
Sensitive searches for wormholes

John H. Simonetti ,
1
Michael J. Kavic ,

2
Djordje Minic,

1
Dejan Stojkovic,

3
and De-Chang Dai

4,5

1
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

2
Department of Chemistry and Physics, SUNY Old Westbury, Old Westbury, New York 11568, USA

3
HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, New York 14260-1500, USA

4
Center for Gravity and Cosmology, School of Physics Science and Technology, Yangzhou University,

180 Siwangting Road, Yangzhou City, Jiangsu Province 225002, People’s Republic of China
5
CERCA/Department of Physics/ISO, Case Western Reserve University,

Cleveland, Ohio 44106-7079, USA

(Received 7 August 2020; accepted 30 August 2021; published 6 October 2021)

A sensitive test for whether a black hole is a wormhole, using astronomical observations, would be to

look for perturbations in the orbit of a pulsar around the black hole, caused by a perturbing object on the

other side of the wormhole. By observing a pulsar in an orbit like that of S2 around the supermassive black

hole at Sgr A* at the center of our Galaxy, the attainable mass limit on the perturber would be

approximately 104 times better than derived from current observations of S2. For a nominal stellar-mass

black hole–pulsar binary, observing for 1 year could set a mass limit on a perturber more than 6 orders of

magnitude better than for a pulsar orbiting Sgr A*. Observations of a star in a stellar-mass binary containing

a black hole could set limits similar to the case of a pulsar orbiting Sgr A*.
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I. INTRODUCTION

Might some black holes be wormholes? Black holes

resulting from stellar evolution are not expected to be

wormholes [1]. However, it has been argued that super-

massive black holes may have a primordial formation

history [2]. Furthermore, even some stellar mass black holes

in binary systems may be primordial [3]. It has been argued

that primordial wormhole formation is possible and may be

linked to primordial black hole formation [4]. Recently, it

has even been claimed that a ninth planet (aside from Pluto)

in the solar system might be primordial in nature [5].

Can observations be used to test if specific black holes

are wormholes? We explore a proposal, first discussed by

Ref. [6], to look for the effect on the orbit of an object on

our side of the wormhole due to a perturbing object orbiting

on the other side of the wormhole (for other methods, see,

e.g., Refs. [7–17]). Can we reasonably expect perturbers to

orbit on the other side of a wormhole? It is well known that

most stars are members of binaries, triple systems, etc.

Thus, it is more likely that a stellar-mass black hole is a

member of a multicomponent system; an orbiting perturber

on the other side of the wormhole is a reasonable scenario.

We will consider potential observations of black hole–

pulsar binary systems, which can provide sensitive searches

for a wormhole. Importantly, the existence of black hole–

neutron star (BH-NS) systems has been confirmed by

LIGO [18,19]. Furthermore, a population of black hole–

neutron star binaries is suggested to be present near the

Galactic Center [20].

The fascinating study of wormholes goes back to

Einstein and Rosen (ER) in 1935 [21]. This work

was then explored in the 1950s and 1960s by John

Wheeler [22] and collaborators, who have emphasized

the importance of wormholes (and topology change) in

quantum gravity [23]. In the 1980s Baum [24], Hawking

[25], and Coleman [26] focused on the role of topology

change in Euclidean quantum gravity (see Ref. [27] for a

review), and they speculated that this process is crucial

for the possible fix of fundamental constants in nature

and, in particular, the cosmological constant (see also

Ref. [28]). In a different research direction, but around

the same time, Kip Thorne and collaborators realized

that it was possible to construct “traversable” wormhole

solutions [29,30]. (For an illuminating review of this

work, consult Ref. [31].) More recently, there has been a

lot of activity on the subject of wormholes and quantum

entanglement since the ER ¼ EPR proposal [32] (see

also Refs. [33,34]).

Where could such wormhole candidates come from?

One obvious source is the quantum gravity phase of

the very early Universe. Even though such configura-

tions would be exponentially suppressed, inflation

might make them macroscopic and thus potentially

observable. Their number has to be very small, so that

observed structure formation is not affected. Thus,

observing such remnant wormholes would be very

challenging but, in principle feasible, as explained in

this paper.
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II. OBSERVABLE EFFECTS OF A WORMHOLE

It is a fascinating possibility that such a wormhole

solution can be actually observed. One approach has been

recently addressed in Ref. [6], and here we just summarize

the main result. Consider a simple wormhole model which

can be studied analytically. A standard Schwarzschild

space-time metric with the gravitational radius rg ¼
2GM=c2 is given as

ds2 ¼ −

�

1 −
rg

r

�

dt2 þ dr2

1 −
rg
r

þ r2dΩ: ð1Þ

We cut this space-time at the radius R, which is slightly

bigger than the gravitational radius, i.e., R ≥ rg. We take

another identical space-time and paste them together.

Our global construct is thus two copies of the

Schwarzschild space-time connected through a mouth

of radius R. This setup represents a short throat wormhole,

which is traversable since R ≥ rg. Some exotic matter with

negative energy density is needed to keep the wormhole

open; however, in the short throat approximation that we

use, we assume that the effects of this exotic matter are

subdominant. This assumption can further be supported

by noticing that an arbitrarily small amount of negative

energy might be sufficient to stabilize the wormhole, as

argued in Ref. [35].

We consider a situation in which the object we observe is

located in our space, while a perturber, i.e., an object

orbiting on the other side of the wormhole, has an elliptical

orbit with the periapsis radius r0p and apoapsis radius r
0
a. All

parameters referring to the perturber on the other side of the

wormhole will be primed; all parameters referring to the

perturbed object on our side (and thus directly observable)

will be unprimed. The magnitude of the acceleration

variation of the object in our space is

Δa ¼ GM0R

�

1

r0p
−

1

r0a

�

1

r2
; ð2Þ

where r is the radial coordinate in our space and M0 is the
mass of the perturber. If the orbit of an object on the other

side of the wormhole’s is elongated so that r0a ≫ r0p, then
we can approximate the magnitude as

Δa ≈GM0 R

r0p

1

r2
: ð3Þ

Note that what we calculate in Eq. (3) is the magnitude of

acceleration variation of an object in our space due to an

elliptical orbit of a perturber on the other side perturbing the

metric. These variations come on top of the constant

acceleration that comes from the central object. With good

enough precision, we should be able to detect or exclude

this variable anomalous acceleration. Other variations

could be produced by some other dim sources on our

side. Then, more careful modeling would be required to

distinguish between different options.

It is important to note that our wormhole has

Schwarzschild geometry outside of the mouth, while the

horizon is not present at all, since we cut the Schwarzschild

geometry at R > rg. Thus, such wormholes can be harbored

both by black hole candidates (either stellar mass or

supermassive) and/or other compact objects less massive

than black holes. In particular, a neutron star candidate

might as well be a wormhole, as long as we do not see its

surface.

III. SEARCHING FOR WORMHOLES

Dai and Stojkovic [6] considered observations of the star

S2 in orbit around the supermassive black hole (BH) at the

center of our Galaxy, at Sgr A*, to produce tentative limits

on a perturber, if the BH is a wormhole.

The most direct way to observe the effect of the

anomalous acceleration shown in Eq. (3) is to look for

deviations of the object’s orbit from the expected, unper-

turbed Keplerian or general relativistic (GR) result. The

observable most directly connected to the physical argu-

ment is an additional, periodic variation in the orbital

velocity, i.e., the Doppler velocity of the object on our side.

Our goal in the subsequent calculations is not to precisely

determine the limits on the perturber that one can obtain but

to produce roughly approximate limits indicative of how

one can set the best limits by observing a pulsar in the cases

we consider. And, therefore, we will use simplifying

assumptions that ignore geometric factors of order unity

and other similar choices.

To estimate the change in the orbital velocity

caused by Δa given in Eq. (3), we assume, for simplicity,

that the additional acceleration occurs once every orbital

period T 0 of the perturber (i.e., when it is near its

periapsis). We will consider systems where the duration

of the additional acceleration Δa (i.e., the time the

perturber is near its periapsis) is t0p ≪ T, where T is

the orbital period of the perturbed star on our side

of the wormhole, so we treat the effect of the perturber

on the object we observe as impulsive. We also have

t0p ≪ T 0, of course. We estimate the magnitude of the

change in the observed object’s velocity caused by one

such impulse, as

δv ∼ Δa t0p ∼ GM0 rg
r0p

1

r2
t0p: ð4Þ

To estimate t0p, we note T
0 ¼ t0p þ t0a ∼ t0a, where t

0
a is the

time the perturber spends away from periapsis (i.e., mostly

at apoapsis for r0a ≫ r0p). So, where v0p and v0a are the

periapsis and apoapsis speeds of the perturber, respectively,

we have
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t0p ∼ t0p
T 0

t0a
∼
r0p
v0p

v0a
r0a

T 0 ∼

�

r0p
r0a

�

2

T 0 ∼ f02T 0; ð5Þ

where f0 ¼ r0p=r
0
a, and we used v0ar

0
a ¼ v0pr

0
p by conserva-

tion of angular momentum. The eccentricity of the orbit of
the perturber is e ¼ ð1 − f0Þ=ð1þ f0Þ. Thus, Eq. (4) for δv
becomes

δv ∼GM0 rg
r0p

1

r2
f02T: ð6Þ

While resonant or chaotic behavior could produce

obvious secular changes in the perturbed object’s orbital

parameters, the goal of this paper is to set limits on the

mass of the perturber absent any such extreme effects.

Furthermore, we argue that secular effects are not likely

for two reasons. First, note that the additional acceleration

is caused by a potential which is proportional to 1=r,
and is oscillatory. Secular effects would be caused by a

monotonically increasing/decreasing 1=r potential.

Indeed, in the limit T 0 ≪ T (which is the limit we will

consider), the long-term effect of the perturber is as if the

mass of the black hole were slightly larger, producing a

Keplerian (or GR) result for the object we observe. The

second argument is based on studies of secular effects in

the solar system. For example, secular changes in the

argument of perihelion of a planet can be explained

mainly by the nonspherical, long-time-average mass

distribution of each other planet, equivalent to the quadru-

pole mass distribution of a ring, centered on the Sun, of

mass and radius equal to the mass and orbital radius of the

perturbing planet [36]. The long-term average is on a

timescale much greater than the orbital period of the

perturber but much less than the timescale of any secular

orbital change. In our case, the long-term average effect is

that of a constant monopole potential, producing a

Keplerian (or GR) result.

A potentially observable, less-than-extreme effect,

would be an oscillating Doppler velocity due to the

perturbations, with period T 0, on top of the unperturbed

orbital Doppler velocity behavior of period T. Here, we
consider only perturbations with period T 0 ≪ T, which

would be more readily separated from the unperturbed

time-varying Doppler velocity of period T, or from other

longer timescale effects that might be present due to, for

example, perturbations caused by other objects on our side

of the wormhole.

After modeling and removing the unperturbed orbital

behavior of the Doppler velocity of our observed object, if

an additional cyclic variation of some period T 0 ≪ T is not

readily apparent, the best strategy to search for such a result

is to cut the sequence of velocity residuals into segments of

some duration T 0. Then, stack and average the sequences.

In this way, one could detect a cyclic variation in Doppler

velocity of period T 0 as the noise in the resulting mea-

surements is reduced by
ffiffiffiffiffiffiffiffiffi

τ=T 0p

, where τ is the duration of

the observing program. Searches for a range of T 0 would be
necessary. A particularly elegant and systematic tool for

accomplishing this search for a cyclic result is the Lomb-

Scargle periodogram, which is especially useful for

datasets which are not sampled periodically or are missing

samples [37,38].

If this search procedure does not make apparent any

cyclic perturbation, then individual perturbations in

Doppler velocity must satisfy

δv ≲ σv

�

T 0

τ

�

1=2

ð7Þ

for each T 0 in the search, where σv is the uncertainty in an

individual Doppler velocity measurement. To the precision

for which we are calculating results, a geometric factor of

order unity has been ignored. Then, from Eq. (6), an upper

mass limit on the perturber is

M0 ≲
1

G

r0p
rg

r2avg
1

f02T 0 σv

�

T 0

τ

�

1=2

; ð8Þ

where ravg is the average distance of the observed object,

on our side, from the wormhole (i.e., the semimajor axis

of the object’s orbit). Since T 0 ∝ r0p
3=2, this limit is

∝ r0p
1=4.

To determine attainable numerical mass limits onM0, we
first consider the case of S2 orbiting the supermassive BH

at Sgr A*. For observations of S2, we have σv ∼ 10 km=s
[39]. We note that modeling of the nonperturbed motion of

S2 (to be removed first before searching for the effects we

are studying) would need to take account of the effects of

general relativity and a diffuse distribution of dark matter

near Sgr A*, as explained in detail by Ref. [40]. This

unperturbed motion of S2 includes secular behaviors such

as periapsis precession (which has been observed by

Ref. [41]). For all the cases we consider in this paper,

we take f0 ¼ 0.1. We choose f0 ¼ 0.1 as a rough repre-

sentation of an elliptical orbit, which makes the use of

Eq. (3) reasonable. For MBH ¼ 4 × 106 M⊙, we obtain a

mass limit for a perturber as a function of r0p=rg given by

the uppermost dotted line in Fig. 1.

A better limit could be set from observations of a star in

orbit around a stellar-mass BH, instead of the supermassive

BH at Sgr A*. The cleanest systems would be those with no

mass transfer, which would avoid dynamical changes not

caused by a perturber on the other side of the wormhole.

Recently, there were suggestions that such systems had

been discovered [42,43]. However, subsequent work

suggests these systems do not contain BHs [44–47].

Nevertheless, since such a system could be found, we

consider here possible limits on the perturber mass that

could be obtained for a generic system inspired by these

observations, with a 10 M⊙ BH, stellar orbit of radius

approximately 106rg, and individual Doppler velocity

SENSITIVE SEARCH FOR WORMHOLES PHYS. REV. D 104, L081502 (2021)

L081502-3



measurements for the star with σv ∼ 6 km=s (about
ffiffiffiffiffiffiffiffi

100
p

¼ 10 times larger than the uncertainty in the ampli-

tude of the fitted model for the Keplerian orbital Doppler

velocity in such systems, assuming approximately 100

observations were used). The perturber mass limit for this

case could be approximately 4 orders of magnitude lower

than obtained from observations of S2 and is shown by the

short-dashed line in Fig. 1, for τ ¼ 1 year.

However, observations of a pulsar orbiting a BH have the

potential to set even better limits, given the greater

observational precision attainable. BH-pulsar binaries have

been argued to provide remarkable tests of quantum gravity

[48–54] on top of their proven record in testing Einstein’s

general relativity in the case of the Hulse-Taylor BH-pulsar

binary PSR B1913þ 16 [55].

The uncertainty in a measured Doppler velocity for a

pulsar at a particular epoch depends on the precision with

which the frequency of the observed pulses can be

determined for that epoch. The precision on measured

parameters for a pulsar is determined by the precision on

pulse “times of arrival” (TOA) measurements, which is

typically σTOA ∼ 1 μs [56]. A pulse TOA measurement is

obtained from τTOA ∼ 1 min of data at each observing

epoch (during which a folding and pulse-shape averaging

process is applied); see the discussion in Ref. [56], for

example. The result is one TOA for that epoch. The pulse

frequency for that epoch is ν ¼ n=τTOA, where n is the

number of pulses arriving during the time interval τTOA

(known accurately from the folding process). The precision

on τTOA is ∼σTOA. Thus, the uncertainty in the pulse

frequency for that epoch is

σν ∼
n

τ2TOA

σTOA: ð9Þ

Finally, since any variation in the Doppler velocity is

determined from the observed pulse frequency, the uncer-

tainty in the Doppler velocity is

σv ∼
σν

ν
c ∼

σTOA

τTOA

c ð10Þ

or approximately 1 m=s for pulsar observations. This is

very much better than attained for observations of an

ordinary star (σv ∼ 10 km=s), owing to the precision with

which pulse TOA measurements can be made; this

increased precision for pulsar observations is at the heart

of our argument. We have chosen a particularly good TOA

uncertainty (1 μs), which would be obtained for a good

millisecond pulsar. But there is some theoretical work that

suggests BH-NS binaries may mostly contain normal

pulsars, in which case the results would not be as

good [57].

For a pulsar in an orbit around Sgr A* which is similar

to that of S2, using σv ∼ 1 m=s, we obtain a mass limit for

the perturber that is approximately 4 orders of magnitude

lower than for observations of S2. The result is the dot-

dashed line in Fig. 1. We used τ ¼ 15 years because

observations should stretch over at least the orbital period

to model and remove the unperturbed motion before

searching for Doppler variations caused by a perturber.

Note the limits for this case would be similar to those

one might obtain for a generic star-BH binary of stellar

masses.

Still better results could be obtained for pulsars in close

orbits around stellar-mass black holes. Consider the “nomi-

nal” case of a pulsar in orbit around a 10 M⊙ BH where

ravg ≈ 2 × 109 m, the semimajor axis for the Hulse-Taylor

pulsar. For observations over τ ¼ 1 year, and σv ∼ 1 m=s,
we obtain a limit on the perturber mass more than

approximately 6 orders of magnitude better than for a

pulsar orbiting Sgr A*, at comparable r0p. This result is

shown by the solid line in Fig. 1. This line is drawn only for

logðrpÞ > 3.9 which ensures fT > τTOA.

We now consider a population of BH-pulsar binaries that

may be present in the Galactic Center [20]. The semimajor

axes of these binaries would range from approximately

0.1 A.U. to approximately 1 A.U., with eccentricities

approximately 0.8. Using MBH ¼ 10 M⊙ and τ ¼ 1 year

with σv ∼ 1 m=s, the perturber mass limits attainable for

these systems are below the limit for a pulsar orbiting

Sgr A*, but not as low as the nominal Hulse-Taylor–sized

FIG. 1. The mass limit on the perturber as a function of its

periapsis distance from the wormhole (expressed in units of the

gravitational radius of the BH/wormhole). The Sgr A*-S2 line is

for observations of S2 orbiting the supermassive BH at Sgr A*.

The BH-star line is for observations of a generic binary system

comprising a star and stellar-mass BH. The other lines are for

binary systems consisting of a pulsar and stellar mass BH. The

HT BH-Pulsar case is for a BH-pulsar binary of size similar to the

Hulse-Taylor (HT) binary pulsar system.
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pulsar-BH binary. These results are also shown in Fig. 1,

labeled by the sizes of the semimajor axes.

IV. OBSERVATIONAL PROSPECTS AND

OUTLOOK

The best prospects for identifying stable BH-NS systems

stem from either gravitational wave detection with a follow-

up search for pulsar emission or the direct detection of

pulsars in a binary system followed by determination of the

nature of the binary partner. LISA is designed to detect

stable binary systems including BH-NS systems [58]. The

SKA is designed to be able to detect all the pulsars in our

Galaxy including near the Galactic Center where BH-pulsar

systems may be more common [59]. In future work, we

plan to use numerical simulations to further explore

the perturber limits that can be obtained. We will also

explore connections with the recent research on quantum

gravity/string theory [60] with intrinsic nonlocality that

could be probed as outlined in this paper.
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