₀O₂₈ with bases such as KOH, NaOH and Me₄NOH formed several polyniobates, including hexaniobate anion Nb₆O₁₉8-, that were monitored via ¹⁷O NMR over the course of weeks.²³⁹ For Nb₆O₁₉8- formed by different bases, such as KOH or Me₄OH, ranges of the ¹⁷O shifts of the ONb, ONb₂, and ONb₆ were found to be at δ 612-648, 378-393, and 29-41, respectively.²³⁹

NMR studies of several Nb σ-borane were discussed in a 2008 review. 139

¹H-¹⁵N HMBC (Heteronuclear Multiple Bond Correlation) was also used to obtain ¹⁵N (spin 1/2) NMR shifts of Nb complexes with Nb-N bonds at the ¹⁵N natural abundance of 0.364%.²⁴⁰⁻²⁴³ The discussion of the inverse detection method is given in Sections 7 and 13.1.

4.3. Tantalum complexes

As noted earlier, for tantalum complexes, we have found only papers on NMR of ligands in 1990-2019. However, solution 181 Ta NMR of complexes were reported before 1990, including $TaF_6^{-,157}$ (Et₄N)(TaCl₆), (Et₄N)[Ta(CO)₆], and K₂(TaF₇). 158,232

Parahydrogen-induced polarization (PHIP) was used to observe the kinetic, unsymmetric isomer of Cp*₂TaH₂Cl, where the hydride ligands were next each other in the complex.²⁴⁴ Since

PHIP requires that H₂ add pairwise in nonequivalent proton sites, this unsymmetric isomer would be the only isomer exhibiting polarization in PHIP.²⁴⁴ For NMR techniques that are based on parahydrogen (*p*-H₂), see Section 13.6.

¹H-¹⁵N HMBC was also used to obtain ¹⁵N (spin 1/2) NMR shifts of Ta complexes with Ta-N bonds at the ¹⁵N natural abundance of 0.364%.²⁴⁰⁻²⁴³

DOSY studies of *cis*- and *trans*-[Ta(µ-OMe)Me(=NSiMe₃)[N(SiMe₃)₂]]₂ in equilibrium demonstrated that they exist as dimers in solution.²⁴⁵ For an overview of DOSY, see Section 13.2.

5. Group 6 (Cr, Mo and W)

For Cr, Mo and W, NMR of both the metals (⁵³Cr, ⁹⁵Mo, ¹⁸³W) and ligands have been reported. In addition to Reference 1, NMR of the three metals was reviewed in 1996.²⁴⁶ Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 7.

Table 7.26 Nuclear and NMR properties of 53Cr, 95Mo, 97Mo and 183W

Nuclide	Natural abun- dance (%) ^a	Spin	Relative receptivity		Gyromagnetic (407)	Quadrupole	<i>≡</i> (and frequency,	Reference
			D^{H} (¹ H = 1.00)	$D^{\rm C}$ (13C = 1.00)	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100 MHz, 2.3488 T)	sample
⁵³ Cr	9.501	3/2	8.63 x 10 ⁻⁵	0.507	-1.5152	-15.0	5.652496	K_2CrO_4 (aq) or $Cr(CO)_6$ $(\delta$ -1795 in THF^1)
⁹⁵ Mo	15.84	5/2	5.21 x 10 ⁻⁴	3.06	-1.751	-2.2	6.516926	Na ₂ MoO ₄
(⁹⁷ Mo) ^{c,d}	9.60	5/2	3.33 x 10 ⁻⁴	1.95	-1.788	25.5	6.653695	(aq) or Mo(CO) ₆ (δ -1856 in THF ¹)

¹⁸³ W	14.31	1/2	1.07 x 10 ⁻⁵	0.0631	1.1282403	-	4.166387	Na ₂ WO ₄ (aq) or W(CO) ₆ (δ - 3483 in	
								THF ¹)	

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

 MO_4^{2-} (aqueous solution, K⁺ or Na⁺ salt) in alkaline D_2O solution (pD 11) are references.¹ $M(CO)_6$ in THF solution are used as secondary standards, particularly in organometallic chemistry (Table 7).¹

The ratio of the chemical shift ranges for 183 W and 95 Mo is ca. 1.6, which relates empirically the δ values of both nuclides in isostructural compounds. Although the ratio has no theoretical support, it was used to predict, e.g., 183 W resonance regions of W compounds when 95 Mo shifts of their Mo analogs were known. 1

Isotropic NMR shielding constants were obtained using DFT with gauge-including-atomic-orbitals (GIAO) in a spin-free formalism for the metal nuclides in MO_4^{2-} and $M(CO)_6$ (M = Cr, Mo, W).²⁴⁷ Relativistic effects for NMR shielding constants were calculated using the zero-order-regular-approximation (ZORA) for relativistic effects.

5.1. Chromium complexes

The number of ⁵³Cr NMR data is small due to several factors.^{1,246} ⁵³Cr is a quadrupolar nuclide (Table 7), leading to NMR peak broadening in complexes of low symmetry. Its natural abundance and the overall receptivity are insufficient to offset a rather small magnetic moment

^b The data are from Reference ³².

^c We only found publications in 1990-2019 on solution ⁹⁵Mo NMR of inorganic compounds and did not find a paper on ⁹⁷Mo NMR in 1990-2019. However, ⁹⁷Mo properties are listed here for comparison. Additional discussions about this issue are given below.

^{d 97}Mo in parenthesis is considered to be the less favorable of the element for NMR.²⁶

resulting in a low Larmor frequency (5.653 MHz at 2.3488 T) which, in turn, leads to a low sensitivity.

Carbonate-containing capsule (NBuⁿ₄)₂L₂(CO₃) [L = tris(2-aminoethyl)amine-based 3-cyanophenyl-substituted tripodal urea (**25**), a urea-based anion receptor] dissolved in CH₂Cl₂ was found to extract chromate CrO_4^{2-} from water, forming (NBuⁿ₄)₂L₂(CrO₄) with ⁵³Cr shift at δ - 99.98 (vs. δ 0 for CrO_4^{2-} in water as reference).²⁴⁸ The chromate-containing capsule was structurally characterized by single-crystal X-ray diffraction and ¹H and ¹³C NMR.²⁴⁸

For ⁵³Cr and ¹⁴N NMR of Cr(CO)₅(CNBu^t) and Cr(CO)₄(CNBu^t)₂ in ambient acetone-*d*₆, pressurized liquid CO₂ or supercritical CO₂, see Section 12.1.²⁴⁹

 53 Cr shifts of CrO₄²⁻, Cr₂O₇²⁻, CrO₃X⁻, CrO₂X₂ (X = F⁻, Cl⁻), and Cr(CO)₅L (L = CO, PF₃, =CHNH₂, =CMeNMe₂) were computed by the DFT methods, and the computed shifts were compared with experimental values.²⁵⁰ Also, 53 Cr shifts were predicted for CrO₃, (6 -C₆H₆)₂Cr, (6 -C₆H₆)Cr(CO)₃, and, with reduced reliability, for Cr₂(6 -C₂CH)₄.

In NMR studies of α atoms of ligands, ¹⁷O NMR shifts of Cr diperoxo complexes were found to be between δ 726 and 818, which were more deshielded than those of other metal diperoxo complexes at δ 350-460. ¹³⁵ Along with the anomalous ¹⁷O shifts, the diperoxo Cr complexes show other features, including lower energy λ_{max} values for ligand-to-metal charge transfer (LMCT) transitions in UV-visible spectra, higher O-O bond vibrational frequencies, and shorter O-O bond lengths than the other diperoxo complexes studied. ¹³⁵ The ¹⁷O shift of Cr(IV)

oxo porphyrin complexes, such as Cr(TMP)(=O) (δ 1247 referenced to H_2O ; $H_2TMP =$ tetramesitylporphyrin) were studied.¹³⁷

Nitride complexes, including [N=Cr(NiPr₂)₂(PMe₂Ph)]⁺ and [N=Cr(NiPr₂)₂(PMe₃)]⁺ with several counter anions such as PF₆⁻ and BArF₂₀⁻, were studied via ¹⁴N NMR.²⁵¹ The linewidths in the ¹⁴N NMR spectra in several paramagnetic Cr(III) amine and diamine complexes such as [Cr(NH₃)₆]³⁺, [Cr(en)₃]³⁺, *cis*-[CrF₂(en)₂]⁺, *trans*-[CrF₂(en)₂]⁺ were investigated and compared with those of similar diamagnetic Co(III) complexes.²⁵² The peaks of the Cr complexes range from δ - 322.7 to -345.9.²⁵² The ¹¹B NMR signal for the borylene complex (OC)₅Cr=BSi(SiMe₃)₃ was found to be at δ 204.3 which was more deshielded than δ 92.3 in (OC)₅Cr=B=N(SiMe₃)₂.²⁵³

5.2. Molybdenum complexes

⁹⁵Mo NMR is preferred to ⁹⁷Mo NMR, even though the two nuclides have the same spin quantum number and resonate at very similar frequencies. This is because ⁹⁵Mo has a significantly higher natural abundance, smaller quadrupole moment, and a greater sensitivity, as listed in Table 7.

⁹⁵Mo NMR of inorganic compounds was extensively used in inorganic chemistry.^{1,246} In addition to a 1990 book chapter¹ and a comprehensive review covering the literature in 1985-1995, structural studies of polyoxometalates by ⁹⁵Mo and ¹⁷O NMR were reviewed in 2006.¹⁸² Thus, for polyoxometalates, the current review covers the literature since 2006 and, for other inorganic complexes, the literature since 1996 is surveyed.

 ^{95}Mo shifts cover the range of δ 4199 for quadruple-bonded $\text{MoII}_2(\mu\text{-O}_2\text{CCF}_3)_4(py)_2$ to δ - 2953 for (Cp₂MoVIH₃)Cl based on the publications that we found.

Analysis of ⁹⁵Mo shifts of eleven Mo^{VI} oxo and peroxo complexes with mono- (N) and poly-dentate (N,N, N,O, or N,N,N) ligands showed a correlation of electronic densities on the metal atoms with the ⁹⁵Mo shifts. The correlation was used to indicate whether a complex was hexa- or hepta-coordinated.²⁵⁵ ⁹⁵Mo NMR was employed, along with other spectroscopies and

DFT calculations, to study reactions of Na₂MoO₄ with 8-hydroxyquinoline-5-sulfonic acid [H(8-HQS) (20)] in water, forming one dimeric $[Mo_2O_4(8-HQS)_2(\mu-O)]^{2-}$ (δ 36) and two monomeric MoO₂(8-HQS)₂²⁻ (δ 88 and 109) complexes.²⁵⁶ Reactions of Na₂MoO₄ with 2-phospho-*D*-glyceric acid and 3-phospho-D-glyceric acid, gave one and four products containing 2-phospho-Dglycerate and 3-phospho-D-glycerate ligands, respectively.²⁵⁷ Multinuclear NMR and DFT studies were used to identify the complexes. ⁹⁵Mo shifts were in the ranges of δ 99 and -55. ¹⁷O shifts were in the ranges of δ 867-760 for terminal oxo ligands and δ 399-300 for bridging oxo ligands.²⁵⁷ ¹H, ¹³C, ¹⁴N, ¹⁷O and ⁹⁵Mo NMR showed that the complex of MoO₄²⁻ with triethanolamine in dmso or dmso-d₆ contained one free and two bound hydroxyethyl arms, and three arms of the ligand readily exchange. 258 The 95 Mo shift was found at δ 129.7, and the 14 N signal was at δ -323, while two ¹⁷O resonances at δ 876.4, 841.4 were assigned for the two terminal Mo=O ligands.²⁵⁸ ⁹⁵Mo shifts of several Mo(V) dithiocarbamate complexes such as $[MoO(S_2CNMe_2)]_2(\mu-O)(\mu^2-OC_2H_4S)$ (δ 329), in which both the S and O atoms of 2mercaptoethanolate ligand bridged the Mo atoms, were obtained.²⁵⁹ When the Me groups on the dithiocarbamate S_2CNMe_2 ligands were replaced by bulkier groups such as Ph (δ 345), the line width of the 95 Mo peak increased (270 Hz for Me; 470 Hz for Ph). 259 (Et₄N)₂[MoS(edt)](μ -S)₂ (δ 1465, edt = ethane-1,2-dithiolate) was used to react with 1 equiv of $M(PPh_3)_3^+$ (M = Cu, Ag) to give incomplete cubane-like clusters (Et₄N)[Mo₂(edt)₂M(PPh₃)(μ -S)₃(μ ₃-S)] (**26**, M = Cu, δ 1800; Ag, δ 1656).²⁶⁰ When 2 equiv of Cu(PPh₃)₃+ was used, the reaction yielded cubane-like $Mo_2(edt)_2Cu_2(PPh_3)_2(\mu_3-S)_4$ (27, δ 2002).²⁶⁰

$$\mathsf{Et}_4\mathsf{N} \qquad \mathsf{PPh}_3 \qquad \mathsf{PPh}_3 \qquad \mathsf{PPh}_3 \qquad \mathsf{Cu} \qquad \mathsf{PPh}_3 \qquad \mathsf{PPh}_$$

(26) (27)

 95 Mo shifts of octahedral Mo(II) halide clusters (Bu n ₄N)₂(Mo $_{6}$ X₁₄) (X = Cl $^{-}$, δ 2937; X = Br $_{7}$, δ 3203; X = I $^{-}$, δ 3256) were used to compare with those from quantum chemical calculations to study the influences of different factors on the quality of the calculated shifts. 261 95 Mo shifts of their mixed halide analogs (Bu n ₄N)₂[(Mo $_{6}$ X₈)Y₆] (X, Y = Cl $^{-}$, Br $^{-}$, I $^{-}$) were found to correlate with first- and second-order spin–orbit coupling constants (in the ranges of 620-870 and 50-99 cm $^{-1}$, respectively) of the clusters. 262

 95 Mo and 17 O NMR studies of polyoxomolybdate Mo $_7$ O $_{24}$ ⁶⁻ at pH 7-1 in 0.3-6 M HClO $_4$ showed that shifts of Mo atoms with terminal oxo ligands are in the δ ~20-34 range, while those of central Mo atoms with no terminal oxo ligands were δ ~200-210. 263 17 O shifts of terminal and bridging oxo ligands were δ 745-837 (terminal =O), 354-784 (μ-O), 293-339 (μ₃-O), and 121-122 (μ₄-O). 263

For the use of electron-electron double resonance (ELDOR)-detected NMR (EDNMR), hyperfine sub-level correlation (HYSCORE), and electron-nuclear double resonance (ENDOR) to study hyperfine interactions in polyoxometalate $PV_2Mo_{10}O_{40}^{6-}$ with one reduced V(IV) ion, ¹⁹⁸ see Section 13.3.

Organometallic Mo(IV) complex $[[(\eta^5-C_5H_4Me)_2Mo(\mu-H)_2]_2Ag]PF_6$ gave a very broad ^{95}Mo peak at δ 3953. 264 cis-Mo(CO)₄(bdmsa) [bdmsa = bis(2-dimethylstibanylbenzyl)methylamine, MeN(CH₂-o-SbMe₂-C₆H₄)₂] containing a chelating bis-stibine ligand was synthesized, giving a ^{95}Mo resonance at δ -1729. 265 ^{95}Mo and ^{77}Se NMR were used to characterize cis-Mo(CO)₄[o-(CH₂SeMe)₂-C₆H₄] with a chelating bis-seleno-ether ligand, giving resonances at ^{95}Mo δ -1393 and ^{77}Se δ 157.6. 266 Analogous complexes were also prepared and characterized. NMR studies of Mo(CO)₅L with a tellurophene ligand [L = 1,3-dihydro-benzo[c]tellurophene (**28**)] gave ^{95}Mo δ -1731 and ^{125}Te δ 418. 267 ^{95}Mo and ^{77}Se NMR were used to characterize di- and tri-substituted complexes cis-Mo(CO)₄L₂ (^{95}Mo δ -1550; ^{77}Se δ 468) and fac-Mo(CO)₃L₃ (^{95}Mo δ -1320; ^{77}Se δ

532),267

Studies of 95 Mo spin-lattice relaxation times T_1 for Mo(CO)₆ encapsulated in dried 13-Å Na-Y zeolite at 223-323 K showed that Mo(CO)₆ experienced significant rotational freedom in the zeolite supercages. 268 The activation energy for rotation was about 40(4) kJ mol⁻¹ and rotational correlation time, τ_c , at ambient temperature was approximately 3 orders of magnitude longer than that in solution.

Molecular topology was used to show that there was a positive correlation between experimental 95 Mo shifts in potassium oxothiomolybdenates [MoO₄ $^{2-}$ (δ 0), MoO₃S $^{2-}$ (δ 497), MoO₂S $_2^{2-}$ (δ 1066), MoOS $_3^{2-}$ (δ 1654), MoS $_4^{2-}$ (δ 2258)] and bond-parameterized topological indexes. 269 Randic earlier developed the Randic connectivity indices to characterize molecular branching of, e.g., hydrocarbons. 270 Extended Randic index developed later by Zhang and Xin was used for inorganic compounds, and expanded further here by Li and You to correlate with the 95 Mo shifts. 271 Semi-empirical, CNDO and *ab initio* MO methods were used to calculate 95 Mo shifts of the oxothiomolybdenates. 272 The work showed that shift was mainly determined by the increasing d,p-orbital electron populations on the Mo atom from the softer S atom and better overlap between the 3s,3p orbitals of the S atoms with the Mo valence orbitals. Large electron populations increased the paramagnetic contribution to the 95 Mo shift. 272

In NMR studies of α atoms of ligands, the peroxide ^{17}O shifts of monoperoxyo Mo complexes were found to be at δ 487-536. $^{135-136}$ ^{17}O shifts of the diperoxyo Mo(VI) complexes were more shielded at δ 412-468 than those of the monoperoxo complexes. $^{135-136}$ Other ^{17}O studies were performed on Mo complexes derived from desferrioxamine B, 273 acetohydroxamic acid, 273 and hydroxypyridinonate systems. 274

(Bu^tO)₃Mo≡¹⁵N was synthesized via the heated reaction of MeC≡¹⁵N with (Bu^tO)₃Mo≡N, which was monitored via ¹⁵N NMR. The ¹⁵N signal for the (Bu^tO)₃Mo≡¹⁵N was found at δ 828.8.²⁷⁵ When (Bu^tO)₃Mo≡N reacted with its W(VI) analog (Bu^tO)₃W≡¹⁵N, both (Bu^tO)₃Mo≡¹⁵N and (Bu^tO)₃W≡¹⁵N were found via ¹⁵N NMR,²⁷⁵⁻²⁷⁶ indicating a rapid metathesis process. VT ¹H,

¹⁵N, and 2-D ¹H-¹H ROESY (ROESY = Rotating Frame Overhauser Effect Spectroscopy) spectra indicated a rapid exchange of the proton on one N atom and the hydride ligand on $[CpMo(H)(CO)(P^{R}_{2}N^{R'}_{2}H)](BAr^{F}_{4})$ complexes (**29**, $P^{R}_{2}N^{R'}_{2}$ = 1,5-diaza-3,7-diphosphacyclooctane diphosphine with R groups on N and P atoms; R = Ph, Bu^t, R' = Ph, Bu^t, CH₂Ph).²⁷⁷ For additional discussion of ROESY, see Section 13.1.

5.3. Tungsten complexes

¹⁸³W is a spin 1/2 nuclide with 14.31% natural abundance. However, both its gyromagnetic ratio and sensitivity (relative to ¹³C) are low. In addition, there are technical difficulties in ¹⁸³W NMR spectroscopy, including relatively slow relaxation requiring long delays between NMR pulses for data collection and low NMR frequency near the lower limit of many commercial instruments. Thus, ¹⁸³W NMR studies had been limited for several years even though its chemical shift range is >11,000 ppm.^{69,246}

¹⁸³W NMR of inorganic compounds reported before 1996 was reviewed.²⁴⁶ Thus, the current review focuses on the publications since then.

Polyoxometalates were a focus in the studies using 183 W NMR. As discussed in the section on vanadium complexes, 51 V, 183 W and 17 O NMR was used to characterize the mixtures of tungstovanadates from the reaction of NaVO₃ with Na₂WO₄, such as cis-W₄V₂O₁₉⁴⁻ (183 W δ 69.0) and WV₉O₂₈⁵⁻ (183 W δ 74.5). 192 17 O NMR shifts in the range of δ 1191 to -68.2 were assigned to different O ligands in the complexes. For α -H₂W₁₁VO₄₀⁷⁻, six 183 W resonances,

centered around δ -123, were observed. ¹⁹² For Preyssler heteropolyoxoanions Mⁿ⁺P₅W₃₀O₁₁₀n-15 $(M^{n+} = Na^+, Ca^{2+}, Sr^{2+}, Y^{3+}, La^{3+})$ and Th^{4+} , their ¹⁸³W NMR spectra (shifts in the range of δ -196 to -291) were used to identify the atomic origin of the LUMO states, which were composed primarily of orbitals from the ring of five W atoms near the Mⁿ⁺ ion.²⁷⁸ Reaction of H₃PW₁₂O₄₀ with K₂CrO₄ led to the formation of K₁₃(KP₂W₂₀O₇₂) which was characterized by ¹⁸³W NMR and other spectroscopies.²⁷⁹ The reaction of Na₁₀(α-SiW₉O₃₄) with Ce⁴⁺ and Hf⁴⁺ in CH₃COONa buffer solution leads to the formation of sandwich polyoxometalates Ce₄(µ₃-O)₂(SiW₉O₃₄)₂(CH₃COO)₂¹⁰⁻ and Hf₃(µ-OH)₃(SiW₉O₃₄)₂¹¹⁻, respectively.²⁸⁰ The compounds with a polynuclear cluster fragment stabilized by two α-SiW₉O₃₄¹⁰⁻ polyanions were characterized by ¹⁸³W NMR, giving several resonances (δ -147.9 to -180.2) for the former and two resonances (δ -145 and -175) for the latter. ²⁹Si NMR of the two compounds showed one sharp resonance at δ -84 and -85, respectively, consistent with two equivalent SiW₉O₃₄¹⁰ units in the molecules.²⁸⁰ $(Et_2NH_2)_8[\alpha-PW_{11}O_{39}M(\mu-OH)(H_2O)]_2$ (M = Zr, Hf), containing dinuclear Zr and Hf fragments sandwiched between 2 mono-lacunary α-Keggin polyoxometalates, were prepared and characterized by ¹⁸³W and ³¹P NMR.²⁸¹ The ¹⁸³W spectra showed six resonances for each compound in the range of δ -107.6 to -155.5 in aqueous solution.²⁸¹ Equilibrium of the proton cryptate polyoxometalate, α -H₂W₁₂O₄₀⁶⁻ + H⁺ \rightleftharpoons H₃W₁₂O₄₀⁵⁻ (as Buⁿ₄N⁺ salt) in CD₃CN was characterized by ¹H and ¹⁸³W NMR and other techniques. ²⁸² The studies show that, in nonagueous media, the internal cryptand cavity of α -H₂W₁₂O₄₀6- (¹H δ 6.01; ¹⁸³W δ -99) reversibly accommodated only one H⁺ ion to yield $H_3W_{12}O_{40}^{5-}$ (¹H δ 6.81; ¹⁸³W δ -88). Speciation and equilibria during base decomposition of α -PW₁₂O₄₀³⁻ (¹⁸³W δ -96.7) were probed using ³¹P and ^{183}W NMR at pH 0.7-13.5. 283 ^{183}W resonances of chiral polyoxotungstats α -P₂W₁₇O₆₁¹⁰⁻ (17 peaks each in the range of δ -108.5 to -226.1) was assigned to the W atoms in the clusters using selective ³¹P-¹⁸³W decoupling and ¹⁸³W-¹⁸³W COSY NMR.²⁸⁴

¹⁸³W NMR was used, along with other spectroscopies and DFT calculations, to study reactions of Na₂WO₄ with 8-hydroxyquinoline-5-sulfonic acid [H(8-HQS) (**20**)] in water, forming

one dimeric $[W_2O_4(8-HQS)_2(\mu-O)]^{2-}$ (δ -74.5) and two monomeric $WO_2(8-HQS)_2^{2-}$ (δ 20.7 and 63.3) complexes. 256 Reactions of Na₂WO₄ with 3-phospho-D-glyceric acid, giving five products, ²⁵⁷ which were identified by multinuclear NMR and DFT studies. ²⁵⁷ ¹⁸³W shifts were in the ranges of δ 48.0 and -241.8. ¹⁷O shifts were in the ranges of δ 647-526 for terminal oxo ligands and δ 342 for bridging oxo ligands.²⁵⁷ The ¹⁷O shifts of the tungsten 3-phospho-Dglycerate complexes (δ 554, 526 for terminal W=17O; 342 for bridging W-17O-W)257 were more shielded than the Mo analogs (δ 867, 842, 833 for terminal Mo=¹⁷O; 381 for bridging Mo-¹⁷O-Mo),²⁵⁷ which followed a trend for multiple-bonded ligands.²⁸⁵ Reaction of peroxotungstates, prepared from H₂WO₄ and H₂O₂, with H₂SeO₄ gave Se-containing dinuclear complex, $(Bu^{n_4}N)_2[(\mu-SeO_4)W_2O_2(O_2)_4]$, which was characterized by ⁷⁷Se (δ 1046) and ¹⁸³W (δ -569.2) NMR and other techniques.²⁸⁶ This complex was a catalyst for the epoxidation of homoallylic and allylic alcohols with H₂O₂. (Buⁿ₄N)₂WO₄ catalyzed fixation of CO₂ with *o*-phenylenediamine into 2-benzimidazolone.²⁸⁷ Reaction of (Buⁿ₄N)₂WO₄ with o-phenylenediamine gave an adduct through hydrogen bonds between the N-H groups and the oxo ligands, shifting ¹⁸³W resonance in WO₄²⁻ to δ 16.4 which is more shielded by 14.7 ppm.²⁸⁷ Reaction of (Buⁿ₄N)₂WO₄ with CO₂ gave $(Bu^{n_4}N)_2[WO_4(CO_2)]$ (183W δ 57.8) and $(Bu^{n_4}N)_2[WO_4(CO_2)_2]$ (183W δ 22.6), in which the oxo ligands were believed to bind to the C atom in CO₂.²⁸⁷

¹⁸³W NMR was also used to characterize organometallic complexes. ¹⁸³W-³¹P HMQC spectra were used to obtain indirectly ¹⁸³W shifts of *cis* and *trans* isomers of diphosphines $W(CO)_4(PPh_3)(PR_3)$ [$R_3 = Bu^n_3$, Me_3 , Me_2Ph , $MePh_2$, Ph_3 , (4-OMe-C₆H₄)₃, (4-Me-C₆H₄)₃, (4-F-C₆H₄)₃] and phosphine phosphites $W(CO)_4(PPh_3)[P(OR)_3]$ [$R_3 = (OMe)_3$, (OEt)₃, (OPh)₃]. ²⁸⁸ ¹⁸³W shifts of *trans*-W(CO)₄(PPh₃)(PCy₃) (δ 797) and *trans*-W(CO)₄(PPh₃)[P(NMe₂)₃] (δ 824) were similarly measured. The ¹⁸³W shift range of the complexes was δ 964 for *cis*-W(CO)₄(PPh₃)[P(4-F-C₆H₄)₃] to 722 for *trans*-W(CO)₄(PPh₃)[P(OMe)₃] with, e.g., δ 842 and 849 for *trans*-W(CO)₄(PPh₃)(PMe₃) and *cis*-W(CO)₄(PPh₃)(PMe₃), respectively. ²⁸⁸ How the shifts were correlated with Tolman electronic factors and cone angles of the PR₃ and P(OR)₃ ligands was

discussed.²⁸⁸ Spectroscopic, structural and computational studies of the starting complex (**30**) in **Figure 2** indicated that it was a heterocyclic ylide complex (δ_W -3303).²⁸⁹ The product of the reaction (**31**) (δ_W -3221) may be formally considered to be a phosphanylcarbene complex.

Figure 2. Reaction of 30 with (Me₃O)BF₄ to give 31.

Calculations of 183 W shifts were reported in several publications, including the use of DFT methods for polyoxometalates 290 and to optimize structures of the four isomers of 51 W $_{11}$ O $_{39}$ 8-, calculating their 183 W NMR spectra, which were compared with experimental shifts. 291 Relativistic DFT methods were used calculate 183 W shifts of polyoxometalates, 292 polyoxotungstates, 293 counterion effects on the 183 W NMR spectra of the lacunary Keggin polyoxotungstate PW $_{11}$ O $_{39}$ 7-, 294 and 183 W and 17 O NMR shifts for large polyoxotungstates such as 183 W and 183 W and 183 W are employed to analyze 183 W and 183 O NMR shifts in polyoxometalates. 296

In NMR studies of α atoms of ligands, the ¹⁷O shifts of the peroxide ligand in diperoxyo W complexes were found at δ 346-400.¹³⁵⁻¹³⁶ Several peroxotungstate species, such as $[WO(OH)(O_2)_2]^-$ and $W_4O_{12}(O_2)_2]^{4-}$, prepared from the reaction of $Na_2(WO_4)$ with H_2O_2 , were identified by ¹⁷O NMR using the ratio of the shift of the O atom in the W anion to the shift of the O atom in the known Mo anion.²⁹⁷ This ratio was consistently around 79%. Many of these signals in the NMR were pH dependent.²⁹⁷

(Bu^tO)₃W≡¹⁵N was synthesized via the reaction of MeC≡¹⁵N with (Bu^tO)₃W≡N, which

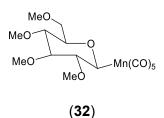
was monitored via ¹⁵N NMR. The ¹⁵N signal for the (Bu^tO)₃W≡¹⁵N was at δ 791.8.²⁷⁵ Several metathesis reactions of organic and inorganic complexes containing the nitride ≡N group were carried out with (Bu^tO)₃W≡¹⁵N in order to study the degree of ¹⁵N scrambling.²⁷⁵⁻²⁷⁶

Several techniques such as 15 N, 13 C INEPT, and 19 F NMR were used to analyze WOF₄(aph)⁻ (aph = acetone phenylhydrazonate, Me₂C=N-(Ph)N⁻).²⁹⁸ It was found that the aph acted as an N,N donor ligand, and stereoisomeric interconversion occurred in WOF₄(aph)⁻ at elevated temperatures with activation parameters of ΔH^{\pm} = 78.5 kJ/mol, ΔS^{\pm} = 56.78 J/mol·K, ΔG^{\pm}_{313} = 60.71 kJ/mol.²⁹⁸ ¹¹⁹Sn NMR was used to monitor the conversion of (μ -Cl)₃W₂(SnCl₃)(CO) to (μ -Cl)₃[W(SnCl₃)(CO)₃]₂⁻ over time in CDCl₃ or CD₂Cl₂ solution.²⁹⁹

6. Group 7 (Mn, Tc and Re)

For the three elements, NMR of both the metals (⁵⁵Mn, ⁹⁹Tc, ¹⁸⁷Re) and ligands have been reported. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 8. The receptivities (relative to ¹³C) of the nuclides are fairly large, and their resonance frequencies (with ¹H = 100 MHz) are relatively high. However, all are quadrupole nuclides with modest to large quadrupole moments. Thus, line widths sometimes lead to sensitivity losses.

Table 8.26 Nuclear and NMR properties of 55Mn, 99Tc and 187Re


	Natural abun- dance (%) ^a	oun- nce	Relative receptivity		Gyromagnetic	Quadrupole	<i>≣</i> (and frequency,	Reference
Nuclide			D ^H	D ^c	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100 MHz,	sample
			$(^{1}H = 1.00)$	$(^{13}C = 1.00)$			2.3488 T)	
⁵⁵ Mn	100	5/2	0.179	1.05 x 10 ³	6.6452546	33.0	24.789218	KMnO ₄ (aq)
⁹⁹ Tc	- (β	9/2	-	2134 ¹	6.046	-12.9	22.508326	NH ₄ TcO ₄

	decay)							(aq)
(¹⁸⁵ Re) ^{b,c}	37.40	5/2	5.19 × 10 ⁻²	305	6.1057	218.0	22.524600	
¹⁸⁷ Re ^b	62.60	5/2	8.95 × 10 ⁻²	526	6.1682	207.0	22.751600	KReO ₄ (aq)

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data. ²⁵

6.1. Manganese complexes

Publications using 55 Mn NMR that we found were mostly on manganese carbonyl derivatives, $^{265-267,300-313}$ many of which were published in the 1990s and early 2000s. $^{267,300-313}$ Selected complexes are discussed here, and their 55 Mn shifts may be compared with δ -2353 in Mn₂(CO)₁₀. 1,303 *C*-Glycosyl compounds function as nucleoside surrogates and they served as biochemical probes. 311 RMn(CO)₅ (e.g., R = glycosyl) were studied as starting materials to make carbonyl derivatives through migratory insertion. 55 Mn NMR shifts of methylether derivatives of, e.g., β -glucosyl-Mn(CO)₅ (**32**, δ -2059) were found to be in a narrow range (±10 ppm), typical for alkyl-Mn(CO)₅ complexes. 311

 $(4-X-C_6H_4)_3$ Sn-Mn(CO)₅ (X = H, Me, OMe, SMe, F, CI) were characterized by ⁵⁵Mn, ¹¹⁹Sn and ¹³C NMR, giving, e.g., ⁵⁵Mn δ -2502 and ¹¹⁹Sn δ -11.93 for Ph₃Sn-Mn(CO)₅ (X = H).³¹³ The ⁵⁵Mn and ¹¹⁹Sn shift ranges are δ -2479 to -2526 and δ 1.13 to -11.93, respectively, for the complexes.³¹³ [(OC)₅Mn]₃(μ ₃-E) (E = As, Sb, Bi), containing one E atom bonded to three Mn(CO)₅ groups in trigonal pyramid structures, were characterized by ⁵⁵Mn NMR.³⁰² The shifts

^b We did not find a publication in 1990-2019 on the ¹⁸⁵Re or ¹⁸⁷Re NMR of a metal complex.

^c ¹⁸⁵Re in parenthesis is considered to be the less favorable of the element for NMR.²⁶

(δ) of the three pnictogen compounds, E = As (-2020), Sb (-2230), Bi (-2320), show an increase of shielding on the Mn atom in the order E = As, Sb, Bi. 302 Stibine complexes Mn₂(CO)₉(SbPh₃) and (Ph₃Sb)(OC)₄Mn-Mn(CO)₄(SbPh₃) [with the SbPh₃ ligand(s) in the axial position(s)] show two 55 Mn resonances for the former (δ -2389 and -2394) and one resonance (δ -2070) for the latter. 304 Distibine complexes Mn₂(CO)₈(μ-R₂SbCH₂SbR₂) (R = Me, Ph) give 55 Mn shifts at δ -2317 and -2195, respectively. 303 55 Mn resonance for Mn(CO)₃[MeN(CH₂-o-SbMe₂-C₆H₄)₂](OTf) containing a chelating bis-stibine ligand is δ -850. 265 Multinuclear NMR, including 55 Mn, was used to study a series of Mn(I) phosphine, arsine, and stibine carbonyl halide complexes, such as fac-MnX(CO)₃(Ph₂PCH₂CH₂PPh₂) (δ X = Cl⁻, -916; Br⁻, -1005), showing that the less electronegative Br ligand led to more shielding on the Mn(I) ion. 309 55 Mn shifts of the stibine analogs, such as MnX(CO)₃(Ph₂SbCH₂CH₂CH₂SbPh₂) (δ X = Cl⁻, -880; Br⁻, -1006) and As compounds, such as MnX(CO)₃(Ph₂AsCH₂CH₂CH₂AsPh₂) (δ X = Cl⁻, -932; Br⁻, -1046), were also reported. 309

⁵⁵Mn and ⁷⁷Se NMR were used to characterize Mn(CO)₃Cl[o-(CH₂SeMe)₂-C₆H₄] with a chelating bis-selenoether ligand, giving ⁵⁵Mn and ⁷⁷Se resonances (Table 9) for different invertomers of the complex.²⁶⁶ Invertomers are isomers interconverted by inversion of an atom with a lone pair of electrons. NMR studies of the di-tellurophene complex *fac*-MnCl(CO)₃L₂ [L = 1,3-dihydro-benzo[c]tellurophene (**28**)] showed ⁵⁵Mn and ¹²⁵Te resonances (Table 9).²⁶⁷ The NMR shifts of telluroether complexes *fac*-MnCl(CO)₃(TeMe₂)₂ and its *mer,trans* isomer were studied (Table 9),³⁰⁷ and compared with thioether and selenoether analogs MnCl(CO)₃(EMe₂)₂ (E = S, Se, Table 9),³⁰⁷ showing increasing shielding of the Mn(I) ion in the order S, Se and Te. This order is consistent with the electronegativity decrease from S, Se to Te, thus placing most electron density on the Mn(I) ion in the Te compound.

Table 9. NMR chemical shifts of selected Mn carbonyl complexes with thio-, seleno- or telluroether ligands

Complexes	⁵⁵ Mn shifts (δ)	⁷⁷ Se shifts (δ)	¹²⁵ Te shifts (δ)
MnCl(CO) ₃ (SMe ₂) ₂ ³⁰⁷	-57	-	-
MnCl(CO) ₃ (SeMe ₂) ₂ ³⁰⁷	-205	66	-
fac-MnCl(CO) ₃ (TeMe ₂) ₂ ³⁰⁷	-637	-	161
mer,trans-MnCl(CO) ₃ (TeMe ₂) ₂ ³⁰⁷	-920	-	271
Mn(CO) ₃ Cl[o-(CH ₂ SeMe) ₂ -C ₆ H ₄] ²⁶⁶	40 77 449	147.8, 124.1,	
(different invertomers)	-42, -77, -113	122.5, 120.5	-
fac-MnCl(CO) ₃ L ₂ [L = (28)] ²⁶⁷	-600	-	472

For Mn organometallic complexes without CO ligand, 55 Mn NMR of CpMn(η^6 -C $_6$ H $_6$) and derivatives with substituents on either the Cp $^-$ or benzene ligand as well as on both ligands was studied, showing, e.g., δ -180 for CpMn(η^6 -C $_6$ H $_6$). 314

Calculations and electronic analyses of NMR chemical shifts for $Mn(CO)_5X$ ($X = F^-$, Cl^- , Br^- , I^- , and Me^-) showed that the origin of the chemical shifts was the paramagnetic effects from d-d transitions on the Mn ions.³¹⁵

In NMR studies of α atoms of ligands, reaction dynamics of water exchange on Mn(II) polyoxometalate $[Mn_4(H_2O)_2(P_2W_{15}O_{56})_2]^{16-}$ has been determined as a function of pH using VT ^{17}O NMR. 316 The NMR signals were compared with monomeric $[Mn(H_2O)_6]^{2+}$. While the water exchange rate of $[Mn(H_2O)_6]^{2+}$ was affected by pH in the 3.2-6.0 range, the rate of exchange of the polyoxometalate ion varied greatly. 316 Water exchange dynamics in Mn porphyrin 317 and salen 318 complexes was also studied via ^{17}O NMR.

¹⁵N-enriched guanine (G) was incorporated into self-complementary oligodeoxynucleotides containing the GG doublet and GGG triplet in order to study the reactivity differences in the G runs.³¹⁹ The line broadening in the ¹⁵N NMR showed that site-selective binding of Mn(II) and Co(II) ions to G runs was correlated with with HOMO distribution obtained

by MO calculations.³¹⁹ In other words, the binding of electron-deficient metal ions to the N atom of electron-rich G is likely a HOMO-controlled process.³¹⁹

Several silane complexes and σ -borane Mn complexes, which were studied by ²⁹Si and ¹¹B NMR, respectively, were discussed in a 2008 review. ¹³⁹

6.2. Technetium complexes

Technetium is the only transition metal in the 3d, 4d and 5d series (and the lightest element in the periodic table) whose isotopes are all radioactive. ⁹⁹Tc (used in NMR) decays to stable ⁹⁹Ru as a weak beta emitter with a half-life of 2.111 x 10⁵ years.³²⁰ It is the most significant long-lived fission product of U fission.

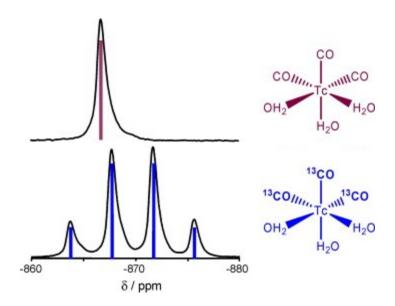
Tc chemistry was inspired to a large degree by applications of the short-lived metastable nuclear isomer ^{99m}Tc in molecular imaging and radiopharmacy.³²⁰ ^{99m}Tc decays by isomeric transition to ⁹⁹Tc with a half-life of only 6 h, making it difficult to characterize ^{99m}Tc complexes directly. Thus, the long-lived ⁹⁹Tc analogues are often used. Binding of TcO₄⁻ to uranyl ion was also studied, as TcO₄⁻ was co-extracted with UO₂²⁺, Pu^{IV} and Zr^{IV} from irradiated nuclear fuel dissolved in HNO₃.³²¹⁻³²²

Solution ⁹⁹Tc NMR of inorganic compounds reported up to 2004 was reviewed.³²³ A figure showing the correlation between ⁹⁹Tc chemical shifts and Tc oxidation states in reported complexes was given in a 2017 paper.³²⁴ We focus on the publications since 2004 in the current review.

Speciation of Tc(VII) pertechnetate in concentrated HClO₄ and HNO₃ was studied by several techniques, including 99 Tc NMR, showing that pertechnetic acid, HTcO₄, formed in >8 M HClO₄ while in concentrated HNO₃, TcO₄- was still the predominant species. 325 In 12 M H₂SO₄, experiments and DFT calculations showed the formation of yellow TcO₃(OH)(H₂O)₂ (δ 300). 326 When HTcO₄ solution concentrated, likely products with different colors, such as H₅TcO₆, HTcO₄·H₂O, and Tc₂O₅, were probed by 99 Tc NMR among others. 327 Reaction of HTcO₄ with

MeOH and 12 M H_2SO_4 studied by spectroscopies (e.g., ^{99}Tc NMR) and *ab initio* calculations showed the formation of reduced Tc(V) oxo sulfate species that lack ^{99}Tc NMR signals in the δ 0-800 region. 328

The 99 Tc NMR spectrum of the aqueous pertechnetate ion with natural abundance of 17 O (0.038%, spin 5/2) and 18 O (0.205%, spin 0) isotopes 25 was sensitive to the O isotopes and temperature of the solution. 329 Since 17 O and 18 O atoms have one and two more neutrons, respectively, than an 16 O atom (99.757% natural abundance, spin 0), the 99 Tc ion in 16 Tc(16 O)3(17 O)⁻ and Tc(16 O)3(18 O)⁻ was more shielded than that in Tc(16 O)4⁻. This is a result of the isotope effects in nuclear shielding. 330 Since the Ta= 17 O and Ta= 18 O bonds with the heavier O isotopes are the shorter than the Ta= 16 O bond, the shorter bonds in the heavier isotopomers lead to larger shielding of the 99 Tc nuclei and thus isotope shifts of the 99 Tc resonance to become more shielded. The shift of the Tc(16 O)3(18 O)⁻ resonance [5 Tc(16 O)3(18 O)⁻ - 5 Tc(16 O)4⁻ = -0.428 ppm] is well resolved from the peak of Tc(16 O)4⁻ at 10 °C. 329 Coupling by the 17 O atom in Tc(16 O)3(17 O)⁻ gave a sextet with the 99 Tc resonance (extracted by averaging the six lines) showing an isotope shift of Tc(16 O)3(17 O)⁻ [5 Tc(16 O)3(17 O)⁻ - 5 Tc(16 O)4⁻ = -0.241 ppm] at 10 °C. 329 Isotopomers with more 18 O atoms, such as Tc(16 O)2(18 O)2⁻, Tc(16 O)(18 O)3⁻ and Tc(18 O)4⁻, showed additional isotope shifts to be more shielded. 331


TcO₄⁻ ions coordinated directly to actinides in the presence of O=PR₃ ligands, yielding $[O_3Tc(\mu-O)]_2UO_2(O=PPh_3)_3$ and $[O_3Tc(\mu-O)]_4Th(O=PBu^n_3)_4$, both giving broad ⁹⁹Tc resonances.³²² When chelating bis(diphenylphosphino)methane dioxide ligand $[Ph_2(O=)PCH_2P(=O)Ph_2]$ was used, a similar reaction yielded $[O_3Tc(\mu-O)UO_2[Ph_2(O=)PCH_2P(=O)Ph_2]_2](TcO_4)$ with two ⁹⁹Tc resonances (δ 2.0 and 16.9 for coordinated and uncoordinated TcO_4 -, respectively.³²¹

 99 Tc shifts of Ph $_3$ EOTcO $_3$ (E = C, δ 67.3; Si, δ 68.3; Ge, δ 25.2; Pb, δ 7.0) and (THF)Ph $_3$ SnOTcO $_3$ (δ -5.1) and related Tc(VII) complexes were reported. 332 99 Tc NMR was used

to characterize Ta(VII) complexes with the TcO_3^+ core and multi-dentate ligands such as $TcO_3(bpza)$ [δ 220; Hbpza = di-1H-pyrazol-1-ylacetic acid (33)] with the N,O,N ligand.³³³

Organometallic Tc complexes characterized by 99Tc NMR are mainly Tc(I) carbonyl compounds, especially those with fac-Tc(CO)₃+ fragment for its high stability.³³⁴ Kinetics of water exchange processes in fac-Tc(CO)₃(H₂O)₃+ was investigated by ¹⁷O (δ -52) and ⁹⁹Tc (δ -868, $^{1}J_{\text{Tc-O}}$ = 80 Hz) NMR. ³³⁴ Conversion of *fac*-Tc(CO)₃(H₂O)₃ in 10 M NaOH and 5 M NaOH caustic solution was studied by ⁹⁹Tc NMR, showing that *fac*-Tc(CO)₃(H₂O)₃+ (δ -869) was deprotonated stepwise to form fac-Tc(CO)₃(H₂O)₂(OH) (δ -1069), fac-Tc(CO)₃(H₂O)(OH)₂-(δ -1146), and fac- $Tc(CO)_3(OH)_3^{2-}$ (δ -1204) based on DFT calculations, as the Tc(I) ions were increasingly shielded with deprotonation.³³⁵ Theoretical modeling of ⁹⁹Tc NMR shifts was developed based on DFT calculations and the calculated shifts were compared with the experimental values of fac-Tc(CO)₃(H₂O)₃⁺ and fac-Tc(CO)₃(H₂O)_{3-n}(OH)_n(n-1)-.335 When fac-Tc(CO)₃(H₂O)₃⁺ was exposed to ¹³CO (49 atm) in water in a sapphire NMR tube (⁹⁹Tc δ -866.7), stepwise replacement of CO ligands to form fac-Tc(13CO)₃(H₂O)₃⁺ at 4 °C in several days was probed by 99 Tc NMR. $^{336-337}$ The 99 Tc NMR spectrum of fac-Tc(13 CO) $_3$ (H $_2$ O) $_3$ * (**Figure 3**) 337 showed an isotope shift as well as the coupling by three 13 CO ligands, giving a 1:3:3:1 quartet at δ -869.7 $(^{1}J_{Tc-C} = 354 \text{ Hz}).^{336}$ In three weeks at room temperature, substitution of water ligands by ^{13}CO , yielding fac-Tc(13 CO)₆+ (δ -1961 as a septet, $^{1}J_{Tc-C}$ = 261 Hz), was used to follow the reaction. $^{336-}$ ³³⁷ Since ^{99m}Tc was a precursor to radiopharmaceutical agents, ³³⁴ the kinetic properties, which were important to the preparation, uptake and clearance of the 99mTc agents, were reviewed in

2008.³³⁷ Properties of fac-Tc(CO)₃(OH₂)_{3-n}(OH)_n¹⁻ⁿ (n = 0-3) in aqueous solutions with high ionic strength, including ⁹⁹Tc NMR, were studied to help identify and treat Tc speciation in nuclear waste.³³⁸

Figure 3. ⁹⁹Tc NMR spectra of fac-Tc(CO)₃(H₂O)₃⁺ and fac-Tc(¹³CO)₃(H₂O)₃⁺ under ¹³CO (49 atm), demonstrating ¹³C-isotope shifts and the ¹J_{Tc-C} coupling. ³³⁷

 $Tc(CO)_5X$ (X = Cl⁻, Br⁻, l⁻) gave ⁹⁹Tc resonances at δ -1745, -1802 and -2034, respectively, showing the most shielded Tc(I) ion in $Tc(CO)_5I$ with the least electronegative iodine in the halide series.³³⁹ The perchlorate analog $Tc(CO)_5(CIO_4)$ containing a Tc-O bond showed the ⁹⁹Tc resonance at δ -1353.³⁴⁰

Nitrosyl complex (NEt₄)₂[Tc(CO)₂(NO)Cl₃] (δ -460) and a dimer [TcCl(μ -Cl)(CO)₂(NO)]₂ (δ -389) were prepared and characterized by ⁹⁹Tc NMR among others.³⁴¹ ⁹⁹Tc resonances of several cyclopentadienyl nitrosyl complexes CpTc(NO)(PPh₃)X (X = OTf, δ 242; O₂CCF₃-, δ 19; SCN-, -820; I-, -668; I₃-, -679) were measured.³⁴² ⁹⁹Tc shifts of other Tc(I) complexes, such as Cs[Tc(NO)(PPh₃)₂(OOCCF₃)₂F] (δ 952) and [Tc(NO)(dppe)₂(OOCCF₃)](PF₆) (δ -627; dppe = Ph₂PCH₂CH₂PPh₂), as well as those at Tc(III), Ta(V) and Tc(VII) oxidation states were

summarized in a figure in Reference 324.

⁹⁹Tc shifts of several Tc(VII), Tc(I) and Tc(0) species were computed by DFT methods.³⁴³ Complexation to aqueous uranyl, UO₂²⁺, was predicted to only slightly affect the ⁹⁹Tc shift of TcO₄⁻.³⁴³ DFT calculations were also performed to obtain ⁹⁹Tc NMR parameters for Tc(CO)₃(N,N,O) (**34**) containing a tridentate N,N,O ligand, as its ^{99m}Tc isomer is a potential breast cancer radiopharmaceutical.³⁴⁴

For the NMR studies of α atoms of ligands, see the previous discussion in this section on the use of ^{17}O and ^{13}C NMR of Tc complexes.

6.3. Rhenium complexes

We did not find a publication in 1990-2019 on either ¹⁸⁵Re or ¹⁸⁷Re NMR of metal complexes, as indicated in Table 8. Very few solution ¹⁸⁵Re or ¹⁸⁷Re NMR spectra have been reported. Thus, the following reports before 1990 are briefly discussed.

Solution NMR spectrum of NaReO₄, showing both 185 Re and 187 Re resonances, was reported in 1970, 345 1986, 346 and 1987. 347 In 1981, 185,187 Re resonance of the Re(I) complex [Re(CO)₆]CI·HCI in THF at 295 K was found to be δ -3400 relative to aqueous NaReO₄. 348 185,187 Re resonances of (Ph₄P)(ReO₄) in HCONMe₂/toluene (δ ~0) and (Et₄N)(ReS₄) in MeCN/CH₂CI₂/Me₂S=O at 305 K [δ (185 Re/ 187 Re) 3200/3435] were reported in 1986. 346

In NMR studies of α atoms of ligands, the diperoxo complex ReO(O₂)₂Me(H₂O) was synthesized and characterized by ¹⁷O NMR and X-ray crystallography. ^{135,349} The ¹⁷O shifts of the

peroxide ligands were found to be at δ 363 and 422.¹³⁵ Several silane complexes and σ -borane Mn complexes, which were studied by ²⁹Si and ¹¹B NMR, were discussed in a 2008 review.¹³⁹ The σ -borane Mn complexes were compared with a σ -borane Re analogue.¹³⁹

In the studies of Re(η^5 -C₅H₄Prⁱ)(CO)(PF₃)Xe by several NMR spectroscopies including 19 F- 129 Xe HMQC and 19 F- 31 P HMQC, 350 the Xe chemical shift was determined to be about δ - 6179 with $^2J_{Xe-P}$ = 41.8 Hz, and $^3J_{Xe-F}$ = 5.1 at 163 K. 350 ¹⁵N NMR was conducted after the addition of Lewis acids and H-bond donor molecules, such as BArF₄ or C₆H₅OH, to 15 N-labeled *trans*-Re(N₂)Br(depe)₂ [depe = 1,2-bis-(diethylphosphino)ethane]. The additions of these acids and donors caused ashift in the 15 N NMR resonances to be more shielded. For example, upon addition of BArF₄, one of the peaks shifted from δ -61.3 to -173.3 and the other from δ -91.1 to -93.8. 351

Organorhenium (VII) oxides complexes with general formulas ReO_3R or ReO_3R - L_n (e.g., R=Me, $SiMe_3$, Cp; L= quinuclidine, pyridine; n=1, 2) were studied by ^{17}O NMR, 352 showing that shifts of the oxo ligands were affected by the donor ability of the R ligands. 352 The ^{17}O shifts of the oxo ligands were also affected by the solvent, especially if the R ligand was not a strong donor or did not cause steric hinderance in the complex. 352 ^{17}O NMR was used to follow the reactions of $EtReO_3$ and $(2,6-Me_2-C_6H_3)ReO_3$ as epoxidation catalysts in the presence of Bu^1OOH . $^{353-354}$ ^{17}O -enriched $MeReO_3$ was used to transfer the labeled ^{17}O to water and subsequently transfer the ^{17}O to the water-sensitive $EtReO_3$ or $(2,6-Me_2-C_6H_3)ReO_3$. $^{353-354}$ ^{17}O NMR showed that the oxygen insertion into the Re-C bond, giving the respective alkoxide trioxorhenium compounds, led to decomposition of the catalyst. $^{353-354}O$ Other catalytic systems such as aldehyde-olefination using the catalyst $MeReO_2(PhC\equiv CPh)$ and PPh_3 were also investigated using ^{17}O NMR. 356 Water exchange on fac- $(CO)_3Re(H_2O)_3^+$ using ^{17}O -enriched water was followed by ^{17}O NMR. 356

With mono- and bidentate ligands of various nucleophilicities [e.g., CH₃CN, Br, Me₂S, CF₃COOH, thiourea, bipy, and phenanthrene (phen)] were followed by ¹⁷O NMR as well. ³⁵⁶ The

 pK_a values for the successive dissociation of ReO(H₂O)(CN)₄⁺ were determined to be 1.31 and 3.72 via ¹⁷O and ¹³C NMR.³⁵⁷ Line broadening of the ¹⁷O signals occurred at lower pH values. Other complexes such as Re₂O₃(CN)₈⁴⁻ and ReO(NCS)(CN)₄²⁻ were also analyzed via ¹⁷O NMR.³⁵⁷

7. Group 8 (Fe, Ru and Os)

For the three elements, NMR of both the metals and ligands have been reported. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 10. ⁵⁷Fe, ⁹⁹Ru and ¹⁸⁷Os NMR spectroscopies are, however, challenging mainly from the unfavorable magnetic properties of the nuclides. ¹ The spin 1/2 nuclides ⁵⁷Fe and ¹⁸⁷Os have low sensitivity to detection and their receptivities are lower than that of ¹³C nuclide by about three orders of magnitude. ⁶⁹ For quadrupolar ⁹⁹Ru, ¹⁰¹Ru and ¹⁸⁹Os, they are much more sensitive than ⁵⁷Fe and ¹⁸⁷Os, but quadrupolar broadening may be substantial, making their detection challenging. The chapter on the NMR of these three metals by Benn in the 1991 book edited by Pregosin gave a detailed review of the literature up to 1990.1

Inverse detection methods were developed to increase the sensitivity of the nuclides to indirectly determine chemical shifts by 2-D correlation experiments using coupling (*J*) to another magnetically active nuclide such as ¹H or ³¹P. These methods for spin 1/2 nuclides ⁵⁷Fe³⁵⁸⁻³⁶⁰ and ¹⁸⁷Os³⁶¹⁻³⁶² using HMQC (Heteronuclear Multiple Quantum Coherence), ⁴ HSQC (Heteronuclear Single Quantum Coherence) ⁴ or HMBC (Heteronuclear Multiple Bond Correlation) ⁴ spectroscopy make the detection and acquisition of their chemical shifts much easier. Both HMQC and HSQC were based on 1-bond coupling such as ¹J_{P-Fe}, while HMBC is based on 2-4 bond coupling such as ²⁻⁴J_{P-Fe}. The difference between the HMQC and HSQC methods is that during the HMQC evolution, both ³¹P and ⁵⁷Fe magnetization evolve. In the

 $^{1}J_{P-Fe}$ coupling during the evolution, while HSQC is not affected, as there is no ^{31}P magnetization during the evolution.

An alternative to obtain ⁵⁷Fe NMR for compounds with natural abundance is based on polarization transfer (PT) techniques such as ¹H-⁵⁷Fe INEPT, enhancing the signal/noise ratio with respect to single pulse detection. ³⁶³⁻³⁶⁴

Table 10.26 Nuclear and NMR properties of 57Fe, 99Ru and 187Os

Nuclide	Natural abun- dance (%)ª	Spin	Relative Receptivity		Gyromagnetic ratio (10 ⁷)	Quadrupole	Ξ (and frequency,	Reference
			D H	Dc	(rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100 MHz, 2.3488 T)	sample
			$(^{1}H = 1.00)$	$(^{13}C = 1.00)$				
⁵⁷ Fe	2.119	1/2	7.24 x 10 ⁻⁷	4.25 x 10 ⁻³	0.8680624	-	3.237778	Fe(CO) ₅ (C ₆ D ₆) or Cp ₂ Fe (δ 1540 in toluene ³⁶⁵)
⁹⁹ Ru	12.76	5/2	1.44 x 10 ⁻⁴	0.848	-1.229	7.9	4.605151	K ₄ Ru(CN) ₆
¹⁰¹ Ru ^b	17.06	5/2	2.71 x 10 ⁻⁴	1.59	-1.377	45.7	5.161369	(aq)
¹⁸⁷ Os	1.96	1/2	2.43 x 10 ⁻⁷	1.43 x 10 ⁻³	0.6192895	-	2.282331	OsO ₄
¹⁸⁹ Os ^c	16.15	3/2	3.95 x 10 ⁻⁴	2.32	2.10713	85.6	7.765400	(CCl ₄)

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

7.1. Iron complexes

The reported ⁵⁷Fe NMR shift range is about 12,000 ppm,³⁵⁸ including complexes with unpaired electrons. The shift is very sensitive to both steric and electronic factors. Thus, it

^b We did not find a publication in 1990-2019 on ¹⁰¹Ru NMR. It is not used due to the larger quadrupole moment of ¹⁰¹Ru nuclide than ⁹⁹Ru nuclide. ¹⁰¹Ru properties are listed here for comparison.

^c We did not find a publication in 1990-2019 on ¹⁸⁹Os NMR. It is not used as ¹⁸⁹Os is a quadrupolar nuclide and ¹⁸⁷Os is not.

provides an excellent probe of changes within the coordination sphere of the metal atom.

 57 Fe shifts of Fe(CN) $_6$ ⁴⁻ (K+ salt, δ 2455) and [C(NH $_2$) $_3$] $_2$ [Fe(CN) $_5$ (NO)] [C(NH $_2$) $_3$ ⁺ = guanidinium+, δ 2004] in D $_2$ O, two prominent textbook examples in coordination chemistry, were obtained using 25% 57 Fe-enriched samples. 366 14 N shifts of δ -5.1 (NO+), -100 (broad for unresolved *cis* and *trans* CN- ligands), and -310 for the C(NH $_2$) $_3$ ⁺ cation in [C(NH $_2$) $_3$] $_2$ [Fe(CN) $_5$ (NO)] vs. -105 for Fe(CN) $_6$ ⁴⁻. 366 The fact that the Fe(II) ion in Fe(CN) $_5$ (NO) $_2$ - was more shielded than that in Fe(CN) $_6$ ⁴⁻ was the subject of theoretical studies discussed below.

several diamagnetic Fe(II) porphyrin carbonyl complexes, including Fe(protoporphyrinate IX)(py-d₅)(CO) (**35**, δ 8205), were reported.³⁶⁷ Using an inverse detection method based on the ³¹P-⁵⁷Fe correlation and 94.5% ⁵⁷Fe-enriched samples, ⁵⁷Fe NMR shifts of over 25 diamagnetic Fe(II) porphyrin complexes with PMe₃ ligands were obtained in 5 mm NMR tubes in as little as 20 min.³⁵⁸ The complexes include Fe(TPP)(PMe₃)₂ (**36**, H₂TPP = tetraphenylporphyrin, δ 7652), Fe(TPP)(PMe₃)(CO) (δ 7627), and Fe(TPP)(PMe₃)(py) (δ 8973), and Fe(OEP)(PMe₃)₂ (H₂OEP = octaethylporphyrin, δ 7873).³⁵⁸ A correlation was found between Mössbauer quadrupole splittings (mm/s) and ⁵⁷Fe NMR shifts of diamagnetic Fe(II) porphyrin complexes such as Fe(TPP)(PMe₃)₂ and Fe(OEP)(PMe₃)₂.³⁶⁸ ⁵⁷Fe shifts of stereo-hindered heme model compounds (with the so-called superstructures) and atropisomers (stereoisomers from hindered rotation about a single bond) showed that the shifts were very sensitive to deformation (ruffling) of the porphyrin geometry.^{369,370} ⁵⁷Fe shifts in metalloporphyrins may be predicted from ¹³C NMR shifts of the *meso*-C atoms of the TPP²⁻ ligands in the complexes.³⁷⁰

 57 Fe and 15 N shifts in Fe(II) phthalocyanine (Pc) complexes Fe(Pc)[P(OEt)₃]L [37, L = H₂N(n-decanyl)], 57 Fe δ 6764; 15 N δ -1.34; L = H₂NCH₂Ph, 57 Fe δ 6794, 15 N δ 3.45] were obtained from 31 P- 57 Fe HMQC and 1 H- 15 N gradient-selected HMQC (gHMQC) NMR, respectively. 360 15 N shifts of other diamine complexes Fe(Pc)L₂, such as L = H₂N(n-decanyl), H₂NCH₂Ph, were also reported. 360

For organometallic complexes, 57 Fe NMR for ferrocene Cp₂Fe with natural abundance was acquired with the 1 H- 57 Fe INEPT polarization transfer (PT) technique. 363 Substituted ferrocenes were a focus of 57 Fe NMR studies with a report of 57 Fe shifts of CpFe(η^{5} -C₅H₄R) (R = SiMe₃, δ 1626; SnMe₃, δ 1611) and Fe(η^{5} -C₅H₄R)₂ (R = CMe₃, δ 1621; R = SiMe₃, δ 1728; R = GeMe₃, δ 1690; R = SnMe₃, δ 1692). 371 For eight ferrocenes with monoamine substituents, 15 N and shifts of other nuclides were reported, including CpFe(η^{5} -C₅H₄NH₂) (57 Fe δ 1639; 15 N δ - 345.7) and CpFe(η^{5} -C₅H₄[N(SiMe₃)(BEt₂)]) (57 Fe δ 1702; 15 N δ -285; 11 B δ 55.7; 29 Si δ 8.4). 372 57 Fe shifts of additional aminoferrocene and 1,1'-diaminoferrocene were reported, such as CpFe(η^{5} -C₅H₄NPh₂) (δ 1664) and Fe(η^{5} -C₅H₄NH₂)₂ (δ 1709). 365 57 Fe shifts of ferrocenes with sulfinylamino 364 or π -acceptor 373 substituents as well as bridged [1]ferrocenophanes Fe[(η^{5} -C₅H₄)₂SiMe₂] 374 were also studied. For substituted neutral ferrocenes, there was a linear relationship between Mössbauer quadrupole splittings (mm/s) and 57 Fe shifts. 375 The more shielded 57 Fe ions (with more upper field 57 Fe shifts), the larger the quadrupole splittings. 375

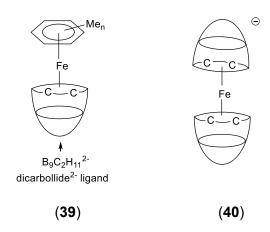
⁵⁷Fe, ¹¹⁹Sn, ¹³C and ³¹P NMR were used to characterize a series of

CpFe(SnPh₃)(CO)(PR₃) complexes (R = Me, 57 Fe δ 447; 119 Sn δ 46.71; R = OMe, 57 Fe δ 316; 119 Sn δ 47.76). 376 57 Fe NMR was used to characterize 35 cyclopentadienyl Fe(II) complexes with the general formulas CpFe(CO)₂R, CpFe(CO)(PPh₃)X, CpFe(CO)L(COMe) (L = PR₃, and CO) and (η^5 -C₅H₄Y)Fe(CO)(PPh₃)Me (Y = Me, SiMe₃, NEt₂, Ph, I, COOMe, COPri), 359 including CpFe(CO)₂Me (δ 684), CpFe(CO)(PPh₃)H (δ 536), CpFe(CO)(PMe₃)(COMe) (δ 1374), and (η^5 -C₅H₄Me)Fe(CO)(PPh₃)Me (δ 1367). 359 NMR of dimer Fe₂(CO)₆(μ -SNH) was studied, giving 57 Fe δ 1315 and 15 N δ -374.7. 377 Iron tricarbonyl complexes containing a substituted silole or analogous ligand were also studied by 57 Fe NMR. 378

Inverse-detection techniques were used to indirectly measure 57 Fe spin-lattice relaxation times for CpFe(CO)(PPh₃)(COMe) [T_1 = 4.4 s at 9.4 T (or 400 MHz 1 H NMR) and 2.1 s at 14.1 T (600 MHz 1 H NMR)]. 379

As indicated in the 57 Fe shifts summarized above, the Fe(II) ion in Fe(CN)₅(NO)²⁻ is more shielded than that in Fe(CN)₆⁴⁻. 366 Since both complexes were prominent textbook examples in coordination chemistry, the shifts were studied theoretically to provide an understanding. Large geometry dependence of the shifts was found from a combined QM/MM (quantum mechanics/molecular mechanics) approach. 380 Thermal and solvent effects on these shifts were simulated with two molecular-dynamics (MD)-based approaches. 381 The computed trends for the chemical shifts could be rationalized by a large sensitivity of the magnetic shielding on the Fe-ligand distances. 381 57 Fe NMR shifts were calculated by a DFT method for Fe(CO)₅, Fe(CO)₃(H₂C=CHCH=CH₂), Fe(CO)₃(cyclo-C₄H₄) and CpFe(CO)₂R (R = Me, Buⁿ, Prⁱ). 382

In NMR studies of α atoms of ligands, the reaction mixture of excess $^{15}NH_2OH$ and $Fe(CN)_5(NH_3)^{3-}$ at pH 9 was monitored by ^{15}N NMR, 383 leading to the identification of the intermediate species $Fe(CN)_5(N_2H_2)^{3-}$ (δ -76). 383 Several Fe P,N,N pincer complexes, including $(P,N,N)Fe(CO)_2$ [38, P,N,N = 2-[(di-tert-butylphosphino)methyl]-6-[1-(2,4,6-mesitylimino)ethyl]pyridine], were characterized by several NMR techniques including $^{1}H_{-}^{15}N$ HMQC and $^{1}H_{-}^{31}P$ HMQC, giving ^{15}N shifts of δ 258.1 and 259.2 for the pyridine and imido N


atoms in the P,N,N ligand of the complex 38, respectively.384

Reaction of electrophile Me₃SiOTf with Fe(0) Fe($^{15}N_2$)(dmpe)₂ was conducted, followed by addition of triflic acid to the residual product solid in a study of nitrogen fixation. In a test analyzed by $^{1}H_{-}^{15}N$ HMQC before the addition of the triflic acid, Fe($^{2}_{-}^{15}N_2H_4$)(dmpe)₂²⁺ (δ - 387.0) and Fe($^{15}NH_3$)₂(dmpe)₂²⁺ (δ -422.6) were identified.³⁸⁵ In another reaction analyzed after the addition of triflic acid, $^{15}NH_4$ + as well as FeH($^{15}N_2$)(dmpe)₂+ were detected.³⁸⁵ Fe(NH₃)₂(dmpe)₂²⁺ was independently prepared via the treatment of FeCl₂(dmpe)₂ with NH₃ in methanol.³⁸⁵ The nitroxyl ligand in Fe(CN)₅(HNO)³⁻ was analyzed by ^{1}H (δ 20.2), ^{15}N (δ 640), and ^{17}O (δ 1099) NMR.³⁸⁶

The complex $Fe_4(\mu_3-S)_2(\mu_2-NO)_2(NO)_6^{2-}$ with bridging and terminal NO ligands was synthesized and characterized via several methods including ^{15}N NMR. 387 An enriched version of $Fe_4(\mu^3-S)_2(\mu^2-NO)_2(NO)_6^{2-}$ was prepared as the sample for ^{15}N NMR. 387 At 320 K, there was a single broad singlet at δ 58.3. However, at 220 K, there were signals at δ 200.8 and 200.1 (referenced to MeNO₂) for the bridging ^{15}NO ligands and δ 79.7, 73.5, 43.9, 30.3, 27.1, and 21.9 for terminal ^{15}NO ligands. 387 ^{15}N NMR of oxidized ^{15}N -labeled histidine Rieske iron-sulfur protein from the bacterium *Thermus thermophilus* was followed as a function of pH from 11.7 to 5.75 in order to determine the pK_a values of the Fe-bound histidine. 388

Several reactions of Cp*Fe₂(CO)₄(μ -CO)(μ -PPh₂) with various hydrosilanes, such as Ph₂SiH₂ or (p-tol)₂SiH₂, were analyzed by ²⁹Si and ³¹P NMR.³⁸⁹ Fe(II) dicarbollide 1-(n⁶-Me_nC₆H₆-

_n)-closo-1,2,3-FeC₂B₉H₁₁ (**39**, n = 1-6)³⁹⁰ and Fe(III) bis(dicarbollide) [3-Fe-(1,2-C₂B₉H₁₁)₂]⁻ (**40**),³⁹¹ were analyzed via ¹H and ¹¹B NMR. For complex [3-Fe-(1,2-C₂B₉H₁₁)₂]⁻, DFT calculations were used in order to aid the ¹¹B NMR assignments.³⁹¹

Water exchange dynamics of several iron complexes, including porphyrins³⁹² and polyaminecarboxylates,³⁹³ was studied by ¹⁷O NMR.³⁹⁴⁻³⁹⁶

7.2. Ruthenium complexes

The range of reported 99 Ru NMR shifts we found is ~18000 ppm set by Ru(OH₂)₆²⁺ (δ 16050³⁹⁷) and Cp₂Ru (δ -1270 at 346 K³⁹⁸). This range was determined in the 1980s.

NMR of ⁹⁹Ru and ligand donor atoms in metal complexes in aqueous solutions was reviewed in 2016.³⁹⁹

⁹⁹Ru, ¹⁴N and ¹⁷O NMR were probed to study hydrolysis of (NH₄)₂[Ru(NO)Cl₅] (δ ⁹⁹Ru 4190; ¹⁴N -36; ¹⁷O 379), which initially formed *cis*-Ru(NO)(H₂O)Cl₄⁻ (δ ⁹⁹Ru 4450; ¹⁷O 380 for NO⁺ and -79 for H₂O ligand). ⁴⁰⁰ Subsequently, both isomerization and additional Cl⁻ replacement in the Ru(II) compound gave *trans*-Ru(NO)(H₂O)Cl₄⁻ (δ ⁹⁹Ru 3920; ¹⁴N -18; ¹⁷O 411 for NO⁺ and 0 for H₂O ligand) and *fac*- and *mer*-Ru(NO)(H₂O)₂Cl₃, respectively. ⁴⁰⁰

 99 Ru shifts of Ru(II) complexes with N,N chelating ligands, [Ru(bpy)₃]Cl₂ (δ 4534, bpy =

2,2'-bipyiridine) and its analogs such as $[Ru(phen)_3]Cl_2$ (δ 4642, phen = phenanthrene), were reported.⁴⁰¹ These were in comparison to δ 7821 of $Ru(NH_3)_6Cl_2$ reported earlier.³⁹⁸ $[Ru(bpy)_2(2,3-dpp)](PF_6)_2$ [41, 2,3-dpp = 2,3-bis(2-pyridyl)pyrazine] containing an N,N pyridyl-substituted pyrazine ligand was characterized by ⁹⁹Ru NMR (δ 4535).⁴⁰²

For organometallic Ru(II) complexes, 99 Ru shifts of Ru(CO)₂(dab)XY [X, Y = halide, alkyl, SnR₃, GePh₃, PbPh₃, Mn(CO)₅, CpRu(CO)₂; dab = Prⁱ-N=CH=CH=NPrⁱ (1,4-diisopropyl-1,4-diaza-1,3-butadiene)] were studied, giving, e.g., δ 1993 (X = Y = Cl⁻), 1036 (X = Y = l⁻), 794 (X, Y = Me⁻, Cl⁻), 712 (X, Y = Me⁻, Br⁻), 551 (X, Y = Me⁻, l⁻), -316 (X = Y = SnMe₃), -116 (X = Y = SnPh₃), and 200 (X = Y = PbPh₃).

For Ru cluster complexes, the 99 Ru shift of Ru₃(CO)₁₂ (δ -1208) was reported earlier. Shifts of HRuCo₃(CO)₁₂ (δ 202), (NEt₄)[RuCo₃(CO)₁₂] (δ -68), RuCo₃(CO)₁₁(NO) (δ -241 in addition to 59 Co NMR shifts discussed below), and RuCo₂(CO)₁₁ (δ -597) were obtained, do along with their 59 Co NMR shifts discussed below. For RuCo₃(CO)₁₂(NO), 99 Ru shift at -241 was observed.

Computations of 99 Ru shifts were the subject of a few studies using DFT methods. $^{405-409}$ 99 Ru shifts of several species, including K_4 Ru(CN)₆, Cp₂Ru, Ru₃(CO)₁₂, Ru(CO)₃Cl₃⁻, Ru(CO)₂Cl₄²⁻, Ru(bpy)₃²⁺, and Ru(CO)₂(dab)XY (X = Y = Cl⁻, I⁻ or SnMe₃; X, Y = Me⁻, Cl⁻ or Me⁻,

I⁻) discussed above, were computed and compared with those from experiments. 408 Relativistic effects, influence of the density functional and solvent effects on fac-Ru(CO)₃I₃⁻ were investigated. 405 Influence of molecular geometry on the nuclear shielding in RuCl₂(dmso)₄ and α-PW₁₁RuO₃₉(dmso)⁵⁻ containing Ru-S bonds was examined, helping the assignment of 99 Ru NMR resonances in the compounds. 406

In the NMR studies of α atoms of ligands, the ¹⁷O shift of Ru(VI) dioxo porphyrin complexes such as Ru(TMP)(=O)₂ (δ 775 referenced to H₂O; H₂TMP = tetramesitylporphyrin) were studied.¹³⁷

Ru(H₂O)₆²⁺ reacted with H₂ under pressure to give the η^2 -H₂ complex [Ru(H₂)(H₂O)₅]²⁺ and was characterized via ¹H (δ -7.65), ²H (δ -80.4, $J_{\text{H-D}}$ = 31.2 Hz) and ¹⁷O [δ _{ax} -177.4 (for water ligand *cis* to H₂), δ _{eq} -80.4] NMR.⁴¹⁰

When a solution of [RuCl(OEt₂)(PNNP)]⁺ (PNNP = (1S,2S)-N,N-bis[o-(diphenylphosphino)-benzylidene]cyclohexane-1,2-diamine) and N-benzylidene-1,1-diphenylmethanamine is treated with excess ¹⁵N-eda (eda = ethyl diazoacetate, N₂=CHCOOEt) -78 °C, the complex *trans*-RuCl(eda)(PNNP)⁺ was the major species below -20 °C.⁴¹¹ Reactions of a series of azolylpyridines with RuCl₂(PMe₃)₄ yielded [(N,N)RuCl(PMe₃)₃] (**42**) with pyridinylazolate N,N ligands.⁴¹² ¹H-¹⁵N HMBC was used to clarify the electronic influence of the substituents on the azolyl ring.⁴¹² ¹⁵N-NMR studies were performed at pH 5 of the reaction Ru(edta)H₂O⁻ with excess ¹⁵NO.⁴¹³ The ¹⁵N NMR of this reaction showed three signals at δ -17.6, 52.4 and 228.5.⁴¹³ The first two resonances pertained to coordinated ¹⁵NO⁺ and ¹⁵NO₂-ligands in Ru(edta)(NO)(NO₂)⁻, respectively.⁴¹³ The shift at δ 228.5 signified the occurrence of free ¹⁵NO₂- in solution.⁴¹³ Reactions of [(η⁶-biphenyl)RuCl(en)]PF₆ with amino acids *L*-cystine,⁴¹⁴ *L*-methionine,⁴¹⁴ *L*-histidine⁴¹⁵ as well as cytochrome c or the oligonucleotide d(TATGTACCATGTAT) were investigated using ¹H-¹⁵N HSQC and ¹H TOCSY.⁴¹⁵

PMe₃ E = C, N

$$X$$
 E = C, N
 X = H, Br, NO₂
 Y = H, Me, Et, Ph, 4-OMe-C₆H₄, NO₂

(42)

Several NMR studies, such as $^{1}\text{H}-^{31}\text{P}$ HMQC NMR or ^{11}B NMR, and analysis $J_{\text{Si-H}}$ of Ru silane, disilane, and borane complexes were discussed in a 2008 review. 139

7.3. Osmium complexes

¹⁸⁷Os is the least sensitive nuclide in the Periodic Table, as shown by its receptivity with respect to ¹³C in Table 10.^{69,416} Inverse detection methods to indirectly determine ¹⁸⁷Os chemical shifts by 2-D correlation experiments, which were reported in 1985,³⁶² significantly expanded the use of ¹⁸⁷Os NMR to inorganic compounds.³⁶¹ Prior to the development of the techniques, only ¹⁸⁷Os NMR shift of OsO₄ was reported.¹

NMR of ¹⁸⁷Os and ligand donor atoms in metal complexes in aqueous solutions was reviewed in 2016.³⁹⁹

A $^{19}\text{F-}^{187}\text{Os}$ correlation spectrum was used to obtain ^{187}Os shift of *cis*-OsO₂F₄ (δ 1431). 416 The *cis* structure for the Os(VIII) complex is based on DFT calculations.

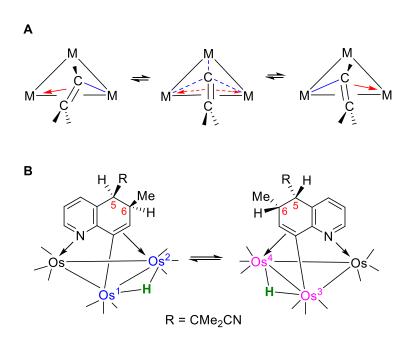
Several Os(II) complexes were characterized. ¹⁸⁷Os NMR of 37 (η^6 -arene)Os(PR₃)X₂ complexes (η^6 -arene = 1,4-Me,Prⁱ-C₆H₄ or *p*-cymene) were probed by either ¹H-¹⁸⁷Os or ³¹P-¹⁸⁷Os HMBC techniques, yielding, e.g., (η^6 -*p*-cymene)Os(PMe₃)X₂ (δ X = Cl⁻, -2226; Br⁻, -2495; l⁻, -3260; H⁻, -5265) vs. δ -2431 for (η^6 -C₆H₆)Os(PMe₃)Cl₂ and δ -1829 for (η^6 -C₆Me₆)Os(PMe₃)Cl₂.⁴¹⁷ The shifts of the 31 (*p*-cymene)Os(PR₃)X₂ complexes span the range of δ -1697 for (*p*-cymene)Os(PCy₃)Cl₂ to -5265 for (η^6 -*p*-cymene)Os(PMe₃)H₂.⁴¹⁷ ¹⁸⁷Os NMR shifts of several [(η^6 -*p*-cymene)Os(CO)(PR₃)I](PF₆) complexes were similarly measured by the HMQC

techniques, giving, e.g., δ -4430 for [(η^6 -p-cymene)Os(CO)(PMe₃)I](PF₆).⁴¹⁸ ¹⁸⁷Os shifts and ${}^1J_{Os-C}$ coupling constants of CpOs(CO)₂Me (187 Os δ -5340, J_{Os-C} = 48.9 Hz) and Cp*Os(CO)₂Me (187 Os δ -4985, ${}^1J_{Os-C}$ = 51.5 Hz) were also determined.⁴¹⁸ Inverse-detection techniques, based on the ${}^1H_{-}^{187}$ Os or ${}^{31}P_{-}^{187}$ Os dipole-dipole interactions, were used to indirectly measure 187 Os spin-lattice relaxation times (T_1) for (η^6 -p-cymene)Os(PMe₃)(H)Cl at 300 K [T_1 = 4.7 s at 9.4 T and 2.2 s at 14.1 T (600 MHz ${}^1H_{-}^{187}$ NMR)].³⁷⁹

The ¹⁸⁷Os shift of di-arene $[Os(\eta^6-C_6H_5-Ph)_2](OTf)_2$ (δ -4715) was determined by ¹H-¹⁸⁷Os HMBC.⁴¹⁹ The δ value in the Os(II) complex was shifted significantly from the average (-3000) ppm of mono-arene complexes $[(\eta^6-arene)Os(PR_3)X_2](OTf)_2$ as a result of the increased shielding provided by the second arene ligand in $[Os(\eta^6-C_6H_5-Ph)_2](OTf)_2$.⁴¹⁹

¹⁸⁷Os shifts of CpOsL₂R (L = phosphine, phosphite) were determined from 1 H-¹⁸⁷Os and 31 P-¹⁸⁷Os spectra by the inverse detection techniques. 420 For CpOs(PPh₃)₂X, e.g., the shifts are δ -2595 for X = Cl⁻, -3008 for X = Br, and -3530 for X = l⁻. 420 Coupling constants 2 J_{Os-H} and 1 J_{Os-P} were determined as well. 187 Os spin-lattice relaxation times [T_1 , X = Cl⁻, 0.5 s; Br, 0.6 s at 9.4 T and 300 K (or 400 MHz 1 H NMR)] were determined indirectly by the 31 P-¹⁸⁷Os dipole-dipole interaction. 420

¹⁸⁷Os NMR of triosmium clusters containing bridging hydrides, including Os₃(μ-H)₂(CO)₁₀ (**43**) and several chelating diphosphine derivatives such as Os₃(μ-H)₂(CO)₈(μ-P,P) [e.g., P,P = Ph₂PCH₂PPh₂ (dppm) (**44**); (R)-2,20-bis(di-4-tolylphosphino)-1,10-binaphthyl (tol-BINAP) (**45**)], was studied by HMQC, HSQC and HMBC using ${}^1J_{H-Os}$ or ${}^2J_{H-Os}$ couplings.³⁶¹ HMQC and HSQC based on one-bond ${}^1J_{H-Os}$ gave identical δ for the Os atoms (Os¹) directly bound to the bridging H ligands, while HMBC based on two-bond ${}^2J_{H-Os}$ yielded δ for the Os atom (Os²) not bound to the H ligands.³⁶¹ For Os₃(μ-H)₂(CO)₁₀ (**43**), δ _{Os¹} -11302, δ _{Os²} -14021. For Os₃(μ-H)₂(CO)₈(μ-dppm) (**44**), δ _{Os¹} -11525, δ _{Os²} -14001. For Os₃(μ-H)₂(CO)₈(μ-tol-BINAP) (**45**) containing a chelating chiral phosphine ligand, δ (Os¹) -11345, δ (Os²) -14023.³⁶¹ For Os₃(μ-H)₂(CO)₁₀ (**43**)


with two types of Os atoms (two bound to the H ligand and one not bound), the satellite from the long-range ${}^2J_{\text{H-Os}}$ coupling is buried under the central peak.⁴²¹ A method based on varying evolution delays in HMQC spectra led to the extraction of the ${}^1J_{\text{H-Os}}$ (44 Hz), ${}^2J_{\text{H-Os}}$ (2 Hz) and ${}^2J_{\text{H-C}}$ (12 Hz) values for Os₃(μ -H)₂(CO)₁₀ (**43**).⁴²¹

$$(OC)_{3}Os^{2}(CO)_{4} \qquad Os^{2}(CO)_{4} \qquad P(p-tolyl)_{2}$$

$$P = dppm \qquad P = tol-BINAP$$
(43)
(44)
(45)

A unique NMR method was used to follow σ,π -vinyl interchange in a series of 5,6-dihydro- μ_3 - η^3 -quinolyl complexes $Os_3(\mu-H)(CO)_9[\mu_3-\eta^3-C_9H_6(5-R)(6-R')N]$ such as **46** (R = CMe_2CN , R' = Me) in **Figure 4.**⁴²² For a typical σ,π -vinyl interchange involving metal carbonyl complexes in **Figure 4-A**, VT ¹³C NMR of the CO ligands on the M atoms bound to the σ,π -vinyl moiety was usually used to follow the interchange. At the low temperature limit, environments at the two M atoms were different. The onset of the interchange averaged the environments and the barrier to the interchange could be obtained from the pairwise exchange rates of these CO ligands. However, the chiral centers in, e.g., $Os_3(\mu-H)(CO)_9[\mu_3-\eta^3-C_9H_6(5-R)(6-Me)N]$ (R = CMe_2CN , **46**, **Figure 4-B**)⁴²³ made Os_1^4 and Os_2^4 (as well as Os_3^4 and Os_1^4) atoms to be magnetically non-equivalent, even when the $\sigma-\pi$ -vinyl interchange process was rapid on the NMR time scale. The unique NMR method was to examine the Os_3^4 -vinyl interchange of the molecules of **46** had essentially one or no Os_3^4 -vinyl interchange was slow on the NMR time scale at 295 K, there were two isotopomers: One

group of molecules with 187 Os isotopes at Os 1 and Os 3 atoms; Another group of molecules with 187 Os isotopes at Os 2 and Os 4 atoms. Two sets of 1 H- 187 Os satellites (1 J_{H-Os} = 30.7 and 35.4 Hz) were present in the hydride resonance at δ -17.00 in the 1 H NMR spectrum. At 373 K, the interchange became rapid on the NMR time scale. The two sets of the satellites merged to a single set with 1 J_{H-Os} = average of the two values observed at 295 K. 422 In essence, the interchange was monitored at one Os atom per isotopomer. Thus, two Os atoms did not need to become magnetically equivalent for the process to be averaged on the NMR time scale. Only a single Os atom was required to see an average environment. This method circumvented inherent asymmetry in these quinolyl complexes. 422

Figure 4. (**A**) σ -π-interchange in μ - η^2 -vinyl complexes. (**B**) σ ,π-vinyl interchange in *cis*-Os₃(μ -H)(CO)₉[μ ₃- η^3 -C₉H₄(5-R)(6-Me)N] (**46**). Os¹ and Os² in the left isomer are magnetically inequivalent from Os³ and Os⁴, respectively, in the right isomer.

A hybrid DFT method was implemented to calculate the NMR shielding tensors and 187 Os NMR shifts for CpOs(PMe₃)₂X (H = H, Me, Br). 424

For NMR of ligands, complexes TpOs(N)X₂ (X = CH₃COO⁻, Cl⁻, CF₃COO⁻, CCl₃COO⁻, CBr₃COO⁻, Br, NO3⁻, 0.5oxalate) were studied via several techniques including ¹⁵N NMR using enriched complexes. ⁴²⁵ The ¹⁵N singlet for the complexes was between δ 821 and 922. ⁴²⁵ Solvent exchange of H₂O and CH₃CN on *trans*-Os(en)₂(η^2 -H₂)(solvent)²⁺ (solvent = H₂O, CH₃CN) was studied as a function of temperature and pressure by ¹⁷O NMR line-broadening and isotopic labeling experiments for H₂O and ¹H NMR isotopic labeling experiments for CH₃CN. ⁴²⁶ The rate constants and activation parameters were found to be $k_{\rm ex}$ = 1.59 s⁻¹ at 298 K, ΔH^{+} = 72.4 kJ/mol; ΔS^{+} = +1.7 J/(mol·K), and ΔV^{+} (activation volume) = -1.5 cm³/mol for water exchange and $k_{\rm ex}$ = 2.74 × 10⁻⁴ s⁻¹ at 298 K, ΔH^{+} = 98.0 kJ/mol; ΔS^{+} = +15.6 J/(mol·K), ΔV^{+} = -0.5 cm³/mol for acetonitrile exchange. ⁴²⁶

8. Group 9 (Co, Rh and Ir)

For Co and Rh, NMR of both the metals (⁵⁹Co, ¹⁰³Rh) and ligands have been reported. For Ir, we could only find the NMR of the ligands. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 11. ⁵⁹Co (spin 7/2, natural abundance of 100%) has a relatively large gyromagnetic ratio, thus giving a convenient resonance frequency and a relatively high sensitivity. However, its quadrupole moment is fairly large, and the line width leads to the sensitivity loss. ¹⁰³Rh, with spin 1/2 and natural abundance of 100%, has a small gyromagnetic ratio, leading to low sensitivity and resonance frequency. In addition, its spin-lattice relaxation, *T*₁, is relatively long. ¹

Inverse detection methods, similar to those discussed in the section on Group 8 (Fe, Ru and Os), were used for 103 Rh NMR to increase the sensitivity of the nuclides. $^{427-428}$ 2-D HMQC, based on, e.g, 1-bond coupling $^{1}J_{P-Rh}$, makes the acquisition of chemical shifts of spin 1/2 103 Rh much easier.

Table 11.26 Nuclear and NMR properties of 59Co, 103Rh, 191Ir and 193Ir

Nuclide	Natural abun- dance (%)ª	Spin	Relative receptivity		Gyromagnetic	Quadrupole	Ξ (and frequency,	
			<i>D</i> ^H (¹ H = 1.00)	D ^C (13C = 1.00)	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100.0000 MHz, 2.3488 T)	Reference sample
⁵⁹ Co	100	7/2	0.278	1.64 x 10 ³	6.332	42.0	23.727074	K₃Co(CN) ₆ (aq)
¹⁰³ Rh	100	1/2	3.17 x 10 ⁻⁵	0.186	-0.8468	-	3.186447	Rh(acac) ₃ (CDCl ₃)
(¹⁹¹ lr) ^{b,c}	37.3	3/2	1.09 x 10 ⁻⁵	6.38 x 10 ⁻²	0.4812	81.6	(1.718) ^d	
¹⁹³ lr ^b	62.7	3/2	2.34 x 10 ⁻⁵	0.137	0.5227	75.1	(1.871) ^d	

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

8.1. Cobalt complexes

 59 Co NMR is one of the most used metal NMR spectroscopies with many publications. Its application in coordination chemistry was reviewed in detail in $^{1991,^{429}}$ in addition to that in Reference 1. 59 Co shifts of about 800 complexes were tabulated, with spin-spin coupling constants J for 20 nuclear pairs. 429

⁵⁹Co NMR shifts cover the largest known shielding range, including δ 15100 for $Co(H_2O)_6^{3+}$ to -4220 for $KCo(PF_3)_4$, as earlier studies show. ⁴²⁹ Low-spin, octahedral d^6 Co(III) complexes, which are diamagnetic, comprise a large class of compounds probed by ⁵⁹Co NMR. Their shifts are typically in the range of δ 15100 for $Co(H_2O)_6^{3+}$ to -2600 for $Co[1,2-C_6H_4(PMe_2)_2]_3^{3+}$. For complexes with Co atoms at lower oxidation states, ⁵⁹Co shifts include those in $HCo(CO)_4$ (δ -3721), $NaCo(CO)_4$ (δ -3100), $Co_2(CO)_8$ (δ -2101), $Co_2(CO)_8$ (δ -2410), and

^b We did not find a publication in 1990-2019 on the ¹⁹¹Ir or ¹⁹³Ir NMR of a metal complex. None was included in the 1991 book edited by Pregosin.¹

^{c 191}Ir in parenthesis is considered to be the less favorable of the element for NMR.²⁶

^d Value calculated from literature data on nuclear magnetic moments.

CpCo(C₂H₄)₂, in addition to Co(-I) KCo(PF₃)₄.⁴²⁹

In coordination chemistry, $K_3[Co(CN)_6]$, dissolved in organic solvents by cryptand 222, showed the solvent influence on the d-d transition energies and ⁵⁹Co shift of the complex. ⁴³⁰ Similarly, studies of $[Co(en)_3]Cl_3$, ⁴³¹ cis-, trans- $[Co(en)_2(N_3)_2]NO_3$, ⁴³¹ K[Co(edta)], ⁴³² and $K_3[Co(ox)_3]$ (ox = oxalate) ⁴³² showed that their ⁵⁹Co shifts were solvent-dependent. ⁵⁹Co, ¹³C and ¹⁵N shifts of $Co(CN)_5X^3$ - (X = CN-, Cl-, Br-, l-), $Co(CN)_5(NH_3)^2$ - (L = py, NH₃, H₂O), $Co(NH_3)_5(CN)^2$ +, and $Co(NH_3)_5(NC)^2$ + revealed a common tendency that the shifts varied with the identity of the sixth coordinated ligand and correlated with ligand-field parameters including the nephelauxetic ratio. ⁴³³ The ligand exchange reactions between $Co(NO_2)_6$ ³⁻ and N_3 -, NCS- or NH_2OH was probed to develop an improved empirical method to estimate the variation of the ligand field strength of the NO_2 - ligand and ⁵⁹Co shifts. ⁴³⁴

⁵⁹Co NMR was shown to be a facile tool to probe configurational isomerism in *fac*-Co(*L*-S,O)₃ complexes containing *S,O* ligands [e.g., H(*L*-S,O) = PhC(O)NHC(S)NMeEt]. ⁴³⁵ Different configurations of the three ligands led to *EEE*, *EEZ*, *EZZ*, *ZZZ fac*-Co(*L*-S,O)₃ configurational isomers, each of which gave a resonance. ⁴³⁵ Co(dmgBF₂)₂(H₂O)₂ [dmgBF₂ = difluoroboryldimethylglyoximate (47)] and its pyridine derivative Co(dmgBF₂)₂(H₂O)(py), both containing a planar N,N,N,N ligand were characterized by ⁵⁹Co NMR (δ 2996 and 2443, respectively). ⁴³⁶ ⁵⁹Co NMR of *fac*- and *mer*-Co(NH₂CH₂CH₂O)₃ (δ 10175 and 10016, respectively) was reported. ⁴³⁷

Stereoisomerization of Co(III) complexes with polydentate amine ligands, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and 1,4,8,11tetraazacyclotetradecane in aqueous solutions was probed by ⁵⁹Co NMR. ⁴³⁸ mer-[Co(diethylenetriamine)(NO₂)₂(NH₃)]Cl was the dominant of four observed isomers.⁴³⁸ ⁵⁹Co NMR was used to characterize Co(terpy)F₃ [δ 8179, terpy = 2,2':6',2''-terpyridine (48)] and Co(Me₃tacn) X_3 [δ 9093 for X = F⁻; 10190 for X = Cl⁻; Me_3 -tacn = **2** ($R_3 = Me_3$)].⁴³⁹ [$Co(tacn)(H_2O)_3$](OTf)₃ [tacn = $2 (R_3 = H_3)$] which was used as a starting material in the preparation of a V complex as described in the section on vanadium complexes, 197 showed a 59Co peak at δ 9535.440 Reaction of [Co(tacn)(H₂O)₃](OTf)₃ with Na₂MoO₄ yielded the polyoxomolybdenate complex, $[Co(tacn)]_2Mo_3O_{12}$, with the ⁵⁹Co peak moved to δ 9776. ⁴⁴⁰ ⁵⁹Co NMR of $[Co(tpa)(CO_3)]CIO_4$, $[Co(Me-tpa)(CO_3)]CIO_4$, $[Co(Me_2-tpa)(CIO_4)]CIO_4$, and $[Co(Me_3-tpa)(CO_3)]CIO_4$ [tpa = tris(2pyridylmethyl)amine (δ 7965); Me-tpa (δ 8606), Me₂-tpa (δ 9162), and Me₃-tpa (**49**, δ 10251) as tpa derivatives containing one, two, and three 6-methylpyridyl rings, respectively] are consistent with the decreasing ligand field strength of the N,N,N,N-tripodal tetraamine ligands in the order tpa > Me-tpa > Me₂-tpa > Me₃-tpa. 441 Studies of similar tripodal tetraamine complexes also showed the correlation.⁴⁴² Co complexes with a R-alaninate (50) and different tetraamine ligands, including [Co(R-alaninate)(N,N,N,N)](ClO₄)₂ [N,N,N,N = 1,9-diamino-3,7-diazanonane (51), δ 7935] and its tetramethyl analog [N,N,N,N = (6R,8R)-6,8-dimethyl-2,5,9,12tetraazatridecane (52), δ 8615] showed that methyl substitutions on the tetraamine ligand significantly affected the ligand field strength, as indicated by characteristic ⁵⁹Co shifts. ⁴⁴³ ⁵⁹Co was used to characterize clathrochelate dioximate complexes, such as (H₂NEt₂)[Co(dioximate)₃(SnCl₃)₂] (δ 4603) surrounded by a distorted trigonal antiprismatic coordination sphere from a ligand (53) with six N atoms cross-linked with SnCl₃.444 Co(III) complex K[Co(oct-dhpta)] [54, oct-dhpta = n-heptyl-CO₂-CH[CH₂N(CH₂CO₂)₂]₂ $^{4-}$], containing an N,N,O,O,O,O ligand with a long alkyl chain, showed that the ⁵⁹Co NMR shift (δ 10378) could be

used to probe the aggregation of a surfactant with a Co(III) complex as a polar group. 445

⁵⁹Co shifts of distibine complexes [Co[1,2-(CH₂SbMe₂)₂-C₆H₄]₂X₂]Y (X = Br⁻, Y = BPh₄⁻, δ 4550; X = Y = I⁻, δ 6680) were reported, ⁴⁴⁶ as the shifts of two Co chloride complexes containing the tripodal triphosphine ligand MeC(CH₂PMe₂)₃. ⁴⁴⁷

Several Co(III) crown thioether complexes were characterized by 59 Co NMR, including, e.g., [Co(18S6)](ClO₄)₃ [18S6 = 18-thiacrown-6 or 1,4,7,10,13,16-hexathiacyclooctadecane (**55**), δ 1646]. 448 59 Co NMR properties of dithio-, thioseleno- and diseleno-carbamate complexes show, e.g., 59 Co NMR of δ 6790, 6850, and 6890 for Co(S₂CNEt₂)₃, Co(SSeCNEt₂)₃, and Co(Se₂CNEt₂)₃, respectively, demonstrating a deshielded shift with increasing substitution of the more electronegative S atoms by Se atoms in the complexes. 449 77 Se shifts of the Se-containing complexes Co(SSeCNEt₂)₃ (δ 392, 373) and Co(Se₂CNEt₂)₃ (δ 461) were also measured. 449 Both 59 Co and 77 Se shifts were obtained for diseleno-ether [Co(MeSeCH₂CH₂SeMe)₂X₂]BPh₄ (X = Cl-, 59 Co: *trans*-isomer, δ 8694; *iso*-isomer δ 8310; 77 Se: δ 259. X = Br-, 59 Co: *trans*-isomer, δ

8310; *iso*-isomer δ 8228; ⁷⁷Se: δ 257. X = I⁻, ⁵⁹Co: *trans*- and *iso*-isomer, δ 7689; ⁷⁷Se: δ 256). ⁴⁵⁰ ⁵⁹Co shifts were reported for ditelluro-ether [Co[1,2-C₆H₄(TeMe)₂]X₂]BPh₄ (X = Br., *trans*-isomer, δ 8329; *iso*-isomer δ 8248; X = I⁻, *trans*- and *iso*-isomer δ 8773). ⁴⁵⁰ ⁵⁹Co shifts of *trans*- [Co(C₁₂H₂₄Se₄)X₂]PF₆ [C₁₂H₂₄Se₄ = 1,5,9,13-tetraselenacyclohexadecane (**56**); X = Cl⁻, δ 9590; Br., δ 9125; I⁻, δ 8436] containing a macrocyclic tetradentate selenoether ligand also showed a similar trend with different halide. ⁴⁵¹ For the Cl and Br analogs, ⁷⁷Se shifts are X = Cl⁻, δ 197; Br., δ 169. ⁴⁵¹ Co(III) complexes with substituted macrobicyclic ligands revealed a correlation of their

The spin-lattice (or longitudinal) relaxation time T_1 of Co(acac)₃ in MeCN was measured at concentrations of 0.020-0.110 M and several temperatures, showing that the relaxation rate was linearly dependent on the concentration of the complex up to approximately 0.080 M.⁴⁵³ Macroscopic viscosity of the solution was the predominant factor in this dependence.⁴⁵³

VT ⁵⁹Co NMR of 12 octahedral Co(III) complexes were studied to measure spin–lattice relaxation times T_1 and line widths, showing that the quadrupolar mechanism of relaxation was dominant in aqueous solution. ⁴⁵⁴ The study indicated a need for the use of dilute solutions to measure T_1 . Quadrupolar coupling constants in the complexes were determined. ⁴⁵⁴

Optical isomers Δ - and Λ -[Co(en)₃] in aqueous solutions of chiral salts, such as L- or Dtartrates, show that their ⁵⁹Co NMR properties (chemical shifts, relaxation rates) were different,
which could be used for chiral discrimination. ⁴⁵⁵ ⁵⁹Co NMR quadrupole splitting of Δ -[Co(en)₃] in

liquid crystals comprising chiral *N*-dodecanoyl-*L*-alanine (57) was different than that in liquid crystals comprising its enantiomer *N*-dodecanoyl-*D*-alanine, leading to chiral discrimination. 456 59 Co NMR relaxation studies of Δ -[Co(chxn) $_3$] $^{3+}$ ion [chxn = *trans*-(1*R*,2*R*)-1,2-diaminocyclohexane (58)] revealed that the decrease in the 59 Co NMR relaxation rates, when SO $_4$ $^{2-}$ or PO $_4$ $^{3-}$ anion (<0.1 M) was added, could be attributed to an appreciable decrease in the electric field gradient at the 59 Co nucleus by the ion pairing. 457 Similar results were also reported for the interactions between other complexed Co(III) cations $^{458-459}$ and anions or between Co(III) complexes $^{460-462}$ with surfactants containing different polar groups. For example, in a dilute lyotropic liquid crystal (i.e., dissolving sodium dodecyl sulfate in pentanol and aqueous NaBr), Co(en) $_3$ $^{3+}$ and Co(acac) $_3$ molecules were induced to orientate preferentially, displaying quadrupolar splittings of 59 Co NMR signals. 463

⁵⁹Co NMR of sterically congested six-coordinate porphyrin complexes Co(TMP)(RIm)₂⁺ (H₂TMP = tetramesitylporphyrin, an analog of H₂TPP giving the TPP²⁻ anionic ligand in **36**; Rim = imidazole or 1-methylimidazole) and Co(TDCPP)(RIm)₂⁺ [H₂TDCPP = tetrakis(2,6-dichlorophenyl)porphyrin] showed that the presence of the *ortho* chloro or methyl substituents on the *meso* phenyl groups on the porphyrin ring had a large effect on the ⁵⁹Co shifts and line widths, when compared to Co(TPP)(RIm)₂⁺ lacking *ortho* substituents. ⁴⁶⁴ VT ⁵⁹Co NMR was used to characterized tetraphenylporphyrinate complexes containing two amine ligands, such as [Co(TPP)(BuⁿNH₂)₂]Cl, and compare them with the NMR of Co(TPP)Cl. ⁴⁶⁵ For [Co(TPP)(BuⁿNH₂)₂]Cl, ⁵⁹Co shift range was δ 8019 at -28.5 °C to δ 8293 at 43.1 °C with a linear change with temperature, indicating that the Co(III) ion is less shielded at higher temperatures. ⁴⁶⁵ Molecular Dynamics (MD) simulations show that the ⁵⁹Co NMR shift change was due to increased population at thermally excited vibrational levels of the ¹A₁ ground electronic state. ⁴⁶⁵

Similar temperature effects were observed in ⁵⁹Co NMR of Co(acac)₃ and Co(dpm)₃ (dpm = dipivaloylmethanate). ⁴⁶⁶ The exceptional temperature dependence of ⁵⁹Co NMR shifts

was used for 59 Co chemical-shift thermometry, i.e., thermometry via magnetic resonance imaging (MRI) which would provide a powerful noninvasive window into physiological temperature management. 467 Influence of ligand encapsulation on 59 Co chemical-shift thermometry was recently studied. 467 Impacts of temperatures on T_1 (spin-lattice) and T_2 (spin-spin) relaxation times in several Co(III) complexes, including $K_3[Co(CN)_6]$, $[Co(NH_3)_6]Cl_3$, and $[Co(en)_3]Cl_3$, were probed with the goal of developing 59 Co nuclear spin relaxation thermometry. 468

Cobaloxime derivatives as vitamin B₁₂ models were probed by 59 Co NMR, $^{469-470}$ showing the electronic and steric influence of axial and equatorial ligands on the NMR shifts. 470 59 Co NMR was also used to characterize Co(II) cobaloxime derivatives. 471 [(pbt)₂Ru(μ -L-pyr)Co(dmgBF₂)₂(H₂O)](PF₆)₂ [**59**, pbt = 2-(2'-pyridyI)benzothiazole, L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline, dmgBF₂ = difluoroboryIdimethyIglyoximate (**47**)], containing a tridentate N,N,N ligand bridging Ru(II) and Co(II) ions, was found to be a photocatalyst for H₂ evolution. 471 Similar Co(II) cobaloxime derivatives, such as Co(dmgBF₂)₂(H₂O)₂, 472 had been shown to be low spin with one unpaired electron. 59 Co shifts of the paramagnetic Co(II) complexes **59** (5 5401) 471 and Co(dmgBF₂)₂(H₂O)₂ (5 5652), 471 are more deshielded than those of Co(III) cobaloxime derivatives, such as CoMe(dmgBF₂)₂(H₂O) (5 3888). 470

Organometallic Co complexes characterized by 59 Co NMR are mainly Co(III) alkyl complexes $^{470-471,473-474}$ and carbonyl compounds with Co atoms often at a low oxidation state of I to -I. $^{249,303,305,404,475-487}$ Co(III) alkyl complexes include the following: (a) MeCo(dmgBF₂)₂(H₂O), discussed earlier, and other alkyl derivatives; $^{470-471}$ (b) [Co(NH₃)₅Me]S₂O₆ (δ 7370), 473 (Et₄N)₃[Co(CN)₅Me] (δ -203), 473 trans-[Co(en)₂(NH₃)Me]S₂O₆ (δ 6400), 473 trans-[Co(en)₂(H₂O)Me]S₂O₆ (δ 6630), 473 and [Co(pyN₄)Me](NO₃)₂ [pyN₄ = 2,6-bis(1',3'-diamino-2'-methyl-prop-2'-yl)pyridine (**60**), δ 6070] containing the tetrapodal pentadentate amine ligand, pyN₄. 474 In addition to the Co(III) alkyl complexes, 59 Co NMR was used to characterize iminiumacetyl complex (Et₄N)₂[Co(CN)₅(CMe=NH₂)] (δ 60) and its *N*-methyl and *N*,*N*-dimethyl derivatives. 488 The iminiumacetyl complex was the product of migratory insertion of a *cis*-CN-ligand into the Co-Me bond in Co(CN)₅Me⁻.

Several carbonyl complexes studied by 59 Co NMR were derivatives of MCo₃(CO)₁₂ (M = Fe, Ru), $^{404.476-479,483,485,487}$ including HFeCo₃(CO)₁₂ (δ -2720), 487 HRuCo₃(CO)₁₂ (δ -2760), 487 HFeCo₃(CO)₁₁(PPh₃) (δ -2690 for Co-CO and δ -2467 for Co-P atoms), 487 HRuCo₃(CO)₁₁(PPh₃) (δ -2710 for Co-CO and δ -2564 for Co-P atoms), 487 and RuCo₃(CO)₁₂(NO) (δ -2745 for Co-CO and -486 for Co-NO atoms). 404 References 404 , 485 and 487 listed 59 Co shifts of additional complexes. 2-D 59 Co COSY and DQFCOSY (Double-Quantum-Filtered COSY) were used to probe the scalar coupling constants $^{1}J_{\text{Co-Co}}$ in such clusters, $^{481-483}$ including HFeCo₃(CO)₁₁L [L = PPh₃, $^{1}J_{\text{Co-Co}}$ = 140 Hz; P(OMe)₃, 180 Hz]. 481 Other carbonyl complexes studied by 59 Co NMR include: (a) Co(I) pseudo-(α -aminoallyl) monomers such as Co(CO)₃(MeC₃H₃NHPrⁱ) (δ - 3118); 475 (b) Isocyanide sulfide complexes FeCoMo(μ ₃-S)(CO)_{8-n}(η ⁵-C₅H₄COMe)(CNCy)_n (n = 1, δ -1640; n = 2, δ -1777; n = 3, δ -1244; Cy = cyclohexyl); 486 (c) Distibine complexes Co₂(CO)₄(μ -CO)₂(μ -R₂SbCH₂SbR₂) (R = Me, Ph), giving 59 Co shifts at δ -1710 and -1820, respectively; 303 (d) Yb(II)-Co₄(CO)₁₁ polymeric array, [(Et₂O)₃YbCo₄(CO)₁₁]_∞, probed by VT 59 Co NMR, showing δ - 170 (apical Co) and -2980 (basal Co) at -105 °C. 489

Supercritical CO₂ was used as a solvent to study Co carbonyl complexes^{249,480,484} and

the hydroformylation reaction.⁴⁹⁰ HCo(CO)₄ underwent exchanges with Co₂(CO)₈ through a H-ligand transfer, as studied by ⁵⁹Co NMR line-shape analysis at 80-200 °C and total system pressures up to 370 atm in supercritical CO₂.⁴⁸⁴

Computational studies of ⁵⁹Co NMR properties of metal complexes, ⁴⁹¹⁻⁴⁹⁴ including chemical shifts and shielding tensor elements, were performed to, e.g., predict the shifts. DFT studies of the electronic structures in $Co(NH_3)_5X^{(3+n)+}$ (n = 0, X = H₂O; n = -1, X = NO⁻, SCN⁻, Cl⁻, NO₂⁻, N₃⁻; n = -2, X = CO₃²-, S₂O₃²-), offered an insight into the role of the 3d and 4s orbitals in metal-ligand interactions, rationalizing the ⁵⁹Co NMR trends in the complexes. ⁴⁹⁵

Co(II)-mediated interactions between guanine (G) pairs in a self-complementary oligodeoxynucleotides was monitored via ¹⁵N NMR.³¹⁹ The middle G in a GGG run was shown via both ¹⁵N line broadening and HOMO calculations to be the most reactive.³¹⁹ To investigate the *trans* influence and chelate ring size,¹⁵N NMR shifts in Co(III) complexes with chelated β-alaninato ligands were compared to the shifts of glycinato ligands.⁴⁹⁶ Several studies and experiments on cobalamins and corrinoid complexes were conducted via ¹⁵N NMR.⁴⁹⁷⁻⁴⁹⁹

In order to elucidate Mg(II) binding in an RNA sample (D1κζ), Mg(II)-mimicking Co(III) and Cd(II) were used to probe metal coordination sites in D1κζ. 500 Mg(II) ions initiated the first folding step governed by the κζ element within domain 1 (D1κζ). 500 15 N-labelled samples of D1κζ were titrated with [Co(NH₃)₆]Cl₃ at 300 K and monitored via 1 H and 1 H- 15 N HSQC. 500 The linewidths in the 15 N NMR of diamagnetic Co(III) amine and diamine complexes such as Co(NH₃)₆ $^{3+}$ and Co(en)₃ $^{3+}$ were investigated and compared with those of similar diamagnetic Co(III) complexes. 252 14 N NMR of 20 Co(III) amine compounds, such as [Co(NH₃)₆]³⁺ (5 -422.8) and Co(NH₃)₅Me²⁺ (5 -428.8 for the *cis* and -328.0 for the *trans* isomer), were reported. 501 15 N NMR was used to study the linkage isomerization reaction of the regiospecifically 15 N-labelled tetrazole ligand in (5-methyltetrazolato)Co(NH₃)₅²⁺ (**61**). 502 It was shown via 15 N NMR that the isomerization was intramolecular and proceeded via 2 7 -bonded intermediates. 502 Rates of the exchange of aqua and hydroxo ligands coordinated to Co(III) amine complexes were examined

via 17 O NMR. 503 These complexes contained the tetradentate ligands such as cyclen [cylen = 1,4,7,10-tetraazacyclododecane (**62**_H)], *N*-mecyclen [*N*-mecyclen = 1-methyl-1,4,7,10-tetraazacyclododecane (**62**_{Me})], and tren [tren = tris(2-aminoethyl)amine (**63**)].

NH NH2

NH NH2

NH HN

$$R = H, \text{ cylen } (62_H) \text{ tren}$$

Me, N-mecyclen (62_{Me})

(61)

(62_H and $62_{Me})$

(63)

8.2. Rhodium complexes

 103 Rh NMR is one of most widely used transition metal NMR spectroscopies, in part because Rh is used extensively in catalysis. However, 103 Rh NMR was challenging mostly due to its low \varXi value and low relative receptivities/sensitivity (Table 11). 69

¹⁰³Rh NMR was reviewed in 2004,⁴²⁷ covering experimental techniques for the insensitive ¹⁰³Rh detection, use of ¹⁰³Rh NMR in coordination and organometallic chemistry, and calculations of ¹⁰³Rh shifts. Another detailed review was published in 2008 about ¹⁰³Rh NMR.⁴²⁸ NMR of ¹⁰³Rh and ligand donor atoms in metal complexes in aqueous solutions was reviewed in 2016.³⁹⁹ The current brief review will focus on the publications in 2008-2019.

It is noted that the frequency ratio $\mathcal{E}(^{103}\text{Rh}) = 3.186447\%$ [based Rh(acac)₃ in saturated CDCl₃], recommended by IUPAC in 2001²⁶ (and updated in 2008²⁷), was used in reporting ¹⁰³Rh shifts of compounds.²⁸⁻³¹ As discussed earlier, this is a unified scale to report NMR chemical shifts of a given nuclide relative to the ¹H resonance of dilute SiMe₄ in CDCl₃.²⁶ Advantage of the unified scale is that its use avoids direct handling of any secondary references.²⁶ The \mathcal{E} value was earlier set at 3.160000% for Rh metal,^{1,427} which is an alternative value

recommended by IUPAC.²⁶ Since most ¹⁰³Rh chemical shifts were measured using the earlier Ξ = 3.160000% scale, we will specifically point out chemical shifts obtained on the new Ξ = 3.186447% scale or using Rh(acac)₃ as the external reference. How to convert the ¹⁰³Rh NMR shifts from the Ξ = 3.160000% scale to the IUPAC Ξ = 3.186447% scale was given in the literature.^{28,428} Some publications listed ¹⁰³Rh shifts in both scales.²⁸⁻³⁰

Rh compounds using 103 Rh NMR that we found were typically at Rh(I) and Rh(III) oxidation states. 103 Rh shift range of Rh(I) compounds was from δ ~2400 to -2000, while the range for Rh(III) compounds was much larger from δ ~10000 to -1900. 1

Coordination chemistry focused on Rh(III) complexes. Rh(III) speciation in 3-16 M HNO₃ was probed by 103 Rh and 15 N NMR, showing that Rh(H₂O)_{6-n}(NO₃)_n³⁻ⁿ (n = 1-4) were the only species in the solutions with the Rh concentration of 0.2-1.3 M. 504 For Rh(H₂O)₅(NO₃)²⁺, 103 Rh and 15 N shifts were δ 1536 and -9.39, respectively. 504 In concentrated H₂SO₄, Rh(III) speciation studied by 103 Rh and 17 O NMR $^{505-506}$ showed that monomers, such as Rh(H₂O)₄(SO₄)⁺ (103 Rh δ 9883; Ξ = 3.16%) and Rh(SO₄)₃³⁻ (δ 9650), were not the predominant species. 505 Majority of the Rh(III) ions were in symmetric dimers such as Rh₂(μ -SO₄)₂(H₂O)₈²⁺ (δ 10069). 506 The 17 O NMR peaks at δ -138 and -142 were assigned for coordinated water ligands in μ -SO₄-Rh-H₂O and H₂O-Rh-H₂O containing species, respectively. 506 Additional studies of Rh(III) speciation in H₂SO₄-H₃PO₄ solutions⁵⁰⁷ and HF were conducted, showing, e.g., the formation of Rh(H₂O)₅F²⁺ [103 Rh δ 2252 relative to Rh(acac)₃] and RhF₆³⁻ (δ -529). 508 Rh(III) porphyrin complex [Rh(TPP)(PEtPh₂)₂]SbF₆ was characterized by 103 Rh NMR using indirect detection, showing δ 2480, 2558 and 2590 (Ξ = 3.16%) at 213, 300 and 333 K, respectively. 509 Ruffled and planar porphyrin conformations were modelled by DFT simulations, leading to moderately accurate

In organometallic chemistry, 103 Rh NMR was used to study both Rh(I) and Rh(III) complexes. In Rh(I) chemistry, cationic Rh(I) diphosphine η^6 -arene complexes [Rh(diphosphine)(η^6 -C₆H₆)]BF₄, such as [Rh(dppe)(η^6 -C₆H₆)]BF₄ (103 Rh δ -1014, \varXi = 3.16%) and

[Rh(R,R-Me-DuPhos)(η⁶-C₆H₆)]BF₄ [R,R-Me-DuPhos = (-)-1,2-bis(2R,5R-2,5-dimethylphospholano)benzene (**64**)] (103 Rh δ -1162), were studied by 31 P- 103 Rh HMQC. 510 For analogous Rh(I) diphosphine cod complexes [Rh(diphosphine)(cod)]PF₆ (cod = 1,5-cyclooctadiene), 103 Rh NMR was found to be a powerful tool to assess the electronic and steric contribution of diphosphine ligands on seven complexes. 31 For the complexes with chelating, chiral diphosphine ligands S,S-DIOP [**65**, DIOP = 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane], R-BINAP [**66**, BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl] and R,R-Me-DuPhos (**64**), 103 Rh NMR was more informative than classical CO-stretching frequency measurements. The following selected 103 Rh shifts (E = 3.186447%) were included: [Rh(dppe)(cod)]PF₆, E -8809; [Rh(E,E -BINAP)(cod)]PF₆, E -8397; [Rh(E,E -8809; [Rh(E,E -BINAP)(cod)]PF₆, E -8397; [Rh(E,E -8040, which was used to obtain the E -103Rh HMQC spectrum [E -103Rh E -8044 (d, E -8044 (d,

Additional Rh(I) organometallic complexes were studied by 103 Rh NMR. Phenyl-bridged dimer *S*,*S*-[Rh(ArPhPCH₂CH₂PPhAr)]₂(BF₄)₂ (Ar = o-OMe-C₆H₄) was characterized by 31 P- 103 Rh and 1 H- 103 Rh HMQC, giving 103 Rh δ -837. $^{512-513}$ This complex and its isomer were a precursor for the asymmetric hydrogenation of prochiral olefins without induction periods. Several Rh(I) β -

diketonates and β -aminoketonates were studied by 103 Rh NMR, giving shifts for, e.g., β -diketonates Rh(acac)(CO)(PPh₃) (acac = MeCOCHCOMe⁻, δ 262),

Rh(PhCOCHCOPh)(CO)(PPh₃) (δ 303), and β-aminoketonate

Rh[MeCOCHC(NPh)Me](CO)(PPh₃) (δ 190).⁵¹⁴ The shifts of the Rh(I) β-diketonates and βaminoketonates were compared with earlier reported analogs. Rh(I) complexes [nbd-(CH₂)₄- $EPh_2|_2Rh_2(\mu-CI)_2$ [68, E = P, N; nbd-(CH₂)₄-EPh₂ = 2-substituted-2,5-norbornadiene] were catalysts for the polymerization of PhC≡CH and its derivatives.⁵¹⁵ ¹⁰³Rh NMR together with DFT calculations indicated that the phosphine analog [E = P, δ -7748 referenced to Rh(acac)₃, ${}^{1}J_{Rh-P}$ = 166 Hz] existed as mononuclear 16-electron species using the PPh2 group as a ligand to the Rh(I) ion, while the amide analog (E = N) is a dimer with bridging chloride ligands (δ -7052, -7090). The two resonances for the latter are believed to be from syn- and anti- isomers and/or isomers with various combinations of (1S,4R)- and (1R,4S)-nbd derivatives. 515 Two types of Rh(I) norbornadiene derivatives serve as an initiator in the stereospecific polymerization of PhC=CH: (a) (nbd)Rh[P(4-F-C₆H₄)₃](o-napth-C₆H₄) [103 Rh δ -7688 on the IUPAC Ξ scale and δ 547 if referenced to Rh metal (using the Ξ = 3.160000% scale); nbd = 2,5-norbornadiene, onapth- $C_6H_4 = 2$ -(naphthalen-2-yl)phenyl];²⁹ (b) α -Phenylvinylfluorenyl complexes, such as (nbd)Rh[P(4-F-C₆H₄)₃](CPh=CFlu) (**69**) [103 Rh δ -7862 using the IUPAC Ξ scale and δ 372 if referenced to Rh metal].³⁰ Rh(I) yldiide complex **70** showed the ¹⁰³Rh resonance at δ 259.⁵¹⁶ ¹⁰³Rh NMR was used to characterize the diaminocarbene complex **71** (δ 542) and its derivatives.⁵¹⁷ For the Rh(I) sulfonamido-phosphoramidite (72), NMR (¹⁵N, ³¹P and ¹⁰³Rh) and DFT studies were conducted to probe the AA'MM'XX' 6 spin system. 518

Several Rh(I) trimers [Rh₃(P,P)₃(μ_3 -OH)_x(μ_3 -OMe)_{2-x}]BF₄ [e.g., P,P = *S*,*S*-dipamp = 1,2-ethanediylbis-[(2-methoxyphenyl)phenylphosphine (**73**)] were studied, including by ¹⁰³Rh NMR using ³¹P-¹⁰³Rh HMQC, showing deshielded shifts from δ 97 for the dihydroxide (x = 2), to δ 212 for the mixed hydroxide methoxide (x = 1), and δ 360 for the dimethoxide (x = 0) complex. ^{513,519} These complexes were possible precatalysts for asymmetric hydrogenation through solvate derivatives. ¹⁰³Rh NMR was used to characterize Rh(I) heterobinuclear *s*-indacene complexes anti-[Cp*M(2,6-diethyl-4,8-dimethyls-indacenediide)Rh(η^4 -cod)] (**74**, M = Fe, δ -275; Ru, δ -281). ⁵²⁰

In studies of Rh(III) organometallic chemistry, 1 H- 103 Rh HMBC, using the coupling to the Cp* ligand, led to 103 Rh shifts of Rh(III) Cp*RhCl(4-X-dpen) [4-X-dpen = 4-X-1,2-diphenylethylenediamine (75); X = Me, δ 2551; X = F, δ 2037 referenced to Cp* $_{2}$ Rh $_{2}$ Cl $_{2}$ (μ -Cl) $_{2}$ at δ 2303 - This is at the Ξ 3.15% scale rather than Ξ 3.16% scale). 521 1 H- 15 N HMQC gave 15 N shifts of the two complexes: δ -263.6 (d, 1 J_{Rh-N} = 14 Hz, NH $_{2}$), -210.6 (d, 1 J_{Rh-N} = 18 Hz, 4-MeC $_{6}$ H₄SO $_{2}$ N) for the 15 N-labeled former (X = Me) and δ -263.8 (d, 1 J_{Rh-N} = 16 Hz, NH $_{2}$), -210.2 (d, 1 J_{Rh-N} = 21 Hz, 4-F-C $_{6}$ H₄SO $_{2}$ N) for the latter (X = F). 521 NMR studies of Cp*Rh(SiEt $_{3}$)(μ -H) $_{2}$ Al(H)(mesityl-N-CMeCHCMe-N-mesityl) give 103 Rh (by 1 H- 103 Rh HMQC using the coupling to the H- ligand), 27 Al and 29 Si shifts of δ -1570, 144.7 and 38.6, respectively. 522 Its Mg 2* and Zn 2* analogs Cp*Rh(SiEt $_{3}$)(μ -H) $_{2}$ M(Ar-N-CMeCHCMe-N-Ar) (76; M = Zn 2* , Mg 2* ; Ar = 2,6-Pr 1 2-C $_{6}$ Ha) give the following 103 Rh and 29 Si shifts: M = Zn 2* δ -1743 and 31.6 (1 J_{Rh-Si} = 20.6 Hz); M = Mg 2* δ -1540 and 34.7. 522 For the binuclear rhodium and tungsten complex 77 with bridged by 2-(4-pyridyl)thiazole-4-carboxylate, its 103 Rh and 183 W shifts are δ 510 and δ 1463, respectively. 523

In computational and theoretical studies, isotope shifts in 103 Rh NMR spectra of, e.g., $Rh^{35}CI_n^{37}CI_{5-n}(H_2O)^{2-}$ (n = 0-5), were probed by DFT. 524 DFT computations were also performed to provide a computational insight into the 103 Rh shift-structure correlations in Rh bis(phosphine) complexes $Rh(cod)(P,P)^+$ [P,P = dmpe, dppe, Me-DuPhos (**64**), DIOP (**65**), BINAP (**66**)]. 525 The results showed a linear relationship between computed 103 Rh chemical shifts and the mean

Rh-P bond distances.

In the NMR studies of ligands in Rh complexes, 15 N NMR was used to follow the irradiation of [Rh(15 NH₃)₅(15 NO₂)]²⁺ (δ -408, -416) in water in the presence of O₂. 526 The 15 N shifts and 103 Rh- 15 N coupling constants for several rhodoximes with the general formula RhX(Hdmg)₂L (78) (Hdmg = dimethylglyoximate; L= PPh, pyridine; X = e.g., Cl⁻, Br, Bu^t, CH₂Cl, CH₂CF₃) were obtained using 15 N- 1 H HSQC. 527 15 N- 1 H HSQC, HMQC, or HMBC NMR was also used to explore the effect of different *N*-containing adducts, such as pyridine or NEt₃, on Rh₂(O₂CR)₄ [R = CF₃, Me, C(OMe)(CF₃)Ph]. $^{528-531}$ Complexation of phenylselenenyl-1-phenyl-1-propene (79) via the Se atom with Rh₂(O₂CR)₄ [R = C(OMe)(CF₃)Ph] was monitored via 77 Se NMR. 532 VT 1 H studies were also conducted on this system to determine the energy barrier for the selenide exchange when excess selenide was present. 532 [Rh(C₂H₄)(dtpbb)]₂ (80, dtpbb = di-tert-butylphosphidoboratabenzene) was synthesized and characterized via several NMR, including 11 B (δ 23.7) and 31 P (δ 23.7). 533

Irradiation of $(\eta^5-C_5H_4CF_3)Rh(PMe_3)(C_2H_4)$ and $CpRh(PR_3)(C_2H_4)$ (R = Me, Ph) in the presence of HBpin and B_2pin_2 (pin =1,2- $O_2C_2Me_4$) was investigated.⁵³⁴ Photolysis of these Rh complexes with silanes, including HSiEt₃, HSiPri₃, HSi(OMe)₃, HSiMe₂Et, HSiMeEt₂, and H₂SiEt₂, were also conducted.⁵³⁴ These reactions resulted in the elimination of C_2H_4 and B-H or Si-H oxidative additions to the Rh center.⁵³⁴ The products were analyzed via NMR including ¹¹B

NMR for those containing B atoms and ^{31}P NMR for all products. 534 Water exchanges of several Rh complexes, such as the Rh trimer [Rh $_3(\mu_3$ -O)(μ -O $_2$ CCH $_3$) $_6$ (OH $_2$) $_3$] $^+$, were explored via 17 O NMR as a function of temperature and pressure. $^{535-537}$ 17 O and NOESY NMR studies were used to study the structures of [Cp*Rh(H $_2$ O) $_3$] $^{2+}$ and other Rh aqua complexes at various pH values. 538

8.3. *Iridium complexes*

As indicated in the footnote of Table 11, we did not find a publication in 1990-2019 on the ¹⁹¹Ir or ¹⁹³Ir NMR of a metal complex. It was not included in the 1991 book edited by Pregosin¹ or the 2016 review of NMR of platinum group metal complexes in aqueous solutions.³⁹⁹

Cp* Ir(III) complex **81** reacted with oxidant NaIO₄ [or (NH₄)₂Ce(NO₃)₆] forming a blue species (**81**, **Figure 5**) which was characterized by several techniques including ¹⁷O NMR for the reaction conducted in ¹⁷OH₂.⁵³⁹ The results suggested that **82** was an Ir(IV) species with the structure shown in **Figure 5**. The Cp* ligand in **81** was removed during the reactions, and the blue **82** was a catalyst for oxidation of C-H bonds to C-OH bonds and oxidation of water to O₂.⁵³⁹

Figure 5. Reaction of 81 with NaIO₄ to give 82.

¹⁵N NMR was used to analyze $Ir(H)(NH_3)_2(PEt_3)_3^{2+}$ (δ -473.0), $Ir(H)(NH_3)_3(PEt_3)_2^{2+}$ (δ -

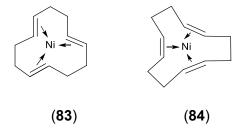
425.3), and $Ir(H)(CI)(NH_3)_2(PEt_3)_2^+$ (δ -461.2).⁵⁴⁰ These complexes were found to undergo N-H/O-D scrambling when exposed to D₂O and were also studied via ²D NMR.⁵⁴⁰ Water exchange studies were performed on $Ir(H_2O)_6^{3+}$ and $Ir(H_2O)_5(OH)^{2+}$ via ¹⁷O NMR as a function of temperature and pressure at several pH values.⁵⁴¹ The rate constant at 298 K of $[Ir(H_2O)_6]^{3+}$ was 1.1 x 10⁻¹⁰ s⁻¹. The exchange rate corresponded to a residence time of about 300 years for this exchange, indicating that the exchange was very slow.⁵⁴¹

For the use of parahydrogen (p-H₂) in the SABRE (Signal Amplification by Reversible Exchange) method to hyperpolarize [Ir(IMes)(H)₂L₃]CI (IMes = 1,3-dimesitylimidazol-2-ylidene, L = substrate such as indazole or imidazole), see Section 13.6.

9. Group 10 (Ni, Pd and Pt)

Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 12. Publications on solution NMR of Group 10 metals are dominated by ¹⁹⁵Pt. This is largely because both ⁶¹Ni and ¹⁰⁵Pd have rather large quadrupole moments, leading to broad resonances of their complexes in non-cubic symmetries. In addition, the low natural abundance of 1.1399% of ⁶¹Ni and its small relative receptivities/sensitivity make it challenging to observe the ⁶¹Ni NMR of metal complexes.

Table 12.26 Nuclear and NMR properties of 61Ni, 105Pd and 195Pt


Nuclide	Natural abun- dance (%) ^a	Spin	Relative r <i>D</i> ^H (¹ H = 1.00)	D ^C (13C = 1.00)	Gyromagnetic ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	Quadrupole moment Q (fm²)	£ (and frequency, MHz; ¹ H = 100.0000 MHz, 2.3488 T)	Reference sample
⁶¹ Ni	1.1399	3/2	4.09 x 10 ⁻⁵	0.240	-2.3948	16.2	8.936051	Ni(CO) ₄ (neat/C ₆ D ₆)
¹⁰⁵ Pd	22.33	5/2	2.53 x 10 ⁻⁴	1.49	-1.23	66.0	4.576100	K ₂ PdCl ₆

								(aq)
¹⁹⁵ Pt	33.78	1/2	3.51 x 10 ⁻³	20.7	5.8385	-	21.496784	Na₂PtCl ₆
								(aq)

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data ²⁵

9.1. Nickel complexes

⁶¹Ni NMR shifts of 22 Ni(0) carbonyl phosphine complexes were recorded with the use of special solenoid glass sample tubes and a solenoid probehead. ⁵⁴² The complexes included 11 tricarbonyl compounds Ni(CO)₃(PR₃) [including R₃ = Me₃, ⁶¹Ni δ 25.8; Ph₃, δ 24.2; Cy₃, δ -11.2; Cy₂H, δ -23.5; Ph₂Cl, δ 48.5; (OPh)₃, -129.5] and [Ni(CO)₃]₂(μ-dppe) (δ -2.1). Other 11 complexes were dicarbonyl compounds Ni(CO)₂(PR₃)₂ with a larger ⁶¹Ni shift range. These complexes included Ni(CO)₂(PMe₃)₂ (δ 104.0), Ni(CO)₂(dppe) (δ -160.5), and Ni(CO)₂[P(OPh)₃]₂ (δ -294.0). ⁵⁴² Description of special solenoid glass sample tubes and a solenoid probehead was provided. ⁶¹Ni NMR shifts of Ni(PMe₃)₄ (δ 35, 300 K), all-*trans*-cyclododecatriene (**83**, δ 75) and all-*cis*-cyclododecatriene (**84**, δ 22) were reported. ⁵⁴³ DFT computations of the substituent effects on ⁶¹Ni NMR chemical shifts of several Ni(0) complexes were performed. ⁵⁴³

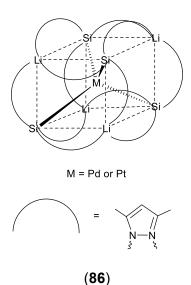
 31 P and 11 B NMR studies of σ-borane nickel complexes, such as diphosphine complexes (R₂PCH₂CH₂PR₂)Ni(H-BEt₂) (R = Prⁱ, Bu^t, Cy), were discussed in a 2008 review. 139

9.2. Palladium complexes

¹⁰⁵Pd NMR of Pd(IV) H₂PdCl₆ [in concentrated HCl containing dissolved Cl₂ or aqua

regia (HCI: HNO₃ = 3:1)] and H₂PdBr₆ (in a 1:1 mixture of HBr and HNO₃) was first reported in 1984 by Fedotov and Likholobov.⁵⁴⁴ In 2016, Fedotov gave more details of ¹⁰⁵Pd NMR of K₂PdCl₆ dissolved in concentrated HCI, showing that the resonance shifted to δ 53 at 323 K from δ 0 at 300 K.³⁹⁹ The temperature coefficient of 2.3 ppm/K for ¹⁰⁵Pd NMR of K₂PdCl₆ was close to that of ¹⁰³Rh NMR of RhCl₆³⁻. ¹⁰⁵Pd shift of Pd(II) H₂PdCl₄ in concentrated HCl containing dissolved Cl₂ was found to be δ 28.³⁹⁹

Mechanisms of H_2O exchange were studied in the $Pd(OH_2)_4^{2+}$ (¹⁷O δ -132), including the measurements of the rates and energy exchange parameters.^{399,545}


For the use rapid-injection NMR to study pre-transmetalation intermediates with Pd(II)-O-B linkages, such as $(4-F-C_6H_4)(Pr^{i_3}P)_2Pd-O-B(OH)(4-F-C_6H_4)$, ⁵⁴⁶⁻⁵⁴⁷ in the Suzuki-Miyaura reaction, see Section 13.8.

The cluster complex $[K(2,2,2\text{-crypt})]_4[Pd_2@Sn_{18}]$ (2,2,2-crypt = $N(CH_2CH_2OCH_2CH_2OCH_2CH_2)_3N)$ was synthesized and characterized by ^{119}Sn NMR (δ - $^{751.3}).^{548}$ ^{77}Se NMR was used to characterize palladacycle complexes formed from the reactions of Li_2PdCl_4 with $C_{10}H_7$ -1-CH=N-CH₂CH₂SePh or $C_{10}H_7$ -1-CH₂NH-CH₂CH₂SePh. The Pd complexes showed ^{77}Se shifts at δ 326.9 and 486.2, respectively. 549

¹⁵N and ¹H-¹⁵N HMBC NMR were used to characterize Pd complexes, helping to determine their structures, and/or investigate their catalytic activity. ⁵⁵⁰⁻⁵⁵⁴ For example, the coordination mode of 4,5-diazafluoren-9-one (daf) with Pd(OAc)₂ was investigated using ¹H-¹⁵N HMBC, TOCSY, and ROESY. ⁵⁵² It was found that many complexes could form. ⁵⁵² These complexes included monomeric and dimeric complexes with chelating, monodentate, and bridging binding modes. ⁵⁵² DOSY was also used to identify several aggregates including pentameric and hexameric aggregates of systems made via self-assembly reactions of, e.g., N,N'-bis[4-(4-pyridyl)phenyl]acenaphthenequinonediimine (85) with Pd(II) diphosphine complexes such as [Pd(dppp)(H₂O)₂](OTf)₂ [dppp = Ph₂P(CH₂)₃PPh₂]. ⁵⁵⁰

In the reaction of PdCI₂ with tppts [tppts = P(2-SO₃Na-C₆H₄)₃], 17 O enriched H₂O was found to give the complex [PdCI(tppts)₃]⁺ as well as Pd(II) reduction to Pd(0). 555 The reactions were analyzed via 17 O, 31 P, and 35 CI NMR. 555

Complexes MLi₄[Si(3,5-Me₂pz)₃]₄ (**86**) (M = Pd, Pt; 3,5-Me₂pz = 3,5-dimethylpyrazolyl) were characterized via several NMR spectroscopies, including ⁷Li, ⁷Li-¹⁵N gHMQC, ¹H-²⁹Si gHMQC, and ⁷Li-¹⁹⁵Pt HMQC (M = Pd, δ_{Li} 4.23, δ_{N} 235.4 and 288.0, δ_{Si} 20.3; M = Pt, δ_{Li} 5.22, δ_{N} 236.2 and 288.9, δ_{Si} 3.7, δ_{Pt} -6639).⁵⁵⁶

9.3. Platinum complexes

¹⁹⁵Pt NMR is one of most widely used transition metal NMR spectroscopies⁵⁵⁷⁻⁵⁵⁸ primarily because platinum chemistry encompasses many areas, including catalysis and

anticancer drugs.⁵⁵⁹ ¹⁹⁵Pt NMR shits span a wide range of 13000 ppm.⁵⁵⁸ ¹⁹⁵Pt NMR was reviewed in 2006⁵⁵⁷ and 2007.⁵⁵⁸ NMR of ¹⁹⁵Pt and ligand donor atoms in metal complexes in aqueous solutions was reviewed in 2016.³⁹⁹ In addition, chemometric uses of ¹⁹⁵Pt NMR were reviewed in 2006.⁵⁵⁹ Thus, the current article focuses on the publications between 2006 and 2019.

Pt complexes studied by ¹⁹⁵Pt NMR include those at 0, I, II, III and IV oxidation states. Among the publication discussed below, a small number of papers were about organometallic complexes containing Pt-C bonds. Thus, we will discuss here the publications on ¹⁹⁵Pt NMR by oxidation states of the Pt complexes, including both coordination and organometallic compounds.

Pt(0) complexes $[(Cy_3P)_2Pt \rightarrow (\mu-M) \leftarrow Pt(PCy_3)_2][B(3,5-Cl_2-C_6H_3)_4]$ (M = Ag, TI) containing bridging, unsupported Ag⁺ and TI⁺ cations, were prepared from Pt(PCy_3)_2 and MB(3,5-C₆H₃Cl₂)₄. ⁵⁶⁰ ¹⁹⁵Pt NMR spectra of the two products, at δ -4853 and -4697, respectively, revealed a large deshielded shift compared to the starting material Pt(PCy_3)₂ (δ -6501), as a result of donating electrons from Pt(0) atoms to M⁺ cation. ⁵⁶⁰

¹⁹⁵Pt NMR was used to characterize the derivatives of Pt(I) phosphinito-bridged dimer $(Cy_2HP)Pt(\mu-PCy_2)(\kappa^2O,P-\mu-O-PCy_2)Pt(PHCy_2)$ (87, Figure 6; ¹⁹⁵Pt NMR: δ_{Pt}^A -4798; δ_{Pt}^B -5205) with a Pt-Pt bond, ⁵⁶¹ such as its sulfur derivative $Cy_2HP)Pt(\mu-PCy_2)(\kappa^2S,P-\mu-S-PCy_2)Pt(PHCy_2)$ [¹⁹⁵Pt NMR: Pt^A, δ -5218; Pt^B, δ -5376]. For the diphosphinito-bridged dimer $(Cy_3P)Pt(\mu-PCy_2)^2Pt(PCy_3)$ with a Pt-Pt bond, ¹⁹⁵Pt resonance was observed at δ -5554. ⁵⁶¹

$$Cy_{2}HP \longrightarrow Pt^{A} \longrightarrow Pt^{B} \longrightarrow PHCy_{2} + excess HI \longrightarrow Cy_{2}HP \longrightarrow Pt^{A} \longrightarrow Pt^{B} \longrightarrow PHCy_{2}$$

$$(87) \qquad (88)$$

Figure 6. Reaction of **87** with HI to give the hydride-bridged complex **88**. The bridging phosphinito ligand uses one σ bond and one dative bond to bind to the Pt atoms, although it is a nearly symmetric bridging ligand in **87**.

In Pt(II) chemistry, protonation of Pt(I) 87 with Brønsted acids led to oxidation of the Pt(I) complex to Pt(II) hydride-bridged Pt-Pt complexes, such as anti-I(Cy₂HP)Pt(u-PCy₂)(u-H)Pt(PHCy₂)I (88, Figure 6; ¹⁹⁵Pt NMR: Pt₁, δ -5723, Pt₂, δ -5550). ⁵⁶² NMR studies, including ¹⁹⁵Pt and ¹⁵N, were used to characterize Pt(II) chloride complexes (N,N)PtCl₂ with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen).⁵⁶³ The ¹⁹⁵Pt and ¹⁵N shifts of the complexes are given in Table 13. Various alkyl and aryl derivatives of bpy and phen, such as 5,5'-dimethyl-2,2'-bipyridine (5,5'-dimethyl-bipy), 6,6'-dimethyl-2,2'-bipyridine (6,6'-dimethylbipy), and 2,9-dimethyl-1,10-phenanthroline (2,9-dimethyl-phen), were also prepared and probed by NMR.⁵⁶⁴ The ¹⁹⁵Pt and ¹⁵N shifts of the complexes are given in Table 13. ¹⁹⁵Pt shifts of square-planar Pt(II) complexes PtX_mY_{4-m}² (1 \leq m \leq 4; X, Y = Cl⁻, Br⁻, l⁻)⁵⁶⁵ and Pt(η^2 -CH₂=CH₂)(2,9-dimethyl-phen)XY⁵⁶⁵⁻⁵⁶⁷ showed an inverse linear relationship with the overall sum of ionic radii of halide ligands, suggesting the existence of electric pseudo-ring currents circulating around the Pt-X axes and modulated by the ionic radius of the coordinated halides. 566-567 Pt(II) complex trans(N,N)-[Pt(2ppy*)(2-phenylpyridine)CI] with an N(1),C(2')chelated, deprotonated 2-phenylpyridine ligand (2ppy*) was also studied. 568 Pt(II) complex [Pt(NH₃)₃(1-methylcytosine)](ClO₄)₂, containing a mono-dentate 1-methylcytosine (89) ligand, shows ¹⁹⁵Pt shift at δ -2601.⁵⁶⁹ Pt(II)-Ag(I) complexes in **Figure 7** were prepared and the more shielded shifts of the ¹⁹⁵Pt resonances in the complexes [than those of the starting Pt(II) complexes] were interpreted as the result of no direct Pt(II) to Aq(I) binding in the products.⁵⁷⁰ ¹⁹⁵Pt NMR was used to characterize Pt(II) imine and/or oxadiazoline complexes, such as trans- $PtCl_2(mip)(N = CCH_2CO_2Me)$ [90; δ -2250; mip = NH=C(CH₂CO₂Me)ON=CMe₂ using its imine N atom to bind to the Pt(II) ion] and cis-PtCl₂(mip)₂ (δ -2068).⁵⁷¹ ¹⁹⁵Pt shifts of these complexes

were in the δ -2050 to -2330 range.

Table 13. ¹⁹⁵Pt and ¹⁵N NMR shifts of Pt(II) alkyl and aryl derivatives of bpy and phen⁵⁶³⁻⁵⁶⁴

Complexes	¹⁹⁵ Pt shifts (δ)	¹⁵ N shifts		
trans-Pt(py)₂Cl₂	-1952	-182.3		
cis-Pt(py) ₂ Cl ₂	-2002	-168.0		
Pt(bpy)Cl ₂	-2331	-177.9		
Pt(phen)Cl ₂	-2345	-180.0		
Pt(5,5'-dimethyl-bpy) ₂ Cl ₂	-2315	-178.7		
Pt(6,6'-dimethyl-bipy)Cl ₂	-1888	-167.0		
Pt(2,9-dimethyl-phen)Cl ₂	-1901	-175.2		

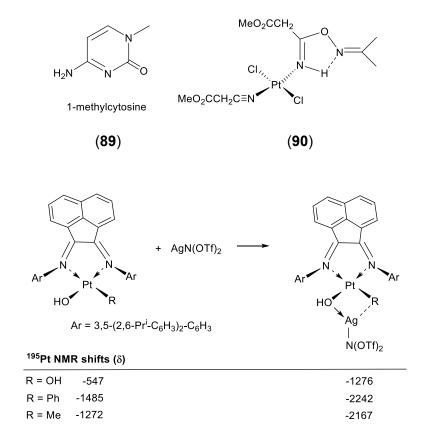
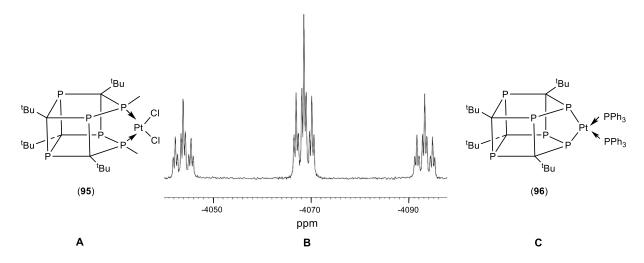


Figure 7. Formation of Pt(II)–Ag(I) complexes and a comparison of ¹⁹⁵Pt shifts of the starting

materials and products.


Bioinorganic Pt(II) complexes were also characterized by ¹⁹⁵Pt NMR. Mixing *cis*-[Pt(NH₃)₂(9-EtGH)Cl](NO₃) containing mononucleobase 9-ethylguanine (9-EtGH = **91**) with 5'-guanosine monophosphate (5'-GMP = **92**) and *N*-acetylmethionine (*N*-ac-L-Met = **93**) in water led to the Cl⁻ replacement and formation of *cis*-[Pt(NH₃)₂(9-EtGH)(5'-GMP)]²⁺ and *cis*-[Pt(NH₃)₂(9-EtGH)(*N*-ac-L-Met)]²⁺, showing ¹⁹⁵Pt peaks at δ -2432 and -2983, respectively.⁵⁷² Reaction of [Pt(dien)Cl]Cl [dien = diethylenetriamine HN(CH₂CH₂NH₂)₂] with selenomethionine [MeSe(CH₂)₂CH(NH₂)COOH, a naturally occurring amino acid, abbreviated as SeMet], gave Pt(dien)(SeMet)²⁺ containing a Pt-Se bond as a product, showing ¹⁹⁵Pt shift at δ -3420.⁵⁷³ Analogs of the Pt-Se complex were also characterized by ¹⁹⁵Pt NMR.⁵⁷³ Reaction of Pt(PPh₃)₄ with dipyrimidyldiselenide (**94**) led to the oxidation of the Pt(0) complex to the pyrimidyldiselenide Pt(II) complex *trans*-Pt(SeC₄H₃N₂)₂(PPh₃)₂ containing two Pt-Se bonds with ¹⁹⁵Pt shift at δ -5120 as a triplet due to coupling with two equivalent ³¹P nuclei.⁵⁷⁴

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_3N
 H_4
 H_5
 H_5
 H_5
 H_5
 H_7
 H_8
 H_8
 H_8
 H_8
 H_8
 H_9
 H_9

The atoms that form datives bonds with Pt(II) ions are shown in red color.

Pt(II) complex (**95**) with an opening "jaw" ligand dative-bonded to the Pt(II) ion in **Figure 8-A** gave its ¹H-decoupled ¹⁹⁵Pt NMR resonance at δ -4068 as a triplet of a triplet of a triplet through couplings to three types of P atoms with ¹ J_{Pt-P} = 3165 Hz, ² J_{Pt-P} = 204 Hz and ³ J_{Pt-P} = 57

Hz (**Figure 8-B**).⁵⁷⁵ In another Pt(II) complex (**96**) with an opening "jaw" ligand that was σ-bonded to the Pt(II) ion in **Figure 8-C**, ¹⁹⁵Pt NMR resonance was observed at δ -4826.⁵⁷⁶

Figure 8. (**A**) Pt(II) complex **95** with an opening "jaw" ligand dative-bonded to a Pt(II) ion; (**B**) 1 H-decoupled 195 Pt NMR spectrum of **95**; (**C**) Pt(II) complex **96** with an opening "jaw" ligand σ-bonded to a Pt(II) ion.

¹⁹⁵Pt NMR was used to characterize Pt(II) organometallic complexes, including Pt(COMe)Cl(PPh₂[o-CH(O₂C₂H₄)-C₆H₄]) (**97**, δ -3509) and Pt(COMe)Cl(PPh₂[o-CH(O₂C₂H₄)-C₆H₄])₂ (**98**, δ -3847).⁵⁷⁷ Pt(II) complex **99**, containing a diselenastanna-annelated dicarba-*closo*-dodecaborane ligand, was characterized by multinuclear NMR, giving ¹⁹⁵Pt (δ -574 referenced to Ξ = 21.4% which is different from 21.496784 MHz in Table 12), ¹¹⁹Sn (δ 58), and ³¹P shifts (δ 23.8 for P^A and 14.6 for P^B).⁵⁷⁸ An analog of **99** containing the SnPh₂ group was also studied by NMR.⁵⁷⁸ Stilbene-based Pt(II) complex **100** in **Figure 9** shows long-range through-bond communication, as multi-nuclear NMR studies show.⁵⁷⁹ This complex is unstable, converting to the product **101** through oxidative addition of the Br-C bond.

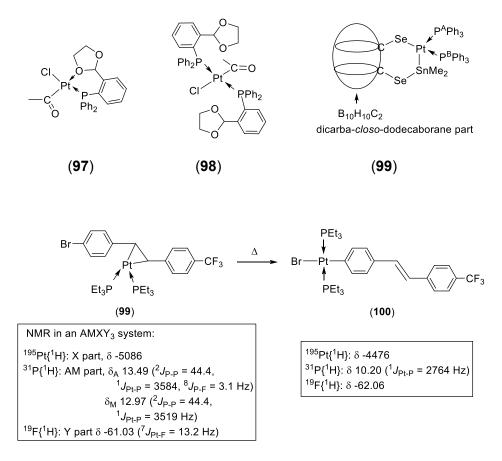


Figure 9. Conversion of 100 to 101 and their NMR properties.

For Pt(III) chemistry, ¹⁹⁵Pt and ²⁰⁵TI NMR were used to characterize $(O_3N)(H_3N)_2$ Pt(µ-NHCOBut)₂TI(NO₃)₂(MeOH) (¹⁹⁵Pt, δ -980; ²⁰⁵TI, δ -874; ¹J_{TI-Pt} = 1.468 x 10⁵ Hz) and [[(O₃N)(H₃N)₂Pt(µ-NHCOBut)₂]₂TI]PF₆ (¹⁹⁵Pt, δ -1133; ²⁰⁵TI, δ -1562; ¹J_{TI-Pt} = 8.884 x 10⁴ Hz), which contain one Pt-TI bond and two Pt-TI bonds, respectively.⁵⁸⁰ The large ¹J_{TI-Pt} values for the two complexes are consistent with the presence of Pt-TI bonds in the complexes. X-ray photoelectron spectra (XPS) studies show that the Pt oxidation states are close to that of Pt(III).⁵⁸⁰ A series of head-to-head and head-to-tail amidate-bridged Pt(III) dinuclear complexes, such as **102** and **103**, were probed by ¹⁹⁵Pt NMR.⁵⁸¹ The chemical shifts of the two Pt ions (δ 393 and -844) in the head-to-head isomer **102**, in comparison to δ -265 of the head-to-tail isomer **103**, suggested that the Pt^A and Pt^B ions were likely at IV and II oxidations,

respectively.⁵⁸¹ ¹⁹⁵Pt NMR was used to study several mixed Pt(II),Pt(III) phosphide derivatives, such as $(C_6F_5)_2$ Pt^A(μ -PPh₂)₂Pt^C(μ -PPh₂(μ -PPh₂)₂Pt^C(μ -PPh₂)₂Pt^C(μ -PPh₂(μ -PPh₂(μ -P

For Pt(IV) chemistry, ¹⁹⁵Pt NMR was used to investigate the distribution of Pt(IV) products after oxidation of PtCl₄²⁻ by NaClO₃, NaBrO₃, and H₂O₂ in acidic solutions and, for comparison, by H₂O₂ in water. ⁵⁸³ $^{35/37}$ Cl and ^{16/18}O isotope-resolved ¹⁹⁵Pt NMR spectra at 128.8 MHz showed unique spectroscopic 'fingerprints' for unambiguous speciation of PtCl_m(H₂O)_{6-m}^{4-m} (m = 2–5) complexes in an acidic aqueous solution. ⁵⁸⁴ The detailed fine structure of ¹⁹⁵Pt resonance was readily accounted for by an isotopologue and isotopomer model for each complex, showing noticeable differences between stereoisomer pairs such as the *cis/trans*- and *fac/mer*-complexes. ⁵⁸⁴ For hydroxide derivatives PtCl_n(OH)_{6-n}²⁻ (n = 1-5), analysis of their ^{35/37}Cl and ^{16/18}O isotope-resolved ¹⁹⁵Pt NMR spectra showed that the greater *trans* influence of the ligands in the order OH⁻ > Cl⁻ > H₂O resulted in slightly longer Pt–Cl bonds *trans* to the OH⁻ ligands in PtCl_n(OH)_{6-n}²⁻ (n = 1-5) (n = 1-5), resulting in the absence of isotopomer effects in contrast to PtCl_m(H₂O)_{6-m}^{4-m} (m = 2–5). ⁵⁸⁵ ¹⁹⁵Pt shifts of PtX_mY_{6-m}²⁻ (1 ≤ m ≤ 6; X, Y = F⁻, Cl⁻, Br, l⁻) showed an inverse linear relationship with the overall sum of ionic radii of halide ligands, ⁵⁶⁵⁻⁵⁶⁶ as Pt(II) complexes PtX_mY_{4-m}²⁻ (1 ≤ m ≤ 4; X, Y = Cl⁻, Br, 1) ⁵⁶⁵ and Pt(η ²-CH₂=CH₂)(2,9-dimethyl-

phen)XY⁵⁶⁵⁻⁵⁶⁷ discussed earlier in the paragraph on Pt(II) chemistry. ¹⁹⁵Pt NMR study of the speciation of aqueous PtCl₆²⁻, PtBr₆²⁻, and the mixed PtCl_{6-m}Br_m²⁻ (m = 0-6) anions by OH-substitution was probed. ⁵⁸⁶ Of the 56 possible PtCl_{6-m-n}Br_m(OH)_n²⁻ (m, n = 0-6) complex anions in solution under dynamic conditions, ¹⁹⁵Pt shifts of 52 observable species [spanning over the range of δ 3275 for Pt(OH)₆²⁻ to -1882 for PtBr₆²⁻] were assigned, 33 of which had not been reported previously. ⁵⁸⁶ ¹⁹⁵Pt NMR was used to characterize *cis* bis-stibine complex PtMe₃I[MeN(CH₂-2-C₆H₄SbMe₂)₂] (δ -4400) prepared from PtMe₃I and the bis-stibine compound. ²⁶⁵

Many theoretical and computational studies were conducted in 2007-2019, often involving different DFT methods, to investigate 195 Pt NMR shifts/shielings in a variety of complexes. $^{587-601}$ The complexes included anticancer agents, $^{593-594,598-599,601}$ Pt=O compounds, 587,589 PtX_mY_{6-m}²⁻ (1 ≤ m ≤ 6; X, Y = F⁻, Cl⁻, Br, l⁻), 588,590 products from speciation and hydration/solvation of PtX₆²⁻ (X = Cl⁻, Br), 592,600 and azides (Pt-N₃). 596 Correlation between 195 Pt shifts and electronic transitions among d orbitals in pincer NCN Pt(II) complexes was studied. 591 195 Pt NMR of Pt(NHC-Dip₂)(SiMe₃)₂ [104, NHC-Dip₂ = 2,6-diisopropylphenyl-containing N-heterocyclic carbine] with an unusual Y-shaped structure was significantly different from those of Pt(II) complexes but close to those of typical Pt(0) complexes. Theoretical study showed that Pt(NHC-Dip₂)(SiMe₃)₂ was more likely a Pt(0) σ -disilane (105) rather than a Pt(II) disilyl complex (104). 597

Reactions of Pt(0) Pt(C₂H₄)(PEt₃)₂ with diselenides RSeSeR [R = Ph, Fc (ferrocenyl)] gave oxidative addition products *trans*-Pt(SeR)₂(PEt₃)₂, giving ⁷⁷Se NMR shifts of the products [R = Ph, δ 78; R = Fc (Fc = ferrocenyl), δ -47 referenced to SeMe₂].⁶⁰² Pt[TeC₄H(4,6-Me)₂N2]₂(dppm) (**106**) with two pyrimidyltelluride ligands gave the ¹²⁵Te resonance at δ -472 (referenced to TeMe₂).⁵⁷⁴

¹H-¹⁹⁵Pt HMBC of a Pt(IV) mono azido mono triazolato complex (**107**) revealed two ¹⁹⁵Pt environments (δ 689 and 785) that showed the complex was in a dynamic exchange (**Figure 10**).⁶⁰³ This complex was also characterized by other NMR techniques including COSY and ROESY.⁶⁰³

Figure 10. Dynamic exchange between two isomers of complex 107

Pt(II) complexes with selenium adducts of germa- and stanna-*closo*-dodecaborate Pt(dppp)(Se-GeB₁₁H₁₁)₂²⁻ and Pt(dppp)(Se-SnB₁₁H₁₁)₂²⁻ (**108**) were characterized by NMR including ³¹P [δ -3.3 (Ge complex) and -1.8 (Sn complex)], ⁷⁷Se [δ -227.9 (Ge complex), -108.3 (Sn complex)], ¹⁹⁵Pt [δ -4777 (Ge complex), -4726 (Sn complex)], and ¹¹⁹Sn [δ -338 (Sn complex)]. ⁶⁰⁴

(Et₃RN)₂
$$Ph_2$$
 Se Ph₂ Se Ph₂ Ph_2 Ph_2

A series of organotin platinum complexes, such as *cis*- and *trans*-PtPh(Sn₂Ph₅)(PEt₃)₂ and Pt complexes with bidentate bisstannylene ligands, were synthesized and characterized via ³¹P and ¹¹⁹Sn NMR.⁶⁰⁵⁻⁶⁰⁶

In order to generate a silylene complex, (dippe)PtMeCl [dippe = $Pr_2^iP(CH_2)_2PPr_2^i$] reacted with (thf)₂LiSiHMes₂ (Mes = 2,4,6-Me₃-C₆H₂). The product was found to be a silyl complex, (dippe)PtMe(SiHMes₂), and was analyzed by NMR (²⁹Si, δ -28.70; ³¹P, δ 66.54).⁶⁰⁷ Reaction of the silyl complex (dippe)PtMe(SiHMes₂) with B(C₆F₅)₃ yielded the silylene hydride [(dippe)(H)Pt(=SiMes₂)][MeB(C₆F₅)₃] (³¹P, δ 77.2; ¹⁹F, δ -132.2, -165.1, -167.2; ²⁹Si, 338.1).⁶⁰⁷

Both 1- and 2-D 15 N NMR were used to study Pt complexes, including anticancer compounds, Pt-DNA complexes, *cis*-platin, and other Pt complexes with Pt-N interactions. $^{608-622}$ For example, hydrolysis of the 15 N-labeled anticancer complexes *cis*-PtCl₂(NH₃)(2-picoline) and *cis*-PtCl₂(NH₃)(3-picoline) were monitored via 1 H- 15 N HSQC. 614 After 1 hour, the cross-peaks (δ_{H}/δ_{N}) in *cis*-PtCl₂(NH₃)(2-picoline) went from δ_{H} (4.15)/ δ_{N} (-66.52) to δ_{H} (4.40)/ δ_{N} (-64.41) and δ_{H} (4.32)/ δ_{N} (-87.25). 614 These peaks pertained to the hydrolysis of the Cl⁻ *trans* to the 2-picoline and NH₃ ligands, respectively. 614 After 2.5 hours, both Cl⁻ ligands were replaced as shown by a

new cross-peak at δ_H (4.41)/ δ_N (-82.91).⁶¹⁴ A similar experiment was conducted on the *cis*-PtCl₂(NH₃)(3-picoline), and the results were compared.⁶¹⁴ Both of the Cl⁻ ligands in the 2-picoline Pt complex hydrolyzed more slowly than those in the 3-picoline Pt complex.⁶¹⁴ In the 3-picoline Pt complex, the Cl⁻ ligand *trans* to NH₃ hydrolysed faster than that *trans* to 3-picoline.⁶¹⁴

A family of platinum bis-boryl complexes, such as $Pt(PPh_3)_2(Bpin)(Bcat)$ (109, pin = 1,2- $O_2C_2Me_4$, cat = 1,2- $O_2C_6H_4$), were prepared via oxidative addition of unsymmetrical diborane derivatives and analyzed via ¹¹B NMR.⁶²³ Water exchange on (NCN)Pt(H₂O)+ [110, N,C,N = 2,6-(CH₂NMe₂)₂-C₆H₃] was monitored as a function of pressure and temperature via ¹⁷O NMR.⁶²⁴

¹⁵N-labeled complexes Pt(Se₂¹⁵N₂)(PMe₂Ph)₂ (**111**) and Pt(TeS¹⁵N₂)(PMe₂Ph)₂ (**112**) have were also analyzed via ⁷⁷Se, ¹²⁵Te, and ³¹P NMR.⁶²⁵ The following shifts were observed: For **111**, δ_{Pt} -4050, δ_{Se} A 1819, δ_{Se} B 1383, δ_{I5} NA 486, δ_{I5} NB 402; For **112**, δ_{Te} 1196, δ_{I5} NA 360, δ_{I5} NB 256.⁶²⁵

Characterization of $PtLi_4[Si(3,5-Me_2pz)_3]_4^{556}$ (86) was discussed in Section 9.2. For ⁷⁷Se NMR of $(NBu^n_4)_2[Pt(C_3Se_5)_2]$ with a diselenolate ligand, ⁶²⁶ see Section 12.2.

10. Group 11 (Cu, Ag and Au)

For Cu and Ag, NMR of both the metals (⁶³Cu, ¹⁰⁹Ag) and ligands were reported in 1990-2019. For Au, we found only papers on NMR of ligands. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 14.

Table 14.26 Nuclear and NMR properties of 63Cu, 65Cu, 107Ag, 109Ag and 197Au

Nuclide	Natural abun- dance (%) ^a	Spin	Relative receptivity		Gyromagnetic	Quadrupole	Ξ (and frequency,	
			<i>D</i> ^H (¹ H = 1.00)	<i>D</i> ^C (13C = 1.00)	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	moment Q (fm²)	MHz; ¹ H = 100.0000 MHz, 2.3488 T)	Reference sample
⁶³ Cu	69.15	3/2	6.50 × 10 ⁻²	382	7.1117890	-22.0	26.515473	[Cu(MeCN) ₄]
⁶⁵ Cu	30.85	3/2	3.54 × 10 ⁻²	208	7.60435	-20.4	28.403693	CIO ₄ (MeCN)
(¹⁰⁷ Ag) ^b	51.839	1/2	3.50 x 10 ⁻⁵	0.205	-1.0889181	-	4.047819	A = N(O (= =)
¹⁰⁹ Ag	48.161	1/2	4.94 x 10 ⁻⁵	0.290	-1.2518634	-	4.653533	AgNO₃ (aq)
¹⁹⁷ Au ^c	100	3/2	2.77 x 10 ⁻⁵	0.162	0.473060	54.7	(1.729) ^d	-

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

10.1. Copper complexes

Of the two nuclides, both with spin 3/2, ⁶³Cu is more than twice as abundant as ⁶⁵Cu and has larger relative receptivities. Thus, ⁶³Cu was typically selected for Cu NMR, although both ⁶³Cu and ⁶⁵Cu were used. ⁶²⁷ Of the two principal oxidation states for copper, Cu(II) complexes with d⁹ configuration are often paramagnetic, while Cu(I) complexes are diamagnetic. We found publications in 1999-2019 on ⁶³Cu NMR of Cu(I) complexes.

⁶³Cu NMR of inorganic compounds was reviewed in 1999.⁶²⁷ Thus, we focus on publications on Cu NMR in 1999-2019 in the current review.

^b ¹⁰⁷Ag in parenthesis is considered to be the less favorable of the element for NMR.

^c Although we did not find reports of ¹⁹⁷Au NMR, it is listed here for comparison.

^d Value in parenthesis was calculated from literature data on nuclear magnetic moments.

Temperature effect on ⁶³Cu NMR on the nitrile complex [Cu(PhCN)₄]BF₄ was studied. ⁶²⁸ ⁶³Cu NMR line widths of CuOTf and CuClO₄ in acetonitrile solutions containing salts, water or Cl⁻ were also investigated. ⁶²⁹ Studies of solvation of Cu(I) salts, such as CuClO₄ in mixed solvents of MeCN or PhCN containing other nitriles (EtCN, PrⁱCN), dmso, or D₂O, probed by ⁶³Cu/⁶⁵Cu NMR were reviewed. ⁶³⁰

Cu phosphine complex [Cu(dppmb)₂]BF₄ [dppmb = 1,2-bis(diphenylphosphin omethyl)benzene, o-(CH₂PPh₂)₂-C₆H₄] gave a ⁶³Cu resonance at δ 193, which is typical for Cu(I)-P₄ complexes. ⁶³¹ Similarly, phosphine perfluorinated carboxylates, such as [Cu(dppp)₂](OOCC₂F₅), showed broad ⁶³Cu bands at ca. δ 230. ⁶³² ⁶³Cu NMR was used to characterize several Cu(I) phosphite perfluorinated carboxylates, such as Cu₂[P(OPh)₃]₄(µ-OOCC₂F₅)₂ (δ 105), showing that ⁶³Cu shifts of the phosphites were more shielded than those of phosphine analogs. ⁶³³ ⁶³Cu NMR studies of Cu(I) complexes with P-donor ligands, such as phosphines and phosphites, were reviewed in 2006. ⁶³⁴

In addition to complexes with N- and P-containing ligands, Cu(I) compounds with Sb-containing stibine ligands were characterized by 63 Cu NMR. [Cu(R₂SbCH₂SbR₂)₂]PF₆ (R = Me, Ph) showed 63 Cu resonances at δ -170 (R = Me) and -197 (R = Ph). 635 Their analogs, [Cu(dmsmb)₂]BF₄ [dmsmb = 1,2-bis(dimethylstibanylmethyl)benzene, o-(CH₂SbMe₂)₂-C₆H₄] and [Cu(bdmsa)₂]BF₄ [bdmsa = bis(2-dimethylstibanylbenzyl)methylamine, MeN(CH₂-o-SbMe₂-C₆H₄)₂] showed 63 Cu resonance at δ -171 446 and -203, 265 respectively.

Cu(I) complexes containing chalcogen (S, Se, Te) elements were also studied by 63 Cu NMR, including [Cu[o-(CH $_2$ EMe) $_2$ -C $_6$ H $_4$] $_2$]BF $_4$ (E = S, 63 Cu δ 132; E = Se, 63 Cu δ -2, 77 Se δ 87; E = Te, 63 Cu δ 16, 125 Te δ 98). 636 Di-tellurium substituted 18-crown-6, 1,4,10,13-tetraoxa-7,16-ditelluracyclooctadecane ([18]aneO $_4$ Te $_2$, an analog of **1** shown earlier), used its two Te atoms to bind to the Cu(I) ion as a ligand to give [Cu([18]aneO $_4$ Te $_2$) $_2$]BF $_4$, showing resonances of 63 Cu δ -59 and 125 Te δ 166. 637

A series of organometallic Cu(I) carbonyl complexes with tridentate N,N,N ligands were

investigated by 63 Cu NMR, including Tp*Cu-CO (δ 716), [(TpC)Cu-CO]ClO₄ [δ 504, TpC = tris(2-pyridyl)carbinol (**113**)], and [(Me-tacd)Cu-CO]ClO₄ [δ 585, Me-tacd = 1,5,9-trimethyl-1,5,9-triazacyclododecane (**114**)]. 638 Intermetalloid cluster Cu@Sn₉³⁻ in [K([2.2.2]-cryptand)]₃[Cu@Sn₉] [[2.2.2]-cryptand = **115**] showed 63 Cu and 119 Sn resonances at δ -330 and -1440 ($^{1}J^{119}$ Sn-Cu = 280 Hz), respectively. 639 The crystal structure of the cluster revealed that the Cu(I) is in the center of the cluster with an almost spherical environment.

⁶⁵Cu NMR of the Cu⁺ site in blue copper protein azurin in frozen solution was investigated at 10 K using an 800 MHz (18.8 T) spectrometer, giving a ⁶⁵Cu quadrupole coupling constant of ±71.2 MHz which corresponds to an electric field gradient of ±1.49 atomic units at the Cu site and an asymmetry parameter of ~0.2.⁶⁴⁰ Azurin is a small, periplasmic, bacterial blue copper protein. The sample used here was 97% ⁶⁵Cu-enriched. The studies here provided the nuclear quadrupole interaction as an exquisitely sensitive measure of the electron density around Cu(I) ion and the electronic structure and environment. Earlier experiments to obtain nuclear quadrupole interactions in Cu(I) complexes and the reduced form of the enzyme superoxide dismutase were conducted at zero field by nuclear quadrupole resonance (NQR).⁶⁴⁰

For NMR of ligands, reactions of O-phospho-L-serine [Ser-P = $(HO)_2P(=O)OCH_2CH(NH_2)CO_2H$] with Cu(II) ions were conducted in order to investigate the coordination of the Cu ion with the amine, carboxyl, or phosphate groups in Ser-P.⁶⁴¹ ^{1}H - ^{15}N NMR by the HETCOR method was used to determine if the Cu ion was coordinating to the

amine group. 641 The amine and carboxyl groups were involved in coordination in Cu(Ser-P)2. 641

¹⁷O NMR was used to study the effects of the pressure, temperature, and magnetic field on the water or solvent exchange reactions of $[Cu(tmpa)(H_2O)]^{2+}$ [116, tmpa = tris(2-pyridylmethyl)amine],⁶⁴² $[Cu(fz)_2(H2O)]^{2-}$ [117, fz = ferrozine or 5,6-bis(4-sulfonatophenyl)-3-(2-pyridyl)-1,2,4-triazine],⁶⁴² $[Cu(tren)(H_2O)]^{2+}$ (118, tren = 63),⁶⁴³ and $[Cu(dmf)_6]^{2+}$ (119).⁶⁴⁴

10.2. Silver complexes

NMR of 109 Ag (spin 1/2) was considered challenging mostly due to its low \varXi value and relative receptivities/sensitivity (Table 14). 69

Complexes characterized by ¹⁰⁹Ag NMR that we found were those at Ag(I) oxidation state.

In Ag complexes coordinated by N-containing ligands, [Ag(NH₃)₂]NO₃ in aqueous

NH₃(ag) solution and [Ag(NH₃)₃]NO₃ in liquid NH₃(I) showed ¹⁰⁹Ag shifts of δ ~450 and ~570, respectively. 645 These shifts were compared with those of Ag⁺ salts (AgNO₃ or AgClO₄) in other liquids such as CD₃CN ($\delta \sim 240$), PBuⁿ₃ ($\delta \sim 1125$) and P(OMe)₃ ($\delta \sim 1260$). The effect of anions was negligible.⁶⁴⁵ Dinitramide compounds AqN(NO₂)₂, [Aq(MeCN)][N(NO₂)₂], and [Ag(py)₂][N(NO₂)₂] were studied by ¹⁰⁹Ag and ¹⁴N NMR with the chemical shifts listed in Table 14.646 109 Ag shift of $[Ag(py)_2][Au(CF_3)_2]$ was found to be at δ 404.647 When $[Ag(9-EtGH)_2]NO_3$ [9-EtGH = 9-ethylguanine (91)] was dissolved, ¹⁰⁹Ag NMR showed the equilibria involving the 1:1 complex of Ag:ligand. 648 The 109 Ag shift became gradually more deshielded from $\delta \sim 200$ (at the Ag:ligand ratio = 1:2) to $\delta \sim 245$ (at 1:4 ratio). 648 For the disilver cryptate complex (120) with a thiophene-spaced azacryptand hexa Schiff base, ¹H NMR spectrum revealed three-bond (H-C=N-Ag) coupling of imino CH proton atoms to ^{107,109}Ag, which was confirmed by the ¹⁰⁹Ag INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) spectrum with a peak at δ ~610.649 Structure of an Ag(I)-mediated cytosine-Ag(I)-cytosine base pair within DNA duplex (121) was determined with solution NMR, showing ¹J¹⁵N-Aq = 83 and 84 Hz and the N3–Aq–N3 linkage. 650 The 109 Ag and 15 N (of the N atom bound to the Ag ion) shifts were δ 442 and \sim 172, respectively. 650 Reaction of AgPF₆ with the chiral 5,6-Chiragen ligand (122), containing two condensed α-pinene/bipyridine units, gave an enantiomerically pure, helicate [Ag₆(5,6-Chiragen)₆](PF₆)₆ in the hexagonal shape. ⁶⁵¹ ¹⁰⁹Ag NMR spectrum of the hexamer (δ 224) at 221 K showed its equilibrium with the tetramer [Ag₄(5,6-Chiragen)₄](PF₆)₄ (δ 249).⁶⁵² Ir-Ag mixed metal complexes Cp*(pz)Ir(μ-pz)₃Ag(PPh₃) and [(Ph₃P)Ag^A(μ-pz)Cp*Ir(μ-pz)₂Ag^B(PPh₃)]BF₄ (123, py = pyrazole) were characterized by 107,109 Ag NMR. 653 For Cp*(pz)Ir(μ -pz)₃Ag(PPh₃), 109 Ag shift was observed at δ 902.8; 15 N shifts were obtained at N(-Ir) δ -165.5 and N(-Ag) at δ -93.1 with ${}^{1}J_{15}_{N-15}_{N}$ = 14.2 Hz, ${}^{1}J_{15}_{N-Aq}$ = 38 Hz and ${}^{2}J_{15}_{N-Aq-P}$ = 13.6 Hz.⁶⁵³ For (123), ¹⁰⁹Ag shifts are at δ 884.3 (for Ag^B) and 562.9 (Ag^A). Its N(-Ir) shifts at δ -168.5 to -170.8 and N(-Ag) shifts at δ -90.7 to -105.2 with ${}^{1}J_{15}N_{-}15N_{-} = 13.5-13.7$ Hz, ${}^{1}J_{15}N_{-}Aq_{-} = 36.5-73.8$ Hz and ${}^{2}J_{15}N_{-}Aq_{-}P_{-} = 13.2-18.5$

Hz.⁶⁵³ Trisilver complex (**124**) with a chiral ferrocene ligand was studied as a model homogeneous catalyst.⁶⁵⁴ The number of coordinated P atoms and the coordination of the chiral side chain were determined using 109 Ag- 31 P, 109 Ag- 1 H, and 31 P- 1 H HSQC and HMQC, showing 109 Ag shifts at δ 690 (AgA) and 540 (AgB) in **124**. 654

Table 14. 109Ag and 14N NMR shifts of Ag(I) dinitramide compounds 646

Complexes	¹⁰⁹ Ag shifts (δ)	¹⁴ N shifts		
AgN(NO ₂) ₂	137	-17 (NO ₂), -73 [N(NO ₂) ₂]		
[Ag(MeCN) ₂][N(NO ₂) ₂]	212	-16 (NO ₂), -68 [N(NO ₂) ₂], -157 (MeCN)		
[Ag(py) ₂][N(NO ₂) ₂]	306	-13 (NO_2), -91 [$N(NO_2)_2$], py in the same region as		
		N(NO ₂) ₂ , making the two indistinguishable; py may		
		be displaced by solvent THF.		

In Ag complexes coordinated only by P-containing ligands, reactions of AgNO₃ with 1,2-bis(di-2-pyridylphosphino)ethane (d2pype = **125**) give monomer [Ag(d2pype)₂]NO₃ with the Ag(P,P)₂+ structure, dimer [(d2pype)Ag(μ -d2pype)₂Ag(d2pype)](NO₃)₂ with the [(P,P)Ag(μ -P,P)₂Ag(P,P)]²⁺-type cation and a trimer.⁶⁵⁵ ¹⁰⁹Ag shifts of the monomer and dimer at 243 K were observed at δ 1411 and 1417, respectively. The trimer and analogs with bis(di-*n*-pyridylphosphino)ethane (n = 3, 4) were also characterized by ¹⁰⁹Ag.⁶⁵⁵ For Ag(I) complex **126** with a B-templated catechol phosphine, ¹⁰⁹Ag shift was observed at δ 702 with ¹ J_{P} -^{107/109}Ag = 571/494 Hz.⁶⁵⁶

Complex with a tetradentate P,S,S,P ligand, [Ag[Ph₂P(CH₂)₂S(CH₂)₂S(CH₂)₂PPh₂]]BF₄, was characterized by 109 Ag NMR with the resonance at δ 1117. 657

For Ag(I) complexes with As- (arsine) and Sb (stibine)-containing ligands, several tetra-coordinated compounds were characterized by 109 Ag NMR, including [Ag(AsPh₃)₄]BF₄ (δ 1056), 658 [Ag(SbMe₃)₄]BF₄ (δ 1085), 658 [Ag(SbPh₃)₄]BF₄ (δ 1166), 658 and [Ag(dmap)₂]BF₄ [δ 1120, dmap = Me₂Sb(CH₂)₃SbMe₂]. 658 109 Ag shift of [Ag(dpsm)₂]BF₄ (dpsm = Ph₂SbCH₂SbPh₂) was observed at δ 521, suggesting that the complex is probably di-coordinated (Sb-Ag-Sb). 635

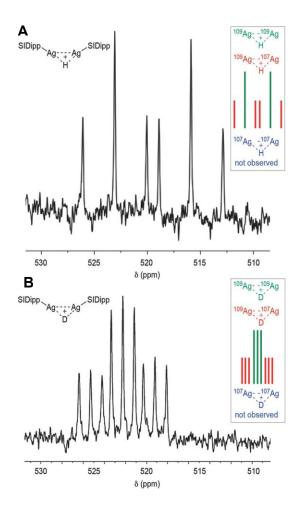
Ag(I) complexes containing chalcogen (S, Se, Te) elements were also studied by 109 Ag NMR, including [Ag[MeE(CH₂)₃EMe]₂]BF₄ (E = S, 109 Ag δ 840; E = Se, 109 Ag δ 829, 77 Se δ 41; E = Te, 109 Ag δ 1053, 125 Te δ 24) and their analogs with the PhE(CH₂)₃EPh ligands. 659 [Ag[o-

(EMe)₂-C₆H₄]₂]BF₄ (E = S, ¹⁰⁹Ag δ 788; E = Se, ¹⁰⁹Ag δ 912, ⁷⁷Se δ 180; E = Te, ¹⁰⁹Ag δ 1128, ¹²⁵Te δ 433), showing the more deshielded ¹⁰⁹Ag shift from the S, Se to the Te analog. ⁶⁶⁰ For other Ag-S complexes, reaction of Ag(I) ions with 1-methyl-2(3*H*)-imidazolinethione (Hmimt = **127**) led to the formation of [Ag(Hmimt)₃](NO₃), which showed by X-ray crystal diffraction to contain three Ag-S bonds, and showed ¹⁰⁹Ag δ 791.5. ⁶⁶¹ ¹⁰⁹Ag NMR of Ag(I) di-thiourea complex [Ag[S=C(NH₂)₂]₂]NO₃ revealed the resonance at δ 671.8, ⁶⁶² while mono-thiourea complex Ag[S=C(NH₂)₂]CN gave the resonance at δ 651.8. ⁶⁶³ A series of other Ag(I) substituted-thiourea and -thione complexes were characterized by ¹⁰⁹Ag NMR, ⁶⁶³⁻⁶⁶⁴ showing, e.g., ¹⁰⁹Ag δ 654.9 for mono-*N*, *N*-dimethylthiourea complex Ag[S=C(NHMe)₂]CN⁶⁶³ and δ 656.1 for di-*N*, *N*-dimethylthiourea complex [Ag[S=C(NHMe)₂]₂]NO₃. ⁶⁶⁴ Hydride complex (Buⁿ₄N)₅[Ag₈(H)[S₂CC(CN)₂]₆] containing Ag-S bonds with 1,1-dicyanoethylene-2,2-dithiolate (**128**) ligands showed ¹⁰⁹Ag δ 1136 and ¹H resonance of the hydride ligand at δ 9.65. ⁶⁶⁵

For Ag(I) complexes containing S ligands with biological applications, oligomeric Ag(I) thiomalate complex Na[Ag[O₂CCH(SH)CH₂CO₂]] with Ag-S bonds showed ¹⁰⁹Ag δ 868.7.⁶⁶⁶ Antimicrobial activities of such complexes were studied.⁶⁶⁶ Ag(I)-cysteine solution showed a mean Ag-S bond distance of 2.47(2) Å by EXAFS (extended X-ray absorption fine structure) and ¹⁰⁹Ag NMR resonance at δ 1103, which were consistent with the product being a partially oligomeric AgS₃ species.⁶⁶⁷ For Ag(I)-penicillamine solution, the mean Ag-S bond distance was 2.40(2) Å by EXAFS and ¹⁰⁹Ag NMR resonance was observed at δ 922, indicating that mononuclear AgS₂ coordinated complexes dominated in the solution.⁶⁶⁷ Here, the studies of the Ag(I)-cysteine and -penicillamine interactions stemmed from the historical use of Ag(I) in antimicrobial agents, as the increasing bacterial resistance against antibiotics renewed the interest in newer and more efficient Ag-based antimicrobial biomaterials.⁶⁶⁷

 109 Ag shift of (H₂NPri₂)Ag[PhCH=C(S)COO] containing the di-anionic O,S ligand PhCH=C(S⁻)COO⁻ was at δ 840.8.⁶⁶⁸ Ag(PPh₃)[PhCH=C(SH)COO] containing the mono-anionic O,SH ligand showed the 109 Ag shift at δ 936.3.⁶⁶⁹

For Ag-Se and Ag-Te complexes, see previous discussion on [Ag[MeE(CH₂)₃EMe]₂]BF₄ (E = S, Se, Te), 659 their analogs with the PhE(CH₂)₃EPh ligands, 659 and [Ag[o-(EMe)₂-C₆H₄]₂]BF₄ (E = S, Se, Te). 660 For other Ag-Se complexes, 107 Ag NMR was used to study selenourea complexes Ag(selenourea)NO₃ (δ 810.5) and [Ag(selenourea)₂]NO₃ (δ 784.3), which are >600 ppm more deshielded than that of AgNO₃ (δ 166.0). 670 These resonances are also deshielded from those of Ag-S analogs, Ag(thiourea)NO₃ (δ 685.9) and [Ag(thiourea)₂]NO₃ (δ 671.8). 670 Various Ag(I)-selenone complexes were probed by 109 Ag NMR, including Ag(N, N-dimethylselenourea)NO₃ (δ 748.6) and [Ag(N, N-dimethylselenourea)₂]NO₃ (δ 839.8). 671


For Ag(I) organometallic complexes (including CN⁻ compounds), ¹⁰⁹Ag NMR was used to study (Ph₃Te)[Ag(CN)₂] (δ 593). ⁶⁷² Ag(I) trinitromethanide Ag[C(NO₂)₃] in various solvents was studied, showing, e.g., its ¹⁰⁹Ag resonance at δ 27.5 in D₂O and at δ 429.7 in CD₃CN. ⁶⁷³ ¹⁰⁹Ag NMR was used to characterize hydride-centered heptanuclear silver clusters, Ag₇(H)[S₂P(OEt)₂]₆ (δ 1117) with dithiophosphate ligands and its Se analog Ag₇(H)[Se₂P(OPri)₂]₆ (δ 1126) with diselenophosphate ligands. ⁶⁷⁴ Ag(I) cluster Ag₈(µ₄-H)[Se₂P(OPri)₂]₆+ containing H⁻ bridges (Ag-µ-H-Ag) in tetracapped *T* symmetry inside an Ag₈ core was prepared with PF₆- anion. ⁶⁷⁵ Both ¹⁰⁹Ag, ¹H-¹⁰⁹Ag HMQC and ⁷⁷Se spectroscopies were used to characterize the complex (¹⁰⁹Ag δ 1155 ppm, ¹J_{H-}¹⁰⁹Ag = 35.0 Hz; ⁷⁷Se δ -0.2). ⁶⁷⁵ Re(I)-Ag(I) hydride-carbonyl clusters Ag(µ-H)₄[Re₂(µ-H)(CO)₈]₂-, Ag(µ-H)₄[Re₄(µ-H)₃(CO)₁₆]₂-, and Ag(µ-H)₄[Re₂(µ-H)(CO)₈]₂-, Ag(µ-H)₄[Re₄(µ-H)₃(CO)₁₆]₂-, and Ag(µ-H)₄[Re₂(µ-H)(CO)₈]₂-, and 1520, respectively. ⁶⁷⁶ Ag(I) trifluoromethyl complex [Ag(dmf)₂][Ag(CF₃)₂] showed the ¹⁰⁹Ag shift of δ 569.8 for the anion [Ag(CF₃)₂]-. ⁶⁷⁷ Other perfluoroalkyl Ag(I) complexes [Ag(C₂F₅)₂]- and [Ag(n-C₄F₉)₂]- were also characterized by ¹⁰⁹Ag NMR. ⁶⁷⁷ Oligomer Ag(I) [Ag(C≡CBuⁿ)]_m showed the ¹⁰⁹Ag resonance at δ ~1060. ⁶⁷⁸

Ag(III) trifluoromethyl complexes $[Ag(CF_3)_4]^-$ and $[Ag(CF_3)_nX_{4-n}]^ [X = CN^- (n = 1-3), CH_3^-, -C=CC_6H_{11}, Cl^-, Br^- (n = 2, 3) and l^- (n = 3); cation = PPh_4^+ or PNP^+ (Ph_3P=N=PPh_3^+)], showing$

significantly deshielded 109 Ag resonances from Ag(I) complexes, such as δ 2233 for [Ag(CF₃)₄]-, δ 2404 for Ag(CF₃)₃(dmf), and δ 2046 for [Ag(CF₃)₃Me]-. 679 109 Ag shifts of the Ag(III) complexes were tabulated in Reference 679 .

Several Aq(I) complexes with N-heterocyclic carbene (NHC) ligands were studied by 109 Ag NMR. $^{680-684}$ [Ag(IMes)₂]OTf [IMes = 1,3-mesitylimidazol-2-ylidene (**129**)] showed its 109 Ag resonance at δ 642.4.680 N,N-diferrocenyl-NHC (130) complex [Ag(1,3-diferrocenylimidazol-2ylidene)₂]BPh₄ gave the ¹⁰⁹Ag resonance at δ 727.⁶⁸¹ Hydride dimer [(SIDipp)Ag(μ-H)Ag(SIDipp)]OTf (SIDipp = 131) and its deuteride isotopologue [(SIDipp)Ag(µ-D)Ag(SIDipp)]BF₄, with direct Ag...Ag interactions, showed interesting H/D-¹⁰⁹Ag and ¹⁰⁷Ag-¹⁰⁹Ag couplings in their ¹⁰⁹Ag NMR spectra (Figure 11). ⁶⁸² Since naturally occurring silver consists of ca. 52% ¹⁰⁷Ag and 48% ¹⁰⁹Ag (Table 14), both with spin 1/2, the H⁻-bridged Ag₂⁺ ion therefore comprised a mixture of roughly 1:2:1 (27:50:23) of [107Ag-H-107Ag]+, [107Ag-H-109Ag]+ and [109Ag-H-¹⁰⁹Ag]⁺. Among the three isotopologues, the first with only ¹⁰⁷Ag isotopes did not show up in the ¹⁰⁹Ag NMR spectrum. The last one, [¹⁰⁹Ag-H-¹⁰⁹Ag]⁺, was observed as a doublet split by the H- ligand with ${}^{1}J_{H-}{}^{109}Ag} = 134$ Hz. In the middle isotopologue with one ${}^{107}Ag$ and one ${}^{109}Ag$ ion, [107Ag-H-109Ag]+, the 109Ag signal was split into a doublet of doublets by the 1H and 107Ag nuclides (${}^{1}J^{107}_{Ag}$, ${}^{109}_{Ag}$ = 113 Hz), as shown in **Figure 11-A**. 682 In the spectrum of the D compound in **Figure 11-B**, coupling between ¹⁰⁹Ag and ²H (spin 1) gives rise to a 1:1:1 triplet, which ¹⁰⁷Ag splits further into a 1:1 doublet of 1:1:1 triplets. This pattern indicates the large ¹⁰⁹Ag-¹⁰⁷Ag coupling and the smaller 109 Ag- 2 H coupling ($^{1}J_{D-}^{109}$ Ag = 18.7 Hz). 682 109 Ag NMR was used to characterize the Ag(I)-NHC complex (dbdpi)Ag(acetate) [δ 476, dbdpi = 1,3-dibenzyl-4,5diphenylimidazol-2-ylidene (132)] and its analogs.⁶⁸⁴ The antibiotic activities of the Ag(I)-NHC complex and its analogs was evaluated. 684 1H(13C)109Ag triple resonance NMR technique was developed to obtain ¹⁰⁹Ag NMR resonances in a labile Ag(I)-carbene complex.⁶⁸³ In Ag complexes, indirect detection of ¹⁰⁹Ag resonances via ¹H-¹⁰⁹Ag HMQC frequently encountered

small or absent ${}^{1}J_{H^{-}109}_{Ag}$ couplings or rapid ligand dissociation. H(X)Ag triple resonance spectroscopy used the large one-bond ${}^{1}J_{X^{-}109}_{Ag}$ coupling (where X is the relay nuclide). ${}^{1}H({}^{13}C){}^{109}Ag$ HMQC NMR experiment was performed for a Ag(I)-NHC complex at natural ${}^{13}C$ (1.1%) abundance and variable temperatures, showing that was superior to the ${}^{1}H^{-}{}^{109}Ag$ HMQC detection above -20 °C.683

Figure 11. (**A**) ¹⁰⁹Ag NMR spectrum of [(SIDipp)Ag(μ-H)Ag(SIDipp)]OTf in CD₂Cl₂. (**B**) ¹⁰⁹Ag NMR spectrum of [(SIDipp)Ag(μ-D)Ag(SIDipp)]BF₄ in CD₂Cl₂. Insets: interpretation of signals from each isotopologue. Adapted with permission from Reference ⁶⁸². Copyright: Royal Chemical Society.

[HB[3,5-(CF₃)₂-Pz]₃]AgSn(N₃)[(Prⁿ)₂ATI] (**133**) [HB(3,5-(CF₃)₂-Pz)₃ = hydrotris[3,5-bis(trifluoromethyl)pyrazolyl]borate, (Prⁿ)₂ATI = N-(*n*-propyl)-2-(*n*-propylamino)troponiminate] was characterized by ¹¹⁹Sn NMR, showing a doublet at δ 90 with ¹J¹¹⁹Sn-^{107/109}Ag = 4866 Hz.⁶⁸⁵ ¹¹⁹Sn and ²⁹Si shifts were also reported for products of the reactions between Sn[CH(SiMe₃)₂]₂ or Sn[CH(SiMe₃)₂]₂X₂ (X = NCO⁻, I⁻) and AgX (X = NCS⁻, CN⁻, NCO⁻, I⁻).⁶⁸⁶

NMR of α atoms of ligands was also used to study Ag complexes. In a DNA oligonucleotide with three consecutive imidazole nucleotides in its center, Ag(I) ions were found to mediate the pairings in three imidazole-Ag-imidazole interactions.⁶⁸⁷ The confirmation of the Ag-mediated base pairs was obtained from ${}^1J_{^{15}N_-}{}^{107/109}{}_{Ag}$ (86 Hz) couplings upon using ${}^{15}N_-$ labelled imidazole.⁶⁸⁷ VT ${}^{31}P$ NMR was used to study the coordination chemistry of equimolar amounts of Ag(I) with the diphosphine ligands $Ph_2P(CH_2)_nPPh_2$ (n = 6, 8, 10,12).⁶⁸⁸ The ${}^{1}J_{P_-}{}^{107}{}_{Ag}$ for all reaction mixtures was ~500 Hz, indicating that the Ag(I) ion was coordinated to two P atoms in a linear fashion.⁶⁸⁸

10.3. Gold complexes

As indicated in the footnote of Table 14, we did not find a publication in 1990-2019 on the ¹⁹⁷Au NMR of a metal complex.

Reactions of [Au(cis-dach)Cl₂]Cl and [Au(cis-dach)₂]Cl₃ (cis-dach = cis-1,2-diaminocyclohexane) with K¹³C¹⁵N were conducted and followed by ¹⁵N NMR.⁶⁸⁹ For example, after the reaction of [Au(cis-dach)Cl₂]Cl with K¹³C¹⁵N in a 1:2 ratio, a signal in the ¹⁵N NMR spectrum at δ 281 pertaining to Au(¹³C¹⁵N)₄- appeared.⁶⁸⁹ When the amount of the [Au(cis-dach)Cl₂]Cl was increased, the resonance of Au(¹³C¹⁵N)₄- (δ 262) was observed, showing that it

was produced as a second product. 689

Synthesis of bis-silyl Au(III) complexes were investigated using DFT calculations and NMR spectroscopy such as 31 P and 29 Si. $^{690-691}$ For example, the reaction of (Ph₃P)AuCl with, e.g., (PhMe₂Si)₂ in the presence of GaCl₃ at -80 °C produced [Au(PPh₃)(SiMe₂Ph)₂](GaCl₄) (δ_{Si} 40.7, δ_{P} 60.9). 690

For 77 Se NMR of (NBu $^{n}_{4}$)[Au(C $_{3}$ Se $_{5}$) $_{2}$] containing diselenolate ligands, 626 see Section 12.2.

11. Group 12 (Zn, Cd and Hg)

For the three elements, NMR of both the metals (⁶⁷Zn, ¹¹³Cd, and ¹⁹⁹Hg) and ligands were reported in 1990-2019. Nuclear and NMR properties of the nuclides, including recommended and commonly used references, are given in Table 15.

Table 15.26 Nuclear and NMR properties of 67Zn, 111Cd, 113Cd, 199Hg, and 201Hg

Nuclide	Natural abun- dance (%)ª	Spin	Relative receptivity		Gyromagnetic		Ξ (and frequency,	
			<i>D</i> ^H (¹ H = 1.00)	D ^C (13C = 1.00)	ratio (10 ⁷) (rad s ⁻¹ T ⁻¹)	Quadrupole moment <i>Q</i> (fm²)	MHz; ¹ H = 100.0000 MHz, 2.3488 T)	Reference sample
⁶⁷ Zn	4.04	5/2	1.18 × 10 ⁻⁴	0.692	1.676688	15.0	6.256803	Zn(NO ₃) ₂ (aq)
(¹¹¹ Cd) ^b	12.80	1/2	1.24 x 10 ⁻³	7.27	-5.6983131	-	21.215480	Cd(ClO ₄) ₂
¹¹³ Cd	12.22	1/2	1.35 x 10 ⁻³	7.94	-5.9609155	-	22.193175	(aq) ^c
¹⁹⁹ Hg	16.87	1/2	1.00 x 10 ⁻³	5.89	4.8457916	-	17.910822	HgCl ₂ (δ -
²⁰¹ Hg ^d	13.18	3/2	1.97 x 10 ⁻⁴	1.16	-1.788769	38.6	6.611583	1550 in D ₂ O) ^{e,f}

^a Unless noted, the isotopes are stable. The natural abundances are based on the NIST data.²⁵

- ^b ¹¹¹Cd²⁶ in parenthesis is considered to be the less favorable of the element for NMR.
- ^c CdMe₂ (neat) is the reference by IUPAC.²⁶ Most publications have used Cd(ClO₄)₂ at δ 0.00 as a reference.¹⁻² d ¹⁹⁹Hg is a useful spin 1/2 nuclide for NMR.²⁶
- ^e The highly toxic HgMe₂ (neat) is the reference for ¹⁹⁹Hg and ²⁰¹Hg NMR by IUPAC.²⁶ The high toxicity of HgMe₂ means its direct use should be strongly discouraged.²⁶⁻²⁷

11.1. Zinc complexes

The small natural abundance of 67 Zn and its low resonance frequency (\varXi) lead to slight relative receptivities. In addition, as a spin 5/2 nuclide, it has a quadrupole moment. These properties limited the use of 67 Zn NMR in inorganic compounds. 1

Earlier ⁶⁷Zn NMR studies by 1990 were reviewed in Reference 1, including following compounds: zincate Zn(OH)₄²⁻ (δ 220 in 16 M KOH), ZnCl₄²⁻ (δ 257), ZnBr₄²⁻ (δ 169), Znl₄²⁻ (δ - 35), Zn(NH₃)₄²⁺ (δ 288), Zn(SMe)₄²⁻ (δ 362), Zn(SPh)₄²⁻ (δ 267), and Zn(SePh)₄²⁻ (δ 224). These complexes are in highly symmetric ligand environment, minimizing the contributions of ⁶⁷Zn quadrupole moment to the peak width.

In the 1990-2019 period, interactions of silicates with Zn(II) and Al(III) ions in highly alkaline, aqueous solution were studied by 67 Zn, 29 Si and 27 Al NMR. 692 When 0.84 M ZnO and 0.86 M SiO₂ were dissolved in 10.0 M KOH, (HO)₃ZnOSiO₂(OH)⁴⁻, formed from the reaction of zincate Zn(OH)₄²⁻ with monomeric silicate, was observed at 67 Zn δ 286 (line width 2500 Hz) and 29 Si δ -71.4. The shift and width of the 67 Zn peak in comparison with those of zincate Zn(OH)₄²⁻ (δ 220, width 554 Hz) were consistent with the formation of the Zn(II)-Si(IV) anion with lower symmetry than zincate. 692 29 Si NMR was used to probe reactions of zincate with dimeric silicate and cyclic silicate trimer, forming (HO)(SiO₂)O(SiO₂)OZn(OH)₃⁶⁻ and (HO)₃Zn(SiO₃)₃⁷⁻, respectively. Aluminate and zincate, when present together, competed roughly equally for a deficiency of silicate to form (HO)₃ZnOSiO₂(OH)⁴⁻ and (HO)₃AlOSiO₂(OH)³⁻ which exchanged the 29 Si moiety at a fast but measurable rate. 692

f In addition to HgCl₂ in D₂O, Hg(ClO₄)₂ in H₂O at δ -2253 was also used as a secondary reference.¹

High-energy density aqueous redox flow battery was reported, which was based on the use of Zn/Zn^{2+} and I^{1}/I_{3}^{-} redox couples (Overall reaction: $I_{3}^{-} + Zn \rightleftharpoons 3I^{-} + Zn^{2+}$, E = 1.2986 V). ⁶⁹³ Unlike traditional batteries, such flow-based energy storage systems separated the energy storage and power generation by storing the electro-active species in externally flowing electrolytes (i.e., anolyte and catholyte), while maintaining the redox reactions at the electrode surface. ⁶⁹³ Such a design allowed the redox flow batteries to scale the power and/or energy independently, which was a characteristic advantage. In the aqueous redox flow battery here, $Zn(H_2O)_5(I_3)^+$, a Zn(II)-polyiodide electrolyte was identified and found to initiate precipitation in the catholyte. ⁶⁹³ ⁶⁷Zn NMR studies were performed on aqueous ZnNO₃ and ZnI₂ solutions at different Zn(II) concentrations as well as the pristine and fully charged ZnI₂ catholytes with and without EtOH. The work showed that, when EtOH was present in the aqueous electrolyte solution, Zn(II) ions form Zn(H₂O)₅(EtOH)²⁺ which might partially hinder the formation of $Zn(H_2O)_5(I_3)^+$. In other words, the I_3 dissociation and subsequent precipitation reaction might be mitigated due to the Zn(II)-EtOH complexation. ⁶⁹³

DFT quantum chemical investigation was performed on ⁶⁷Zn NMR shifts and electric field gradients in Zn(II) complexes.⁶⁹⁴ The calculated shifts were compared with those from experiments.

NMR studies of α atoms of ligands in Zn(II) complexes were also conducted. The crystal structure of [MeSi(SiMe₂N(p-toI))₃Sn]₂Zn (**134**) is different from its group 12 analogues [MeSi(SiMe₂N(p-toI))₃Sn]₂M (M = Cd, Hg) in that the Zn ion formed an asymmetrical complex where there was a Zn-N bond and the Sn-Zn-Sn interaction.⁶⁹⁵ The irregularity of the structure was also shown in ¹¹⁹Sn NMR with peaks at δ -153.5 and -91.2.⁶⁹⁵ The binding of the Zn(II) ion to the dodecamer [d(GGTACCGGTACC)]₂ was investigated via ¹H-¹⁵N HMBC.⁶⁹⁶

For ⁷⁷Se NMR of (PPh₄)₂[Zn(C₃Se₅)₂] with a diselenolate ligand, ⁶²⁶ see Section 12.2.

11.2. Cadmium complexes

Cd NMR is relatively easy to obtain, given that both 111 Cd and 113 Cd are spin 1/2 nuclides with rather high \varXi (and thus frequencies) and receptivities (Table 15). Both 111 Cd and 113 Cd NMR of inorganic compounds have been reported, although the latter is preferred. Unless noted (in Reference 697), the discussion below is based on Cd(ClO₄)₂ in D₂O as a reference for Cd NMR (Table 15). Effects of solvents such as py, MeCN, MeOH, EtOH on the 113 Cd shift of Cd(ClO₄)₂ (in comparison to that in D₂O) were probed by 113 Cd NMR. 698

¹¹³Cd chemical shifts are very sensitive to the environments that the metal ions are in, including donor atoms, coordination number, geometry and solvent. In Cd-N coordination chemistry, ¹¹³Cd NMR spectra were used to study the reactions of ¹⁵N-enriched KNCS with Cd(OTf)₂ in aqueous solution of acetone and HCF₂Cl (Freon-22) at -110 °C showed Cd(H₂O)₃(NCS)⁺, Cd(H₂O)₂(NCS)₂, Cd(H₂O)(NCS)₃⁻, and Cd(NCS)₄²⁻ were observed. ⁶⁹⁹ Each NCS⁻ substitution led to a deshielded shift of the ¹¹³Cd resonance in the δ 19-190 range. ¹⁵N shifts of the species were in the δ -39 to -60 range. ¹J¹¹³Cd. ¹⁵N decreased continuously from 251 Hz for Cd(H₂O)₃(NCS)⁺ to 219 Hz for Cd(NCS)₄²⁻. ⁶⁹⁹ [Cd(5,5'-diamino-2,2'-bipyridine)₃]Cl₂ with a bipy-analog ligand (**135**) was characterized by ¹¹³Cd NMR, showing the resonance at δ 254. ⁷⁰⁰ Exchanges of CdNO₃ with benzimidazole (**136**) were studied by ¹¹³Cd NMR. ⁷⁰¹

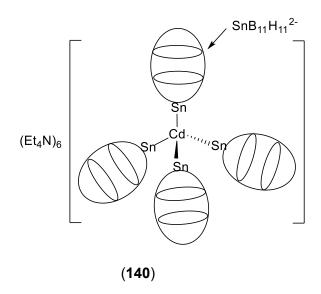
$$H_2N \longrightarrow NH_2 \longrightarrow$$

For Cd(II) complexes with mixed N,X ligands, $Tp^{Ph}Cd-O_2CMe$ with a hydrotris(3-phenylpyrazol-1-yI)borate (Tp^{Ph-} = **137**) ligand, was a catalyst for the formation of polycarbonates from epoxides and CO_2 .⁷⁰² Binding of the epoxides to the complex was probed by ¹¹³Cd NMR, as the activation of an epoxide by interaction with the N₃,O Cd(II) center was a key step in the copolymerization.⁷⁰² [Cd(μ -F)(μ -dpz)₂Cd](BF₄)₃ [dpz = m-[CH(3,5-dimethyl-1-pz)₂]₂C₆H₄) (**138**)] with two bridging tetra-dentate N₄ ligands and a bridging F- ion showed ¹¹³Cd shift at δ 25.1 with ¹J¹¹³Cd-F = 28 Hz.⁷⁰³

For chemistry of Cd(II) complexes with O-, S- or Se-containing ligands, complexes with mono- and di-carboxylic acids in aqueous solution were investigated using 113 Cd NMR. 704 For mono-carboxylic acids such as HCO₂H, CH₃CO₂H, and PhCO₂H, a single averaged chemical shift was observed even at reduced temperature from rapid exchange in solution. In case of dicarboxylic acids HO₂C(CH₂)_nCO₂H (n = 0-3), the 113 Cd nuclei showed increasing shielding with larger n. 704 For (RS)Cd(μ -SR)₂Cd(SR) [R = Si(OBut)₃] with mixed S,O-ligands, in which one of O atoms in each Si(OBut)₃ group formed a dative bond with the Cd(II) ion, 113 Cd shift was observed at δ 402. 705

In Cd(II) organometallic chemistry, several Tp*Cd-R complexes with different alkyl or aryl ligands were studied by 113 Cd NMR, including R = Me (δ 437.6), Et (δ 382.9), Prⁿ (δ 386.2), Prⁱ (δ 338.6), and Ph (δ 359.8). 706 The rather large shift differences between Tp*Cd-Me and Tp*Cd-Et as well as between Tp*Cd-Prⁿ and Tp*Cd-Prⁱ were attributed to the β effect, i.e., adding a β -C to the alkyl ligands. 706 Perfluoro-alkyl and aryl complexes Cd(CF₃)₂, Cd(C₂F₅)₂, Cd(n-C₃F₇)₂,

Cd(i-C₃F₇)₂, and Cd(C₆F₅)₂ as diglyme adducts, were probed by ¹¹³Cd NMR, giving ¹¹³Cd shifts (referenced to CdMe₂) for Cd(CF₃)₂ (δ -489.7), Cd(C₂F₅)₂ (δ -432.4), Cd(n-C₃F₇)₂ (δ -439.1), Cd(i-C₃F₇)₂ (δ -288.3), and Cd(C₆F₅)₂ (δ -290.0).⁶⁹⁷ The shift differences between Cd(CF₃)₂ and Cd(C₂F₅)₂ as well as between Cd(n-C₃F₇)₂ and Cd(i-C₃F₇)₂ were probably also the result of the β effect,⁶⁹⁷ as in Tp*Cd-R.⁷⁰⁶


¹¹³Cd NMR was used to study Cd(II) bio-inorganic chemistry, ⁷⁰⁷⁻⁷¹⁹ including proteins ⁷⁰⁷-^{713,719} and enzymes.⁷¹⁴⁻⁷¹⁵ A large range of ¹¹³Cd shifts was observed for ¹¹³Cd-substituted metalloproteins from δ -100 for Cd(II) with octahedral O ligands to δ 760 ppm for Cd(II) with tetrahedral S ligands.707 For the tetrahedral S sites in proteins such as rubredoxin and desulforedoxin, ¹¹³Cd shifts were ca. δ 720-745. New ¹¹³Cd shifts for ¹¹³Cd-substituted, overexpressed and mutated homologous desulforedoxin-like Fe(S-Cys)₄ proteins, were obtained to show a correlation between the ¹¹³Cd shifts and structures at the metal sites.⁷⁰⁷ ¹H-¹¹³Cd correlation and ¹H-¹H COSY NMR studies established two distinct protein domains in blue crab Callinectes sapidus metallothionein-I.709 Metallothioneins are small, cysteine-rich found throughout Nature. 710 They are able to bind several different metals with several stoichiometric ratios, making the family of proteins important for essential metal (e.g., Zn²⁺ and Cu⁺) homeostasis, metal storage, metal donation to nascent metalloenzymes and heavy metal detoxification. 710 In addition, metallothioneins are considered to protect cells against oxidative stress with its 20 cysteines. Investigations of the mechanistic details of metal binding to mammalian metallothioneins, including the use of ¹¹³Cd NMR, were reviewed in 2018. ⁷¹⁰ For Zn(II)-containing Bud31p, a 157-residue yeast protein containing an unusual Zn₃Cys₉ cluster, ¹¹³Cd NMR experiments with ¹¹³Cd-substituted samples were performed to reveal the unusual metal cluster in the solution structure of the yeast splicing protein Bud31p.713 Cd(II) derivatives of ovotransferrin and human serum transferrin were investigated by ¹¹³Cd and ¹³C NMR.⁷¹⁹ ¹¹³Cd NMR was also used to observe directly the exchange dynamics of water at a Cd(II) binding site within two de novo designed metalloprotein constructs, showing the residence time of the Cd(II)- bound water molecule was tens of nanoseconds at 20 °C in both proteins.⁷¹² In addition to the proteins and enzymes, Cd(II) bindings to dinucleosides and DNA containing modified nucleosides 4-thio-2'-deoxyuridine (s4dU) and 4-thio-2'-deoxythymidine (s4dT) as metal ion binding sites was probed by ¹¹³Cd NMR.⁷¹⁷

In computational studies of ¹¹³Cd NMR, *ab initio* and DFT methods were reproduced to within ~50 ppm of the shifts for Cd(II)-substituted metal ion containing proteins.⁷²⁰ ¹¹³Cd shifts were also calculated using Hartree-Fock and DFT methods for Cd(II) complexes, such as CdMe₂, CdEt₂, CdMeEt, Cd(NO₃)₂•4H₂O, and Cd(O₂CCH₃)₂•2H₂O.⁷²¹

For NMR of ligands, ¹¹³Cd NMR of [MeSi[SiMe₂N(*p*-tol)]₃Sn]₂Cd (**139**) showed two signals (δ 310 and 201), and the ¹¹⁹Sn NMR showed signals at δ -142.7 and -22.2.⁶⁹⁵ The crystal structure showed it to be a symmetric molecule. ¹H ROESY and VT ¹H experiments were conducted to study the dynamic exchange between two isomers of **139** (**Figure 12**).⁶⁹⁵ The asymmetric isomer is an analog of the Zn(II) complex **134**.

Figure 12. Dynamic exchange between two isomers of 139.

Tetrahedrally coordinated (Et₃NH)₆[Cd(SnB₁₁H₁₁)₄] (**140**) was synthesized via the reaction of stanna-*closo*-dodecaborate with CdBr₂ and analyzed via ¹¹³Cd (δ -42), ¹¹⁹Sn (δ -377) and ¹¹B (δ -13.8) NMR.⁷²²

In order to elucidate weaker binding sites for Mg(II) in an RNA sample (D1κζ), Cd(II) was used in order to more easily study these sites in D1κζ by NMR, as discussed earlier in the section on cobalt complexes.⁵⁰⁰ ¹⁵N-labelled and/or ¹³C-labelled D1κζ samples were titrated with Cd(ClO₄)₂ or ¹¹³Cd(NO₃)₂.⁵⁰⁰ ¹H, ¹H-¹⁵N HSQC, ³¹P, ¹¹³Cd, and ¹H-¹³C HSQC NMR spectra were studied after each addition of the metal complex.⁵⁰⁰

11.3. Mercury complexes

¹⁹⁹Hg [spin 1/2, a natural abundance of 16.87%, relative receptivity $D^{\rm C}$ = 5.89 with respect to ¹³C, and Ξ = 17.910822%] is a good nuclide for NMR. There are three major features of ¹⁹⁹Hg NMR of inorganic complexes: (a) Chemical exchange often faster than Cd(II) complexes; (b) Large chemical shift anisotropies; (c) Large coupling constants.¹

¹⁹⁹Hg NMR was the subject of a review in 1992.⁷²³ Using multinuclear NMR to probe speciation of Hg complexes was reviewed in 2006.⁷²⁴

In Hg(II) coordination chemistry, solvation of Hg(ClO₄)₂ in H₂O, dmso, HC(=S)NMe₂, and liquid NH₃ was studied by ¹⁹⁹Hg NMR.⁷²⁵ The work showing a pronounced dependence on the coordination number of the Hg(II) ion with ¹⁹⁹Hg shifts of >1200 ppm between tetrahedral and

octahedral complexes as well as electron donor properties of the solvents. The ¹⁹⁹Hg spin-lattice relaxation times in the solvates were measured in several applied magnetic fields, concentrations, temperatures, and isotope substitutions. 725 Additional studies of solvation of $Hg(ClO_4)_2$ in liquid NH_3 and aqueous ammonia solution (when the molar ratio NH_3 :Hg(II) > 4) showed the formation of [Hg(NH₃)₄](ClO₄)₂, which was characterized by single-crystal diffraction. $^{726-727}$ When HqCl₂ or HqBr₂ was dissolved in liquid NH₃, Hq(NH₃)₄²⁺ [δ -1065 to -1163 relative to HgMe₂ (at δ = 0) or δ 1188 to 1090 relative to Hg(ClO₄)₂ (at δ = 0)], although ¹⁹⁹Hg NMR indicated weak Hg(II) to Br association.⁷²⁷ In liquid NH₃, HgI₂ formed Hg(NH₃)₂I₂ at δ -1902 relative to HgMe₂ [δ 351 relative to Hg(ClO₄)₂] with the Raman μ(I-Hg-I) symmetric stretching frequency was 132 cm⁻¹.727 199 Hg NMR shifts of the stable HgCl_n²⁻ⁿ (n = 0-4) were determined in 50 mM aqueous Hq(II) solution as a function of the Cl⁻ concentration.⁷²⁸ HgCl₂[N,N'-Bu^tNSe(µ-NBu^t)₂SeNBu^t] was obtained from the [2 + 2] cyclodimerization of tbutylselenium diimide Se^{IV}(=NBu^t)₂ with HgCl₂, which was characterized by ¹⁹⁹Hg (δ -1190) and ⁷⁷Se (δ 1093) NMR.⁷²⁹ Linear complex Hg[N(SiMe₃)₂]₂ was studied by ¹⁹⁹Hg and ¹⁵N NMR, including their spin-lattice relaxation times T_1 at 243-403 K, ¹⁴N quadrupolar cross-correlation coefficient, and J^{199}_{Hg} = 316.2 Hz.⁷³⁰ Demethylation of (MeO)₃P=O by (NMe₄)₂[Hg(SPh)₄] and (NBuⁿ₄)[Hg(SPh)₃] gave MeSPh, (MeO)₂P(=O)₂-, and Hg(SPh)₃- from (NMe₄)₂[Hg(SPh)₄] and MeSPh and Hg(SPh)₂[(MeO)₂P(=O)₂]⁻, respectively.⁷³¹ ¹⁹⁹Hg was used to characterize the reaction mixtures by comparing with ¹⁹⁹Hg shifts of (NMe₄)₂[Hg(SPh)₄] (δ -421) and (NBuⁿ₄)[Hq(SPh)₃] (δ -354) in the identification of the products.⁷³¹ A series Hq(II) complexes containing thiacrown and related aza and mixed thia/aza macrocycles were characterized by ¹⁹⁹Hg NMR.⁷³² The ¹⁹⁹Hg shifts of these complexes are listed in Table 16.

Table 16. ¹⁹⁹Hg NMR shifts of Hg(II) thiacrown and related aza and mixed thia/aza complexes⁷³²

Complexes ¹⁹⁹ Hg shifts (δ)	
--	--

[Hg(9S3) ₂](ClO ₄) ₂ (9S3 = 1,4,7-trithiacyclonane)	-275	
[Hg(10S3) ₂](ClO ₄) ₂ (10S3 = 1,4,7-trithiacyclodecane)	-598	
[Hg(12S3) ₂](ClO ₄) ₂ (12S3 = 1,5,9-trithiacyclododecane)	-795	
[Hg(14S4)](ClO ₄) ₂ (14S4 = 1,4,8,11-tetrathiacyclotetradecane)	-827	
[Hg(16S4)](ClO ₄) ₂ (16S4 = 1,5,9,13-tetrathiacyclohexadecane)	-1120	
[Hg(15S5)](ClO ₄) ₂ (15S5 = 1,4,7,10,13-pentathiacyclopentadecane)	-484	
[Hg(18S6)](ClO ₄) ₂ (18S6 = 1,4,7,10,13,16-hexathiacyclooctadecane)	Not observed	
[Hg(18S ₄ N ₂)](PF ₆) ₂ (18S ₄ N ₂ = 1,4,10,13-tetrathia-7,16-diazacyclooctadecane)	-737 and -816; Two different diastereoisomers from the relative orientations of the two H (in N-H) atoms	
[Hg(9N3) ₂](ClO ₄) ₂ (9N3 = 1,4,7-triazacyclononane)	-948 and -1313; The solution is believed to be a mixture of [Hg(9N3)] ²⁺ and [Hg(9N3) ₂] ²⁺ .	

In Hg(II) organometallic chemistry, dependence of ¹⁹⁹Hg NMR spectra of a variety of polyfluoroaryl complexes, such as Hg(C₆F₅)₂ (δ -851), Hg(4-CF₃-C₆F₄)₂ (δ -915), Hg(4-MeO-C₆F₄)₂ (δ -811), Hg(4-F-C₆H₄)₂ (δ -734), C₆F₅HgEt (δ -604), (4-F-C₆H₄)HgEt (δ -536), on solvents (shifts listed above in CH₂Cl₂), concentrations, temperatures, and ligands was studied.⁷³³ ¹⁹⁹Hg NMR spectra of substituted vinyl Hg(II) halides, such as CIHC=CHHgCl (Z, δ -1141; E, δ -1160), PhHC=CHHgBr (Z, δ -1018; E, δ -1200), and MeHC=CHHgBr (Z, δ -1056; E, δ -1131), showed that shifts of the Z isomers were deshielded from those of the E isomers.⁷³⁴ Experimental (¹⁹⁹Hg and ¹³C NMR) and theoretical studies of Hg(C=CPh)₂ were conducted to obtain shielding and indirect spin-spin coupling tensors in the presence of a heavy atom.⁷³⁵

¹⁹⁹Hg and ¹³C spin-lattice relaxation times were studied to probe solution dynamics of Hg(C≡CPh)₂ and shielding anisotropy of its acetylenic C and Hg nuclides. ⁷³⁶ For thiosulfatemercuriomethanates Na_n[CH_{4-n}(HgS₂O₃)_n] (1 ≤ n ≤ 4), their ¹⁹⁹Hg shifts became gradually more deshielded with increasing n: n = 1, δ -677; n = 2, δ -577; n = 3, δ -496; n = 4, δ -453. ⁷³⁷

A series of Hg-Mo complexes X-Hg-MoCp(CO)₂(PAr₃) (X = F-, Cl-, Me-, OMe-),⁷³⁸ Hg[MoCp(CO)₂(PAr₃)]₂,⁷³⁸⁻⁷³⁹ derivatives with substituted cyclopentadienyl ligands X-Hg-MoCp#(CO)₃⁷⁴⁰ and Hg[MoCp#(CO)₃]₂⁷⁴⁰ (Cp# = C₅HMe₂Ph₂-) were studied by ¹⁹⁹Hg NMR. ¹⁹⁹Hg shits of selected complexes include the following: (a) Hg(I) compounds Cl-Hg-MoCp(CO)₂[P(4-Cl-C₆H₄)₃] (δ -523),⁷³⁸ I-Hg-MoCp(CO)₂(PPh₃) (δ -921),⁷³⁸ X-Hg-MoCp#(CO)₃ (Cp#- = C₅HMe₂Ph₂-, X = Cl-, δ -644; X = Br, δ -827; X = I-, -1169);⁷⁴⁰ (b) Hg(0) compounds Hg[MoCp(CO)₃]₂ (δ 235.3)⁷³⁹ and Hg[MoCp#(CO)₃]₂ (Cp#- = C₅HMe₂Ph₂-, δ 98) with Mo-Hg-Mo bonds.⁷⁴⁰

In Hg bioinorganic chemistry, 199 Hg NMR was used probe Hg(II) binding with L-cysteine, 741 glutathione, 742 2-(α -hydroxy-benzyI) thiamin pyrophosphate (Hhbtp) as a model for metal binding in thiamin enzymes, 716 and the metal sites in Hg(II)-mediated thymine (T)–thymine base pair, 743 blue copper proteins, 744 and the metal receptor site in MerR and its protein-DNA complex. 745 In Hg(II) complexes with L-cysteine (H₂Cys) in alkaline aqueous solutions structurally were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy, 741 aided by 199 Hg NMR and Raman results. In the reaction of K+ salt of 2-(α -hydroxy-benzyI) thiamin pyrophosphate, K+(hbtp)-, with HgCl₂, the product was K₂[Hg(hbtp)₂Cl₂] showing 199 Hg shift at δ -804. 716 In the reaction of Hg(II) ions with 15 N-labeled thymidine (T), one of the four nucleobases in the nucleic acid of DNA, 199 Hg and 15 N NMR studies indicated that the product was linear T-Hg-T, giving 199 Hg δ -1784, 15 N δ 184, and $^{1}J^{199}$ Hg- 15 N = 1050 Hz. 743 199 Hg NMR spectra of the 199 Hg-substituted blue copper proteins exhibited shifts of δ -749 for

 199 Hg-plastocyanin and δ -884 for 199 Hg-azurin. 744 For the metal receptor site in MerR and its protein-DNA complex, 745 structural insights were provided by 199 Hg NMR. The 1- and 2-D NMR data showed a trigonal planar Hg-thiolate coordination environment consisting only of Cys side chains. 745

In theoretical studies, microsolvation of (HgMe)⁺ in water, including structures, energies, bonding and ¹⁹⁹Hg, ¹³C and ¹⁷O NMR constants (chemical shifts and coupling constants), was investigated by Hartree–Fock (HF) and second-order perturbation theory (MP2) calculations within the scalar and full relativistic frames.⁷⁴⁶

NMR studies of α atoms of ligands in Hg complexes were also conducted. There was only one signal in both the ¹⁹⁹Hg (δ -267.8) and ¹¹⁹Sn (δ 266.2) NMR spectra of [MeSi[SiMe₂N(p-tol)]₃Sn]₂Hg, an analog of the Cd(II) complex **139** (**Figure 13** in Section 11.2), showing that this complex was a symmetric with respect to the Hg(II) ion and it did not isomerize as its Cd(II) analogue.⁶⁹⁵

The interaction between the oligonucleotide [d(CGCGAATTCGCG)]₂ and Hg(II) was studied via several NMR methods including ¹H-¹⁵N HMQC.⁷⁴⁷ The HMQC studies confirmed that the Hg(II) interfered with the AT tract of the oligonucleotide.⁷⁴⁷ Hg(II)-mediated T-T (thymine-thymine) pairings were studied via 1-D ¹⁵N NMR and 2-D ¹H-¹⁵N HSQC with *J*-coupling (²*J*¹⁵N-¹⁵N) of 2.4 Hz for the N-Hg-N moiety.⁷⁴⁸

The tetrahedrally coordinated (Me₃NH)₆[Hg(SnB₁₁H₁₁)₄] was synthesized via the reaction of stanna-*closo*-dodecaborate with Hg₂Cl₂ and analyzed via ¹⁹⁹Hg (δ -630), ¹¹⁹Sn (δ -320) and ¹¹B (δ -14.4) NMR.⁷²² This complex and its Cd analog (Et₃NH)₆[Cd(SnB₁₁H₁₁)₄] (**140**), discussed in Section 11.2, were the first examples of coordination complexes with this stanna-*closo*-dodecaborate ligand and group 12 metals.⁷²²

12. NMR properties shared by complexes of more than two transition metals.

Experimental and theoretical/computational studies

NMR properties shared by complexes of two transition metals are discussed in their respective sections.

12.1. NMR of metals in the complexes

We found that NMR chemical shifts of d^0 transition metal compounds showed the following trends: 285 (1) For single-bonded ligands such as M-H, M-CR₃, M \leftarrow NR₃, M-SiR₃ and M \leftarrow PR₃, 1 H, 13 C, 15 N, 29 Si and 31 P shifts of these α atoms in the complexes of both first- and third-row transition metals are typically more deshielded than those of second-row analogs with a "V-shape" (Trend 1). (2) For multiple-bonded ligands including those with d-p π bonds, such as M=CHR, M=CR, M=NR, M=O and M $\stackrel{\leftarrow}{=}$ F, 13 C, 15 N, 17 O and 19 F shifts of the α atoms in the complexes of first-, second- and third-row transition metals become consecutively more shielded (Trend 2). 285 NMR shifts of lanthanum(III) complexes help interpret Trend 1 in Group 3 congeners. Scandide (d-block) and lanthanide (f-block) contractions and relativistic effects were believed to contribute to the NMR shifts, leading to the observed trends. Comparisons were made with NMR chemical shifts of dⁿ complexes and organic compounds. Since many chemical properties of the second- and third-row congeners such as Zr and Hf are similar, as a result of lanthanide contraction, the NMR chemical shifts were a rare property to distinguish compounds of the otherwise nearly identical congeners. Our narrative interpretations of the trends were provided. 285

Substituent influence on reported 51 V, 55 Mn, 57 Fe, 59 Co, 61 Ni, 95 Mo, 103 Rh, 183 W, 187 Os and 195 Pt NMR shifts (δ) and coupling constants J_{M-P} (M = Mn, Fe, Mo, Rh, W, Os) in organometallic complexes were analyzed, showing shifts depended on the inductive, resonance, and polarizability effects of substituents. 1,749 The role of polarization effect on the NMR of heavy nuclides (51 V, 55 Mn, 57 Fe, 95 Mo, 103 Rh, 187 Os and 195 Pt) was reviewed. 750 Another study was

conducted on the polarizability effect in transition metal CO complexes.⁷⁵¹

NMR peak line widths of quadrupolar nuclides ¹⁴N, ⁵³Cr, ⁵⁹Co, ⁹¹Zr and ⁹⁵Mo in supercritical solvents and low-viscosity liquefied gases were smaller than in ambient solvents.²⁴⁹ For example, both ⁵³Cr and ¹⁴N (spin 1, natural abundance = 99.636%, Q = 2.044 fm², relative sensitivity = 1.00 x 10⁻³, receptivity = 5.90, gyromagnetic ratio = 1.9337792 x 10⁷ rad T⁻¹ s⁻¹, Ξ = 7.226317%)²⁵⁻²⁶ are quadrupolar nuclides with broad NMR peaks. ⁵³Cr and ¹⁴N NMR of Cr(CO)₅(CNBu^t) and Cr(CO)₄(CNBu^t)₂ in ambient acetone-d₆, pressurized liquid CO₂ or supercritical CO₂ were compared.²⁴⁹ For Cr(CO)₅(CNBu^t), ⁵³Cr shifts were δ 17.9, 15.7 and 36.1, respectively, in the three media with peak width reduced from 90 Hz in acetone- d_6 to 35 Hz in the two CO₂ media. Its ¹⁴N shifts were δ -171.4, -176.1 and -175.6, respectively, in the three media.²⁴⁹ For Cr(CO)₄(CNBu^t)₂, ⁵³Cr shifts were δ 60.4 and 52.4 in acetone-*d*₆ and liquid CO₂, respectively, with peak width reduced from 44 Hz in the former to 34 Hz in the latter. Its 14N shifts were δ -174.5 and -178.6 in acetone- d_6 and liquid CO₂, respectively.²⁴⁹ The studies here tested the reduction of quadrupolar relaxation rates in solvents with low viscosity such as supercritical fluids. In another example, ⁹¹Zr peak width of Cp₂ZrCl₂ in thf-containing supercritical CO₂ (CO₂:thf = 93:7; v/v) at 323 K was found to be 210 Hz, a significant decrease from 375 Hz in ambient thf at 296 K.²⁴⁹ The addition of a small amount of acetone, thf, and CH₂Cl₂ increased the solubilities.

12.2. NMR of ligand nuclides in the complexes

Multinuclear NMR was demonstrated to be a good tool to characterize complexes with σ -silane and σ -borane ligands, distinguishing them from the corresponding hydride silyl or hydride boryl oxidative addition products.¹³⁹ The studies in the area were reviewed in 2008.¹³⁹ Several heterometallic cluster complexes with Mo and Te, including $(Cp*Mo)_2B_4TeH_5Cl$ and $(Cp*Mo)_2B_4(\mu_3-OEt)TeH_3Cl$, were characterized via ¹¹B NMR.⁷⁵²

¹¹⁹Sn NMR was used to characterize transition metal complexes L_nM-SnR₂ with terminal

stannylene ligands, including (OC)₅WSn(OSiPh₃)₂ (δ -303, ¹J¹¹⁹Sn-W = 1660 Hz), MeSi[SiMe₂N(*p*-tolyl)]₃Sn-Rh(PEt₃)(cod) (δ -140.5, ¹J¹¹⁹Sn-Rh = 846 Hz), and (Ph₃P)₃Pt-Sn(acac)₂ (δ -601, J¹¹⁹Sn-Pt = 1.289 x 10⁴ Hz).⁷⁵³ The research in the area was reviewed in 2009.⁷⁵³ ¹¹⁹Sn NMR was also used to characterize CpM(CO)₃[Sn(C₆H₃-2,6-Mes₂)] (Mes = 2,4,6-Me₃-C₆H₂; M = Cr, Mo, W), CpM(CO)₃[Sn(C₆H₃-2,6-Trip₂)] (Trip = 2,4,6-Pri₃-C₆H₂; M = Cr, Mo, W), and (η ⁵-1,3-Bu^tC₆H₃)Mo[Sn(C₆H₂-2,6-Trip₂)] (δ 2543).⁷⁵⁴

¹⁵N coordination shifts in transition metal complexes with *N*-containing heterocycle ligands (azines, azoles and azoloazines like purines or 1,2,4-triazolo-[1,5a]-pyrimidines) were reviewed and discussed with respect to the metal ions and the donor atoms in *trans* position with respect to the ¹⁵N atom.⁷⁵⁵ Here, the coordination shifts are the differences between ¹⁵N shifts of the N atoms in the complex and the free ligand $[\Delta(^{15}N) = \delta_{complex} - \delta_{ligand}]$.⁷⁵⁵

¹⁴N and ¹⁵N NMR studies of imide ligands were conducted for 37 Ta, Mo, W, Re and Os complexes, including Ru₃(μ-H)₂(μ₃-¹⁵NH)(CO)₉ (δ -297.7), *trans*-TaCl(¹⁵NPh)(PMe₃)₄ (δ -76.6), W(NBu^t)₂(OBu^t)₂ (δ -11), [Mo(¹⁵NH)(S₂CNEt₂)₃]CI (δ 40.0), *trans*-[ReCl(¹⁵NH)(dppe)₂]Cl₂ (δ 67.1), and Os(NBu^t)₄ (δ 155.6).⁷⁵⁶ The studies showed that ¹⁴N and ¹⁵N NMR spectroscopy was a probe of bonding, bending and fluxionality of the imido ligands.⁷⁵⁶ Reviews in 2008⁷⁵⁷ and 2013⁷⁵⁸ together covered the ¹⁵N NMR and the ³¹P NMR of over 300 complexes. These complexes contain metal ions such as Ni(0), Pd (II), and Au(III) with N- or P-containing heterocyclic ligands such as pyridine, 1,10-phenanthroline, or phosphorin.⁷⁵⁸ Line broadening in variable-temperature and -pressure ¹⁴N, ¹³C, and ¹H NMR spectra was used to study the exchange of bidentate ethylenediamine (en) ligands in Co(II), Fe(II), and Mn(II) complexes.⁷⁵⁹ Further studies of solvent exchange of N-containing ligands 1,3-propanediamine (pa) and n-propylamine (tn) were conducted with variable-temperature ¹⁴N NMR, and the results were compared with the data from the en exchange studies.⁷⁶⁰ The order of rate constants for these exchanges increases in the order of en < tn < pa for each metal ion. For example, the rate

constants (k^{298}) for Mn(II) are 1.7 x 10⁶ s⁻¹ for en, 2.5 x 10⁶ s⁻¹ for tn, and 3.7 x 10⁷ s⁻¹ for pa.⁷⁵⁹⁻

¹H-¹⁵N HSQC and super-WEFT ¹H NMR (WEFT = water elimination Fourier transform), a method to suppress water signals, were used to probe the coordination of Co(II), Ni(II), and Zn(II) ions to a section of DNase domain of colicin E9.761 The interactions of Ag(I)- and Cd(II)substituted amicyanin with the periplasmic enzyme MADH (methylamine dehydrogenase) were investigated via several NMR techniques including ¹H-¹⁵N HSQC and ¹⁵N-decoupled TOCSY. ⁷⁶² ¹⁵N and ¹⁹F NMR spectroscopies as well as DFT calculations were used to investigate the linearity of the M-NO section of the [RuF₅NO]²⁻ anion by comparing the splitting patters and line widths of the signals of the ¹⁵N-enriched and nonenriched samples of [RuF₅NO]²⁻. ⁷⁶³ The data for the Ru compound was compared also to the ¹³C and ¹⁵N NMR of the structurally similar [Fe(CN)₅NO]²⁻ (¹⁵N- and ¹³C-enriched) anion.⁷⁶³ ¹⁷O NMR was also used to probe the kinetic of proton exchange on dioxytetracyanometalate complexes [MO²(CN)⁴]⁽ⁿ⁺²⁾⁻ (M = Mo, W, Tc, Re; n = $0,1,2)^{764}$ as well as of oxygen exchange on di- and monoprotonated complexes $[MO(OH_2)(CN)_4]^{n-}$ (M = Mo, W, Tc, Re; n = 1,2) and $[MO(OH)(CN)_4]^{(n+1)-}$ (M = Mo, W, Tc, Re; n = 1,2).⁷⁶⁵ ¹⁷O NMR has also been used to study water and other oxygen-containing solvent exchanges on metal compounds such as aquapentakis(amine)metal(III) complexes,766 such as [Co(CH₂NH₂)(H₂O)]³⁺ and paramagnetic aminopolycarbonate complexes, such as [Fe(TMDTA)]²⁻ (TMDTA = trimethylenediaminetetraacetate).⁷⁶⁷

Water and H⁺ exchange processes on metal ions, studied by ¹⁷O NMR, were the subject of a 2005 review.⁷⁶⁸ ¹⁷O NMR spectrum of an ¹⁷O-enriched sample of PW₁₁O₃₉⁷⁻ and results from other techniques "indicate that previously assigned terminal Pt-oxo and Au-oxo complexes are in fact cocrystals of the all-tungsten structural analogues with noble metal cations, while the Pd-oxo complex is a disordered Pd(II)-substituted polyoxometalate."⁷⁶⁹ In other words, the oxo wall⁷⁷⁰ stands.

¹⁷O NMR shifts of oxo metalloporphyrin complexes of Ti, Cr, and Ru, such as

M(TMP)(=O) (H₂TMP = tetramesitylporphyrin) were found to correlate with the strength of the M=O bonds. 137 The fluxional behaviors of $[(Rh(cod))_2(V_4O_{12})]^{2-}$ and $[Rh(cod))(V_4O_{12})]^{3-}$ (cod = η^4 -1,5-cyclooctadiene) were studied via 51 V and 103 Rh NMR along with variable-temperature 17 O NMR. 771 Carbonyl complexes (1,3,5-Me₃C₆H₃)Cr(CO)₃, (1,3,5-Me₃C₆H₃)W(CO)₃, [(1,3,5-Me₃C₆H₃)Mn(CO)₃]BF₄, (1,3,5-Me₃C₆H₃)Co₄(CO)₉, (1,3,5-Me₃C₆H₃)Ru₆C(CO)₁₄, and Ru₆C(CO)₁₇ show 17 O shifts in the range of about δ 340-400. 772 Since the 17 O signals could not be observed for all the complexes in a single solvent, various solvents such as CH₃CN, CDCl₃, and (CD₃)₂CO were utilized. 772

³³S NMR was used to characterize several bidentate thiometallate complexes (NEt₄)₂[MS₄] (M = Mo, δ 373; M = W, δ 183) and (NH₄)₂[MS₄] (M = Mo, δ 344; M = W, δ 149).⁷⁷³ ³³S NMR was also used to study heterometallic complexes (NPrⁿ₄)₂[(CN)CuS₂MS₂] (M = Mo, δ 445; M = W, δ 248), (NPrⁿ₄)₂[(CN)AgS₂MoS₂] (M = Mo, δ 257; M = W, δ 106), (Prⁿ₄N)₂[(CN)CuS₂MoS₂Cu(CN)] (M = Mo, δ 139; M = W, δ 16), and (NPrⁿ₄)₂[(PhS)CuS₂MoS₂] (δ 436).⁷⁷³

⁷⁷Se NMR was used to characterize several complexes with the 1,3-diselenole-2-selone-4,5-diselenolate ligand $[C_3Se_5^{2-}$ (**141**)], including $(PPh_4)_2[Zn(C_3Se_5)_2]$ (δ Se¹, 105; Se², 1067; Se³, 1134), $(NBu^{n_4})_2[Pt(C_3Se_5)_2]$ (δ Se¹, 420; Se², 1116; Se³, 1227), and $(NBu^{n_4})[Au(C_3Se_5)_2]$ (δ Se¹, 729; Se², 1121; Se³, 1330).

(141)

12.3. Theoretical and computational studies of NMR

Several reviews on calculations of transition metal NMR parameters, 774-777 including the

DFT methods to calculate NMR shifts,⁷⁷⁴⁻⁷⁷⁵ methodology and computations of nuclear shielding and spin–spin coupling constants,⁷⁷⁶ and developments of theoretical methods between 1999 and 2004.⁷⁷⁷

¹H NMR shifts of agostic H atoms in planar d⁸ transition metal complexes were in a rather large range of 5 to -10 ppm.⁷⁷⁸ When the agostic H atom points to a local Lewis acidic center at the metal, the ¹H NMR peak is shifted to be more shielded than that of the complex where the H atom is opposing a local charge concentration at the metal. The origin of the relationship was studied by a topological method.⁷⁷⁸

 11 B NMR of (Cp*M) $_2$ B $_5$ H $_9$ (M = Cr, Mo, W) showed shifts of the two types of B atoms directly bound to the metal atoms experienced a large, more shielded shift going from Cr to Mo to W, whereas the shifts for the B atoms connected to the metal atoms via M-H-B bridge bonds were invariant. 779 Molecular orbital analysis of the trend traced the origin to two high-lying filled MOs and two low-lying unfilled MOs, both with M and B character. The energy differences of these sets of MOs correlated well with the observed chemical shifts. 779 DFT computational studies of structures and properties of transition metal dicarbollide complexes were conducted and reproduced the 11 B NMR shifts reasonably well. 780

Thermal effects and vibrational corrections were studied in the calculations of NMR shifts of ⁴⁹Ti, ⁵¹V, ⁵⁵Mn, and ⁵⁷Fe shifts.⁷⁸¹

13. Advanced NMR techniques and methods

This section provides an overview of advanced solution NMR techniques and methods used to characterize transition metal compounds.

13.1. 2-D NMR

The 2-D NMR methods are discussed in the recent book by Lambert.⁴ The use of 2-D NMR to study supramolecular complexes was reviewed in 2007.⁷⁸²

2-D NMR methods, in particular, inverse detection such as HMQC, HSQC, or HMBC to increase the sensitivity of the nuclides, indirectly determine chemical shifts of, e.g., ⁵⁷Fe³⁵⁸⁻³⁶⁰ and ¹⁸⁷Os³⁶¹⁻³⁶² (Section 7), ¹⁸³W (Section 5.3), and ¹⁰³Rh (Section 10). ¹H-¹⁵N HMBC was also used to obtain ¹⁵N (spin 1/2) NMR shifts of complexes at the natural abundance of 0.364%.^{240-243,360,521,783} Often, different versions of the techniques such as gradient-selected *g*HMQC, ^{243,360,521,783} and *g*HMBC^{240-243,360,521} were used.

In addition to obtaining NMR of the less sensitive nuclides, HMQC,⁴ HSQC,⁴ and HMBC⁴ such as ¹H-¹³C spectra were used to assign 1-D ¹H and ¹³C spectra and structures of the complexes.^{6,154,783-786} Homonuclear ¹H-¹H COSY (Correlated Spectroscopy)^{4,6,783,787} and ¹H-¹H TOCSY (Total Correlated Spectroscopy)^{783,787} were also used to assign spectra and structures of the complexes, giving through-bond correlations via spin-spin coupling in the molecules.

When studying H atoms that are close to each other in space but are not bound, ¹H-¹H NOESY (Nuclear Overhauser Effect Spectroscopy)^{4,788} was used to study the signals from the through-space correlations via spin-lattice relaxation,^{783,789} including solution structures of ion pairs such as the through-space ¹H······¹H interactions between the cation and anion in *trans*-[Ru(CO)(en)(PMe₃)₂(COMe)]BPh₄.⁷⁹⁰ NOESY could be used to detect chemical and conformational exchanges,^{782,791-794} which is also called EXSY when it is used for this purpose.^{782,791-792}

¹³C-¹³C NOESY was demonstrated to be an attractive alternative for studying large macromolecules.⁷⁹⁵ ¹³C direct detection provides a valuable alternative to ¹H detection to overcome fast relaxation because of its smaller magnetic moment.⁷⁹⁵ Applications of the ¹³C-¹³C NOESY for studying metalloproteins were recently reviewed,⁷⁹⁶ including advantages and drawbacks of the method as a function of the molecular size of the metalloproteins. It provided information on the presence/absence of multiple conformations in slow or semi-slow exchange on the NMR chemical shift time scale for amino acid side chains. ¹³C-¹³C NOESY was the gold standard for the observation of NMR signals in the 480 kDa ferritin nanocage and for monitoring

its interaction with Fe ions in the protein. When the protein size was decreased, the technique gradually lost its importance as a tool for the detection of the complete spin pattern of the amino acid side chains, as exemplified by Ni-dependent regulatory protein, NikR (molecular mass of the homo-tetramer \sim 80 kDa). In very small proteins, such as mitochondrial cytochrome c (12.3 kDa), only cross peaks between adjacent 13 C nuclei were detected, which was used to assign the 13 C core resonances of the porphyrin in a uniformly enriched heme. 796

ROESY^{4,797} is a 2-D NMR spectroscopy similar to NOESY. In NOESY, cross relaxation from an initial state of z-magnetization is observed. In ROESY, equilibrium magnetization is rotated onto the x axis and then locked so it cannot precess. ROESY is particularly suitable for medium size molecules (molecular weight around 700-1200) whose nuclear Overhauser effect is too weak to be detectable.

HOESY (Heteronuclear Overhauser Effect Spectroscopy), such as ¹H-¹⁹F HOESY,^{790,798-800} was used to characterize solution structures of ion pairs such as the through-space ¹H······¹⁹F interactions between peripheral H atoms on the cation and F-containing anion in [Au(PPh₃)₂]BF₄.⁷⁹⁸

13.2. PGSE and DOSY

Pulsed-Field Gradient Spin-Echo (PGSE) and Diffusion-Ordered Spectroscopy (DOSY) are diffusion NMR techniques to determine the size and shape of many molecular systems in solution.^{782,801} When PGSE spectra are presented in a 2-D format, in which the chemical shifts are displayed in one dimension and the diffusion coefficient in the second one, the technique is called DOSY.^{4,782} These two techniques were reviewed, especially their applications in inorganic and organometallic chemistry.^{782,801} The applications included assessing aggregation state of molecules or supramolecules, character of intermolecular interactions, stability or association constants between different hosts and guests. DOSY has been called "NMR chromatography" for its ability to "separate" the components of a complex mixture according to their diffusion

coefficients.782

PGSE measurements using ¹H, ¹⁹F, ³¹P or ³⁵Cl NMR were performed on phosphine ligands and transition-metal complexes such as Pt(PMe₂Ph)₂Cl₂, [Pt(PMe₂Ph)Cl(μ-Cl)]₂, [Pd[o-(Ph₃P=N)-C₆H₄](PPh₃)(Me₂NCH₂CH₂NMe₂)]OTf, demonstrating that the four nuclides were complementary for PGSE.⁸⁰² Solvent dependence of the diffusion values of several Pd(II) salts suggested that ion pairing was a major contributor in HCCl₃, important in CH₂Cl₂, but small in acetone and MeOH.⁸⁰² PGSE NMR studies were performed to determine sizes of dendritic phosphine-gold(I) thiolate complexes.⁸⁰³

DOSY studies of *cis*- and *trans*-[Ta(μ-OMe)Me(=NSiMe₃)[N(SiMe₃)₂]]₂ in equilibrium demonstrated that they existed as dimers in solution.²⁴⁵ DOSY was used to characterize paramagnetic transition metal complexes, demonstrating that technique was capable of assessing the purity and speciation of paramagnetic complexes, and also provided a convenient method to provide qualitative and sometimes quantitative molecular weight data.⁸⁰⁴

13.3. EDNMR, HYSCORE and ENDOR

For paramagnetic compounds with unpaired electrons, electron-electron double resonance (ELDOR)-detected NMR (EDNMR),⁸⁰⁵ hyperfine sub-level correlation (HYSCORE),⁸⁰⁶⁻⁸⁰⁷ and electron-nuclear double resonance (ENDOR)⁸⁰⁷⁻⁸⁰⁹ were used to detect hyperfine couplings between magnetic nuclides and unpaired electrons, thus helping to elucidate molecular and electronic structures. These techniques were employed to study hyperfine interactions in polyoxometalate PV₂Mo₁₀O₄₀⁶⁻ with one reduced V(IV) ion.¹⁹⁸ In the ¹⁷O-enriched anion, ⁹⁵Mo, ¹⁷O, ⁵¹V and ³¹P nuclides had hyperfine interactions on the EPR resonance. The stronger interactions with ⁹⁵Mo and ¹⁷O were probed by EDNMR and the weaker ones with ⁵¹V and ³¹P were studied by ENDOR.¹⁹⁸ The EDNMR technique⁸⁰⁵ led to the observations of EPR, (⁹⁵Mo and ¹⁷O) NMR, and ELDOR transitions and determination of ¹⁷O and ⁹⁵Mo Larmor frequencies.¹⁹⁸ 2-D HYSCORE spectra correlate nuclear frequencies from

different electron-spin manifolds and resolve the hyperfine couplings. The studies here showed that there were two isomers of $PV_2Mo_{10}O_{40}^{6-}$ in solution.¹⁹⁸ ENDOR has also been used to study metalloenzymes and other metalloproteins.^{807,809}

13.4. Measurement of the relaxation time

Deuterium 2 H NMR spin-lattice relaxation times (T_1) were measured in solution for the D ligands of transition metal hydride complexes and used for the calculation of deuterium quadrupole coupling constants and of the ionic contribution to the M-D bonds.

¹³C and ¹⁷O T_1 times were measured for M(CO)₆ (M = Cr, Mo, and W) at two temperatures in CDCl₃.⁸¹¹ ¹³C T_1 values at two magnetic field strengths were utilized to calculate reorientational correlation times which, together with ¹⁷O T_1 values, yielded values for the quadrupole coupling constants for ¹⁷O nuclides in the molecules, which were used to investigate π bonding in the compounds.⁸¹¹ This method was also used to study π bonding in W(CO)₅L (L = pyrazine, pyridine, quinuclidine, NMe₃) and M(CO)₅(quinuclidine) (M = Cr, Mo).⁸¹²

Inverse-detection methods were reported to determine spin-lattice relaxation times (T_1) of transition metal nuclides.³⁷⁹ For insensitive spin 1/2 transition-metal nuclides, direct T_1 measurements were challenging, as very long measurement times were required even for large volumes of highly concentrated or labeled samples. The inverse-detection methods were demonstrated for ⁵⁷Fe, ¹⁰³Rh, and ¹⁸⁷Os in organometallic complexes.³⁷⁹

Indirect measurements of nuclear spin relaxation rates of nuclides with low gyromagnetic ratio (γ) was recently demonstrated using the satellite exchange. The method did not require the observation of the low- γ nuclide, but required that it be scalar-coupled to an NMR observable nuclide, such as ³¹P or ¹H. Thus, this method was especially attractive for the study of diamagnetic transition metals in complexes. When spin relaxation was dominated by chemical shift anisotropy (CSA), it is possible to determine T_1 of the metal by the method, as illustrated for ¹⁹⁵Pt and ^{107/109}Ag. ⁸¹³

13.5. Dynamic and variable-temperature (VT) NMR from chemical exchanges and reactions

The use of EXSY to study chemical exchanges was overviewed in Section 13.1.

Other methods to study chemical exchanges were discussed in two monographs published in 1975⁸¹⁴ and 1982.⁸¹⁵ They were also covered in later books on NMR.^{6,816}

Exchanges between two isomers or ligands at the NMR time scale may be studied by VT NMR. This method has been widely used to obtain exchange rate constants at different temperatures, $^{817-820}$ leading to the calculations of activation energies, enthalpies and entropies. $^{818-820}$ For example, alkyl alkylidyne (Me₃SiCH₂)₃W(\equiv CSiMe₃)(PMe₃) and its bisalkylidene isomer (Me₃SiCH₂)₂W(\equiv CHSiMe₃)₂(PMe₃) were found to undergo tautomerization, reaching an equilibrium. 818,821 The exchange was studied by VT NMR at 273-301 K, giving forward and reverse rate constants $k = 1.42 \times 10^{-5} \text{ s}^{-1}$ and $k' = 1.16 \times 10^{-6} \text{ s}^{-1}$, respectively, at 278 K. The activation parameters are $\Delta H^{\neq} = 67.8 \text{ kJ/mol}$ and $\Delta S^{\neq} = -92 \text{ J/mol} \cdot \text{K}$ for the forward reaction and $\Delta H^{\neq} = 75.3 \text{ kJ/mol}$ and $\Delta S^{\neq} = -88 \text{ J/mol} \cdot \text{K}$ for the reverse reaction. 818,821

Chemical reaction converting reactants to products were also studied by VT NMR to obtain rate constants. $^{822-823}$ Pentaneopentyltantalum Ta(CH₂Bu^t)₅ was directly observed as a precursor to the archetypical Schrock-type alkylidene complex (Bu^tCH₂)₃Ta=CHBu^t. 822,824 Ta(CH₂Bu^t)₅ was, however, short lived, and its 1 H NMR resonances were mixed with those of other species in a fairly narrow region. 824 D-labeled Ta(CD₂Bu^t)₅ was prepared and kinetic and mechanistic studies of its conversion to (Bu^tCD₂)₃Ta=CDBu^t were performed by VT NMR at 273-298 K, giving ΔH^{\neq} = 82.3 kJ/mol and ΔS^{\neq} = -17 J/mol·K for the α -D abstraction reaction. 822 This work resolved a long-standing issue in inorganic and organometallic chemistry regarding the pathway in the formation of the archetypical alkylidene complex. 822

The equilibrium mixture of W(CH₂SiMe₃)₃(≡CSiMe₃)(PMe₃) and its bis(alkylidene) tautomer W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) discussed in a previous paragraph underwent an α-

H abstraction reaction in the presence of PMe₃ to form alkyl alkylidene alkylidyne $W(CH_2SiMe_3)(=CHSiMe_3)(=CSiMe_3)(PMe_3)_2$ at 333.2-363.2 K with the elimination of $SiMe_4$.⁸²³ In the presence of PMe₃, the conversion to $W(CH_2SiMe_3)(=CHSiMe_3)(=CSiMe_3)(PMe_3)_2$ followed first-order kinetics, and the observed rate constant was found to be independent of the concentration of PMe₃, giving activation parameters for the reaction, $\Delta H^{\neq} = 118$ kJ/mol and $\Delta S^{\neq} = 13$ J/mol·K.⁸²³

13.6. NMR studies using parahydrogen (p-H₂)

For reactions involving H₂, *p*-H₂ may be used to improve NMR sensitivity and probe the mechanism of reactions such as catalytic hydrogenation of organic substrates. The studies in the areas were reviewed.⁸²⁵⁻⁸³⁰

reaction kinetics.830

In the reactions of Pt[(η -CH₂=CHSiMe₂)₂O](PCy₃) with HSiEt₃, p-H₂ and PR₃, yielding cis-Pt(PCy₃)(PR₃)(H)₂ (PR₃ = PCy₂H, PPh₃ or PCy₃), p-H₂-enhanced NMR methods enabled the detection of the Pt(II) dihydride complexes which then underwent hydride site interchange and H₂ reductive elimination on the NMR timescale.⁸³¹ p-H₂-induced polarization was used to investigate alkyne hydrogenation and oligomerization using, e.g., Pd(dcpe)(OTf)₂ (dcpe = Cy₂PCH₂CH₂PCy₂) as a catalyst precursor.⁸³² The enhanced NMR resonances led to the identification of an alkyl palladium intermediate [Pd(dcpe)(CHPhCH₂Ph)]OTf.⁸³²

Other NMR techniques were developed based on the use of *p*-H₂, including SABRE (Signal Amplification by Reversible Exchange) as a recently emerged hyperpolarization method.^{827,833-835} In this method, hyperpolarization of substrate molecules may be obtained even when they weakly associated to a suitable metal complex together with *p*-H₂. The reversible association provided a transient scalar coupling network through which the spin order of *p*-H₂ could be transferred to the nuclear spins of the substrate.⁸³³ When a suitable co-substrate was used, substrates may be hyperpolarized at concentrations below that of the metal complex.⁸³⁴

SABRE approach was used to hyperpolarize the substrates indazole and imidazole in the presence of the co-ligand MeCN in, e.g., $[Ir(IMes)(H)_2L_3]CI$ [IMes = (128), L = indazole or imidazole as substrate] prepared using p-H₂.⁸³⁵ Quantitative trace analysis of mixtures using SABRE hyperpolarization was reported, using $[Ir(IMes)(H)_2L_3]CI$ (L = substrate).⁸³³ DFT computations and EXAFS studies were performed to study the interaction of $[Ir(IMes)(H)_2L_3]CI$ (L = py, 1-methyl-1,2,3-triazole) generated by p-H₂ with substrate (py) and co-substrate (1-methyl-1,2,3-triazole) as co-substrate that were relevant for SABRE in dilute systems.⁸³⁴ It was also demonstrated that the hyperpolarized labile ligand/substrate L in $[Ir(IMes)(H)_2L_3]CI$ (L = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine), which was obtained from the reaction of IrCI(IMes)(cod) with p-H₂ and L, dissociated from the Ir(III) center.⁸³⁶ The L molecules may then replace an OTf- ligand in $Pt(OTf)_2(bdppp)$ (bdppp = bis-diphenylphosphinopropane), thus

transferring the hyperpolarization to the second metal complex. ³¹P NMR resonance of the Pt(II) complex was found to be enhanced. ⁸³⁶ In other words, the hyperpolarization at the initial Ir(III) complex was passed onto the Pt(II) complexes in the SABRE-relay process. ⁸³⁶

13.7. High-pressure NMR

High-pressure NMR were reviewed in 1996, giving details of the technique and its applications in organometallic chemistry.⁸³⁷

¹H and ¹⁷O NMR studies of dmf exchange with [Ti(dmf)₆]³⁺ as a function of pressure were discussed in Section 3.1.¹³³ The ⁹⁹Tc NMR spectrum of *fac*-Tc(¹³CO)₃(H₂O)₃+ under ¹³CO (49 atm, **Figure 3**) was discussed in Section 6.2.³³⁶⁻³³⁷ In Section 8.1 on Co NMR, the use of ⁵⁹Co NMR line-shape analysis to study Co carbonyl complexes^{249,480,484} and the hydroformylation reaction in supercritical CO₂ was discussed.⁴⁸⁴

High-pressure NMR was often used to study homogeneous catalytic reactions involving, e.g., H₂ or CO.^{336-337,838-840} Solution NMR studies under the high pressure of a gas were often conducted in a sapphire NMR tube.³³⁶⁻³³⁷ A new, convenient flow cell for high-pressure NMR for in-situ study of homogeneous catalysis was reported, which could operate over the pressure range 1 to 197 atm and temperature range of -40 to 175 °C.⁸³⁸ High-pressure NMR was used to study the reaction of Pt(bdpp)Me(SnCl₃) [bdpp = (2S,4S)-2,4-bis(diphenylphosphino)pentane (142)] with CO and CO/H₂ mixture.⁸³⁹ Under 49 atm, CO/H₂ = 1/1 pressure at 273 K, Pt(bdpp)MeH was detected, which then converted to [PtMe(CO)(bdpp)]SnCl₃ and [Pt(COMe)(CO)(bdpp)]SnCl₃.⁸³⁹ High-pressure NMR studies were conducted on the migratory CO insertion on PtMe(P,P)Cl and [PdMe(P,P)(MeCN)]OTf containing a variety of bidentate, C_s-symmetrical 1,4-diphosphines such as 1,2-(Ph₂PCH₂)₂-C₆H₄.⁸⁴¹ The studies yielded rate constants.⁸⁴¹

High-pressure ¹⁷O NMR studies of polyoxoions in water, focusing on the metal ions of interest in environmental chemistry and geochemistry, were reviewed in 2008.⁸⁴² These polyoxoions included monomeric Al(H₂O)₆³⁺, M₃(μ_3 -E)(μ -E)₃(H₂O)₉⁴⁺ (M = Nb, Mo, W; E = S, O), H_xM₆O₁₉^{(8-x)-} (M = Nb, Ta), H_xM₁₀O₂₈^{(6-x)-} (M = V, Nb, Ta), MO₄Al₁₂(OH)₂₄(H₂O)₁₂^{7/8+} (M = Al, Ga, Ge).⁸⁴² The 2008 review focused on the clusters for which high-pressure ¹⁷O NMR yielded reaction kinetics and activation parameters.⁸⁴²

13.8. Rapid-injection NMR

A rapid-injection NMR method was reported in 2010 to allow the observation of fast chemical reactions in real time by NMR. 843 Design, validation, and implementation of the system were reported. 843 The method was used to study pre-transmetalation intermediates in the Suzuki-Miyaura reaction, which had been elusive. Species with Pd(II)-O-B linkages, such as $(4-F-C_6H_4)(Pr^i_3P)_2Pd-O-B(OH)(4-F-C_6H_4)$, were identified, 546 with more details of the studies published later. 547

13.9. Other advanced NMR techniques and methods

Several other advanced NMR techniques and methods were used in the studies of transition metal compounds.

LED-illuminated NMR spectroscopy was reported for mechanistic studies of photochemical reactions. His approach involves placing in-situ light illumination [using a light-emitting diode (LED)] inside an NMR spectrometer. This method, e.g., was used to study photodecomposition of a ferrioxalate ion $Fe(C_2O_4)_3^{3-}$ in solution to $Fe(C_2O_4)$ and CO_2 (detected

directly by ¹³C NMR).⁸⁴⁴

¹H NMRD (Nuclear Magnetic Relaxation Dispersion) was used to study phthalate dioxygenase,⁸⁴⁵ which was involved in the degradation of phthalate by the soil bacterium, *Pseudomonas cepacia* DB01. *T*₁-¹ measurements at magnetic fields between 0.01 and 50 MHz, showing evidence for displacement of water on binding substrate. NMRD is a tool to estimate parameters influencing nuclear relaxation.⁸⁴⁵

Combination of 2-D EXSY and 1-D saturation transfer method was used to study the binding of imidazole, 1-methylimidazole, 1-ethylimidazole to the heme iron in metmyoglobin. Some heme peripheral H resonances were assigned. The rates and equilibrium constants for the binding of the compounds to metmyoglobi were calculated from the EXSY peak amplitudes.

14. Conclusion

Over the 30 year span (1990-2019) covered in the current review, there was much progress in NMR techniques and applications. The vast number of NMR shift data led to the finding of trends of the NMR shifts in transition metal complexes, as we recently found for d⁰ complexes.²⁸⁵ Among the challenges that remain are solution ¹⁷⁵Lu, ²²⁷Ac, ¹⁷⁷Hf/¹⁷⁹Hf, ¹⁹³Ir and ¹⁹⁷Au NMR of their complexes, as we did not find papers on the solution NMR of these nuclides and they were not reported in earlier books.^{1,3} We hope to see breakthroughs in the solution NMR of these nuclides. Solution ¹⁸¹Ta and ¹⁸⁵Re/¹⁸⁷Re NMR spectra of their complexes were reported prior to 1990 and we did not find papers on their NMR in our search of the literature since 1990. Similarly, ¹⁰⁵Pd NMR of H₂PdX₆ (X = Cl⁻, Br⁻) was first reported in 1984 with additional details provided in 1996.³⁹⁹ Given the importance of these transition metals in, e.g., catalysis and materials sciences, we hope to see more use of the NMR of these nuclides in the studies of their complexes. NMR of both metals and ligands will continue to play a critical role in the studies of transition metal complexes.

Acknowledgment

The authors thank the US National Science Foundation (NSF CHE-1900296 and CHE-2055499 to Z.-L.X.), University of Tennessee, and Berry College for support to write this review.

References

- 1. Transition Metal Nuclear Magnetic Resonance, P. S. Pregosin Ed. 1991; Elsevier: Amsterdam.
- 2. Harris, R. K.; Mann, B. E., *NMR and the Periodic Table*. 1978; Academic Press: London.
- 3. *Multinuclear NMR*. Mason, J. E., 1987; Plenum Press.
- 4. Lambert, J. B.; Mazzola, E. P.; Ridge, C. D., *Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods*. 2nd ed.;

 2019; Wiley: Hoboken, New Jersey. https://www.wiley.com/en-fj/Nuclear+Magnetic+Resonance+Spectroscopy%3A+An+Introduction+to+Principles%2C+Applications%2C+and+Experimental+Methods%2C+2nd+Edition-p-9781119295280
- 5. Bertini, I.; Luchinat, C.; Parigi, G.; Ravera, E., *NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models*. 2nd ed.; 2016; Elsevier.

 https://www.sciencedirect.com/book/9780444634368/nmr-of-paramagnetic-molecules
- 6. Pregosin, P. S., *NMR in Organometallic Chemistry*. 2013; Wiley-VCH: Weinheim, Germany. https://www.wiley.com/en-us/NMR+in+Organometallic+Chemistry-p-9783527330133
- 7. Iggo, J. A.; Liu, J.; Khimyak, Y. Z., Nuclear Magnetic Resonance (NMR) Spectroscopy of Inorganic/Organometallic Molecules. In *Applications of Physical Methods to Inorganic and Bioinorganic Chemistry*, Scott, R. A.; Lukehart, C. M., Eds. Wiley: West Sussex, UK, 2007; pp 315-355 (Also online in *Encyclopedia of Inorganic and Bioinorganic Chemistry*, https://doi.org/10.1002/9781119951438.eibc0295). https://www.wiley.com/en-

<u>us/Applications+of+Physical+Methods+to+Inorganic+and+Bioinorganic+Chemistry-p-</u> 9780470032176

- 8. Berger, S.; Braun, S., 200 and More NMR Experiments: A Practical Course. 2004; Wiley-VCH: Weinheim. https://www.wiley.com/en-us/200+and+More+NMR+Experiments%3A+A+Practical+Course-p-9783527310678
- 9. Bertini, I.; Turano, P.; Vila, A. J., Nuclear magnetic resonance of paramagnetic metalloproteins. *Chem. Rev.* **1993**, 93, 2833-2932. https://doi.org/10.1021/cr00024a009
- 10. Rehder, D., Metal NMR of organometallic (d-block) systems. *Coord. Chem. Rev.* **1991,** *110*, 161-210. https://doi.org/10.1016/0010-8545(91)80025-9
- 11. Wrackmeyer, B., Inorganic Chemistry Applications. *eMagRes (earlier Encyclopedia of Magnetic Resonance)* **2011**. https://doi.org/10.1002/9780470034590.emrstm0239.pub2
- 12. Berger, S.; Braun, S.; Kalinowski, H.-O., *NMR Spectroscopy of the Non-Metallic Elements*. 1997; Wiley. https://www.wiley.com/en-us/NMR+Spectroscopy+of+the+Non+Metallic+Elements-p-9780471967637
- 13. Advanced Applications of NMR to Organometallic Chemistry, M. Gielen, R. Willem, B. Wrackmeyer, Eds. 1996; Wiley: New York. https://www.wiley.com/en-us/Advanced+Applications+of+NMR+to+Organometallic+Chemistry-p-9780471959380
- 14. Granger, P., NMR of Metallic Nuclei in Clusters. In *Advanced Applications of NMR to Organometallic Chemistry*, Gielen, M.; Willem, R.; Wrackmeyer, B., Eds. Wiely: New York, 1996; pp 313-356.
- 15. Applications of NMR to Inorganic and Organometallic Chemistry, P. S. Pregosin Ed. *Coord. Chem. Rev.* **2008**, *252*, 2155-2444. https://www.sciencedirect.com/journal/coordination-chemistry-reviews/vol/252/issue/21
- 16. Comprehensive Inorganic Chemistry II. From Elements to Applications. Reedijk, J.; Poeppelmeier, K., 2nd ed.; 2013; Elsevier.

17. *Comprehensive Inorganic Chemistry*. Bailar, J. C. J.; Emeléus, H. J.; Nyholm, R.; Trotman-Dickenson, A. F., 1973.

https://www.sciencedirect.com/book/9781483283135/comprehensive-inorganic-chemistry

- 18. Jensen, W. B., The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. *J. Chem. Edu.* **1982**, *59*, 634. https://doi.org/10.1021/ed059p634
- 19. Settouti, N.; Aourag, H., A Study of the Physical and Mechanical Properties of Lutetium Compared with Those of Transition Metals: A Data Mining Approach. *JOM* **2015**, *67*, 87-93. https://doi.org/10.1007/s11837-014-1247-x
- 20. Stein, B. W.; Morgenstern, A.; Batista, E. R.; Birnbaum, E. R.; Bone, S. E.; Cary, S. K.; Ferrier, M. G.; John, K. D.; Pacheco, J. L.; Kozimor, S. A.; Mocko, V.; Scott, B. L.; Yang, P., Advancing Chelation Chemistry for Actinium and Other +3 f-Elements, Am, Cm, and La. *J. Am. Chem. Soc.* **2019**, *141*, 19404-19414. https://doi.org/10.1021/jacs.9b10354
- 21. Kupče, E.; Wrackmeyer, B., Selective Excitation and Selective Detection in ²⁹Si NMR. In *Advanced Applications of NMR to Organometallic Chemistry*, Gielen, M.; Willem, R.; Wrackmeyer, B., Eds. Wiley: New York, 1996; pp 1-44.
- 22. Kaseman, D. C.; McKenney, M., Quadrupolar Coupling **2021 (accessed on March 16, 2021)**.
- tal_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/NMR_-
- Theory/NMR Interactions/Quadrupolar Coupling
- 23. Smith, J. A. S., Nuclear quadrupole resonance spectroscopy. General principles. *J. Chem. Edu.* **1971**, *48*, 39. https://doi.org/10.1021/ed048p39
- 24. Granger, P., Quadrupolar Transition Metal and Lanthanide Nuclei. In *eMagRes*, 2007. https://doi.org/10.1002/9780470034590.emrstm0433
- 25. NIST: Atomic Weights and Isotopic Compositions for All Elements. **2021**. https://physics.nist.gov/cgi-bin/Compositions/stand alone.pl?ele=Ti&all=all

26. Harris, R. K.; Becker, E. D.; de Menezes, S. M. C.; Goodfellow, R.; Granger, P., NMR nomenclature. Nuclear spin properties and conventions for chemical shifts(IUPAC Recommendations 2001). *Pure Appl. Chem.* **2001**, *73*, 1795-1818.

http://publications.iupac.org/pac/2001/pdf/7311x1795.pdf; https://doi.org/10.1351/pac200173111795

- 27. Harris, R. K.; Becker, E. D.; de Menezes, S. M. C.; Granger, P.; Hoffman, R. E.; Zilm, K. W., Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008). *Pure Appl. Chem.* **2008**, *80*, 59-84. https://doi.org/10.1351/pac200880010059
- 28. Zhu, C.; Gras, E.; Duhayon, C.; Lacassin, F.; Cui, X.; Chauvin, R., The Forgotten Nitroaromatic Phosphines as Weakly Donating P-ligands: An N-Aryl-benzimidazolyl Series in RhCl(CO) Complexes. *Chem. Asian J.* **2017**, *12*, 2845-2856.

https://doi.org/10.1002/asia.201701078

- 29. Tan, N. S. L.; Nealon, G. L.; Lynam, J. M.; Sobolev, A. N.; Rowles, M. R.; Ogden, M. I.; Massi, M.; Lowe, A. B., A (2-(naphthalen-2-yl)phenyl)rhodium(i) complex formed by a proposed intramolecular 1,4-ortho-to-ortho⁷ Rh metal-atom migration and its efficacy as an initiator in the controlled stereospecific polymerisation of phenylacetylene. *Dalton Trans.* **2019**, *48*, 16437-16447. http://dx.doi.org/10.1039/C9DT02953B
- 30. Tan, N. S. L.; Simpson, P. V.; Nealon, G. L.; Sobolev, A. N.; Raiteri, P.; Massi, M.; Ogden, M. I.; Lowe, A. B., Rhodium(I)-α-Phenylvinylfluorenyl Complexes: Synthesis, Characterization, and Evaluation as Initiators in the Stereospecific Polymerization of Phenylacetylene. *Eur. .J. Inorg. Chem.* **2019**, 2019, 592-601.

https://doi.org/10.1002/ejic.201801411

31. Fabrello, A.; Dinoi, C.; Perrin, L.; Kalck, P.; Maron, L.; Urrutigoity, M.; Dechy-Cabaret, O., Probing the stereo-electronic properties of cationic rhodium complexes bearing chiral

diphosphine ligands by ¹⁰³Rh NMR. *Magn. Reson. Chem.* **2010**, *48*, 848-856. https://doi.org/10.1002/mrc.2677

- 32. Emsley, J., *The Elements*. 3rd ed.; 1998; Oxford University Press.
- 33. Pniok, M.; Kubíček, V.; Havlíčková, J.; Kotek, J.; Sabatie-Gogová, A.; Plutnar, J.; Huclier-Markai, S.; Hermann, P., Thermodynamic and Kinetic Study of Scandium(III) Complexes of DTPA and DOTA: A Step Toward Scandium Radiopharmaceuticals. *Chem. Eur. J.* **2014**, *20*, 7944-7955. https://doi.org/10.1002/chem.201402041
- 34. Barisic, D.; Diether, D.; Maichle-Mössmer, C.; Anwander, R., Trimethylscandium. *J. Am. Chem. Soc.* **2019**, *141*, 13931-13940. https://doi.org/10.1021/jacs.9b06879
- 35. Sears, J. M.; Boyle, T. J., Structural properties of scandium inorganic salts. *Coord. Chem. Rev.* **2017**, *340*, 154-171. https://doi.org/10.1016/j.ccr.2016.12.005
- 36. Hector, A. L.; Levason, W.; Webster, M., Synthesis and properties of scandium, yttrium and lanthanum periodates. Crystal structures of Y(H₂O)₃{IO₄(OH)₂} and Y(H₂O)₂(IO₃)₃. *Inorg. Chim. Acta* **2000**, 298, 43-49. https://doi.org/10.1016/S0020-1693(99)00409-0
- 37. Carravetta, M.; Concistre, M.; Levason, W.; Reid, G.; Zhang, W., Rare Neutral Diphosphine Complexes of Scandium(III) and Yttrium(III) Halides. *Inorg. Chem.* **2016**, *55*, 12890-12896. https://doi.org/10.1021/acs.inorgchem.6b02268
- 38. Hill, N. J.; Levason, W.; Popham, M. C.; Reid, G.; Webster, M., Scandium halide complexes of phosphine- and arsine-oxides: synthesis, structures and ⁴⁵Sc NMR studies. *Polyhedron* **2002**, *21*, 1579-1588. https://doi.org/10.1016/S0277-5387(02)01016-1
- 39. Deakin, L.; Levason, W.; Popham, M. C.; Reid, G.; Webster, M., Syntheses, structures and multinuclear NMR (⁴⁵Sc, ⁸⁹Y, ³¹P) studies of Ph₃PO, Ph₂MePO and Me₃PO complexes of scandium and yttrium nitrates. *J. Chem. Soc., Dalton Trans.* **2000**, 2439-2447. http://dx.doi.org/10.1039/B001669L
- 40. Levason, W.; Patel, B.; Popham, M. C.; Reid, G.; Webster, M., Scandium, yttrium and lanthanum nitrate complexes of tertiary arsine oxides: synthesis and multinuclear spectroscopic

- studies. X-ray structures of [M(Me₃AsO)₆](NO₃)₃ (M = Sc or Y), [Sc(Ph₃AsO)₃(NO₃)₂]NO₃, [M" (Ph₃AsO)₄(NO₃)₂]NO₃ (M" = Y or La) and [La(Ph₃AsO)₂(EtOH)(NO₃)₃]. *Polyhedron* **2001**, *20*, 2711-2720. https://doi.org/10.1016/S0277-5387(01)00889-0
- 41. Meehan, P. R.; Willey, G. R., Solution state chemistry of scandium(III): a study of scandium-crown ether complexes by 45Sc-NMR spectroscopy. *Inorg. Chim. Acta* **1999**, *284*, 71-75. https://doi.org/10.1016/S0020-1693(98)00279-5
- 42. Brown, M. D.; Levason, W.; Murray, D. C.; Popham, M. C.; Reid, G.; Webster, M., Primary and secondary coordination of crown ethers to scandium(III). Synthesis, properties and structures of the reaction products of ScCl₃(thf)₃, ScCl₃·6H₂O and Sc(NO₃)₃·5H₂O with crown ethers. *Dalton Trans.* **2003**, 857-865. http://dx.doi.org/10.1039/B210458J
- 43. Champion, M. J. D.; Farina, P.; Levason, W.; Reid, G., Trivalent scandium, yttrium and lanthanide complexes with thia-oxa and selena-oxa macrocycles and crown ether coordination.

 Dalton Trans. 2013, 42, 13179-13189. http://dx.doi.org/10.1039/C3DT51405F
- 44. Curnock, E.; Levason, W.; Light, M. E.; Luthra, S. K.; McRobbie, G.; Monzittu, F. M.; Reid, G.; Williams, R. N., Group 3 metal trihalide complexes with neutral N-donor ligands Exploring their affinity towards fluoride. *Dalton Trans.* **2018**, *47*, 6059-6068. http://dx.doi.org/10.1039/C8DT00480C
- 45. Bartlett, S. A.; Cibin, G.; Dent, A. J.; Evans, J.; Hanton, M. J.; Reid, G.; Tooze, R. P.; Tromp, M., Sc(III) complexes with neutral N₃- and SNS-donor ligands A spectroscopic study of the activation of ethene polymerisation catalysts. *Dalton Trans.* **2013**, *42*, 2213-2223. http://dx.doi.org/10.1039/C2DT31804K
- 46. Taydakov, I.; Vaschenko, A.; Strelenko, Y.; Vitukhnovsky, A., An unexpected electro-luminescent properties of scandium(III) heteroaromatic 1,3-diketonate complex. *Inorg. Chim. Acta* **2014**, *414*, 234-239. https://doi.org/10.1016/j.ica.2014.02.013

- 47. Yang, S.; Wang, C.-r., *Endohedral Fullerenes. From Fundamentals to Applications*. 2014; World Scientific: Singapore. https://doi.org/10.1142/8785
- 48. Endohedral Metallofullerenes: Basics and Applications (Ch. 4, NMR Spectroscopic and X-ray crystallographic characterization of endohedral metallofullerenes by Zhang, W.; Chen, M.; Bao, L.; Yamada, M.; Lu, X.; Olmstead, M. M.; Ghiassi, K. B.; Balch, A. L.). Lu, X.; Echegoyen, L.; Balch, A. L.; Nagase, S.; Akasaka, T., 2015; CRC Press. https://doi.org/10.1201/b17840
 49. Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C., Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 1999, 401, 55-57. https://doi.org/10.1038/43415
- 50. Dunsch, L.; Yang, S.; Zhang, L.; Svitova, A.; Oswald, S.; Popov, A. A., Metal Sulfide in a C₈₂ Fullerene Cage: A New Form of Endohedral Clusterfullerenes. *J. Am. Chem. Soc.* **2010**, 132, 5413-5421. https://doi.org/10.1021/ja909580j
- 51. Chen, N.; Beavers, C. M.; Mulet-Gas, M.; Rodríguez-Fortea, A.; Munoz, E. J.; Li, Y.-Y.; Olmstead, M. M.; Balch, A. L.; Poblet, J. M.; Echegoyen, L., Sc₂S@C_s(10528)-C₇₂: A Dimetallic Sulfide Endohedral Fullerene with a Non Isolated Pentagon Rule Cage. *J. Am. Chem. Soc.* **2012**, *134*, 7851-7860. https://doi.org/10.1021/ja300765z
- 52. Wang, T.-S.; Feng, L.; Wu, J.-Y.; Xu, W.; Xiang, J.-F.; Tan, K.; Ma, Y.-H.; Zheng, J.-P.; Jiang, L.; Lu, X.; Shu, C.-Y.; Wang, C.-R., Planar Quinary Cluster inside a Fullerene Cage: Synthesis and Structural Characterizations of Sc₃NC@C₈₀-Ih. *J. Am. Chem. Soc.* **2010**, *132*, 16362-16364. https://doi.org/10.1021/ja107843b
- 53. Zhang, Y.; Popov, A. A., Transition-Metal and Rare-Earth-Metal Redox Couples inside Carbon Cages: Fullerenes Acting as Innocent Ligands. *Organometallics* **2014**, *33*, 4537-4549. https://doi.org/10.1021/om5000387

- 54. Feng, Y.; Wang, T.; Xiang, J.; Gan, L.; Wu, B.; Jiang, L.; Wang, C., Tuneable dynamics of a scandium nitride cluster inside an Ih-C80 cage. *Dalton Trans.* **2015**, *44*, 2057-2061. http://dx.doi.org/10.1039/C4DT02892A
- 55. Tang, Q.; Abella, L.; Hao, Y.; Li, X.; Wan, Y.; Rodríguez-Fortea, A.; Poblet, J. M.; Feng, L.; Chen, N., Sc₂O@C_{2v}(5)-C₈₀: Dimetallic Oxide Cluster Inside a C₈₀ Fullerene Cage. *Inorg.*Chem. 2015, 54, 9845-9852. https://doi.org/10.1021/acs.inorgchem.5b01613
- 56. Yang, T.; Hao, Y.; Abella, L.; Tang, Q.; Li, X.; Wan, Y.; Rodríguez-Fortea, A.; Poblet, J. M.; Feng, L.; Chen, N., Sc₂O@T_d(19151)-C₇₆: Hindered Cluster Motion inside a Tetrahedral Carbon Cage Probed by Crystallographic and Computational Studies. *Chem. Eur. J.* **2015**, *21*, 11110 11117. https://doi.org/10.1002/chem.201500904
- 57. Tang, Q.; Abella, L.; Hao, Y.; Li, X.; Wan, Y.; Rodríguez-Fortea, A.; Poblet, J. M.; Feng, L.; Chen, N., Sc₂O@C_{3v}(8)-C₈₂: A Missing Isomer of Sc₂O@C₈₂. *Inorg. Chem.* **2016**, *55*, 1926-1933. https://doi.org/10.1021/acs.inorgchem.5b02901
- 58. Wang, Y.; Tang, Q.; Feng, L.; Chen, N., Sc₂C₂@D_{3h}(14246)-C₇₄: A Missing Piece of the Clusterfullerene Puzzle. *Inorg. Chem.* **2017**, *56*, 1974-1980.

https://doi.org/10.1021/acs.inorgchem.6b02512

- 59. Yang, W.; Abella, L.; Wang, Y.; Li, X.; Gu, J.; Poblet, J. M.; Rodríguez-Fortea, A.; Chen, N., Mixed Dimetallic Cluster Fullerenes: ScGdO@C_{3v}(8)-C₈₂ and ScGdC₂@C_{2v}(9)-C₈₂. *Inorg.*Chem. 2018, 57, 11597-11605. https://doi.org/10.1021/acs.inorgchem.8b01646
- 60. Zhang, Y.; Krylov, D.; Rosenkranz, M.; Schiemenz, S.; Popov, A. A., Magnetic anisotropy of endohedral lanthanide ions: paramagnetic NMR study of MSc₂N@C₈₀-I_h with M running through the whole 4f row. *Chem. Sci.* **2015**, *6*, 2328-2341.

http://dx.doi.org/10.1039/C5SC00154D

61. Rinehart, J. D.; Long, J. R., Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. *Chem. Sci.* **2011**, *2*, 2078-2085.

http://dx.doi.org/10.1039/C1SC00513H

- 62. Fu, W.; Wang, X.; Azuremendi, H.; Zhang, J.; Dorn, H. C., 14N and 45Sc NMR study of trimetallic nitride cluster (M3N)6+ dynamics inside a icosahedral C80 cage. *Chem. Commun.*2011, 47, 3858-3860. http://dx.doi.org/10.1039/C0CC03893H
- 63. Kerdjoudj, R.; Pniok, M.; Alliot, C.; Kubíček, V.; Havlíčková, J.; Rösch, F.; Hermann, P.; Huclier-Markai, S., Scandium(III) complexes of monophosphorus acid DOTA analogues: a thermodynamic and radiolabelling study with ⁴⁴Sc from cyclotron and from a ⁴⁴Ti/⁴⁴Sc generator. *Dalton Trans.* **2016**, *45*, 1398-1409. http://dx.doi.org/10.1039/C5DT04084A
- 64. Aramini, J. M.; Vogel, H. J., A Scandium-45 NMR Study of Ovotransferrin and Its Half-Molecules. *J. Am. Chem. Soc.* **1994**, *116*, 1988-1993. https://doi.org/10.1021/ja00084a044
- 65. Germann, M. W.; Aramini, J. M.; Vogel, H. J., Quadrupolar metal ion NMR study of ovotransferrin at 17.6 T. *J. Am. Chem. Soc.* **1994,** *116*, 6971-6972.

https://doi.org/10.1021/ja00094a076

- 66. Wang, B.; Nishiura, M.; Cheng, J.; Hou, Z., Half-sandwich scandium boryl complexes bearing a silylene-linked cyclopentadienyl-amido ligand. *Dalton Trans.* **2014**, *43*, 14215-14218. http://dx.doi.org/10.1039/C4DT01725K
- 67. Wang, B.; Kang, X.; Nishiura, M.; Luo, Y.; Hou, Z., Isolation, structure and reactivity of a scandium boryl oxycarbene complex. *Chem. Sci.* **2016,** *7*, 803-809.

http://dx.doi.org/10.1039/C5SC03138A

- 68. Levy, G. C.; Rinaldi, P. L.; Bailey, J. T., Yttrium-89 NMR. A possible spin relaxation probe for studying metal ion interactions with organic ligands. *J. Magn. Reson.* **1980**, *40*, 167-173. https://doi.org/10.1016/0022-2364(80)90237-1
- 69. Mann, B. E., The Cinderella Nuclei. *Annu. Rep. NMR Spectrosc.* **1991,** 23, 141-207. https://doi.org/10.1016/S0066-4103(08)60277-X
- 70. Schaverien, C. J., Alkoxides as ancillary ligands in organolanthanide chemistry: Synthesis of, reactivity of, and olefin polymerization by the μ -hydride- μ -alkyl compounds

[Y(C₅Me₅)(OC₆H₃^tBu₂)]₂(μ -H)(μ -alkyl). Organometallics **1994**, 13, 69-82. https://doi.org/10.1021/om00013a017

- 71. Hultzsch, K. C.; Voth, P.; Beckerle, K.; Spaniol, T. P.; Okuda, J., Single-Component Polymerization Catalysts for Ethylene and Styrene: Synthesis, Characterization, and Reactivity of Alkyl and Hydrido Yttrium Complexes Containing a Linked Amido-Cyclopentadienyl Ligand. *Organometallics* **2000**, *19*, 228-243. https://doi.org/10.1021/om990583p
- 72. Eppinger, J.; Spiegler, M.; Hieringer, W.; Herrmann, W. A.; Anwander, R., C2-Symmetric ansa-Lanthanidocene Complexes. Synthesis via Silylamine Elimination and β-SiH Agostic Rigidity. *J. Am. Chem. Soc.* **2000**, *122*, 3080-3096. https://doi.org/10.1021/ja992786a
- 73. Arndt, S.; Beckerle, K.; Zeimentz, P. M.; Spaniol, T. P.; Okuda, J., Cationic Yttrium Methyl Complexes as Functional Models for Polymerization Catalysts of 1,3-Dienes. *Angew. Chem. Int. Ed.* **2005**, *44*, 7473-7477. https://doi.org/10.1002/anie.200502915
- 74. Barisic, D.; Schneider, D.; Maichle-Mössmer, C.; Anwander, R., Formation and Reactivity of an Aluminabenzene Ligand at Pentadienyl-Supported Rare-Earth Metals. *Angew. Chem. Int. Ed.* **2019**, *58*, 1515-1518. https://doi.org/10.1002/anie.201812515
- 75. Zimmermann, M.; Frøystein, N. Å.; Fischbach, A.; Sirsch, P.; Dietrich, H. M.; Törnroos, K. W.; Herdtweck, E.; Anwander, R., Homoleptic Rare-Earth Metal(III) Tetramethylaluminates: Structural Chemistry, Reactivity, and Performance in Isoprene Polymerization. *Chem. Eur. J.* **2007**, *13*, 8784-8800. https://doi.org/10.1002/chem.200700534
- 76. Yuan, Y.; Chen, Y.; Li, G.; Xia, W., Synthesis and Structural Features of Boratabenzene Rare-Earth Metal Alkyl Complexes. *Organometallics* **2010**, *29*, 3722-3728. https://doi.org/10.1021/om1005116
- 77. Wrackmeyer, B.; Klimkina, E. V.; Milius, W., Five- and Four-Coordinate 1,3-Diaza-2-yttria- and 1,3-Diaza-2-scandia-[3]ferrocenophanes. *Eur. J. Inorg. Chem.* **2008**, 2008, 3340-3347. https://doi.org/10.1002/ejic.200800399

- 78. Schädle, C.; Fischbach, A.; Herdtweck, E.; Törnroos, K. W.; Anwander, R., Reactivity of Yttrium Carboxylates Toward Alkylaluminum Hydrides. *Chem. Eur. J.* **2013**, *19*, 16334-16341. https://doi.org/10.1002/chem.201302944
- 79. Pernin, C. G.; Ibers, J. A., Bis(cyclopentadienyl)yttrium Complexes of the Ligand [N(QPPh₂)₂]- (Q = S, Se): Synthesis, Structure, and NMR Properties of Cp₂Y[η³-N(QPPh₂)₂]. *Inorg. Chem.* **1999**, *38*, 5478-5483. https://doi.org/10.1021/ic990602n
- 80. Kilimann, U.; Edelmann, F. T., Cyclooctatetraenyl-komplexe der frühen übergangsmetalle und lanthanoide: II. Neue cyclooctatetraenyl-halsandwich-komplexe des yttriums. *J. Organomet. Chem.* **1994,** *4*69, C5-C9. https://doi.org/10.1016/0022-328X(94)80089-8
- 81. Palumbo, C. T.; Halter, D. P.; Voora, V. K.; Chen, G. P.; Ziller, J. W.; Gembicky, M.; Rheingold, A. L.; Furche, F.; Meyer, K.; Evans, W. J., Using Diamagnetic Yttrium and Lanthanum Complexes to Explore Ligand Reduction and C–H Bond Activation in a Tris(aryloxide)mesitylene Ligand System. *Inorg. Chem.* **2018**, *57*, 12876-12884. https://doi.org/10.1021/acs.inorgchem.8b02053
- 82. Bovens, E.; Hoefnagel, M. A.; Boers, E.; Lammers, H.; van Bekkum, H.; Peters, J. A., Multinuclear Magnetic Resonance Study on the Structure and Dynamics of Lanthanide(III)

 Complexes of Cyclic DTPA Derivatives in Aqueous Solution. *Inorg. Chem.* **1996**, *35*, 7679-7683. https://doi.org/10.1021/ic960540q
- 83. Hall, C. D.; Tucker, J. H. R.; Sheridan, A.; Chu, S. Y. F.; Williams, D. J., Complex formation between 1,1 '-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-dicarbonyl)ferrocene and yttrium perchlorate. *J. Chem. Soc., Dalton Trans.* **1992**, 3133-3136. http://dx.doi.org/10.1039/DT9920003133
- 84. Platas-Iglesias, C.; Corsi, D. M.; Elst, L. V.; Muller, R. N.; Imbert, D.; Bünzli, J.-C. G.; Tóth, É.; Maschmeyer, T.; Peters, J. A., Stability, structure and dynamics of cationic

- lanthanide(iii) complexes of N,N′ -bis(propylamide)ethylenediamine-N,N′ -diacetic acid. *Dalton Trans.* **2003**, 727-737. http://dx.doi.org/10.1039/B211060A
- 85. Fratiello, A.; Kuboanderson, V.; Bolanos, E. L.; Haigh, D.; Laghaei, F.; Perrigan, R. D., A Hydrogen-1, Nitrogen-15, and Yttrium-89 NMR-Study of Yttrium(III)-Isothiocyanate Complexes in Aqueous Solvent Mixtures. *J. Magn. Reson. A* **1994**, *107*, 56-66. https://doi.org/10.1006/jmra.1994.1047
- 86. Ishiguro, S.-i.; Umebayashi, Y.; Kato, K.; Nakasone, S.; Takahashi, R., Solvation structure and bromo complexation of neodymium(III) and yttrium(III) ions in solvent mixtures of N,N-dimethylformamide and N,N-dimethylacetamide. *Phys. Chem. Chem. Phys.* **1999**, *1*, 2725-2732. http://dx.doi.org/10.1039/A901225G
- 87. Gleizes, A.; Sans-Lenain, S.; Medus, D.; Hovnanian, N.; Miele, P.; Foulon, J. D., Yttrium tetramethylheptanedionates: syntheses, crystal and molecular structures and thermal behaviours of Y(thd)₃·H₂O and Y(thd)₃ (thd = tBuC(O)CHC(O)tBu). *Inorg. Chim. Acta* **1993**, *209*, 47-53. https://doi.org/10.1016/S0020-1693(00)84979-8
- 88. Popovici, C.; Fernández, I.; Oña-Burgos, P.; Roces, L.; García-Granda, S.; Ortiz, F. L., Synthesis and structure of tridentate bis(phosphinic amide)-phosphine oxide complexes of yttrium nitrate. Applications of ³¹P,⁸⁹Y NMR methods in structural elucidation in solution. *Dalton Trans.* **2011**, *40*, 6691-6703. http://dx.doi.org/10.1039/C1DT10194C
- 89. Fernández, I.; Yañez-Rodríguez, V.; Ortiz, F. L., ³¹P, ⁸⁹Y Shift correlation. Application to the speciation of yttrium complexes with triphenylphosphine oxide. *Dalton Trans.* **2011**, *40*, 2425-2428. http://dx.doi.org/10.1039/C0DT01733G
- 90. Bradley, D. C.; Chudzynska, H.; Hursthouse, M. B.; Motevalli, M., The synthesis and characterization of volatile complexes of fluorinated alkoxides of yttrium. X-ray structures of [Y{OCMe(CF₃)₂}₃(thf)₃] and [Y{OCMe(CF₃)₂}₃(diglyme)]. *Polyhedron* **1993**, *12*, 1907-1918. https://doi.org/10.1016/S0277-5387(00)81430-8

- 91. Tripathi, U. M.; Singh, A.; Mehrotra, R. C., Preparation and characterization of heteroleptic tetraisopropoxoaluminato-yttrium(III) complexes. *Polyhedron* **1993**, *12*, 1947-1952. https://doi.org/10.1016/S0277-5387(00)81435-7
- 92. Coan, P. S.; Huffman, J. C.; Caulton, K. G., Strategy for synthesis of an yttrium/copper(I) complex with an oxo ligand environment. *Inorg. Chem.* **1992**, 31, 4207-4209. https://doi.org/10.1021/ic00046a041
- 93. White, R. E.; Hanusa, T. P., Prediction of 89Y NMR Chemical Shifts in Organometallic Complexes with Density Functional Theory. *Organometallics* **2006**, *25*, 5621-5630. https://doi.org/10.1021/om060695y

94.

- Nockemann, P.; Thijs, B.; Lunstroot, K.; Parac-Vogt, T. N.; Görller-Walrand, C.; Binnemans, K.; Van Hecke, K.; Van Meervelt, L.; Nikitenko, S.; Daniels, J.; Hennig, C.; Van Deun, R., Speciation of Rare-Earth Metal Complexes in Ionic Liquids: A Multiple-Technique Approach. Chem. Eur. J. 2009, 15, 1449-1461. https://doi.org/10.1002/chem.200801418 95. Le Natur, F.; Calvez, G.; Guégan, J.-P.; Le Pollès, L.; Trivelli, X.; Bernot, K.; Daiguebonne, C.; Neaime, C.; Costuas, K.; Grasset, F.; Guillou, O., Characterization and Luminescence Properties of Lanthanide-Based Polynuclear Complexes Nanoaggregates. Inorg. Chem. 2015, 54, 6043-6054. https://doi.org/10.1021/acs.inorgchem.5b00947
- 96. Holz, R. C.; Horrocks, W. D. W., Yttrium-89 NMR spectroscopy, a new probe for calcium-binding proteins. J. Magn. Reson. 1990, 89, 627-631. https://doi.org/10.1016/0022-2364(90)90349-E
- 97. Bruno, J.; Herr, B. R.; Horrocks, W. D., Laser-induced luminescence studies of europium hexaazamacrocycle Eu(HAM)³⁺. An evaluation of complex stability and the use of the gadolinium analog as a relaxation agent in yttrium-89 NMR. Inorg. Chem. 1993, 32, 756-762. https://doi.org/10.1021/ic00057a041
- 98. Rudovský, J.; Botta, M.; Hermann, P.; Koridze, A.; Aime, S., Relaxometric and solution NMR structural studies on ditopic lanthanide(iii) complexes of a phosphinate analogue of DOTA

with a fast rate of water exchange. Dalton Trans. 2006, 2323-2333.

http://dx.doi.org/10.1039/B518147J

- 99. Jindal, A. K.; Merritt, M. E.; Suh, E. H.; Malloy, C. R.; Sherry, A. D.; Kovács, Z., Hyperpolarized ⁸⁹Y Complexes as pH Sensitive NMR Probes. *J. Am. Chem. Soc.* **2010**, *132*, 1784-1785. https://doi.org/10.1021/ja910278e
- 100. Lumata, L.; Jindal, A. K.; Merritt, M. E.; Malloy, C. R.; Sherry, A. D.; Kovacs, Z., DNP by Thermal Mixing under Optimized Conditions Yields >60 000-fold Enhancement of 89Y NMR Signal. *J. Am. Chem. Soc.* **2011**, *133*, 8673-8680. https://doi.org/10.1021/ja201880y
- 101. Miéville, P.; Jannin, S.; Helm, L.; Bodenhausen, G., Kinetics of Yttrium-Ligand Complexation Monitored Using Hyperpolarized 89Y as a Model for Gadolinium in Contrast Agents. *J. Am. Chem. Soc.* **2010**, *132*, 5006-5007. https://doi.org/10.1021/ja1013954
- 102. Casey, C. P.; Tunge, J. A.; Lee, T.-Y.; Carpenetti, D. W., Kinetics and Mechanism of Formation of Yttrium Alkyl Complexes from (Cp*₂YH)₂ and Alkenes. *Organometallics* **2002**, *21*, 389-396. https://doi.org/10.1021/om010817g
- 103. Chen, Z.; Morel-Desrosiers, N.; Morel, J.-P.; Detellier, C., A ¹³⁹La NMR study of the interactions between the La(III) cation and D-ribose in aqueous solution. *Can. J. Chem.* **1994,** 72, 1753-1757. https://doi.org/10.1139/v94-221
- 104. Biruš, M.; van Eldik, R.; Gabričević, M.; Zahl, A., ¹³⁹La NMR Kinetic Study of Lanthanum(III) Complexation with Acetohydroxamic Acid. *Eur. J. Inorg. Chem.* **2002**, 2002, 819-825. https://doi.org/10.1002/1099-0682(200203)2002:4<819::AID-EJIC819>3.0.CO;2-E
- 105. Israëli, Y.; Bonal, C.; Detellier, C.; Morel, J.-P.; Morel-Desrosiers, N., Complexation of the La(III) cation by p-sulfonatocalix[4]arene. A 139La NMR study. *Can. J. Chem.* **2002**, *80*, 163-168. https://doi.org/10.1139/v02-005
- 106. Boyle, T. J.; Ottley, L. A. M.; Alam, T. M.; Rodriguez, M. A.; Yang, P.; McIntyre, S. K., Structural characterization of methanol substituted lanthanum halides. *Polyhedron* **2010**, *29*, 1784-1795. https://doi.org/10.1016/j.poly.2010.02.027

- 107. Lammers, H.; van der Heijden, A. M.; van Bekkum, H.; Geraldes, C. F. G. C.; Peters, J. A., Multinuclear NMR study of the interactions between the La(III) complex of DTPA-bis(glucamide) and Zn(II) or borate. *Inorg. Chim. Acta* **1998**, *268*, 249-255. https://doi.org/10.1016/S0020-1693(97)05752-6
- Chen, Z.; Van Westrenen, J.; Van Bekkum, H.; Peters, J. A., Synthesis of polyhydroxy carboxylates. 5. Metal ion catalyzed O-alkylation of ethylene glycol with maleate. A multinuclear NMR study of the lanthanide(III) complexes present in the reaction mixture of the lanthanide(III)-catalyzed reaction. *Inorg. Chem.* **1990**, *29*, 5025-5031. https://doi.org/10.1021/ic00350a005
 109. Taube, R.; Windisch, H.; Hemling, H.; Schumann, H., Komplexkatalyse: LIII1LII. Mitteilung siehe [7].1. Darstellung und Charakterisierung der Bis(η3-allyl)lanthanhalogenid-Komplexe La(η3-C3H5)2X·2THF (X=Cl, Br, I) als Präkatalysatoren für die stereospezifische Butadienpolymerisation, ein Beitrag zur weiteren Klärung der katalytischen Struktur-Wirkungsbeziehung. *J. Organomet. Chem.* **1998**, *555*, 201-210. https://doi.org/10.1016/S0022-328X(97)00753-5
- 110. Taube, R.; Windisch, H.; Weiβenborn, H.; Hemling, H.; Schumann, H., Komplexkatalyse LI. Komplexe des Tris(allyI)lanthans mit verschiedenen Donorliganden La(η3-C3H5)3 · L (L:DME, TMED, 2HMPT) und ihre katalytischen Eigenschaften in der stereospezifischen Butadienpolymerisation. *J. Organomet. Chem.* **1997**, *548*, 229-236. https://doi.org/10.1016/S0022-328X(97)00406-3
- 111. Windisch, H.; Scholz, J.; Taube, R.; Wrackmeyer, B., 139La-NMR-spektroskopie an allyllanthan(III)-komplexen. *J. Organomet. Chem.* **1996,** *520*, 23-30. https://doi.org/10.1016/0022-328X(96)06259-6
- 112. Guan, J.; Shen, Q.; Fischer, R. D., Crystal structure, conformational diversity and solution NMR spectroscopy of four tris(indenyl)lanthanoid(III) tetrahydrofuran adducts: [Ln(C9H7)3 · THF] (Ln = La, Pr, Nd, Sm). *J. Organomet. Chem.* **1997**, *54*9, 203-212. https://doi.org/10.1016/S0022-328X(97)00565-2

113. Beletskaya, I. P.; Voskoboynikov, A. Z.; Chuklanova, E. B.; Kirillova, N. I.; Shestakova, A. K.; Parshina, I. N.; Gusev, A. I.; Magomedov, G. K. I., Bimetallic lanthanide complexes with lanthanide-transition metal bonds. Molecular structure of (C₄H₈O)(C₅H₅)₂LuRu(CO)₂(C₅H₅). The use of ¹³⁹La NMR spectroscopy. *J. Am. Chem. Soc.* **1993**, *115*, 3156-3166. https://doi.org/10.1021/ja00061a015

114. Kato, H.; Taninaka, A.; Sugai, T.; Shinohara, H., Structure of a Missing-Caged Metallofullerene: La2@C72. *J. Am. Chem. Soc.* **2003**, *125*, 7782-7783. https://doi.org/10.1021/ja0353255

- 115. Suzuki, M.; Mizorogi, N.; Yang, T.; Uhlik, F.; Slanina, Z.; Zhao, X.; Yamada, M.; Maeda, Y.; Hasegawa, T.; Nagase, S.; Lu, X.; Akasaka, T., La2@Cs(17490)-C76: A New Non-IPR Dimetallic Metallofullerene Featuring Unexpectedly Weak Metal—Pentalene Interactions. *Chem. Eur. J.* **2013**, *19*, 17125-17130. https://doi.org/10.1002/chem.201302821
- 116. Wakahara, T.; Yamada, M.; Takahashi, S.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Kako, M.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S., Two-dimensional hopping motion of encapsulated La atoms in silylated La2@C80. *Chem. Commun.* **2007**, 2680-2682. http://dx.doi.org/10.1039/B703473C
- 117. Yamada, M.; Wakahara, T.; Nakahodo, T.; Tsuchiya, T.; Maeda, Y.; Akasaka, T.; Yoza, K.; Horn, E.; Mizorogi, N.; Nagase, S., Synthesis and Structural Characterization of Endohedral Pyrrolidinodimetallofullerene: La2@C80(CH2)2NTrt. *J. Am. Chem. Soc.* **2006**, *128*, 1402-1403. https://doi.org/10.1021/ja056560l
- 118. Akasaka, T.; Lu, X.; Kuga, H.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Yoza, K.; Nagase, S., Dichlorophenyl Derivatives of La@C_{3v}(7)-C₈₂: Endohedral Metal Induced Localization of Pyramidalization and Spin on a Triple-Hexagon Junction. *Angew. Chem. Int. Ed.* **2010**, *49*, 9715-9719. https://doi.org/10.1002/anie.201004318
- 119. Lin, S.-J.; Wakagi, T.; Matsuzawa, H.; Yoshimura, E., Lanthanum binding to aqualysin I, a thermostable serine protease, as probed by lanthanum-139 nuclear magnetic resonance

- spectrometry. *J. Inorg. Biochem.* **1999**, 77, 205-208. https://doi.org/10.1016/S0162-0134(99)00195-6
- 120. Johnson, L.; Verraest, D. L.; Besemer, A. C.; van Bekkum, H.; Peters, J. A., Complexation of LnIII and Call Cations with 3,4-Dicarboxyinulin and Model Compounds: Methyl 3,4-Dicarboxy-α-d-fructofuranoside and 3,4-Dicarboxynystose, As Studied by Multinuclear Magnetic Resonance Spectroscopy and Potentiometry. *Inorg. Chem.* **1996**, *35*, 5703-5710. https://doi.org/10.1021/ic960103b
- 121. Fratiello, A.; Kubo-Anderson, V.; Bolanos, E.; Perrigan, R. D.; Saenz, L.; Stoll, S. M., A direct hydrogen-1, carbon-13, and nitrogen-15 NMR study of lutetium(III)-isothiocyanate complexation in aqueous solvent mixtures. *J. Solution Chem.* **1996**, *25*, 1071-1082. https://doi.org/10.1007/BF00972922
- 122. Skarnemark, G.; Skålberg, M., The half-life of 228Ac. *Int. J. Appl. Radiat. Isot.* **1985,** *36*, 439-441. https://doi.org/10.1016/0020-708X(85)90206-6
- 123. Foris, A., 47,49Ti and 13C NMR spectra of titanium-containing catalysts. *Magn. Reson. Chem.* **2000**, *38*, 1044-1046. https://doi.org/10.1002/1097-458X(200012)38:12<1044::AID-MRC773>3.0.CO;2-M
- 124. Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F., Enantioselective syntheses with titanium carbohydrate complexes. Part 7. Enantioselective allyltitanation of aldehydes with cyclopentadienyldialkoxyallyltitanium complexes. *J. Am. Chem.* Soc. **1992**, *114*, 2321-2336. https://doi.org/10.1021/ja00033a005
- 125. Hafner, A.; Okuda, J., Titanium NMR data for some titanium half-sandwich complexes bearing substituted cyclopentadienyl ligands. *Organometallics* **1993**, *12*, 949-950. https://doi.org/10.1021/om00027a052
- 126. Sarsfield, M. J.; Ewart, S. W.; Tremblay, T. L.; Roszak, A. W.; Baird, M. C., Synthesis of a series of new, highly electrophilic, monocyclopentadienyltitanium olefin polymerization initiators *J. Chem. Soc., Dalton Trans.* **1997**, 3097-3104. http://dx.doi.org/10.1039/A703112B

127. Erben, M.; Růžička, A.; Picka, M.; Pavlík, I., 47, 49Ti NMR spectra of half-sandwich titanium(IV) complexes. *Magn. Reson. Chem.* **2004**, *42*, 414-417.

128. Erben, M.; Merna, J.; Hermanová, S.; Císařová, I.; Padělková, Z.; Dušek, M., Fluorosilyl-Substituted Cyclopentadienyltitanium(IV) Complexes: Synthesis, Structure, and Styrene Polymerization Behavior. *Organometallics* **2007**, *26*, 2735-2741.

https://doi.org/10.1021/om070098r

https://doi.org/10.1002/mrc.1354

- 129. Traill, P. R.; Young, C. G., Application of a transverse NMR probe in the detection of broad titanium-49 resonances from Ti(IV) and Ti(II) compounds. *J. Magn. Reson.* **1990**, *90*, 551-556. https://doi.org/10.1016/0022-2364(90)90059-I
- 130. Carlin, R. T.; Osteryoung, R. A.; Wilkes, J. S.; Rovang, J., Studies of Titanium(IV) Chloride in a Strongly Lewis Acidic Molten Salt: Electrochemistry and Titanium NMR and Electronic Spectroscopy. *Inorg. Chem.* **1990**, *29*, 3003-3009.

http://doi.org/10.1021/ic00341a030

- 131. Brueggermann, K.; Czernuszewicz, R. S.; Kochi, J. K., Charge-transfer structures of aromatic electron donor-acceptor complexes with titanium tetrachloride. Ground-state and excited-state spectroscopy for redox processes. *J. Phys. Chem.* **1992**, *96*, 4405-4414. https://doi.org/10.1021/j100190a052
- 132. Bühl, M.; Mauschick, F. T., Density functional computation of ⁴⁹Ti NMR chemical shifts. *Magn. Reson. Chem.* **2004**, *42*, 737-744. https://doi.org/10.1002/mrc.1405
- 133. Dellavia, I.; Helm, L.; Merbach, A. E., High-pressure NMR kinetics. 54. N,N-dimethylformamide exchange on hexakis(N,N-dimethylformamide)titanium(III): a variable-temperature and pressure proton and oxygen-17 NMR study. *Inorg. Chem.* **1992**, *31*, 2230-2233. https://doi.org/10.1021/ic00037a043
- 134. Finn, M. G.; Sharpless, K. B., Mechanism of asymmetric epoxidation. 2. Catalyst structure. *J. Am. Chem. Soc.* **1991**, *113*, 113-126. https://doi.org/10.1021/ja00001a019

- 135. Reynolds, M. S.; Butler, A., Oxygen-17 NMR, Electronic, and Vibrational Spectroscopy of Transition Metal Peroxo Complexes: Correlation with Reactivity. *Inorg. Chem.* **1996**, *35*, 2378-2383. https://doi.org/10.1021/ic951212d
- 136. Camporeale, M.; Cassidei, L.; Mello, R.; Troisi, L.; Curci, R.; Sciacovelli, O., The oxygen-17 NMR of some side-bonded dioxygen species. *Studies in Organic Chemistry* **1988**, *33*, 201-210.
- 137. Fujii, H.; Kurahashi, T.; Tosha, T.; Yoshimura, T.; Kitagawa, T., 170 NMR study of oxo metalloporphyrin complexes: Correlation with electronic structure of MO moiety. *J. Inorg. Biochem.* **2006**, *100*, 533-541. https://doi.org/10.1016/j.jinorgbio.2006.01.009
- 138. Kilpatrick, A. F. R.; Green, J. C.; Cloke, F. G. N., Reactivity of a Dititanium Bis(pentalene) Complex toward Heteroallenes and Main-Group Element–Element Bonds.

 Organometallics 2017, 36, 352-362. https://doi.org/10.1021/acs.organomet.6b00791
- 139. Alcaraz, G.; Sabo-Etienne, S., NMR: A good tool to ascertain σ -silane or σ -borane formulations? *Coord. Chem. Rev.* **2008**, *252*, 2395-2409.

https://doi.org/10.1016/j.ccr.2008.02.006

140. Bühl, M.; Hopp, G.; von Philipsborn, W.; Beck, S.; Prosenc, M.-H.; Rief, U.; Brintzinger, H.-H., Zirconium-91 Chemical Shifts and Line Widths as Indicators of Coordination Geometry Distortions in Zirconocene Complexes. *Organometallics* **1996**, *15*, 778-785. https://doi.org/10.1021/om950757c

- 141. Fedotov, M. A.; Belyaev, A. V., A study of the hydrolysis of ZrF₆²⁻ and the structure of intermediate hydrolysis products by ¹⁹F and ⁹¹Zr NMR in the 9.4 T field. *J. Struct. Chem.* **2011**, 52, 69-74. https://doi.org/10.1134/S0022476611010094
- 142. Janiak, C.; Versteeg, U.; Lange, K. C. H.; Weimann, R.; Hahn, E., The influence of electronic and steric effects and the importance of polymerization conditions in the ethylene polymerization with zirconocene/MAO catalysts. *J. Organomet. Chem.* **1995**, *501*, 219-234. https://doi.org/10.1016/0022-328X(95)05647-8

- 143. Janiak, C.; Lange, K. C. H.; Versteeg, U.; Lentz, D.; Budzelaar, P. H. M., Ethene Polymerization Activity and Coordination Gap Aperture in non-ansa Alkyl-substituted Cyclopentadienyl- and Phospholyl-zirconium/MAO Catalysts. *Chem. Ber.* **1996**, *129*, 1517-1529. https://doi.org/10.1002/cber.19961291219
- 144. Siedle, A. R.; Newmark, R. A.; Gleason, W. B.; Lamanna, W. M., Reactions of bis(cyclopentadienyl)dimethylzirconium with fluorocarbon acids. Structure, dynamic properties, and zirconium-91 NMR spectra of (C5H5)2Zr[HC(SO2CF3)2-O,O'][HC(SO2CF3)2-O].

 Organometallics 1990, 9, 1290-1295. https://doi.org/10.1021/om00118a061
- 145. Janiak, C.; Lange, K. C. H.; Scharmann, T. G., Zirconium-chelate and mono-η-cyclopentadienyl zirconium-chelate/ methylalumoxane systems as soluble Ziegler–Natta olefin polymerization catalysts. *Appl. Organomet. Chem.* **2000**, *14*, 316-324.

https://doi.org/10.1002/(SICI)1099-0739(200006)14:6<316::AID-AOC990>3.0.CO;2-U

- 146. Bühl, M., NMR Chemical Shifts of Zr@C₂₈. How Shielded Can ⁹¹Zr Get? *J. Phys. Chem.*A 1997, 101, 2514-2517. https://doi.org/10.1021/jp963882g
- 147. Aberg, M.; Glaser, J., Oxygen-17 and proton NMR study of the tetranuclear hydroxo zirconium complex in aqueous solution. *Inorg. Chim. Acta* **1993**, *206*, 53-61. https://doi.org/10.1016/S0020-1693(00)89259-2
- 148. Gozum, J. E.; Wilson, S. R.; Girolami, G. S., Zirconium and hafnium polyhydrides. 2. Preparation and characterization of M3H6(BH4)6(PMe3)4 and M2H4(BH4)4(dmpe)2. *J. Am. Chem. Soc.* **1992**, *114*, 9483-92. https://doi.org/10.1021/ja00050a029
- 149. Manke, D. R.; Nocera, D. G., Bis(alkylamido)phenylborane Complexes of Zirconium,
 Hafnium, and Vanadium. *Inorg. Chem.* 2003, *42*, 4431-4436. https://doi.org/10.1021/ic0340478
 150. Woo, H. G.; Heyn, R. H.; Tilley, T. D., σ-Bond metathesis reactions for d0 metal-silicon bonds that produce zirconocene and hafnocene hydrosilyl complexes. *J. Am. Chem. Soc.* 1992,

114, 5698-707. https://doi.org/10.1021/ja00040a032

- 151. Chen, C.-H.; Shih, W.-C.; Hilty, C., In Situ Determination of Tacticity, Deactivation, and Kinetics in [rac-(C₂H₄(1-Indenyl)₂)ZrMe][B(C₆F₅)₄] and [Cp₂ZrMe][B(C₆F₅)₄]-Catalyzed Polymerization of 1-Hexene Using ¹³C Hyperpolarized NMR. *J. Am. Chem. Soc.* **2015**, *137*, 6965-6971. https://doi.org/10.1021/jacs.5b04479
- 152. Rocchigiani, L.; Busico, V.; Pastore, A.; Macchioni, A., Probing the interactions between all components of the catalytic pool for homogeneous olefin polymerisation by diffusion NMR spectroscopy. *Dalton Trans.* **2013**, *42*, 9104-9111. http://doi.org/10.1039/c3dt00041a
- 153. Frey, U.; Helm, L.; Merbach, A. E., A variable-pressure 2D proton NMR study of the mechanism of trimethyl phosphate intermolecular exchange and cis/trans-isomerization of tetrachlorobis(trimethyl phosphate)zirconium(IV). *Helv. Chim. Acta* **1990**, 73, 199-202. http://doi.org/10.1002/hlca.19900730123
- 154. Cook, T. M.; Steren, C. A.; Xue, Z.-L., Syntheses and characterization of hepta-coordinated Group 4 amidinate complexes. *Dalton Trans.* **2018**, *47*, 11030-11040. http://dx.doi.org/10.1039/C8DT02523A
- 155. Xie, X.; Jones, J. N.; Hughbanks, T., Excision of Zirconium Iodide Clusters from Highly Cross-Linked Solids. *Inorg. Chem.* **2001**, *40*, 522-527. https://doi.org/10.1021/ic000651w
- 156. Nakata, N.; Fujita, T.; Sekiguchi, A., A Stable Schrock-Type Hafnium-Silylene Complex.
- J. Am. Chem. Soc. 2006, 128, 16024-16025. https://doi.org/10.1021/ja067251d
- 157. Erich, L. C.; Gossard, A. C.; Hartless, R. L., Magnetic moment of 181Ta. *J. Chem. Phys.* **1973**, *59*, 3911-3912. https://aip.scitation.org/doi/abs/10.1063/1.1680576
- 158. Rehder, D.; Basler, W., Tantalum-181 solution NMR spectroscopy. *J. Magn. Reson.* **1986**, *68*, 157-160. https://doi.org/10.1016/0022-2364(86)90325-2
- de Oliveira, V.; da Silva San Gil, R. A.; Lachter, E. R., Synthesis and characterization of two new niobium(V) diperoxo complexes containing 8-quinolinolate as the ligand. *Polyhedron* **2001**, *20*, 2647-2649. https://doi.org/10.1016/S0277-5387(01)00870-1

160. Levason, W.; Light, M. E.; Reid, G.; Zhang, W., Soft diphosphine and diarsine complexes of niobium(V) and tantalum(V) fluorides: synthesis, properties, structures and comparisons with the corresponding chlorides. *Dalton Trans.* **2014**, *43*, 9557-9566.

161. Talay, R.; Rehder, D., Vanadium-metal bonds in carbonylvanadium complexes: A 51V NMR spectroscopic investigation. *J. Organomet. Chem.* **1984,** *262*, 25-32.

https://doi.org/10.1016/S0022-328X(00)99119-8

http://dx.doi.org/10.1039/C4DT01029A

- 162. Howarth, O. W., Vanadium-51 NMR. *Prog. NMR Spec.* **1990,** *22*, 453-485. https://doi.org/10.1016/0079-6565(90)80007-5
- 163. Rehder, D., Biological Applications of ⁵¹V NMR Spectroscopy. In *Vanadium in Biological Systems: Physiology and Biochemistry*, Chasteen, N. D., Ed. Kluwer Academic Publishers: 1990; pp 173-197.
- 164. Rehder, D., Vanadium NMR of organovanadium complexes. *Coord. Chem. Rev.* **2008**, 252, 2209-2223. https://doi.org/10.1016/j.ccr.2008.01.008
- 165. Rehder, D.; Polenova, T.; Bühl, M., Vanadium-51 NMR. *Annu. Rep. NMR Spectrosc.* **2007**, *62*, 49-114. https://doi.org/10.1016/S0066-4103(07)62002-X
- 166. Angus-Dunne, S. J.; Paul, P. C.; Tracey, A. S., A ⁵¹V NMR investigation of the interactions of aqueous vanadate with hydroxylamine. *Can. J. Chem.* **1997**, *75*, 1002-1010. https://cdnsciencepub.com/doi/abs/10.1139/v97-120
- 167. Ramos, M. L.; Justino, L. L. G.; Fonseca, S. M.; Burrows, H. D., NMR, DFT and luminescence studies of the complexation of V(V) oxoions in solution with 8-hydroxyquinoline-5-sulfonate. *New J. Chem.* **2015**, *39*, 1488-1497. http://dx.doi.org/10.1039/C4NJ01873G
- 168. Yamaki, R. T.; Paniago, E. B.; Carvalho, S.; Lula, I. S., Interaction of 2-amino-N-hydroxypropanamide with vanadium(V) in aqueous solution. *J. Chem. Soc., Dalton Trans.* **1999**, 4407-4412. http://dx.doi.org/10.1039/A907249G

- 169. Dörnyei, Á.; Garribba, E.; Jakusch, T.; Forgó, P.; Micera, G.; Kiss, T., Vanadium(iv,v) complexes of d-saccharic and mucic acids in aqueous solution. *Dalton Trans.* **2004**, 1882-1891. http://dx.doi.org/10.1039/B401443J
- 170. Miranda, C. T.; Carvalho, S.; Yamaki, R. T.; Paniago, E. B.; Borges, R. H. U.; De Bellis, V. M., pH-metric, UV–Vis and 51V NMR study of vanadium(V) coordination to α-aminohydroxamic acids in aqueous solutions. *Polyhedron* **2010**, *29*, 897-903. https://doi.org/10.1016/j.poly.2009.10.020
- 171. Miyazaki, Y.; Matsuoka, S.; Fujimori, T.; Kai, Y.; Yoshimura, K., Coordination properties of aqueous vanadate complexes with nitrogen- and oxygen-containing multidentate ligands. *Polyhedron* **2017**, *134*, 79-87. https://doi.org/10.1016/j.poly.2017.05.056
- 172. Yang, L.; la Cour, A.; Anderson, O. P.; Crans, D. C., 4-Hydroxypyridine-2,6-dicarboxylatodioxovanadate(V) Complexes: Solid State and Aqueous Chemistry. *Inorg. Chem.* **2002**, *41*, 6322-6331. https://doi.org/10.1021/ic0201598
- 173. Crans, D. C.; Yang, L.; Jakusch, T.; Kiss, T., Aqueous Chemistry of Ammonium (Dipicolinato)oxovanadate(V): The First Organic Vanadium(V) Insulin-Mimetic Compound. *Inorg. Chem.* **2000**, 39, 4409-4416. https://doi.org/10.1021/ic9908367
- 174. Durupthy, O.; Coupé, A.; Tache, L.; Rager, M.-N.; Maquet, J.; Coradin, T.; Steunou, N.; Livage, J., Spectroscopic Investigation of Interactions between Dipeptides and Vanadate(V) in Solution. *Inorg. Chem.* **2004**, *43*, 2021-2030. https://doi.org/10.1021/ic0301019
- 175. Castro, M. M. C. A.; Geraldes, C. F. G. C.; Gameiro, P.; Pereira, E.; Castro, B.; Rangel, M., Structural study of the interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) in aqueous solution. *J. Inorg. Biochem.* **2000**, *80*, 177-179. https://doi.org/10.1016/S0162-0134(00)00028-3
- 176. Elvingson, K.; Crans, D. C.; Pettersson, L., Speciation in Vanadium Bioinorganic Systems. 4. Interactions between Vanadate, Adenosine, and ImidazoleAn Aqueous

- Potentiometric and 51V NMR Study. *J. Am. Chem. Soc.* **1997**, *119*, 7005-7012. https://doi.org/10.1021/ja9630497
- 177. Maurya, M. R.; Jangra, N.; Avecilla, F.; Correia, I., 4,6-Diacetyl Resorcinol Based Vanadium(V) Complexes: Reactivity and Catalytic Applications. *Eur. J. Inorg. Chem.* **2019**, 2019, 314-329. https://doi.org/10.1002/ejic.201801243
- 178. Levinger, N. E.; Rubenstrunk, L. C.; Baruah, B.; Crans, D. C., Acidification of Reverse Micellar Nanodroplets by Atmospheric Pressure CO2. *J. Am. Chem. Soc.* **2011**, *133*, 7205-7214. https://doi.org/10.1021/ja2011737
- 179. Bányai, I.; Conte, V.; Pettersson, L.; Silvagni, A., On the Nature of VV Species in Hydrophilic Ionic Liquids: A Spectroscopic Approach. *Eur. J. Inorg. Chem.* **2008**, 2008, 5373-5381. https://doi.org/10.1002/ejic.200800673
- 180. Bell, R. C.; Castleman, A. W.; Thorn, D. L., Vanadium Oxide Complexes in Room-Temperature Chloroaluminate Molten Salts. *Inorg. Chem.* **1999**, *38*, 5709-5715. https://doi.org/10.1021/ic9906930
- 181. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M., *Advanced Inorganic Chemistry*. 6 ed.; 1999; Wiley-Interscience.
- 182. Fedotov, M. A.; Maksimovskaya, R. I., NMR structural aspects of the chemistry of V, Mo, W polyoxometalates. *J. Struct. Chem.* **2006**, *47*, 952-978. https://doi.org/10.1007/s10947-006-0413-6
- 183. Crans, D. C.; Rithner, C. D.; Theisen, L. A., Application of time-resolved vanadium-51 2D NMR for quantitation of kinetic exchange pathways between vanadate monomer, dimer, tetramer, and pentamer. *J. Am. Chem. Soc.* **1990**, *112*, 2901-2908.

https://doi.org/10.1021/ja00164a009

184. Andersson, I.; Pettersson, L.; Hastings, J. J.; Howarth, O. W., Oxygen and vanadium exchange processes in linear vanadate oligomers. *J. Chem. Soc., Dalton Trans.* **1996**, 3357-3361. http://dx.doi.org/10.1039/DT9960003357

- 185. Pettersson, L.; Andersson, I.; Howarth, O. W., Tridecavanadate, [H12V13O40]3. *Inorg. Chem.* **1992**, *31*, 4032-4033. https://doi.org/10.1021/ic00046a003
- 186. Kuwajima, S.; Kikukawa, Y.; Hayashi, Y., Small-Molecule Anion Recognition by a Shape-Responsive Bowl-Type Dodecavanadate. *Chem. Asian J.* **2017**, *12*, 1909-1914. https://doi.org/10.1002/asia.201700489
- 187. Hastings, J. J.; Howarth, O. W., 183W nuclear magnetic resonance of α-[H2W11VO40]7- and α-[H2W11MoO40]6-. *Polyhedron* **1993**, *12*, 847-849. https://doi.org/10.1016/S0277-5387(00)81767-2
- 188. Grigoriev, V. A.; Cheng, D.; Hill, C. L.; Weinstock, I. A., Role of Alkali Metal Cation Size in the Energy and Rate of Electron Transfer to Solvent-Separated 1:1 [(M+)(Acceptor)] (M+ = Li+, Na+, K+) Ion Pairs. *J. Am. Chem. Soc.* **2001**, *123*, 5292-5307. https://doi.org/10.1021/ja010074q
- 189. Howarth, O. W.; Hastings, J. J., Monotungstononavanadate and mertritungstotrivanadate. *Polyhedron* **1990**, *9*, 143-146. https://doi.org/10.1016/S0277-5387(00)84259-X
- 190. Howarth, O. W.; Hastings, J. J., Aqueous vanadosilicates. *J. Chem. Soc., Dalton Trans.*1996, 4189-4192. http://dx.doi.org/10.1039/DT9960004189
- 191. Howarth, O. W.; Pettersson, L.; Andersson, I., Aqueous molybdovanadates at high Mo:V ratio. *J. Chem. Soc., Dalton Trans.* 1991, 1799-1812. http://dx.doi.org/10.1039/DT9910001799
 192. Andersson, I.; Hastings, J. J.; Howarth, O. W.; Pettersson, L., Aqueous tungstovanadate equilibria. *J. Chem. Soc., Dalton Trans.* 1996, 2705-2711.

http://dx.doi.org/10.1039/DT9960002705

193. Hastings, J. J.; Howarth, O. W., Molybdotungstovanadates [V2MoW(4–)O19]4–. *J. Chem. Soc., Dalton Trans.* **1995**, 2891-2893. http://dx.doi.org/10.1039/DT9950002891

- 194. Son, J.-H.; Ohlin, C. A.; Johnson, R. L.; Yu, P.; Casey, W. H., A Soluble Phosphorus-Centered Keggin Polyoxoniobate with Bicapping Vanadyl Groups. *Chem. Eur. J.* **2013**, *19*, 5191-5197. https://doi.org/10.1002/chem.201204563
- 195. Ueda, T.; Ohnishi, M.; Kawamoto, D.; Guo, S.-X.; Boas, J. F.; Bond, A. M., Voltammetric behavior of 1- and 4-[S2VVW17O62]5- in acidified acetonitrile. *Dalton Trans.* **2015**, *44*, 11660-11668. http://dx.doi.org/10.1039/C5DT01530H
- 196. Abramov, P. A.; Davletgildeeva, A. T.; Moroz, N. K.; Kompankov, N. B.; Santiago-Schübel, B.; Sokolov, M. N., Cation-Dependent Self-assembly of Vanadium Polyoxoniobates. *Inorg. Chem.* **2016**, *55*, 12807-12814. https://doi.org/10.1021/acs.inorgchem.6b02108
- 197. Sugiarto; Kawamoto, K.; Hayashi, Y., Strategic Isolation of a Polyoxocation Mimicking Vanadium(V) Oxide Layered-Structure by Stacking of [H2V2O8]4– Anions Bridged by (1,4,7-Triazacyclononane)Co(III) Complexes. *Front. Chem.* **2018**, *6*, 375.

https://www.frontiersin.org/article/10.3389/fchem.2018.00375

198. Kaminker, I.; Goldberg, H.; Neumann, R.; Goldfarb, D., High-Field Pulsed EPR Spectroscopy for the Speciation of the Reduced [PV2Mo10O40]6– Polyoxometalate Catalyst Used in Electron-Transfer Oxidations. *Chem. Eur. J.* **2010**, *16*, 10014-10020. https://doi.org/10.1002/chem.201000944

199. Justino, Licínia L. G.; Ramos, M. L.; Caldeira, M. M.; Gil, Victor M. S.,
Peroxovanadium(V) Complexes of L-Lactic Acid as Studied by NMR Spectroscopy. *Eur. J. Inorg. Chem.* **2000**, 2000, 1617-1621. <a href="https://doi.org/10.1002/1099-0682(200007)2000:7<1617::AID-EJIC1617>3.0.CO;2-B">https://doi.org/10.1002/1099-0682(200007)2000:7<1617::AID-EJIC1617>3.0.CO;2-B

200. Ballistreri, F. P.; Barbuzzi, E. G. M.; Tomaselli, G. A.; Toscano, R. M., Insulin mimesis of vanadium derivatives. Oxidation of cysteine by V(V) oxo diperoxo complexes. *J. Inorg. Biochem.* **2000**, *80*, 173-176. https://doi.org/10.1016/S0162-0134(00)00027-1

201. Tracey, A. S.; Jaswal, J. S., Reactions of peroxovanadates with amino acids and related compounds in aqueous solution. *Inorg. Chem.* **1993**, *32*, 4235-4243.

https://doi.org/10.1021/ic00072a015

- 202. Conte, V.; Di Furia, F.; Moro, S., 51V-NMR investigation on the formation of peroxo vanadium complexes in aqueous solution: Some novel observations. *J. Mole. Catal.* **1994,** 94, 323-333. https://doi.org/10.1016/0304-5102(94)00149-9
- 203. Conte, V.; Furia, F. D.; Moro, S., Solvation, preferential solvation and complexation by the solvent of peroxovanadium complexes studied by 51V NMR spectroscopy. Correlations with the oxidative reactivity. *Inorg. Chim. Acta* **1998**, 272, 62-67. https://doi.org/10.1016/S0020-1693(97)05976-8
- 204. Talsi, E. P.; Shalyaev, K. V., 51V NMR and EPR study of the mechanistic details of oxidation with VO(O2) (Pic) (H2O)2. *J. Mole. Catal.* **1994,** 92, 245-255.

https://doi.org/10.1016/0304-5102(94)00069-7

- 205. Andersson, I.; Angus-Dunne, S.; Howarth, O.; Pettersson, L., Speciation in vanadium bioinorganic systems: 6. Speciation study of aqueous peroxovanadates, including complexes with imidazole. *J. Inorg. Biochem.* **2000**, *80*, 51-58. https://doi.org/10.1016/S0162-0134(00)00039-8
- 206. Justino, L. n. L. G.; Ramos, M. L. s.; Caldeira, M. M.; Gil, V. M. S., Peroxovanadium(V) complexes of glycolic acid as studied by NMR spectroscopy. *Inorg. Chim. Acta* **2000**, *311*, 119-125. https://doi.org/10.1016/S0020-1693(00)00317-0
- 207. Justino, L., L. G.; Ramos, M. L.; Caldeira, M. M.; Gil, V. M. S., NMR spectroscopy study of the peroxovanadium(V) complexes of I-malic acid. *Inorg. Chim. Acta* **2003**, *356*, 179-186. https://doi.org/10.1016/S0020-1693(03)00466-3
- 208. Schmidt, H.; Andersson, I.; Rehder, D.; Pettersson, L., A Potentiometric and 51V NMR Study of the Aqueous H+/H2VO4-/H2O2/L-α-Alanyl-L-histidine System. *Chem. Eur. J.* **2001,** 7, 251-257. https://doi.org/10.1002/1521-3765(20010105)7:1<251::AID-CHEM251>3.0.CO;2-9

- 209. Zhang, J.; Yu, X.; Zeng, B.; Cai, S.; Chen, Z., Spectroscopic and theoretical study on the interaction between diperoxovanadate complexes and glycyl-histidine. *Spectrochim. Acta A* **2010,** 77, 825-831. https://doi.org/10.1016/j.saa.2010.08.013
- 210. Zeng, B.; Zhu, X.; Cai, S.; Chen, Z., Interactions between diperoxovanadate complex and amide ligands in aqueous solution. *Spectrochim. Acta A* **2007**, *67*, 202-207.

https://doi.org/10.1016/j.saa.2006.07.003

211. Vennat, M.; Brégeault, J.-M.; Herson, P., Mixed crystals containing the dioxo complex [{Ph3SiO}2VO2]– and novel pentacoordinated oxoperoxo complex [{Ph3SiO}2VO(O2)]–: X-ray crystal structure and assessment as oxidation catalysts. *Dalton Trans.* **2004**, 908-913. http://dx.doi.org/10.1039/B400657G

- 212. Bonchio, M.; Bortolini, O.; Conte, V.; Moro, S., Characterization and Reactivity of Triperoxo Vanadium Complexes In Protic Solvents. *Eur. J. Inorg. Chem.* **2001**, *2001*, 2913-2919. https://doi.org/10.1002/1099-0682(200111)2001:11
 2913::AID-EJIC2913>3.0.CO;2-T
 213. Kwong, D. W. J.; Chan, O. Y.; Wong, R. N. S.; Musser, S. M.; Vaca, L.; Chan, S. I., DNA-Photocleavage Activities of Vanadium(V)-Peroxo Complexes. *Inorg. Chem.* **1997**, *36*, 1276-1277. https://doi.org/10.1021/ic960909b
- 214. Butenko, N.; Pinheiro, J. P.; Da Silva, J. P.; Tomaz, A. I.; Correia, I.; Ribeiro, V.; Costa Pessoa, J.; Cavaco, I., The effect of phosphate on the nuclease activity of vanadium compounds. *J. Inorg. Biochem.* **2015**, *147*, 165-176.

https://doi.org/10.1016/j.jinorgbio.2015.04.010

- 215. Wittenkeller, L.; Abraha, A.; Ramasamy, R.; De Freitas, D. M.; Theisen, L. A.; Crans, D. C., Vanadate interactions with bovine copper,zinc-superoxide dismutase as probed by vanadium-51 NMR spectroscopy. *J. Am. Chem. Soc.* **1991**, *113*, 7872-7881. https://doi.org/10.1021/ja00021a008
- 216. Wolff, F.; Choukroun, R.; Lorber, C.; Donnadieu, B., Reactivity of B(C6F5)3 with Oxovanadium(V) Complexes VOL3 (L = OCH2CF3, NEt2): Formation of the Organometallic

Vanadium(V) Complex [VO(μ-OCH2CF3)(OCH2CF3)(C6F5)]2 and the Lewis Acid Adduct [(Et2N)3VO·B(C6F5)3]. *Eur. .J. Inorg. Chem.* **2003**, 2003, 628-632. https://doi.org/10.1002/ejic.200390086

- 217. Zamaraev, K., New possibilities of NMR in mechanistic studies of homogeneous and heterogeneous catalysis. *J. Mole. Catal.* **1993**, *82*, 275-324. https://doi.org/10.1016/0304-5102(93)80037-U
- 218. Bonchio, M.; Bortolini, O.; Carraro, M.; Conte, V.; Primon, S., Vanadium catalyzed reduction of dioxygen to hydrogen peroxide: an oscillating process. *J. Inorg. Biochem.* **2000**, *80*, 191-194. https://doi.org/10.1016/S0162-0134(00)00031-3
- 219. Ishikawa, E.; Kihara, D.; Togawa, Y.; Ookawa, C., Cyclooctene Epoxidation by Hydrogen Peroxide in the Presence of Vanadium-Substituted Lindqvist-Type Polyoxotungstate [VW5O19]3–. *Eur. J. Inorg. Chem.* **2019**, *2019*, 402-409. https://doi.org/10.1002/ejic.201800869 220. Zakzeski, J.; Burton, S.; Behn, A.; Head-Gordon, M.; Bell, A. T., Spectroscopic investigation of the species involved in the rhodium-catalyzed oxidative carbonylation of toluene to toluic acid. *Phys. Chem. Chem. Phys.* **2009**, *11*, 9903-9911.

http://dx.doi.org/10.1039/B906883J

- 221. Chahkandi, M., ⁵¹V NMR, ¹⁷O NMR, and UV–Vis computational studies of new VBPO functional models: Bromide oxidation reaction. *Polyhedron* **2016**, *109*, 92-98. https://doi.org/10.1016/j.poly.2016.02.006
- 222. Vijayakumar, M.; Li, L.; Nie, Z.; Yang, Z.; Hu, J. Z., Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes. *Phys. Chem. Chem. Phys.* **2012**, *14*, 10233-10242. https://doi.org/10.1039/c2cp40707h
- 223. Jura, M.; Levason, W.; Ratnani, R.; Reid, G.; Webster, M., Six- and eight-coordinate thio- and seleno-ether complexes of NbF5 and some comparisons with NbCl5 and NbBr5 adducts. *Dalton Trans.* **2010**, *39*, 883-891. http://dx.doi.org/10.1039/B916336K

- 224. Benjamin, S. L.; Chang, Y.-P.; Gurnani, C.; Hector, A. L.; Huggon, M.; Levason, W.; Reid, G., Niobium(v) and tantalum(v) halide chalcogenoether complexes towards single source CVD precursors for ME₂ thin films. *Dalton Trans.* **2014**, *43*, 16640-16648. http://dx.doi.org/10.1039/C4DT02694B
- 225. Henderson, R. A.; Hughes, D. L.; Stephens, A. N., The chemistry of niobium and tantalum dithiocarbamato-complexes. Part 4. The co-ordination isomers of NbCl3(S2CNEt2)2 and the X-ray crystal structure of [NbCl3(S2CNEt2)2]. *J. Chem. Soc., Dalton Trans.* **1990**, 1097-1099. http://dx.doi.org/10.1039/DT9900001097
- 226. Dilworth, J. R.; Henderson, R. A.; Hills, A.; Hughes, D. L.; Macdonald, C.; Stephens, A. N.; Walton, D. R. M., The chemistry of niobium and tantalum dithiocarbamato-complexes. Part 1. Synthesis, structure, and protonation of dinitrogen-bridged complexes. *J. Chem. Soc., Dalton Trans.* **1990**, 1077-1085. http://dx.doi.org/10.1039/DT9900001077
- 227. Lee, G. R.; Crayston, J. A., Niobium-93 nuclear magnetic resonance studies of the solvolysis of NbCl5 by alcohols. *J. Chem. Soc., Dalton Trans.* **1991**, 3073-3076. http://dx.doi.org/10.1039/DT9910003073
- 228. Karaliota, A.; Kamariotaki, M.; Hatzipanayioti, D., Spectroscopic studies of NbCl5 and TaCl5 in methanol solutions. An investigation of the alcoholysis and the formation of organic compounds. *Transit. Met. Chem.* 1997, 22, 411-417. https://doi.org/10.1023/A:1018582406721
 229. Lee, G. R.; Crayston, J. A., Hydrolysis of acetonitrile in the presence of NbCl5. *Polyhedron* 1996, 15, 1817-1821. https://doi.org/10.1016/0277-5387(95)00432-7
- 230. Amini, M. M.; Fazaeli, Y.; Mohammadnezhad, G.; Khavasi, H. R., Structural and spectroscopic characterizations of tetra-nuclear niobium(V) complexes of quinolinol derivatives. Spectrochim. Acta A 2015, 144, 192-199. https://doi.org/10.1016/j.saa.2015.02.077
- 231. Lu, Y.-J.; Lalancette, R.; Beer, R. H., Deoxygenation of Polynuclear Metal-Oxo Anions: Synthesis, Structure, and Reactivity of the Condensed Polyoxoanion

[(C4H9)4N]4(NbW5O18)2O. Inorg. Chem. 1996, 35, 2524-2529.

https://doi.org/10.1021/ic951197c

- 232. Rehder, D.; Rodewald, D., Metal NMR of Organovanadium, -Niobium and -Tantalum Compounds. In *Advanced Applications of NMR to Organometallic Chemistry*, Gielen, M.; Willem, R.; Wrackmeyer, B., Eds. Wiley: New York, 1996; pp 291-311.
- 233. Calderazzo, F.; Felten, C.; Pampaloni, G.; Rehder, D., New alkyne complexes of niobium(I). *J. Chem. Soc., Dalton Trans.* **1992**, 2003-2007.

http://dx.doi.org/10.1039/DT9920002003

234. Cheatham, L. K.; Graham, J. J.; Apblett, A. W.; Barron, A. R., The molecular structure of (allyl)bis(methylcyclopentadienyl)niobium(III). *Polyhedron* **1991**, *10*, 1075-1078.

https://doi.org/10.1016/S0277-5387(00)81371-6

- 235. Hulley, E. B.; Williams, V. A.; Hirsekorn, K. F.; Wolczanski, P. T.; Lancaster, K. M.; Lobkovsky, E. B., Application of 93Nb NMR spectroscopy to (silox)3Nb(Xn/Lm) complexes (silox=tBu3SiO): Where does (silox)3Nb(NN)Nb(silox)3 appear? *Polyhedron* **2016**, *103*, 105-114. https://doi.org/10.1016/j.poly.2015.10.005
- 236. Sugimoto, M.; Kanayama, M.; Nakatsuji, H., Theoretical study on metal NMR chemical shifts: niobium complexes. *J. Phys. Chem.* **1992**, *96*, 4375-4381.

https://doi.org/10.1021/j100190a048

- 237. Bühl, M.; Wrackmeyer, B., Density-functional computation of ⁹³Nb NMR chemical shifts. *Magn. Reson. Chem.* **2010**, *48*, S61-S68. https://doi.org/10.1002/mrc.2624
- 238. Zhou, Q.; Ye, M.; Ma, W.; Li, D.; Ding, B.; Chen, M.; Yao, Y.; Gong, X.; Hou, Z., Ionic Liquid Stabilized Niobium Oxoclusters Catalyzing Oxidation of Sulfides with Exceptional Activity. *Chem. Eur. J.* **2019**, *25*, 4206-4217. https://doi.org/10.1002/chem.201806178
- 239. Klemperer, W. G.; Marek, K. A., An 17O NMR Study of Hydrolyzed NbV in Weakly Acidic and Basic Aqueous Solutions. *Eur. J. Inorg. Chem.* **2013**, *2013*, 1762-1771. http://doi.porg/10.1002/ejic.201201231

- 240. Galajov, M.; García, C.; Gómez, M.; Gómez-Sal, P., Trialkyl imido niobium and tantalum compounds: synthesis, structural study and migratory insertion reactions. *Dalton Trans.* **2011**, 40, 2797-2804. http://dx.doi.org/10.1039/C0DT01449D
- 241. Galajov, M.; García, C.; Gómez, M., Tri-chlorido, 2-methylallyl and 2-butenyl tert-butylimido niobium and tantalum complexes: Synthesis, multinuclear NMR spectroscopy and reactivity. *Dalton Trans.* **2011**, *40*, 413-420. http://dx.doi.org/10.1039/C0DT00878H
- 242. Elorriaga, D.; Galajov, M.; García, C.; Gómez, M.; Gómez-Sal, P., Hydridotris(3,5-dimethylpyrazolyl)borate Dimethylamido Imido Niobium and Tantalum Complexes: Synthesis, Reactivity, Fluxional Behavior, and C–H Activation of the NMe2 Function. *Organometallics* **2012**, *31*, 5089-5100. https://doi.org/10.1021/om300437e
- 243. Galájov, M.; García, C.; Gómez, M.; Gómez-Sal, P.; Temprado, M., Synthesis and DFT, Multinuclear Magnetic Resonance, and X-ray Structural Studies of Iminoacyl Imido

 Hydridotris(3,5-dimethylpyrazolyl)borate Niobium and Tantalum(V) Complexes. *Organometallics*2014, 33, 2277-2286. https://doi.org/10.1021/om5002028
- 244. Bregel, D. C.; Oldham, S. M.; Lachicotte, R. J.; Eisenberg, R., A New Tantalum Dinitrogen Complex and a Parahydrogen-Induced Polarization Study of Its Reaction with Hydrogen. *Inorg. Chem.* **2002**, *41*, 4371-4377. http://doi.org/10.1021/ic025578j
- 245. Hunter, S. C.; Chen, S.-J.; Steren, C. A.; Richmond, M. G.; Xue, Z.-L., Syntheses and Characterization of Tantalum Alkyl Imides and Amide Imides. DFT Studies of Unusual α-SiMe3 Abstraction by an Amide Ligand. *Organometallics* **2015**, *34*, 5687-5696.

https://doi.org/10.1021/acs.organomet.5b00558

- Malito, J., Molybdenum-95 NMR Spectroscopy. In *Annu. Rep. NMR Spectrosc.*, Webb,
 G. A., Ed. 1996; pp 151-206. https://doi.org/10.1016/S0066-4103(08)60050-2
- 247. Bouten, R.; Baerends, E. J.; van Lenthe, E.; Visscher, L.; Schreckenbach, G.; Ziegler, T., Relativistic Effects for NMR Shielding Constants in Transition Metal Oxides Using the

Zeroth-Order Regular Approximation. *J. Phys. Chem. A* **2000**, *104*, 5600-5611. https://doi.org/10.1021/jp994480w

248. Dutta, R.; Chakraborty, S.; Bose, P.; Ghosh, P., Aerial CO2 Trapped as CO32– Ions in a Dimeric Capsule That Efficiently Extracts Chromate, Sulfate, and Thiosulfate from Water by Anion-Exchange Metathesis. *Eur. J. Inorg. Chem.* **2014**, *2014*, 4134-4143. https://doi.org/10.1002/ejic.201402139

- 249. Gaemers, S.; Groenevelt, J.; Elsevier, Cornelis J., Transition Metal (53Cr, 59Co, 91Zr, and 95Mo) and 14N NMR Spectroscopy of Coordination Compounds Containing Nitrogen Donor Ligands in Low-Viscosity Fluids. *Eur. J. Inorg. Chem.* **2001**, *2001*, 829-835. https://doi.org/10.1002/1099-0682(200103)2001:3<829::AID-EJIC829>3.0.CO;2-F
- 250. Bühl, M., Density-functional computation of ⁵³Cr NMR chemical shifts. *Magn. Reson. Chem.* **2006**, *44*, 661-668. https://doi.org/10.1002/mrc.1807
- 251. Aldrich, K. E.; Billow, B. S.; Holmes, D.; Bemowski, R. D.; Odom, A. L., Weakly Coordinating yet Ion Paired: Anion Effects on an Internal Rearrangement. *Organometallics* **2017**, *36*, 1227-1237. http://doi.org/10.1021/acs.organomet.6b00839
- 252. Fujihara, T.; Kaizaki, S., Diamagnetic behaviour of high-resolution nitrogen-14 nuclear magnetic resonance spectra for co-ordinated nitrogens in paramagnetic chromium(III) diamine complexes. *J. Chem. Soc., Dalton Trans.* **1993**, 2521-2524.

http://dx.doi.org/10.1039/DT9930002521

- 253. Braunschweig, H.; Colling, M.; Kollann, C.; Merz, K.; Radacki, K., [(OC)₅Cr=BSi(SiMe₃)₃]:

 A Terminal Borylene Complex with an Electronically Unsaturated Boron Atom. *Angew. Chem.*Int. Ed, 2001, 40, 4198-4200. https://doi.org/10.1002/1521-3773(20011119)40:22ANIE4198>3.0.CO;2-E
- 254. Grieves, R. A.; Mason, J., Patterns of 95Mo shielding in organometallic and inorganic chemistry. *Polyhedron* **1986**, *5*, 415-421. https://doi.org/10.1016/S0277-5387(00)84943-8

- 255. Brito, J. A.; Teruel, H.; Massou, S.; Gómez, M., ⁹⁵Mo NMR: a useful tool for structural studies in solution. *Magn. Reson. Chem.* **2009**, *47*, 573-577. https://doi.org/10.1002/mrc.2431
 256. Ramos, M. L.; Justino, L. L. G.; Abreu, P. E.; Fonseca, S. M.; Burrows, H. D., Oxocomplexes of Mo(VI) and W(VI) with 8-hydroxyquinoline-5-sulfonate in solution: structural studies and the effect of the metal ion on the photophysical behaviour. *Dalton Trans.* **2015**, *44*, 19076-19089. http://dx.doi.org/10.1039/C5DT03473F
- 257. Ramos, M. L.; Justino, L. L. G.; Gil, V. M. S.; Burrows, H. D., NMR and DFT studies of the complexation of W(VI) and Mo(VI) with 3-phospho-D-glyceric and 2-phospho-D-glyceric acids. *Dalton Trans.* **2009**, 9616-9624. http://dx.doi.org/10.1039/B905933D
- 258. Szalontai, G.; Kiss, G.; Bartha, L., Equilibria of mononuclear oxomolybdenum(VI) complexes of triethanolamine.: A multinuclear dynamic magnetic resonance study of structure and exchange mechanisms. *Spectrochim. Acta A* **2003**, *59*, 1995-2007.

https://doi.org/10.1016/S1386-1425(02)00445-6

- 259. Unoura, K.; Suzuki, T.; Nagasawa, A.; Yamazaki, A.; Fukuda, Y., Electrochemical and 95Mo NMR studies of triply-bridged dinuclear oxomolybdenum(V) complexes with various dithiocarbamates. *Inorg. Chim. Acta* **1999**, *292*, 7-15. https://doi.org/10.1016/S0020-1693(99)00163-2
- 260. Wong, T. C.; Huang, Q.; Nianyong, Z.; Wu, X., 95Mo NMR studies of five heterometallic trinuclear incomplete cubane-like clusters. *Polyhedron* **1997**, *16*, 2987-2990.

https://doi.org/10.1016/S0277-5387(97)00050-8

261. Nguyen, T. T.; Jung, J.; Trivelli, X.; Trébosc, J.; Cordier, S.; Molard, Y.; Le Pollès, L.; Pickard, C. J.; Cuny, J.; Gautier, R., Evaluation of 95Mo Nuclear Shielding and Chemical Shift of [Mo6X14]2– Clusters in the Liquid Phase. *Inorg. Chem.* **2015**, *54*, 7673-7683. https://doi.org/10.1021/acs.inorgchem.5b00396

- 262. Akagi, S.; Fujii, S.; Kitamura, N., Zero-Magnetic-Field Splitting in the Excited Triplet States of Octahedral Hexanuclear Molybdenum(II) Clusters: [{Mo₆X₈}Y₆]²⁻ (X, Y = Cl, Br, I). *J. Phys. Chem. A* **2018**, *122*, 9014-9024. https://doi.org/10.1021/acs.jpca.8b09339
- 263. Maksimovskaya, R. I.; Maksimov, G. M., 95Mo and 17O NMR Studies of Aqueous Molybdate Solutions. *Inorg. Chem.* **2007**, *46*, 3688-3695. https://doi.org/10.1021/ic061549n
- 264. Brunner, H.; Mijolovic, D.; Wrackmeyer, B.; Nuber, B., NMR analysis of trinuclear silver(I) complexes with μ_2 -H bridged group VI metallocene hydrides as ligands and X-ray structure analysis of {[(η^5 -MeC₅H₄)₂Mo(μ_2 -H)₂]₂Ag}PF₆. *J. Organomet. Chem.* **1999**, *579*, 298-303. https://doi.org/10.1016/S0022-328X(99)00012-1
- 265. Jura, M.; Levason, W.; Reid, G.; Webster, M., Preparation and properties of cyclic and open-chain Sb/N-donor ligands. *Dalton Trans.* **2009**, 7811-7819.

http://dx.doi.org/10.1039/B909226A

- 266. Levason, W.; Ollivere, L. P.; Reid, G.; Tsoureas, N.; Webster, M., Synthesis, spectroscopic and structural characterisation of molybdenum, tungsten and manganese carbonyl complexes of tetrathio- and tetraseleno-ether ligands. *J. Organomet. Chem.* **2009**, *694*, 2299-2308. https://doi.org/10.1016/j.jorganchem.2009.03.041
- 267. Levason, W.; Reid, G.; Tolhurst, V.-A., Transition metal complexes of 1,3-dihydrobenzo[c]tellurophene: synthesis, spectroscopy and crystal structures. *J. Chem. Soc., Dalton Trans.* **1998**, 3411-3416. http://dx.doi.org/10.1039/A805183F
- 268. Cybulski, P. A.; Gillis, D. J.; Baird, M. C., Molybdenum-95 T1 measurements of molybdenum hexacarbonyl encapsulated in NaY zeolite. *Inorg. Chem.* **1993**, *32*, 460-462. https://doi.org/10.1021/ic00056a019
- 269. Li, L.-F.; You, X.-Z., Topological Index and Its Applications. I. *Chi. Sci. Bull.* **1993,** *38*, 1358-1363.
- 270. Randic, M., Characterization of molecular branching. *J. Am. Chem. Soc.* **1975,** 97, 6609-6615. https://doi.org/10.1021/ja00856a001

- 271. Zhang, H.; Xin, H., Bonding Parameter Topological Index and Its Applications in Correlation with XY, XY₂, XY₃, and XY₄ Molecular Properties. *Chin. J. Chem. Phys. (in Chinese with English abstract)* **1989**, *2*, 413-419.
- 272. Teruel, H.; Sierralta, A., Molecular orbital studies in95Mo NMR shielding for[MoOnS(4 n)]2– anions: Relations between chemical shift and molybdenum orbital electron populations.

 *Polyhedron 1996, 15, 2215-2221. https://doi.org/10.1016/0277-5387(95)00476-9
- 273. Farkas, E.; Csoka, H.; Toth, I., New insights into the solution equilibrium of molybdenum(VI)-hydroxamate systems: 1H and 17O NMR spectroscopic study of Mo(VI)-desferrioxamine B and Mo(VI)-monohydroxamic acid systems. *Dalton Trans.* **2003**, 1645-1652. https://doi.org/10.1039/B300431G
- 274. Santos, M. A.; Gama, S.; Pessoa, J. C.; Oliveira, M. C.; Toth, I.; Farkas, E., Complexation of molybdenum(VI) with bis(3-hydroxy-4-pyridinone)amino acid derivatives. *Eur. J. Inorg. Chem.* **2007**, 1728-1737. http://doi.org/10.1002/ejic.200601088
- 275. Burroughs, B. A.; Bursten, B. E.; Chen, S.; Chisholm, M. H.; Kidwell, A. R., Metathesis of Nitrogen Atoms within Triple Bonds Involving Carbon, Tungsten, and Molybdenum. *Inorg. Chem.* **2008**, *47*, 5377-5385. https://doi.org/10.1021/ic8003917
- 276. Chisholm, M. H.; Delbridge, E. E.; Kidwell, A. R.; Quinlan, K. B., Nitrogen atom exchange between molybdenum, tungsten and carbon. A convenient method for N-15 labeling. *Chem. Commun.* **2003**, 126-127. https://doi.org/10.1039/B210286B
- 277. Zhang, S.; Appel, A. M.; Bullock, R. M., Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. *J. Am. Chem. Soc.* **2017**, *139*, 7376-7387. https://doi.org/10.1021/jacs.7b03053
- 278. Chiang, M.-H.; Antonio, M. R.; Soderholm, L., Energetics of the Preyssler anion's molecular orbitals: quantifying the effect of the encapsulated-cation's charge. *Dalton Trans.*
- **2004**, 3562-3567. http://dx.doi.org/10.1039/B412337A

- 279. Bajpe, S. R.; Breynaert, E.; Robeyns, K.; Houthoofd, K.; Absillis, G.; Mustafa, D.; Parac-Vogt, T. N.; Maes, A.; Martens, J. A.; Kirschhock, C. E. A., Chromate-Mediated One-Step Quantitative Transformation of PW₁₂ into P₂W₂₀ Polyoxometalates. *Eur. J. Inorg. Chem.* **2012**, 2012, 3852-3858. https://doi.org/10.1002/ejic.201200440
- 280. Duval, S.; Béghin, S.; Falaise, C.; Trivelli, X.; Rabu, P.; Loiseau, T., Stabilization of Tetravalent 4f (Ce), 5d (Hf), or 5f (Th, U) Clusters by the [α-SiW9O34]10– Polyoxometalate. *Inorg. Chem.* **2015**, *54*, 8271-8280. https://doi.org/10.1021/acs.inorgchem.5b00786
- 281. Nomiya, K.; Saku, Y.; Yamada, S.; Takahashi, W.; Sekiya, H.; Shinohara, A.; Ishimaru, M.; Sakai, Y., Synthesis and structure of dinuclear hafnium(IV) and zirconium(IV) complexes sandwiched between 2 mono-lacunary α-Keggin polyoxometalates. *Dalton Trans.* **2009**, 5504-5511. http://dx.doi.org/10.1039/B902296A
- 282. Sprangers, C. R.; Marmon, J. K.; Duncan, D. C., Where Are the Protons in α-[HxW12O40](8-x)- (x = 2-4)? *Inorg. Chem.* **2006**, *45*, 9628-9630. https://doi.org/10.1021/ic061370c
- 283. Smith, B. J.; Patrick, V. A., Quantitative Determination of Aqueous Dodecatungstophosphoric Acid Speciation by NMR Spectroscopy. *Aust. J. Chem.* **2004**, *57*, 261-268. https://doi.org/10.1071/CH02037
- 284. Lenoble, G.; Hasenknopf, B.; Thouvenot, R., A Strategy for the Analysis of Chiral Polyoxotungstates by Multinuclear (31P, 183W) NMR Spectroscopy Applied to the Assignment of the 183W NMR Spectra of α1-[P2W17O61]10- and α1-[YbP2W17O61]7. *J. Am. Chem. Soc.* **2006**, *128*, 5735-5744. https://doi.org/10.1021/ja0575934
- 285. Xue, Z.-L.; Cook, T. M.; Lamb, A. C., Trends in NMR chemical shifts of d0 transition metal compounds. *J. Organomet. Chem.* **2017**, *852*, 74-93.

https://doi.org/10.1016/j.jorganchem.2017.03.044

286. Kamata, K.; Hirano, T.; Kuzuya, S.; Mizuno, N., Hydrogen-Bond-Assisted Epoxidation of Homoallylic and Allylic Alcohols with Hydrogen Peroxide Catalyzed by Selenium-Containing

Dinuclear Peroxotungstate. J. Am. Chem. Soc. 2009, 131, 6997-7004.

https://doi.org/10.1021/ja901289r

- 287. Kamata, K.; Kimura, T.; Sunaba, H.; Mizuno, N., Scope of chemical fixation of carbon dioxide catalyzed by a bifunctional monomeric tungstate. *Catal. Today* **2014**, *226*, 160-166. https://doi.org/10.1016/j.cattod.2013.09.054
- 288. Carlton, L.; Emdin, A.; Lemmerer, A.; Fernandes, M. A., A tungsten-183 NMR study of cis and trans isomers of [W(CO)₄(PPh₃)(PR₃)](PR₃ = phosphine, phosphite). *Magn. Reson.*Chem. 2008, 46, S56-S62. https://doi.org/10.1002/mrc.2300
- 289. Fuchs, A.; Gudat, D.; Nieger, M.; Schmidt, O.; Sebastian, M.; Nyulaszi, L.; Niecke, E., 1,3-Diphospholene-4-ylidene Chromium (Tungsten) Pentacarbonyl Complexes Formed by CO Insertion into the Ring of a 1,3-Diphosphacyclobutane-2,4-diyl-2-ide—Complexes of a Phosphanyl Carbene or a Phosphonium Ylide? *Chem. Eur. J.* **2002**, *8*, 2188-2196. https://doi.org/10.1002/1521-3765(20020503)8:9<2188::AID-CHEM2188>3.0.CO;2-F
- 290. Vilà-Nadal, L.; Sarasa, J. P.; Rodríguez-Fortea, A.; Igual, J.; Kazansky, L. P.; Poblet, J. M., Towards the Accurate Calculation of 183W NMR Chemical Shifts in Polyoxometalates: The Relevance of the Structure. *Chem. Asian J.* **2010**, *5*, 97-104.

https://doi.org/10.1002/asia.200900263

291. Chermette, H.; Lefebvre, F., Theoretical study of the four isomers of [SiW₁₁O₃₉]⁸⁻: Structure, stability and physical properties. *C. R. Chimie* **2012**, *15*, 143-151. https://doi.org/10.1016/j.crci.2011.09.002

- 292. Vankova, N.; Heine, T.; Kortz, U., NMR Chemical Shifts of Metal Centres in Polyoxometalates: Relativistic DFT Predictions. *Eur. J. Inorg. Chem.* **2009**, 2009, 5102-5108. https://doi.org/10.1002/ejic.200900865
- 293. Bagno, A.; Bonchio, M.; Autschbach, J., Computational Modeling of Polyoxotungstates by Relativistic DFT Calculations of ¹⁸³W NMR Chemical Shifts. *Chem. Eur. J.* **2006**, *12*, 8460-8471. https://doi.org/10.1002/chem.200600488

- 294. Bagno, A., Counterion effects on the ¹⁸³W NMR spectra of the lacunary Keggin polyoxotungstate [PW₁₁O₃₉]^{7–}. Relativistic DFT calculations. *C. R. Chim.* **2012**, *15*, 118-123. https://doi.org/10.1016/j.crci.2011.07.008
- 295. Gracia, J.; Poblet, J. M.; Autschbach, J.; Kazansky, L. P., Density-Functional Calculation of the 183W and 170 NMR Chemical Shifts for Large Polyoxotungstates. *Eur. J. Inorg. Chem.* **2006**, *2006*, 1139-1148. https://doi.org/10.1002/ejic.200500832
- 296. Kazansky, L. P.; Chaquin, P.; Fournier, M.; Hervé, G., Analysis of 183W and 170 NMR chemical shifts in polyoxometalates by extended Hückel mo calculations. *Polyhedron* **1998**, *17*, 4353-4364. https://doi.org/10.1016/S0277-5387(98)00218-6
- 297. Howarth, O. W., Oxygen-17 NMR study of aqueous peroxotungstates. *Dalton Trans*. **2004**, 476-481. http://dx.doi.org/10.1039/B313243A
- 298. Sakharov, S. G.; Buslaev, Y. A.; Tkáč, I., Multinuclear NMR Study of the Structure and Intramolecular Dynamics of (η2-Acetone phenylhydrazonato)tetrafluorooxotungsten(VI). *Inorg. Chem.* **1996**, *35*, 5514-5519. https://doi.org/10.1021/ic950330y
- 299. Malinowska, A.; Kochel, A.; Szymańska-Buzar, T., An anionic binuclear complex of tungsten(II), [(μ-Cl)3{W(SnCl3)(CO)3}2]–, and its reactivity towards norbornene. *J. Organomet. Chem.* **2007**, 692, 3994-3999.

https://www.sciencedirect.com/science/article/pii/S0022328X07004226

- 300. Connolly, J.; R. J. Genge, A.; Levason, W.; D. Orchard, S.; J. A. Pope, S.; Reid, G., Cationic manganese(I) tricarbonyl complexes with group 15 and 16 donor ligands: synthesis, multinuclear NMR spectroscopy and crystal structures. *J. Chem. Soc., Dalton Trans.* **1999**, 2343-2352. http://dx.doi.org/10.1039/A902820J
- 301. K. Davies, M.; C. Durrant, M.; Levason, W.; Reid, G.; L. Richards, R., Synthesis, spectroscopic and structural studies on transition metal carbonyl complexes of cyclic di- and tetra-selenoether ligands. *J. Chem. Soc., Dalton Trans.* **1999**, 1077-1084.

http://dx.doi.org/10.1039/A809853K

- 302. Grossbruchhaus, V.; Rehder, D., Synthesis and properties of the open clusters (LnM)3 μ
 3-E (LnM · η 5-CpMo/W(CO)3, Mn(CO)5; E = P, As, Sb, Bi and V). *Inorg. Chim. Acta* **1990,**172, 141-145. https://doi.org/10.1016/S0020-1693(00)80848-8
- 303. Hill, A. M.; Levason, W.; Webster, M.; Albers, I., Complexes of Distibinomethane Ligands. 1. Iron, Cobalt, Nickel, and Manganese Carbonyl Complexes. *Organometallics* **1997**, *16*, 5641-5647. https://doi.org/10.1021/om9706121
- 304. Holmes, N. J.; Levason, W.; Webster, M., Triphenylstibine substituted manganese and rhenium carbonyls: synthesis and multinuclear NMR spectroscopic studies. X-ray crystal structures of ax-[Mn2(CO)9(SbPh3)], [Mn(CO)5(SbPh3)][CF3SO3] and fac-[Re(CO)3Cl(SbPh3)2]. *J. Organomet. Chem.* **1998**, *568*, 213-223. https://doi.org/10.1016/S0022-328X(98)00763-3
- 305. Klingler, R. J.; Rathke, J. W., Thermodynamics for the hydrogenation of dimanganese decacarbonyl. *Inorg. Chem.* **1992,** *31*, 804-808. https://doi.org/10.1021/ic00031a021
- 306. Torocheshnikov, V.; Rentsch, D.; von Philipsborn, W., ⁵⁵Mn, ¹³C coupling constants of some σ- and π-organomanganese complexes. *Magn. Reson. Chem.* **1994,** 32, 348-352. https://doi.org/10.1002/mrc.1260320607
- 307. Levason, W.; Orchard, S. D.; Reid, G., Ditelluroether Complexes of Manganese and Rhenium Carbonyl Halides: Synthesis and IR and Multinuclear NMR Spectroscopic and Structural Studies. Comparison of the Bonding Properties of Dithio-, Diseleno-, and Ditelluroethers in Low-Valent Carbonyl Systems. *Organometallics* **1999**, *18*, 1275-1280. https://doi.org/10.1021/om980867u
- 308. Petz, W.; Rehder, D., Evidence for the formation of Mn2(CO)9(CS). *Organometallics* **1990,** 9, 856-859. https://doi.org/10.1021/om00117a050
- 309. Pope, S. J. A.; Reid, G., Phosphine, arsine and stibine complexes of manganese(I) carbonyl halides: synthesis, multinuclear NMR spectroscopic studies, redox properties and

crystal structures. J. Chem. Soc., Dalton Trans. 1999, 1615-1622.

http://dx.doi.org/10.1039/A900875F

- 310. Rentsch, D.; Nill, L.; von Philipsborn, W.; Sidler, D. R.; Rybczynski, P. J.; DeShong, P., ¹³C, ¹⁷O and ⁵⁵Mn NMR studies on substituted manganese carbonyl complexes. A contribution to the mechanism of demetalation reactions. *Magn. Reson. Chem.* **1998**, *36*, S54-S60. https://doi.org/10.1002/(SICI)1097-458X(199806)36:13<S54::AID-OMR292>3.0.CO;2-L 311. DeShong, P.; Soli, E. D.; Slough, G. A.; Sidler, D. R.; Elango, V.; Rybczynski, P. J.;
- Vosejpka, L. J. S.; Lessen, T. A.; Le, T. X.; Anderson, G. B.; von Philipsborn, W.; Vöhler, M.; Rentsch, D.; Zerbe, O., Glycosylmanganese pentacarbonyl complexes: an organomanganese-based approach to the synthesis of C-glycosyl derivatives. *J. Organomet. Chem.* **2000**, *593-594*, 49-62. https://doi.org/10.1016/S0022-328X(99)00431-3
- 312. Heuer, B.; Matthews, M. L.; Reid, G.; Ripley, M., A comparison of the ligating properties of the mixed P/O- and P/S-donor ligands Ph2P(CH2)2O(CH2)2O(CH2)2PPh2 and Ph2P(CH2)2S(CH2)2S(CH2)2PPh2 with Group 6 and 7 carbonyls. *J. Organomet. Chem.* **2002**, 655, 55-62. https://doi.org/10.1016/S0022-328X(02)01413-4
- 313. Christendat, D.; Wharf, I.; Lebuis, A.-M.; Butler, I. S.; Gilson, D. F. R., Synthesis and spectroscopic and X-ray structural characterisation of some para-substituted triaryltin(pentacarbonyl)manganese(I) complexes. *Inorg. Chim. Acta* **2002**, 329, 36-44. https://doi.org/10.1016/S0020-1693(01)00792-7
- 314. Wrackmeyer, B.; Hofmann, T.; Herberhold, M., Characterization of manganese sandwich complexes by 55Mn NMR spectroscopy. *J. Organomet. Chem.* **1995**, *486*, 255-258. https://doi.org/10.1016/0022-328X(94)05052-D
- 315. Tanimura, H.; Kitahori, A.; Kuzuoka, C.; Honda, Y.; Hada, M., Calculations and Electronic Analyses of 55Mn and 13C Nuclear Magnetic Shielding Constants for Mn(CO)5X (X = H, F, Cl, Br, I, and CH3) and M(CO)(NH3)3 (M = Cr2+, Fe2+, Cu+, and Zn2+). *Bull. Chem.*Soc. Jpn. 2010, 83, 514-519. https://doi.org/10.1246/bcsj.20090344

- 316. Sharma, R.; Zhang, J.; André Ohlin, C., pH-Dependent solution dynamics of a manganese(ii) polyoxometalate, [Mn4(H2O)2(P2W15O56)2]16–, and [Mn(H2O)6]2+. *Dalton Trans.* **2015**, *44*, 19068-19071. http://dx.doi.org/10.1039/C5DT03138A
- 317. Lieb, D.; Zahl, A.; Shubina, T. E.; Ivanović-Burmazović, I., Water Exchange on Manganese(III) Porphyrins. Mechanistic Insights Relevant for Oxygen Evolving Complex and Superoxide Dismutation Catalysis. *J. Am. Chem. Soc.* **2010**, *132*, 7282-7284. https://doi.org/10.1021/ja1014585
- 318. Mundlapati, V. R.; Jena, P.; Acharya, A. N.; Kar, A. K.; Dash, A. C.; Biswal, H. S., Water exchange reaction of a manganese catalase mimic: oxygen-17 NMR relaxometry study on (aqua)manganese(iii) in a salen scaffold and its reactions in a mildly basic medium. *RSC Adv.* **2016**, *6*, 111739-111746. http://dx.doi.org/10.1039/C6RA23154C
- 319. Okamoto, A.; Kanatani, K.; Taiji, T.; Saito, I., 15N NMR Study on Site-Selective Binding of Metal Ions to Guanine Runs in DNA: A Good Correlation with HOMO Distribution. *J. Am. Chem. Soc.* **2003**, *125*, 1172-1173. https://doi.org/10.1021/ja0279388
- 320. Alberto, R.; Braband, H.; Nadeem, Q., Bioorganometallic Technetium and Rhenium Chemistry: Fundamentals for Applications. *Chimia* **2020**, *74*, 953-959. https://doi.org/10.2533/chimia.2020.953
- 321. Sutton, A. D.; John, G. H.; Sarsfield, M. J.; Renshaw, J. C.; May, I.; Martin, L. R.; Selvage, A. J.; Collison, D.; Helliwell, M., Spectroscopic Evidence for the Direct Coordination of the Pertechnetate Anion to the Uranyl Cation in [UO2(TcO4)(DPPMO2)2]+. *Inorg. Chem.* **2004**, 43, 5480-5482. https://doi.org/10.1021/ic049588r
- 322. Sarsfield, M. J.; Sutton, A. D.; May, I.; John, G. H.; Sharrad, C.; Helliwell, M., Coordination of pertechnetate [TcO4] to actinides. *Chem. Commun.* **2004**, 2320-2321. http://dx.doi.org/10.1039/B404424J
- 323. Mikhalev, V. A., 99Tc NMR Spectroscopy. *Radiochem.* **2005**, *47*, 319-333. https://doi.org/10.1007/s11137-005-0097-3

- 324. Balasekaran, S. M.; Hagenbach, A.; Drees, M.; Abram, U., [Tc^{II}(NO)(trifluoroacetate)₄F]²⁻ synthesis and reactions. *Dalton Trans.* **2017**, *46*, 13544-13552. http://dx.doi.org/10.1039/C7DT03084C
- 325. Poineau, F.; Burton-Pye, B. P.; Maruk, A.; Kirakosyan, G.; Denden, I.; Rego, D. B.; Johnstone, E. V.; Sattelberger, A. P.; Fattahi, M.; Francesconi, L. C.; German, K. E.; Czerwinski, K. R., On the nature of heptavalent technetium in concentrated nitric and perchloric acid. *Inorg. Chim. Acta* 2013, 398, 147-150. https://doi.org/10.1016/j.ica.2012.12.028
 326. Poineau, F.; Weck, P. F.; German, K.; Maruk, A.; Kirakosyan, G.; Lukens, W.; Rego, D. B.; Sattelberger, A. P.; Czerwinski, K. R., Speciation of heptavalent technetium in sulfuric acid: structural and spectroscopic studies. *Dalton Trans.* 2010, 39, 8616-8619.

http://dx.doi.org/10.1039/C0DT00695E

327. Soderquist, C.; Weaver, J.; Cho, H.; McNamara, B.; Sinkov, S.; McCloy, J., Properties of Pertechnic Acid. *Inorg. Chem.* **2019**, *58*, 14015-14023.

https://doi.org/10.1021/acs.inorgchem.9b01999

328. Poineau, F.; Weck, P. F.; Burton-Pye, B. P.; Denden, I.; Kim, E.; Kerlin, W.; German, K. E.; Fattahi, M.; Francesconi, L. C.; Sattelberger, A. P.; Czerwinski, K. R., Reactivity of HTcO4 with methanol in sulfuric acid: Tc-sulfate complexes revealed by XAFS spectroscopy and first principles calculations. *Dalton Trans.* **2013**, *42*, 4348-4352.

http://dx.doi.org/10.1039/C3DT32951H

329. Cho, H.; de Jong, W. A.; McNamara, B. K.; Rapko, B. M.; Burgeson, I. E., Temperature and Isotope Substitution Effects on the Structure and NMR Properties of the Pertechnetate Ion in Water. *J. Am. Chem. Soc.* **2004**, *126*, 11583-11588. https://doi.org/10.1021/ja047447i
330. Hansen, P. E., Isotope effects in nuclear shielding. *Prog. Nucl. Magn. Reson. Spectrosc.* **1988**, *20*, 207-255. https://doi.org/10.1016/0079-6565(88)80002-5

- 331. Tarasov, V. P.; Kirakosyan, G. A.; German, K. E., 99Tc NMR determination of the oxygen isotope content in 18O-enriched water. *Magn. Reson. Chem.* **2018**, *56*, 183-189. https://doi.org/10.1002/mrc.4680
- 332. Oehlke, E.; Alberto, R.; Abram, U., Synthesis, Characterization, and Structures of R3EOTcO3 Complexes (E = C, Si, Ge, Sn, Pb) and Related Compounds. *Inorg. Chem.* **2010**, 49, 3525-3530. https://doi.org/10.1021/ic1001094
- 333. Tooyama, Y.; Braband, H.; Spingler, B.; Abram, U.; Alberto, R., High-Valent Technetium Complexes with the [99TcO3]+ Core from in Situ Prepared Mixed Anhydrides of [99TcO4]- and Their Reactivities. *Inorg. Chem.* 2008, *47*, 257-264. https://doi.org/10.1021/ic701908q
 334. Grundler, P. V.; Helm, L.; Alberto, R.; Merbach, A. E., Relevance of the Ligand Exchange Rate and Mechanism of fac-[(CO)3M(H2O)3]+ (M = Mn, Tc, Re) Complexes for New Radiopharmaceuticals. *Inorg. Chem.* 2006, *45*, 10378-10390. https://doi.org/10.1021/ic061578y
 335. Hall, G. B.; Andersen, A.; Washton, N. M.; Chatterjee, S.; Levitskaia, T. G., Theoretical Modeling of 99Tc NMR Chemical Shifts. *Inorg. Chem.* 2016, *55*, 8341-8347.

https://doi.org/10.1021/acs.inorgchem.6b00458

- 336. Aebischer, N.; Schibli, R.; Alberto, R.; Merbach, A. E., Complete Carbonylation of *fac*[Tc(H₂O)₃(CO)₃]⁺ under CO Pressure in Aqueous Media: A Single Sample Story! *Angew. Chem. Int. Ed.* **2000**, 39, 254-256. https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1< 254::AID-ANIE254>3.0.CO;2-F
- 337. Helm, L., Ligand exchange and complex formation kinetics studied by NMR exemplified on fac-[(CO)3M(H2O)]+ (M=Mn, Tc, Re). *Coord. Chem. Rev.* **2008**, *252*, 2346-2361. https://doi.org/10.1016/j.ccr.2008.01.009
- 338. Chatterjee, S.; Hall, G. B.; Engelhard, M. H.; Du, Y.; Washton, N. M.; Lukens, W. W.; Lee, S.; Pearce, C. I.; Levitskaia, T. G., Spectroscopic Characterization of Aqua [fac-Tc(CO)₃]⁺ Complexes at High Ionic Strength. *Inorg. Chem.* **2018**, *57*, 6903-6912. https://doi.org/10.1021/acs.inorgchem.8b00490

- 339. Miroslavov, A. E.; Braband, H.; Sidorenko, G. V.; Stepanova, E. S.; Lumpov, A. A.; Alberto, R., Synthesis of [99TcX(CO)5] (X = Cl, Br, I) at ambient pressure. *J. Organomet. Chem.* **2018**, *871*, 56-59. https://doi.org/10.1016/j.jorganchem.2018.06.028
- 340. Miroslavov, A. E.; Gurziy, V. V.; Tyupina, M. Y.; Lumpov, A. A.; Sidorenko, G. V.; Polotskii, Y. S.; Suglobov, D. N., Technetium and rhenium pentacarbonyl perchlorates: Structure and reactivity. *J. Organomet. Chem.* **2013**, *745-746*, 219-225. https://doi.org/10.1016/j.jorganchem.2013.07.019
- 341. Schibli, R.; Marti, N.; Maurer, P.; Spingler, B.; Lehaire, M.-L.; Gramlich, V.; Barnes, C. L., Syntheses and Characterization of Dicarbonyl–Nitrosyl Complexes of Technetium(I) and Rhenium(I) in Aqueous Media: Spectroscopic, Structural, and DFT Analyses. *Inorg. Chem.*2005, 44, 683-690. https://doi.org/10.1021/ic049599k
- 342. Ackermann, J.; Abdulkader, A.; Scholtysik, C.; Jungfer, M. R.; Hagenbach, A.; Abram, U., [Tcl(NO)X(Cp)(PPh₃)] Complexes ($X^- = I^-$, I3–, SCN⁻, CF3SO3⁻, or CF3COO⁻) and Their Reactions. *Organometallics* **2019**, *38*, 4471-4478.

https://doi.org/10.1021/acs.organomet.9b00620

- 343. Bühl, M.; Golubnychiy, V., Density-functional computation of ⁹⁹Tc NMR chemical shifts. *Magn. Reson. Chem.* **2008**, *46*, S36-S44. https://doi.org/10.1002/mrc.2276
- 344. Mancini, D. T.; Souza, E. F.; Caetano, M. S.; Ramalho, T. C., 99Tc NMR as a promising technique for structural investigation of biomolecules: theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. *Magn. Reson. Chem.* **2014**, *52*, 129-137. https://doi.org/10.1002/mrc.4043
- 345. Dwek, R. A.; Luz, Z.; Shporer, M., Nuclear magnetic resonance of aqueous solutions of sodium perrhenate. *J. Phys. Chem.* **1970**, *74*, 2232-2233. https://doi.org/10.1021/j100909a038 346. Müller, A.; Krickemeyer, E.; Bögge, H.; Penk, M.; Rehder, D., Thiorhenates [ReS4]-, [ReS9]-, and [ReOS8]-: simple synthesis with Sx2- solutions, structural data, and 185/187 Re-NMR studies. *Chimia* **1986**, *40*, 50-52.

- 347. Klobasa, D. G.; Burkert, P. K., 185Re and 187Re solid-state NMR of metaperrhenates. *Magn. Reson. Chem.* **1987**, 25, 154-157. https://doi.org/10.1002/mrc.1260250213
- 348. Keçeci, A.; Rehder, D., IR, 31P, 55Mn and i85,i87Re NMR Spectroscopic Investigations of Some Carbonylmanganese and -rhenium Complexes. *Z. Naturforsch. B* **1981**, 36, 20-26. https://zfn.mpdl.mpg.de/data/Reihe B/36/ZNB-1981-36b-0020.pdf
- 349. Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch, M. U., Methyltrioxorhenium(VII) as Catalyst for Epoxidations: Structure of the Active Species and Mechanism of Catalysis.

 Angew. Chem. Int. Ed. 1993, 32, 1157-1160. https://doi.org/10.1002/anie.199311571

 350. Ball, G. E.; Darwish, T. A.; Geftakis, S.; George, M. W.; Lawes, D. J.; Portius, P.; Rourke, J. P., Characterization of an organometallic xenon complex using NMR and IR spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 1853-1858.

 http://doi.org/10.1073/pnas.0406527102
- 351. Shanahan, J. P.; Szymczak, N. K., Hydrogen Bonding to a Dinitrogen Complex at Room Temperature: Impacts on N2 Activation. *J. Am. Chem. Soc.* **2019**, *141*, 8550-8556. https://doi.org/10.1021/jacs.9b02288
- 352. Herrmann, W. A.; Kneuper, H.-J., Mehrfachbindungen zwischen

 Hauptgruppenelementen und Übergangsmetallen: LIII.125Te- und 77Se-Kernresonanzspektren
 von Übergangsmetall-komplexen mit "nackten" Tellur- bzw. Selen-Brückenliganden. *J. Organomet. Chem.* 1988, 348, 193-197. https://doi.org/10.1016/0022-328X(88)80395-4

 353. Hofmann, B. J.; Huber, S.; Reich, R. M.; Drees, M.; Kühn, F. E., Ethyltrioxorhenium –
 Catalytic application and decomposition pathways. *J. Organomet. Chem.* 2019, 885, 32-38.

 https://doi.org/10.1016/j.jorganchem.2019.02.004
- 354. Huber, S.; Cokoja, M.; Drees, M.; Mínk, J.; Kühn, F. E., Xylyltrioxorhenium the first arylrhenium(vii) oxide applicable as an olefin epoxidation catalyst. *Catal. Sci. Technol.* **2013,** 3, 388-393. http://dx.doi.org/10.1039/C2CY20371E

355. Santos, A. M.; Romão, C. C.; Kühn, F. E., (η2-Alkyne)methyl(dioxo)rhenium Complexes as Aldehyde-Olefination Catalysts. *J. Am. Chem. Soc.* **2003**, *125*, 2414-2415. https://doi.org/10.1021/ja021315c

356. Salignac, B.; Grundler, P. V.; Cayemittes, S.; Frey, U.; Scopelliti, R.; Merbach, A. E.; Hedinger, R.; Hegetschweiler, K.; Alberto, R.; Prinz, U.; Raabe, G.; Kölle, U.; Hall, S., Reactivity of the Organometallic fac-[(CO)3Rel(H2O)3]+ Aquaion. Kinetic and Thermodynamic Properties of H2O Substitution. *Inorg. Chem.* 2003, 42, 3516-3526. https://doi.org/10.1021/ic0341744
357. Roodt, A.; Leipoldt, J. G.; Helm, L.; Merbach, A. E., Carbon-13 and oxygen-17, NMR studies of the solution and equilibrium behavior of selected oxocyanorhenate(V) complexes. *Inorg. Chem.* 1992, 31, 2864-2868. https://doi.org/10.1021/ic00039a036
358. Mink, L. M.; Polam, J. R.; Christensen, K. A.; Bruck, M. A.; Walker, F. A., Electronic Effects in Transition Metal Porphyrins. 8. The Effect of Porphyrin Substituents, Axial Ligands, "Steric Crowding", Solvent, and Temperature on the 57Fe Chemical Shifts of a Series of Model Heme Complexes. *J. Am. Chem. Soc.* 1995, 117, 9329-9339.

https://doi.org/10.1021/ja00141a027

- 359. Meier, E. J. M.; Koźmiński, W.; Linden, A.; Lustenberger, P.; von Philipsborn, W., 57Fe NMR Study of Ligand Effects in Cyclopentadienyliron Complexes. *Organometallics* **1996**, *15*, 2469-2477. https://doi.org/10.1021/om950989b
- 360. Oña-Burgos, P.; Casimiro, M.; Fernández, I.; Navarro, A. V.; Fernández Sánchez, J. F.; Carretero, A. S.; Gutiérrez, A. F., Octahedral iron(ii) phthalocyanine complexes: multinuclear NMR and relevance as NO2 chemical sensors. *Dalton Trans.* **2010**, *39*, 6231-6238. http://dx.doi.org/10.1039/B924429H
- 361. Stchedroff, M. J.; Moberg, V.; Rodriguez, E.; Aliev, A. E.; Böttcher, J.; Steed, J. W.; Nordlander, E.; Monari, M.; Deeming, A. J., Synthesis, characterisation and natural abundance 187Os NMR spectroscopy of hydride bridged triosmium clusters with chiral diphosphine ligands. *Inorg. Chim. Acta* 2006, 359, 926-937. https://doi.org/10.1016/j.ica.2005.06.048

362. Cabeza, J. A.; Mann, B. E.; Brevard, C.; Maitlis, P. M., Dinuclear p-cymeneosmium hydride complexes; the measurement of ¹⁸⁷Os chemical shifts using ¹H-{¹⁸⁷Os} two-dimensional NMR spectroscopy. *J. Chem. Soc., Chem. Commun.* **1985**, 65-67.

http://dx.doi.org/10.1039/C39850000065

- 363. Wrackmeyer, B.; Tok, O. L.; Herberhold, M., 57Fe NMR of Ferrocenes by 1H–57Fe INEPT Techniques. *Organometallics* **2001**, *20*, 5774-5776. https://doi.org/10.1021/om010756m
 364. Wrackmeyer, B.; Klimkina, E. V.; Milius, W.; Siebenbürger, M.; Tok, O. L.; Herberhold, M., Ferrocenes Bearing Sulfinylamino Groups. *Eur. .J. Inorg. Chem.* **2007**, *2007*, 103-109. https://doi.org/10.1002/ejic.200600326
- 365. Wrackmeyer, B.; Klimkina, E. V.; Maisel, H. E.; Tok, O. L.; Herberhold, M., 57Fe NMR spectroscopy of ferrocenes derived from aminoferrocene and 1,1 -diaminoferrocene. *Magn. Reson. Chem.* **2008**, *46*, S30-S35. https://doi.org/10.1002/mrc.2284
- 366. Janiak, C.; Dorn, T.; Paulsen, H.; Wrackmeyer, B., Synthesis of Isotope Enriched (CN3H6)2[57Fe(CN)5NO] starting from 57Fe. *Z. Anorg. Allg. Chem.* **2001**, 627, 1663-1668. https://doi.org/10.1002/1521-3749(200107)627:7<1663::AID-ZAAC1663>3.0.CO;2-#
- 367. Baltzer, L.; Landergren, M., Iron-57 nuclear magnetic resonance chemical shifts of hindered iron porphyrins. Ruffling as a possible mechanism for d-orbital energy level inversion.

J. Am. Chem. Soc. 1990, 112, 2804-2805. https://doi.org/10.1021/ja00163a054

368. Polam, J. R.; Wright, J. L.; Christensen, K. A.; Walker, F. A.; Flint, H.; Winkler, H.; Grodzicki, M.; Trautwein, A. X., Valence Electron Cloud Asymmetry from Two Points of View: A Correlation between Mössbauer Quadrupole Splittings and 57Fe NMR Chemical Shifts of Diamagnetic Iron(II) Porphyrinates. *J. Am. Chem. Soc.* **1996**, *118*, 5272-5276.

https://doi.org/10.1021/ja954096m

- 369. Gerothanassis, I. P.; Kalodimos, C. G.; Hawkes, G. E.; Haycock, P., The Effects of Atropisomerism and Porphyrin Deformation on ⁵⁷Fe Shieldings in Superstructured Hemoprotein Models. *J. Magn. Reson.* **1998**, *131*, 163-165. https://doi.org/10.1006/jmre.1997.1350
- 370. Kalodimos, C. G.; Gerothanassis, I. P.; Rose, E.; Hawkes, G. E.; Pierattelli, R., Iron-57 Nuclear Shieldings as a Quantitative Tool for Estimating Porphyrin Ruffling in Hexacoordinated Carbonmonoxy Heme Model Compounds in Solution. *J. Am. Chem. Soc.* **1999**, *121*, 2903-2908. https://doi.org/10.1021/ja983889g
- 371. Wrackmeyer, B.; Ayazi, A.; Maisel, H. E.; Herberhold, M., 57Fe-NMR spectroscopy revisited: ferrocene derivatives containing heterosubstituents. *J. Organomet. Chem.* **2001**, *630*, 263-265. https://doi.org/10.1016/S0022-328X(01)01008-7
- 372. Wrackmeyer, B.; Maisel, H. E.; Herberhold, M., N-Ferrocenyl Amines Bearing Boryl and Silyl Substituents at the Nitrogen Atom, Studied by 57Fe NMR Spectroscopy. *Z. Naturforsch. B* **2001**, *56*, 1373-1375. https://doi.org/10.1515/znb-2001-1221
- 373. Wrackmeyer, B.; Tok, O. L.; Ayazi, A.; Maisel, H. E.; Herberhold, M., 57Fe NMR spectroscopy of ferrocenes bearing π-acceptor substituents. *Magn. Reson. Chem.* **2004**, *42*, 827-830. https://doi.org/10.1002/mrc.1401
- 374. Wrackmeyer, B.; Tok, O. L.; Ayazi, A.; Hertel, F.; Max, H., 57Fc NMR spectroscopy of some sila- [I J fcrroccnophancs and a phospha- [I J fcrroccnophane. *Z. Naturforsch. B* **2002**, *57*, 305-308.
- 375. Houlton, A.; Miller, J. R.; Roberts, R. M. G.; Silver, J., Studies of the bonding in iron(II) cyclopentadienyl and arene sandwich compounds. Part 2. Correlations and interpretations of carbon-13 and iron-57 nuclear magnetic resonance and iron-57 mössbauer data. *J. Chem. Soc., Dalton Trans.* **1991**, 467-470. http://dx.doi.org/10.1039/DT9910000467
- 376. Mampa, R. M.; Fernandes, M. A.; Carlton, L., Iron-57 NMR and Structural Study of [Fe(η5-Cp)(SnPh3)(CO)(PR3)] (PR3 = Phosphine, Phosphite). Separation of Steric and

Electronic σ and π Effects. Organometallics **2014**, 33, 3283-3299.

https://doi.org/10.1021/om4011593

377. Wrackmeyer, B.; Herberhold, M., NMR parameters of the tetrahedrane [Fe2(CO)6(μ-SNH)], studied by experiment and DFT. *Struct. Chem.* **2006**, *17*, 79-83. https://doi.org/10.1007/s11224-006-9030-4

378. Wrackmeyer, B.; Seidel, G.; Köster, R., Isotope-induced chemical shifts 1Δ12/13C(29Si) and 57Fe NMR of organosubstituted 2,5-dihydro-1,2,5-azasilaboroles, a silole and their tricarbonyliron complexes†. *Magn. Reson. Chem.* **2000**, *38*, 520-524.

https://doi.org/10.1002/1097-458X(200007)38:7<520::AID-MRC681>3.0.CO;2-A

379. Koźmiński, W.; von Philipsborn, W., Spin–Lattice Relaxation Times of Transition-Metal Nuclei from Inverse-Detection Experiments*. *J. Magn. Reson. A* **1995**, *116*, 262-265. https://doi.org/10.1006/jmra.1995.0018

380. Bühl, M.; Mauschick, F. T.; Terstegen, F.; Wrackmeyer, B., Remarkably Large Geometry Dependence of ⁵⁷Fe NMR Chemical Shifts. *Angew. Chem. Int. Ed.* **2002**, *41*, 2312-2315. https://doi.org/10.1002/1521-3773(20020703)41:13<2312::AID-ANIE2312>3.0.CO;2-P

381. Bühl, M.; Mauschick, F. T., Thermal and solvent effects on ⁵⁷Fe NMR chemical shifts. *Phys. Chem. Chem. Phys.* **2002**, *4*, 5508-5514. http://dx.doi.org/10.1039/B202894H

382. Bühl, M.; Malkina, O. L.; Malkin, V. G., Computations of ⁵⁷Fe-NMR Chemical Shifts with the SOS-DFPT Method. *Helv. Chim. Acta* **1996,** *79*, 742-754.

https://doi.org/10.1002/hlca.19960790317

- 383. Alluisetti, G. E.; Almaraz, A. E.; Amorebieta, V. T.; Doctorovich, F.; Olabe, J. A., Metal-Catalyzed Anaerobic Disproportionation of Hydroxylamine. Role of Diazene and Nitroxyl Intermediates in the Formation of N₂, N₂O, NO⁺, and NH₃. *J. Am. Chem. Soc.* **2004**, *126*, 13432-13442. https://doi.org/10.1021/ja046724i
- 384. Butschke, B.; Fillman, K. L.; Bendikov, T.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Gorelsky, S. I.; Neidig, M. L.; Milstein, D., How Innocent are Potentially Redox Non-Innocent

Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. *Inorg. Chem.* **2015**, *54*, 4909-4926.

https://doi.org/10.1021/acs.inorgchem.5b00509

385. Field, L. D.; Hazari, N.; Li, H. L., Nitrogen Fixation Revisited on Iron(0) Dinitrogen Phosphine Complexes. *Inorg. Chem.* **2015**, *54*, 4768-4776.

https://doi.org/10.1021/acs.inorgchem.5b00211

386. Gao, Y.; Toubaei, A.; Kong, X.; Wu, G., Acidity and Hydrogen Exchange Dynamics of Iron(II)-Bound Nitroxyl in Aqueous Solution. *Angew. Chem. Int. Ed.* **2014**, *53*, 11547-51. https://doi.org/10.1002/anie.201407018

387. Yeh, S.-W.; Tsou, C.-C.; Liaw, W.-F., The dinitrosyliron complex [Fe4(μ3-S)2(μ2-NO)2(NO)6]2– containing bridging nitroxyls: 15N (NO) NMR analysis of the bridging and terminal NO-coordinate ligands. *Dalton Trans.* **2014**, *43*, 9022-9025.

http://dx.doi.org/10.1039/C4DT00450G

- 388. Lin, I.-J.; Chen, Y.; Fee, J. A.; Song, J.; Westler, W. M.; Markley, J. L., Rieske protein from Thermus thermophilus: 15N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential. *J. Am. Chem. Soc.* **2006**, *128*, 10672-10673. https://doi.org/10.1021/ja0627388
- 389. Hashimoto, H.; Tobita, H.; Ogino, H., Redistribution reactions of hydrosilanes mediated by the unsymmetrical and homometallic phosphido-bridged complex (η5-C5Me5)Fe2(CO)4(μ-CO)(μ-PPh2). *J. Organomet. Chem.* **1995**, *4*99, 205-211. https://doi.org/10.1016/0022-328X(95)00301-6
- 390. Štíbr, B.; Bakardjiev, M.; Holub, J.; Růžička, A.; Padělková, Z.; Štěpnička, P., Additive Character of Electron Donation by Methyl Substituents within a Complete Series of Polymethylated [1-(η6-MenC6H6-n)-closo-1,2,3-FeC2B9H11] Complexes. Linear Correlations of the NMR Parameters and Fell/III Redox Potentials with the Number of Arene Methyls. *Inorg. Chem.* **2011**, *50*, 3097-3102. https://doi.org/10.1021/ic2000798

- 391. Pennanen, T. O.; Macháček, J.; Taubert, S.; Vaara, J.; Hnyk, D., Ferrocene-like iron bis(dicarbollide), [3-FeIII-(1,2-C2B9H11)2]–. The first experimental and theoretical refinement of a paramagnetic 11B NMR spectrum. *Phys. Chem. Chem. Phys.* **2010**, *12*, 7018-7025. http://dx.doi.org/10.1039/B923891C
- 392. Jee, J.-E.; Wolak, M.; Balbinot, D.; Jux, N.; Zahl, A.; van Eldik, R., A Comparative Mechanistic Study of the Reversible Binding of NO to a Water-Soluble Octa-Cationic FeIII Porphyrin Complex. *Inorg. Chem.* **2006**, *45*, 1326-1337. https://doi.org/10.1021/ic051339v 393. Schneppensieper, T.; Seibig, S.; Zahl, A.; Tregloan, P.; van Eldik, R., Influence of Chelate Effects on the Water-Exchange Mechanism of Polyaminecarboxylate Complexes of Iron(III). *Inorg. Chem.* **2001**, *40*, 3670-3676. https://doi.org/10.1021/ic001304p
- 394. Mizuno, M.; Funahashi, S.; Nakasuka, N.; Tanaka, M., Water exchange of the (ophenylenediamine-N,N,N',N'-tetraacetato)ferrate(III) complex in aqueous solution as studied by variable-temperature, -pressure, and -frequency oxygen-17 NMR techniques. *Inorg. Chem.* **1991,** *30*, 1550-1553. https://doi.org/10.1021/ic00007a023
- 395. Livramento, J. B.; Sour, A.; Borel, A.; Merbach, A. E.; Tóth, É., A starburst-shaped heterometallic compound incorporating six densely packed gd(3+) ions. *Chem. Eur. J.* **2006**, *12*, 989-1003. https://doi.org/10.1002/chem.200500969
- 396. Maigut, J.; Meier, R.; Zahl, A.; van Eldik, R., Effect of Chelate Dynamics on Water Exchange Reactions of Paramagnetic Aminopolycarboxylate Complexes. *Inorg. Chem.* **2008**, 47, 5702-5719. https://doi.org/10.1021/ic702421z
- 397. Bernhard, P.; Helm, L.; Ludi, A.; Merbach, A. E., Direct measurement of a prominent outer-sphere electron self-exchange: kinetic parameters for the hexaaquaruthenium(II)/(III) couple determined by oxygen-17 and ruthenium-99 NMR. *J. Am. Chem. Soc.* **1985**, *107*, 312-317. https://doi.org/10.1021/ja00288a005

- 398. Brevard, C.; Granger, P., Ruthenium NMR spectroscopy: a promising structural and analytical tool. General trends and applicability to organometallic and inorganic chemistry. *Inorg. Chem.* **1983**, 22, 532-535. https://doi.org/10.1021/ic00145a033
- 399. Fedotov, M. A., Applications of nuclear magnetic resonance to study the structure of platinum-group metal complexes in aqueous solutions. *J. Struct. Chem.* **2016**, *57*, 563-613. https://doi.org/10.1134/S0022476616030203
- 400. Emel'yanov, V. A.; Fedotov, M. A.; Belyaev, A. V.; Tkachev, S. V., A multinuclear magnetic resonance study of transformations of ruthenium(II) nitrosyl chloride complexes in aqueous solutions. *Russ. J. Inorg. Chem.* **2013**, *58*, 956-963.

https://doi.org/10.1134/S003602361308007X

401. Orellana, G.; Kirsch-De Mesmaeker, A.; Turro, N. J., Ruthenium-99 NMR spectroscopy of ruthenium(II) polypyridyl complexes. *Inorg. Chem.* **1990**, *29*, 882-885.

https://doi.org/10.1021/ic00329a063

- 402. Ferrari, M. B.; Fava, G. G.; Pelosi, G.; Predieri, G.; Vignali, C.; Denti, G.; Serroni, S., Crystal and molecular structure of [Ru(bpy)2(2,3-dpp)]Cl2 3H2O CH3CN and 1H and 99Ru NMR spectra of [Ru(bpy)2(2,n-dpp)][PF6]2 (bpy=2,2 ' -bipyridine, dpp=bis (2-pyridyl)pyrazine, n=3 or 5). *Inorg. Chim. Acta* 1998, 275-276, 320-326. https://doi.org/10.1016/S0020-1693(97)06068-4
- 403. Gaemers, S.; van Slageren, J.; O'Connor, C. M.; Vos, J. G.; Hage, R.; Elsevier, C. J., 99Ru NMR Spectroscopy of Organometallic and Coordination Complexes of Ruthenium(II).

 Organometallics 1999, 18, 5238-5244. https://doi.org/10.1021/om990477n
- 404. Braunstein, P.; Rosé, J.; Granger, P.; Richert, T., ⁵⁹Co and ⁹⁹Ru NMR investigation of heterometallic carbonyl clusters. Reactivity of [MCo₃(CO)₁₂]⁻ (M = Fe, Ru) towards NO⁺; formation of RuCo₃(CO)₁₁(NO) and FeCo₂(μ₃-NH)(CO)₉. *Magn. Reson. Chem.* **1991**, 29, S31-S37. https://doi.org/10.1002/mrc.1260291309

- 405. Autschbach, J.; Zheng, S., Density functional computations of ⁹⁹Ru chemical shifts: relativistic effects, influence of the density functional, and study of solvent effects on *fac*-[Ru(CO)₃I₃]⁻. *Magn. Reson. Chem.* **2006**, *44*, 989-1007. https://doi.org/10.1002/mrc.1885
 406. Bagno, A.; Bonchio, M., DFT Calculations of ⁹⁹Ru Chemical Shifts with All-Electron and Effective Core Potential Basis Sets. *Eur. .J. Inorg. Chem.* **2002**, *2002*, 1475-1483. https://doi.org/10.1002/1099-0682(200206)2002:6<1475::AID-EJIC1475>3.0.CO;2-J 407. Bagno, A.; Bonchio, M., Relativistic DFT calculation of ⁹⁹Ru NMR parameters: chemical
- shifts and spin–spin coupling constants. *Magn. Reson. Chem.* **2004**, *42*, S79-S87. https://doi.org/10.1002/mrc.1412
- 408. Bühl, M.; Gaemers, S.; Elsevier, C. J., Density-Functional Computation of ⁹⁹Ru NMR Parameters. *Chem. Eur. J.* **2000**, *6*, 3272-3280. <a href="https://doi.org/10.1002/1521-3765(20000901)6:17<3272::AID-CHEM3272>3.0.CO;2-E">https://doi.org/10.1002/1521-3765(20000901)6:17<3272::AID-CHEM3272>3.0.CO;2-E
- 409. Ramalho, T. C.; Bühl, M.; Figueroa-Villar, J. D.; de Alencastro, R. B., Computational NMR Spectroscopy of Transition-Metal/Nitroimidazole Complexes: Theoretical Investigation of Potential Radiosensitizers. *Helv. Chim. Acta* **2005**, *88*, 2705-2721.

https://doi.org/10.1002/hlca.200590210

- 410. Grundler, P. V.; Yazyev, O. V.; Aebischer, N.; Helm, L.; Laurenczy, G.; Merbach, A. E., Kinetic studies on the first dihydrogen aquacomplex, [Ru(H2)(H2O)5]2+: Formation under H2 pressure and catalytic H/D isotope exchange in water. *Inorg. Chim. Acta* **2006**, *359*, 1795-1806. https://doi.org/10.1016/j.ica.2005.06.056
- 411. Egloff, J.; Ranocchiari, M.; Schira, A.; Schotes, C.; Mezzetti, A., Highly Enantioselective Ruthenium/PNNP-Catalyzed Imine Aziridination: Evidence of Carbene Transfer from a Diazoester Complex. *Organometallics* **2013**, *32*, 4690-4701. https://doi.org/10.1021/om400735p 412. Muller, K.; Sun, Y.; Heimermann, A.; Menges, F.; Niedner-Schatteburg, G.; van Wüllen, C.; Thiel, W. R., Structure–Reactivity Relationships in the Hydrogenation of Carbon Dioxide with

- Ruthenium Complexes Bearing Pyridinylazolato Ligands. *Chem. Eur. J.* **2013**, *19*, 7825-7834. https://doi.org/10.1002/chem.201204199
- 413. Wanat, A.; Schneppensieper, T.; Karocki, A.; Stochel, G.; Eldik, R. v., Thermodynamics and kinetics of RullI(edta) as an efficient scavenger for nitric oxide in aqueous solution. *J. Chem. Soc., Dalton Trans.* **2002**, 941-950. http://dx.doi.org/10.1039/B108236C
- 414. Wang, F.; Chen, H.; Parkinson, J. A.; Murdoch, P. d. S.; Sadler, P. J., Reactions of a Ruthenium(II) Arene Antitumor Complex with Cysteine and Methionine. *Inorg. Chem.* **2002**, *41*, 4509-4523. https://doi.org/10.1021/ic025538f
- 415. Wang, F.; Bella, J.; Parkinson, J. A.; Sadler, P. J., Competitive reactions of a ruthenium arene anticancer complex with histidine, cytochrome c and an oligonucleotide. *J. Biol. Inorg.*Chem. 2005, 10, 147-155. https://doi.org/10.1007/s00775-004-0621-5
- 416. Christe, K. O.; Dixon, D. A.; Mack, H. G.; Oberhammer, H.; Pagelot, A.; Sanders, J. C. P.; Schrobilgen, G. J., Osmium tetrafluoride dioxide, *cis*-OsO₂F₄. *J. Am. Chem. Soc.* **1993**, *115*, 11279-11284. https://doi.org/10.1021/ja00077a029
- 417. Bell, A. G.; Koźmiński, W.; Linden, A.; von Philipsborn, W., ¹⁸⁷Os NMR Study of (η6-Arene)osmium(II) Complexes: Separation of Electronic and Steric Ligand Effects.

 Organometallics **1996**, *15*, 3124-3135. https://doi.org/10.1021/om960053i
- 418. Gisler, A.; Schaade, M.; Meier, E. J. M.; Linden, A.; von Philipsborn, W., 187Os, 31P and 17O NMR study of carbonylated and alkylated (p-cymene)Osl (L)PR3 complexes. *J. Organomet. Chem.* 1997, 545-546, 315-326. https://doi.org/10.1016/S0022-328X(97)00376-8
 419. Gray, J. C.; Pagelot, A.; Collins, A.; Fabbiani, F. P. A.; Parsons, S.; Sadler, P. J., Organometallic Osmium(II) and Ruthenium(II) Biphenyl Sandwich Complexes: X-ray Crystal Structures and 187Os NMR Spectroscopic Studies in Solution. *Eur. .J. Inorg. Chem.* 2009, 2673-2677. https://doi.org/10.1002/ejic.200900244
- 420. Benn, R.; Brenneke, H.; Joussen, E.; Lehmkuhl, H.; Lopez Ortiz, F., Probing osmium-187 NMR of complexes containing ¹⁸⁷Os in natural abundance via indirect heteronuclear 2-

dimensional NMR spectroscopy. Organometallics 1990, 9, 756-761.

https://doi.org/10.1021/om00117a034

- 421. Stchedroff, M. J.; Aime, S.; Gobetto, R.; Salassa, L.; Nordlander, E., 187Os subspectra in 1H and 31P{1H} spectra of triosmium carbonyl clusters. *Magn. Reson. Chem.* **2002**, *40*, 107-113. https://doi.org/10.1002/mrc.962
- 422. Beatty, S. T.; Bergman, B.; Rosenberg, E.; Dastru', W.; Gobetto, R.; Milone, L.; Viale, A., Conformational constraints and σ – π -vinyl interchange in μ_3 - η^3 -5,6-dihydroquinoline triosmium complexes. *J. Organomet. Chem.* **2000**, *593-594*, 226-231. https://doi.org/10.1016/S0022-328X(99)00661-0
- 423. Bergman, B.; Holmquist, R.; Smith, R.; Rosenberg, E.; Ciurash, J.; Hardcastle, K.; Visi, M., Functionalizing Heterocycles by Electron-Deficient Bonding to a Triosmium Cluster. *J. Am. Chem. Soc.* **1998**, *120*, 12818-12828. https://doi.org/10.1021/ja981445e
- 424. Krykunov, M.; Ziegler, T.; van Lenthe, E., Implementation of a Hybrid DFT Method for Calculating NMR Shieldings Using Slater-Type Orbitals with Spin-Orbital Coupling Included. Applications to 187Os, 195Pt, and 13C in Heavy-Metal Complexes. *J. Phys. Chem. A* **2009**, 113, 11495-11500. https://doi.org/10.1021/jp901991s
- 425. Dehestani, A.; Kaminsky, W.; Mayer, J. M., Tuning the Properties of the Osmium Nitrido Group in TpOs(N)X2 by Changing the Ancillary Ligand. *Inorg. Chem.* **2003**, *42*, 605-611. https://doi.org/10.1021/ic0260264
- 426. Frey, U.; Li, Z.-W.; Matras, A., Mechanism for Solvent Exchange on trans-[Os(en)2(η2-H2)S]2+. *Inorg. Chem.* **1996**, *35*, 981-984. https://doi.org/10.1021/ic9510775
- 427. Ernsting, J. M.; Gaemers, S.; Elsevier, C. J., ¹⁰³Rh NMR spectroscopy and its application to rhodium chemistry. *Magn. Reson. Chem.* **2004**, *42*, 721-736.

https://doi.org/10.1002/mrc.1439

428. Carlton, L., Rhodium-103 NMR. *Annu. Rep. NMR Spectrosc.* **2008**, *63*, 49-178. https://doi.org/10.1016/S0066-4103(07)63003-8

- 429. Yamasaki, A., Cobalt-59 Nuclear Magnetic Resonance Spectroscopy in Coordination Chemistry. *J. Coord. Chem.* 1991, 24, 211-260. https://doi.org/10.1080/00958979109407886
 430. Taura, T., Solvent Influence on UV, 59Co, and 13C NMR of [Co(CN)6]3- and Its Solvation Site. *Bull. Chem. Soc. Jpn.* 1990, 63, 1105-1110. https://doi.org/10.1246/bcsj.63.1105
 431. Ho, K. K. W.; Choy, W. Y.; Yuxin, C.; Auyeung, S. C. F., Solvent-Dependent 59Co NMR-Study of [Co(en)3]Cl3 and cis,trans-[Co-(en)2(N3)2]NO3. *J. Magn. Reson. A* 1994, 108, 196-200. https://doi.org/10.1006/jmra.1994.1110
- 432. Taura, T., Spectrochemical Series for the Outersphere Coordination of Carboxylatocobaltate(III) Complexes with Solvent Molecules. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2362-2371. https://doi.org/10.1246/bcsj.64.2362
- 433. Fujihara, T.; Kaizaki, S., Correlation of 13C, 15N and 59Co nuclear magnetic resonance chemical shifts with ligand-field parameters for pentacyanocobaltate(III) complexes. *J. Chem. Soc., Dalton Trans.* **1993**, 1275-1279. http://dx.doi.org/10.1039/DT9930001275
- 434. Au-Yeung, S. C. F.; Kwong, K. W.; Buist, R. J., Multinuclear NMR study of the crystal field strength of the nitro ligand and the empirical estimation of the cobalt-59 NMR chemical shifts of cobalt-nitro complexes. *J. Am. Chem. Soc.* **1990**, *112*, 7482-7488. https://doi.org/10.1021/ja00177a005
- 435. Barnard, I.; Koch, K. R., ⁵⁹Co NMR, a facile tool to demonstrate EEE, EEZ, EZZ and ZZZ configurational isomerism in *fac*-[Co(L- ^K S,O)₃] complexes derived from asymmetrically substituted N,N-dialkyl-N' -aroylthioureas. *Inorg. Chim. Acta* **2019**, *4*95, 119019. https://doi.org/10.1016/j.ica.2019.119019
- 436. Lawrence, M. A. W.; Celestine, M. J.; Artis, E. T.; Joseph, L. S.; Esquivel, D. L.; Ledbetter, A. J.; Cropek, D. M.; Jarrett, W. L.; Bayse, C. A.; Brewer, M. I.; Holder, A. A., Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine

- coordination to cobalt(i) and cobalt(ii) metal centres. *Dalton Trans.* **2016**, *45*, 10326-10342. http://dx.doi.org/10.1039/C6DT01583B
- 437. Kotovaya, A. S.; Shova, S. G.; Simonov, Y. A.; Roshu, T.; Sandu, I.; Gulya, A. P., New crystal forms of tris(2-aminoethanolato-O,N)cobalt(III): Structures and properties. *Rus. J. Coord. Chem.* **2006**, *32*, 841-847. https://doi.org/10.1134/S1070328406110121
- 438. Kapanadze, T. S. H.; Kokunov, Y. V.; Buslaev, Y. A., A 59Co NMR study of stereoisomerism of cobalt(III) complexes with polydentate aminochelate ligands. *Polyhedron* **1990**, *9*, 2803-2808. https://doi.org/10.1016/S0277-5387(00)84183-2
- 439. Blower, P. J.; Levason, W.; Luthra, S. K.; McRobbie, G.; Monzittu, F. M.; Mules, T. O.; Reid, G.; Subhan, M. N., Exploring transition metal fluoride chelates synthesis, properties and prospects towards potential PET probes. *Dalton Trans.* **2019**, *48*, 6767-6776. http://dx.doi.org/10.1039/C8DT03696A
- 440. Sugiarto; Tagami, T.; Kawamoto, K.; Hayashi, Y., Synthesis of cationic molybdenum—cobalt heterometallic clusters protected against hydrolysis by macrocyclic triazacyclononane complexes. *Dalton Trans.* 2018, 47, 9657-9664. http://dx.doi.org/10.1039/C8DT01226A
 441. Cheyne, S. E.; McClintock, L. F.; Blackman, A. G., Stabilization of Coordinated
 Carbonate in Aqueous Acidic Solution: Steric Inhibition of Protonation in Co(III) Complexes

https://doi.org/10.1021/ic0521325

Containing Chelated Carbonate. *Inorg. Chem.* **2006**, *45*, 2610-2618.

442. McClintock, L. F.; Bagaria, P.; Kjaergaard, H. G.; Blackman, A. G., Co(III) complexes of the type [(L)Co(O2CO)]+ (L=tripodal tetraamine ligand): Synthesis, structure, DFT calculations and 59Co NMR. *Polyhedron* **2009**, *28*, 1459-1468. https://doi.org/10.1016/j.poly.2009.03.010 443. Yashiro, M.; Yoshikawa, S.; Yano, S., Regulation of the ligand field strength of a cobalt(III) complex by methyl substitutions on a tetraamine ligand: an important factor for the dissociation of a generally inert chelated amino acidato ligand from a cobalt(III) complex. *Inorg. Chem.* **1993**, *32*, 4166-4167. https://doi.org/10.1021/ic00071a036

- 444. Voloshin, Y. Z.; Belsky, V. K.; Trachevskii, V. V., Macrobicyclic d-metal tris-dioximates obtained by cross-linking with p-block elements—VII. Clathrochelate tris-dioximates of cobalt(III) formed by tin tetrachloride. *Polyhedron* **1992**, *11*, 1939-1948. https://doi.org/10.1016/S0277-5387(00)83743-2
- 445. Yano, S.; Kato, M.; Tsukahara, K.; Sato, M.; Shibahara, T.; Lee, K.; Sugihara, Y.; Iida, M.; Goto, K., Chemical Modification of Metal Complexes. An Efficient Procedure for O-Acylation of an Anionic Metal Complex Having a Noncoordinated Hydroxyl Group. *Inorg. Chem.* **1994,** 33, 5030-5035. ⁵⁹Co shift of δ 2203 vs Co(NH₃)₆³⁺ reported in this paper was converted to δ 10 409 vs Co(CN)₆³⁻ by authors of the current article based on the data in A. Yamasaki, *J. Coord. Chem.* **1991,** 24, 211. https://doi.org/10.1021/ic00100a030
- 446. Levason, W.; Matthews, M. L.; Reid, G.; Webster, M., Synthesis and characterisation of transition metal halide complexes of the xylyl-distibine, 1,2-bis(dimethylstibanylmethyl)benzene. *Dalton Trans.* **2004**, 554-561. http://dx.doi.org/10.1039/B400214H
- 447. Suzuki, T.; Tsukuda, T.; Kiki, M.; Kaizaki, S.; Isobe, K.; Takagi, H. D.; Kashiwabara, K., Preparation, crystal structures and spectroscopic properties of novel [MIIICl3-n(P)3+n]n+ (M=Co, Rh; n=0, 1, 2 or 3) series of complexes containing tripodal tridentate phosphine, 1,1,1-tris(dimethylphosphinomethyl)ethane. *Inorg. Chim. Acta* **2005**, *358*, 2501-2512.

https://doi.org/10.1016/j.ica.2005.02.008

448. Grant, G. J.; Shoup, S. S.; Hadden, C. E.; VanDerveer, D. G., Cobalt(III) complexes of crown thioethers: the crystal structure of (1,4,7,11,14,17-hexathiacycloeicosane) cobalt (III) tetrafluoroborate dihydrate. *Inorg. Chim. Acta* **1998**, *274*, 192-200.

https://doi.org/10.1016/S0020-1693(97)06054-4

449. Dietzsch, W.; Duffy, N. V.; Katsoulos, G. A.; Olk, B., Multinuclear (1H, 13C, 59Co, 77Se) NMR studies of thioseleno- and diselenocarbamato complexes of cobalt(III) and indium(III) in CDCI3 solution. *Inorg. Chim. Acta* **1991**, *184*, 89-97. https://doi.org/10.1016/S0020-1693(00)83049-2

- 450. Brown, J. L.; Kemmitt, T.; Levason, W., Cobalt(III) complexes of neutral selenium and tellurium donor ligands: synthesis and nuclear magnetic resonance studies. *J. Chem. Soc., Dalton Trans.* **1990**, 1513-1515. http://dx.doi.org/10.1039/DT9900001513
- 451. Levason, W.; Quirk, J. J.; Reid, G., Synthesis and characterisation of selenoether macrocyclic complexes of Colli, Rhill and Irill: crystal structures of trans-[CoBr2([16]aneSe4)]BPh4 and trans-[IrBr2([16]aneSe4)]BPh4([16]aneSe4= 1,5,9,13-tetraselenacyclohexadecane). *J. Chem. Soc., Dalton Trans.* **1996**, 3713-3719. http://dx.doi.org/10.1039/DT9960003713
- 452. Lawrance, G. A.; Lay, P. A.; Sargeson, A. M., Organic substituent effects in macrobicyclic (hexaamine)cobalt(III/II) complexes: a new method of obtaining polar substituent constants. *Inorg. Chem.* **1990**, *29*, 4808-4816. https://doi.org/10.1021/ic00348a042
- 453. Kanakubo, M.; Ikeuchi, H.; Sato, G. P., Concentration Dependence of Cobalt-59

 Longitudinal Relaxation Times of Tris(acetylacetonato)cobalt(III) in Acetonitrile. *J. Magn. Reson.*A 1995, 112, 13-16. https://doi.org/10.1006/jmra.1995.1003
- 454. Kirby, C. W.; Puranda, C. M.; Power, W. P., Cobalt-59 Nuclear Magnetic Relaxation Studies of Aqueous Octahedral Cobalt(III) Complexes. *J. Phys. Chem.* **1996**, *100*, 14618-14624. https://doi.org/10.1021/jp9614254
- 455. Iida, M.; Mizuno, Y.; Koine, N., 59Co NMR Spectroscopic Chiral Discrimination of [Co(en)3]3+ Enantiomers in Ionic Interacting Systems. *Bull. Chem. Soc. Jpn.* **1995**, *68*, 1337-1344. https://doi.org/10.1246/bcsj.68.1337
- 456. Iida, M.; Mizuno, Y.; Koine, N., Chiral Discrimination in the Interactions between [Co(en)3]3+ and Cholesteric Liquid Crystals by 59Co NMR Spectroscopy. *Chem. Lett.* **1994,** 23, 481-484. https://doi.org/10.1246/cl.1994.481
- 457. Iida, M.; Nakamori, T.; Mizuno, Y.; Masuda, Y., Appreciable Effects of Ion Pairings on the 59Co Electric Field Gradient in the NMR Relaxation of [Co(chxn)3]3+. *J. Phys. Chem.* **1995**, 99, 4347-4352. https://doi.org/10.1021/j100012a068

- 458. Iida, M.; Miyagawa, Y.; Kohri, S., Interactions of Some Cationic Cobalt(III) Complexes with Anions Studied by the 59Co NMR Chemical Shifts. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 2398-2401. https://doi.org/10.1246/bcsj.66.2398
- 459. Sotomayor, J.; Santos, H.; Pina, F., Application of 59Co NMR to the investigation of interactions between cobalt sepulchrate and various counterions. *Can. J. Chem.* **1991**, 69, 567-569. https://doi.org/10.1139/v91-085
- 460. Iida, M.; Miyagawa, Y.; Kohri, S.; Ikemoto, Y., A 59Co NMR Study of the Interactions of Some Cobalt(III) Complexes in Nematic Lyomesophases. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 2840-2846. https://doi.org/10.1246/bcsj.66.2840
- 461. Iida, M.; Mizuno, Y.; Miyagawa, Y., Estimation of the Ratio of Hidden Multivalent Ions in Nematic Lyomesophases by Using Heteronuclear NMR. *Bull. Chem. Soc. Jpn.* **1994**, 67, 1531-1537. https://doi.org/10.1246/bcsj.67.1531
- 462. Iida, M.; Tracey, A. S., Cobalt-59 NMR investigation of hexacyanocobaltate(3-) and hexaamminecobalt(3+) interactions in nematic liquid crystalline surfactant solutions. *J. Phys. Chem.* **1991**, *95*, 7891-7896. https://doi.org/10.1021/j100173a062
- 463. Pellizer, G.; Asaro, F.; Pergolese, B., NMR investigations of Co(III) coordination compounds oriented in a dilute lyotropic liquid crystal. *Magn. Reson. Chem.* **2004,** *42*, 756-759. https://doi.org/10.1002/mrc.1420
- 464. Bang, H.; Edwards, J. O.; Kim, J.; Lawler, R. G.; Reynolds, K.; Ryan, W. J.; Sweigart, D. A., Cobalt-59 NMR of six-coordinate cobalt(III) tetraphenylporphyrin complexes. 4. The effect of phenyl ortho substituents on chemical shift, line width, and structure. *J. Am. Chem. Soc.* **1992**, 114, 2843-2852. https://doi.org/10.1021/ja00034a014
- 465. Munro, O. Q.; Shabalala, S. C.; Brown, N. J., Structural, Computational, and ⁵⁹Co NMR Studies of Primary and Secondary Amine Complexes of Co(III) Porphyrins. *Inorg. Chem.* **2001**, *40*, 3303-3317. https://doi.org/10.1021/ic000976c

466. Kanakubo, M.; Uda, T.; Ikeuchi, H.; Satô, G. P., Solvent and Temperature Dependence of 59Co NMR Chemical Shifts of Tris(acetylacetonato)cobalt(III) and Tris(dipivaloylmethanato)cobalt(III). *J. Solution Chem.* **1998**, *27*, 645-653.

https://doi.org/10.1023/A:1022645924321

467. Ozvat, Tyler M.; Peña, M. E.; Zadrozny, J. M., Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry. *Chem. Sci.* **2019**, *10*, 6727-6734.

http://dx.doi.org/10.1039/C9SC01689A

468. Ozvat, T. M.; Johnson, S. H.; Rappé, A. K.; Zadrozny, J. M., Ligand Control of 59Co Nuclear Spin Relaxation Thermometry. *Magnetochemistry* **2020**, *6*, 58.

https://www.mdpi.com/2312-7481/6/4/58

- 469. Celestine, M. J.; Joseph, L. S.; Holder, A. A., Kinetics and mechanism of the oxidation of a cobaloxime by sodium hypochlorite in aqueous solution: Is it an outer-sphere mechanism? *Inorg. Chim. Acta* **2017**, *454*, 254-265. https://doi.org/10.1016/j.ica.2016.07.013
- 470. Tavagnacco, C.; Balducci, G.; Costa, G.; Täschler, K.; von Philipsborn, W., Electronic and Steric Influence of Axial and Equatorial Ligands in Vitamin B12 Model Complexes Derived from Cobaloxime: Electrochemical and 59Co-NMR Studies. *Helv. Chim. Acta* **1990**, 73, 1469-1480. https://doi.org/10.1002/hlca.19900730527
- 471. Cropek, D. M.; Metz, A.; Müller, A. M.; Gray, H. B.; Horne, T.; Horton, D. C.; Poluektov, O.; Tiede, D. M.; Weber, R. T.; Jarrett, W. L.; Phillips, J. D.; Holder, A. A., A novel ruthenium(ii)—cobaloxime supramolecular complex for photocatalytic H2 evolution: synthesis, characterisation and mechanistic studies. *Dalton Trans.* **2012**, *41*, 13060-13073.

http://dx.doi.org/10.1039/C2DT30309D

472. Bakac, A.; Brynildson, M. E.; Espenson, J. H., Characterization of the structure, properties, and reactivity of a cobalt(II) macrocyclic complex. *Inorg. Chem.* **1986**, *25*, 4108-4114. https://doi.org/10.1021/ic00243a012

- 473. Kofod, P.; Harris, P.; Larsen, S., NMR Spectroscopic Characterization of Methylcobalt(III) Compounds with Classical Ligands. Crystal Structures of [Co(NH3)5(CH3)]S2O6, trans-[Co(en)2(NH3)(CH3)]S2O6 (en = 1,2-Ethanediamine), and [Co(NH3)6]-mer,trans-[Co(NO2)3(NH3)2(CH3)]2-trans- [Co(NO2)4(NH3)2]. *Inorg. Chem.* 1997, 36, 2258-2266. https://doi.org/10.1021/ic961264i
- 474. Grohmann, A.; Heinemann, F. W.; Kofod, P., The methylcobalt(III) complex of a tetrapodal pentadentate amine ligand, 2,6-bis(1′,3′-diamino-2′-methyl-prop-2′-yl)pyridine. *Inorg. Chim. Acta* **1999**, *286*, 98-102. https://doi.org/10.1016/S0020-1693(98)00367-3
 475. Beers, O. C. P.; Elsevier, C. J.; Ernsting, J. M.; De Ridder, D. J. A.; Stam, C. H., Reactions of monoazadienes with metal carbonyl complexes. 14. Pseudo-allyl complexes from monoazadienes and cobalt carbonyl [Co₂(CO)₈] by activation of dihydrogen under mild conditions. *Organometallics* **1992**, *11*, 3886-3893. https://doi.org/10.1021/om00059a063
 476. Bouherour, S.; Braunstein, P.; Rosé, J.; Toupet, L., Metallosite Selectivity Studies in Reactions of Tetrahedral MCo₃ Carbonyl Clusters (M = Fe, Ru) with Cyclohexylphosphine. Skeletal Rearrangements Leading to Tri- and Pentanuclear Phosphinidene Clusters and Crystal Structures of RuCo₄(μ₄-PCy)(μ-CO)₂(CO)₁₁ and RuCo₂(μ₃-PCy)(CO)₉. *Organometallics* **1999**, *18*, 4908-4915. https://doi.org/10.1021/om9902840
- 477. Braunstein, P.; Jiao, F. Y.; Rosé, J.; Granger, P.; Balegroune, F.; Bars, O.; Grandjean, D., Structural and cobalt-59 nuclear magnetic resonance study of heterosite reactivities of alkynes in Ru–Co carbonyl–nitrosyl clusters. *J. Chem. Soc., Dalton Trans.* **1992**, 2543-2550. http://dx.doi.org/10.1039/DT9920002543
- 478. Braunstein, P.; Mourey, L.; Rose, J.; Granger, P.; Richert, T.; Balegroune, F.; Grandjean, D., Selectivity in substitution chemistry of mixed-metal, tetrahedral MCo₃ (M = iron, ruthenium) carbonyl clusters: cobalt-59 NMR study and crystal structure of RuCo₃(μ₃-H)(μ-CO)₃(CO)₈(NMe₃). *Organometallics* **1992**, *11*, 2628-2634. https://doi.org/10.1021/om00043a054

Braunstein, P.; Rose, J.; Toussaint, D.; Jaaskelainen, S.; Ahlgren, M.; Pakkanen, T. A.; Pursiainen, J.; Toupet, L.; Grandjean, D., Site-Selective Substitution Reactions and Isomerizations in Tetrahedral MCo₃ Carbonyl Clusters (M = Fe, Ru) with N, P, S, and Te Donor Ligands. Crystal Structures of HRuCo₃(CO)₁₀(PMe₂Ph)₂ and HRuCo₃(CO)₉(PMe₂Ph)₃. Organometallics 1994, 13, 2472-2479. https://doi.org/10.1021/om00018a046 480. Chen, M. J.; Klingler, R. J.; Rathke, J. W.; Kramarz, K. W., In Situ High-Pressure NMR Studies of Co₂(CO)₆[P(*p*-CF₃C₆H₄)₃]₂ in Supercritical Carbon Dioxide: Ligand Substitution, Hydrogenation, and Hydroformylation Reactions. *Organometallics* **2004**, *23*, 2701-2707.

479.

https://doi.org/10.1021/om030600h

- Kempgens, P.; Elbayed, K.; Raya, J.; Granger, P.; Rosé, J.; Braunstein, P., Investigation 481. of Tetrahedral Mixed-Metal Carbonyl Clusters by Two-Dimensional 59Co COSY and DQFCOSY NMR Experiments. *Inorg. Chem.* **2006**, *45*, 3378-3383. https://doi.org/10.1021/ic051544a 482. Kempgens, P.; Rosé, J., Determination of 1J(59Co-59Co) scalar coupling constants in the tetrahedral mixed-metal cluster HFeCo3(CO)10(PCyH2)(PPh2[CH2C(O)Ph]) using COSYtype NMR experiments. J. Magn. Reson. 2011, 209, 88-93. https://doi.org/10.1016/j.jmr.2010.12.007
- 483. Kempgens, P.; Raya, J.; Elbayed, K.; Granger, P.; Rosé, J.; Braunstein, P., Theoretical Study of Two-Dimensional COSY Experiments for S = 7/2 Spins: Application to 59Co in the Tetrahedral Cluster HFeCo3(CO)11PPh2H. J. Magn. Reson. 2000, 142, 64-73. https://doi.org/10.1006/jmre.1999.1903
- 484. Klingler, R. J.; Rathke, J. W., High-Pressure NMR Investigation of Hydrogen Atom Transfer and Related Dynamic Processes in Oxo Catalysis. J. Am. Chem. Soc. 1994, 116, 4772-4785. https://doi.org/10.1021/ja00090a025
- 485. Richert, T.; Elbayed, K.; Raya, J.; Granger, P.; Braunstein, P.; Rosé, J., 59Co NMR in Tetrahedral Clusters. Magn. Reson. Chem. 1996, 34, 689-696.

https://doi.org/10.1002/(SICI)1097-458X(199609)34:9<689::AID-OMR955>3.0.CO;2-U

- 486. Song, L.-C.; Luo, C.-C.; Hu, Q.-M.; Chen, J.; Wang, H.-G., Unexpected Metallosite-Selective CO Substitution of Heteronuclear Tetrahedral (μ3-S)FeCoM (M = Mo, W) Carbonyl Clusters with Cyclohexyl Isocyanide: 59Co NMR and 57Fe Mössbauer Spectra of (μ3-S)FeCoMo(CO)8-n(η5-C5H4COMe)(C6H11NC)n (n = 1-3) and Crystal Structures of (μ3-S)FeCoM(CO)8-n(η5-C5H4R)(C6H11NC)n (M = Mo, W; R = MeCO, MeO2C; n = 1, 2). Organometallics 2001, 20, 4510-4516. https://doi.org/10.1021/om0104262
- 487. Braunstein, P.; Rose, J.; Granger, P.; Raya, J.; Bouaoud, S. E.; Grandjean, D., Cobalt-59 NMR study of cluster reactions: solvent and ligand effects in mixed-metal, tetrahedral MCo₃ (M = iron, ruthenium) carbonyl clusters. Crystal structure of $FeCo_3(\mu_3-H)(\mu-CO)_3(CO)_8(PPh_2H)$. Organometallics **1991**, *10*, 3686-3693. https://doi.org/10.1021/om00056a046
- 488. Kofod, P.; Harris, P.; Larsen, S., Migratory Insertion of Hydrogen Isocyanide in the Pentacyano(methyl)cobaltate(III) Anion. *Inorg. Chem.* **2003**, *42*, 244-249.
- 489. Plečnik, C. E.; Liu, S.; Chen, X.; Meyers, E. A.; Shore, S. G., Lanthanide–Transition–Metal Carbonyl Complexes: New [Co4(CO)11]2- Clusters and Lanthanide(II) Isocarbonyl Polymeric Arrays. *J. Am. Chem. Soc.* **2004**, *126*, 204-213. https://doi.org/10.1021/ja0304852
- 490. Rathke, J. W.; Klingler, R. J.; Krause, T. R., Propylene hydroformylation in supercritical carbon dioxide. *Organometallics* **1991,** *10*, 1350-1355. https://doi.org/10.1021/om00051a027
- 491. Bühl, M.; Grigoleit, S.; Kabrede, H.; Mauschick, F. T., Simulation of 59Co NMR Chemical Shifts in Aqueous Solution. *Chem. Eur. J.* **2006**, *12*, 477-488.

https://doi.org/10.1002/chem.200500285

https://doi.org/10.1021/ic020353u

- 492. Godbout, N.; Oldfield, E., Density Functional Study of Cobalt-59 Nuclear Magnetic Resonance Chemical Shifts and Shielding Tensor Elements in Co(III) Complexes. *J. Am. Chem. Soc.* **1997**, *119*, 8065-8069. https://doi.org/10.1021/ja9709810
- 493. Grigoleit, S.; Bühl, M., Computational 59Co NMR Spectroscopy: Beyond Static Molecules. *J. Chem. Theory Comput.* **2005**, *1*, 181-193. https://doi.org/10.1021/ct0499200

- 494. Chan, J. C. C.; Au-Yeung, S. C. F., Density Functional Study of ⁵⁹Co Chemical Shielding Tensors Using Gauge-Including Atomic Orbitals. *J. Phys. Chem. A* **1997**, *101*, 3637-3640. https://doi.org/10.1021/jp962200w
- 495. Chan, J. C. C.; Wilson, P. J.; Au-Yeung, S. C. F.; Webb, G. A., Density Functional Study of the Electronic Structures of [Co(NH₃)₅X]⁽³⁺ⁿ⁾⁺ Complexes. Insight into the Role of the 3d and 4s Orbitals in Metal–Ligand Interactions. *J. Phys. Chem. A* **1997**, *101*, 4196-4201. https://doi.org/10.1021/jp9622010
- 496. Juranić, N.; Macura, S., Nitrogen-15 NMR coordination shifts of β-alanine and glycine in cobalt(III) complexes. *Inorg. Chim. Acta* **1994,** 217, 213-215. https://doi.org/10.1016/0020-1693(93)03768-6
- 497. Brown, K. L.; Gupta, B. D., Heteronuclear NMR studies of Cobalamins. 10. Nitrogen-15 NMR studies of [15N]cyanocobalt corrins. *Inorg. Chem.* **1990**, *29*, 3854-3860.

https://doi.org/10.1021/ic00344a040

- 498. Brown, K. L.; Evans, D. R., Heteronuclear NMR studies of cobalt corrinoids. 14. Amide proton and nitrogen-15 NMR studies of base-on cobalamins. *Inorg. Chem.* **1993**, *32*, 2544-2548. https://doi.org/10.1021/ic00063a055
- 499. Brown, K. L.; Evans, D. R.; Zou, X.; Wu, G. Z., Heteronuclear NMR studies of cobalt corrinoids. 16. Indirect detection of the nitrogen-15 NMR resonances of the axial 5,6-dimethylbenzimidazole nucleotide and of corrin ring N22 and N23 via the heteronuclear multiple-quantum coherence (HMQC) experiment. *Inorg. Chem.* **1993**, *32*, 4487-4488. https://doi.org/10.1021/ic00073a003
- 500. Bartova, S.; Pechlaner, M.; Donghi, D.; Sigel, R. K., Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR. *J. Biol. Inorg. Chem.* **2016**, *21*, 319-328. http://doi.org/10.1007/s00775-016-1341-3
- 501. Kofod, P., 14N NMR of amminecobalt(III) compounds. *Magn. Reson. Chem.* **2003**, *41*, 531-534. https://doi.org/10.1002/mrc.1210

- 502. Jackson, W. G.; Cortez, S., π-Bonded Intermediates in Linkage Isomerization Reactions of a Tetrazole Coordinated to Pentaamminecobalt(III): An 15N NMR Study. *Inorg. Chem.* **1994,** 33, 1921-1927. https://doi.org/10.1021/ic00087a031
- 503. Brasch, N. E.; Buckingham, D. A.; Clark, C. R.; Rogers, A. J., 17 O NMR Study of Solvent Exchange in Some Aqueous [Co(tren)(X)(OH₂/OH)]ⁿ⁺, [Co(cyclen)(X)(OH₂/OH)]ⁿ⁺, and [Co(N-Mecyclen)(X)(OH₂/OH)]ⁿ⁺ Systems (X = NH₃, OH₂/OH; n = 3, 2, 1). *Inorg. Chem.* **1998**, 37, 4865-4871. https://doi.org/10.1021/ic980221u
- 504. Vasilchenko, D.; Vorob'eva, S.; Tkachev, S.; Baidina, I.; Belyaev, A.; Korenev, S.; Solovyov, L.; Vasiliev, A., Rhodium(III) Speciation in Concentrated Nitric Acid Solutions. *Eur. .J. Inorg. Chem.* **2016**, *2016*, 3822-3828. https://doi.org/10.1002/ejic.201600523
- 505. Belyaev, A. V.; Fedotov, M. A.; Vorob'eva, S. N., Formation of mononuclear rhodium(III) sulfates: ¹⁰³Rh and ¹⁷O NMR study. *Rus. J. Coord. Chem.* **2009**, 35, 577-581.

https://doi.org/10.1134/S1070328409080041

506. Belyaev, A. V.; Fedotov, M. A.; Vorob'eva, S. N., ¹⁰³Rh and ¹⁷O NMR study of oligomer rhodium(III) sulfates in aqueous solutions. *Rus. J. Coord. Chem.* **2009,** 35, 824.

https://doi.org/10.1134/S1070328409110062

- 507. Belyaev, A. V.; Vorob'eva, S. N.; Fedotov, M. A., ¹⁰³Rh, ¹⁷O, and ³¹P NMR study of Rh(III) complex formation in acidic sulfate-phosphate media. *Rus. J. Coord. Chem.* **2012**, *57*, 231-236. https://doi.org/10.1134/S0036023612020040
- 508. Belyaev, A. V., State of Rh(III) in Hydrofluoric Acid Solutions. *Rus. J. Coord. Chem.* **2018**, 63, 162-168. https://doi.org/10.1134/S003602361802002X
- 509. Munro, O. Q.; Camp, G. L.; Carlton, L., Structural, ¹⁰³Rh NMR and DFT Studies of a Bis(phosphane)RhIII–Porphyrin Derivative. *Eur. J. Inorg. Chem.* **2009**, 2009, 2512-2523. https://doi.org/10.1002/ejic.200800837

- 510. Fischer, C.; Thede, R.; Drexler, H.-J.; König, A.; Baumann, W.; Heller, D., Investigations into the Formation and Stability of Cationic Rhodium Diphosphane η6-Arene Complexes. *Chem. Eur. J.* **2012**, *18*, 11920-11928. https://doi.org/10.1002/chem.201201587
- 511. Stanek, K.; Czarniecki, B.; Aardoom, R.; Rüegger, H.; Togni, A., Remote C-F-Metal Interactions in Late-Transition-Metal Complexes. *Organometallics* **2010**, *29*, 2540-2546. https://doi.org/10.1021/om100261e
- 512. Preetz, A.; Baumann, W.; Fischer, C.; Drexler, H.-J.; Schmidt, T.; Thede, R.; Heller, D., Asymmetric Hydrogenation. Dimerization of Solvate Complexes: Synthesis and Characterization of Dimeric [Rh(DIPAMP)]22+, a Valuable Catalyst Precursor. *Organometallics* **2009**, *28*, 3673-3677. https://doi.org/10.1021/om801199g
- 513. References for the NMR shifts are not provided in the paper.
- 514. Twigge, L.; Swarts, J. C.; Conradie, J., ₁₀₃Rh NMR shifts of Rh^I-β-diketonato and Rh^I-β-aminoketonato complexes influenced by different substituents. *Polyhedron* **2019**, *169*, 14-23. https://doi.org/10.1016/j.poly.2019.04.052
- 515. Onishi, N.; Shiotsuki, M.; Masuda, T.; Sano, N.; Sanda, F., Polymerization of Phenylacetylenes Using Rhodium Catalysts Coordinated by Norbornadiene Linked to a Phosphino or Amino Group. *Organometallics* **2013**, *32*, 846-853.

https://doi.org/10.1021/om301147n

516. Zurawinski, R.; Lepetit, C.; Canac, Y.; Mikolajczyk, M.; Chauvin, R., From Neutral to Anionic η1-Carbon Ligands: Experimental Synthesis and Theoretical Analysis of a Rhodium-Yldiide Complex. *Inorg. Chem.* **2009**, *48*, 2147-2155.

https://doi.org/10.1021/ic802104f

517. Canac, Y.; Lepetit, C.; Abdalilah, M.; Duhayon, C.; Chauvin, R., Diaminocarbene and Phosphonium Ylide Ligands: A Systematic Comparison of their Donor Character. *J. Am. Chem.* Soc. **2008**, *130*, 8406-8413. https://doi.org/10.1021/ja801159v

- 518. Patureau, F. W.; Groß, J.; Ernsting, J. M.; van Wüllen, C.; Reek, J. N. H., P-N Bridged Dinuclear Rh-METAMORPhos Complexes: NMR and Computational Studies. *Eur. .J. Inorg. Chem.* **2018**, 2018, 3761-3769. https://doi.org/10.1002/ejic.201800397
- 519. Preetz, A.; Baumann, W.; Drexler, H.-J.; Fischer, C.; Sun, J.; Spannenberg, A.; Zimmer, O.; Hell, W.; Heller, D., Trinuclear Rhodium Complexes and Their Relevance for Asymmetric Hydrogenation. *Chem. Asian J.* **2008**, *3*, 1979-1982. https://doi.org/10.1002/asia.200800184
 520. Adams, C.; Morales-Verdejo, C.; Morales, V.; MacLeod-Carey, D.; Manríquez, J. M.; Chávez, I.; Muñoz-Castro, A.; Delpech, F.; Castel, A.; Gornitzka, H.; Rivière-Baudet, M.; Rivière, P.; Molins, E., Heterobinuclear s-Indacene Rhodium Complexes: Synthesis and Characterization. *Eur. .J. Inorg. Chem.* **2009**, 2009, 784-791.

https://doi.org/10.1002/ejic.200800920

- 521. Blacker, A. J.; Duckett, S. B.; Grace, J.; Perutz, R. N.; Whitwood, A. C., Reactivity, Structures, and NMR Spectroscopy of Half-Sandwich Pentamethylcyclopentadienyl Rhodium Amido Complexes Relevant to Transfer Hydrogenation. *Organometallics* **2009**, *28*, 1435-1446. https://doi.org/10.1021/om8009969
- 522. Ekkert, O.; White, A. J. P.; Toms, H.; Crimmin, M. R., Addition of aluminium, zinc and magnesium hydrides to rhodium(iii). *Chem. Sci.* **2015**, *6*, 5617-5622.

http://dx.doi.org/10.1039/C5SC01309G

- 523. Mampa, R. M.; Fernandes, M. A.; Carlton, L., Preparation and NMR study of trimetallic complexes of platinum and tungsten bridged by 4-pyridylacetylide and a binuclear complex of rhodium and tungsten bridged by 2-(4-pyridyl)thiazole-4-carboxylate (PTC): structure of [(Ph3P)2Rh(H)2(μ-PTC)W(CO)4(P(4-MeC6H4)3)]. *Transit. Met. Chem.* **2013**, *38*, 219-224. https://doi.org/10.1007/s11243-012-9681-5
- 524. Davis, J. C.; Bühl, M.; Koch, K. R., Probing Isotope Shifts in ¹⁰³Rh and ¹⁹⁵Pt NMR Spectra with Density Functional Theory. *J. Phys. Chem. A* **2013**, *117*, 8054-8064. https://doi.org/10.1021/jp405453c

- 525. Ortuño, M. A.; Castro, L.; Bühl, M., Computational Insight into ¹⁰³Rh Chemical Shift– Structure Correlations in Rhodium Bis(phosphine) Complexes. *Organometallics* **2013**, *32*, 6437-6444. https://doi.org/10.1021/om400774y
- 526. Nadolinny, V.; Belyaev, A.; Komarovskikh, A.; Tkachev, S.; Yushina, I., The photochemical generation of superoxide Rh(III) complexes. *New J. Chem.* **2018**, *42*, 15231-15236. http://dx.doi.org/10.1039/C8NJ02570C
- 527. Hopp Rentsch, G.; Kozminski, W.; von Philipsborn Fioretta Asaro, W.; Pellizer, G., Transition Metal NMR Spectroscopy. One-bond ¹⁰³Rh, ¹⁵N coupling constants of axial and equatorial ligands in rhodoximes. *Magn. Reson. Chem.* **1997**, *35*, 904-907.

https://doi.org/10.1002/(SICI)1097-458X(199712)35:12<904::AID-OMR231>3.0.CO;2-%23

- 528. Rozwadowski, Z.; Nowak-Wydra, B., Chiral recognition of Schiff bases by 15N NMR spectroscopy in the presence of a dirhodium complex. Deuterium isotope effect on 15N chemical shift of the optically active Schiff bases and their dirhodium tetracarboxylate adducts. *Magn. Reson. Chem.* **2008**, *46*, 974-978. https://doi.org/10.1002/mrc.2280
- 529. Jaźwiński, J.; Duddeck, H., Pyridine and aminide derivatives as ligands in 1 : 1 Rh2[tfa]4 adducts: 1H, 13C and 15N NMR study. *Magn. Reson. Chem.* **2003**, *41*, 921-926. https://doi.org/10.1002/mrc.1263
- 530. Jaźwiński, J., Studies on adducts of rhodium(II) tetraacetate and rhodium(II) tetratrifluoroacetate with some amines in CDCl3 solution using 1H, 13C and 15N NMR. *J. Mol. Struct.* **2005,** 750, 7-17. https://doi.org/10.1016/j.molstruc.2005.03.035
- 531. Bocian, W.; Jaźwiński, J.; Sadlej, A., ¹H, ¹³C and ¹⁵N NMR studies on adducts formation of rhodium(II) tetraacylates with some azoles in CDCI₃ solution. *Magn. Reson. Chem.* **2008**, *46*, 156-165. https://doi.org/10.1002/mrc.2149
- 532. Duddeck, H.; Malik, S.; Gáti, T.; Tóth, G.; Choudhary, M. I., Complexation of selenium to (R)-Rh2(MTPA)4: thermodynamics and stoichiometry. *Magn. Reson. Chem.* **2002**, *40*, 153-156. https://doi.org/10.1002/mrc.990

533. Perez, V.; Audet, P.; Bi, W.; Fontaine, F.-G., Phosphidoboratabenzene–rhodium(i) complexes as precatalysts for the hydrogenation of alkenes at room temperature and atmospheric pressure. *Dalton Trans.* **2016**, *45*, 2130-2137.

http://dx.doi.org/10.1039/C5DT03109E

534. Câmpian, M. V.; Harris, J. L.; Jasim, N.; Perutz, R. N.; Marder, T. B.; Whitwood, A. C., Comparisons of Photoinduced Oxidative Addition of B–H, B–B, and Si–H Bonds at Rhodium(η⁵-cyclopentadienyl)phosphine Centers. *Organometallics* **2006**, *25*, 5093-5104.

https://doi.org/10.1021/om060500m

- 535. Houston, J. R.; Yu, P.; Casey, W. H., Water Exchange from the Oxo-Centered Rhodium(III) Trimer [Rh3(μ3-O)(μ-O2CCH3)6(OH2)3]+: A High-Pressure 17O NMR Study. *Inorg. Chem.* **2005**, *44*, 5176-5182. https://doi.org/10.1021/ic050537j
- 536. Laurenczy, G.; Rapaport, I.; Zbinden, D.; Merbach, A. E., Variable-pressure oxygen-17 NMR study of water exchange on hexaaquarhodium(III). *Magn. Reson. Chem.* **1991**, 29, S45-S51. https://doi.org/10.1002/mrc.1260291311
- 537. Drljaca, A.; Zahl, A.; van Eldik, R., High-Pressure Oxygen-17 NMR Study of the Dihydroxo-Bridged Rhodium(III) Hydrolytic Dimer. Mechanistic Evidence for Limiting Dissociative Water Exchange Pathways. *Inorg. Chem.* **1998**, *37*, 3948-3953.

https://doi.org/10.1021/ic971074n

- 538. Eisen, M. S.; Haskel, A.; Chen, H.; Olmstead, M. M.; Smith, D. P.; Maestre, M. F.; Fish, R. H., Aqueous Organometallic Chemistry: Structure and Dynamics in the Formation of (.eta.5-Pentamethylcyclopentadienyl)rhodium Aqua Complexes as a Function of pH. *Organometallics* 1995, *14*, 2806-2812. https://doi.org/10.1021/om00006a029
- 539. Hintermair, U.; Sheehan, S. W.; Parent, A. R.; Ess, D. H.; Richens, D. T.; Vaccaro, P. H.; Brudvig, G. W.; Crabtree, R. H., Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes. *J. Am. Chem. Soc.* **2013**, *135*, 10837-10851. https://doi.org/10.1021/ja4048762

- 540. Koelliker, R.; Milstein, D., Evidence for an unprecedented Ir(H)(NH3) .dblarw. Ir(H2)(NH2) equilibrium and hydrogen exchange between NH and CH bonds. *J. Am. Chem.* Soc. **1991**, *113*, 8524-8525. https://doi.org/10.1021/ja00022a051
- 541. Cusanelli, A.; Frey, U.; Richens, D. T.; Merbach, A. E., The Slowest Water Exchange at a Homoleptic Mononuclear Metal Center: Variable-Temperature and Variable-Pressure 17O NMR Study on [Ir(H2O)6]3+. *J. Am. Chem. Soc.* **1996**, *118*, 5265-5271. https://doi.org/10.1021/ja954071n
- 542. Behringer, K. D.; Blümel, J., ⁶¹Ni NMR spectroscopy of di- and tricarbonylnickel complexes. *Magn. Reson. Chem.* **1995,** 33, 729-733. https://doi.org/10.1002/mrc.1260330907
- 543. Bühl, M.; Peters, D.; Herges, R., Substituent effects on ⁶¹Ni NMR chemical shifts. *Dalton Trans.* **2009**, 6037-6044. http://dx.doi.org/10.1039/B902308A
- 544. Fedotov, M. A.; Likholobov, V. A., First direct observation of 105Pd NMR in solution.

 Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1984, 33, 1751-1751.

 https://doi.org/10.1007/BF00959235
- 545. Helm, L.; Elding, L. I.; Merbach, A. E., Water-Exchange Mechanism of Tetraaquapalladium(II). A Variable-Pressure and Variable-Temperature Oxygen-17 NMR Study. Helv. Chim. Acta 1984, 67, 1453-1460. https://doi.org/10.1002/hlca.19840670605
- 546. Thomas, A. A.; Denmark, S. E., Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link. *Science* **2016**, *352*, 329-332.

http://doi.org/10.1126/science.aad6981

547. Thomas, A. A.; Wang, H.; Zahrt, A. F.; Denmark, S. E., Structural, Kinetic, and Computational Characterization of the Elusive Arylpalladium(II)boronate Complexes in the Suzuki–Miyaura Reaction. *J. Am. Chem. Soc.* **2017**, *139*, 3805-3821. https://doi.org/10.1021/jacs.6b13384

548. Kocak, F. S.; Zavalij, P.; Lam, Y.-F.; Eichhorn, B. W., Solution Dynamics and Gas-Phase Chemistry of Pd2@Sn184-. *Inorg. Chem.* **2008**, *47*, 3515-3520.

https://doi.org/10.1021/ic701699d

549. Bhaskar, R.; Sharma, A. K.; Yadav, M. K.; Singh, A. K., Sonogashira (Cu and amine free) and Suzuki coupling in air catalyzed via nanoparticles formed in situ from Pd(ii) complexes of chalcogenated Schiff bases of 1-naphthaldehyde and their reduced forms. *Dalton Trans*.

2017, 46, 15235-15248. http://dx.doi.org/10.1039/C7DT02701J

550. Holló-Sitkei, E.; Szalontai, G.; Lois, I.; Gömöry, Á.; Pollreisz, F.; Párkányi, L.; Jude, H.; Besenyei, G., Sterically-Directed Consecutive and Size-Selective Self-Assembly of Palladium Diphosphane Complexes with an Ar-BIAN Ligand: Unexpected Formation of Pentameric and Hexameric Aggregates. *Chem. Eur. J.* **2009**, *15*, 10620-10633.

https://doi.org/10.1002/chem.200901126

551. Requet, A.; Colin, O.; Bourdreux, F.; Salim, S. M.; Marque, S.; Thomassigny, C.; Greck, C.; Farjon, J.; Prim, D., Pyridylalkylamine ligands and their palladium complexes: structure and reactivity revisited by NMR. *Magn. Reson. Chem.* **2014**, *52*, 273-278.

https://doi.org/10.1002/mrc.4058

552. White, P. B.; Jaworski, J. N.; Fry, C. G.; Dolinar, B. S.; Guzei, I. A.; Stahl, S. S., Structurally Diverse Diazafluorene-Ligated Palladium(II) Complexes and Their Implications for Aerobic Oxidation Reactions. *J. Am. Chem. Soc.* **2016**, *138*, 4869-4880.

https://doi.org/10.1021/jacs.6b01188

553. Corbi, P. P.; Massabni, A. C., 1H–15N NMR studies of the complex bis(S-allyl-l-cysteinate)palladium(II). *Spectrochim. Acta A* **2006**, *64*, 418-419.

https://doi.org/10.1016/j.saa.2005.07.039

554. Strong, E. T. J.; Cardile, S. A.; Brazeau, A. L.; Jennings, M. C.; McDonald, R.; Jones, N. D., Chiral, Hemilabile Palladium(II) Complexes of Tridentate Oxazolidines, Including C2-Symmetric "Pincers". *Inorg. Chem.* **2008**, *47*, 10575-10586. https://doi.org/10.1021/ic8011926

- Papadogianakis, G.; Peters, J. A.; Maat, L.; Sheldon, R. A., Catalytic conversions in water: 17O, {1H}31P and 35Cl NMR study of a novel stoichiometric redox reaction between PdCl2, tppts and H2O [tppts = P(C6H4-m-SO3Na)3]. *J. Chem. Soc., Chem. Commun.* **1995**, 1105-1106. http://dx.doi.org/10.1039/C39950001105
- 556. Armbruster, F.; Augenstein, T.; Oña-Burgos, P.; Breher, F., Homoleptic Tetrakis(silyl) Complexes of Pd0 and Pt0 Featuring Metal-Centred Heterocubane Structures: Evidence for the Existence of the Corresponding Mononuclear PdI and PtI Complexes. *Chem. Eur. J.* **2013**, *19*, 17899-17906. https://doi.org/10.1002/chem.201303299
- 557. Priqueler, J. R. L.; Butler, I. S.; Rochon, F. D., An Overview of 195Pt Nuclear Magnetic Resonance Spectroscopy. *Appl. Spectrosc. Rev.* **2006**, *41*, 185-226.

https://doi.org/10.1080/05704920600620311

https://doi.org/10.1016/j.ccr.2006.02.011

- Still, B. M.; Kumar, P. G. A.; Aldrich-Wright, J. R.; Price, W. S., 195Pt NMR—theory and application. *Chem. Soc. Rev.* 2007, *36*, 665-686. http://dx.doi.org/10.1039/B606190G
 Gabano, E.; Marengo, E.; Bobba, M.; Robotti, E.; Cassino, C.; Botta, M.; Osella, D., 195Pt NMR spectroscopy: A chemometric approach. *Coord. Chem. Rev.* 2006, *250*, 2158-2174.
- 560. Braunschweig, H.; Dewhurst, R. D.; Hupp, F.; Schneider, C., Silver(I) and thallium(I) cations as unsupported bridges between two metal bases. *Chem. Commun.* **2014**, *50*, 15685-15688. http://dx.doi.org/10.1039/C4CC08508F
- 561. Gallo, V.; Latronico, M.; Mastrorilli, P.; Nobile, C. F.; Polini, F.; Re, N.; Englert, U., Reactivity of a Phosphinito-Bridged PtI-PtI Complex with Nucleophiles: Substitution versus Addition. *Inorg. Chem.* **2008**, *47*, 4785-4795. https://doi.org/10.1021/ic800045u
- Latronico, M.; Polini, F.; Gallo, V.; Mastrorilli, P.; Calmuschi-Cula, B.; Englert, U.; Re, N.; Repo, T.; Räisänen, M., Site Selectivity in the Protonation of a Phosphinito Bridged PtI-PtI Complex: a Combined NMR and Density-Functional Theory Mechanistic Study. *Inorg. Chem.* **2008**, *47*, 9779-9796. https://doi.org/10.1021/ic800508t

- 563. Pazderski, L.; Szłyk, E.; Sitkowski, J.; Kamieński, B.; Kozerski, L.; Toušek, J.; Marek, R., Experimental and quantum-chemical studies of 15N NMR coordination shifts in palladium and platinum chloride complexes with pyridine, 2,2′-bipyridine and 1,10-phenanthroline. *Magn. Reson. Chem.* **2006**, *44*, 163-170. https://doi.org/10.1002/mrc.1740
- 564. Pawlak, T.; Pazderski, L.; Sitkowski, J.; Kozerski, L.; Szłyk, E., 1H, 13C, 195Pt and 15N NMR structural correlations in Pd(II) and Pt(II) chloride complexes with various alkyl and aryl derivatives of 2,2′-bipyridine and 1,10-phenanthroline. *Magn. Reson. Chem.* **2011**, *49*, 59-64. https://doi.org/10.1002/mrc.2704
- 565. Benedetti, M.; De Castro, F.; Fanizzi, F. P., Square-Planar Pt^{II} versus Octahedral Pt^{IV} Halido Complexes: ¹⁹⁵Pt NMR Explained by a Simple Empirical Approach. *Eur. .J. Inorg. Chem.* **2016**, *2016*, 3957-3962. https://doi.org/10.1002/ejic.201600573
- 566. Benedetti, M.; de Castro, F.; Antonucci, D.; Papadia, P.; Fanizzi, F. P., General cooperative effects of single atom ligands on a metal: a ¹⁹⁵Pt NMR chemical shift as a function of coordinated halido ligands' ionic radii overall sum. *Dalton Trans.* **2015**, *44*, 15377-15381. http://dx.doi.org/10.1039/C5DT02285A
- 567. Benedetti, M.; Papadia, P.; Girelli, C. R.; De Castro, F.; Capitelli, F.; Fanizzi, F. P., X-ray structures versus NMR signals in pentacoordinate [PtX₂(η²-CH₂CH₂)(Me₂phen)] (X = Cl, Br, I) complexes. *Inorg. Chim. Acta* **2015**, *428*, 8-13. https://doi.org/10.1016/j.ica.2015.01.003
 568. Pazderski, L.; Pawlak, T.; Sitkowski, J.; Kozerski, L.; Szłyk, E., 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine. *Magn. Reson. Chem.* **2009**, *47*, 932-941. https://doi.org/10.1002/mrc.2491
- 569. Sanz Miguel, P. J.; Lax, P.; Lippert, B., (Dien)MII (M=Pd, Pt) and (NH3)3PtII complexes of 1-methylcytosine: Linkage and rotational isomerism, metal-promoted deamination, and pathways to dinuclear species. *J. Inorg. Biochem.* **2006**, *100*, 980-991.

https://doi.org/10.1016/j.jinorgbio.2006.02.017

570. Lohr, T. L.; Piers, W. E.; Sgro, M. J.; Parvez, M., Silver ion enhanced C–H activation in Pt(ii) hydroxo complexes. *Dalton Trans.* **2014**, *43*, 13858-13864.

http://dx.doi.org/10.1039/C4DT01934B

- 571. Lasri, J.; Adília Januário Charmier, M.; da Silva, M. F. C. G.; Pombeiro, A. J. L., Mixed unsymmetric oxadiazoline and/or imine platinum(ii) complexes. *Dalton Trans.* **2007**, 3259-3266. http://dx.doi.org/10.1039/B704329E
- 572. Strukl, J. V.; de Paula, Q. A.; Yang, X.; Qu, Y.; Farrell, N. P., Comparison of cis and trans-Platinum Mononucleobase Compounds with DNA and Protein Models. *Aust. J. Chem.* **2008**, *61*, 694-699. https://doi.org/10.1071/CH08227
- 573. Williams, K. M.; Dudgeon, R. P.; Chmely, S. C.; Robey, S. R., Reaction of platinum(II) diamine and triamine complexes with selenomethionine. *Inorg. Chim. Acta* **2011**, *368*, 187-193. https://doi.org/10.1016/j.ica.2011.01.002
- 574. Chauhan, R. S.; Sharma, R. K.; Kedarnath, G.; Cordes, D. B.; Slawin, A. M. Z.; Jain, V. K., Reactivity of dipyrimidyldiselenides with [M(PPh₃)₄] and 2-pyrimidylchalcogenolates with [MCl₂(diphosphine)] (M = Pd or Pt). *J. Organomet. Chem.* **2012**, 717, 180-186. https://doi.org/10.1016/j.jorganchem.2012.06.036
- 575. Al-Ktaifani, M. M.; Coles, M. P.; Crossley, I. R.; Evans, L. T. J.; Hitchcock, P. B.; Lawless, G. A.; Nixon, J. F., Opening "Jaws": Functionalisation of the hexaphosphapentaprismane cage, P₆C₄^tBu₄, affording X₂P₆C₄^tBu₄ (X = Me, I), crystal and molecular structures of X₂P₆C₄^tBu₄ (X = Me, I) and [*cis*-PtCl₂Me₂P₆C₄^tBu₄]. *J. Organomet. Chem.* **2009**, *694*, 4223-4229. https://doi.org/10.1016/j.jorganchem.2009.09.002
- 576. Al-Ktaifani, M. M.; Hitchcock, P. B.; Nixon, J. F., Facile insertion and halogen migration reactions of the hexaphosphapentaprismane cage P₆C₄^tBu₄ with zerovalent and divalent platinum complexes. *Dalton Trans.* **2008**, 1132-1135. http://dx.doi.org/10.1039/B719064F
 577. Kluge, T.; Mendicute-Fierro, C.; Bette, M.; Rodríguez-Diéguez, A.; Garralda, M. A.;
- Steinborn, D., On the Reactivity of Platina-β-diketone and Acetylplatinum(II) Complexes toward

- 2-(Diphenylphosphanyl)benzaldehyde and Its Dioxolane Derivative. *Eur. .J. Inorg. Chem.* **2013**, 5418-5427. https://doi.org/10.1002/ejic.201300779
- 578. Wrackmeyer, B.; Hernández, Z. G.; Kempe, R.; Herberhold, M., Diselenastanna-, -sila-and -carbacycles with an annelated dicarba-closo-dodecaborane(12) unit. *Appl. Organometal. Chem.* **2007**, *21*, 108-116. https://doi.org/10.1002/aoc.1181
- 579. Zenkina, O. V.; Konstantinovski, L. E.; Shimon, L. J. W.; Diskin-Posner, Y.; Iron, M. A.; van der Boom, M. E., Long-Range Through-Bond Heteronuclear Communication in Platinum Complexes. *Inorg. Chem.* **2009**, *48*, 4021-4030. https://doi.org/10.1021/ic801940h
- 580. Chen, W.; Liu, F.; Matsumoto, K.; Autschbach, J.; Le Guennic, B.; Ziegler, T.; Maliarik, M.; Glaser, J., Spectral and Structural Characterization of Amidate-Bridged Platinum-Thallium Complexes with Strong Metal-Metal Bonds. *Inorg. Chem.* **2006**, *45*, 4526-4536. https://doi.org/10.1021/ic0516780
- 581. Iwatsuki, S.; Isomura, E.; Wada, A.; Ishihara, K.; Matsumoto, K., 195Pt NMR Spectra of Head-to-Head and Head-to-Tail Amidato-Bridged Platinum(III) Dinuclear Complexes. *Eur. .J. Inorg. Chem.* **2006**, 2006, 2484-2490. https://doi.org/10.1002/ejic.200500954
- 582. Ara, I.; Forniés, J.; Fortuño, C.; Ibáñez, S.; Martín, A.; Mastrorilli, P.; Gallo, V., Unsymmetrical Platinum(II) Phosphido Derivatives: Oxidation and Reductive Coupling Processes Involving Platinum(III) Complexes as Intermediates. *Inorg. Chem.* **2008**, *47*, 9069-9080. https://doi.org/10.1021/ic8011124
- 583. Murray, P.; Koch, K. R., A 195Pt NMR study of the oxidation of [PtCl4]2– with chlorate, bromate, and hydrogen peroxide in acidic aqueous solution. *J. Coord. Chem.* **2010**, 63, 2561-2577. https://doi.org/10.1080/00958972.2010.493212
- 584. Murray, P.; Gerber, W. J.; Koch, K. R., 35/37Cl and 16/18O isotope resolved 195Pt NMR: unique spectroscopic 'fingerprints' for unambiguous speciation of [PtCln(H2O)6-n]4-n (n = 2–5) complexes in an acidic aqueous solution. *Dalton Trans.* **2012**, *41*, 10533-10542. http://dx.doi.org/10.1039/C2DT31201H

- 585. Engelbrecht, L.; Murray, P.; Koch, K. R., Isotope Effects in 195Pt NMR Spectroscopy: Unique 35/37Cl- and 16/18O-Resolved "Fingerprints" for All [PtCl6–n(OH)n]2– (n = 1–5) Anions in an Alkaline Solution and the Implications of the Trans Influence. *Inorg. Chem.* **2015**, *54*, 2752-2764. https://doi.org/10.1021/ic502901d
- 586. Kramer, J.; Koch, K. R., 195Pt NMR Chemical Shift Trend Analysis as a Method to Assign New Pt(IV)-Halohydroxo Complexes. *Inorg. Chem.* **2007**, *46*, 7466-7476. https://doi.org/10.1021/ic700804t
- 587. Bagno, A.; Bini, R., NMR Spectra of Terminal Oxo Gold and Platinum Complexes: Relativistic DFT Predictions. *Angew. Chem. Int. Ed.* **2010**, *49*, 1083-1086. https://doi.org/10.1002/anie.200905507
- 588. Burger, M. R.; Kramer, J.; Chermette, H.; Koch, K. R., A comparison of experimental and DFT calculations of ¹⁹⁵Pt NMR shielding trends for $[PtX_nY_{6-n}]^{2-}$ (X, Y = Cl, Br, F and I) anions. *Magn. Reson. Chem.* **2010**, *48*, S38-S47. https://doi.org/10.1002/mrc.2607
- 589. Efremenko, I.; Poverenov, E.; Martin, J. M. L.; Milstein, D., DFT Study of the Structure and Reactivity of the Terminal Pt(IV)-Oxo Complex Bearing No Electron-Withdrawing Ligands. *J. Am. Chem. Soc.* **2010**, *132*, 14886-14900. https://doi.org/10.1021/ja105197x
- 590. Fowe, E. P.; Belser, P.; Daul, C.; Chermette, H., Assessment of theoretical prediction of the NMR shielding tensor of 195PtClxBr6-x2- complexes by DFT calculations: experimental and computational results. *Phys. Chem. Chem. Phys.* **2005**, *7*, 1732-1738.

http://dx.doi.org/10.1039/B500574D

591. Hashemi, M., Correlation between 195Pt chemical shifts and the electronic transitions among d orbitals in pincer NCN Pt(II) complexes: A theoretical study and application of Ramsey's equation. *Spectrochim. Acta A* **2015**, *151*, 438-442.

https://doi.org/10.1016/j.saa.2015.06.122

592. Koch, K. R.; Burger, M. R.; Kramer, J.; Westra, A. N., 195Pt NMR and DFT computational methods as tools towards the understanding of speciation and

- hydration/solvation of [PtX6]2- (X = Cl-, Br-) anions in solution. *Dalton Trans.* **2006**, 3277-3284. http://dx.doi.org/10.1039/B605182K
- 593. Ozimiński, W. P.; Garnuszek, P.; Bednarek, E.; Dobrowolski, J. C., The platinum complexes with histamine: Pt(II)(Hist)Cl2, Pt(II)(Iodo-Hist)Cl2 and Pt(IV)(Hist)2Cl2. *Inorg. Chim. Acta* **2007**, *360*, 1902-1914. https://doi.org/10.1016/j.ica.2006.10.004
- 594. Semenov, V. A.; Samultsev, D. O.; Rusakova, I. L.; Krivdin, L. B., Computational Multinuclear NMR of Platinum Complexes: A Relativistic Four-Component Study. *J. Phys. Chem. A* **2019**, *123*, 4908-4920. https://doi.org/10.1021/acs.jpca.9b02867
- 595. Sterzel, M.; Autschbach, J., Toward an Accurate Determination of 195Pt Chemical Shifts by Density Functional Computations: The Importance of Unspecific Solvent Effects and the Dependence of Pt Magnetic Shielding Constants on Structural Parameters. *Inorg. Chem.* **2006**, *45*, 3316-3324. https://doi.org/10.1021/ic052143y
- 596. Sutter, K.; Autschbach, J., Computational Study and Molecular Orbital Analysis of NMR Shielding, Spin–Spin Coupling, and Electric Field Gradients of Azido Platinum Complexes. *J. Am. Chem. Soc.* **2012**, *134*, 13374-13385. https://doi.org/10.1021/ja3040762
- 597. Takagi, N.; Sakaki, S., A Theoretical Study of an Unusual Y-Shaped Three-Coordinate Pt Complex: Pt(0) σ-Disilane Complex or Pt(II) Disilyl Complex? *J. Am. Chem. Soc.* **2012**, *134*, 11749-11759. https://doi.org/10.1021/ja304110h
- 598. Truflandier, L. A.; Sutter, K.; Autschbach, J., Solvent Effects and Dynamic Averaging of 195Pt NMR Shielding in Cisplatin Derivatives. *Inorg. Chem.* **2011**, *50*, 1723-1732. https://doi.org/10.1021/ic102174b
- 599. Tsipis, A. C.; Karapetsas, I. N., Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(ii) and Pt(iv) antitumor agents by a non-relativistic DFT computational protocol.

 Dalton Trans. 2014, 43, 5409-5426. http://dx.doi.org/10.1039/C3DT53594K*
- 600. Tsipis, A. C.; Karapetsas, I. N., Accurate prediction of 195Pt-NMR chemical shifts for hydrolysis products of [PtCl6]2- in acidic and alkaline aqueous solutions by non-relativistic DFT

computational protocols. J. Coord. Chem. 2015, 68, 3788-3804.

https://doi.org/10.1080/00958972.2015.1083095

- 601. Tsipis, A. C.; Karapetsas, I. N., Prediction of 195Pt NMR of photoactivable diazido- and azine-Pt(IV) anticancer agents by DFT computational protocols. *Magn. Reson. Chem.* **2017**, *55*, 145-153. https://doi.org/10.1002/mrc.4523
- 602. Morley, C. P.; Webster, C. A.; Vaira, M. D., Oxidative addition of (PhSe)2 and (FcSe)2 to zerovalent palladium and platinum trialkylphosphine complexes (Fc=ferrocenyl, [Fe(η5-C5H5)(η5-C5H4)]). *J. Organomet. Chem.* **2006**, *691*, 4244-4249.

https://doi.org/10.1016/j.jorganchem.2006.06.035

http://dx.doi.org/10.1039/C9DT01156K

603. Yao, K.; Bertran, A.; Morgan, J.; Hare, S. M.; Rees, N. H.; Kenwright, A. M.; Edkins, K.; Bowen, A. M.; Farrer, N. J., A novel Pt(iv) mono azido mono triazolato complex evolves azidyl radicals following irradiation with visible light. *Dalton Trans.* **2019**, *48*, 6416-6420.

604. Dimmer, J.-A.; Hornung, M.; Eichele, K.; Wesemann, L., Selenium adducts of germaand stanna-closo-dodecaborate: coordination at platinum, structural studies and NMR
spectroscopy. *Dalton Trans.* **2012**, *41*, 8989-8996. http://dx.doi.org/10.1039/C2DT30478C
605. Al-Allaf, T. A. K., Reactions of organotin(IV) compounds with platinum complexes: Part
II. Oxidative addition of SnR_xCl_{4-x} to [Pt(COD)₂] and subsequent reactions with tertiary

phosphines. J. Organomet. Chem. 1999, 590, 25-35. https://doi.org/10.1016/S0022-

328X(99)00408-8

- 606. Zabula, A. V.; Pape, T.; Hepp, A.; Hahn, F. E., Coordination chemistry of bisstannylenes with platinum(0). *Dalton Trans.* **2008**, 5886-5890. http://dx.doi.org/10.1039/B809878F
- 607. Mitchell, G. P.; Tilley, T. D., Generation of a Silylene Complex by the 1,2-Migration of Hydrogen from Silicon to Platinum. *Angew. Chem. Int. Ed,* **1998,** 37, 2524-2526.

https://doi.org/10.1002/(SICI)1521-3773(19981002)37:18<2524::AID-ANIE2524>3.0.CO;2-H

- 608. Liu, Y.; Intini, F. P.; Natile, G.; Sletten, E., Kinetic study of the reaction between an antitumor 15N labeled trans-platinum iminoether complex and GMP by [1H, 15N] HMQC NMR. J. Chem. Soc., Dalton Trans. 2002, 3489-3495. http://dx.doi.org/10.1039/B203572N 609. Liu, Y.; Pacifico, C.; Natile, G.; Sletten, E., Antitumor trans Platinum Complexes can Form Cross-Links with Adjacent Purine Groups. Angew. Chem. Int. Ed, 2001, 40, 1226-1228. https://doi.org/10.1002/1521-3773(20010401)40:7<1226::AID-ANIE1226>3.0.CO;2-U 610. Liu, Y.; Vinje, J.; Pacifico, C.; Natile, G.; Sletten, E., Formation of Adenine-N3/Guanine-N7 Cross-Link in the Reaction of trans-Oriented Platinum Substrates with Dinucleotides. J. Am. Chem. Soc. 2002, 124, 12854-12862. https://doi.org/10.1021/ja027251n Berners-Price, S. J.; Frenkiel, T. A.; Ranford, J. D.; Sadler, P. J., Nuclear magnetic 611. resonance studies of N - H bonds in platinum anticancer complexes: detection of reaction intermediates and hydrogen bonding in quanosine 5' -monophosphate adducts of [PtCl₂(NH₃)₂]. J. Chem. Soc., Dalton Trans. **1992**, 2137-2139. http://dx.doi.org/10.1039/DT9920002137
- 612. Berners-Price, S. J.; Davies, M. S.; Cox, J. W.; Thomas, D. S.; Farrell, N., Competitive Reactions of Interstrand and Intrastrand DNA-Pt Adducts: A Dinuclear-Platinum Complex Preferentially Forms a 1,4-Interstrand Cross-Link Rather than a 1,2 Intrastrand Cross-link on Binding to a GG 14-Mer Duplex. *Chem. Eur. J.* **2003**, 9, 713-725.

https://doi.org/10.1002/chem.200390080

- 613. Chen, Y.; Guo, Z.; del Socorro Murdoch, P.; Zang, E.; J. Sadler, P., Interconversion between S- and N-bound L-methionine adducts of Pt(dien)²⁺ (dien = diethylenetriamine) via dien ring-opened intermediates. *J. Chem. Soc., Dalton Trans.* **1998**, 1503-1508. http://dx.doi.org/10.1039/A709282B
- 614. Chen, Y.; Guo, Z.; Parsons, S.; Sadler, P. J., Stereospecific and Kinetic Control over the Hydrolysis of a Sterically Hindered Platinum Picoline Anticancer Complex. *Chem. Eur. J.* **1998**,

- 4, 672-676. https://doi.org/10.1002/(SICI)1521-3765(19980416)4:4<672::AID-CHEM672>3.0.CO;2-8
- 615. Gorle, A. K.; Zhang, J.; Berners-Price, S. J.; Farrell, N. P., Influence of geometric isomerism on the binding of platinum anticancer agents with phospholipids. *Dalton Trans.* **2019**, 48, 9791-9800. http://dx.doi.org/10.1039/C9DT00753A
- 616. Qu, Y.; Farrell, N., Association of mononuclear and dinuclear platinum tetraamine cations with nucleotides studied by 15N NMR relaxation. *Inorg. Chim. Acta* **1996**, *245*, 265-267. https://doi.org/10.1016/0020-1693(95)04815-4
- 617. Ruhayel, R. A.; Berners-Price, S. J.; Farrell, N. P., Competitive formation of both long-range 5′ 5′ and short-range antiparallel 3′ 3′ DNA interstrand cross-links by a trinuclear platinum complex on binding to a 10-mer duplex. *Dalton Trans.* **2013**, *42*, 3181-3187. http://dx.doi.org/10.1039/C2DT32079G
- 618. Watson, A. A.; Fairlie, D. P., Ammonia and Carbon Dioxide from Urea. Multinuclear NMR Study of the Activation of Urea by Platinum(II). *Inorg. Chem.* **1995**, *34*, 3087-3092. https://doi.org/10.1021/ic00115a041
- 619. Kelly, P. F.; Sheppard, R. N.; Woollins, J. D., Reinvestigation into the isomerization of mer-PtCl2(S4N4)(PMe2Ph). *Polyhedron* **1992**, *11*, 2605-2609. https://doi.org/10.1016/S0277-5387(00)80229-6
- 620. Cubo, L.; Thomas, D. S.; Zhang, J.; Quiroga, A. G.; Navarro-Ranninger, C.; Berners-Price, S. J., [1H,15N] NMR studies of the aquation of cis-diamine platinum(II) complexes. *Inorg. Chim. Acta* **2009**, 362, 1022-1026. https://doi.org/10.1016/j.ica.2008.03.117
- 621. Davies, M. S.; Hall, M. D.; Berners-Price, S. J.; Hambley, T. W., [1H, 15N] Heteronuclear Single Quantum Coherence NMR Study of the Mechanism of Aquation of Platinum(IV) Ammine Complexes. *Inorg. Chem.* **2008**, *47*, 7673-7680. https://doi.org/10.1021/ic8006734

622. Pregosin, P. S.; Rüegger, H.; Wombacher, F.; Van Koten, G.; Grove, D. M.; Wehman-Ooyevaar, I. C. M., New Pt ... H□N bonds characterized by 15N-filtered and 2D NOESY 1H NMR spectroscopy. *Magn. Reson. Chem.* **1992**, *30*, 548-551.

https://doi.org/10.1002/mrc.1260300616

- 623. Drescher, W.; Borner, C.; Tindall, D. J.; Kleeberg, C., Exploring unsymmetrical diboranes(4) as boryl ligand precursors: platinum(ii) bis-boryl complexes. *RSC Adv.* **2019**, 9, 3900-3911. http://dx.doi.org/10.1039/C9RA00170K
- 624. Frey, U.; Grove, D. M.; van Koten, G., Fast water exchange on a Pt(II) center: variable temperature and pressure17O NMR study at 14.1 tesla of the ionic arylplatinum species [PtC6H3(CH2NMe2)2-2,6 (OH2)]+ (OSO2CF3)–. *Inorg. Chim. Acta* 1998, 269, 322-325. https://doi.org/10.1016/S0020-1693(97)05791-5
- 625. Ginn, V. C.; Kelly, P. F.; Woollins, J. D., Multinuclear NMR studies upon 15N labelled metalla-chalcogen-nitrogen complexes. *Polyhedron* **1994,** *13*, 1501-1506.

https://doi.org/10.1016/S0277-5387(00)83444-0

- 626. Matsubayashi, G.-e.; Yokozawa, A., Selenium-77 NMR of C3Se5-metal complexes (C3Se52=1,3-diselenole-2-selone-4,5-diselenolate). *Inorg. Chim. Acta* **1993**, *208*, 95-97. https://doi.org/10.1016/S0020-1693(00)82889-3
- 627. Malito, J., Copper-63 NMR Spectroscopy. *Annu. Rep. NMR Spectrosc.* **1999,** *38*, 265-287. https://doi.org/10.1016/S0066-4103(08)60039-3
- 628. Falcomer, V. A. S.; Lemos, S. S.; Martins, G. B. C.; Casagrande, G. A.; Burrow, R. A.; Lang, E. S., Synthesis, structural characterization and reactivity of copper(I)-nitrile complexes: Crystal and molecular structure of [Cu(BzCN)4][BF4]. *Polyhedron* **2007**, *26*, 3871-3875. https://doi.org/10.1016/j.poly.2007.04.007
- 629. Irangu, J. K.; Jordan, R. B., Copper-63 NMR Line width Study of the Copper(I)-Acetonitrile System. *Inorg. Chem.* **2003**, *42*, 3934-3942. https://doi.org/10.1021/ic030020c

- 630. Gill, D.; Pathania, V., Chapter Ten The Chemistry of Monovalent Copper in Solutions of Pure and Mixed Nonaqueous Solvents. *Adv. Inorg. Chem.* **2016**, *68*, 441-481. https://doi.org/10.1016/bs.adioch.2015.11.001
- 631. Brown, M. D.; Levason, W.; Reid, G.; Watts, R., Synthesis spectroscopic and structural properties of transition metal complexes of the o-xylyl diphosphine o-C₆H₄(CH₂PPh₂)₂. *Polyhedron* **2005**, *24*, 75-87. https://doi.org/10.1016/j.poly.2004.10.008
- 632. Szłyk, E.; Kucharek, R.; Szymańska, I.; Pazderski, L., Synthesis and characterization of Cu(I) chelate complexes with 1,3-bis(diphenylphosphino)propane, 1,2-bis(diphenylphosphino)benzene and perfluorinated carboxylates. *Polyhedron* **2003**, *22*, 3389-3393. https://doi.org/10.1016/j.poly.2003.09.006
- 633. Szłyk, E.; Szymańska, I., Studies of new volatile copper(I) complexes with triphenylphosphite and perfluorinated carboxylates. *Polyhedron* **1999**, *18*, 2941-2948. https://doi.org/10.1016/S0277-5387(99)00199-0
- 634. Szymańska, I., 63Cu and 31P Nuclear Magnetic Resonance for Characterization of Cu(I) Complexes with P-Donor Ligands. *Pol. J. Chem.* **2006**, *80*, 1095-1117. <a href="http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ6-0007-0010?q=bwmeta1.element.baztech-volume-0137-5083-polish journal of chemistry-2006-vol 80 nr 7;9&qt=CHILDREN-STATELESS
- 635. Even, T.; Genge, A. R. J.; Hill, A. M.; Holmes, N. J.; Levason, W.; Webster, M., Synthesis, properties and structures of complexes of platinum metal halides and Group 11 metals with two distibinomethane ligands, R2SbCH2SbR2 (R = Me or Ph). *J. Chem. Soc., Dalton Trans.* **2000**, 655-662. http://dx.doi.org/10.1039/A908296D
- 636. Levason, W.; Nirwan, M.; Ratnani, R.; Reid, G.; Tsoureas, N.; Webster, M., Transition metal complexes with wide-angle dithio-, diseleno- and ditelluroethers: properties and structural systematics. *Dalton Trans.* **2007**, 439-448. http://dx.doi.org/10.1039/B613501C

- 637. Hesford, M. J.; Levason, W.; Matthews, M. L.; Reid, G., Synthesis and complexation of the mixed tellurium—oxygen macrocycles 1-tellura-4,7-dioxacyclononane, [9]aneO2Te, and 1,10-ditellura-4,7,13,16-tetraoxacyclooctadecane, [18]aneO4Te2 and their selenium analogues. *Dalton Trans.* **2003**, 2852-2858. http://dx.doi.org/10.1039/B303365C
- 638. Kujime, M.; Kurahashi, T.; Tomura, M.; Fujii, H., 63Cu NMR Spectroscopy of Copper(I) Complexes with Various Tridentate Ligands: CO as a Useful 63Cu NMR Probe for Sharpening 63Cu NMR Signals and Analyzing the Electronic Donor Effect of a Ligand. *Inorg. Chem.* **2007**, 46, 541-551. https://doi.org/10.1021/ic060745r
- 639. Scharfe, S.; Fässler, T. F.; Stegmaier, S.; Hoffmann, S. D.; Ruhland, K., [Cu@Sn9]3–and [Cu@Pb9]3–: Intermetalloid Clusters with Endohedral Cu Atoms in Spherical Environments. *Chem. Eur. J.* **2008**, *14*, 4479-4483. https://doi.org/10.1002/chem.200800429
- 640. Lipton, A. S.; Heck, R. W.; de Jong, W. A.; Gao, A. R.; Wu, X.; Roehrich, A.; Harbison, G. S.; Ellis, P. D., Low Temperature 65Cu NMR Spectroscopy of the Cu+ Site in Azurin. *J. Am. Chem. Soc.* **2009**, *131*, 13992-13999. https://doi.org/10.1021/ja901308v
- 641. Jastrzab, R.; Lomozik, L., Coordination mode in the binary systems of copper(II)/O-phospho-L-serine. *J. Coord. Chem.* **2009**, *62*, 710-720.

https://doi.org/10.1080/00958970802317855

- 642. Neubrand, A.; Thaler, F.; Koerner, M.; Zahl, A.; Hubbard, C. D.; van Eldik, R., Mechanism of water exchange on five-coordinate copper(II) complexes. *J. Chem. Soc., Dalton Trans.* **2002**, 957-961. https://doi.org/10.1039/b107458j
- 643. Powell, D. H.; Merbach, A. E.; Fabian, I.; Schindler, S.; van Eldik, R., Evidence for a Chelate-Induced Changeover in the Substitution Mechanism of Aquated Copper(II). Volume Profile Analyses of Water Exchange and Complex-Formation Reactions. *Inorg. Chem.* **1994,** 33, 4468-73. https://doi.org/10.1021/ic00098a011

- 644. Powell, D. H.; Furrer, P.; Pittet, P.-A.; Merbach, A. E., Solvent Exchange and Jahn-Teller Inversion on Cu2+ in Water and N,N'-Dimethylformamide: A High-Pressure 17O NMR Study. *J. Phys. Chem.* **1995**, 99, 16622-16629. https://doi.org/10.1021/j100045a022
- 645. Nilsson, K. B.; Persson, I.; Kessler, V. G., Coordination Chemistry of the Solvated Agl and Aul Ions in Liquid and Aqueous Ammonia, Trialkyl and Triphenyl Phosphite, and Tri-n-butylphosphine Solutions. *Inorg. Chem.* **2006**, *45*, 6912-6921. https://doi.org/10.1021/ic060175v 646. Ang, H.-G.; Fraenk, W.; Karaghiosoff, K.; Klapötke, T. M.; Mayer, P.; Nöth, H.; Sprott, J.; Warchhold, M., Synthesis, Characterization, and Crystal Structures of Cu, Ag, and Pd Dinitramide Salts. *Z. Anorg. Allg. Chem.* **2002**, *628*, 2894-2900. https://doi.org/10.1002/1521-3749(200213)628:13< 2894::AID-ZAAC2894>3.0.CO;2-R
- 647. Zopes, D.; Hegemann, C.; Tyrra, W.; Mathur, S., [(CF3)4Au2(C5H5N)2] a new alkyl gold(ii) derivative with a very short Au–Au bond. *Chem. Commun.* **2012**, *48*, 8805-8807. http://dx.doi.org/10.1039/C2CC33735E
- 648. Menzer, S.; Hillgeris, E. C.; Lippert, B., Preparation, X-ray structure and solution behavior of [Ag(9-EtGH-N7)2]NO3·H2O (9-EtGH=9-ethylguanine). *Inorg. Chim. Acta* **1993**, *210*, 167-171. https://doi.org/10.1016/S0020-1693(00)83323-X
- 649. Drew, M. G. B.; Harding, C. J.; Howarth, O. W.; Lu, Q.; Marrs, D. J.; Morgan, G. G.; McKee, V.; Nelson, J., Thiophene-linked azacryptand sites for dicopper and disilver; thiophene sulfur as an inert spacer? *J. Chem. Soc., Dalton Trans.* **1996**, 3021-3030. http://dx.doi.org/10.1039/DT9960003021
- 650. Dairaku, T.; Furuita, K.; Sato, H.; Šebera, J.; Nakashima, K.; Kondo, J.; Yamanaka, D.; Kondo, Y.; Okamoto, I.; Ono, A.; Sychrovský, V.; Kojima, C.; Tanaka, Y., Structure Determination of an Agl-Mediated Cytosine–Cytosine Base Pair within DNA Duplex in Solution with 1H/15N/109Ag NMR Spectroscopy. *Chem. Eur. J.* **2016**, *22*, 13028-13031. https://doi.org/10.1002/chem.201603048

- 651. Mamula, O.; von Zelewsky, A.; Bernardinelli, G., Completely Stereospecific Self-Assembly of a Circular Helicate. *Angew. Chem. Int. Ed.* **1998**, *37*, 289-293.

 https://doi.org/10.1002/(SICI)1521-3773(19980216)37:3<289::AID-ANIE289>3.0.CO;2-M
 652. Mamula, O.; Monlien, F. J.; Porquet, A.; Hopfgartner, G.; Merbach, A. E.; von Zelewsky, A., Self-Assembly of Multinuclear Coordination Species with Chiral Bipyridine Ligands: Silver Complexes of 5,6-CHIRAGEN(o,m,p-xylidene) Ligands and Equilibrium Behaviour in Solution. *Chem. Eur. J.* **2001**, *7*, 533-539. https://doi.org/10.1002/1521-3765(20010119)7:2<533::AID-CHEM533>3.0.CO;2-Q
- 653. Carmona, D.; Oro, L. A.; Lamata, M. P.; Jimeno, M. L.; Elguero, J.; Belguise, A.; Lux, P., Argentotropism in (Pentamethylcyclopentadienyl)iridium Complexes with Pyrazole Ligands: Multinuclear DNMR Experiments. *Inorg. Chem.* **1994**, 33, 2196-2203. https://doi.org/10.1021/ic00088a022
- 654. Lianza, F.; Macchioni, A.; Pregosin, P.; Ruegger, H., Multidimensional 109Ag, 31P, and 1H HMQC and HSQC NMR studies on a model homogeneous catalyst. Reactions of a chiral ferrocenylphosphine with Ag(CF3SO3). *Inorg. Chem.* **1994,** 33, 4999-5002. https://doi.org/10.1021/ic00100a025
- 655. Berners-Price, S. J.; Bowen, R. J.; Harvey, P. J.; Healy, P. C.; Koutsantonis, G. A., Silver(I) nitrate adducts with bidentate 2-, 3- and 4-pyridyl phosphines. Solution ³¹P and [³¹P ¹⁰⁹Ag] NMR studies of 1 : 2 complexes and crystal structure of dimeric [{Ag(d2pype)(μ-d2pype)}₂][NO₃]₂·2CH₂Cl₂ [d2pype = 1,2-bis(di-2-pyridylphosphino)ethane]. *J. Chem. Soc., Dalton Trans.* **1998**, 1743-1750. http://dx.doi.org/10.1039/A709098F
 656. Chikkali, S. H.; Gudat, D.; Lissner, F.; Nieger, M.; Schleid, T., Boron templated catechol

phosphines as bidentate ligands in silver complexes. *Dalton Trans.* **2007**, 3906-3913.

http://dx.doi.org/10.1039/B708252E

657. Doel, C. L.; Gibson, A. M.; Reid, G.; Frampton, C. S., Synthesis and multinuclear NMR studies on copper and silver complexes of multidentate phosphine and mixed phospha/thia ligands. Single crystal structure of [Cu(P2S2)]PF6 (P2S2 =

Ph2PCH2CH2SCH2CH2SCH2CH2PPh2). *Polyhedron* **1995**, *14*, 3139-3146.

https://doi.org/10.1016/0277-5387(95)00042-Q

- 658. Hill, A. M.; Levason, W.; Webster, M., Synthesis and 109Ag NMR Studies of Homoleptic Silver(I) Stibines. *Inorg. Chem.* **1996**, *35*, 3428-3430. https://doi.org/10.1021/ic9515618
- 659. Black, J. R.; Champness, N. R.; Levason, W.; Reid, G., Homoleptic silver(I) complexes with dithio-, diseleno- and ditelluro-ethers: synthesis, structures and multinuclear nuclear magnetic resonance studies. *J. Chem. Soc., Dalton Trans.* **1995**, 3439-3445.

http://dx.doi.org/10.1039/DT9950003439

https://doi.org/10.1021/ic951139r

660. Black, J. R.; Champness, N. R.; Levason, W.; Reid, G., Homoleptic Copper(I) and Silver(I) Complexes with o-Phenylene-Backboned Bis(thioethers), Bis(selenoethers), and Bis(telluroethers): Synthesis, Multinuclear NMR Studies, and Crystal Structures of [Cu{o- $C_6H_4(SeMe)_2$ }2]PF₆, [Cu{o- $C_6H_4(TeMe)_2$ }2]PF₆, and [Agn{ μ -o- $C_6H_4(SeMe)_2$ } $_n$ {o- $C_6H_4(SeMe)_2$ } $_n$][BF₄] $_n$ ·nCH₂Cl₂. *Inorg. Chem.* **1996,** 35, 1820-1824.

661. Casa, J.; García Martínez, E.; Sánchez, A.; Sánchez González, A.; Sordo, J.; Casellato,

- U.; Graziani, R., Complexes of Ag(I) with 1-methyl-2(3H)-imidazolinethione. The crystal structure of tris[1-methyl-2(3H)-imidazolinethione]-silver(I) nitrate. *Inorg. Chim. Acta* **1996**, *241*, 117-123. https://doi.org/10.1016/0020-1693(95)04729-8
- 662. Ahmad, S.; Isab, A. A.; Perzanowski, H. P., Silver(I) complexes of thiourea. *Transit. Met. Chem.* **2002**, 27, 782-785. https://doi.org/10.1023/A:1020350023536
- 663. Ahmad, S.; Isab, A. A.; Ashraf, W., Multinuclear NMR (¹H, ¹³C, ¹⁵N and ¹⁰⁷Ag) studies of the silver cyanide complexes of thiourea and substituted thioureas. *Inorg. Chem. Commun.*

2002, *5*, 816-819. https://doi.org/10.1016/S1387-7003(02)00567-1

- 664. Isab, A. A.; Ahmad, S.; Arab, M., Synthesis of silver(I) complexes of thiones and their characterization by 13C, 15N and 107Ag NMR spectroscopy. *Polyhedron* **2002**, *21*, 1267-1271. https://doi.org/10.1016/S0277-5387(02)00981-6
- 665. Liao, P.-K.; Liu, K.-G.; Fang, C.-S.; Liu, C. W.; Fackler, J. P.; Wu, Y.-Y., A Copper(I) Homocubane Collapses to a Tetracapped Tetrahedron Upon Hydride Insertion. *Inorg. Chem.* **2011**, *50*, 8410-8417. https://doi.org/10.1021/ic2009896
- 666. Nomiya, K.; Onoue, K.-I.; Kondoh, Y.; Kasuga, N. C.; Nagano, H.; Oda, M.; Sakuma, S., Synthesis and characterization of oligomeric, anionic thiomalato-silver(I) complexes with biological activities. *Polyhedron* **1995**, *14*, 1359-1367. https://doi.org/10.1016/0277-5387(94)00393-S
- 667. Leung, B. O.; Jalilehvand, F.; Mah, V.; Parvez, M.; Wu, Q., Silver(I) Complex Formation with Cysteine, Penicillamine, and Glutathione. *Inorg. Chem.* **2013**, *52*, 4593-4602. https://doi.org/10.1021/ic400192c
- 668. Barreiro, E.; Casas, J. S.; Couce, M. D.; Sánchez, A.; Seoane, R.; Sordo, J.; Varela, J. M.; Vázquez-López, E. M., Synthesis and antimicrobial activities of silver(I) sulfanylcarboxylates. Structural isomers with identically or unequally coordinated Ag centers in an Ag₄S₄ ring. *Dalton Trans.* **2007**, 3074-3085. http://dx.doi.org/10.1039/B702936E
- 669. Barreiro, E.; Casas, J. S.; Couce, M. D.; Sánchez, A.; Sordo, J.; Varela, J. M.; Vázquez-López, E. M., New structural features in triphenylphosphinesilver(I) sulfanylcarboxylates. *Dalton Trans.* **2005**, 1707-1715. http://dx.doi.org/10.1039/B501309G
- 670. Ahmad, S.; Isab, A. A., Silver(I) complexes of selenourea (¹³C and ¹⁵N labeled); characterization by ¹³C, ¹⁵N and ¹⁰⁷Ag NMR. *Inorg. Chem. Commun.* **2002**, *5*, 355-357. https://doi.org/10.1016/S1387-7003(02)00405-7
- 671. Ahmad, S.; Isab, A. A.; Arnold, A. P., Synthesis and Spectroscopic Characterization of Silver(I) Complexes of Selenones. *J. Coord. Chem.* **2003**, *56*, 539-544. https://doi.org/10.1080/0095897031000101457

- 672. Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Schwab, I.; Vogt, M., Synthesis and Structures of Triorganotelluronium Pseudohalides. *Eur. .J. Inorg. Chem.* **2002**, *2002*, 2701-2709. https://doi.org/10.1002/1099-0682(200210)2002:10<2701::AID-EJIC2701>3.0.CO;2-G 673. Klapötke, T. M.; Krumm, B.; Moll, R.; Penger, A.; Sproll, S. M.; Berger, R. J. F.; Hayes, S. A.; Mitzel, N. W., Structures of Energetic Acetylene Derivatives HC≡CCH2ONO2, (NO2)3CCH2C≡CCH2C(NO2)3 and Trinitroethane, (NO2)3CCH3. *Z. Naturforsch. B* **2013**, 68, 719-731. https://doi.org/10.5560/znb.2013-2311
- 674. Liu, C. W.; Lin, Y.-R.; Fang, C.-S.; Latouche, C.; Kahlal, S.; Saillard, J.-Y., [Ag7(H){E2P(OR)2}6] (E = Se, S): Precursors for the Fabrication of Silver Nanoparticles. *Inorg. Chem.* **2013**, *5*2, 2070-2077. https://doi.org/10.1021/ic302482p
- 675. Liu, C. W.; Chang, H.-W.; Sarkar, B.; Saillard, J.-Y.; Kahlal, S.; Wu, Y.-Y., Stable Silver(I) Hydride Complexes Supported by Diselenophosphate Ligands. *Inorg. Chem.* **2010**, *49*, 468-475. https://doi.org/10.1021/ic901408n
- 676. Donghi, D.; Maggioni, D.; D'Alfonso, G.; Beringhelli, T., Rhenium–silver bicyclic "spiro" hydrido-carbonyl clusters: NMR investigation of their formation and reversible fragmentation. *J. Organomet. Chem.* **2014**, *751*, 462-470. https://doi.org/10.1016/j.jorganchem.2013.07.002
 677. Naumann, D.; Wessel, W.; Hahn, J.; Tyrra, W., Darstellung, NMR-spektroskopische Charakterisierung und reaktionen von perfluoralkylsilber(I)-verbindungen. *J. Organomet. Chem.* **1997**, *547*, 79-88. https://doi.org/10.1016/S0022-328X(97)00105-8
- 678. Létinois-Halbes, U.; Pale, P.; Berger, S., Triphenylphosphane complex formation with hexyn-1-yl silver. *Magn. Reson. Chem.* **2004**, *42*, 831-834. https://doi.org/10.1002/mrc.1403
 679. Eujen, R.; Hoge, B.; Brauer, D. J., Preparation and NMR Spectra of the (Trifluoromethyl)argentates(III) [Ag(CF3)nX4-n]-, with X = CN (n = 1-3), CH3, C:CC6H11, Cl, Br (n = 2, 3), and I (n = 3), and of Related Silver(III) Compounds. Structures of [PPh4][trans-

- Ag(CF3)2(CN)2] and [PPh4][Ag(CF3)3(CH3)]. *Inorg. Chem.* **1997**, 36, 1464-1475. https://doi.org/10.1021/ic9610445
- 680. Arduengo, A. J.; Dias, H. V. R.; Calabrese, J. C.; Davidson, F., Homoleptic carbene-silver(I) and carbene-copper(I) complexes. *Organometallics* **1993**, *12*, 3405-3409. https://doi.org/10.1021/om00033a009
- 681. Bildstein, B.; Malaun, M.; Kopacka, H.; Wurst, K.; Mitterböck, M.; Ongania, K.-H.; Opromolla, G.; Zanello, P., N,N'-Diferrocenyl-N-heterocyclic Carbenes and Their Derivatives.

 Organometallics 1999, 18, 4325-4336. https://doi.org/10.1021/om990377h
- 682. Tate, B. K.; Wyss, C. M.; Bacsa, J.; Kluge, K.; Gelbaum, L.; Sadighi, J. P., A dinuclear silver hydride and an umpolung reaction of CO2. *Chem. Sci.* **2013**, *4*, 3068-3074. http://dx.doi.org/10.1039/C3SC50896J
- 683. Weske, S.; Li, Y.; Wiegmann, S.; John, M., H(C)Ag: a triple resonance NMR experiment for 109Ag detection in labile silver-carbene complexes. *Magn. Reson. Chem.* **2015,** 53, 291-294. https://doi.org/10.1002/mrc.4196
- 684. O'Beirne, C.; Althani, H. T.; Dada, O.; Cassidy, J.; Kavanagh, K.; Müller-Bunz, H.; Ortin, Y.; Zhu, X.; Tacke, M., Novel derivatives of the antibiotic NHC–Ag(I) drug candidate SBC3: Synthesis, biological evaluation and 109Ag NMR studies. *Polyhedron* **2018**, *149*, 95-103. https://doi.org/10.1016/j.poly.2018.04.017
- 685. Dias, H. V. R.; Ayers, A. E., Reactions of divalent group 14 compounds containing an azide functionality: synthesis and characterization of [HB(3,5-(CF3)2Pz)3]AgGe(N3)[(n-Pr)2ATI] and [HB(3,5-(CF3)2Pz)3]AgSn(N3)[(n-Pr)2ATI]. *Polyhedron* **2002**, *21*, 611-618. https://doi.org/10.1016/S0277-5387(01)01022-1
- 686. Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J. M., Novel SnII–Agl Reactions from Sn[CH(SiMe3)2]2 and AgX (X = NCS, CN, NCO, or I): SnII–Agl or SnIVX2 Complexes.

 Organometallics 1998, 17, 2686-2688. https://doi.org/10.1021/om980086t

- 687. Johannsen, S.; Megger, N.; Böhme, D.; Sigel, R. K. O.; Müller, J., Solution structure of a DNA double helix with consecutive metal-mediated base pairs. *Nat. Chem.* **2010**, *2*, 229-234. https://doi.org/10.1038/nchem.512
- 688. Sekabunga, E. J.; Smith, M. L.; Hill, W. E., A variable temperature 31P NMR study of 9-30 atom macrocylic rings of silver(I) with long chain diphosphines. *J. Coord. Chem.* **2005**, *58*, 1187-1198. https://doi.org/10.1080/00958970500095548
- 689. Seliman, A. A. A.; Altaf, M.; Kawde, A.-N.; Wazeer, M. I. M.; Isab, A. A., NMR and kinetic studies of the interactions of [Au(cis-DACH)Cl2]Cl and [Au(cis-DACH)2]Cl3 with potassium cyanide in aqueous solution. *J. Coord. Chem.* **2014**, *67*, 3431-3443.

https://doi.org/10.1080/00958972.2014.971020

- 690. Joost, M.; Gualco, P.; Coppel, Y.; Miqueu, K.; Kefalidis, C. E.; Maron, L.; Amgoune, A.; Bourissou, D., Direct Evidence for Intermolecular Oxidative Addition of σ(Si□Si) Bonds to Gold. *Angew. Chem. Int. Ed,* **2014,** 53, 747-751. https://doi.org/10.1002/anie.201307613
 691. Joost, M.; Gualco, P.; Coppel, Y.; Miqueu, K.; Kefalidis, C. E.; Maron, L.; Amgoune, A.;
- Bourissou, D., Direct Evidence for Intermolecular Oxidative Addition of σ(Si□Si) Bonds to Gold.

 Angewandte Chemie International Edition 2014, 53, 747-751.

https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201307613

- 692. Anseau, M. R.; Leung, J. P.; Sahai, N.; Swaddle, T. W., Interactions of Silicate Ions with Zinc(II) and Aluminum(III) in Alkaline Aqueous Solution. *Inorg. Chem.* **2005**, *44*, 8023-8032. https://doi.org/10.1021/ic050594c
- 693. Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. *Nat. Commun.* **2015**, *6*, 6303. https://doi.org/10.1038/ncomms7303
- 694. Zhang, Y.; Mukherjee, S.; Oldfield, E., 67Zn NMR Chemical Shifts and Electric Field Gradients in Zinc Complexes: A Quantum Chemical Investigation. *J. Am. Chem. Soc.* **2005**, 127, 2370-2371. https://doi.org/10.1021/ja040242p

695. Lutz, M.; Findeis, B.; Haukka, M.; Graff, R.; Pakkanen, T. A.; Gade, L. H., Metal-metal bonds between group 12 metals and tin: structural characterization of the complete series of Sn-M-Sn (M = Zn, Cd, Hg) heterodimetallic complexes. *Chem. Eur. J.* **2002**, *8*, 3269-3276.

http://doi.org/10.1002/1521-3765(20020715)8:14<3269::AID-CHEM3269>3.0.CO;2-W

696. Vinje, J.; Sletten, E., Internal versus terminal metalation of double-helical oligodeoxyribonucleotides. *Chem. Eur. J.* **2006**, *12*, 676-688.

697. Gombler, W.; Lange, H.; Naumann, D., A 113Cd, 19F, and 13C NMR study on perfluoroorganocadmium-diglyme adducts. *J. Magn. Reson.* **1990,** 89, 10-20.

698. Munakata, M.; Kitagawa, S., Coordination power series of solvents: 2. The solvent effects on complex formations, half-wave potentials, 113Cd NMR resonances and Gibbs free energy changes of transfer. *Inorg. Chim. Acta* **1990**, *169*, 225-234.

https://doi.org/10.1016/S0020-1693(00)80522-8

https://doi.org/10.1016/0022-2364(90)90157-5

http://doi.org/10.1002/chem.200500731

699. Fratiello, A.; Kubo-Anderson, V.; Lee, D. J.; Mao, T.; Ng, K.; Nickolaisen, S.; Perrigan, R. D.; Lucas, V. S.; Tikkanen, W.; Wong, A.; Wong, K., Multinuclear Magnetic Resonance Study of Zinc(II) and Cadmium(II) Complexing with Isothiocyanate. *J. Solution Chem.* **1998**, *27*, 331-359. https://doi.org/10.1023/A:1022675615486

700. Janiak, C.; Deblon, S.; Wu, H.-P.; Kolm, M. J.; Klüfers, P.; Piotrowski, H.; Mayer, P., Modified Bipyridines: 5,5′-Diamino-2,2′-bipyridine Metal Complexes Assembled into Multidimensional Networks via Hydrogen Bonding and π–π Stacking Interactions. *Eur. .J. Inorg. Chem.* **1999**, 1999, 1507-1521. https://doi.org/10.1002/(SICI)1099-0682(199909)1999:9<1507::AID-EJIC1507>3.0.CO;2-I

- 701. Dakers, M. A. R.; Hill, M. N. S.; Lockhart, J. C.; Rushton, D. J., Exchange in mixtures of cadmium with bis(benzimidazoles). J. Chem. Soc., Dalton Trans. 1994, 209-213. http://dx.doi.org/10.1039/DT9940000209
- 702. Darensbourg, D. J.; Billodeaux, D. R.; Perez, L. M., 113Cd NMR Determination of the Binding Parameters of Alicyclic Epoxides to [Hydrotris(3-phenylpyrazol-1-yl)borate]Cd(II) Acetate. Organometallics 2004, 23, 5286-5290. https://doi.org/10.1021/om049761r 703. Reger, D. L.; Pascui, A. E.; Smith, M. D.; Jezierska, J.; Ozarowski, A., Dinuclear Complexes Containing Linear M–F–M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] Bridges: Trends in Structures, Antiferromagnetic Superexchange Interactions, and Spectroscopic Properties. Inorg. Chem. 2012, 51, 11820-11836.

https://doi.org/10.1021/ic301757g

- 704. Chung, K. H.; Moon, C. H., Cadmium-113 nuclear magnetic resonance studies of cadmium(II)—carboxylate complexes in aqueous solution. J. Chem. Soc., Dalton Trans. 1996, 75-78. http://dx.doi.org/10.1039/DT9960000075
- 705. Dołęga, A.; Walewski, M., Reaction of bis[bis(tri-tert-butoxysilanethiolato) cadmium(II)] with 3,5-dimethylpyridine - 113Cd NMR solution study. Magn. Reson. Chem. 2007, 45, 410-415. https://doi.org/10.1002/mrc.1983
- Reger, D. L.; Mason, S. S., Solution state 113Cd NMR investigation of an extensive 706. series of [HB(3,5-Me2pz)3]Cd(alkyl) complexes. Polyhedron 1994, 13, 3059-3061. https://doi.org/10.1016/S0277-5387(00)83671-2
- 707. Goodfellow, B. J.; Lima, M. J.; Ascenso, C.; Kennedy, M.; Sikkink, R.; Rusnak, F.; Moura, I.; Moura, J. J. G., The use of 113Cd NMR chemical shifts as a structural probe in tetrathiolate metalloproteins. Inorg. Chim. Acta 1998, 273, 279-287. https://doi.org/10.1016/S0020-1693(97)06074-X

- 708. Kordel, J.; Johansson, C.; Drakenberg, T., 113Cd NMR relaxation study of the protein calbindin D9K. *J. Magn. Reson.* **1992**, *100*, 581-587. https://doi.org/10.1016/0022-2364(92)90063-D
- 709. Narula, S. S.; Armitage, I. M.; Brouwer, M.; Enghild, J. J., Establishment of two distinct protein domains in blue crab Callinectes sapidus metallothionein-I through heteronuclear (1H□113Cd) and homonuclear 1H□1H) correlation NMR experiments. *Magn. Reson. Chem.* **1993**, *31*, S96-S103. https://doi.org/10.1002/mrc.1260311319
- 710. Scheller, J. S.; Irvine, G. W.; Stillman, M. J., Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data.

 *Dalton Trans. 2018, 47, 3613-3637. http://dx.doi.org/10.1039/C7DT03319B
- 711. Shaw lii, C. F.; He, L.; Muñoz, A.; Savas, M. M.; Chi, S.; Fink, C. L.; Gan, T.; Petering, D. H., Kinetics of reversible N-ethylmaleimide alkylation of metallothionein and the subsequent metal release. *J. Biol. Inorg. Chem.* 1997, *2*, 65-73. https://doi.org/10.1007/s007750050107
 712. Stachura, M.; Chakraborty, S.; Gottberg, A.; Ruckthong, L.; Pecoraro, V. L.; Hemmingsen, L., Direct Observation of Nanosecond Water Exchange Dynamics at a Protein Metal Site. *J. Am. Chem. Soc.* 2017, *139*, 79-82. https://doi.org/10.1021/jacs.6b11525
 713. van Roon, A.-M. M.; Yang, J.-C.; Mathieu, D.; Bermel, W.; Nagai, K.; Neuhaus, D., 113Cd NMR Experiments Reveal an Unusual Metal Cluster in the Solution Structure of the Yeast Splicing Protein Bud31p. *Angew. Chem. Int. Ed.* 2015, *54*, 4861-4864.

https://doi.org/10.1002/anie.201412210

714. Malandrinos, G.; Louloudi, M.; Mitsopoulou, C. A.; Butler, I. S.; Bau, R.; Hadjiliadis, N., On the mechanism of action of thiamin enzymes, Crystal structure of 2-(α-hydroxyethyl)thiamin pyrophosphate (HETPP). Complexes of HETPP with zinc(II) and cadmium(II). *J. Biol. Inorg. Chem.* **1998**, 3, 437-448. https://doi.org/10.1007/s007750050253

- 715. Omburo, G. A.; Mullins, L. S.; Raushel, F. M., Structural characterization of the divalent cation sites of bacterial phosphotriesterase by cadmium-113 NMR spectroscopy. *Biochemistry* **1993**, 32, 9148-9155. https://doi.org/10.1021/bi00086a021
- 716. Dodi, K.; Louloudi, M.; Malandrinos, G.; Hadjiliadis, N., Metal complexes with 2-(α-hydroxy-benzyl) thiamin pyrophosphate (HBTPP). Models for metal binding of thiamin enzymes. *J. Inorg. Biochem.* **1999**, 73, 41-47. https://doi.org/10.1016/S0162-0134(98)10089-2
- 717. Iranzo, O.; Khalili, H.; Epstein, D. M.; Morrow, J. R., Recruitment of divalent metal ions by incorporation of 4-thio-2′ -deoxythymidine or 4-thio-2′ -deoxyuridine into DNA. *J. Biol. Inorg. Chem.* **2004**, 9, 462-470. https://doi.org/10.1007/s00775-004-0545-0
- 718. Jalilehvand, F.; Amini, Z.; Parmar, K.; Kang, E. Y., Cadmium(ii) N-acetylcysteine complex formation in aqueous solution. *Dalton Trans.* **2011**, *40*, 12771-12778. http://dx.doi.org/10.1039/C1DT11705J
- 719. Sola, M., Cadmium-113 and carbon-13 NMR of cadmium(II) transferrins. *Inorg. Chem.* **1990**, 29, 1113-1116. https://doi.org/10.1021/ic00331a002
- 720. Hemmingsen, L.; Olsen, L.; Antony, J.; Sauer, S. P. A., First principle calculations of 113Cd chemical shifts for proteins and model systems. *J. Biol. Inorg. Chem.* **2004**, *9*, 591-599. https://doi.org/10.1007/s00775-004-0553-0
- 721. Kidambi, S.; Ramamoorthy, A., Quantum Chemical Calculations of Cadmium Chemical Shifts in Inorganic Complexes. *J. Phys. Chem. A* **2002**, *106*, 10363-10369. https://doi.org/10.1021/jp0265891
- 722. Kirchmann, M.; Eichele, K.; Wesemann, L., Homoleptic Cadmium and Mercury Compounds of Stanna-closo-dodecaborate. *Inorg. Chem.* **2008**, *47*, 5988-5991. https://doi.org/10.1021/ic800357z
- 723. Wrackmeyer, B.; Contreras, R., 199Hg NMR Parameters. *Annu. Rep. NMR Spectrosc.* **1992,** 24, 267-329. https://doi.org/10.1016/S0066-4103(08)60200-8

- 724. Bebout, D. C.; Berry, S. M., Probing Mercury Complex Speciation with Multinuclear NMR. *Struct. Bond.* **2006**, *120*, 81-105. https://doi.org/10.1007/430 017
- 725. Maliarik, M.; Persson, I., The solvation of the mercury(II) ion—a 199Hg NMR study. *Magn. Reson. Chem.* **2005**, *43*, 835-842. https://doi.org/10.1002/mrc.1625
- 726. Nilsson, K. B.; Maliarik, M.; Persson, I.; Fischer, A.; Ullström, A.-S.; Eriksson, L.; Sandström, M., Coordination Chemistry of Mercury(II) in Liquid and Aqueous Ammonia Solution and the Crystal Structure of Tetraamminemercury(II) Perchlorate. *Inorg. Chem.* **2008**, *47*, 1953-1964. https://doi.org/10.1021/ic7013489
- 727. Nilsson, K. B.; Maliarik, M.; Persson, I.; Sandström, M., Structure of solvated mercury(ii) halides in liquid ammonia, triethyl phosphite and tri-n-butylphosphine solution. *Dalton Trans*.

 2008, 2303-2313. http://dx.doi.org/10.1039/B716134D
- 728. Klose, G.; Volke, F.; Peinel, G.; Knobloch, G., 199Hg NMR of aqueous solutions of inorganic mercury salts. Chemical shifts of HgCl2 n with n = 0–4. *Magn. Reson. Chem.* **1993**, 31, 548-551. https://doi.org/10.1002/mrc.1260310606
- 729. Karhu, A. J.; Rautiainen, J. M.; Oilunkaniemi, R.; Chivers, T.; Laitinen, R. S., Mercury-and Cadmium-Assisted [2 + 2] Cyclodimerization of tert-Butylselenium Diimide. *Inorg. Chem.* **2015**, *54*, 9499-9508. https://doi.org/10.1021/acs.inorgchem.5b01434
- 730. Bernatowicz, P.; Szymański, S.; Wrackmeyer, B., Cross-Correlation of Nuclear Quadrupolar Interactions as a Probe in Structure Elucidation: Liquid-Phase Nuclear Magnetic Resonance Studies on Bis(hexamethyldisilylamido)mercury(II). *J. Phys. Chem. A* **2001**, *105*, 6414-6419. https://doi.org/10.1021/jp010707n
- 731. Wilker, J. J.; Wetterhahn, K. E.; Lippard, S. J., Methyl Transfer to Mercury Thiolates: Effects of Coordination Number and Ligand Dissociation. *Inorg. Chem.* **1997**, *36*, 2079-2083. https://doi.org/10.1021/ic961178i

- 732. Helm, M. L.; Helton, G. P.; VanDerveer, D. G.; Grant, G. J., Mercury-199 NMR Studies of Thiacrown and Related Macrocyclic Complexes: The Crystal Structures of [Hg(18S6)](PF6)2 and [Hg(9N3)2](ClO4)2. *Inorg. Chem.* **2005**, *44*, 5696-5705. https://doi.org/10.1021/ic050500z 733. Bardin, V. V., The dependence of ¹⁹⁹Hg NMR spectra of polyfluoroarylmercurials ArFHgR on solvent, concentration, temperature, and ligands. *Magn. Reson. Chem.* **2018**, *56*, 1124-1130. https://doi.org/10.1002/mrc.4755
- 734. Vieco, F. S. H.; Hiramatsu, N. M.; Tedeschi, E.; Rezende, D. d. B.; de Arruda Campos, I. P., The γ-cis Effect in the Mercury-199 NMR Spectroscopy of Substituted Vinylmercury Halides. *J. Chem. Res.* **2002**, 2002, 25-27. https://doi.org/10.3184/030823402103170358
- 735. Gryff-Keller, A.; Kraska-Dziadecka, A.; Molchanov, S.; Wodyński, A., Shielding and Indirect Spin–Spin Coupling Tensors in the Presence of a Heavy Atom: An Experimental and Theoretical Study of Bis(phenylethynyl)mercury. *J. Phys. Chem. A* **2012**, *116*, 10615-10620. https://doi.org/10.1021/jp307828e
- 736. Gryff-Keller, A.; Molchanov, S., Carbon-13 and mercury-199 nuclear spin relaxation study on solution dynamics of the bis(phenylethynyl)mercury molecule and shielding anisotropy of its acetyleniccarbon and mercury nuclei. *Magn. Reson. Chem.* **2000**, 38, 17-22. https://doi.org/10.1002/(SICI)1097-458X(200001)38:1
- 737. Breitinger, D. K.; Krumphanzl, U.; Moll, M., Vibrational and multinuclear NMR spectra of anionic mercuriomethanes [CH_{4-n}(HgX)_n]_n. *J. Mol. Struct.* **1990**, *218*, 27-32. https://doi.org/10.1016/0022-2860(90)80239-G
- 738. Cano, M.; Campo, J. A.; Le Gall, J. Y.; Pichon, R.; Salaun, J. Y.; Kubicki, M. M., Molybdenum-mercury bond. NMR (199 Hg, 31 P, 1 H) and IR study on[(C_5H_5)(CO)₂LMoHgZ] (L · P(4-X-C₆H₄)₃ (X · F, Cl, Me, OMe), P(CH₂CH₃)₃, P(CH₂CH₂CN)₃; Z · Cl, I, (C_5H_5)(CO)₂LMo) complexes. *Inorg. Chim. Acta* **1992**, *1*93, 207-212. https://doi.org/10.1016/S0020-1693(00)80354-0

- 739. Cotton, J. D.; Miles, E. A., Steric effects of tertiary phosphines on 199Hg chemical shifts in [{(η5-C5H5)(CO)2(L)Mo}2Hg] complexes. *Inorg. Chim. Acta* **1990**, *173*, 129-130. https://doi.org/10.1016/S0020-1693(00)80201-7
- 740. Cano, M.; Campo, J. A.; Pinilla, E.; Monge, A.; Pichon, R.; Salaün, J.-Y.; L'Haridon, P.; Szymoniak, J.; Kubicki, M. M., Effects of substitutions on cyclopentadienyl rings in complexes with molybdenum-mercury bonds. ⁹⁵Mo and ¹⁹⁹Hg NMR studies. *Inorg. Chim. Acta* **1995**, 228, 251-254. https://doi.org/10.1016/0020-1693(94)04172-R
- 741. Jalilehvand, F.; Leung, B. O.; Izadifard, M.; Damian, E., Mercury(II) Cysteine Complexes in Alkaline Aqueous Solution. *Inorg. Chem.* **2006**, *45*, 66-73. https://doi.org/10.1021/ic0508932
 742. Mah, V.; Jalilehvand, F., Mercury(II) complex formation with glutathione in alkaline aqueous solution. *J. Biol. Inorg. Chem.* **2008**, *13*, 541-553. https://doi.org/10.1007/s00775-008-0342-2
- 743. Dairaku, T.; Furuita, K.; Sato, H.; Šebera, J.; Yamanaka, D.; Otaki, H.; Kikkawa, S.; Kondo, Y.; Katahira, R.; Matthias Bickelhaupt, F.; Fonseca Guerra, C.; Ono, A.; Sychrovský, V.; Kojima, C.; Tanaka, Y., Direct detection of the mercury–nitrogen bond in the thymine–HgII–thymine base-pair with 199Hg NMR spectroscopy. *Chem. Commun.* **2015**, *51*, 8488-8491. http://dx.doi.org/10.1039/C5CC02423D
- 744. Utschig, L. M.; Wright, J. G.; Dieckmann, G.; Pecoraro, V.; O'Halloran, T. V., The 199Hg Chemical Shift as a Probe of Coordination Environments in Blue Copper Proteins. *Inorg. Chem.* 1995, *34*, 2497-2498. https://doi.org/10.1021/ic00114a004
- 745. Utschig, L.; Bryson, J.; O'Halloran, T., Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. *Science* **1995**, *268*, 380-385.

https://doi.org/10.1126/science.7716541

746. Flórez, E.; Maldonado, A. F.; Aucar, G. A.; David, J.; Restrepo, A., Microsolvation of methylmercury: structures, energies, bonding and NMR constants (199Hg, 13C and 17O). *Phys. Chem. Chem. Phys.* **2016**, *18*, 1537-1550. http://dx.doi.org/10.1039/C5CP04826E

- 747. Froeystein, N. A.; Sletten, E., Interaction of Mercury(II) with the DNA Dodecamer CGCGAATTCGCG. A 1H and 15N NMR Study. *J. Am. Chem. Soc.* **1994**, *116*, 3240-3250. https://doi.org/10.1021/ja00087a009
- 748. Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A., 15N-15N J-Coupling Across HgII: Direct Observation of HgII-Mediated T-T Base Pairs in a DNA Duplex. *J. Am. Chem. Soc.* **2007**, *129*, 244-245. https://doi.org/10.1021/ja065552h
- 749. Egorochkin, A. N.; Kuznetsova, O. V.; Khamaletdinova, N. M.; Kurskii, Y. A.; Domratcheva-Lvova, L. G.; Domrachev, G. A., Transition metal NMR chemical shifts and polarizability effect in organometallic complexes. *Magn. Reson. Chem.* **2009**, *47*, 782-790. https://doi.org/10.1002/mrc.2465
- 750. Egorochkin, A. N.; Kuznetsova, O. V.; Khamaletdinova, N. M.; Kurskii, Y. A., NMR spectroscopy on heavy nuclei of transition metal complexes. The role of polarization effect. *Rus. J. Gen. Chem.* **2011**, *81*, 2450-2458. https://doi.org/10.1134/S1070363211120061
- 751. Egorochkin, A. N.; Kuznetsova, O. V.; Khamaletdinova, N. M.; Domratcheva-Lvova, L. G.; Domrachev, G. A., Polarizability effect in transition metal carbonyl complexes. *J. Organomet. Chem.* **2009**, *694*, 1447-1452. https://doi.org/10.1016/j.jorganchem.2008.12.035
- 752. Thakur, A.; Sao, S.; Ramkumar, V.; Ghosh, S., Novel Class of Heterometallic Cubane and Boride Clusters Containing Heavier Group 16 Elements. *Inorg. Chem.* **2012**, *51*, 8322-8330. https://doi.org/10.1021/ic3008602
- 753. Agustin, D.; Ehses, M., ¹¹⁹Sn NMR spectroscopic and structural properties of transition metal complexes with terminal stannylene ligands. *C. R. Chim.* **2009**, *12*, 1189-1227. https://doi.org/10.1016/j.crci.2009.04.004
- 754. Eichler, B. E.; Phillips, A. D.; Haubrich, S. T.; Mork, B. V.; Power, P. P., Synthesis, Structures, and Spectroscopy of the Metallostannylenes (η5-C5H5)(CO)3M-Sn-C6H3-2,6-Ar2 (M = Cr, Mo, W; Ar = C6H2-2,4,6-Me3, C6H2-2,4,6-Pri3). *Organometallics* **2002**, *21*, 5622-5627. https://doi.org/10.1021/om020583g

- 755. Pazderski, L., 15N and 31P NMR Coordination Shifts in Transition Metal Complexes with Nitrogen- and Phosphorus-Containing Heterocycles. *Annu. Rep. NMR Spectrosc.* **2013**, *80*, 33-179. https://doi.org/10.1016/B978-0-12-408097-3.00002-0
- 756. Bradley, D. C.; Hodge, S. R.; Runnacles, J. D.; Hughes, M.; Mason, J.; Richards, R. L., Nitrogen nuclear magnetic resonance spectroscopy as a probe of bonding, bending and fluxionality of the imido ligand. *J. Chem. Soc., Dalton Trans.* **1992**, 1663-1668. http://dx.doi.org/10.1039/DT9920001663
- 757. Pazderski, L., 15N NMR coordination shifts in Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with pyridine, 2,2′-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2′-biquinoline, 2,2′-terpyridine and their alkyl or aryl derivatives.

 Magn. Reson. Chem. 2008, 46, S3-S15. https://doi.org/10.1002/mrc.2301
- Pazderski, L., 15N and 31P NMR Coordination Shifts in Transition Metal Complexes with Nitrogen- and Phosphorus-Containing Heterocycles. In *Annu. Rep. NMR Spectrosc.*, Webb, G. A., Ed. Academic Press: 2013; pp 33-179. https://doi.org/10.1016/B978-0-12-408097-3.00002-0
 759. Aizawa, S.-i.; Matsuda, K.; Tajima, T.; Maeda, M.; Sugata, T.; Funahashi, S., Variable-Temperature and -Pressure Multinuclear Magnetic Resonance Studies on Solvent Exchange of Cobalt(II), Iron(II), and Manganese(II) Ions in Ethylenediamine. Kinetic Chelate Effect and Chelate Strain Effect. *Inorg. Chem.* 1995, 34, 2042-2047. https://doi.org/10.1021/ic00112a015
 760. Sen-ichi, A.; Shigeo, I.; Kayoko, M.; Shigenobu, F., Variable-Temperature and -Pressure Nitrogen-14 Magnetic Resonance Studies on Solvent Exchange of Nickel(II), Iron(II), and Manganese(II) Ions in Neat 1,3-Propanediamine and n-Propylamine. *Bull. Chem. Soc. Jpn.* 1997, 70, 1593-1597. https://doi.org/10.1246/bcsj.70.1593
- 761. Hannan, J. P.; Whittaker, S. B. M.; Hemmings, A. M.; James, R.; Kleanthous, C.; Moore, G. R., NMR studies of metal ion binding to the Zn-finger-like HNH motif of colicin E9. *J. Inorg. Biochem.* **2000**, 79, 365-370. https://doi.org/10.1016/S0162-0134(99)00235-4

- 762. Jørgensen, L. E.; Ubbink, M.; Danielsen, E., Amicyanin metal-site structure and interaction with MADH: PAC and NMR spectroscopy of Ag-, Cd-, and Cu-amicyanin. *J. Biol. Inorg. Chem.* **2004**, *9*, 27-38. https://doi.org/10.1007/s00775-003-0493-0
- 763. Trujillo, L. D. C.; Jios, J. L.; Franca, C. A.; Güida, J. A., New NMR investigation of [RuF5NO]2- anion. *Inorg. Chim. Acta* **2018**, *4*77, 130-134.

https://doi.org/10.1016/j.ica.2018.03.010

- 764. Roodt, A.; Leipoldt, J. G.; Helm, L.; Merbach, A. E., Equilibrium behavior and proton transfer kinetics of the dioxotetracyanometalate complexes of molybdenum(IV), tungsten(IV), technetium(V), and rhenium(V): carbon-13 and oxygen-17 NMR study. *Inorg. Chem.* **1994**, 33, 140-147. https://doi.org/10.1021/ic00079a026
- 765. Roodt, A.; Leipoldt, J. G.; Helm, L.; Abou-Hamdan, A.; Merbach, A. E., Kinetics and Mechanism of Oxygen Exchange and Inversion along the M:O Axis in the Diprotonated and Monoprotonated Dioxotetracyanometalate Complexes of Re(V), Tc(V), W(IV), and Mo(IV). *Inorg. Chem.* **1995**, *34*, 560-568. https://doi.org/10.1021/ic00107a007
- 766. Gonzalez, G.; Moullet, B.; Martinez, M.; Merbach, A. E., Steric Effects on Water-Exchange Mechanisms of Aquapentakis(amine)metal(III) Complexes (Metal = Chromium, Cobalt, Rhodium). A Variable-Pressure Oxygen-17 NMR Study. *Inorg. Chem.* **1994**, 33, 2330-2333. https://doi.org/10.1021/ic00089a005
- 767. Maigut, J.; Meier, R.; Zahl, A.; van Eldik, R., Effect of Chelate Dynamics on Water Exchange Reactions of Paramagnetic Aminopolycarboxylate Complexes. *Inorganic Chemistry* **2008**, *47*, 5702-5719. https://doi.org/10.1021/ic702421z
- 768. Helm, L.; Nicolle, G. M.; Merbach, R. E., WATER AND PROTON EXCHANGE PROCESSES ON METAL IONS. *Adv. Inorg. Chem.* **2005**, *57*, 327-379. https://doi.org/10.1016/S0898-8838(05)57007-7
- 769. O'Halloran, K. P.; Zhao, C.; Ando, N. S.; Schultz, A. J.; Koetzle, T. F.; Piccoli, P. M. B.; Hedman, B.; Hodgson, K. O.; Bobyr, E.; Kirk, M. L.; Knottenbelt, S.; Depperman, E. C.; Stein,

- B.; Anderson, T. M.; Cao, R.; Geletii, Y. V.; Hardcastle, K. I.; Musaev, D. G.; Neiwert, W. A.; Fang, X.; Morokuma, K.; Wu, S.; Kögerler, P.; Hill, C. L., Revisiting the Polyoxometalate-Based Late-Transition-Metal-Oxo Complexes: The "Oxo Wall" Stands. *Inorg. Chem.* **2012**, *51*, 7025-7031. https://doi.org/10.1021/ic2008914
- 770. Winkler, J. R.; Gray, H. B., Electronic Structures of Oxo-Metal Ions. *Struct. Bond.* **2012**, 142, 17-28. https://doi.org/10.1007/430 2011 55
- 771. Abe, M.; Isobe, K.; Kida, K.; Nagasawa, A.; Yagasaki, A., Intramolecular rearrangements of cyclooctadienerhodium(I) fragments supported on a vanadium oxide cluster as evidenced by dynamic 17O NMR spectroscopy. *J. Clust. Sci.* **1994**, *5*, 565-571.

https://doi.org/10.1007/BF01171386

- 772. Kolehmainen, E.; Laihia, K.; Rybinskaya, M. I.; Kaganovich, V. S.; Kerzina, Z. A., Comparative multinuclear magnetic resonance spectroscopic study of transition metal (Cr, W and Mn) mesitylene tricarbonyls and transition metal (Ru and Co) carbonyl clusters. *J. Organomet. Chem.* 1993, 453, 273-278. https://doi.org/10.1016/0022-328X(93)83122-C
 773. Kony, M.; Brownlee, R. T. C.; Wedd, A. G., Complexes of tetrathiomolybdate and -tungstate with copper(I) and silver(I): sulfur-33 NMR properties. *Inorg. Chem.* 1992, 31, 2281-2282. https://doi.org/10.1021/ic00037a052
- 774. Schreckenbach, G.; Ziegler, T., Density functional calculations of NMR chemical shifts and ESR g-tensors. *Theor. Chem. Acc.* **1998**, 99, 71-82.

https://doi.org/10.1007/s002140050306

- 775. Bühl, M.; Kaupp, M.; Malkina, O. L.; Malkin, V. G., The DFT route to NMR chemical shifts. *J. Comput. Chem.* **1999**, *20*, 91-105. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO;2-C
- 776. Autschbach, J., The Calculation of NMR Parameters in Transition Metal Complexes in *Principles and Applications of Density Functional Theory in Inorganic Chemistry I. Struct. Chem.* **2004**, *112*, 1-48. https://doi.org/10.1007/b97936

777. Bühl, M., NMR of Transition Metal Compounds. In *Calculation of NMR and EPR Parameters*, Kaupp, M.; Bühl, M.; Malkin, V. G., Eds. 2004; pp 421-431. https://doi.org/10.1002/3527601678.ch26

778. Barquera-Lozada, J. E.; Obenhuber, A.; Hauf, C.; Scherer, W., On the Chemical Shifts of Agostic Protons. *J. Phys. Chem. A* **2013**, *117*, 4304-4315. https://doi.org/10.1021/jp4013174
779. Weller, A. S.; Fehlner, T. P., Molecular Orbital Analysis of the Trend in 11B NMR
Chemical Shifts for (Cp*M)2B5H9 (M = Cr, Mo, W; Cp* = η5-C5Me5). *Organometallics* **1999**, *18*, 447-450. https://doi.org/10.1021/om980808g

780. Bühl, M.; Holub, J.; Hnyk, D.; Macháček, J., Computational Studies of Structures and Properties of Metallaboranes. 2. Transition-Metal Dicarbollide Complexes. *Organometallics* **2006**, *25*, 2173-2181. https://doi.org/10.1021/om051025f

781. Grigoleit, S.; Bühl, M., Thermal Effects and Vibrational Corrections to Transition Metal NMR Chemical Shifts. *Chem. Eur. J.* **2004**, *10*, 5541-5552.

https://doi.org/10.1002/chem.200400256

782. Pastor, A.; Martínez-Viviente, E., NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology. *Coord. Chem. Rev.* **2008**, *252*, 2314-2345. https://doi.org/10.1016/j.ccr.2008.01.025

783. Lu, T.; Liu, Z.; Steren, C. A.; Fei, F.; Cook, T. M.; Chen, X.-T.; Xue, Z.-L., Synthesis, structural characterization and NMR studies of group 10 metal complexes with macrocyclic amine N-heterocyclic carbene ligands. *Dalton Trans.* **2018**, *47*, 4282-4292.

http://dx.doi.org/10.1039/C7DT04666A

784. Chen, S.-J.; Li, J.; Dougan, B. A.; Steren, C. A.; Wang, X.; Chen, X.-T.; Lin, Z.; Xue, Z.-L., Unexpected formation of a trinuclear complex containing a Ta(IV)–Ta(IV) bond in the reactions of Bu^tN=Ta(NMe₂)₃ with silanes. *Chem. Commun.* **2011**, *47*, 8685-8687. http://dx.doi.org/10.1039/C1CC12837J

- 785. Chen, S.-J.; Abbott, J. K. C.; Steren, C. A.; Xue, Z.-L., Synthesis, Characterization, and Crystal Structures of Metal Amide Cage Complexes Containing a M₄O₄ (M = Nb, Ta) Core Unit. *J. Clust. Sci.* **2010**, *21*, 325-337. https://doi.org/10.1007/s10876-010-0297-7
- Tocsy spectra. *Magn. Reson. Chem.* **2019**, *57*, S85-S94. https://doi.org/10.1002/mrc.4835
 Williamson, M. P., NOESY. In *eMagRes*, 2009.

https://doi.org/10.1002/9780470034590.emrstm0347.pub2

- 789. Liu, X.; Li, L.; Diminnie, J. B.; Yap, G. P. A.; Rheingold, A. L.; Xue, Z., Reactivities of a Bis(alkylidene) Complex. Synthesis of a Silyl Bis(alkylidyne) Complex and a Reaction Cycle among Symmetric Bis(alkylidyne), Bis(alkylidene), and Nonsymmetric Bis(alkylidyne) Compounds. *Organometallics* 1998, 17, 4597-4606. https://doi.org/10.1021/om980652k
 790. Macchioni, A., Elucidation of the Solution Structures of Transition Metal Complex Ion Pairs by NOE NMR Experiments. *Eur. .J. Inorg. Chem.* 2003, 2003, 195-205. https://doi.org/10.1002/ejic.200390026
- 791. Orrell, K. G., Two-Dimensional Methods of Monitoring Exchange. In *eMagRes*, 2007. https://doi.org/10.1002/9780470034590.emrstm0580
- 792. García, J.; Martins, L. G.; Pons, M., NMR Spectroscopy in Solution. In *Supramolecular Chemistry*, 2012. https://doi.org/10.1002/9780470661345.smc019
- 793. Chen, T.; Wu, Z.; Li, L.; Sorasaenee, K. R.; Diminnie, J. B.; Pan, H.; Guzei, I. A.; Rheingold, A. L.; Xue, Z., Direct Observation of an Equilibrium between (ButCH₂)₂W(CBut)(SiButPh₂) and (ButCH₂)W(CHBut)₂(SiButPh₂) and an Unusual Silyl Migration. *J. Am. Chem. Soc.* **1998**, *120*, 13519-13520. https://doi.org/10.1021/ja9825711

794. Chen, T.; Zhang, X.-H.; Wang, C.; Chen, S.; Wu, Z.; Li, L.; Sorasaenee, K. R.; Diminnie, J. B.; Pan, H.; Guzei, I. A.; Rheingold, A. L.; Wu, Y.-D.; Xue, Z.-L., A Tungsten Silyl Alkylidyne Complex and Its Bis(alkylidene) Tautomer. Their Interconversion and an Unusual Silyl Migration in Their Reaction with Dioxygen. *Organometallics* **2005**, *24*, 1214-1224.

https://doi.org/10.1021/om049031j

- 795. Bertini, I.; Felli, I. C.; Kümmerle, R.; Moskau, D.; Pierattelli, R., ¹³C–¹³C NOESY: An Attractive Alternative for Studying Large Macromolecules. *J. Am. Chem. Soc.* **2004**, *126*, 464-465. https://doi.org/10.1021/ja0357036
- 796. Ghini, V.; Chevance, S.; Turano, P., About the use of 13C-13C NOESY in bioinorganic chemistry. *J. Inorg. Biochem.* **2019**, *1*92, 25-32. https://doi.org/10.1016/j.jinorgbio.2018.12.006
 797. Bax, A.; Grzesiek, S., ROESY In *eMagRes*, 2007.

 https://doi.org/10.1002/9780470034590.emrstm0473
- 798. Biasiolo, L.; Belpassi, L.; Ciancaleoni, G.; Macchioni, A.; Tarantelli, F.; Zuccaccia, D., Diffusion NMR measurements on cationic linear gold(I) complexes. *Polyhedron* **2015**, 92, 52-59. https://doi.org/10.1016/j.poly.2015.03.007
- 799. Zuccaccia, D.; Belpassi, L.; Tarantelli, F.; Macchioni, A., Ion Pairing in Cationic Olefin-Gold(I) Complexes. *J. Am. Chem. Soc.* **2009**, *131*, 3170-3171.

https://doi.org/10.1021/ja809998y

- 800. Biasiolo, L.; Ciancaleoni, G.; Belpassi, L.; Bistoni, G.; Macchioni, A.; Tarantelli, F.; Zuccaccia, D., Relationship between the anion/cation relative orientation and the catalytic activity of nitrogen acyclic carbene–gold catalysts. *Catal. Sci. Technol.* **2015**, *5*, 1558-1567. http://dx.doi.org/10.1039/C4CY01440E
- 801. Raya-Barón, Á.; Oña-Burgos, P.; Fernández, I., Chapter Three Diffusion NMR spectroscopy applied to coordination and organometallic compounds. *Annu. Rep. NMR Spectrosc.* **2019**, *98*, 125-191. https://doi.org/10.1016/bs.arnmr.2019.04.004

802. Martínez-Viviente, E.; Rüegger, H.; Pregosin, P. S.; López-Serrano, J., 31P and 35Cl PGSE Diffusion Studies on Phosphine Ligands and Selected Organometallic Complexes.

Solvent Dependence of Ion Pairing. *Organometallics* **2002**, *21*, 5841-5846.

https://doi.org/10.1021/om020613f

- 803. Fernández, E. J.; Laguna, A.; Monge, M.; Montiel, M.; Olmos, M. E.; Pérez, J.; Sánchez-Forcada, E., Dendritic (phosphine)gold(i) thiolate complexes: assessment of the molecular size through PGSE NMR studies. *Dalton Trans.* 2009, 474-480. http://dx.doi.org/10.1039/B812500G
 804. Crockett, M. P.; Zhang, H.; Thomas, C. M.; Byers, J. A., Adding diffusion ordered NMR spectroscopy (DOSY) to the arsenal for characterizing paramagnetic complexes. *Chem.*Commun. 2019, 55, 14426-14429. http://dx.doi.org/10.1039/C9CC08229H
- 805. Cox, N.; Nalepa, A.; Lubitz, W.; Savitsky, A., ELDOR-detected NMR: A general and robust method for electron-nuclear hyperfine spectroscopy? *J. Magn. Reson.* **2017**, *280*, 63-78. https://doi.org/10.1016/j.jmr.2017.04.006
- 806. Dikanov, S. A.; Taguchi, A. T., Influence of Hyperfine Coupling Strain on Two-Dimensional ESEEM Spectra from I = 1/2 Nuclei. *Appl. Magn. Reson.* **2020**, *51*, 1177-1200. https://doi.org/10.1007/s00723-020-01246-6
- 807. Cutsail, G. E.; Telser, J.; Hoffman, B. M., Advanced paramagnetic resonance spectroscopies of iron–sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). *Biochim. Biophys. Acta Mol. Cell Res.* **2015**, 1853, 1370-1394. https://doi.org/10.1016/j.bbamcr.2015.01.025
- 808. Murphy, D. M.; Farley, R. D., Principles and applications of ENDOR spectroscopy for structure determination in solution and disordered matrices. *Chem. Soc. Rev.* **2006**, *35*, 249-268. http://dx.doi.org/10.1039/B500509B
- 809. Hoffman, B. M., ENDOR of Metalloenzymes. *Acc. Chem. Res.* **2003**, *36*, 522-529. https://doi.org/10.1021/ar0202565

- 810. Nietlispach, D.; Bakhmutov, V. I.; Berke, H., Deuterium quadrupole coupling constants and ionic bond character in transition metal hydride complexes from 2H NMR T1 relaxation data in solution. *J. Am. Chem. Soc.* **1993**, *115*, 9191-9195. https://doi.org/10.1021/ja00073a038
- 811. Wang, S. P.; Yuan, P.; Schwartz, M., NMR relaxation and π bonding in group 6 transition-metal hexacarbonyls. *Inorg. Chem.* **1990**, *29*, 484-487.

https://doi.org/10.1021/ic00328a029

- 812. Wang, K. S.; Wang, D.; Yang, K.; Richmond, M. G.; Schwartz, M., Directional Effects of CO .pi. Bonding in Group VIB Pentacarbonyl Amines. *Inorg. Chem.* **1995**, *34*, 3241-3244. https://doi.org/10.1021/ic00116a016
- 813. Robertson, G. P.; Odell, B.; Kuprov, I.; Dixon, D. J.; Claridge, T. D. W., Measuring Spin Relaxation Rates Using Satellite Exchange NMR Spectroscopy. *Angew. Chem. Int. Ed.* **2018**, 57, 7498-7502. https://doi.org/10.1002/anie.201801322
- 814. Jackman, L. M.; Cotton, F. A., *Dynamic Nuclear Magnetic Resonance Spectroscopy*. 1975; Academic Press: New York.
- 815. Sandstrom, J., *Dynamic NMR Spectroscopy*. 1982; Academic Press: London.
- 816. Macomber, R. S., *A Complete Introduction to Modern NMR Spectroscopy*. 1998; Wiley: New York.
- 817. Fernández, I.; Pregosin, P. S.; Albinati, A.; Rizzato, S., X-ray Diffraction, PGSE Diffusion, and Related NMR Studies on a Series of Cp*-Based Ru(IV)(Cp*)(η3-CH2-CH-CHPh) Allyl Complexes. *Organometallics* **2006**, *25*, 4520-4529. https://doi.org/10.1021/om060448u 818. Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z.-L., Tungsten Alkyl Alkylidyne and Bis-alkylidene Complexes. Preparation and Kinetic and Thermodynamic Studies of Their Unusual Exchanges. *Organometallics* **2006**, *25*, 427-434. https://doi.org/10.1021/om050745j

- 819. Sharma, B.; Callaway, T. M.; Lamb, A. C.; Steren, C. A.; Chen, S.-J.; Xue, Z.-L., Reactions of Group 4 Amide Guanidinates with Dioxygen or Water. Studies of the Formation of Oxo Products. *Inorg. Chem.* 2013, *52*, 11409-11421. https://doi.org/10.1021/ic4016965
 820. Lamb, A. C.; Wang, Z.; Cook, T. M.; Sharma, B.; Chen, S.-J.; Lu, Z.; Steren, C. A.; Lin, Z.; Xue, Z.-L., Preparation of all N-coordinated zirconium amide amidinates and studies of their reactions with dioxygen and water. *Polyhedron* 2016, *103*, 2-14.

 https://doi.org/10.1016/j.poly.2015.07.045
- 821. Morton, L. A.; Zhang, X.-H.; Wang, R.; Lin, Z.; Wu, Y.-D.; Xue, Z.-L., An Unusual Exchange between Alkylidyne Alkyl and Bis(alkylidene) Tungsten Complexes Promoted by Phosphine Coordination: Kinetic, Thermodynamic, and Theoretical Studies. *J. Am. Chem. Soc.* **2004**, *126*, 10208-10209. https://doi.org/10.1021/ja0467263
- 822. Abbott, J. K. C.; Li, L.; Xue, Z.-L., Preparation and Use of Ta(CD₂Bu^t)₅ To Probe the Formation of (Bu^tCD₂)₃Ta—CDBu^t. Kinetic and Mechanistic Studies of the Conversion of Pentaneopentyltantalum to the Archetypical Alkylidene Complex. *J. Am. Chem. Soc.* **2009**, *131*, 8246-8251. https://doi.org/10.1021/ja901251c
- 823. Morton, L. A.; Chen, S.; Qiu, H.; Xue, Z.-L., Preparation of Tungsten Alkyl Alkylidene Alkylidyne Complexes and Kinetic Studies of Their Formation. *J. Am. Chem. Soc.* **2007**, *129*, 7277-7283. https://doi.org/10.1021/ja067914r
- 824. Li, L.; Hung, M.; Xue, Z., Direct Observation of (Me3ECH2)5Ta (E = C, Si) as the Precursors to (Me3ECH2)3Ta:CHEMe3 and (Me3SiCH2)2Ta(.mu.-CSiMe3)2Ta(CH2SiMe3)2. Kinetic and Mechanistic Studies of the Formation of Alkylidene and Alkylidyne Ligands. *J. Am. Chem. Soc.* **1995**, *117*, 12746-12750. https://doi.org/10.1021/ja00156a011
- 825. Bowers, C. R.; Jones, D. H.; Kurur, N. D.; Labinger, J. A.; Pravica, M. G.; Weitekamp, D. P., Symmetrization Postulate and Nuclear Magnetic Resonance of Reacting Systems. *Adv. Magn. Opt. Reson.* **1990**, *14*, 269-291. https://doi.org/10.1016/B978-0-12-025514-6.50018-6

- 826. Eisenberg, R., Parahydrogen-induced polarization: a new spin on reactions with molecular hydrogen. *Acc. Chem. Res.* **1991,** *24*, 110-116. https://doi.org/10.1021/ar00004a004
 827. Duckett, S. B.; Mewis, R. E., Improving NMR and MRI Sensitivity with Parahydrogen (in Hyperpolarization Methods in NMR Spectroscopy edited by Lars T. Kuhn). *Top. Curr. Chem.* **2013,** 338, 75–104. https://doi.org/10.1007/128 2012 388
- 828. Köckenberger, W.; Matysik, J., Hyperpolarization Methods and Applications in NMR. In *Encyclopedia of Spectroscopy and Spectrometry, 2nd Ed.*, 2 ed.; Lindon, J. C., Ed. Academic Press: Oxford, 2010; pp 963-970. https://doi.org/10.1016/B978-0-12-374413-5.00054-3
- 829. Duckett, S. B.; Wood, N. J., Parahydrogen-based NMR methods as a mechanistic probe in inorganic chemistry. *Coord. Chem. Rev.* **2008**, *252*, 2278-2291.

https://doi.org/10.1016/j.ccr.2008.01.028

- 830. Duckett, Simon B.; Blazina, D., The Study of Inorganic Systems by NMR Spectroscopy in Conjunction with Parahydrogen-Induced Polarisation. *Eur. .J. Inorg. Chem.* **2003**, 2003, 2901-2912. https://doi.org/10.1002/ejic.200300119
- 831. Godard, C.; López-Serrano, J.; Gálvez-López, M.-D.; Roselló-Merino, M.; Duckett, S. B.; Khazal, I.; Lledós, A.; Whitwood, A. C., Detection of platinum dihydride bisphosphine complexes and studies of their reactivity through para-hydrogen-enhanced NMR methods. *Magn. Reson. Chem.* **2008**, *46*, S107-S114. https://doi.org/10.1002/mrc.2342
- 832. López-Serrano, J.; Duckett, S. B.; Dunne, J. P.; Godard, C.; Whitwood, A. C., Palladium catalysed alkyne hydrogenation and oligomerisation: a parahydrogen based NMR investigation. *Dalton Trans.* **2008**, 4270-4281. http://dx.doi.org/10.1039/B804162H
- 833. Eshuis, N.; van Weerdenburg, B. J. A.; Feiters, M. C.; Rutjes, F. P. J. T.; Wijmenga, S. S.; Tessari, M., Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization. *Angew. Chem. Int. Ed.* **2015**, *54*, 1481-1484.

https://doi.org/10.1002/anie.201409795

- 834. van Weerdenburg, B. J. A.; Engwerda, A. H. J.; Eshuis, N.; Longo, A.; Banerjee, D.; Tessari, M.; Guerra, C. F.; Rutjes, F. P. J. T.; Bickelhaupt, F. M.; Feiters, M. C., Computational (DFT) and Experimental (EXAFS) Study of the Interaction of [Ir(IMes)(H)2(L)3] with Substrates and Co-substrates Relevant for SABRE in Dilute Systems. *Chem. Eur. J.* **2015**, *21*, 10482-10489. https://doi.org/10.1002/chem.201500714
- 835. Fekete, M.; Rayner, P. J.; Green, G. G. R.; Duckett, S. B., Harnessing polarisation transfer to indazole and imidazole through signal amplification by reversible exchange to improve their NMR detectability. *Magn. Reson. Chem.* **2017**, *55*, 944-957.

https://doi.org/10.1002/mrc.4607

836. Roy, S. S.; Appleby, K. M.; Fear, E. J.; Duckett, S. B., SABRE-Relay: A Versatile Route to Hyperpolarization. *J. Phys. Chem. Lett.* **2018**, *9*, 1112-1117.

https://doi.org/10.1021/acs.jpclett.7b03026

- 837. Frey, U.; Helm, L.; Merbach, A. E.; Roulet, R., High Pressure NMR in Organometallic Chemistry. In *Advanced Applications of NMR to Organometallic Chemistry*, Gielen, M.; Willem, R.; Wrackmeyer, B., Eds. Wiley: New York, 1996; pp 193-225.
- 838. Iggo, J. A.; Shirley, D.; Tong, N. C., High pressure NMR flow cell for the insitu study of homogeneous catalysis. *New J. Chem.* **1998**, *22*, 1043-1045.

http://dx.doi.org/10.1039/A806311G

839. Kégl, T.; Kollár, L.; Radics, L., High-pressure NMR investigation of the intermediates of platinum-phosphine hydroformylation catalysts. *Inorg. Chim. Acta* **1997**, *265*, 249-254.

https://doi.org/10.1016/S0020-1693(97)05745-9

840. Nozaki, K.; Hiyama, T.; Kacker, S.; Horváth, I. T., High-Pressure NMR Studies on the Alternating Copolymerization of Propene with Carbon Monoxide Catalyzed by a Palladium(II) Complex of an Unsymmetrical Phosphine-Phosphite Ligand. *Organometallics* **2000**, *19*, 2031-2035. https://doi.org/10.1021/om990985x

841. Leone, A.; Gischig, S.; Elsevier, C. J.; Consiglio, G., High-pressure NMR study of migratory CO-insertion in palladium—methyl complexes modified with Cs-symmetrical 1,4-diphosphines. *J. Organomet. Chem.* **2007**, *692*, 2056-2063.

https://doi.org/10.1016/j.jorganchem.2007.01.020

842. Balogh, E.; Casey, W. H., High-pressure ¹⁷O NMR studies on some aqueous polyoxoions in water. *Prog. NMR Spec.* **2008**, *53*, 193-207.

https://doi.org/10.1016/j.pnmrs.2008.01.001

- 843. Denmark, S. E.; Williams, B. J.; Eklov, B. M.; Pham, S. M.; Beutner, G. L., Design, Validation, and Implementation of a Rapid-Injection NMR System. *J. Org. Chem.* **2010**, *75*, 5558-5572. https://doi.org/10.1021/jo100837a
- 844. Ji, Y.; DiRocco, D. A.; Kind, J.; Thiele, C. M.; Gschwind, R. M.; Reibarkh, M., LED-Illuminated NMR Spectroscopy: A Practical Tool for Mechanistic Studies of Photochemical Reactions. *ChemPhotoChem* **2019**, *3*, 984-992. https://doi.org/10.1002/cptc.201900109
- 845. Bertini, I.; Luchinat, C.; Mincione, G.; Parigi, G.; Gassner, G. T.; Ballou, D. P., NMRD studies on phthalate dioxygenase: evidence for displacement of water on binding substrate. *J. Biol. Inorg. Chem.* **1996**, *1*, 468-475. https://doi.org/10.1007/s007750050080
- 846. Chen, Y.; Liu, G.; Tang, W., ¹H NMR Saturation Transfer Studies of Exogenous Ligands Binding to Metmyoglobin. *Spectrosc. Lett.* **1996**, *29*, 1381-1396.

https://doi.org/10.1080/00387019608007130