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ABSTRACT

Several strategies have been developed recently to ensure valid inference after model selection; some
of these are easy to compute, while others fare better in terms of inferential power. In this article, we
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consider a selective inference framework for Gaussian data. We propose a new method for inference through

approximate maximum likelihood estimation. Our goal is to: (a) achieve better inferential power with the aid
of randomization, (b) bypass expensive MCMC sampling from exact conditional distributions that are hard
to evaluate in closed forms. We construct approximate inference, for example, p-values, confidence intervals
etc,, by solving a fairly simple, convex optimization problem. We illustrate the potential of our method across
wide-ranging values of signal-to-noise ratio in simulations. On a cancer gene expression dataset we find that
our method improves upon the inferential power of some commonly used strategies for selective inference.

Supplementary materials for this article are available online.

1. Introduction

Querying the data has become a fairly common practice for
anyone who wishes to learn a model from a range of different
candidates. Naively using the same data twice, first to learn a
model and then infer for the selected parameters, tends to inflate
their estimated effects. As an example of a query, consider a
variable selection algorithm with a shrinkage penalty (Tibshi-
rani 1996; Fan and Li 2001; Yuan and Lin 2006); the algorithm
learns a set of variables (or features) into a model. Ignoring the
dependence of the model (and its parameters) on the outcome
of the query while calculating p values, confidence intervals,
credible intervals etc. undermines inference after selection; see
Benjamini and Yekutieli (2005), Leeb and Potscher (2005), Leeb
and Potscher (2006), and Berk et al. (2013) for a demonstration
of the concerns here. The result is usually an increased chance of
finding a statistically significant result when the selected variable
in fact has no effect.

Various strategies for selective inference offer different solu-
tions by characterizing the dependence between the learned
models and data. Some of the strategies are easier to implement,
while others fare better in inferential power. In this article,
we introduce a new method for selective inference through
approximate maximum likelihood estimation. Building on the
recent work by Tian and Taylor (2018), our method allows us
to: (a) harness Gaussian randomization variables toward better
inferential power after selection, and simultaneously (b) bypass
expensive MCMC sampling from intractable conditional dis-
tributions. Below, we provide a brief, informal overview of our
method in a standard setup of linear regression.

KEYWORDS

Conditional inference; Data
adaptivity; Maximum
likelihood; Multiple queries;
Post-selection inference;
Randomization; Selective
MLE

An informal overview of our method. Consider a regression
problem in which we observe a response vector y € R" and
a matrix of p predictors X € R"*P. Let w € RP be drawn
from a centered Gaussian distribution with known covariance
. For fixed values . € RT, e € R, we solve the following

query:
1 €
miniomize E||y—Xo||§+A||o||1 +§||o||§—wTo_ (1)

We call the optimization in (1) a “randomized LASSO” query;
so named because of the randomization variable o added to the
objective of the canonical LASSO. Suppose the query selects a
nonempty set of variablesE C {1,2,.. ., p}. Following selection,
we describe our response variable through the model: y =
XgBE + e, e ~ N(0,021,), where I, is the identity matrix with
n rows and columns.

A natural ask in the learned model is inference for the partial
regression coeflicients after adjusting for their dependence on
data through E. One concrete course of action is to condition
on selection, specifically, base inference on the likelihood of the
observed data when conditioned on the event

{0r@) : E(,0) = E},

where E represents the (data-dependent) selected set of vari-
ables. Maximizing the conditional likelihood function gives us
AEmle, the maximum likelihood estimate (MLE) for Bg. Taking
the Hessian of the negative log-likelihood at the MLE yields us
I (EEmle), the observed Fisher information matrix. The (approx-

imate) confidence intervals resulting from our method take
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the form

B £z1mgn - I, (B, )
where B;fgle is the jth component of EEmle, Ij’_jl(,B\Emle) is the
(j, Hth entry of I_I(EEmle) and z; 4 is the (1 — g)th quantile of
a standard normal distribution for q € (0, 1).

The intervals proposed in (2) are seemingly straightforward
if only we could directly calculate the two estimates in the
expression, the MLE and the observed Fisher information
matrix. But as it turns out, the conditional likelihood and
subsequently the two estimates based on it do not admit
expressions in closed forms. In the remaining development,
we solve this challenge head-on in two steps. First, we construct
an approximate, statistically consistent proxy for the likelihood
function after conditioning on the selection event. Then, we
provide a tractable system of estimating equations to obtain
the MLE and the observed Fisher information matrix from
our proxy likelihood. At the core of the proposed estimating
equations is a fairly simple, convex optimization problem in
relatively few dimensions.

Comparison with common baselines. Continuing with the regres-
sion setup, we compare our proposal with some common base-
lines in a simulated experiment and relate our method with
existing work. In Table 1, four methods for selective inference
including our method are evaluated on three criteria after select-
ing variables using a fixed value of tuning parameter: average
coverage of interval estimates with nominal false coverage rate
(FCR) level of 0.10; average length of the interval estimates; the
power of detecting true associations after applying the selective
inference strategy. The data in this experiment obeys a linear
model with a 300-by-100 design matrix X and Gaussian errors,
such that the rows of X are iid copies of a correlated multivariate
normal vector; the model coefficient vector B has 6 nonzero
components that are linearly varying in magnitude, and the
setting corresponds to a relatively weak signal-to-noise ratio
value. The simulation setting is described more precisely later
in the article and relative comparisons between all the methods
are made for a wide range of values for signal-to-noise ratio.
The first baseline, “Lee et al.,” proposed by Lee et al. (2016)
reduces inference to a truncated normal variable through
the Polyhedral Lemma. The second baseline, “Split” uses a
randomly chosen one-third of the data samples for inference
after applying the LASSO to the remaining two-thirds of the
data, (see, e.g. Cox 1975; Hurvich and Tsai 1990). Based on
Liu, Markovic, and Tibshirani (2018), the third baseline “Liu
et al” conditions on (strictly) less information than “Lee et al”
by choosing to infer for the parameters associated with the
selected variables in the full model: y ~ N(XB,02I,). All

Table 1. Comparison with baselines.

Method Coverage Lengths  Power % of infinitely
100 - (1 — FCR)% long intervals

MLE (Our method) 90.92% 8.31 85% 0

Leeetal. 85.60% 0 77% 37

Split 88.40% 14.83 56% 0

Liu etal. 82.68% 9.67 64% 0

the other strategies in this example use the learned model:
y ~ N(XgBE, 021, based on the selected set of variables.

We note that FCR is (roughly) attained at the nominal level by
all the strategies, except “Liu et al” falls slightly short of the mark
in this setting. Our method, namely “MLE”, delivers the shortest
intervals with the highest power. In the last column of the table,
we also indicate the percentage of intervals that resulted with
infinite length. Among all the methods, “Lee et al” produces
some infinitely long intervals; this observation is consistent with
the established fact in Kivaranovic and Leeb (2018) that the
intervals based on the Polyhedral Lemma do not have a finite
expected value in the Gaussian regression setting. Both “Split”
and “Liu et al” overcome the drawbacks of “Lee et al.” by setting
aside more information for inference. The former strategy does
so by reserving a randomly chosen subsample for inference,
while the latter achieves an increase in power through a larger
truncation set.

By analogy with Tian and Taylor (2018), our method uses
added randomization to remedy the excessively long intervals
produced by “Lee et al”; because we do not condition on the
randomization variable itself, inference does not trivially reduce
to the Polyhedral Lemma. Our choice of adding a Gaussian
randomization variable to the query draws motivation from
data carving, a two stage situation where parameters learned on
an initial dataset are estimated using new samples augmented
with the initial ones (Fithian, Sun, and Taylor 2014; Panigrahi,
Zhu, and Sabatti 2019; Panigrahi 2019). In the analysis here,
the variance of w is chosen so that the randomized LASSO
(roughly) resembles “Split” in the amount of information used
toward learning the model. Our method improves upon “Split”
by conditioning upon an event that implies the selection of the
variables in the set E; by doing so, our method reuses data
used in selection. A direct relation between the power attained
with our randomized method and “Liu et al.,” however, is lack-
ing. Some gain in power reported for the above setting might
be attributed to the use of the learned model by our method
as opposed to the full model under which “Liu et al” offers
inference.

Other related work. Our maximum likelihood method differs
from previous proposals in the tools used and the scope of
inference. Existing strategies for selective inference usually
require sampling from conditional distributions, either due to
the intractability of their exact counterparts or due to the lack
of easily available truncation regions. For example, the pivot
described in Tian and Taylor (2018) lacks exact expressions
and is not readily amenable for computational analyses. The
truncation region in Liu, Markovic, and Tibshirani (2018)
takes a tractable form for the LASSO; however, this form
does not directly generalize to other queries. Other inferential
approaches that account for the effects of selection include
sampling from a selection-adjusted posterior in Panigrahi,
Taylor, and Weinstein (2021) and resampling-based approaches
such as bootstrap in McKeague and Qian (2015) and Guo
and He (2020). The computing costs of these approaches
are especially acute if two or more queries are applied for
learning models, and the construct of valid inference must
appropriately take into consideration the effect of each such
query. Bypassing the requirement to sample from intractable



conditional distributions after selection, our maximum like-
lihood method relies on the solution to a simple, convex
optimization problem. Furthermore, this convex problem
assumes a separable form under multiple queries which is
amenable to parallel computing. Much of prior work in the area
of selective inference has relied on a testing-based approach
for real-valued projections of parameters; see for example Yang
et al. (2016), Suzumura et al. (2017), and Riigamer and Greven
(2018). In contrast, the scope of the present likelihood-based
approach allows joint inference for parameter vectors in learned
models.

The rest of the article is organized as follows. In Section 2, we
introduce our approximate proposal in a univariate file drawer
problem. We describe in Section 3 our method of selective
inference by deriving a system of estimating equations for the
MLE and the observed Fisher information matrix after we solve
a convex query. We conduct simulations in Section 4 to study
the gains with our method over existing baselines. We apply
our method to gene expression data from The Cancer Genome
Atlas in Section 5, corroborating some of the numerical findings
in the simulated experiments. We conclude with a discussion
in Section 6. In the supplementary material, we include proofs
for our main results and generalize our method of selective
inference for interval estimation after solving multiple convex
queries.

2. MLE Inference: A First Example

Before proceeding further, note, we use (a) ®(x) for the upper
tail probability of the standard Gaussian law at x € R, and
(b) ¢ (u; v, ®) for the (multivariate) Gaussian density function
with mean vector p and covariance © at the value u; the spe-
cial symbol ¢ (x;0,1) denotes the standard Gaussian density
forx € R.

2.1. Univariate Soft-Truncated Likelihood
We consider two independent random variables:
Y ~N(B,1), W ~ N(0,7%),

where W denotes a Gaussian randomization variable. We pursue
inference for g only if:

Y+ W >1, wheret =141z,

We begin by describing a conditional likelihood by condi-
tioning the Gaussian law of Y upon the selection event:

{(y,a))eRZ:y+a)>t}. (3)

Define O = Y + W — t, which we call an optimization variable
in our framework. Because, O|Y = y ~ N(y — 7,7?) before
conditioning on the event in (3) and the selection event, y+w >
7, is equivalent to: 0 > 0, the conditional likelihood for Y and
O is given by:

-1
(é (—m» P(Y;B,1) - (0¥ = 7,11%) - L(0,0) (O).
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Marginalizing over the optimization variable O yields us a like-
lihood function of B, that is equal to:

-1

(cb <M)) swipn-@(1a-n). @

V(L +1n?) n

Compared to the conditional Gaussian law in the absence of
randomization, Y | Y > 7, (see, Example 2, Fithian, Sun, and
Taylor 2014), a soft-truncating function replaces the indicator
1(z,00)(Y). Hereafter, we refer to the resulting function as a “soft-
truncated likelihood”

2.2. Selective MLE

We are now ready to discuss the maximizer of the soft-truncated
likelihood in (4) and inspect some properties of this estimate
that serve to motivate our approximate pivot in the article.
Maximizing the log-likelihood gives us the “selective MLE
B ™€, based on the estimating equation:

Va(B™e) = v, (5)

where

a(f) = lﬂz + log ® =P\

2 VA +7?)
Turning to the distribution of B ™, we obtain the density for
the selective MLE from (4) by applying the simple variable
transformation: ™€ = Va~1(Y), and note that this density
is proportional to:

o~ ~ _ 1 o~
|det(V2a(B ™)) |- ¢ (Va (B ™€); 8,1)- D <;(r — Va(p mk»).
(6)

Proposition 2.1 obtains an upper bound for the mean squared
error of the selective MLE. An immediate consequence of this
bound is a global (asymptotic) consistency guarantee for the
selective MLE; that is, the guarantee continues to hold for the
event in (3) even when it has a vanishing probability as the sam-
ple size grows to infinity. Streamlining the main exposition to
focus on finite sample results, we defer the proof for asymptotic
consistency to the supplementary materials C.

Proposition 2.1. Fix B = (1 4+ n?)~2n*. Then, we have:

E[(Bmle B YW r] <B) var(Y | Y4+ W > 7).

Examining for now the asymptotic behavior of selective MLE
and the least squares estimate, and the role of the randomization
variable W, we undertake a simulation by letting Y := /nY,
with mean B := ./nB,. Figures 1-3 summarize the three
primary take-aways from the simulation. We let t = 0 in (3),
and fix B, = Bop = —0.10 which is highlighted in the figures
via a dotted black line. Notice, our choice of B, results in rarer
events of selection with vanishing probabilities as n — oo. For
the first two figures, the randomization variance n? is equal to
1. Based on the density in (6), Figure 1 first studies the behavior
of the selective MLE. Matching our theoretical expectations, the
plot demonstrates that the selective MLE is a consistent estimate
for the parameter; more specifically, we observe a concentration
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Figure 3. Distribution of the selective MLE under randomization variance 2 =
0.04.

of the estimate around B, with increasing n. Next, Figure 2
replaces the selective MLE in the first plot with the least squares
estimate. Unlike the selective MLE, the least squares estimate
fails to concentrate around the parameter of interest for the same
sample sizes. In Figure 3, we reproduce Figure 1, except now we
study the behavior of the selective MLE under a very low value
of randomization variance, n> = 0.04. An empirical affirmation
of the merits of randomization, this plot shows that selective
MLE fails to concentrate around B, in the (almost) absence of
randomization.

2.3. Approximate Pivot

Prompted by a concentration of the selective MLE around the
parameter of interest, we introduce an approximate pivot in the
current section. We propose to approximate the distribution of
the MLE by a Gaussian distribution with: (a) mean g, and (b)
variance equal to inverse of the observed Fisher information,
I (Emle). Taking a second derivative of the log-likelihood in (4)
at the MLE gives us the value of I (Emle), which is equal to:

B (Emle _ 'L')
1+ 7)2)3/2

| <é<<r3mle>>>‘¢(<f3mle>,o )
VA +n?) VA +n?)
_ Zmle -2 _ 72 mle
IR Py NGl i) 8 =B 01). @)
(14 n?) Va2 NGET D)
The Gaussian approximation described above gives rise to the
approximate pivot:

d ( (B mle) (B ™e — ﬁ)) : (8)

We remark that the distribution of the selective MLE, character-
ized exactly by the density in (6), can yield us exact maximum

1.00-

S T =25
- \’ 59

density (least squares)
o o
&) ~
=} a

o
)
]

0.00-

Figure 2. Distribution of the least squares estimate under randomization variance
2
nc =11

likelihood inference. In contrast, the pivot in (8) is only approxi-
mate in nature, but, appealingly simple in form. Inference based
on the approximate pivot requires us to compute two estimates
from the soft-truncated likelihood, namely, the selective MLE
and the observed Fisher information.

Before turning to the general development, we explore if the
proposed Gaussian approximation mimics the exact distribu-
tion of the selective MLE. In Figure 4, we represent the density
of the selective MLE in (6), our benchmark, by the gray curve.
The panel with 8 = —3 results in a rare selection event, while
the panel with 8 = 1.5 results in a highly probable selection
event with little selection bias. Noteworthy, the effectiveness of
our pivot is highlighted via a strong agreement of the proposed
(approximate) Gaussian density with the exact (benchmark)
density of the selective MLE.

3. Maximum Likelihood Inference Post Convex
Queries

We develop our method of maximum likelihood inference
below, focusing on the randomized LASSO as our leading
example. In the supplementary materials, we show that the form
of our estimating equations in the primary example generalizes
directly to other convex learning queries whose solutions can
be similarly characterized through affine Karush-Kuhn-Tucker
(K.K.T.) conditions of optimality.

3.1. Framework under Linear Regression

Consider solving the randomized LASSO in (1), where y and
 denote the observed instances of our response variable Y €
R" and randomization variable W ~ N(0p, Zw) € R?,
respectively. Let E(y, ) C {L,2,...,p} denote the active set of
variables selected by the randomized LASSO. At the solution of
the randomized query, we record the value of the subgradient
vector for the ¢; penalty which we represent byg(y, , ). Notice,
the collection of instances which lead us to observe S(y,w) = S
result in the active set E(y, w) = E, that is,

[(,0) e R" x R? : S(y, ) = S}
C {(ow) e R" x R : E(y,w) = E}.
We turn to a framework for selective inference, allowing our

model and parameters to depend on data through the recorded
output of our randomized query, S. Consider a prespecified
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Figure 4. The blue curve represents the normal approximation N(g, /=" (E mley) and the gray curve plots the exact density of the MLE in (6).

mappingH : S — & € {1,2,..., p}. Our model, after observing
S(y,w) = S and subsequently, noting & = H(S), is given by

Ms = {Y ~ Nu(XeBe,0D), Be e R forafixed o € R™.

€
The mapping H grants us the flexibility to use (arbitrary) linear
models informed by S, including the selected model in the
special case when £ = E, the active set of variables. Suppose,

we have a matrix Fs € R, that is allowed to depend on data
through S. Then, let

Bugs = FSE[Y] € R? (10)

be our parameter vector of inferential interest.

In the next step, we form a (multivariate) likelihood function
of Bug,s in the learned model M. To do so, for a fixed value S,
we consider the following statistic:

ES ~ N(IBMs,S) ZMs,S)'

We derive our soft-truncated likelihood by conditioning the
Gaussian law of Bs upon the selection event:

[(,0) e R" x R? : S(y,w) = S}. (11)

The event in (11) depends not just on Bs, but further involves
a statistic independent of s, which we represent by ,BE‘. In
addition to the above event, we condition on /’3} to eliminate
nuisance parameters from the likelihood.

For ease of exposition, hereafter, we specialize the above
framework to a projected parameter in the selected model

[¥ ~ Ny, D), s € R, (12)

which we obtain by applying the specific mapping H(S) = E
and fixing Fs = (XEXE)_IXE e RIEIX" As noted in Berk et al.
(2013) and Lee et al. (2016), our parameter for inference in this
model is the projection of the mean for Y onto the subspace
spanned by the columns in Xg. Immediately, we recognize: s =
(Xg Xg)"'X]y, the least squares statistic refitted to y and Xg.
Besides the least squares statistic, the likelihood involves

B = —XT(y — Xgps),

which is independent of ;’3\5 under the model in (12); we will
detail this out in the following section.

3.2. Multivariate Soft-Truncated Likelihood

Our main result in the section, Theorem 1, obtains a soft-
truncated likelihood function. As seen in the file drawer exam-
ple, we begin with a compact representation for our selection
event in terms of optimization variables based on the random-
ized LASSO solution. Introducing some more notations, we let
0, € RE and 0, € RrIE represent the active (nonzero)
components of randomized LASSO solution and the subgradi-
ent (sub-)vector for the £; penalty at the inactive indices in E¢,
respectively, and let 01 and 0, be the observed instances for these
variables. Let zg = sign(o;) € RIEl be the sign vector for the
active components of the estimated LASSO solution. The K.K.T.
conditions for the randomized LASSO are given by

~  [XTXp + €l
o= (wf a)gc)T = —XTXgBs + |: EXg]iXE ] 1

AZE il
()
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where: —diag(zg) 01 < 0, and [|oz]loc < A. Because, S =
()»zg 0} )T , our selection event in (11) is equivalent to the
|E| linear constraints: Uo; < v, for the fixed matrices U =
—diag(zg), v = Ojg|. We note a resemblance with the file drawer
example, wherein the selection event is equivalent to the single
linear constraint: o > 0.

Fixing the matrices:

T
Ps = —XTXg, Qs = [XE)E)?;I] , 1§ = <)LZE> + B,

we rewrite the stationary mapping in the K.K.T. condition as

w = (wf k)" = PsBs + Qso1 + rs. (13)
Based on
T =QITy' Qs A= —EQIEy'Ps, b= —EQ{ X',
define:
o) = / po1ABs +b,5) - Inyondor,  (14)
where Ry = {0; € REI': Uo; < ).

Theorem 1. After conditioning the law of ,85 upon S(Y W)=S
and ,BS (V) = ﬂs , the soft-truncated likelihood is

—1
( / ¢ (Bs; IBuss + kb X) - f(Es)dEs)
¢ (Bs JButgs + k =) - F(Bs)s

where the matrices X, ], k are equal to:
Y= (Spus+PITy Ps —ATE AT

J=XZys k=SATZ 70— PIZy rs).

3.3. Approximate Inference

The likelihood in Theorem 1, though exact, does not directly
result in tractable estimating equations for the maximum like-
lihood estimate and the observed Fisher information matrix.
This is because the normalizer for the soft-truncated likelihood
lacks a closed-form expression. To circumvent the problem, we
propose an approximate proxy for our soft-truncated likelihood
based on an upper bound for the normalizer in Proposition 3.1.
Later in the supplementary materials, using a large deviations
principle, we prove that the approximate proxy converges to
the exact likelihood with increasing sample size. Furthermore,
we show the maximizer of the approximate likelihood, ﬂl\r,fsles,
is guaranteed to concentrate around the parameter in (10).
Endowed with a property we expect with the exact MLE, we call
the maximizer of the approximate likelihood an “approximate
selective MLE”

Proposition 3.1. Let R be a convex and compact subset of RIEN %
RIEL Suppose, Bs and O, are drawn from a Gaussian distribution
with the following likelihood:

¢ (Bsi Jriss + . %) - ¢ (01 APs +b,5).
Then, logP[(BJ,O7)" € R] is bounded from above by

1 ~ ~
{5 = 1Bues —0T= Bs — JPrass =)

— _inf
(Bs-01)€R

1 ~ - ~
+5 (01— ABs — BT (01 — 4Bs — ).

Recall, Ry = {o; € RIEl : Uo; < v}. We apply the bound
in Proposition 3.1 to obtain the following proxy for the exact
log-likelihood:

log ¢ (Bs; [Buiss + k=) + _  inf
(ﬂs,ol)e]R‘E' xR

1 ~ ~
{3 Bs = 1Buss =T Bs = JBugs — 0

1 ~ - ~
+3 (01— ABs =BT (01 — 4Bs — 1)},

after ignoring constants free of the parameter vector.

Remark 1. Observe, RIEl x Ry, the subset of RIEI x RIEl asso-
ciated with the our selection event is clearly not compact. While
compactness is a requirement to prove that the approximation in
Proposition 3.1 is an upper bound for the normalizer of the like-
lihood, in practice, we may consider a sufficiently large compact,
convex subset such that the probability of the associated event
converges to the actual probability with increasing sample size.

As noted in Panigrahi and Taylor (2018), we can further
modify the approximation in Proposition 3.1 to solve an uncon-
strained optimization via a barrier penalty that reflects the same
constraints, but allocates a higher preference to the optimizing
variables within the selection region. Letting By,,(01) denote a
barrier penalty for the constraints Uo; < v, the final expression
for our approximate log-likelihood agrees up to an additive
constant with

log ¢ (Bs; I Bus.s + k> )

1 ~ ~
+ inf - Bs—TBugs = DTS Bs — Tugs — B
(Bson) {2
1 ~ - ~
+5 (01 = ABs — B)TE ™ (01 — 4Bs — b) + Buy (o1 .
(15)

Based on the approximate likelihood in (15), the results in
Theorems 2 and 4 give us compact estimating equations for the
two ingredients of approximate maximum likelihood inference.

Theorem 2. Consider the optimization problem

— ABs — b)

(16)

—~ 1 —~ _
0(Bs) = argmin (0] — APs — bHTE oy
01

+ BU;V(OI)-

Then, maximizing the approximate log-likelihood in (15) yields
us the following estimating equation for the approximate selec-
tive MLE:

Butle =71 Bs — J 'k + SaggsATE T (APs + b — 0} (Bs)).

In line with Proposition 2.1 for the file drawer example,
Theorem 3 provides a bound for the mean squared error of the
approximate selective MLE. The bound in this result allows us
to formalize a global consistency guarantee for our estimate in
supplementary material C.



Theorem 3. Let the smallest eigen values for (ZMLS +
PST E\\;VIPS)_1 and El\_ﬂli,s be Ao and Aj, respectively. Fix B =
(Lo - A1)%. Based on the real-valued mapping:

1
T .
-7 Ynmgs — . inf
2 MsS ° (Bs»01)€RIEIXRg

1 ~ L
{5 = Sma) =7 (Bs - Emao)

Of(ﬂMs,S) =

1 - _ N
+5 (01 = ABs =BT (01 — ABs — b) + BU;V(OI)},
we have

E[IBRS — Pues I} 1Y, W) =8, BE(V) = B¢ |
< B)'E[I1Bs — Va(= 7 Bugs + I3 | S(Y, W)
=S, BL(v) = E;]

We provide a proxy for the observed Fisher information
matrix based on the estimate in Theorem 2.

Theorem 4. Let ol(B\s) be the solution to the optimization
problem in (16). The observed Fisher information I(By;. mle ) for
the approximate log-likelihood in (15) is

1 -1 S—1 s —1,5—1
s (BT HATETA-ATETNE

+ V2 By (0% (Bs) 1E~ DI

lA) Msg,S*

We summarize in Algorithm 1 our steps for maximum like-
lihood inference. Our primary computational step is the simple,
RIEldimensional, convex optimization problem (O) resulting
in (S-MLE) and (FI). Emphasized earlier, the form of the esti-
mating equations for the randomized LASSO generalizes to
convex queries with affine KK.T. conditions of optimality as
in (13). In supplementary materials B.2, we illustrate how our
method applies to: (a) variable screening based on marginal
correlations (Lee and Taylor 2014); (b) variable selection via
SLOPE (Bogdan et al. 2015).

4, Simulation Experiments

We explore the potential of our method for a wide range of
signal-to-noise ratio (SNR) values in a linear regression setting.
Following closely the setup in Hastie, Tibshirani, and Tibshirani
(2017), in every round of experiment, we simulate each R?-
valued row of the design matrix X from N(0, X(p)) where the
(i,))th entry of X(p) = p!"7Jl. We then draw the response
as Y|IX ~ N(XB,o2). Fixing n = 300, p = 100, p =
0.35, we consider a linearly-varying coeflicient vector with s =
6 nonzero equally spaced components that have magnitudes:
—10,—6,—2,2,6,10. We vary the noise level 0% to match the
SNR value: SNR = o2 - (BTEp), and vary SNR in the set
{0.15,0.21,0.26,0.31,0.42,0.71, 1.22,2.07, 3.52}.

Dividing our experiments into two regimes, namely random-
ized and nonrandomized, we run a canonical LASSO query
(without randomization)

1
minimize - ||y — Xo||? + Allo|l1, 17
nim ley 5+ Allolly (17)
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Algorithm 1 ALGORITHM 1: Approximate maximum likeli-
hood inference post a convex query

Require: guery, w ~ N(0, Zyy)
Observe: S=S .
Implied parameters (P): Compute matrices: X, A, b, X, ], k

~ 1 ~
Optimization (0): oj(Bs) = argmini(ol — ABs —

01
b)TE (01 — ABs — b) + Buw(o1).
Selective MLE (S-MLE): B, mle =
T SATE H(ABs + b — 01(,35))
B = Duys(27 +ATE A
—ATE7N (27 + 2Bk
(0} (B T 1A ) Enggs

J7'Bs — J7% +

Inverse info (FI): I

MLE-based inference:
for all j in selected set E do

(p-value for Bjnig s) : 2 min ( (ﬂ] @ies/ ]—]1(‘31\2{15168)> i

I! —1 It
® (Bes/ J17 BIS)))
(interval for B s) : ('BjﬁES —Z1—q/2"

1 BE)

72 mle
]] (ﬁMs S))

2 mle
Binigs +Z1-q/2 -
end for

and a randomized LASSO query in (1) with @ ~ N(0, nzlp)

and € = n~!/2. The randomization variance n? is chosen so
that (6)72n* = 0.50, using the estimated noise level in the
data: 62 = (n — p)~ I — X(XTX)~'XT)y|%. Based on an

asymptotic equivalence between data splitting and a Gaussian
randomization scheme (see Proposition 4.1, Panigrahi, Taylor,
and Weinstein 2021), our choice of randomization variance
roughly matches the amount of information used up in selection
when two-thirds of the samples are allocated for the LASSO. For
each query, we carry out three common schemes to choose A.
Our first choice is a theoretical value proposed in Negahban
et al. (2009) and is given by Atheory = E[|IXTW || o] where
W~ N(0,62I). Our second and third choices are obtained
from cross-validation. Denoted by Acy.min and Acy.1se, the tuning
parameters are associated with the lowest cross-validated error
and error within 1 standard error of the best model, respectively.

4.1. Methods and Metrics

In our experiments, we illustrate maximum likelihood inference
for two sets of parameter vectors after selection: (a) the partial
regression coefficients in the selected model, obtained by letting
H(S) = Eand Fs = (X]Xg) 'X]; (b) the selected set
of parameters in the full model, obtalned by letting H(S) =
{1,2,...,p} and Fs = Lp(XTX)"!XT, where Lx € RIEX? js
a matrix of all zeros except for the indices

Le(k,jx) =1 for ke{l,...,[El}, E={ji,....jg}
We call the former parameter vector “Partial” and the latter
“Full” in our depictions.

In the linear regression setting described above, we compare
the relative performance of our proposed method with “Lee
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et al.” “Liu et al.;” “Split,” and “Naive” Our method follows
Algorithm 1 with the barrier penalty

1
Buyy(01) =3 _;log (1 + v——UTOI> >
J j

where Uj is the jth row of U and v; is the jth component of
v. First, we report the average coverage of the interval esti-
mates produced by each strategy across all simulations. Each
simulation records the proportion of intervals that cover our
target parameters in a single round of experiment. The nominal
level of FCR aimed by the interval estimates is 10%. Note,
selective inference produced by “Liu et al” is tied only to the
“Full” parameter vector. The coverage for “Naive” intervals, not
adjusted for any selection, underscores the extent of selection
bias for a specific value of SNR. Next, we provide a breakdown
of all methods in terms of their inferential power. To this end,
we record the average lengths of the interval estimates and
their power which we define to be the proportion of signals
detected by a strategy from the ones successfully screened by
the query. Detected variables here count the variables for which
the corresponding interval estimates do not cover zero. Faced
with two different regimes, we depict the power comparisons
for the randomized and nonrandomized estimates under certain
best-case scenarios for each estimate. The best-case scenarios in
our experiment are led by an assessment of predictive risks for a
point estimate associated with each strategy, measured through
the relative risk metric:

R@P) = BTER) - {0 - BTEE@ - B},

where 0" is the estimate and f is the parameter vector. We
consider the LASSO solution as a natural point estimate for the
parameter vector § in the nonrandomized regime and associate
the LASSO estimate with both strategies “Lee et al” and “Liu

etal”, For “Split,” we consider the least squares estimate obtained
after refitting the selected model to the remaining one-third of
the data samples and append it with zeros for the indices not
selected by the LASSO. Note, the selective MLE, an immediate
byproduct of Algorithm 1, appended with zeros for the inactive
indices serves as a point estimate for our proposal. We discuss
the detailed findings of our experiments next.

4.2. Findings and Interpretation

Supporting the validity of inference after selection, Figure 5
highlights the performance of the different interval estimates
for the “Full” and “Partial” parameters. The three columns in
the plot are associated with the three different choices of tuning
parameter: Atheory> Acv.ise> A0d Acymin. We remark that none of
the methods adjust for the adaptivity involved in the choice of
the cross-validated tuning parameters. Coherent with expecta-
tions, the interval estimates for all the methods approximately
attain the nominal FCR level 10% at Atheorys “Lee et al” fails
to yield valid inference at Acy1se and Acymin Since it does not
account for the fact that the tuning parameters for the LASSO
were chosen based on the specific data through cross-validation.
The effectiveness of the normal approximation for the proposed
method “MLE” is largely ascribed to the soft-truncated likeli-
hood, due to the use of randomization in the LASSO query.
Besides, the accuracy of the large deviations-type approximation
for the exact likelihood is maintained under moderate dimen-
sions. Interestingly, “MLE” and “Liu et al” recover the nominal
levels even at the cross validated tuning parameter; this is seen in
the second and third columns of the plot. Although there lacks a
formal justification for this observation, heuristically, the use of
randomization in the LASSO query limits the role of the data-
dependent regularization. A similar justification possibly holds

COVERAGE (FULL)

() [ I IO O SO IO B B (B)
§'75- D75
o} 2
;C_' ~
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2 8 ||
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0.1 0.15 0.2 0.25 0.3 0.350.42 0.71 1.22 2.07
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G}
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= o 9 e

0.1 015 0.2 0.25 0.3 0.350.42 0.71 1.22 2.07
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C
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[$3] o (3,1

0
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Figure 5. Averaged coverage of interval estimates. The nominal target for coverage is 90%, marked by the dotted horizontal line. (A)-(C) depict coverage for “Full”

parameters; (D)-(F) depict coverage for “Partial” parameters.
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Figure 6. Average lengths of interval estimates. (A)-(C) depict the averaged lengths of intervals for “Full” parameters; (D)-(F) depict the averaged lengths of intervals for
“Partial” parameters. The red bars on the top row of each panel reports the percentage of intervals by “Lee et al." which resulted in infinite length.

for “Liu et al.,” which achieves the same goal by constructing
inference for parameters that are less affected by selection.

Figure 6 highlights the averaged lengths of the interval esti-
mates produced by different methods. The bars in red depict
the percentage of intervals with infinite length for “Lee et al.,”
confirming the conclusions in Kivaranovic and Leeb (2018). The
interval estimates produced by all other methods are bounded
in length. Consistent with the example presented in the intro-
duction, the interval estimates based on “Liu et al.” and “MLE”
are comparable for the “Full” parameters. The estimates for
the “Partial” parameters produced by “MLE” are shorter than
those for the “Full” parameters; this gain in power is in part
due to inference in the learned model as opposed to the full
model. Assuredly, the new proposal dominates the simple “Split”
estimates which roughly use the same information in selection
as the randomized query in our method.

Emphasized earlier, for a fair comparison of power between
the randomized and nonrandomized estimates, we use their
relative risks to guide us to a best-case scenario within each
regime. Purely from a predictive lens, the risk assessment across

the different values of SNR suggest running the randomized
LASSO at Acy.1se and the canonical LASSO at Acymin. Taking on
direct comparisons for “MLE” after the randomized LASSO at
Acvise> and “Liu et al.,” “Lee et al.,” “Split” after the usual LASSO
at Acy.min> Figure 7 depicts their relative risks and power under
the respective best-case situations. For the moderately high SNR
values, the selective MLE proves to be a competing estimate
when compared against the LASSO estimate. We note a far supe-
rior predictive performance of the LASSO at Acymin than the
selective MLE in the lower range of SNR values. Our proposal,
however, turns out to be a better choice for inference across
the range of SNR values, outperforming the non-randomized
alternatives in terms of power.

5. Real Data Example

We apply our method to investigate associations between gene
expressions and patient survival times for Gliomas (a type of
brain tumor) in the TCGA data. With survival times ranging
between 1 and 15 years, and some of these tumors quickly



10 e S. PANIGRAHI AND J. TAYLOR
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Figure 7. Best-case comparisons between randomized and nonrandomized estimates. (A) depicts the relative-risks for point estimates associated with each method; (B)

depicts power of each method in detecting true associations after selection.
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Split+LASSO-
MLE+MS-LASSO-
MLE+LASSO-
MLE+double-LASSO-
Liu et al.-

Lee et al.-

20
Length

Figure 8. TCGA analysis. Boxplots for lengths of interval estimates by all methods.

progressing to Glioblastoma, genetic associations are increas-
ingly used for prognostic decisions (e.g., Zhang et al. 2019;
Panigrahi et al. 2020). In our analysis of 441 samples, we use
log-transformed survival times as our response. As potential
predictors, we choose the top 2500 predictors with the largest
sample variation from a candidate pool of 17,500 molecular
measurements of gene expression values (mRNAseq). Before
running a meaningful LASSO query, we account for the pres-
ence of strongly correlated predictors by further pruning the
2500 predictors to a subset of 140 predictors. We do so by apply-
ing the hierarchical clustering scheme in Bien and Tibshirani
(2011), followed by collecting the prototype representatives for
each resulting cluster of predictors. We consider the following
algorithms: (a) the LASSO; (b) two runs of the LASSO; (c) a
marginal screening of the predictors followed by the LASSO,
adding a Gaussian randomization variable v ~ N(0, nzlp) to
the queries for our method. Consistent with the simulations,
we fix (6) 72> = 1. We use Atheory in Section 4 to tune the
LASSO penalty. We conduct a marginal screening of variables
at the nominal level g = 0.20 and let the screening threshold be
{=2z14p ~\/&2diag(XTX) + 1?1, for the randomized version
of this query.

Figure 8 showcases the distribution of the lengths of interval
estimates produced by “MLE,” “Lee et al” and “Liu et al” after
solving (a). For inference post (b) and (c), we compare “MLE
+ double-LASSO” and “MLE + MS-LASSO” against “Split +
LASSO” where half of the samples are reserved for inference.

<
o
o
=y
o}
a

Lee et al.

Liu et al.
MLE+double-LASSO
MLE+LASSO
MLE+MS-LASSO
Split+LASSO

11 as

Split+MS-LASSO

40 60

The conditional prescriptions in “Lee et al” and “Liu et al” do
not directly apply to accommodate multiple queries at the time
of selection. Corroborating our findings in the simulations, the
lengths of the estimates using our proposal are way shorter than
those based on “Liu et al” and “Lee et al” Observe, “MLE +
double-LASSO” and “MLE + MS-LASSO” outperform “Split +
LASSO” with shorter intervals, despite querying the data twice
before inference.

6. Discussion

We investigate in the current article a method for selective
inference via maximum likelihood estimation. Amenable to
a large class of convex queries at the time of selection, we rely on
an optimization problem whose solution yields us estimating
equations for the MLE and the observed Fisher information
matrix, the two main ingredients for the proposed method.
The estimating equations easily generalize to multiple convex
queries at the time of selection and assume a separable form
across the queries. The appeal of our method is 2-fold: (a) the
computing costs for selective inference are reduced by orders
of magnitude in comparison with MCMC sampling-based
alternatives, and (b) statistical power for inference is preserved
despite querying the data multiple times through randomized
queries.

Future extensions of our proposal include a development
of theory to use the method beyond Gaussian data. Along



this direction, uniform guarantees for coverage (see, e.g., Leeb
and Poétscher 2005, 2006) require closer investigation. The
framework for selective inference in the paper adjusts for queries
with affine KK.T. conditions at the solution. The ability of
the proposal to account for learning queries that present non-
affine representations for the K.K.T. conditions, for example, the
Group LASSO, remain to be explored in the future.

Supplementary Materials

The supplementary materials contain proofs for the technical results, pro-
vide additional examples to demonstrate the soft-truncated likelihood,
show asymptotic guarantees for the approximate selective MLE, and illus-
trate the generalization of our method to multiple, convex queries.
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