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ABSTRACT

We define a natural state space and Markov process associated to the stochastic Yang-Mills heat flow in two
dimensions.

To accomplish this we first introduce a space of distributional connections for which holonomies along sufficiently
regular curves (Wilson loop observables) and the action of an associated group of gauge transformations are both well-
defined and satisfy good continuity properties. The desired state space is obtained as the corresponding space of orbits
under this group action and is shown to be a Polish space when equipped with a natural Hausdorff metric.

To construct the Markov process we show that the stochastic Yang-Mills heat flow takes values in our space of
connections and use the “DeTurck trick” of introducing a time dependent gauge transformation to show invariance, in
law, of the solution under gauge transformations.

Our main tool for solving for the Yang-Mills heat flow is the theory of regularity structures and along the way
we also develop a “basis-free” framework for applying the theory of regularity structures in the context of vector-valued
noise — this provides a conceptual framework for interpreting several previous constructions and we expect this framework
to be of independent interest.
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1. Introduction

The purpose of this paper and the companion article [CCHS22] is to study the
Langevin dynamic associated to the Euclidean Yang—Mills (YM) measure. Formally, the
YM measure is written

(1.1) duym(A) = z! exp [ - SYM(A)] dA,

where dA is a formal Lebesgue measure on the space of connections of a principal G-
bundle P — M, G is a compact Lie group, and Z is a normalisation constant. The YM
action is given by

(1.2) Syn(A) E / Fa(x)]? dx,
M

where F, is the curvature 2-form of A, the norm |F4| is given by an Ad-invariant inner
product on the Lie algebra g of G, and dx is a Riemannian volume measure on the space-
time manifold M. The YM measure plays a fundamental role in high energy physics,
constituting one of the components of the Standard Model, and its rigorous construction
largely remains open, see [JW06, Chal9] and the references therein. The action Syy in
addition plays a significant role in geometry, see e.g. [AB83, DK90].

For the rest of our discussion we will take M = T? the d-dimensional torus
equipped with the Euclidean distance and normalised Lebesgue measure, and the prin-
cipal bundle P to be trivial. In particular, we will identify the space of connections on P
with g-valued 1-forms on T? (implicitly fixing a global section). The results of this paper
almost exclusively focus on the case d = 2, and the case d = 3 is studied in [CCHS22].

A postulate of gauge theory is that all physically relevant quantities should be in-
variant under the action of the gauge group, which consists of the automorphisms of the
principal bundle P fixing the base space. In our setting, the gauge group can be identified
with maps g € > = C*(T?, G), and the corresponding action on connections is given
by

def -1 -1
(1.3) A=A =g — (do)g .

Equivalently, the 1-form Af represents the same connection as A but in a new frame
(i.e. global section) determined by g. The physically relevant object is therefore not the
connection A itself; but its orbit [A] under the action (1.3).
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In addition to the challenge of rigorously interpreting (1.1) due to the infinite-
dimensionality of the space of connections, gauge invariance poses an additional difficulty
that is not encountered in theories such as the ®” models. Indeed, since Sy is invariant
under the action of the infinite-dimensional gauge group & (as it should be to represent
a physically relevant theory), the interpretation of (1.1) as a probability measure on the
space of connections runs into the problem of the impossibility of constructing a measure
that is “uniform” on each gauge orbit. Instead, one would like to quotient out the action
of the gauge group and build the measure on the space of gauge orbits, but this introduces
a new difficulty in that it is even less clear what the reference “Lebesgue measure” means
in this case.

A natural approach to study the YM measure is to consider the Langevin dynamic
associated with the action Syy. Indeed, this dynamic is expected to be naturally gauge
covariant and one can aim to use techniques from PDE theory to understand its be-
haviour. Denoting by d, the covariant derivative associated with A and by d} its adjoint,
the equation governing the Langevin dynamic is formally given by

(1.4) IA=—dFa+£.

In coordinates this reads, for =1, ..., d and with summation over j implicit,1

(1.5) 0A; =&+ AA; — 85A] + [Aj, 20;A; — 0;A; + [A, Ai]] +[0,A;, A,
where &, ..., &, are independent g-valued space-time white noises on R x T* with co-

variance induced by an Ad-invariant scalar product on g. (We fix such a scalar prod-
uct for the remainder of the discussion.) Equation (1.4) was the original motivation of
Parisi-Wu [PW81] in their introduction of stochastic quantisation. This field has re-
cently received renewed interest due to a development of tools able to study singular
SPDEs [Hail4, GIP15], and has proven fruitful in the study and an alternative construc-
tion of the scalar ®* quantum field theories [MW17b, MW17a, AK20, MW20, GH21]
(see also [BG20] for a related construction).

A very basic issue with (1.4) is the lack of ellipticity of the term d}F,, which is
a reflection of the invariance of the action Syy under the gauge group.? A well-known
solution to this problem is to realise that if we take any sufficiently regular functional
A+ H(A) € C*®(T?, g) and consider instead of (1.4) the equation

(1.6) dA =—d Fy +d HA) + &,

then, at least formally, solutions to (1.6) are gauge equivalent to those of (1.4) in the sense
that there exists a time-dependent gauge transformation mapping one into the other

! Implicit summation over repeated indices will be in place throughout the paper with departures from this con-
vention explicitly specified.

2 Since A¢ is a solution for any solution A and fixed element g € G, there are non-smooth solutions. Note also that
the highest order term in the right-hand side is 4*dA which annihilates all exact forms and therefore cannot be elliptic.
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one, at least in law. This is due to the fact that the tangent space of the gauge orbit at A
(ignoring issues of regularity/topology for the moment) is given by terms of the form daw,
where w is an arbitrary g-valued O-form.

A convenient choice of H is given by H(A) = — d*A which yields the so-called
DeTurck—Zwanziger term [Zwa81, DeT83]

—dad"A = (0; +[A;, - DA, dx; .

This allows to cancel out the term 8J3A] appearing in (1.5) and thus renders the equation
parabolic, while still keeping the solution to the modified equation gauge-equivalent to
the original one. We note that the idea to use this modified equation to study properties
of the heat flow has proven a useful tool in geometric analysis [DeT83, Don85, CG13]
and has appeared in works on stochastic quantisation in the physics literature [Zwa8l,
BHST87, DH87].

With this discussion in mind, the equation we focus on, also referred to in the
sequel as the stochastic Yang—Mills (SYM) equation, is given in coordinates by

(1.7) A = AN+ &+ [A;, 20A; — 0A; + [A;, Al] -

Our goal is to show the existence of a natural space of gauge orbits such that (appropri-
ately renormalised) solutions to (1.7) define a canonical Markov process on this space. In
addition, one desires a class of gauge invariant observables to be defined on this orbit
space which is sufficiently rich to separate points; a popular class is that of Wilson loop
observables (another being the lasso variables of Gross [Gro85]), which are defined in
terms of holonomies of the connection and a variant of which is known to separate the
gauge orbits in the smooth setting [Sen92].

One of the difficulties in carrying out this task is that any reasonable definition for
the state space should be supported on gauge orbits of distributional connections, and it
is a priori not clear how to define holonomies (or other gauge-invariant observables) for
such connections. In fact, it is not even clear how to carry out the construction to ensure
that the orbits form a reasonable (e.g. Polish) space, given that the quotient of a Polish
space by the action of a Polish group will typically yield a highly pathological object
from a measure-theoretical perspective. (Think of even simple cases like the quotient
of L*([0, 1]) by the action of Hé([O, 1]) given by (x, g) = x + 1g with ¢: Hé — L2 the
canonical inclusion map or the quotient of the torus T? by the action of (R, +) given by
an irrational rotation.)

We now describe our main results on an informal level, postponing a precise for-
mulation to Section 2, and mention connections with the existing literature and several
open problems.
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1.1. Outline of results

Our first contribution is to identify a natural space of distributional connections
Q., which can be seen as a refined analogue of the classical Hélder-Besov spaces, along
with an associated gauge group. An important feature of this space is that holonomies
along all sufficiently regular curves (and thus Wilson loops and their variants) are canon-
ically defined for each connection in €} and are continuous functions of the connection
and curve. In addition, the associated space of gauge orbits is a Polish space and thus well
behaved from the viewpoint of probability theory. A byproduct of the construction of €2}
1s a parametrisation-independent way of measuring the regularity of a curve which relates
to B-Holder regular curves with 8 € (1, 2) (in the sense that they are differentiable with
B — 1-Holder derivative) in a way that is strongly reminiscent of how p-variation relates
to Holder regularity for 8 < 1.

In turn, we show that the SPDE (1.7) can naturally be solved in the space €2}
through mollifier approximations. More precisely, we show that for any mollifier x° at
scale ¢ € (0, 1] and C € L (g, g) (where L (g, g) consists of all linear operators from g
to itself which commute with Ad, for any g € G), the solutions to the renormalised SPDE

(1.8) A = AA; + x* x &+ CA; + [Aj, 20,A; — ;A + [A, Ai]]

converge as €2} -valued processes as ¢ — 0 (with a possibility of finite-time blow-up). Ob-
serve that the addition of the mass term in (1.8) (as well as the choice of mollification with
respect to a fixed coordinate system) breaks gauge-covariance for any ¢ > 0. Our final re-
sult is that gauge-covariance can be restored in the £ — 0 limit. Namely, we show that for
each non-anticipative mollifier x, there exists an essentially unigue choice for C (depend-
ing on x) such that in the limit ¢ — 0, the law of the gauge orbit [A(#)] is independent of
x and depends only on the gauge orbit [A(0)] of the initial condition. This provides the
construction of the aforementioned canonical Markov process associated to (1.7) on the
space of gauge orbits.

We mention that a large part of the solution theory for (1.7) is now automatic and
follows from the theory of regularity structures [Hail4, BHZ19, CH16, BCCH21]. In
particular, these works guarantee that a suitable renormalisation procedure yields con-
vergence of the solutions inside some Holder—Besov space. The points which are not
automatic are that the limiting solution indeed takes values in the space €2}, that it is
gauge invariant, and that no diverging counterterms are required for the convergence of
(1.8). One contribution of this article is to adapt the algebraic framework of regularity
structures developed in [BHZ19, BCCH21] to address the latter point. Precisely, we give
a natural renormalisation procedure for SPDEs of the form

(1'9> (al - D%L)At = Ft(A7 E) ) te 2+ ,

with vector-valued noises and solutions. Here, for some finite index sets £, (£})c¢, are
differential operators, A and § represent the jet of (A¢)ee, and (§)c¢_ which take values
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in vector spaces (W¢)iee, and (W¢)ee_ respectively, and the nonlinearities (F¢)ce, are
smooth and local. We give a systematic way to build a regularity structure associated
to (1.9) and to derive the renormalised equation without ever choosing a basis of the
spaces Wy.

Example 1.1. — In addition to (1.7), an equation of interest which fits into this
framework comes from the Langevin dynamic of the Yang—Mills—Higgs Lagrangian

! 2 2 212 4 Lt

(1.10) - (|FA| F 1@ — | D+ ~| D] )dx,
2 T 2

where A is a 1-form taking values in a Lie sub-algebra g of the anti-Hermitian operators

on CN, and @ is a CN-valued function. The associated SPDE (again with DeTurck term)

reads

OA=—diFy —dyd'A — B(® ® dy®) + &,

(1.11)
9,0 = —di dy® + (d*A)D — DD — D + &7,

where B: CN ® CN — g is the R-linear map that satisfies (&, B(x ® ), = N{hx, y) o~ for
all i e g.
One of the consequences of our framework is that the renormalisation counter-

terms of (1.11) can all be constructed from iterated applications of B, the Lie bracket
[-, -1, and the product (A, @) > AD.

1.2. Relation to previous work

There have been several earlier works on the construction of an orbit space.
Mitter—Viallet [MV81] showed that the space of gauge orbits modelled on H* for
k> %l + 1 1s a smooth Hilbert manifold. More recently, Gross [Gro22, Grol7] has made
progress on the analogue in H'/? in dimension ¢ = 3.

An alternative (but related) route to give meaning to the YM measure is to di-
rectly define a stochastic process indexed by a class of gauge invariant observables (e.g
Wilson loops). This approach was undertaken in earlier works on the 2D YM mea-
sure [Dri89, Sen97, Lév03, Lév06] which have successfully given explicit representations
of the measure for general compact manifolds and principal bundles. It is not clear, how-
ever, how to extract from these works a space of gauge orbits with a well-defined prob-
ability measure, which is somewhat closer to the physical interpretation of the measure.
(This is a kind of non-linear analogue to Kolmogorov’s standard question of finding a
probability measure on a space of “sufficiently regular” functions that matches a given
consistent collection of n-point distributions.) In addition, this setting is ill-suited for the
study of the Langevin dynamic since it is far from clear how to interpret a realisation of
such a stochastic process as the initial condition for a PDE.
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A partial answer was obtained in [Chel9] where it was shown that a gauge-fixed
version of the YM measure (for a simply-connected structure group G) can be constructed
in a Banach space of distributional connections which could serve as the space of initial
conditions of the PDE (1.7). Section 3 of this paper extends part of this earlier work by
providing a strong generalisation of the spaces used therein (e.g. supporting holonomies
along all sufficiently regular paths, while only axis-parallel paths are handled in [Chel9])
and constructing an associated canonical space of gauge orbits.

Another closely related work was recently carried out in [She21]. It was shown
there that the lattice gauge covariant Langevin dynamic of the scalar Higgs model (the
Lagrangian of which is given by (1.10) without the |®|* term and with an abelian Lie
algebra) in d = 2 can be appropriately modified by a DeTurck—Zwanziger term and
renormalised to yield local-in-time solutions in the continuum limit. The mass renormal-
isation term CA; as in (1.8) is absent in [She2l1] due to the fact that the lattice gauge
theory preserves the exact gauge symmetry, while a divergent mass renormalisation for
the Higgs field ® is still needed but preserves gauge invariance. In addition, convergence
of a natural class of gauge-invariant observables was shown over short time intervals; but
there was no description for the orbit space.

1.3. Open problems

It is natural to conjecture that the Markov process constructed in this paper pos-
sesses a unique invariant measure, for which the associated stochastic process indexed by
Wilson loops agrees with the YM measure constructed in [Sen97, Lév03, Lév06]. Such a
result would be one of the few known rigorous connections between the YM measure and
the YM energy functional (1.2) (another connection is made in [LNO6] through a large
deviations principle). A possible approach would be to show that the gauge-covariant
lattice dynamic for the discrete YM measure converges to the solution to the SYM equa-
tion (1.7) identified in this paper. Combined with a gauge fixing procedure as in [Chel9]
and an argument of Bourgain [Bou94]| along the lines of [HM18a], this convergence
would prove the result (as well as strong regularity properties of the YM measure ob-
tained from the description of the orbit space in this paper). The main difficulty to over-
come is the lack of general stochastic estimates for the lattice which are available in the
continuum thanks to [CH16].

Our results do not exclude finite-time blow-up of solutions to SYM (1.7), not even
in the quotient space. (Since gauge orbits are unbounded, non-explosion of solutions
to (1.7) 1s a stronger property than non-explosion of the Markov process on gauge orbits
constructed in this article.) It would be of interest to determine whether the solution to
SYM survives almost surely for all time for any initial condition. The weaker case of the
Markov process would be handled by the above conjecture combined with the strong
Feller property [HM18b] and irreducibility [HS22] which both hold in this case. The
analogous result is known for the ®} SPDE in d = 2, 3 [MW20]. Long-time existence of
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the deterministic YM heat flow in d = 2, 3 is also known [Rad92, CG13], but it is not
clear how to adapt these methods to the stochastic setting.

It is also unclear how to extend all the results of this paper to the 3D setting
In [CCHS22] we analyse the SPDE (1.7) for d = 3 and show that the solutions take
values in a suitable state space to which gauge equivalence extends in a canonical way.
We furthermore show the same form of gauge-covariance in law as in this paper, which
allows us to construct a Markov process on the corresponding orbit space. However, an
important result missing in [CCHS22] in comparison to this article is the existence of a
gauge group which acts transitively on the gauge orbits. We give further details therein.

1.4. Outline of the paper

The paper is organised as follows. In Section 2, we give a precise formulation of
our main results concerning the SPDE (1.7) and the associated Markov process on gauge
orbits. In Section 3 we provide a detailed study of the space of distributional 1-forms €}
used in the construction of the state space of the Markov process. In Section 4 we study
the stochastic heat equation as an . -valued process.

In Section 5 we give a canonical, basis-free framework for constructing regularity
structures associated to SPDEs with vector-valued noise. Moreover, we generalise the
main results of [BCCHZ21] on formulae for renormalisation counterterms in the scalar
setting and obtain analogous vectorial formulae. We expect this framework to be useful
in for a variety of systems of SPDE whose natural formulation involve vector-valued
noise — in the context of (1.7) this framework allows us to directly obtain expressions for
renormalisation counterterms in terms of Lie brackets and to use symmetry arguments
coming from the Ad-invariance of the noises.

In Section 6 we prove local well-posedness of the SPDE (1.7), and in Section 7 we
show that gauge covariance holds in law for a specific choice of renormalisation proce-
dure which allows us to construct the canonical Markov process on gauge orbits.

1.5. Notation and conventions

We collect some notation and definitions used throughout the paper. We denote by

R, the interval [0, 00) and we identify the torus T? with the set [ — %, %)2 We equip T?
with the geodesic distance, which, by an abuse of notation, we denote |x — |, and R x T?
with the parabolic distance [(¢, x) — (s, )| = /]t — 5| + |x — ).

A mollifier x is a smooth function on space-time R x R? (or just space R?) with
support in the ball {z | |z| < i} such that f x = 1. We will assume that any space-time
mollifier x we use satisfies x (¢, x1, x0) = x (£, —x1, x9) = x (£, x|, —x3).° A space-time mol-
lifier is called non-anticipative if it has support in the set {(¢, x) | ¢ > 0}.

% This is for convenience, so that some renormalisation constants vanish, but is not strictly necessary.
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Consider a separable Banach space (E, | - [). For a € [0, 1] and a metric space
(F, d), we denote by C*1(F, E) the set of all functions f: F — E such that

ar () =[O
If la-nist = SEF T <00

b

where the supremum is over all distinct x, y € F. We further denote by C*(F, E) the space
of all functions f: F — E such that

def
[flee = |f loo + |f ot < 00,

where |f| u sup,p [f ()| For @ > 1, we define C*(T?, E) (resp. C*(R x T?, E)) to be the
space of £-times differentiable functions (resp. functions that are £j-times differentiable in
¢t and k -times differentiable in x with 2k, 4+ £ < k), where & & [a] — 1, with (@ — k)-
Holder continuous 4-th derivatives.

For ¢ < 0, let r ) —[Ja — 17 and B’ denote the set of all smooth functions ¥ €
C*>(T?) with [/|¢: < 1 and support in the ball |z| < i Let (C*(T?,E), | - |c«) denote the
space of distributions & € D'(T?, E) for which

def | (%-’ ‘/f?>|
|&|ce = sup sup sup ———— < 00,
e 11 yeBr er?  A”

where ¥ () £ A=2¢ (A~ (y — x)). For & = 0, we define C to simply be L(T?, E), and
use C(T?, E) to denote the space of continuous functions, both spaces being equipped
with the L*® norm. For any @ € R, we denote by C®* the closure of smooth functions in
C*. We drop E from the notation and write simply C(T?), C*(T?), etc. whenever E =R.

For a space B of E-valued functions (or distributions) on T?, we denote by Q13 the
space of E-valued l-forms A = Z?:l A, dx; where A, Ay € B. If B is equipped with a

(semi)norm | - |5, we define

2
def
|A|QB:§ A5 -
=1

When B is of the form C(T?, E), C*(T?, E), etc., we write simply QC, QC?, etc. for Q.
Given two real vector spaces V and W we write L(V, W) for the set of all linear
operators from V to W. If V is equipped with a topology, we write V* for its topological

dual, and otherwise we write V* for its algebraic dual. As mentioned in the introduction,
we also write L (g, ) = {C € L(g, g) : CAd, = Ad,C for all g € G}.

1.5.1. State space with blow-up

Given a metric space (F, d), we extend it with a cemetery state by setting =
F u {®} and equipping it with the topology whose basis sets are the balls of I and the
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complements of closed balls. We use the convention d(®, f ) 00 for all f € Fand observe
that I is metrisable with metric

d(f, ) = d(f,9) A (Wf1+ hlgl)

where h: T — [0, 1] is defined by A[f] = (1 +d(f, 0)) "', where 0 € F is any fixed element
(see the proof of [Man89, Thm. 2] for a similar statement).

Denote R, = [0, 00). Given f € C(R,, 13), we define T[f] =1inf{t > 0: f (1) = «}.
We then define

Pl {f eCR,. I WA EO} .

We should think of F*! as the state space of dynamical systems with values in F which can
blow up in finite time and cannot be ‘reborn’. We equip F**! with the following metric,
which is an extension of that defined in the arXiv version of [BCCH21, Section 2.7.2]
with the benefit that it can be defined even when F is a non-linear space.

Consider the cone CF = ([O 1] x F)/ ~, where x ~ y & [x =yplor[x=(0,/),y=
(0, g) for some f, g € ]5] Treating I~ {1} x F as a subset of CF, we extend the metric d
to CF by

d((a.f), (b, 9)) =la— b+ (a A B)A(f. ) .

(Using that d <2 on F, the verification that d is a metric on CF is routine.)
For any f € F*°!, we define its running supremum by

S/(1) E sup d(f(s). 0) € [0, 00] ,
s<t
where 0 € I 15 a fixed element. We also fix a smooth non-increasing function ¥ : R —
[0, 1] with derivative supported in [1, 2], ¥ (1) =1, and ¥/(2) = 0. Given L > 1, we
define O () € C(R,, CF) by

LN = (¥ (S,(0/1). /(1) -

def

We then equip F**! with a metric D(:, -) = ZI . 27Dy (-, -), where for f, g € F**!

DL(f,9) = sup 2(OL() 1), OLEQ (1)) -

te[0,L]

The point of these definitions is that they equip F**' with a metric such that a function
f exploding at time T is close to a function g that ‘tracks’ f closely up to time T — ¢,
but then remains finite, or possibly explodes at some later time. In particular, we have
the following lemma, the proof of which is identical to the proof of the arXiv version
of [BCCH21, Lem. 2.19].
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Lemma 1.2. — Consider f, f1, f5, - . . € ¥\ The following statements are equivalent.

() D, f) = 0;
(1) for every L > 0,

lim sup d(f,().f(1) =0,

"0 g0, T

where T, YA mf{s > 0 : d(f,(¢), 0) Vd(f (1), 0) > L}.

We remark here that if I is separable, then so are (CIAT, cAz’) and (F**!, D) (to show
this, one can for example adapt the argument of [Kec95, Thm 4.19]). Furthermore, if
(F, d) is a complete metric space, it is not difficult to see that (CF, d) is also complete. On
the other hand, the following example shows that (F**', D) may not be complete even if
(F, d) 1s complete.

Example 1.3. — Consider F = R and a sequence f, such that f,(1 — 27%) = 2* for
k=0, ...,n and then constant on [1 — 27", 00). On the intervals [1 — 27! 1 —27#] for
k=1,...,n, suppose f, goes from 2=! down to 0 and then back up to 2* linearly. Then
clearly f, is Cauchy for D and its limit / exists pointwise as a function on C([0, 1), R), but
its naive extension as /() = @ for ¢ > 1 is not an element of C(R,, ﬁ) because it fails to
converge to @ as ¢ /' 1.

2. Main results

In this section, we give a precise formulation of the main results described in the
introduction.

2.1. State space and solution theory for SYM equation

Our first result concerns the state space of the Markov process. We collect the main
features of this space in the following theorem along with precise references, and refer the
reader to Section 3 for a detailed study.

Theorem 2.1. — For each a € (%, 1), there exists a Banach space 2. of distributional g-
valued 1-forms on T2 with the following properties.

(i) Foreach A € Q. andy € CHA (10,11, T?) with B € (5 — 2, 1], the holonomy hol(A, y) € G
is well-defined and, on bounded balls of 2}, x CUA(10, 11, T?), is a Holder continuous function
of (A, y) with distances between y s measured in the supremum metric. In particular, Wilson loop
observables are well-defined on QY. (See Theorem 3.18 and Proposition 3.21 combined with Young
ODE theory [Lyo94, FH20].)
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(1) There are canonical embeddings with the classical Holder—Besov spaces
QC™? s QL s QChet,

(See Section 3.3.)
(i) Let &% denote the closure of smooth functions in C* (T2, G). Then there is a continuous group
action of B on QL. Furthermore there exists a metric Dy on the quotient space of gauge orbits

Oy & QL /& which induces the quotient topology and such that (D, Dy) is separable and
complete. (See Corollary 5.56 and Theorem 3.45.)
(iv) Gauge orbits in O, are uniquely determined by conjugacy classes of holonomies along loops. (See

Proposition 3.35.)

Remark 2.2. — Analogous spaces could be defined on any manifold, but it is not
clear whether higher dimensional versions are useful for the study of the stochastic YM
equation.

Remark 2.3. — Since hol(A, y) is independent of the parametrisation of y, the
“right” way of measuring its regularity should also be parametrisation-independent,
which is not the case of C'*#. This is done in Definition 3.16 which might be of inde-
pendent interest.

a1
T
implies that such n always exists. Let us fix for the remainder of

) ) . . ) . def
this section a space-time mollifier x as defined in Section 1.5 and denote x°®(¢, x) =

et (1672, e7'x). We also fix i.i.d. g-valued white noises (Ei)?:1 on R x T? and write

&° Ol:c{él- * x°. Fix some C € L (g, g) independent of €, and for each ¢ € (0, 1] consider

the system of PDEs on R, x T? with i € {1, 2},

We now turn to the results on the SPDE. Let us fix a € (%, 1) and n € ( , o —

1]. Note that o > %

21 QAT = AN+ 57 + CAT + A7, 29A7 — B:AT + [AF, AT,
A*(0)=ae Q).

Theorem 2.4 (Local existence). — The solution A converges in (S2L)**! in probability as ¢ —
0 to an (Qé)“’l-valued random variable A.

Remark 2.5. — Note that the RHS of (2.1) does not contain any divergent mass
counterterm — that is a term of the form C°A; with lim, o G°* = 00. The fact that one can
obtain a non-trivial limit without such a counterterm 1is specific to working in two space
dimensions and is not true in three space dimensions.

Remark 2.6.— Note that we could take the initial condition a € QC", and the anal-
ogous statement would hold either with (€2})*! replaced by (Q2C")*! or, in the definition
of (€21)*! dropping continuity at = 0.
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Remark 2.7. — As one would expect, the roughest part of the solution A is already
captured by the solutions W to the stochastic heat equation. (In fact, one has A=W + B
where B belongs to in C' ™ for any « > 0.) Hence, fine regularity properties of A can be
inferred from those of W. In particular, one could sharpen the above result to encode time
regularity of the solution A at the expense of taking smaller values of &, cf. Theorem 4.13.

Remark 2.8. — From our assumption that G is compact, it follows that g is reduc-
tive, namely it can be written as the direct sum of simple Lie algebras and an abelian Lie
algebra. Note that if b is one of the simple components, then every C € L (g, g) preserves
b and its restriction to b is equal to Aidy for some A € R; indeed, b is the Lie algebra of a
compact simple Lie group (see the proof of [Kna02, Thm 4.29] for a similar statement)
and thus its complexification is also simple, and the claim follows readily from Schur’s
lemma. Furthermore, since these components are orthogonal under the Ad-invariant in-
ner product on g introduced in (1.2), each white noise &; also splits into independent
noises, each valued in the abelian or a simple component. Equation (2.1) then decouples
into a system of equations, each for a simple or abelian component, which means that it
suffices to prove Theorem 2.4 in the case of a simple Lie algebra for which we can take
C € R (this is the approach we take in our analysis of this SPDE). In the abelian case,
(2.1) 1s just a linear stochastic heat equation taking values in an abelian Lie algebra with
C a linear map (commuting with Ad) from the abelian Lie algebra to itself, for which the
solution theory is standard.

We give the proof of Theorem 2.4 in Section 6. In principle a large part of the
proof'is by now automatic and follows from the series of results [Hail4, CH16, BHZ19,
BCCH21]. Key facts which don’t follow from general principles are that the solution takes
values in the space . (but this only requires one to show that the SHE takes values in
it) and more importantly that no additional renormalisation is required. However, if one
were to directly apply the framework of [Hail4, CH16, BHZ19, BCCH21], one would
have to expand the system with respect to a basis of g into a system of equations driven by
d x dim(g) independent R-valued scalar space-time white noises. The renormalised equa-
tion computed using [BCCH21] would then have to be rewritten to be taken back to the
setting of vector valued noises. In particular, verifying that the renormalisation countert-
erm takes the form prescribed above would be both laborious and not very illuminating;
We instead choose to work with (2.1) intrinsically and, in Section 5, develop a framework
for applying the theory of regularity structures and the formulae of [BCCH21] directly
to equations with vector valued noise.

When working with scalar noises, a labelled decorated combinatorial tree 7, which
represents some space-time process, corresponds to a one dimensional subspace of our
regularity structure. On the other hand, if our noises take values in some vector space W,
then it is natural® for t to index a subspace of our regularity structure isomorphic to a

* See Section 5.1 for more detail on why this is indeed natural.
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partially symmetrised tensor product of copies of W*, where the particular symmetrisa-
tion is determined by the symmetries of 7.

One of our key constructions in Section 5 is a functor F.(+) which maps labelled
decorated combinatorial trees, which we view as objects in a category of “symmetric sets”,
to these partially symmetrised tensor product spaces in the category of vector of spaces. In
other words, operations/morphisms between these trees analogous to the products and
the coproducts of [BHZ19] are mapped, under this functor, to corresponding linear maps
between the vector spaces they index. This allows us to construct a regularity structure,
with associated structure group and renormalisation group, without performing any basis
expansions.

We also show that this functor behaves well under direct sum decompositions of
the vector spaces W, which allows us to verify that our constructions in the vector noise
setting are consistent with the regularity structure that would be obtained in the scalar
setting if one performed a basis expansion. This last point allows us to transfer results from
the setting of scalar noise to that of vector noise. One of our main results in that section is
Proposition 5.68 which reformulates the renormalisation formulae of [BCCHZ21] in the
vector noise setting.

2.2. Gauge covariance and the Markov process on orbits

The reader may wonder why we don’t simply enforce C = 0 in (2.1) since this i3
allowed in our statement. One reason is that although the limit of A® exists for such a
choice, it would depend in general on the choice of mollifier x. More importantly, our
next result shows that it is possible to counteract this by choosing C as a function of x in
such a way that not only the limit is independent of the choice of x, but the canonical
projection of A onto 9, is independent (in law!) of the choice of representative of the
initial condition. This then allows us to use this SPDE to construct a “nice” Markov
process on the gauge orbit space O,, which would 7ot be the case for any other choice of
C.

We first discuss the (lack of) gauge invariance of the mollified equation (2.1) from
a geometric perspective. Recall that the natural state space for A is the space A of (for
now smooth) connections on a principal G-bundle P (which we assume is trivial for the
purpose of this article). The space of connections is an affine space modelled on the vector
space Q'(T?, Ad(P)), the space of 1-forms on T? with values in the adjoint bundle. In
what follows, we drop the references to T? and Ad(P).

Recall furthermore that the covariant derivative is a map da: QF — Q! with
adjoint df : Q! — QF. Hence, the correct geometric form of the DeTurck—Zwanziger
term dy d*A is really dy d} (A — Z) = dy d{ (A — Z), where Z is the canonical flat con-
nection associated with the global section of P which we implicitly chose at the very start
(this choice for Z is only for convenience — any fixed “reference” connection Z will lead
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to a parabolic equation for A, e.g., the initial condition of A is used as Z in [DK90, Sec-
tion 6.3]). The mollification operator x¢: QF — QF also depends on our global section
(or equivalently, on Z).

If we endow QF with the distance coming from its natural L.> Hilbert space struc-
ture then, for any g € > = C®(T?, G), the adjoint action Ad,: Q" — Q* is an isometry
with the covariance properties Ad,(A — Z) = A® — 7Z¢ and Ad,dyw = dx«Ad,w. Finally,
recall that F is a 2-form in ©2, and satisfies Ad,Fy = Fac.

With these preliminaries in mind, for any &° € C*([0, T], '), we rewrite the
PDE (2.1) as

OA=—d\Fy —dydi(A=2)+ &+ CA-2), A(0)=acA,
where C € R is a constant. Note that the right and left-hand sides take values in Q'. For a
time-dependent gauge transformation g € C*°([0, T], *°), we have that B £ A? satisfies
3B = Ad,0,A — dp[(3,9)g ']
In particular, if g satisfies
(2.2) (09)g ' =dy(Z* = 2),
then B solves
(2.3) 0B=—djFy —dpd;;(B—7) + AdE + CB -7, BO)=a"eA.

The claimed gauge covariance of (2.1) is then a consequence of the non-trivial fact that
one can choose the constant C in such a way that, as ¢ — 0, B converges to the same
limit in law as the SPDE (2.1) started from *©, i.e.

2.4) 0A=—diF; —didiA-2)+ & +CA-2), A0 = eA.

We now make this statement precise. Written in coordinates, the equations for the gauge
transformed system are given by

3B;=AB;+g&g" + CB; + C(d,9)g”"
(2.5) + [B;,20,B; — 9.B; + [B;, B/11 , B(0) =" e Q. ,
(09)g™ = (99" + [B;, (3i9)g 1, 2(0) e 8%

In our gauge covariance argument it will be useful to drop extraneous information
and only keep track of how g and g act on our gauge fields. To this end, for o > é, we
define the reduced gauge group &2 10 be the quotient of &*¢ by the kernel® of its action on
QC*~" . We denote the corresponding projection map by &*% 5 g [g] € %,

% Note that this kernel consists of all constant gauge transformations g(-) = g with g in the kernel of the adjoint
representation of G.
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The desired gauge covariance is then stated as follows.

Theorem 2.9. — For every non-anticipative space-time mollifier X , one has the following resulls.
(i) There exists a unique €-independent G € L (g, §) with the following property. For every C €
Lg(g,9),a€e Qi, and g(0) € &%, let (B, g) be the solution to (2.5) and (A, g) be the solution

to
A = AN+ x° % (3EZ ) + CA + (C— C)(39)F!
<2°6> + [Aj5 QBJ'Ai - 811&] + [Aja Al]] ’ A(O) = ag(O) ’
02z ' =30z ") +IA, 39z ', 2(0) =g(0)

where we set g =1 on (—00,0). Then, for every € > 0, (2.6) ts well-posed in the sense that,
replacing &; by 1,08, + 12205;5, (A, g) converges to a smooth maximal solution in (Q}x x @Oyl
as§ 4 0.
Furthermore, (A, [g]) and (B, [g]) converge in probability to the same limit in (2 x Qﬂﬁo"")”1 as
e — 0.

(i) If C is as stated in item (i), then the limiting solution A to (2.1) with C. = C. is independent of x
(as long as it 1s non-antictpative).

As discussed above, B = Af (i.e. B is pathwise gauge equivalent to A) for any choice
of C. On the other hand, if x is non-anticipative, then x° * (g€;z~") is equal in law to &f
by It6 isometry since g is adapted, so that when C = C, the law of A does not depend on
g anymore and A is equal in law to the process A defined in (2.4), obtained by starting
the dynamics for A from @*?. The theorem therefore proves the desired form of gauge
covariance for the choice C = C.

Remark 2.10. — Again, as in Remark 2.8 it suffices to prove Theorem 2.9 in the
case of a simple Lie algebra for which one has C € R. In this case, for non-anticipative x,
we will show that C = A lim, 10 f dz x®(2) (K *x K*)(z), where K is the heat kernel, K* =
x°* K, and A < 0 s such that Aidg is the quadratic Casimir in the adjoint representation.

We give the proof of Theorem 2.9 at the end of Section 7.3. As with Theorem 2.4,
the strategy is to lift both systems (2.5) and (2.6) to fixed point problems in an appropriate
space of modelled distributions. We compare the two systems using ¢-dependent norms
on a suitable regularity structure. The products g&¢g~" and g&€g~', however, cause singu-
larities at the ¢ = 0 time slice which are not encountered, for example, in the analogous
strategy for the equation (2.1). To handle these singularities, we employ a similar strategy
to [GH19a] and decompose g into the heat flow of its initial condition, which we handle
with integration operators requiring auxiliary distributions @ as input (the w are obtained
through stochastic estimates), and the remainder with improved behaviour at ¢ = 0, which
we handle with special spaces of modelled distributions described in Appendix A.
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We finally turn to the associated Markov process on gauge orbits. To state the way
in which our Markov process is canonical we introduce a particular class of €} -valued
processes which essentially captures the “nice” ways to run the SPDE (2.1) and restart it
from different representatives of gauge orbits.

For a metric space X, denote by Dy(R;, X) the space of functions A: Ry — X

which are cadlag on (0, 00) and for which A(0+) o lim, o A(?) exists. We can naturally
identify Do (R, X) with X x D(R, X), where D is the usual Skorokhod space of cadlag
functions, and we equip Dy with the metric induced by this identification. For the re-
mainder of this section, by a “white noise” we mean a pair of 1.1.d. g-valued white noises

£=(,6) onRx T

Defimtion 2.11. — Setting Qi o QL U {@}, a probability measure 1 on Do(R, Qi) s
called generative if there exists a filtered probability space (O, F, (F,) =0, P) supporting a white noise
& for which the filtration (F,) ¢ ts admussible (i.e. & is adapted to (F,) =0 and & | [t, 00) is independent
of Fi for all t > 0), and a random variable A: O — Do(R,, SAZi) with the following properties.

1. The law of A s . and A(0) s Fo-measurable.

2. There exists an JFy-measurable random variable gy: O — &% such that A(0+) = A(0)¥.
(We use the convention @4 = @ for all g € &™)

3. Forany 0 < s <, let D,,: flé — SAZé denote the (random) solution map mn the € — 0 limit
of (2.1) with a non-anticipative mollifier x and constant C.= C_from part (i) of Theorem 2.9.°
There exists a non-decreasing sequence of stopping times (0;)7=, such that oo = 0 almost surely
and, for all j > 0,

(@) A() =@, (Aloj+)) forall t € [0}, 041), and
(b) there exists an .7:(,]. . -measurable random variable g, : O — B such that A(ojy1) =
be’jvf’jﬂ (A(OJ‘_‘_))‘%1 :

4 LaT+E inf{t > 0 | A(t) = @}. Then a.s. lim;_, o, 0; = T*. Furthermore, on the event T* <
00, a.s. A= on [T*, 00) and

lim inf |A()¢], =00 .
1/ T* gegs0a

If there exists a € SAZ(L such that A(0) = a almost surely, then we call a the imitial condition of 1.
Remark 2.12. — 1In the setting of Definition 2.11,if B: O — SAZé is F,-measurable,

then ¢ — @, ,(B) 1s adapted to (F,)=¢. In particular, the conditions on the process A
imply that A is adapted to (F;) 0.

Denote as before 550[ d:efDa L{e} andlet T : Qi — 550[ be the canonical projection.
Note that if p is generative and 9, is equipped with the quotient topology, then the push-

% Note that @ exists and is independent of the choice of x by part (ii) of Theorem 2.9.
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forward m,u is a probability measure on C(Ry, ﬁa) (rather than just on Dy(Ry, 550[))
thanks to items 2, (a), and (b) of Definition 2.11.

We equip 9, with the metric D, from Theorem 2.1. Note that the metric on
O, from Section 1.5.1 induces a topology finer than the quotient topology, so it is not
automatic that 7,4 is a probability measure on O, The fact that this is case is part of
the following theorem which shows the existence of the Markov process on the space of
gauge orbits announced in the introduction.

Theorem 2.13. — (1) For every a € SAZi, there exists a generative probability measure v with
mitial condition a. Moreover, one can take in Definition 2.11 (F,) =0 to be the filtration generated
by any white noise and the process A utself to be Markov.

(it) There exists a unique family of probability measures {P*}, ¢ ~such that 7. o = P* for every x €

Oy, a € x, and generative probability measure . with initial condition a. Furthermore, {P}co,

define the transition probabilities of a tume homogeneous Markov process on O,

The proof of Theorem 2.13 is given at the end of Section 7.4.

3. Construction of the state space

The aim of this section is to find a space of distributional 1-forms and a corre-
sponding group of gauge transformations which can be used to construct the state space
for our Markov process. We would like our space to be sufficiently large to contain 1-
forms with components that “look like” a free field, but sufficiently small that there is a
meaningful notion of integration along smooth enough curves. Our space of 1-forms is a
strengthened version of that constructed in [Chel9], the main difference being that we
do not restrict our notion of integration to axis-parallel paths.

3.1. Additive functions on line segments

Let X denote the set of oriented line segments in T? of length at most i. Specif-

ically, denoting B, o {veR?||v| <1}, we define X “r B, 4 (first coordinate is the

initial point, second coordinate is the direction). We fix for the remainder of this section
a Banach space E.

Definition 3.1. — We say that £ = (x, v), l=(x1)eX are joinable if x = x + v and
there exist w € R? and ¢, ¢ € [—1, }r] such that |lw| =1, v=cw, v =cw, and |c + ¢| < i. In

this case, we denote £ LI ¢ Ol:e_’f (x, (c + Ow) € X. We say that a function A: X — E is additive
AU U L) = AW) + AL) for all joinable £,€ € X. Let Q = Q(T?, E) denote the space of all

measurable ¥i-valued additive functions on X .

Note that additivity implies that A(x, 0) = 0 for all x € T? and A € Q.
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—

Fic. 1. — Given a line segment £ shown as a black arrow, another (gray) line segment £ with || > |£] is far from £ if and
only if its endpoints don’t both lie in the light blue circles (of radius [£|/4) around the corresponding endpoints of £. For
instance, £ and £ shown in the first two pictures above are far, but they aren’t in the last one. In the last picture, the shaded
quadrilateral is the convex hull of the endpoints

Remark 3.2. — TFor A € €2, one should think of A(£) as the line integral along £ of

a homogeneous function on the tangent bundle of T?. To wit, any measurable function
B: T? x R? — E which is bounded on T? x B; and homogeneous in the sense that
B(x, cv) = ¢B(x, v) for all (x, v) € T> x R? and ¢ € R, defines an element A € Q by

def

1
A(x,v) = / B(x+tv,v)ds.

0

We will primarily be interested in the case that B is a 1-form, 1.e., B(x, v) 1s linear in v,
and we discuss this situation in Section 3.3. However, many definitions and estimates turn
out to be more natural in the general setting of €2.

For £ = (x,v) € X, let us denote by ¢; &y and L & ¥+ v the initial and final point
of £ respectively. We define a metric d on X by

A D E 16—V 1 — 1.
For £ = (x,v) € X, let [€] £ |v] denote its length.

QDeﬁnizfion 3.3.— Wesay that £, £ € X are far if d(£, £) > 1(|€| A|€]). Define the function
o0: X°—[0,00) by

@ Z)d_cf 1] + 1€ if e, € are far,
et B = 1€ — € + €, — £/| + Area(L, €)% otherwise,

where Area(, 0) is the area of the convex hull of the points (£;, Ly, Zf, €,) (which is well-defined’
whenever £, £ are not far), see the last example of Figure 1.

Remark 3.4. — 1f £, £ € X are not far, then their lengths are of the same order,
and Area(Z, £) is of the same order as || [d(Zi, 0) +d(¢;, Z)], where, denoting £ = (x, v),

we have set d(y, £) i infie;_1 91 | + tv — y| (note the set [—1, 2] in the infimum instead

7 Since we are on the torus, the definition of this “convex hull” can be ambiguous if €, £ € X are far.
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of [0, 1]). In particular, it readily follows that although o isn’t a metric in general, it is a
semimetric admitting a constant C > 1 such that for all ¢, b, c € X

(3.1) 0(a, b) = C(e(a, o) + (b, 0) .
For o € [0, 1], we define the (extended) norm on £2

. A — AL
3.2) AL p 12O = AOL
ot.=0 0, )

We also write €2, for the Banach space {A € Q | |A|, < 00} equipped with the norm |- |,.

Remark 3.5. — By additivity, any element of 2 extends uniquely to an additive
function on all line segments, not just those of length less than 1/4 and we will use this
extension in the sequel without further mention. However, the supremum in (3.2) is re-
stricted to these “short” line segments.

Remark 3.6. — Since we know that A € €2 vanishes on line segments of zero length,
it follows that |A(€)| < |A],]€|*, so that despite superficial appearances (3.2) is a norm on
2, and not just a seminorm.

We now introduce several other (semi)norms which will be used in the sequel.

Defination 3.7. — Define the (extended) norm on Q2

df AW
|Alg-gr = sup ———.
=0 1€l

Let Q2o denote the Banach space {A € 2 | |Aly.qr < 00} equipped with the norm | - |g-gr.

Defintion 3.8. — We say that a pair €, le X form a vee if they are not far, have the same
length |€| = |£|, and have the same imitial point £; = £;. Define the (extended) seminorm on S2

w AW —AD)]
|A|a—vee = sup = ,
i Area(t, £)*/?

where the supremum is taken over all distinct £, € € X forming a vee.

Definition 3.9. — For a line segment £ = (x, v) € X, let us denote the associated subset of T*
by

O Y ) Yt ov:cel0, ).

For an integer n > 3, an n-gon is a tuple P = (€', ..., £") € X" such that



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

0w P

F16. 2. — The first collection of segments forms a 5-gon, while the second and third do nof form 4-gons. On the right, the
distance |P;; Py| between the black triangle P, and grey triangle Py triangle is given by the area shaded in blue

.« l=1 and €= € forallj=2,...,n,
o ((&)N (Y =@ for all distinctj, k€ {1,...,n}, and
o (({NU--- Uil has diameter at most i.

(See Figure 2 for examples.) A 3-gon is called a triangle.

Note that an n-gon P splits T? into two connected components, one of which is
simply connected and we denote by P. We further note that this split allows us to define
when two n-gons have the same orientation. For measurable subsets X, Y € T?, let XAY
denote their symmetric difference, and |X| denote the Lebesgue measure of X. For n-gons

def |2
P,, Py, let us denote |P;| = |P,| and

P: Py| def |151AI°’2| if Py, Py have the same orientation
1, L2 — .
|Py] + |Py| otherwise,

(see Figure 2) which we observe defines a metric on the set of n-gons.

Definition 3.10. — Let P= (£, ..., £") be an n-gon. For A € Q, we denote

AP E Y AW .

j=1
For o € [0, 1] we define the quantities

def |A(OP)]
3.3 |Algw = sSUp ——=—,
3-3) ' |P|>p0 |P|e/2

where the supremum s taken over all triangles P with |P| > 0, and

def |A(8P) - A(ap)|
|A|a—sy-m = sup Dla/2
[P;P|>0 |P; P

b

where the supremum is taken over all triangles P, P with |P; P| > 0.

The motivation behind each norm is the following.



AJAY CHANDRA, ILYA CHEVYREV, MARTIN HAIRER, HAO SHEN

e The norm | - |4 facilitates the analysis of gauge transformations (Section 3.4).
e The norm | - |4.qm 1s helpful in extending the domain of definition of A € €2, to a
wider class of curves (Section 3.2).
e The norm | - [ 1s simpler but equivalent to | - |4.qm. Furthermore, the values A(dP)
can be evaluated using Stokes’ theorem (e.g., as in Lemma 4.8).
We show now that each of these norms, when combined with | - |44, is equivalent to | - |.

Theorem 3.11. — There exists C > 1 such that for all @ € [0, 1] and A € Q2
CYAlw < [Alg-g + 1Al < CIAL,
where @ 1s any one of a-vee, o-tr, or o-sym.
For the proof, we require the following lemmas.
Lemma 3.12. — For o € [0, 1] and n > 3, 1t holds that

|[A(OP)]
su S Cn|A|(x—r )
|P|>p() |P|e/2 '

where the supremum 1s taken over all n-gons P with |P| > 0, and where Cs Y and forn> 4

d_cf Cﬂf] + (Cn—{( 01))0!/2
G an

n

Progf. — This readily follows by induction, using the two ears theorem [Mei75]
(every polygon admits a triangulation) and the fact that C, is the optimal constant such
that x*/2 + C,_p*/* < C,(x +)*/? for all x, y > 0. U

Lemma 3.13. — There exists C > 1 such that for all o € [0, 1] and A € Q
|A|ot-tr S |A|(x-sym S C|A|(x-tr .

Proof — The first inequality is obvious by taking P in the definition of |Alg-sym as
any degenerate triangle. For the second, let Py, Py be two triangles. We need only con-
sider the case that P, P, are oriented in the same direction. Observe that there exist £ < 6
and Qy, ..., Q, where each Q); is an n-gon with n < 7, such that P AP,| = Zle |Q|,
and such that A(0P;) — A(0P,) = ZLIA(BQ,-) (see Figure 3). It then follows from
Lemma 3.12 that

k
IAQP)) — AQPY)| S (Al D 1Q* S | Al P AP/,

=1

as required. 0J
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ppp L

FG. 3. — EdepIes of Qy, ..., Q; appearing in the proof of Lemma 3.13. In the first ﬁgure k=2 where Q; is bounded
by blue shaded region and Qz is bounded by red shaded region; Q) is a triangle and Q) is a 7-gon. In the second figure,
k=6 and all Q; are triangles bounded by blue shaded regions. In the last two figures, P; is contained inside Py, in which
case we can choose £ = 3 and Q,, Qy, Qj cither as triangles, 4-gons, or 5-gons, shaded in blue, red, and green, and given
in this example by rotating clockwise each outer arrow until it hits the inner triangle

\
—

FIG. 4. — The black arrow represents £, the grey arrow represents £, and the red arrow represents z. The blue arc represents
the circle of radius |¢| centred at ¢;

Proof of Theorem 3.11. — We show first

(3‘4> C_1|A|(x S |A|ot—gr + |Alot—vee =< C|A|a .

The second inequality in (3.4) is clear (without even assuming that A is additive) since
4] = o(¥, £) whenever |€| = 0, and for any ¢, ¢ € X forming a vee, we have o (¥, E) <
Area(l, £)'/2.

It remains to show the first inequality in (3.4). If £, £ are far, then clearly |A(£) —
A(Z)| < o(¢, 0)” |Alg-gr- Supposing now that £, £ are not far, we want to show that

(3.5) IA) — AW S 008, ) (|Alugr + [Algree) -

Consider the line segment a with initial point ¢; and endpoint £;, and the line segment
a € X such that a = (¢;, ¢(€; — ¢;)) for some ¢ > 0 and |a| = |£| (see Figure 4). Note that
it 1s possible that |a| > i, and thus a ¢ X', however A(a) still makes sense by additivity of
A. Observe that |a; — ar| S [€, — €] and Area(€, @) < Area(€, €) (for the latter, note that
a is contained inside the convex hull of £, £, and that  is at most twice the length of a).

Observe that @ and £ form a vee because Ef is in the ball B X {,z eT?: |z— 4] <
ilﬁl} and therefore ar, which is the intersection point of the ray from ¢; to Zf with the
circle of radius |€| centred at ¢, is also inside B. Therefore, breaking up A(a) into A(a)
and a remainder, we see by additivity of A that

A — A@] S [AlawecArealt, D + [Alog 6 — &I
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By symmetry, one obtains
IAD) — A@)| S [AlgwecArea(l, )% + |Alug € — £,

which proves (3.5).

For the remaining inequalities, one can readily see that
|Algnee S 1Alagr + [Ala-r s
so that the claim follows if we can show that
(3.6) [Alaw S 1Al -

For this, consider a triangle P = (¢!, €%, £*) and assume without loss of generality that
|€'| > |€?| > |€*|. Suppose first that P is right-angled. If £', £* are far, then Zj:] 1#] <
|P|'/2, while if £', £ are not far, then o(£', £?) < |P|%. In either case, |A(OP)| <
|Al4|P|'/%. For general P, we can split P into two right-angled triangles P, P, with
|P| 4+ |Py] = |P| and A(dP) = A(0P,) 4+ A(dPy) and apply the previous case, which
proves (3.6). The conclusion follows from Lemma 3.13. U

For A € Q and £ = (x,v) € X, define the function €, : [0, 1] — E by

() EAx, ).

_ Lemma 3.14. — There exists a constant C > 0 such that for all @ € [0, 1], A € 2, and
L, L e X forming a vee, one has

(3.7) [ealanol < |£|a|A|a—gr ) [€x — EA|%-H01 < CArea(¥, E)a/2|A|a .
Progf. — The first inequality is obvious by additivity of A. For the second, let 0 <

s <t <1 and denote by £’ the sub-segment of £ = (x, v) with initial point x 4+ sv and
final point x 4 fv. We claim that

(3.8) o, 6" < |t — s|'*Area(t, £)'/* .

Indeed, observe that Area(l, £) =< |£| 1€ — Zf| as a consequence of the fact that [£]| = 2]
and ¢, = ¢, by the definition of “forming a vee”. One furthermore has the identities
€] = €] = |t — s||€], and |€;" — £;'] = 1€, — £/|. Hence, if £, £' are far, then we
must have

e —=sllel Sty — &l < 1 = &1,
and thus

o &) =2t —slle| S |t — 5| Area(e, ).
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On the other hand, if £, £*' are not far, then we must have

ey — & S1e—sliel
and thus

1210 — L SNt —s'21e1 218, — £ < |t — 5] /*Area(t, €)'/ .
It follows that

(£, 7 < 2|8y — £f| + |t — s|'*Area(l, £)'/* < |t — s|'/*Area(, €)'/,
which proves (3.8). It follows that

[€a00) = £a(5) = Ea(D) + Ea ()] = [A(C™) = A
< |t —s|**Area(t, £)¥?|A, ,

concluding the proof. U

3.2. Extension to regular curves

In this subsection we show that any element A € €2, extends to a well-defined func-
tional on sufficiently regular curves y : [0, 1] — T2. Given that A(y) should be invariant
under reparametrisation of y, we first provide a way to measure the regularity of y in
a parametrisation invariant way, and later provide relations to more familiar spaces of
paths (namely paths in C!#).

For a function y: [s, ] — T?, we denote by dlam()/) supu veps 1Y (@) — v (V)]
the diameter of y. We assume throughout this subsection that all functions y : [s, ] — T?
under consideration have diameter at most i.

We call a partition of an interval [s, ¢] a finite collection of subintervals D = {[4;, #i11] |
1€{0,...,n—1}},withfy=s5s<t, <--- < t,_; <, =1 and we write D([s, {]) for the set
of all partitions. For a function y : [s, {] — T? and D € D([s, t]), let " be the piecewise
affine interpolation of y along D. Note that if y is piecewise affine, then there exists
D € D([s, t]) and elements £; = (x;, v;) € X such that, for u € [#, t;1,], one has y(u) =
X+ vi(u—4) /(b1 — ). A(y) is then canonically defined by A(y) = ). A(¢,). (This is
independent of the choice of 4 and £; parametrising y.)

Definition 3.15. — Let A € Q and y : [0, 1] — T?. We say that A extends to y if the

limit
3.9) (= Jlim AP Tio.0)

exists for all t € [0, 1], where D € D([0, 1]) and |D| maxabeD|b—a|
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The following definition provides a convenient, parametrisation invariant way to
determine if a given A € Q2 extends to .

Definition 3.16. — Let y : [0, 11 — T? be a function. The triangle process associated to
y is defined to be the function P defined on [0, 11, taking values in the set of triangles, such that P, is

the triangle formed by (y (s), y (u), y (1)).
For two functions y, v : [0, 11 — T2, and a subinterval [s, t] C [0, 11, define

.5 def P (12
|y9 y|[s,t] = sup |Psut7 Psutl / s

u€els,t]

where P, P are the triangle processes associated to y, v respectively. For o € [0, 11, define further

- def .o
[V Vlwn = sup Z lv; V|[a,b1 .
DeD([s.1) 1, 71eD

def - - . .
We denote |V |a:is.0 = |V ¥V la:1s.0) Where v 1s any constant path. We drop the reference to the interval
[s, t] whenever [s, t] =[O0, 1].

We note the following basic properties of |-; -|,:

e |5 |, 1s symmetric and satisfies the triangle inequality but defines only a pseudo-
metric rather than a metric since any two affine paths are at distance 0 from each
other.

e The map a > |y; 7|4 is decreasing in « for any y, y: [0, 1] — T=.

e For a typical smooth curve, |P,,| is of order |t — s|* (cf. (3.13) below). It follows that
|y e < 00 for all smooth y : [0, 1] — T? if and only if @ > %

Recall (see, e.g., [FV10, Def.1.6]) that a control is a continuous, super-additive func-
tion w: {(s,¢) |0 <s <t <1} = Ry such that w(¢, ) = 0. Here super-additivity means
that w(s, t) + w(t, u) < w(s, u) for any s <t <u.

Lemma 3.17. — Let y, 7 € C([0, 11, T2) such that |y; 7o < 00. Then w: (s, 1) >
V5 ¥ la: (5.1 15 @ control.

The proof of Lemma 3.17 follows in the same way as the more classical statement
that (s, ?) |)/|§_Var;[m] is a control, see e.g. the proof of [FV10, Prop. 5.8] (note that
continuity is the only subtle part).

Theorem3.18. — Let 0O <o < o < 1 and denote 6 d=efc_¥/ot. Let A € Q with |Alggym < 00
and y € C([0, 1], T?) such that |y |, < 00. Then A extends to y and for any partition D of [0, 1]

(3.10) IAG®) = AN < 20O Alagm D 1Vl -

[s,£]1€D
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where ¢ is the classical Riemann zeta function. Let y € C([0, 11, T?) be another path such that
V1o < 00. Then

(3.11) IA(Y) — AP < JAWE) — AWD)| 4+ 2°2(O) | Algesyml v 715,
where £, € € X are the line segments connecting y (0), y (1) and y (0), y (1) respectively.
Progof — Define w (s, 1) o |5 ¥ la:5.0, which we note is a control by Lemma 3.17.

Let D be a partition of [0, 1]. We will apply Young’s partition coarsening argument to
show that

(3.12) IA(YP) — AP < |AW) — AW + |y 712272 (0)|Algym -

Let n denote the number of points in D. If n = 2, then the claim is obvious. If n > 3,
then by superadditivity of @ there exist two adjacent subintervals [s, ], [«, ] € D such
that w(s, 1) < 2w (0, 1)/(n—1). Let P, P denote the triangle process associated with y, y
respectively. Observe that

|A(8P5ut) - A(al_)sut)| = |)’» )7|ﬁ’;]|A|&-sym = C()(S, t)9|A|&-sym
< Qw(0, 1)/(n = 1)|Algsym -

Merging the intervals [s, ], [, ] € D into [s, ¢] yields a coarser partition D’ and we see
that

AP —AGD) — (A®) —AG))| = IA@P,) — ABP,,)|
< 2w(0, 1)/(n = 1)?|Al-sym -

Proceeding inductively, we obtain (3.12). It remains only to show that (3.9) exists for t = 1
and satisfies (3.10). By Lemma 3.17, we have

lim sup Y [0, =0.

#70Dl<e oD

Observe that if D’ is a refinement of D, then we can apply the uniform bound (3.12) to
every [s, ] € D to obtain

AG") = AW < 2°00) Alsagm Y 17 1opon -

[s,t]leD

from which the existence of (3.9) and the bound (3.10) follow. U

For a metric space (X, ) and p € [1, 00), recall that the p-variation |x|,..,, of a path
x: [0, 1] = X is given by

p def
Wl = sup Y d(x(s), %))
DeDA0.1D) |, jep
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Our interest in p-variation stems from the Young integral [You36, Lyo94, FH20] which
ensures that ODEs driven by finite p-variation paths are well-defined.

Corollary 3.19. —Let 0 <a <a <1, n € (0,1], and p > % Consider y €
C([0, 11, T?) with |y |, < 00 and A € Q with |Alg-sym + |Aly-ge < 00. Then

alrvar < AL 1¥ Dy & 2742 @ /00) | Al ¥ 17
Proof. — Yor any [s, ¢{] C [0, 1], (3.11) implies that

YA = 7aO)] < AL gly () — YOI + 27 (@/0) | Algagml ¥ I

from which the conclusion follows by Minkowski’s inequality. O

The following result provides a convenient (now parametrisation dependent) way
to control the quantity |y; 7 |s. For B € [0, 1], let C'#([0, 1], T?) denote the space of dif-
ferentiable functions y : [0, 1] — T2 with y € C?. Recall that | - |, denotes the supremum
norm.

Proposition 3.20. — There exists C > 0 such that for all o € [%, 1, B € [g — 2,11, and

K € [gis 1 and y, 7 € CH([0, 11, T%), it holds that

- . B . B P - 1=k /2
V5 7l = C[(7 1o 171 (7 g0 + 17 iy = 71|

Proof. — Let P, P denote the triangle process associated to y, y respectively. For
0<s<u<t<1,observe that

y@ (0~ 2y y o)

(3.13) [Pl < [y () =y ()]
|t = s

) 1 u t . .
§|f—5||)’|oo‘m/ / ly (r) — y(¢@)|dgdr

2 . .
<1t = s"P1Y ool ¥ lptror -

Furthermore,

IPos; Pl S D (17 () =y DI+ 17(9) — 7 (D)
e

X (Y@ =v@I+ly®) =y»D,

where the sum is over all 2-subsets {¢, 7} of {s, u, ¢}, whence

(3.14) Poss Boal S 1= 5117 |oo + 17 1o0) 1Y = Voo
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Interpolating between (3.13) and (3.14), we have for any « € [0, 1]
Pouss Pul S (19 loo + 17 1o (P |t + ¥ [pna) [t = 5|44y — I 10%

The conclusion follows by taking x > a(21_+a,3) sothata(l +k + Bk)/2 > 1. U

We end this subsection with a result on the continuity in p-variation of y, jointly
in (A, y) € Q, x C#([0, 11, T?). For B € [0, 1], a ball in C"# is any set of the form

{y €CYP((0, 11, %) | 1P loo + 17 |pmar < R}

for some R > 0.

Proposition 3.21. — Let a € (%, 1], p > é, and B € (% — 2, 1]. There exists § > 0 such
that for all A, A € Qg

|)/A - ?A|p—var SJ |A - AA|O& + |A|a|y - )7|io

uniformly over v, y in balls of C*P.

Progf. — Note that |y|i.. is trivially bounded by |y |w. Furthermore, for a €
[%, 1], it follows from Proposition 3.20 that |y |4 is uniformly bounded on balls in C'#
with B = ﬁ — 2. As a consequence (using that 8 > é — 2), it follows from Corollary 3.19
that |)/A|$ < |A|, uniformly on balls in C!*.

-var ~v

On the other hand, by (3.11) and Proposition 3.20 (using again that g > % —2),
there exists &€ > 0 such that |y — Yaloo S [Algly — 715, uniformly over balls in ChP.
Applying the interpolation estimate for p > i and x: [0, 1] = E

L 1—L
¥l pvar < (%] 140) 7 2lxloe)
it follows that for some § > 0
- — 15
1Va = Valpvar S 1ALy — V1%

uniformly on balls in C'#.
Finally, it follows again from Corollary 3.19 and Proposition 3.20 that

|yA - yA|$-\rar = |yA—A|$-Var 5 |A - Alot

uniformly over balls in C'*#, from which the conclusion follows. UJ
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3.3. Closure of smooth 1-forms

def

Recall that QC = QC(T?, E) denotes the Banach space of continuous E-valued
1-forms. Following Remark 3.2, there exists a canonical map

(3.15) 1: QC — sZl-gr
defined by

~ 1 2
1A(x, V) d:*f > A+ wyvde,
0 =1

which is injective and satisfies [tAl g < |Aloo.

Definition 3.22. — For o € [0, 11, let Q) and 2., - denote the closure of 1(QQC™) in Q2
and S24g, Tespectively.

Remark 3.23. — Recalling notation from Section 1.5, it is easy to see that 1 embeds
QC*? and QC"*/* continuously into €2, and €2, respectively (and that the exponent o/2
is sharp in the sense that QC? and QC"# do not embed into €2, and 2! for any B < «/2).

Remark 3.24. — Note that since any element of QC* can be approximated by
a trigonometric polynomial with rational coefficients, 2| is a separable Banach space
whenever E 1s separable.

We now construct a continuous, linear map 7 : Q4. — QC*! which is a left
inverse to 1. Consider o € (0, 1] and A € .. For z € T?,i€{l,2} and ¢ € R, we then

set X5(¢) défA(.z, te;) (which is well-defined by the additivity of A even when ¢ > 1/4). Note
also that |X7|g-tst < [Alser by Lemma 3.14. In a similar way, for ¥ € C 1(T?), consider

Y: € C'([0, 11, R) given by Y:(¢) o Y (z + te;). We then define the E-valued distribution
m:A € D'(T? E) by

1
(rA, g f / Vi dXE(0) dz,
P; JO

where the inner integral is in the Young sense and P; = {z € [0, 1)? : z; = 0}. Combining
the components yields the linear map .

One can show that [T Algee-1 S |Alggr (see [Chel9, Prop. 3.21]) and that 7 is a left
inverse of 1 in the sense that, for all A € QC, m(1A) = A as distributions. Furthermore,
we see that 77 1s injective on Ql . and one has a direct way to recover A € Q! o from A
through mollifier appr0x1mat10ns (see also Proposition 4.6). In particular, we Can identify
Q! . (and a fortiori ©2}) with a subspace of QC*~!.

agr
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Proposition 3.25. — Let o € (0, 1) and A € Q) . Then A is a continuous function on X,

a-gr®
and

(3.16) lim sup |£]*|A(£)| = 0.

E=Ue|<e

Proof — Let A€ Q}x_gr and § > 0. Consider a sequence (A"),>1 in QC* such that
lim,_, o [tA" — Alyr = 0 and define functions B": X — E by

o 1127 *1A" (2 if |£] > 0,
Bi(0) & [€]~*1A"(£) 1||>.
otherwise.

We define B: X — E in the same way with 1A" replaced by A. Observe that, since

A" € QC*, B" is a continuous function on X'. Furthermore, lim,_, o [t1A" — Aly. = 0 is
equivalent to

lim sup |B"(¢) — B(£)| = 0.

n—)OOeeX

Hence B is continuous on &, from which continuity of A and (3.16) follow. U

3.4. Gauge transformations

For the remainder of the section, we fix a compact Lie group G with Lie algebra g.
We equip g with an arbitrary norm and henceforth take E = g as our Banach space. Since
G is compact, we can assume without loss of generality that G (resp. g) is a Lie subgroup
of unitary matrices (resp. Lie subalgebra of anti-Hermitian matrices), so that both G and
g are embedded in some normed linear space I of matrices. When we write expressions
of the form |g — 4| with g, & € G, we implicitly identify them in F and interpret | - | as the
norm of F. Different choices of unitary representation yield equivalent distances, so the
precise choice is unimportant. For ¢ € G, we denote by Ad,: g — g the adjoint action
Ad,(X) =gXg .

For a € [0, 1] and a function g: T? — F, recall the definition of the seminorm
|gle-n1sl and norm |g|. We denote by & the subset C* (T2, G), which we note is a topo-
logical group.

Defimation 3.26. — Let o € (0, 1], A € Qyqr, B € (%, 1Jwitha + B > 1, and g € &P.
Define A¢ € Q2 by

def

1
AL & / (Adyesmy dea(®) — [dgr+ )¢ e+ )

0
where £ = (x,v) € X, and where both terms make sense as g-valued Young integrals since ¢ + B > 1
and B > % In the case o0 > %, for A, A € Qg we write A ~ A if there exists g € B such that

2
As=A.
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Note that, in the case that A is a continuous 1-form and g is C', we have d€, (1) =
A(x + tv)(v) d¢, hence

Af(x) = AdAw) — [de g™ (),

as one expects from interpreting A as a connection. However, in the interpretation of A
as a 1-form, the more natural map is A = A¢ — 0%, which is linear and makes sense for
any B € (0, 1] such that o + 8 > 1 (here 0 is an element of €2,.,, and, despite the notation,
(¢ is in general non-zero).

The main result of this subsection is the following

Theorem 3.27. — Let B € (%, 1] and ¢ € (0, 1] such that « + g > 1 and % + 8> 1.
Then the map (A, g) — A¢ is a continuous map from Q2 X &P (resp. Qg x &P ) into Qorp
(resp. 2 np-gr) and 1s furthermore uniformly continuous on every ball. If a < B, then this map defines a
left-group action, i.e., (A")¢ = A%",

We give the proof of Theorem 3.27 at the end of this subsection. We begin by
analysing the case A = 0.

Proposition 3.28. — Let o € (%, 1] and g € &%, Then |0%|y < |gla-tisr V 1212 g1 where
the proportionality constant depends only on .

For the proof of Proposition 3.28, we require several lemmas.

Lemma 3.29. — Let a € [0, 1], g € &%, and £ = (x, v), 0= (x,7) € X forming a vee.
Consider the path £,: [0, 11 — G giwen by £,(t) = g(x + tv), and simularly for £,. Then

<3°17> |£g|a—Ho‘l S |£|a|g|a—Ho‘1
and
<3°18> wg - Egla/?—Ht’)l S |g|a—Hi)'lArea(€a E)a/Q

Jor a unwversal proportionality constant.

Progf. — We have |€,(1) —£,(5)| < |gla-no1lt — 5" |€]*, which proves (3.17). For (3.18),
we have

1€4(5) = £,() = Lo(D) + €,()| < Iglamaa[ (26716 = E41%) A (|2 = 51[€])]

S 2|gle-nollt — 5|“* Area(e, 0“2,

where in the second inequality we used interpolation and the fact that Area(?, 0) =
1€y — £/]1€]. 0J
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Lemma 3.30. — Let a € (%, 1] and g € &*. Then |0%|ggr S |¢la-tis1 V \g12 1> where the
proportionality constant depends only on o.

Proof — Let £ = (x,v) € X. Then by (3.17) and Young’s estimate

1
[05(O)] = / dglx+ 1) g (v 4 )| S (1 4 Igla-ranl €1) 1€]* g a-11on »
0

which implies the claim. O

Lemma 3.31. — Leta € (%, 1] and g € &*. Then |04|gee S 1¢le-tol V |g|§_H61, where the
proportionality constant depends only on o.

Progof — Let € = (x, v), £ =(x,7) € X form a vee. Then, denoting Y, dzefg*1 (x +
), Y, d:efg_l (x+ tv), and X, d:efg(x + ), X, gg(x + tv), we have

1 1
|0§<6>—0g<£)|=\/ Y;dxz—/ ¥,dX,
0 0

1 1
= f (Y, —Y)dX,| + / Y, dX, - X)|.
0 0

Using (3.18), (3.17), Young’s estimate, and the fact that Y, = Y, we have

1
/ (Y, = Y) dXi| S 1Y = Yayomo Xla-tor
0

< lglanaArea(t, )"

and
1 - - - -
[ 940 = X0] £ 0 W)X = Koo
0
S (14 1€1%|glonan) gla-naArea(e, O

thus concluding the proof. U

Proof of Proposition 3.28. — Combining the equivalence of norms | - |, X |+ [qqr +
|+ |gvee from Theorem 3.11 with Lemmas 3.30 and 3.31 yields the proof. ]

For the lemmas which follow, recall that the quantity A¢ — 0¥ makes sense for all
A€ Qqqandge &* provided that o, B8 € (0, 1] with @ + 8 > 1.
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Lemma 3.32. — Leta, B € (0, 1] such that o + B > 1, A € Qg and g € &P, Then
(3.19) |AS = 0f = Alagr S (I = oo + lglp-r60) [Alacgr »

where the proportionality constant depends only on o and .

Proof — Let £ = (x,v) € X, A € Q, and g: T*> - G. Using notation from
Lemma 3.29, note that

I
(3.20) (A* =0 =A)®) :/ (Adg,y — 1) da(?) .
0
Using (3.7), (3.17), and Young’s estimate, we obtain
[A() = 0(0) = A S (lg = oo + €17 gl st 1€1 [ Al

which proves (3.19). UJ

Lemma 3.33. — Let a, B € (0, 1] such that g +a>1 and % +B8>1,A€ R, and
2€ 6P Then

(3.21) JAS — 0F — Algapaee S (lg — oo + 1l gnan) Al

where the proportionality constant depends only on ¢ and B.

Proof. — Let £, £ € X form a vee. Recall the identity (3.20). By (3.7), (3.18), and
Young’s estimate (since g + o > 1), we have

1
[ ) = Adg ) e )] S lelpmaseatt, D17 Al
0

Similarly, using (3.7), (3.17), and Young’s estimate (since 8 + § > 1), we have

1
[ g = Daeao - G
0
S (g = U + Iglpnal )| AluArea(e, D

Note that the integrals on the lefi-hand sides of the previous two bounds add to (A* —
0¥ —A)(l) — (A* — 0¥ — A)(¥), from which (3.21) follows. 0J

Proof of Theorem 3.27. — The fact that the action of & maps Q. N0 Qyrpgr
follows from Proposition 3.28 and Lemma 3.32. The fact that the action of &# maps
Q, into Q4. follows by combining the equivalence of norms | - |¢ < | -+ |g-gr + | * la-vee
from Theorem 3.11 with Proposition 3.28 and Lemmas 3.32 and 3.33. The fact that



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

(A, @) = A is uniformly continuous on any given ball in 2, X &P (resp. Q, x BF)
follows from writing

1

A —B'=((A=B)" —0"— (A—B)) — (A" — 0"
+(A—B)

— A¥) — ok

and noting that, again by Proposition 3.28 and Lemma 3.32, the | - |4, norm of all four
terms is of order

|A — Blonger + lhg ™ amor + 1hg ™" — 1o

uniformly over all (A, g), (B, %) in the given ball (similarly for the | - |, norm using
Lemma 3.33). Finally, if @ < B, the fact that A#" = (A")¢ follows from the identity

d(gh) ()" = (g™ +Ad [ i'].

Combining all of these claims completes the proof. 0

3.5. Holonomaes and recovering gauge transformations

The main result of this subsection, Proposition 3.35, provides a way to recover
the gauge transformation that transforms between gauge equivalent elements of €2 ;.
This result can be seen as a version of [Sen92, Prop. 2.1.2] for the non-smooth case (see
also [LNO6, Lem. 3]).

Letusfixa € (%, 1] throughout this subsection. For £ € X and A € Q_,, the ODE

d(@) =y s,  O0)=1,

admits a unique solution y: [0, 1] — G as a Young integral (thanks to Lemma 3.14).

Furthermore, the map £, > y is locally Lipschitz when both sides are equipped with

| - la-noi- We define the holonomy of A along £ as hol(A, ¢) défy(l). As usual, we extend

the definition hol(A, y) to any piecewise affine path y : [0, 1] — T? by taking the ordered
product of the holonomies along individual line segments.

Remark 3.34. — Recall from item (i) of Theorem 2.1 that, provided o € (%, 1] and
B e (% — 2, 1], the holonomy hol(A, y) is well-defined for all paths y piecewise in C'#
(rather than only piecewise affine) and all A € Q..

For any g € % and any piecewise affine path y, note the familiar identity

(3.22) hol(A%, y) = g(y (0)) hol(A, y) g(y (1)) " .

For x, y € T?, let L,, denote the set of piecewise affine paths y : [0, 11— T? with ¥ (0) = x
and y (1) =).
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Proposition 3.35. — Let o € (é, 1 and A, A € Q.. Then the following are equivalent:
(i) A~A.
(ii) there exists x € T? and gy € G such that hol(A, y) = gohol(A, y)g, ' forall y € L.,.
(iii) for every x € T? there exists g, € G such that hol(A, y) = ghol(A, y)g~! forall y € L.

Furthermore, if (1) holds, then there exists a unique g € &% such that g(x) = gy and A = A. The
element g 1s determined by

(3.23) 2(») =hol(A, Yo) gohol(A, ) ,

where 'y, is any element of L., and satisfies

s

(3‘24) |g|a—Hf>1 5 |A|a—gr + |A|Ot—gr .

Progf. — The implication (1) = (ii1) is clear from (3.22) and the implication
(111) = (11) 1s trivial. Hence suppose (i1) holds. Let us define g(y) using (3.23), which we
note does not depend on the choice of path y,, € £,,. Then one can readily verify the
bound (3.24) and that A* = A, which proves (1). The fact that g is the unique element in
®¢ such that g(x) = g and A = A follows again from (3.22). O

3.6. The orbit space

We define and study in this subsection the space of gauge orbits of the Banach
space ). Let &% denote the closure of C*(T?, G) in B“. The following is a simple
corollary of Theorem 3.27.

Corollary 3.36. — Let a € (é, 1]. Then (A, g) = A is a continuous left group action of
B op Qé and on Qé_gr.
Proof — Tt holds that A¢ € 1QC> whenever A € 1QC™ and g € C*(T?, G). The
conclusion follows from Theorem 3.27 by continuity of (A, g) — Af. U

We are now ready to define our desired space of orbits.

Defination 3.37. — For o € (%, 11, let Oy, denote the space of orbits QL /S equipped

with the quotient topology. For every A € QL, let Oy > [Al o {AS : g€ &} C QL denote the

corresponding gauge orbit. We likewise define O g Lol /&%,

a—gr

We next show that the restriction to the subgroup & is natural in the sense that
&% is precisely the stabiliser of € and Q;_gr. For this, we use the following version of
the standard fact that the closure of smooth functions yield the “little Holder” spaces.

Lemma 3.38. — For a € (0, 1), one has g € 8" if and only if lim,_ SUP|_)| < |x —
I g(x) =g =0.
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We then have the following general statement.
Proposition 3.39. — Let o € (%, 1] and A € Q;_gr. Suppose that A € Qé_grfor some g €
&%, Then g € &,

Proof. — Suppose first o € (%, 1). Then by Proposition 3.25,

(3.25) lim sup AOI+IAOL_,

e=041 <5 €]«

Combining (3.25) with the expression for g in (3.23), we conclude that g € &% by
Lemma 3.38. Suppose now o = 1. Then Q%_gr =QC and 8" = {g e &' : dg € C}.
Furthermore (dg)g™' = Ad,A — A¢, from which continuity of dg follows. 0J

In general, the quotient of a Polish space by the continuous action of a Polish group
has no nice properties. In the remainder of this subsection, we show that the space O,
for o € (%, 1) 1s itself a Polish space and we exhibit a metric D, for its topology. We first
show that these orbits are very well behaved in the following sense.

Lemma 3.40. — Let o € (%, 11. For every A € Q. (resp. A € Q(L_gr), the gauge orbit [A] s
closed in Q. (resp. Qé_gr).

Progf — Since 2] is a separable Banach space, it suffices to show that, for every
Be Qi and any sequence A, € [B] such that A, = A'in Qé, one has A € [B]. Since the A,
are uniformly bounded, the corresponding gauge transformations g, such that A, = B
are uniformly bounded in &% by (3.24). Since &* C &# compactly for B < &, we can
assume modulo passing to a subsequence that g, — g in &”, which implies that A = B?
by Theorem 3.27. Since however we know that A € @}, we conclude that g € "¢ by
Proposition 3.39, so that A € [B] as required. The proof for €]

a-gr 18 the same. U
In the next step, we introduce a complete metric &, on €2} which generates the
same topology as | - |4, but shrinks distances at infinity so that, for large r, points on the
sphere with radius r are close to each other but such that the spheres with radii » and
2r are still far apart. We then define the metric D, on 9, as the Hausdorff distance
associated with £,.
Until the end of the section, let (O, | - ||) be a Banach space.

Definition 3.41. — For A, B € O, set

of |[|A]l — ||B 1
ke py = DAL (5 pya,
(IAT A 1B + 1
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and define the metric

(3.26) kA, B) ¥ inf, > K(Zi1. Z)) .
=1

2oy,

where the inf is over all finite sequences 2y, . . ., 2., € O with 7o = A and 7., = B.

Note that

1
(3.27) HAB) KA B) = —

for all A, B in the sphere

def

S, ={CeQ:|C|=r}.
On the other hand, for 7,7 > 0,if A €S, and B € S,,, then

|1 — 7o
7’1/\7’2—|—l ’

and if » > 0 and A, B are in the ball

(3.28) K(A, B) >

def

B,={CeO:|C| =<},
then
IA—B| Al
r+1 )
Lemma 3.42. — If A €S, and B € S, for some r, h > 0, then

(3.29) K(A, B) >

h
KA.B) > 1 (1 —)
( )z log +r+1

def

n n

Proof. — Consider a sequence Zo =A,Z,...,7Z, =B and let r, = ||Z;||. Then
Xn:K(ZH, 7)) > Zm > Z
i - TZ‘/\TZ‘_1+1 - .

V-] 1
/ 7 dux
i=1 =1 Y7iNi-1 X+

e r+h+1
> dx:log(—).
. ox+1 r+1

where in the first bound we used (3.28). OJ

Proposition 3.43. — The metric space (O, k) is complete and k metrises the same topology as
-1
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Proof. — It 1s obvious that £ is weaker than the metric induced by | - ||. On the
other hand, if A, 1s a £-Cauchy sequence, then sup ||A, || < 00 by Lemma 3.42. It readily
follows from (3.29) that £(A,, A) — 0 and ||A — A, || = 0 for some A € O. [

We now apply the above construction with O = Q! and O = Q! and denote the

D{—gr
corresponding metric by &, and k., respectively.

Definition 3.44. — Let o € (%, 1]. We denote by Dy, (resp. Dy.gr) the Hausdorff distance on
Oy (resp. Og-gr) associated with ky (1esp. ky-g.).

Theorem 3.45. — Let o € (%, 1]. The metric space (O, Dy) is complete and D, metrises
the quotient topology on O . In particular, O is a Polish space. The same holds for (Og.-gr, Do-gr)-

We prove Theorem 3.45 only for (9, D,); the proof for (Da_gr, Dy.gr) 1s exactly
the same.

Lemma 3.46. — Leta € (%, 1] and x € Oy. Then for all r > infc, |Al, there exists A € x
with |Alg = 7.

Progf — For any A € Q/, from the identity (3.22), we can readily construct a con-
tinuous function g: [0, 00) — &% such that g(0) = 1 and lim,_,, |A¢?”|, = co. The
conclusion follows by continuity of g — |A#|, (Corollary 3.36). UJ

Lemma 3.47. — Suppose o € (%, 1] and k, (A,, A) — 0. Then D, ([A], [A,]) — 0.

Proof. — Consider € > 0. Observe that (3.27), the fact that sup, |A,|l, < 00 by
Lemma 3.42, and Lemma 3.46 together imply that there exists » > 0 sufficiently large
such that the Hausdorfl distance for £, between [A,] N (Qé \ B,) and [A] N (Qé \ B,)
is at most ¢ for all n sufficiently large. On the other hand, for any r > 0, g € %%, and
X,Y € Q! such that X, X¢ € B, it follows from Lemmas 3.32 and 3.33 and the identity

XE—YV=((X=Y)—0—(X=Y))+X-Y)
that

X = Yo S (1 + Iglano) X — Yo
where |glo-na S 7 due to (3.24). It follows that

sup Inf A4 (X, Y)4+ sup inf £ (X,Y)— 0,

Xe[A,]nBy, YEIA] Xe[A]nBy, YElA]

which concludes the proof. H
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Lemma 3.48. — Let a € (%, 1] and suppose that [A,] s a Dy -Cauchy sequence. Then there
exist B € Q é and representatives B, € [A,] such that k,(B,, B) — 0.

Progf. — We can assume that A, are “almost minimal” representatives of [A,] in
the sense that |A, |, < 1 4+ infyegox [Af],. By Lemma 3.42 and the definition of the Haus-
dorff distance, we see that sup,., |A,|, < 00, from which it is easy to extract a k,-Cauchy
sequence B, € [A,]. - O

Proof of Theorem 3.45. — Since every x € 9, is closed by Lemma 3.40, D, (x, ) =0
ifand only if ¥ = y. The facts that D, is a complete metric and that it metrises the quotient
topology both follow from Lemmas 3.47 and 3.48. U

4. Stochastic heat equation

We investigate in this section the regularity of the stochastic heat equation (which
is the “rough part” of the SYM) with respect to the spaces introduced in Section 3. For
the remainder of the article, we will focus on the space of “1-forms” ..

4.1. Regularising operators

The main result of this subsection, Proposition 4.1, provides a convenient way to
extend regularising properties of an operator K to the spaces €2.. This will be particularly
helpful in deriving Schauder estimates and controlling the effect of mollifiers (Corollar-
ies 4.2 and 4.4).

Let E be a Banach space throughout this subsection, and consider a linear map
K: C®(T? E) — C(T? E). We denote also by K the linear map K: QC® — QC ob-

tained by componentwise extension. We denote by K: 1QC® — 1QC the natural “lift”
of K given by K(ZA) “, (KA). We say that K is translation invariant if K commutes with

all translation operators T, : f + f(- 4+ v). For 6 > 0, we denote

IKerp = sup{IK (oo [ £ € C(T2E) , |fler =1} .

In general, for normed spaces X, Y and a linear map K: D(K) = Y, where D(K) C X
we denote

Klxoy = sup{|K(®)|y | x € DK), [xlx =1}.

If D(K) 1s dense in X, then K does of course extend uniquely to all of X if |K|x_y < 00.
The reason for this setting is that it will be convenient to consider D(K) as fixed and to
allow X to vary.
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Proposition 4.1, — Let 0 <@ <a < 1. Let K: C*(T? E) — C(T?, E) be a translation
imvariant linear map. Then

(4.1) Klgi o S IKlew-an i -
Furthermore, if @ € %, a], then for all A € 1QC>

(4.2) KA g S IK]gaa oo | A0/ A |0/

o-gr

The proportionality constants in both inequalities are universal.

Proof. — We suppose that |[K|ce-a_,10 < 00, as otherwise there is nothing to prove.
Let A € QC® and observe that, for (x, v) € X,

1 1 1
/ (KA)(x+tv)dt = f T, (KA)(x)dt = f K[T,A;](x) d¢
0 0 0

:K[folTwAidt](x) :K[/OIAZ«C + ) dt](x),

where we used translation invariance of K in the second equality, and the boundedness
of K in the third equality. In particular, it follows from the definition of 1 : QC — € that

(4.3) K@A) (x, v) = KIA(, v)](x) .
We will first prove (4.2). We claim that for any 6 € [0, 1]

(4.4) LAC, v)|cown S AL EALLE o> 072

ot—gr

for a universal proportionality constant. Indeed, note that [tA(x, V)]s < [tA|gg|V]*
which is bounded above by the right-hand side of (4.4) for any 6 € [0, 1]. Furthermore,
we have for all x, y € T?

(4.5) LACx, v) = 1AQ, V)| S (1AL v x =P ] A [l1Alagelv]*]

for a universal proportionality constant, from which (4.4) follows by interpolation. If o €
[, ], then we can take 6 = 2(e — @)/« in (4.4) and combine with (4.3) to obtain (4.2).
We now prove (4.1). Consider £ = (x, v), 0= 10)eX.If €, are far, then the

necessary estimate follows from (4.2). Hence, suppose £, £ are not far. Consider the func-

tion W € C*(T?, E) given by W (») (glA(y, v) —1A(y+ x — x, v). Note that (4.3) implies

(4.6) (K¥)(x) = K(1A)(£) — KGA) (@) .
We claim that for any 0 € [0, 1]

(4.7) Wcwr S [Alelv[*?o (€, ).
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Indeed, note that |V, < |Al0¥, £)*, which is bounded above (up to a universal con-
stant) by the right-hand side of (4.7) for any 6 € [0, 1]. Furthermore, since (y, v), (y +x —
x, D) are also not far for every y € T?, and since |v| < | 9|, we have

(4.8) V() — W) =IAQ,v) =A@ +x—x,0) — Az, V) + Az + X — x, D)
S1AL[e, O% A (v [y — 21*7%)]

for a universal proportionality constant, from which (4.7) follows by interpolation. Taking
0 =% & a=a(l —0)in (4.7) and combining with (4.6) proves (4.1). O

As a consequence of Proposition 4.1, any linear map K: C*(T?, E) — C(T? E)
with |K|¢e-a/2_,100 < 00 uniquely determines a bounded linear map K: Q! — Q! which
intertwines with K through the embedding 1: QC — . The same applies to Qi_gr —
Qé_gr if |K|jeo 10 < 00. In the sequel, we will denote K by the same symbol K without
further notice.

We give two useful corollaries of Proposition 4.1. For ¢ > 0, let ¢* denote the heat

semigroup acting on C*(T?, E).
Corollary 4.2. — Let 0 <o <a < 1. Then for all A € QL, 1t holds that
4.9) (¢ — DAl S 1A,

where the proportionality constant depends only on ¢ — a.

Progf. — Recall the classical estimate for « € [0, 1]
(¢ = Dleesie < (¢ = Deeni e S 77

The claim then follows from (4.1) by taking k = (¢ — a) /2. O

Remark 4.3. — The appearance of #“ /% in (4.9) may seem unusual since one
instead has #~®/2 in the classical Schauder estimates for the Holder norm | - |¢«. The
exponent (o — a)/4 is however sharp (which can be seen by looking at the Fourier basis),
and is consistent with the embedding of C*/? into 2, (Remark 3.23).

Corollary 4.4. — Let 0 <& <a < | and k € [0, 1]. Let x be a mollifier on R x R* and
consider a_function A: R — QL. Then for any interval 1 C R

sup (" *A) (0 = ADla S [l (272 sup AN + 6™ |Aleemig, )

el telg

where 1, is the &* fattening of 1, and the proportionality constant is universal.
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Progf. — Yor ¢t € R define m(t) o fTQ x°(t, x) dx and denote by x°(¢) the convo-

lution operator [x*()f1(x) & (x*(t, x — ), f()) for f € D'(T2). Observe that for any
0e[0,1]

Im()f — x*()f lie < 80|X8(f, e |f |cosoerey -

In particular, |m(t) — x*(¢)|ce-a2n_ 100 < @2 x4(¢, ) |L1¢r2). Hence, for any ¢ € 1,
|(x* %A —AWD)]a = /Rl(Xg(S) — m()A{ — 5)|gds
+ /R [m(s)(A(t —5) — A(D)|a ds
5/ X5 e P A = 5) o ds
R

+/ [m() ||| Aleenoq, oz ds
R

—a)/2
= |X|L18(a @/ sup |A(0) | + 82K|X|L1 [Alceno, )

telg

where we used (4.1) in the second inequality. U

Another useful property is that the heat semigroup is strongly continuous on ..
To show this, we need the following lemma. For a function w: R, — Ry, let C*(T? E)
denote the space of continuous functions /: T? — E with

fleo & su @ —fol _

Lemma 4.5. — Let e € (0, 1] and K: C°*°(T?, E) — C(T?, E) be a translation invariant
linear map with |K|px_ 100 < 00. Let A € QL and w: Ry — Ry, and suppose that for all x,y €
TQ, v, Ve B1/4, and h € RQ,

(4.10) |A(x, v) — AW, V)| < [Ala-g [V @ (Jx —])
and
(4.11) IA(x, v) = A(x+ h, D) — A, v) + AQ + b, D)| < |Algo (€, D*w(|lx =),

where £ = (x,v) and £ = (x + h, 0). Then
|KAlggr < [K|coor0[Algg and KAl < [Kleosro|Aly -

Proof. — The proof is essentially the same as that of Proposition 4.1; one simply
replaces (4.5) by (4.10) and (4.8) by (4.11). UJ
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Proposition 4.6. — Let o € (0, 11. The heat semigroup ¢ is strongly continuous on 2. o
and ..

Progf. — Observe that for every A € 1QC* there exists a bounded modulus of
continuity @: Ry — R} such that (4.10) and (4.11) hold. On the other hand, recall that
for every bounded modulus of continuity w: Ry — Ry

lim |€tA — 1|C“’—>L°° =0.
t—0

It follows from Lemma 4.5 that lim,_, |¢2A — Alggr = 0 for every A € QC*, and the

same for the norm | - |4, from which the conclusion follows by density of 1 2C* in Qé .

and Qé O

4.2. Kolmogorov bound

In this subsection, let & be a g-valued Gaussian random distribution on R x T?.
We assume that there exists C¢ > 0 such that

(4.12) E[|(£, )] < Celol o moer,

for all smooth compactly supported ¢: R x T? — g. Let &, & be two i.i.d. copies of &,
and let ¥ = Z?:l W, dy; solve the stochastic heat equation (9, — A)¥ = Zf:l & dx; on
R, x T? with initial condition (¥ (0) € Qé

Lemma 4.7. — Let P be a triangle with inradius h. Let k € (0, 1) and p € [1, k"), and let
WL denote the Sobolev—Slobodeckij space on T2. Then |1plo., S [P0, where the proportionality
constant depends only on k p.

Proof. — Using the definition of Sobolev—Slobodeckij spaces, we have

[1p(x) — L))
115, = / 2 b VT dedy
T

|X y|/cp+2

—Qf/ lx — |72 dxdy

T2\P

< Q/dx/ dy|x — y| 72
p |y—x|>d(x,dP)

< /d(x, oP) " dx

P

1
:/ l{x € P | d(x, dP) < 8}|5*1*K/)d8 )
0
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Note that the integrand is non-zero only if § < £, in which case [{x € p | d(x,dP) < 8}| <
|0P|§, where |dP| denotes the length of the perimeter. Hence, since kp < 1,

h
|lf,|f\m,p ,Sf [0P|8/ds < |0P|A ! < |P|
0
as claimed. O

Lemma 4.8. — Let k € (0, 1) and suppose W (0) = 0. Then_for any triangle P with inradius

E[|W()(@P)[*] < Cel [PIA < Cet“|P|'™,

where the proportionality constant depends only on k.

Proof. — By Stokes’ theorem, we have
(WD (@P)] = [(0:W2 (1) — 0,1 (1), 1) .

Observe that

(01 W (1), 1f>> = —/ 52(5,,)))lse[o,t][e(t_xmal1}3]()’) dsdy-

RxT?

Hence, by (4.12),
t
E[|(,W2(), 1p)°] < Cg/ |01 15], ds .
0

By the estimate |¢2f |12 < 512 |f | i-14¢, we have
2 Lpls 5™ 0 Lploie -

12 ~

Since |0/ |g-1+« < |f |ax, we have by Lemma 4.7
t
E[(0,%,(0), 1)1 < Ce / P s < G P
0

Likewise for the term (9, W, (7), 1), and the conclusion follows from the inequality 7 4* <
|P]. O

Lemma 4.9. — Let £ = (x,v) € X and consider the distribution (8, %) = [} [v|y (x +
tv) dt. Then, for any k € (%, 1),

8¢l S €I,

where the proportionality constant depends only on k.
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Proof. — By rotation and translation invariance, we may assume £ = (0, |£|¢;). For
k= (ki, k) € Z%, we have (8, 27"y = (2701 — 1) /(2miky) if ky # 0 and (8, &%) =
|€] if &, = 0. Hence

|5€|%{K_Z| 2m (1+k2+k2) K

keZ?
SY P AR+ + k)
keZ?
SY P AR+ k)
kel
Splitting the final sum into |£| < |€|~! and |k| > |€|~! yields the desired result. ]

Lemma 4.10. — Let k € (0, %) and suppose W (0) = 0. Then for any £ € X
E[[W () (O] S Cet“le]*~,

where the proportionality constant depends only on k.

Progf: — Observe that W (¢)(£) = Zle [v]~'v; (¥;(9), 8,), where we used the nota-
tion of Lemma 4.9. Furthermore,

(W;(9), ¢) :f ) &(s,y)lé-e[o,t][e(‘_”ASz](y) dsdy.
RxT:
Hence, by (4.12),
{
E[(‘Iji(l‘), 55)2] = Cg/ |€XA5e|i2 ds.
0

The estimate |¢2f]r2 < s% D72|f |- implies |¢€“A5@|i2 < SK_1|84|?_IK,1. Hence, by
Lemma 4.9,

¢
E[(0,0.80°] SCe [ 516 ds S Certlep
0
and the claim follows from the bound ||v|™'v;| < 1. O

Since our “index space” X and “distance” function o are not entirely standard,
we spell out the following Kolmogorov-type criterion.

Lemma 4.11. — Let A be a g-valued stochastic process indexed by X such that, for all joinable
0,0 e X, AL UL) =AW + AW) almost surely. Suppose that there exist p > 1, M > 0, and



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

o € (0, 1] such that for all € € X
E[JA(O)FT =M/,
and for all triangles P
E[JABP)["] < M|P}*/2.

Then there exists a modification of A (which we denote by the same letter) which s a.s. a continuous
Sfunction on X . Furthermore, for every o € (0, o« — %), there exists A > 0, depending only on p, o, o,
such that

E[|A[5] <AM.

Progf. — Observe that for any £, leX, we can write A({) — AQZ) = A@P)) +
A(9Py) + A(a) — A(b), where |P| + [Po| < o(¥, £)? and |a| + | 4| <o, 0 (if ¢, ¢ are far,
then a =¥, b ={, and P|, Py are empty). It follows that for all £, £ € X

(4.13) E[|A(0) — A(O)"] S Mo(L, &)™,

where the proportionality constant depends only on p, @. For N > 1 let Dy denote the set
of line segments in X whose start and end points have dyadic coordinates of scale 27N,
andlet D = Uxs Dy. For 7 > 0, £ € X', define B, (7, K) {E e X | Q(ﬁ £) <r}. From Def-
inition 3.3 and Remark 3.4, we see that for some K > 0, the family {B, (K2~ ,E)}(EDQN
covers X (quite wastefully) for every N > 1. It readily follows, using (3.1), that for any
ae(0,1]

AW) — A0) )P -
4.14) sup ——————— IA®) — AWD) YY) MA@ - AGY.
¢,LeD Q(E Z)ap N>1  abeDoy
0(a,b)<K2N

Observe that |Dox| < 2%V, and thus the second sum has at most 2!'°Y terms. Hence, for
o€ 0,a— %) & 164 p(a —a) < 0, we see from (4.13) that the expectation of the right-
hand side of (4.14) is bounded by A(p, o, @)M. The conclusion readily follows as in the
classical Kolmogorov continuity theorem. U

By equivalence of moments for Gaussian random variables, Lemmas 4.8, 4.10,
and 4.11 yield the following lemma.

Lemma 4.12. — Suppose W (0) = 0. Then for any p > 16, a € (0, 1), and a € (0, o« —
%), there exists G > 0, depending only on p, o, o, such that for all t > 0

E[[¥()f;] < CCP =,
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We are now ready to prove the following continuity theorem.

Theorem 4.13. — Let 0 <a <a < 1, k € (0, %), and suppose V(0) € Q. Then for
allp>1 and any T > 0

W) — W(s)aque
E|: sup M} Slw(0)|a+cé/2

0<s<(<T |t — s|P*
where the proportionality constant depends only on p, o, o, k, T
Progf — Let 0 <s <t <'T and observe that
WD) — () = (8 = DEW(O) + (T — D)+ P,

where U : [0, s] = €25 and U [s, ] = 25 driven by & with zero initial conditions. By
Corollary 4.2,

[ = D WOl Sl = WO, -
Likewise, by Corollary 4.2 and Lemma 4.12, for any 8 > o + 176

E[|(¢/7% = DW()[5] S O — et t=p2,
Finally, by Lemma 4.12, for any g > & + 2

E[[¥ ()51 S C 7l — s/ P72
In conclusion, for all p sufficiently large,

E[[¥(1) — W) 5] S e — s 2 w0y, + ¢ .

The conclusion follows by the classical Kolmogorov continuity criterion. U

Corollary 4.14. — Let x be a mollifier on R x T2, Suppose that & is a g-valued white noise
and denote &° d:Cf)(g * &. Suppose that W(0) = 0 and let V¢ solve (3, — A)W¢ =&° on R, x T?
with zero mitial condition W¢(0) =0. Letax € (0, 1), T > 0, k € (0, l77"‘), and p > 1. Then

1/p
E[ sup [9°0) = wOl,| " S e lxlu

te[0,T]

where the proportionality constant depends only on o, k., 'T', p.

Progf. — Observe that, by Theorem 4.13,

1/p
(4.15) E[ sup |xp(¢)|§] <X

te[0,¢2]
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Furthermore, for any ¢ € L?(R x T?), by Young’s inequality,
E[(5°,9)"1= X" % oI} < lolL X" 1}, -

Hence &° satisfies (4.12) with Cg o | x |il' It follows again by Theorem 4.13 that

1/p
(4.16) E| sup 9701 ] S e xlu -

1e0,62]
It remains to estimate E[sup,¢(,2 |V () — W ()]} ].
Denoting I e, T], observe that by Corollary 4.4, for any & € [«, 1]

1/p
E[sup W (1) — x° % \p(m{;]

tel

) 1/p 1/p
SJ |X |L' {8(“_“)/2E[sup |‘I’(l‘) |§i| + SQKEI]\Dlé,(-HOI(IS’Qm)] } .

telg

Both expectations are finite provided @ < 1, and thus the right-hand side is bounded

above by a multiple of &% x |p..

We now estimate E[sup, |x® * ¥ — W*|’]. Let us denote by 1, the indicator on
the set {(¢,x) € R x T? |t > 0}. Observe that 1 (x * £)(£, x) and x* * (1,.£)(¢ x) both
vanish if < —&? and agree if ¢ > &2, In particular, x* * ¥ and W¢ both solve the (inho-
mogeneous) heat equation on [¢?, 00) x T? with the same source term but with possibly
different initial conditions. To estimate these initial conditions, for s € [—&?, &2], let us de-

note by x°(s) the convolution operator [x°(s)/](x) o (x6(s,x— ), £ () for f € D'(T?).

Observe that
| X5 ()| < pa(s) dZd/z |x° (s, %) du,
-
and thus | x“()Aly S w(s)|Al, for any A € Q, by (4.1). Hence

E[|x**W(e)[L]/ = EH / X (W (e” — ) dsp}l/p
R

o

1/p
:
SUE[ sup W] S e
1€[0,26?]

As a result, by Theorem 4.13 and recalling that §° satisfies (4.12) with Cge = | x |il’ we

obtain

E[|x" + WL + E[[W (] S e xlu -
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Finally,
Elsup [x"* W () — W (O] SE[x"* W (e) =W (L] < el
t>g2
where we used Corollary 4.2 in the first inequality. 0J

5. Regularity structures for vector-valued noises

5.1. Mbohwation

As already mentioned in the introduction, the aim of this section is to provide a
solution/renormalisation theory for SPDEs of the form

(5'1> (at_ﬁ)At:Ft(A’E) ) t€£+ )

where the nonlinearities (Fy)cg, , linear operators (-Z}) e, , and noises (§¢)ce_, satisfy
the assumptions required for the general theory of [Hail4, CH16, BCCH21, BHZ19]
to apply. The problem is that this theory assumes that the different components of the
solutions A and of its driving noises & are scalar-valued. While this is not a restriction
in principle (simply expand solutions and noises according to some arbitrary basis of
the corresponding spaces), it makes it rather unwieldy to obtain an expression for the
precise form of the counterterms generated by the renormalisation procedure described
in [BCCH21].

Instead, one would much prefer a formalism in which the vector-valued natures
of both the solutions and the driving noises are preserved. To motivate our construction,
consider the example of a g-valued noise &, where g is some finite-dimensional vector
space. One way of describing it in the context of [Hail4] would be to choose a basis
{e1,..., e} of g and to consider a regularity structure I with basis vectors E; endowed
with a model IT such that ITE; = &; with &; such that £ = Z?:l &,¢;. We could then also
consider the element & € I ® g obtained by setting & =) ', E; ® ¢;,. When applying
the model to E (or rather its first factor), we then obtain IIE = )" & ¢ =& as ex-
pected. A cleaner coordinate-independent way of achieving the same result is to view the
subspace I [E] C J spanned by the &, as a copy of g*, with IT given by I8, = g(§) for
any element &, in this copy of g*. In this way, E € T[E] ® g > g* ® g is simply given by
E =idy, where idy denotes the identity map g — g, modulo the canonical correspon-
dence L(X,Y) @ X* ® Y. (Here and below we will use the notation X 'Y to denote the
existence of a canonical isomorphism between objects X and Y.)

Remark 53.1. — This viewpoint is consistent with the natural correspondence be-
tween a g-valued rough path X and a model II. Indeed, while X takes values in H*,
the tensor series/Grossman—Larson algebra over g, one evaluates the model IT against

elements of its predual H, the tensor/Connes—Kreimer algebra over g*, see [Hail4, Sec-
tion 4.4] and [BCFP19, Section 6.2].
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Imagine now a situation in which we are given g, and go-valued noises & = e and
&y = e, as well as an integration kernel K which we draw as a plain line, and consider the
symbol **. It seems natural in view of the above discussion to associate it with a subspace
of I isomorphic to gf ® g5 (let’s borrow the notation from [GH19b] and denote this
subspace as ** ® g ® g3) and to have the canonical model act on it as

N Qg Q%) =(Kxg(§)) (K*gQ@Q)) ,

for g; € g¥. It would appear that such a construction necessarily breaks the commutativity
of the product since in the same vein one would like to associate to *.* a copy of g; ® g7,
but this can naturally be restored by simply postulating that in I one has the identity

(9.2) *R9) - (Rp)=""R9R0=""020a =002 -*"®a).

This then forces us to associate to % a copy of the symmetric tensor product g7 ®;
g7. The goal of this section is to provide a functorial description of such considerations
which allows us to transfer algebraic identities for regularity structures of trees of the
type considered in [BHZ19] to the present setting where each noise (or edge) type t is
assoclated to a vector space gi. This systematises previous constructions like [GH19b,
Section 3.1] or [Sch18, Section 3.1] where similar considerations were made in a rather
ad hoc manner. Our construction bears a resemblance to that of [CW16] who introduced
a similar formalism in the context of rough paths, but our formalism is more functorial
and better suited for our purposes.

Remark 5.2. — We will see that our framework will also allow us to easily accom-
modate vector valued kernels, see the discussion around (5.23) and Remark 5.36.

5.2. Symmetric sets and symmelric tensor products

Fix a collection £ of types and recall that a “typed set” T consists of a finite set
(which we denote again by T) together with a map t: T — £. For any two typed sets T
and T, write Iso('T, T) for the set of all type-preserving bijections from T — T.

Defination 5.3. — A symmetric set & consists of a non-empty index set Ay, as well as a triple
3 = ({T5}aen,» {6} en, » {Ff’b}a,beAb) where (T3, )) is a typed set and Ff’b C Iso(Ti’, TS) are
non-emply sets such that, for any a, b, c € A,,

yelry! = ylery,
yely’, yel})" = yoypely.

In other words, a symmetric set is a connected groupoid inside Setg, the category of typed sets endowed
with type-preserving maps.
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Example 5.4. — An example of a symmetric set is obtained via “a tree with £-
typed leaves”. A concrete tree T is defined by fixing a vertex set V, which we can take
without loss of generality as a finite subset of N (which we choose to play the role of
the set of all possible vertices), together with an (oriented) edge set E C 'V x V so that
the resulting graph is a rooted tree with all edges oriented towards the root, as well as a
labelling t: L. — £, with L. C V the set of leaves. However, when we draw® a“tree with
L-typed leaves” such as “2*, we are actually specifying an isomorphism class of trees since
we are not specifying V, E, and t as concrete sets. Thus “2* corresponds to an infinite
isomorphism class of trees T with each T € T being a concrete representative of <.

For any two concrete representatives 7, = (Vy, Ej, t) and 19 = (Vy, Eg, t5) in the
isomorphism class “2*, we have two distinct tree isomorphisms y: V, UE; — Vy L Ey
which preserve the typed tree structure, since it doesn’t matter how the two vertices of
type o get mapped onto each other. In this way, we have an unambiguous way of viewing
T = “¢* as a symmetric set with local symmetry group isomorphic to Z,.

Remark 5.5. — Each of the sets 'y forms a group and, by connectedness, these
are all (not necessarily canonically) isomorphic. We will call this isomorphism class the
“local symmetry group” of 3.

Given a typed set T and a symmetric set 3, we define

Hom(T, ) = ( | tso(T, Tg)) / r, .

aEAa

i.e. we postulate that Iso(T, T%) 3 ¢ ~ @ € Iso(T, T?) if and only if there exists y € et
such that ¢ = y o ¢. Note that, by connectedness of T',, any equivalence class in
Hom(T, 3) has, for every a € A,, at least one representative ¢ € Iso(T, TY). Given two
symmetric sets 4 and 3, we also define the set SHom(4, 3) of “sections” by

SHom(,3) = {® = (®,)ues, : P, € Vec(Hom(T},3))},

where Vec(X) denotes the real vector space spanned by a set X. We then have the fol-
lowing definition.

Definition 5.6. — A morphism between two symmetric sets 5 and 3 is a T'y-invariant section;
namely, an element of

Hom(3,3) = {® € SHom(3,3) : &, = ®,0y,; Ya,be A,,Vy,, €7} .

Here, we note that right composition with y,, gives a well-defined map friom Hom(T?,3) to
Hom(TY, ) and we extend this to Vec(Hom(Tf, 3)) by linearity. Composition of morphisms is

¢ By convention, we always draw the root at the bottom of the tree.
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defined in the natural way by
(@0 ®), = P;0 0@,

where ' denotes an arbitrary representative of @, in Vec (Iso (T3, T?)) and composition 1s extended
bilinearly. 1t is straightforward to verify that this is independent of the choice of a and of representative
DD thanks to the invariance property ®; o Yih = ®;, as well as the postulation of the equivalence
relation in the definition of Hom(T?, 3).

Remark 5.7. — A natural generalisation of this construction is obtained by re-
placing £ by an arbitrary finite category. In this case, typed sets are defined as before,
with each element having as type an object of £. Morphisms between typed sets A and
A are then given by maps ¢: A — A x Homyg such that, writing ¢ = (¢, ¢), one has
@(a) € Homg(t(a), t(go(a))) for every a € A. Composition is defined in the obvious way
by “following the arrows”, namely

(Yop)o=voo¢, (¥ 0 @) (@) =¥ (o(a)) 0 G(a) ,

where the composition on the right takes place in Homg. The set Iso(A, A) is then de-
fined as those morphisms ¢ such that ¢ is a bijection, but we do not impose that ¢(a) is
an isomorphism in £ for a € A.

Remark 5.8. — Note that, for any symmetric set 3, there is a natural identity ele-
ment id, € Hom(3, 3) given by a + [id1«], with [id1¢] denoting the equivalence class of
idre in Hom('T§, 3). In particular, symmetric sets form a category, which we denote by

SSet (or SSetg).

Remark 5.9. — We choose to consider formal linear combinations in our definition
of SHom since otherwise the resulting definition of Hom(4, 3) would be too small for our
purpose.

Remark 5.10. — An important special case is given by the case when A; and A;
are singletons. In this case, Hom(3, 3) can be viewed as a subspace of Vec (Hom(Ta, ) )),
Hom(T,, 3) =1Iso(T,, T5)/ I'5, and I'; is a subgroup of Iso(Tj, T5).

Remark 5.11. — An alternative, more symmetric, way of viewing morphisms of
SSet is as two-parameter maps

A, X A; 3 (a,2) > Pz, € Vec(Iso(T5, TY)) ,

’_one has the identity

which are invariant in the sense that, for any y,, € ' and Va3 € F?

(5.3) Diu © Vo = Vas 0 Piy -
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Composition is then given by

(®od);,=D:,0d

a,a a,a s

for any fixed choice of a (no summation). Indeed, it is easy to see that for any choice of
a, ® o ® satisfies (5.3). To see that our definition does not depend on the choice of a,
note that, for any 4 € A;, we can take an element Vai € 'y (which is non-empty set by
definition) and use (5.3) to write
idng,ng 0®;;0P;, =D;;0¥;50P;,=D;;0P;,01dry e .

We write Homy(3, ) of the set of morphisms, as described above, between 3 and 3.
To see that this notion of morphism gives an equivalent category note that the map(s)
t,5: Hom(3,3) — Homy(3, ), given by mapping ', equivalence classes to their sym-
metrised sums, 1s a bijection and maps compositions in Hom to the corresponding com-
positions in Homy.

Remark 5.12. — The category SSet of symmetric sets just described is an R-linear
symmetric monoidal category, with tensor product 4 ® 4 given by

A=A xA;, T2=TiuT?, t“?=tut,
redh =ty 1y y ers’, y ey,

and unit object 1 given by Aq = {e} a singleton and T = .

Remark 5.13. — We will sometimes encounter the situation where a pair (3,3)
of symmetric sets naturally comes with elements ®, € Ho—m(Tg‘, 3) such that ® ¢
Hom(3,5). In this case, ® is necessarily an isomorphism which we call the “canoni-
cal isomorphism” between 3 and 3. Note that this notion of “canonical” is not intrinsic
to SSet but relies on additional structure in general.

More precisely, consider a category C that is concrete over typed sets (i.e. such that
objects of C can be viewed as typed sets and morphisms as type-preserving maps between
them). Then, any collection (T%),c5 of isomorphic objects of C yields a symmetric set 3
by taking for I' the groupoid of all C-isomorphisms between them. Two symmetric sets
obtained in this way such that the corresponding collections (1*),cs and (T »ech consist
of objects that are C-isomorphic are then canonically isomorphic (in SSet) by taking for
®, the set of all C-isomorphisms from T to any of the T?. Note that this does 7ot in
general mean that there isn’t another isomorphism between these objects in SSet!

Example 5.14. — We now give an example where we compute Hom(-, <) and
Homy(-, +). Consider T = *.*, fix some representative T € T, and write T, = {x, 9, 2} C



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

V. C N, with t; (x) = t;(y) = © and t;(z;) = ® — the local symmetry group is then isomor-
phic to Zy, acting on T'; by permuting {x, y}. We also introduce a second isomorphism
class T = "> which has trivial local symmetry group and fix a representative T of T
which coincides, as a typed set, with 7.

It is easy to see that Hom(T5:, (t)) consists of only one equivalence class, while
Hom(T,, (T)) consists of two equivalence classes, which we call ¢ and . Hom((t), (T))
then consists of the linear span of a “section” ® such that, restricting to the representative
7, &, = ¢ + ¢, since the action of Z, on T swaps ¢ and ¢.

5.2.1. Symmetric tensor products

A space assignment V for £ is a tuple of vector spaces V = (V) ce. We say a space
assignment V is finite-dimensional if dim(V) < oo for every t € £. For the rest of this sub-
section we fix an arbitrary (not necessarily finite-dimensional) space assignment (V)ce.

For any (finite) typed set T, we write V®T for the tensor product defined as the
linear span of elementary tensors of the form v = @) _; v, with v, € Vy,, subject to the
usual identifications suggested by the notation. Given ¥ € Iso(T, T) for two typed sets,
we can then interpret it as a linear map V®! — V&1 by

(5.4) v=QQ)v.> ¥ -v=Q) vy

xeT yGT

In particular, given a symmetric set 4, elements a, b € A;, and y € I, we view y as a
b a a
map from V&1 to VETi, We then define the vector space V¥ C []._, V& by

acAy
(5.5) Ve = {(v“*))aeAé 10 =y 0" VabeA,, Yy, € Fi””} :

Note that for every a € A,, we have a natural symmetrisation map m, ,: V&' — V&
given by

1
(5.6) (1,,,0)" = oy Z y-v,
|F3’ | ba
vely
an important property of which is that
(5.7) Ty a0 Vas=Ts4, Ya,b€A,, Wy, el

Furthermore, these maps are left inverses to the natural inclusions ¢, ,: V® — V&
given by (v?);ex, = v@.

Remark 5.15. — Suppose that we are given a symmetric set 3. For each a € A, if
we view 3, as a symmetric set in its own right with A,, = {a}, then V® is a partially sym-
metrised tensor product. In particular V¥ is again characterised by a universal property,
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namely it allows one to uniquely factorise multilinear maps on V' that are, for every
y € I'}", y-invariant in the sense that they are invariant under a permutation of their
arguments like (5.4) with ¥ = y.

This construction (where |A;| = 1) is already enough to build the vector spaces that
we would want to associate to combinatorial trees as described in Section 5.1. A concrete
combinatorial tree, that is a tree with a fixed vertex set and edge set along with an associ-
ated type map, will allow us to construct a symmetric set with [A;| = 1.

We now turn to another feature of our construction, namely that we allow |A;| > 1.
The main motivation is that when we work with combinatorial trees, what we really want
1s to work with are womorphism classes of such trees, and so we want our construction to
capture that we can allow for many different ways for the same concrete combinatorial
tree to be realised. In particular we will use A, to index a variety of different ways to
realise the same combinatorial trees as a concrete set of vertices and edges with type
map. The sets T'y"” then encode a particular set of chosen isomorphisms linking different
combinatorial trees in the same isomorphism class. Once they are fixed, the maps (5.6)
allow us to move between the different vector spaces that correspond to different concrete
realisations of our combinatorial trees. In particular, once 4 has been fixed, for every
a, b € A, one has fixed canonical isomorphisms

(5.8) V&~ VO ~ O

which can be written explicitly using the maps 7, . of (5.6).

In addition to meaningfully resolving” the ambiguity between working with iso-
morphism classes of objects like trees and concrete instances in those isomorphism classes,
this flexibility is crucial for the formulation and proof of Proposition 5.29.

Remark 5.16. — Given a space assignment V there is a natural notion of a dual
space assignment given by V* = (V{)ic¢. There is then a canonical inclusion

(5.9) (VHE — (V®)*,

Thanks to (5.8) it suffices to prove (5.9) when A, = {a}.

Let ¢ be the canonical inclusion from (V*)®™: into (V®T5)* and let r be the canon-
ical surjection from (V®T§)* to (V®)*. The desired inclusion in (5.9) is then given by the
restriction of 7 o ¢ to (V*)®. To see the claimed injectivity of this map, suppose that for
some w € (V¥)® one has t(w)(v) =0 for all v € V®°. Then, we claim that ((w) = 0
since for arbitrary v’ € V1% we have

W) @) =o(I0 17 Y y e w) ) =) (Ire Yy ) =0

yely? yely*

? See for instance Remarks 5.30 and 5.31.
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where in the first equality we used that w € (V*)® while in the last equality we used that
the sum in the expression before is in V&,

If the space assignment V is finite-dimensional then our argument above shows
that we have a canonical isomorphism

(5.10) (VB ~ (V)" |

Example 5.17. — Continuing with Example 5.14 and denoting 3 = (t), given
vector spaces Vo, Ve, an element in V® can be identified with a formal sum over all
representations of vectors of the form

(6] (6] [ ] (6] (6] [ ]
v.m ® v_)'l ® UZI + U)’I ® UM ® UZI ’

namely, it is partially symmetrised such that for another representation, the two choices
of y both satisfy the requirement in (5.5). The projection m, , then plays the role of sym-
metrisation.

We now fix two symmetric sets 3 and 5. Given ® € Hom(TY, 3), it naturally defines
a linear map F : VOT8 — V& by

(5.11) Fov=m;3(®“ - v),

where @ € A; and ®“ denotes any representative of ® in Iso(T?, T%). Since any other
such choice l_)_and ®® is related to the previous one by composition to the left with an
element of F?’b, it follows from (5.7) that (5.11) is independent of these choices. We extend
(5.11) to Vec(Hom(T¢, 3)) by linearity.

Since (p oY) - v =¢ - (Y - v) by the definition (5.4), we conclude that, for v =
(V) 4en, €V, & = (D,)cr, € Hom(3,3), as well as y,;, € 'Y’ we have the identity

b )
Fo, v =F

b b
cD(lo)/a,bU( : = F?Da(ya,b : U( )) — Fg)ﬂv(d) ,

so that Fy is well-defined as a linear map from V® to V& by
(5.12) Fov=F3 ;.0

which we have just seen is independent of the choice of a.

The following lemma shows that this construction defines a monoidal functor Fy
mapping 3 to V¥ and ® to Fe between the category SSet of symmetric sets and the
category Vec of vector spaces.

Lemma 5.18. — Consider symmelric sels 3, 3, g, and morphisms ® € Hom(3, 3) and ®e
Hom(3,3). Then Fgop = Fg 0 Fo.



AJAY CHANDRA, ILYA CHEVYREV, MARTIN HAIRER, HAO SHEN
Proof. — Since we have by definition
- — T a e (PD ., a
FeFov =Fgm; ;(® - 1, ,v) = n&;(CD; 55750 (PL - 1,0))

for any arbitrary choices of a € A,, a,beA; ac As, it suffices to note that, for any
W= (W)zen, € V¥,

- 1 - - _
10
)/EI‘5
as an immediate consequence of the definition of Hom(3, 5 ). O
Remark 5.19. — A useful property is the following. Given two space assignments

V and W and a collection of linear maps U¢: V¢ — Wy, this induces a natural trans-
formation Fy — Fyy. Indeed, for any typed set 4, it yields a collection of linear maps
Us: VO WOT by

Uz ® UV, = ®Ut§(x)l)x .

a ra
xeTy xeTy

This in turn defines a linear map U, : V& — W®? in the natural way. It is then immediate
that, for any ® € Hom(3, 3), one has the identity

Us o Fy(®) =Fyw(P)o U, ,
so that this 1s indeed a natural transformation.

Remark 5.20. — In the more general context of Remark 5.7, this construction
proceeds similarly. The only difference is that now a space assignment V is a functor
£ — Vec mapping objects t to spaces V¢ and morphisms ¢ € Homg(t, t) to linear maps
V, € L(V, Vy). In this case, an element ¢ € Iso(T, T) naturally yields a linear map
Vel — vel by

V= ® V> @V = ®V¢(¢510,))v%1@) .

xeT €T

The remainder of the construction is then essentially the same.

Remark 5.21. — One may want to restrict oneself to a smaller category than Vec
by enforcing additional “nice” properties on the spaces V. For example, it will be con-
venient below to replace it by some category of topological vector spaces. Other natural
examples of replacements for Vec could be the category of Banach spaces endowed with a
choice of cross-product, the category of Hilbert spaces, the category of finite-dimensional
vector bundles over a fixed base manifold, etc.
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5.2.2. Iyped structures

It will be convenient to consider the larger category T'Struc of typed structures.

Defination 3.22. — We define T'Struc to be the category obtained by freely adjoining countable
products to SSet. We write T'Struce for T'Struc when we want to emphasize the dependence of this
category on the underlying label set £.

Remark 5.23. — An object § in the category T'Struc can be viewed as a count-
able (possibly finite) index set A and, for every o € A, a symmetric set 3, € Ob(SSet).
This typed structure is then equal to [ [, 494, where [ denotes the categorical product.
(When A is finite it coincides with the coproduct and we will then also write @D, 4 3«
and call it the “direct sum” in the sequel.) Morphisms between § and 8 can be viewed as
“infinite matrices” Mg , with & € A ae fi, M., € Hom(%,, 35) and the property that,
for every @ € A, one has M, = 0 for all but finitely many values of «. Composition of
morphisms is performed in the natural way, analogous to matrix multiplication.

We remark that the index set 4 here has nothing to do with the index set A, in
Definition 5.3.

Note that T'Struc is still symmetric monoidal with the tensor product behaving dis-
tributively over the direct sum if we enforce ([ ], 49«) ® (HﬂeB dp) = H(a,ﬁ)eAxB (éa ®
o) 5), with 4, ® 44 as in Remark 5.12, and define the tensor product of morphisms in the
natural way.

Remark 5.24. — The choice of adjoining countable products (rather than coprod-
ucts) is that we will use this construction in Section 5.8 to describe the general solution to
the algebraic fixed point problem associated to (5.1) as an infinite formal series.

If the space assignments V¢ are finite-dimensional, the functor Fy then naturally
extends to an additive monoidal functor from T'Struc to the category of topological vector
spaces (see for example [ST12, Section 4.5]). Note that in particular one has Fy(S) =

[Teca Fv(a).

5.3. Durect sum decompositions of symmetric sets

In Section 5.2 we showed how, given a set of labels £ and space assignment
(V) tee, we can “extend” this space assignment so that we get an appropriately sym-
metrised vector space V& for any symmetric set 4 (or, more generally, for any typed
structure) typed by £. In this subsection we will investigate how this construction behaves
under a direct sum decomposition for the space assighnment (V)ce that is encoded via a
corresponding “decomposition” on the set £.
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Definition 5.25. — Let P(A) denote the powerset of a set A. Given two distinct finite sets of
labels & and £ as well as a mapp: £ — P(L) \ D}, such that {p(t) : t € £} is a partition of £,
we call & a type decomposition of £ under p. If we are also given space assignments (V¢)ieg for £ and
(Vi)ies for £ with the property that

(5.13) Vi=@@ Vi foreveryte g,

lep(t)

then we say that (\_/[)[E & 15 a decomposition of (V¢)iee. For L e p(t), we write Py: Vi — vV, Jor the
projection induced by (5.13).

For the remainder of this subsection we fix a set of labels £, a space assignment
(V) teg, along with a type decomposition £ of £ under p and a space assignment (V{) .z
that 1s a decomposition of (V¢)ce. To shorten notations, for functions t: B — £ and
[: B— £ with any set B, we write [~ t as a shorthand for the relation [(p) € p(t(p))
for every p € B. Given any symmetric set 3 with label set £ and any a € A;, we write
L‘Z ={[: T - £ : [~ t%}, and we consider on L, = ULea, L the equivalence relation
~ given by

(5.14) Lisi~Tel! & 3y, el l=loy,.
We denote by L, & L,/~ the set of such equivalence classes, which we note is finite.

Example 5.26. — In this example we describe the vector space associated to «°.
For our space assignment we start with a labelling set £ = {x}, where » represents the
noise, and we assume that the actual noise driving the equation we’re interested in is a
distribution with values in a finite-dimensional vector space V,. If we are given a direct
sum decomposition V, = V(, ;) @ V(,9), we can “split” the noise into two by introducing
a new set of labels £ = £ x {1, 2} and setting p(») = {(x, 1), (x, 2)}.

Recall our convention described in Example 5.4: “” represents an isomorphism
class of trees and any concrete tree T in that class is realised by a vertex set which is a
subset of 3 elements of N and in which 2 of those elements are the leaves labelled by *. Let
3 be the symmetric set associated to ©” and T € A, be a concrete tree with T, = {«x, y},
t: (x) = t;(y) = ». The local symmetry group in this example is isomorphic to Zo.

The set fg consists of 4 elements which we denote by

(5.15) o2, 0 0 and 0.

In the symbols above, the left leaf corresponds to x and the right one to y. We thus obtain

four labellings on T'; by £ where (x, 1) is associated to e and (%, 2) is associated to e.
However, if we were to interpret the symbols of (5.15) as isomorphism classes of

trees labelled by £ then * # and *.* are the same isomorphism class and this is reflected by
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the fact that |L;| = 3. The isomorphism class of 7 is associated to a vector space isomor-
phic to V, ®, V,. Our construction will decompose (see Proposition 5.29) the vector space
for 7 into a direct sum of three vector spaces corresponding to the isomorphism classes
**, 22, and ** which are, respectively, isomorphic to Vi, 1) @, Viu1), Ve @, Virg), and
Vi) @ Vig.

Given an equivalence class Y € L, and ¢ € A;, we define Y, =Y N f,;‘ (which we
note is non-empty due to the connectedness of I';). We then define a symmetric set 3y by

Aé\":{(av [) . aEAé ) [eYa}’ ng:[):TZ’ tgf’[):[,
reve =1y e’ [=loy}.

Remark 5.27. — The definition (5.14) of our equivalence relation guarantees that

I',, 1s connected. The definition of T'y, furthermore yields a morphism of groupoids

I',, = T'; which is easily seen to be surjective.

With these notations at hand, we can define a functor p* from SSete to TStrucga
as follows. Given any 3 € Ob(SSete), we define

(5.16) p" =P sv € Ob(TStrucg) .

YeL,

To describe how p* acts on morphisms, let us fix two symmetric sets 3, € Ob(SSete),
a choice of Y € L, (a,) € A,, as well as an element ¢ € Hom(TY, ). We then let
¢-LCL;be given by

o l=lop 'Y : 3y ecpwithi=loy '},

where we recall that ¢ C ., A, Iso(T5, T?) is a [';-equivalence class of bijections. It fol-

lows from the definitions of the equivalence relation on IA,;, and of Hom(T?, 3) that one
actually has ¢ - [ € L;. We then define

p?a, n® € @Vec(Hom(ng\z;r)’ 5?)) ’

\_"ELg
by simply setting

(5.17) p,,¢ = ¢ € Hom(T{:". 3,..) C @ Vec(Hom(T{:", 35)) .

\_"EL‘,;

. . N a1 - . . . .
which makes sense since Tff: ) = T3, Tg‘f ) = T3, and since I'; | — T’ is surjective.
<
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We take a moment to record an important property of this construction. Given any
(@, 1), (b, 1) € Ay, y € TP "and ¢ € Hom(T?, 3), it follows from our definitions that

(5.18) (P}ka, pploy = P?b,”[) (¢oy)

where on the right-hand side of (5.18) we are viewing y as an element of I'"’, which
indeed maps Hom(T?, 3) into Hom(T?, 3) by right composition.
Extending (5.17) by linearity, we obtain a map

P, : Vec(Hom(T},3)) — @Vec(Hom(Tgi,t), 50) -

?EL;

We then use this to construct a map p%: Hom(3, 3) — Hom(3y, p*3) as follows. For any
® = (P,) ., € Hom(3,3), we set

(p%k{q))(a,[) = PZI’ [)q)a ) V(d, [) S Af)y .

To show that this indeed belongs to Hom(3y, p*3), note that, for any (a, [), (5, E) e A,
and y € Fx -0 =1 we have

PyP)wpoy = (le,r)q)a) oy = (p?b,f)(q)a o V))
= (sz,bcpb) =PyP)i -

In the second equality we used the property (5.18) and in the third equality we used that
®, 0 y = @, which follows from our assumption that ® € Hom(3, ) — recall that here
we are viewing y as an element of T’

Finally, we then obtain the desired map p*: Hom(3,3) — Hom(p*3, p*3) by set-
ting, for ® € Hom(3, 3),

po=EPpio.

YeL,

The fact that p* is a functor (i.e. preserves composition of morphisms) is an almost imme-
diate consequence of (5.17). Indeed, given ¢ € Hom(T¢, 3) and ® € Hom(5, 3), it follows
immediately from (5.17) that

P;-r&) OP(P = P?a,o(&’ °© ‘/’) ;

where we view ® o @ as an element of Vec(Hom(Tj, 3)) It then suffices to note that
p;f{ci) op(.n¥ =0 for Y # @ - [, which then implies that

pdo PLo¥ = Pfa,[)(ci> °© ‘/’) )
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and the claim follows. Note also that p* is monoidal in the sense that p*(» ®3) = p*(3) ®
p*(3) and similarly for morphisms, modulo natural transformations.

Remark 5.28. — One property that can be verified in a rather straightforward way
is that if we define (p op)(t) = U[Ep(t) p(D), then

(pop)'=pop’,

again modulo natural transformations. This is because triples (a, [, ) with [~ [~ ¢, are
in natural bijection with pairs (a, [). Note that this identity crucially uses that the sets p(t)
are all disjoint.

Our main interest in the functor p* is that it will perform the corresponding direct
sum decompositions at the level of partially symmetric tensor products of the spaces V.
This claim is formulated as the following proposition.

Proposition 5.29. — One has ¥y, o p* = Fy, modulo natural transformation.

Progf — Fix 3 € SSetg. Given any a € A, and elementary tensor v € V&5 of the
form v@ = ®xe'1'g v we first note that we have the identity

(5.19) 0= > P =) RP.
x€T§ lep(t, (x)) [ty xeT§
where P; is defined below (5.13). This suggests the following definition for a map
o TTv = T1 v,
a€A, (a, [)61:.5

where [q, [] € L; 1s the equivalence class that (a, [) belongs to. Given v = (v(‘l)),,eA0 with
V= @), opy 07, we set

def
(V)@ = ®Pr(x) v,

xeTy

which is clearly invertible with inverse given by (¢ 'w), = 37, & ,eps w\“". Note now
that

Fy) c J]ve".

acA,

Fy(p™) = @F{/(SY) C @ 1_[ VT ~ l_[ T ,

Yely YeL; (a,D)eAsy (a,0)el,
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where we used that L, is finite in the final line. Furthermore, both ¢, and L;l preserve
these subspaces, and we can thus view ¢, as an isomorphism of vector spaces between
Fy(3) and F;(p*3). The fact that, for ® € Hom(3, 3), one has

;o0Fy(®)=F;(p*P)oy,,

1s then straightforward to verify. U

5.4. Symmetric sets from trees and forests

Most of the symmetric sets entering our constructions will be generated from finute
labelled rooted trees (sometimes just called “trees” for simplicity) and their associated auto-
morphisms. A finite labelled rooted tree T = (T, o, t, n) consists of a tree T'= (V, E) with
finite vertex set V, edge set EC 'V x V and root o € V, endowed with a type t: E — £
and label n: VUE — N%"'. We also write ¢: E — £ x N“™! for the map ¢ = (t,n | E).
Note that the “smallest” possible tree, usually denoted by 1, is given by V= {o}, E=®
and n(g) = 0; we denote by X* with £ € N“™! the same tree but with n(g) = £. For con-
venience, we consider edges as directed towards the root in the sense that we always have
¢ = (e_, e;) with ¢, nearer to the root. Note that one can naturally extend the map t to
V\ {o} by setting t(v) = t(e) for the unique edge ¢ such that e_ = v.

An somorphism between two labelled rooted trees is a bijection between their edge
and vertex sets that preserves their connective structure, their roots, and their labels t and
n. We then denote by T the set of isomorphism classes of rooted labelled trees with vertex
sets that are subsets of N.'”

Given T € T, we assign to it a symmetric set 4 = (T). In particular, we fix A, =t
and, for every T € T, we set 1 = E, (the set of edges of 7), t] the type map of 7, and, for
), Ty € T, we let [';"™ be the set of all elements of Iso(T}’, T}') obtained from taking a
tree isomorphism from 7, to 7; and then restricting this map to the set of edges E,,. We
also define the object (T) in TStruc given by (T) =[] . (T).

Given an arbitrary labelled rooted tree 7, we also write (7) for the symmetric set
with Ay a singleton, T';y and t;, as above, and I' the set of all automorphisms of . The
following remark is crucial for our subsequent use of notations.

Remark 5.30. — By definition, given any labelled rooted tree 7, there exists exactly
one T € T such that its elements are tree isomorphic to T and exactly one element of
Hom(T ), (t)) whose representatives are tree isomorphisms, so we are in the setting
of Remark 5.13. As a consequence, we can, for all intents and purposes, identify ()
with (t). As an example, in Section 5.4.1 this observation allows us to define various
morphisms on (%) and (T) ® (T) by defining operations at the level of trees T € T € ¥

10 The choice of N here is of course irrelevant; any set of infinite cardinality would do. The only reason for this
restriction is to make sure that elements of T are sets.
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with fully specified vertex and edge sets rather than working with the isomorphism class
T.

Remark 5.31. — In the example in Section 5.1, the two labelled rooted trees
T =*2and T = ** (both with trivial labels n = 0 say) are isomorphic. The canonical
isomorphism ® € Hom((t), (7)) is then simply the map matching the same types. The
map Fy(®): V& — V®@ s then a canonical isomorphism — this is where the middle
identity in the motivation (5.2) is encoded.

A labelled rooted forest / = (F, ‘P, t, n) is defined as consisting of a finite forest!!
F = (V,E), where again V is the set of vertices, E the set of edges, each connected com-
ponent T of I has a unique distinguished root ¢ with *B C V the set of all these roots, and
t and n are both as before. Note that we allow for the empty forest, that is the case where
V =E = @, and that any finite labelled rooted tree (T, o, t,n) is also a forest (where
‘B = {o}).

Two labelled rooted forests are considered isomorphic if there is a bijection be-
tween their edge and vertex sets that preserves their connective structure, their roots,
and their labels t and n — note that we allow automorphisms of labelled rooted forests
to swap connected components of the forest. Given a labelled rooted forest f, we then
write (f) for the corresponding symmetric set constructed similarly to above, now with
tree automorphisms replaced by forest automorphisms.

We denote by § the set of isomorphism classes of rooted labelled forests with vertex
sets in N, which can naturally be viewed as the unital commutative monoid generated by
T with unit given by the empty forest. In the same way as above, we assign to an element
f € asymmetric set (f) and we write (§) = erg (f) € Ob(TStruc).

Before continuing our discussion we take a moment to describe where we are go-
ing. In many previous works on regularity structures, in particular in [BHZ19], the vec-
tor space underlying a regularity structure is given by Vec(T(R)) for a subset T(R) C ¥
determined by some rule R. The construction and action of the structure and renormal-
isation groups was then described by using combinatorial operations on elements of T
and §.

Here our point of view is different. Our concrete regularity structure will be ob-
tained by applying the functor Fy to (£(R)), an object in T'Struc. We will refer to (£(R))
as an “abstract” regularity structure. In particular, trees T € T(R) will not be interpreted
as basis vectors for our regularity structure anymore, but instead serve as an indexing set
for subspaces canonically isomorphic to Fy({t)). In the case when Vi~ R forall t € £,
this is of course equivalent, but in general it is not. Operations like integration, tree prod-
ucts, forest products, and co-products on the regularity structures defined in [BHZ19]
were previously given in terms of operations on ‘¥ and/or §. In order to push these op-
erations to our concrete regularity structure, we will in the next section describe how to

11 Recall that a forest is a graph without cycles, so that every connected component is a tree.
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interpret them as morphisms between the corresponding typed structures, which then
allows us to push them through to “concrete” regularity structures using Fy.

Remark 5.32. — Although the definition of T¢ depends on the choice of £, this
definition is compatible with p* in the following sense. Given t € T¢, if Ly is defined
as in the definition immediately below (5.14), then L) can be identified with a subset
of T5. In particular, we overload notation and define a map p: ¢ — P(Tz) \ {P} by
setting p(t) = L) so p*(T) > @fep(‘[) (T). It is also easy to see that {p(t) : T € Te}isa
partition of ‘€& so that

P (Te) = (Tg).

Analogous statements hold for the sets of forests §¢ and §z.

5.4.1. Integration and products

We start by recalling the tree product. Given two rooted labelled trees v =
(T,0,t,n) and 7 = (T, 0, t,n) the tree product of T and 7, which we denote 77,

is a rooted labelled tree defined as follows. Writing 77 = (T, @,%, n), one sets T
(TuT /{o, 0}, namely T is the rooted tree obtained by taking the rooted trees T and
T and identifying the roots ¢ and @ into a new root 9. Writing T = (V, E), T=(V,E),
and T = (\A/, E), we have a canonical identification of F with E U E and \A/\ {0} with
(VuV)\ {o, 0}. With these identifications in mind, t is obtained from the concatenation
of t and t. We also set

n(a) ifae EU(V\{o}),
A0 o) ifac EU(V\ {2},
n(o) +1(@) ifa=0o.

We remark that the tree product is well-defined and commutative at the level of isomor-
phism classes.

In order to push this tree product through our functor, we want to encode it as a
morphism M € Hom((%T) ® (), (). It is of course sufficient for this to define elements
M e Hom((t) ® (T), (tT)) for any T, T € T, which in turn is given by

(5.20) () () = (1) ® (1) = (r7) = (TT),

where the two canonical isomorphisms are the ones given by Remark 5.13 and the mor-
phism in Hom((‘r) ® (7), (rT)) 1s obtained as follows. Note that the same typed set (E, %)
underlies both the symmetric sets () ® (7) and (t7) and that I' ;g 1s a subgroup (pos-
sibly proper) of I' ;7,. Therefore, the only natural element of Hom((7) ® (7), (r7)) is the
equivalence class of the identity in Hom(E U E, (z7)) (in the notation of Remark 5.10). Tt
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is straightforward to verify that M constructed in this way is independent of the choices
TetandT ET.

The “neutral element” n € Hom(I, (%)) for M, where I denotes the unit ob-
ject in TStruc (corresponding to the empty symmetric set), is given by the canoni-
cal 1somorphism I — (1) with 1 denoting the tree with a unique vertex and n =0
as before, composed with the canonical inclusion (1) — (). One does indeed have
Mo (n®id) = Mo (id ® n) = id, with equalities holding modulo the identifications
() >~ (T) @I ~1® (T). Associativity holds in a similar way, namely M o (id ® M) =
M o (M ®id) as elements of Hom({%) ® (T) ® (%), (%)).

Remark 5.33. — Another important remark is that the construction of the product
M respects the functors p* in the same way as the construction of (¥) does.

As mentioned above, § is viewed as the free unital commutative monoid generated
by T with unit given by the empty forest (which we denote by (/). We can interpret
this product in the following way. Given two rooted labelled forests / = (F, m t,n) and
f (F, ‘B t, 1) we define the forest product /- / = (¥, ‘B t, 1) byF FUF, ‘}3 P LB,
t=tut and i = nU . Again, it is easy to see that this product is well-defined and
commutative at the level of isomorphism classes. As before, writing F=(V,E)and noting
that the same typed set (E t) = (EUE, tut) underlies both symmetric sets (/) ® (f) and
(f - f) and that the symmetry group of the former is a subgroup of that of the latter,
there is a natural morphism Hom({(f) ® {f), {/ - f)) given by the equivalence class of the
identity. As before, this yields a product morphism in Hom((§) ® (:§), (§)), this time with
the canonical isomorphism between I and () (with ¢ the empty forest) playing the role
of the neutral element.

We now turn to integration. Given any [ € £ and 7 = (T, 0, t,n) € T we define
a new rooted labelled tree J)(7) = (T, Q t, 1) € T as follows. The tree T = (V E)

is obtained from T = (V, E) by setting V&vuy {0} and E = E U {¢} where ¢ = (0, 0),
that is one adds a new root vertex to the tree T and connects it to the old root with an
edge. We define t to be the extension of t to E obtained by setting t(z) = [ and # to be
the extension of n obtained by setting n(¢) = n(0) = 0. We encode this into a morphism
J1.0) € Hom((T) ® (1), (T)) where (I) denotes the symmetric set with a single element o
of type [. For this, it suffices to exhibit natural morphisms

(5.21) Hom((t) ® (1), {(F1.0(7)))

which are given by the equivalence class of t: ELI {e} — E in Hom(E U {e}, (Ja.0(D)),
where ¢ is the identity on E and t¢(e) =e. It is immediate that this respects the automor-
phisms of T and therefore defines indeed an element of Hom((f Yy ® (), (j([’())(‘[))). The
construction above also gives us corresponding morphisms ¥, € Hom((%) ® ([), (%)),
for any p € N"*!, if we exploit the canonical isomorphism (F0)(7)) = (F1) (1)) where
1 (1) is constructed just as F;,0)(7), the only difference being that one sets fi(e) = p.
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5.4.2. Coproducts

In order to build a regularity structure, we will also need analogues of the maps A"
and A~ as defined in [BHZ19]. The following construction will be very useful: given 7 €
teTandf €f € §, wewrite / < 7 for the specification of an injective map ¢: Ty — T
which preserves connectivity, orientation, and type (but roots of / may be mapped to
arbitrary vertices of 7). We also impose that n,(¢) = n.(te) for every edge ¢ € E; and that
polynomial vertex labels are increased by ¢ in the sense that ng(x) < n.(wx) for all x € V.
Given / < 7, we also write 0E; C E; \ t(E,) for the set of edges ¢ “incident to /” in the
sense that e, € 1(Vy). We consider inclusions ¢: f < 7 and i: f = 7 to be “the same” if
there exists a forest isomorphism ¢: f — f such that ¢t =1 0 ¢. (We do however consider
them as distinct if they differ by a tree isomorphism of the target 7!)

Given a label e: 9E, — N*' we write we: V, — N’*! for the map given by
me(x) = Zg+:[x ¢(e) and we write f; for the forest /', but with n, replaced by n, + me. We
then write 7/f. € T for the tree constructed as follows. Its vertex set is given by V;/~/,
where ~; is the equivalence relation given by x ~, y if and only if x, y € (V) and ¢ 'x
~'y belong to the same connected component of f. The edge set of T/f is given
by E; \ t(Ef), and types and the root are inherited from 7. Its edge label is given by
e n;(e) 4+ e(e). Noting that vertices of t/f, are subsets of V., its vertex label is given by
XY (nf () — nf(fly)) with the convention that n, is extended additively to subsets.
(This is positive by our definition of “inclusion”.)

and ¢

This construction then naturally defines an ‘extraction/contraction’ operation
(f—>1) € Hom(E,, (fe) ® (t/fe)) similarly to above. (Using ¢, the edge set of T is canon-
ically identified with the disjoint union of the edge set of f, with that of 7 /f,.) Note that this
is well-defined in the sense that two identical (in the sense specified above) inclusions yield
identical (m the sense of canonlcally 1sorn0rph1c) elements of Hom(E,, (fe) ® (t/fe)). We
also define f/f; and (f < f). for a forest / in the analogous way.

We also define a “cutting” operation in a very similar way. Given two trees T and
T, we write T <> 7 if T <> 7 (viewing T as a forest with a single tree) and the injection
¢ furthermore maps the root of T onto that of . With this definition at hand, we define
“extraction” and “cutting” operators

A*[t] € Vec(Hom(E,, (§) ® (),

wr=Y Y 5o

ST e

A“[7] € Vee(Hom(E,, (%) ® (%)),

A"M[t] = Z Z ( )(‘L’ 7).

T e
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Here, the inner sum runs over ¢: dE; — N“ (¢: 9E; — N“ in the second case) and the

binomial coefficient (Jf) is defined as

T\ n,(tx)
() =-11(0e)

We also view Hom(E,, (f;) ® (t/f.)) as a subset of Hom(E,, (§) ® (¥)) via the canonical
maps (7) > (t) <= (¥) and similarly for ().

Lemma 5.34. — One has A™[t] € Hom({(1), (F) ® (T)) as well as A™[t] €
Hom((7), (%) ® (§)).

Proof. — Given any isomorphism ¢ of 7, it suffices to note that, in Hom((7), (§) ®
(%)), we have the identity

(f‘—>7)e0§0:(f§0°_>f)e<p,

where, if f <> T is represented by ¢, then f¢ <> t is represented by ¢! o ¢ and ep =

¢ o ¢. It follows that A™[t] 0 ¢ = A™[1] as required. The argument for A™" is virtually
1dentical. O

It also follows from our construction that, given T € €, A%[r] and A™'[r] are
independent of T € T, modulo canonical isomorphism as in Remark 5.13 (see also (5.20)
above), so that we can define A*[t] € Hom((t), (§) ® (%)) and similarly for A™".

5.5. Regularity structures generated by rules

We now show how regularity structures generated by rules as in [BHZ19] can be
recast in this framework. This then allows us to easily formalise constructions of the type
“attach a copy of V to every noise/kernel” as was done in a somewhat ad hoc fashion in
[GH19b, Section 3.1].

We will restrict ourselves to the setting of reduced abstract regularity structures (as in
the language of [BHZ19, Section 6.4]). The extended label (as in [BHZ19, Section 6.4])
will not play an explicit role here but appears behind the scenes when we use the black
box of [BHZ19] to build a corresponding scalar reduced regularity structure, which is
then identified, via the natural transformation of Proposition 5.29, with the concrete
regularity structure obtained by applying Fy to our abstract regularity structure.

We start by fixing a degree map deg: £ — R (where £ was our previously fixed
set of labels), a “space” dimension d € N, and a scaling'? s € [1, 00)?™!'. Multiindices

12 In [Hail4] scalings are integers, which was used in the proof of the reconstruction theorem using wavelets. More
recent proofs [FH20] do not make use of this and allow for arbitrary scalings. Furthermore, the algebraic structure (which
is the relevant aspect in this section) is impervious to the scaling.
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k € N“*! are given a scaled degree |k|; = Z?:o k;s;. (We use the convention that the 0-
component denotes the time direction.)
We then define, as in [BHZ19, Eq. (5.5)], the sets £ of edge labels and A/ of node

types by
E=LxN"*,  N=PE),

where 75(A) denotes the set of all multisets with elements from A. With this notation, we
fix a “rule” R: £ — P(N) \ {#}. We will only consider rules that are subcritical and
complete in the sense of [BHZ19, Def. 5.22].

Given 7 € T € T with underlying tree T = (V, E), every vertex v € V is natu-
rally associated with a node type N (v) & (o(e) Dep = v) e N, where we set o(e) =
(t(e), n(e)) € £. The degree of T is given by

degr =Y [n()]s + Y _(degt(e) — [n()]s) -

veV eckl

We say that t strongly conforms to R if
(i) for every v € V'\ {0}, one has N'(v) € R(t(v)), and
(i) there exists t € £ such that N (o) € R(t).
We say that T is planted if EN () = 1 and n(0) = 0 and unplanted otherwise.

The map deg, the above properties, and the label n(¢) € N™!' depend only on
the isomorphism class T 3 7, and we shall use the same terminology for T. We write
T(R) C ¥ for the set of T that strongly conform to R. We further write €, (R) C ¥ for
the set of planted trees satistying condition (1).

We now introduce the algebras of trees / forests that are used for negative and
positive renormalisation. We write §(R) C § for the unital monoid generated (for the
forest product) by T(R), §_(R) C §(R) for the unital monoid generated by

def

(5.22) T (R)={re%(R) : degt <0, n(p) =0, T unplanted},
and T, (R) C T for the unital monoid generated (for the tree product) by
(X' keNYU{t €T, (R) : degt > 0}.

We are now ready to construct our abstract regularity structure in the category TStruc
that was defined in Definition 5.22. We define I, T, T _, F, F_ € Ob(TStruc) by

o
N

e dd

FE(EIR). T, =(TL.R), T Z(T_(R),

F < (3R)), (F_(R)).

As mentioned earlier, we think of I~ as an “abstract” regularity structure with “characters

(=9
L8

(¢

on I, forming its structure group and “characters on &_" forming its renormalisation
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group. Write
7, € Hom(T,T,), 7_ € Hom(%F, %),

for the natural projections. These allow us to define

Hom(T.F @F,)2 A= > (d®@m)A™[t],
1e€T(R)

Hom(T . F @TF)5 A" = Y (1 @id)A™[1].
TeT(R)

Remark 3.35. — Here and below, it is not difficult to see that these expressions
do indeed define morphisms of TStruc. Regarding A™ for example, it suffices to note
that, given any T € T(R) and t; € T, (R), there exist only finitely many pairs of trees
1@ <% 1 in T(R) and edge labels ¢ in Section 5.4.2, such that T, = t/t® and
t=1t?.

In an analogous way, we also define

AT e Hom(T,,9,.®9,), AT eHom(F_, F_ Q@ F.),

ATE DY (meem)AM], ATE Y (@) AYf].
€T, (R) feS-R)

As in [BHZ19], one has the identities
(A; ®id)oA” = (Id® A7)0 A™, (A7 ®id)oA™ = (id®A)oA™,

as well as the coassociativity property for A7, multiplicativity of A™ and AT with respect
to the tree product, and multiplicativity of A~ and AT with respect to the forest product.

5.6. Concrete regularity structure

Recall that the label set £ splits as £ = £, U £_, where £_ indexes the set of
“noises” while £, indexes the set of kernels, which in the setting of [BCCH21] equiva-
lently indexes the components of the class of SPDEs under consideration.

It is then natural to introduce another space assignment called a target space as-
signment (W¢)¢ where, for each t € £, the vector space Wy is the target space for the
corresponding noise or component of the solution. As we already saw in the discussion
at the start of Section 5.1, given a noise taking values in some space Wy for some t € £_,
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it is natural to assign to it a subspace of the regularity structure that is isomorphic to the
(algebraic) dual space W7.

Similarly, there are circumstances in which our integration kernels will not be maps
from our space-time into R but instead be vector valued. Therefore it is natural to intro-
duce a kernel space assignment K = (K¢)¢ee,, so that we can accommodate integral
equations of the form

<5.23) At:Kt*Ft(A’E) 5 t€£+ 5

where Ky takes values in K¢ and the non-linearity F((A, §) would take values in £} ®
W; so that the right hand side takes values in Wy as desired. Accordingly, edges that
correspond to a type t € £, should be associated to K}.

Remark 5.36. — For an example where a formulation such as (5.23) may be useful,
suppose that we are looking at a system of equations where, for some fixed t € £, the
equation for the t component is of the form

d
(5.24) @ — MA=) 3GA Q).

J=1

Such an equation does fit into our framework by just choosing F¢(A, ¢) to be the right
hand side of the above equation after one expands the derivatives.

However, this choice may not be optimal in some situations. For instance, let us
now further assume that we already know that G;(A, ¢) do not generate any renormali-
sation. We would also expect that the non-linear expression F{(A, ¢) obtained after differ-
entiation would also not generate any renormalisation but proving this implication can be
non-trivial since the application of Leibniz rule may generate many new singular terms.

A more lightweight approach is to formulate things as in (5.23) where we set

Ki=R", K =(V(@,—-2)")w» ek,
and (A ) = (G 0)), €Ki @W,.

d

j:
With this choice, our framework will, without any extra effort, allow us to infer that we
do not see any renormalisation in (5.24).

When we want to refer to a set of labels £ (which comes with a split £ = £, LI
£_) along with an associated target space assignment W = (W)(¢e and kernel space
assignment K = (K¢) e, we will often write them together as a triple (£, W, K)

Then, given (£, W, K), for fixing the space assignment (V)ce used in the cate-

gory theoretic constructions earlier in this section, our discussion above motivates space



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

assignments of the form

(5.25) Vv, o\ef{Wt forte £_,

Ky forte £y,

Given a space assignment V of the form (5.25), we then use the functor Fy defined in
Section 5.2 to define the vector spaces I, I, I_, F, F_ by
(5.26) UEFU) = J] U], URIEFe((r) = Ve

ted(R)

where, respectively,

e Uisone of I, T, T_, F,F_,

e Uisoneof T, T, T_,F, F_,and

e {isoneof T,T,, T _,§,§_ (tin (5.26) can denote either a tree or a forest).
We also adopt a similar notation for linear maps #: U — X (for any vector space X) by
writing A[t] for the restriction of 4 to U [t] for any T € LU(R). Note that the forest product
turns F and F_ into algebras, while the tree product turns I, into an algebra. We call
I the concrete regularity structure built from F . The notion of sectors of J is defined
as before in [Hail4, Def. 2.5].

Remark 5.37. — Given a label decomposition £ of £ under p, we will naturally
“extend” p to amap p: £ — P(E), where £ = £ x N1 by setting, for 0 = (t, p) € £,
p(0) = p(t) x {p}.
If we have a splitting of labels £ = £, U £_ then we implicitly work with a corre-
sponding splitting £ = £, U £_ given by £, = | ee, P(D.
Additionally, given a rule R with respect to the labelling set £, we obtain a corre-
sponding rule R with respect to £ by setting, for each t € £,

R(E):{Neﬁ(f:):aNeR(t) with NWN},

where t is the unique element of £ with t € p(t) and we say that N ~» N if there is a
bijection from N to N respecting'® p. If we are also given a notion of degree deg: £ —
R then we also have an induced degree deg: £ — R by setting, for  and t as above,
deg({) = deg(t). It then follows that subcriticality or completeness hold for R if and only
if they hold for R

Linking back to Remark 5.32, we also mention that {p(t) : T € T¢(R)} is a parti-
tion of Ta(R).

13 Respecting p means that ifN>5+>0eNthense p(0) where p: £ — P(E) as above.
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Remark 5.38. — We say (2,W, /6) is a decomposition of (£, W, K) under p if £
1s a decomposition of £ under p and

W, = E_B{ep(t) Wi foralte £,
We

forallte £, and tep®),
(5.27) ! P

Ky= @/@{foraﬂte,&r.

tep(t)

The regularity structure I defined in (5.26) is then fixed, up to natural transfor-
mation, under noise decompositions of £. In this case, the space assignment V=WV)es
built from (£, W, K) using (5.25) is a decomposition of (Vy)¢ce built from (£, W, K).

Note that our decompositions do not “split-up” the spaces Wy for t € £, that is
our decompositions for kernel types will decompose the spaces where our kernels take
values but not the spaces where our solutions take values.

Remark 5.39. — We call (£, W, K) scalar if, for every t € £_, dim(W) = 1 and,
for every t € £,, dim(KCy) = 1.

Our construction of regularity structures and renormalisation groups in this section
will match the constructions in [Hail4, BHZ19] when we have a scalar (£, W, K) and so
we will have all the machinery developed in [Hail4, CH16, BHZ19, BCCH21] available.

We say (i_l, W, /@) is a scalar decomposition of (£, W, KC) under p if it is a decomposi-
tion under p as described in Remark 5.38 and (W, K) is scalar.

In this situation natural transformations given by Proposition 5.29 allow us
to identify the regularity structure and renormalisation group built from (£, W, K)
with those built from (£, W, K) . Thanks to this we can leverage the machinery of
[Hail4, CH16, BHZ19, BCCH2I1] for the regularity structure and renormalisation
group built from (£, W, K).

Remark 5.40. — One remaining difference between the setting of a scalar and the
setting of [Hail4, BHZ19] is that in [Hail4, BHZ19] one also enforces dim(W) =1
for t € £, — this constraint enforces solutions to also be scalar-valued. However, while a
scalar noise assignment allows dim(W¢) > 1 for t € £, our decision to enforce Vi =R
in (5.25) means that we require that the “integration” encoded by edges of type t acts
diagonally on Wy, i.e., it doesn’t mix components. In particular, with this constraint the
difference between working with vector-valued solutions versus the corresponding sys-
tem of equations with scalar solutions is completely cosmetic — the underlying regularity
structures are the same and the only difference is how one organises the space of modelled
distributions.

Remark 5.41. — While the convention (5.25) is natural in our setting, an exam-
ple where it must be discarded is the setting of [GH19b]. In [GH19b] combinatorial
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trees also index subspaces of the regularity structure which generically are not one-
dimensional. To start translating [GH19b] into our framework one would want to take
£ = {ty} and set V¢, = RB for B an appropriate space of distributions. However, since
R is infinite-dimensional in this case, the machinery we develop in the remainder of this
section does not immediately extend to this context. See however [GHM22] for a trick
allowing to circumvent this in some cases.

At this point we make the following assumption.

Assumption 5.42. — Our target space assignments W and kernel space assignments IC are
always finite-dimensional space assignments (which means the corresponding V- giwen by (5.25) are
finite-dimensional).

Remark 5.43. — There are several ways in which we use Assumption 5.42 in the
rest of this section. One key fact is that for vector spaces X and Y one has L(X,Y) =~
X* ® Y provided that either X or Y is finite-dimensional — this is especially important
in the context of Remark 5.50. Another convenience of working with finite-dimensional
space assignments is that we are then allowed to assume the existence of a scalar noise de-
composition which lets us leverage the machinery of [Hail4, CH16, BHZ19, BCCH21].

5.7. The renormalisation group

Our construction also provides us with a “renormalisation group” that remains
fixed under noise decompositions. Recalling the set of forests §_(R) and the associated
algebra F_ introduced in Section 5.6 (in particular Eq. (5.26)), we note that the map A7
introduced in Section 5.5 — or rather its image under the functor Fy — turns %_ into a
bialgebra. Moreover, we can use the number of edges of each element in §_(R) to grade
F_. Since F_ is connected by (5.22) (i.e. its subspace of degree 0 is generated by the unit),
it admits an antipode A_ turning it into a commutative Hopf algebra and we denote by
G_ the associated group of characters. It is immediate that, up to natural isomorphisms,
the Hopf algebra &_ and character group G_ remain fixed under noise decompositions.
Given £ € G_, we define a corresponding renormalisation operator My, which is a linear
operator

(5.28) M:T -9, MY¥eeid)A .

Remark 5.44. — Note that the action of M, would not in general be well-defined
on the direct product Fy (%) but it is well-defined on I thanks to the assumption of
subcriticality.
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Also note that there is a canonical isomorphism

(5.29) G~ P .

1€e¥_(R)

In particular, given £ € G_ and t € T_(R), we write £[t] for the component of £ in
I [t]* above.

5.7.1. Canonical lifls

For the remainder of this section we impose the following assumption.
Assumption 5.45. — The rule R satisfies R(I) = {()} for every L € £_.

A kernel assignment is a collection of kernels K = (K : t € £;) where each K is a
smooth compactly supported function from R*™"\ {0} to ;. A smooth noise assignment
is a tuple ¢ = (¢ : t € £_) where each ¢; is a smooth function from R*™! to W.

Note that the set of kernel (or smooth noise) assignments for £ and W can be
identified with the set of kernel (or smooth noise) assignments for any £ and W obtained
via noise decomposition of the label set £ and W. For smooth noise assignments this
identification is given by the correspondence

(Ciilel ) o (G=Pu:lel, lep).

If we are working with scalar noises then, upon fixing kernel and smooth noise as-
signments K and ¢, [Hail4] introduces a map II., which takes trees T € T(R) into
C*®(R"). This map gives a correspondence between combinatorial trees and the space-
time functions/distributions they represent (without incorporating any negative or posi-
tive renormalisation), and I1.,, is extended linearly to I . In the general case with vector
valued noise we can appeal to any scalar noise decomposition £ of £ and W to again
obtain a linear map I.,,: Tz — C®°(R*"!) — this map is of course independent of the
particular scalar noise decomposition we appealed to for its definition.

In order to make combinatorial arguments which use the structure of the trees of
our abstract regularity structure, it is convenient to have an explicit vectorial formula for
In

can-*

Given t € T(R), we have, by Assumption 5.42 and (5.10),
(5.30) (VHEW ~F[1]*.

Writing, for any t € T(R), II,.[t] for the restriction of I, to T [t], we will realise
IT..[t] as an element

M. [t] € C¥®R™, (VH®),
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where we remind the reader that (5.30) gives us
CE®R™, (V)™ = LT [x], C*R™) .

The explicit vectorial formula for II,, mentioned above is then given by

(5.31) I..[t](z) = / dnedio =2 (T 1)
(REH1H)N(@) veN(T)
(& DKo =) (@ D" )
e€K(7) <l

where we have taken an arbitrary 7 € T and set

LO ek, te) el ],
(5.32)

def

K() ¥ E, \ L(t) and N(7) & {[veV.:iv+#e foranyeeL(v)}.

Thanks to Assumption 5.45, all the integration variables x, € R‘*! appearing on the
right-hand side of (5.31) satisfy v € N(7). Moreover, while the right-hand side of (5.31)
is written as an element of (@), ;) Wew) ® (®,ck(r) KLt ), due to the symmetry of the
integrand it can canonically be identified with an element of (V*)®(®,

5.7.2. The BPHZ character

In the scalar noise setting, upon fixing a kernel assignment K and a random'*
smooth noise assignment ¢, [BHZ19, Section 6.3] introduces a multiplicative linear
functional I, (denoted by g~ (I1.,,) therein) on F_ obtained by setting, for T € T(R),
I..[t] = E(II..[t](0)) and then extending multiplicatively and linearly to the alge-
bra F_. [BHZ19] also introduces a corresponding BPHZ renormalisation character
Leprz € G- given by

(5.33) ey = M0 A

where A_ is the negative twisted antipode, an algebra homomorphism from F_ to F deter-
mined by enforcing the condition that

(5.34) MA_ Q@id)A” =0

on the subspace of I generated by T_(R). Here, M denotes the (forest) multiplication
map from F ® J into F. We remind the reader that condition (5.34), combined with
multiplicativity of A_, gives a recursive method for computing A_t where the recursion
isin |E.|.

" With appropriate finite moment conditions.
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In the general vector-valued case we note that, analogously to (5.34), we can con-
sider for a morphism A e Hom(%_, &) the identity

(5.35) MA_ @id)A™ =

as an identity in Hom(J_, &). If we furthermore impose that A_ s multiplicative in
the sense that A_ o M = Mo (.A_ ® A_) as morphisms in Hom(%F_ @ &F_, &) and
A_[@] = idg(),"” then we can proceed again by induction on |E.| to uniquely deter-
mine A_ € Hom(%F_, F).

Analogously to (5.30), one has T [f]* = WL where (L(f)) is the symmetric set
obtained by restricting the forest symmetries of every / € f to the set of leaves L(f) =
U,e y L(7), where the union runs over all the trees 7 in /. This shows that, if we set again

O.,.[t] = E(M...[t](0))

with II.,, given in (5.31), we can view I...[t] as an element of T [t]*, and, extending its
definition multiplicatively, as an element of I [f]*. Hence (5.33) yields again an element
of G_, provided that we set A = FV(A_)

Remark 5.46. — 'This construction is consistent with [BHZ19] in the sense that
if we consider £gpyy as in [BHZ19] for any scalar noise decomposition p of £, then this
agrees with the construction we just described, provided that the corresponding spaces
are identified via the functor p*.

5.8. Non-linearities, coherence, and the map Y

In this subsection we will use type decompositions to show that the formula for the
T map which appears in the description of the renormalisation of systems of scalar equa-
tions in [BCCH21] has an analogue in our setting of vector-valued regularity structures.
We again fix a triple (£, W, K) which determines a space assignment (V)¢ by (5.25).

Remark 5.47. — Up to now we were consistently working with isomorphism
classes T € T. For brevity, we will henceforth work with concrete trees T € T, all con-
siderations for which will depend only on the symmetric set (t), which, by Remark 5.30,
we canonically identify with (7). We will correspondingly abuse notation and write 7 € X.

Remark 5.48. — In what follows we will often identify £ with a subset of & =
£ x N**! by associating t > (t, 0).

15 Recall that @ denotes the empty forest and is the unit of the algebras % and F_, while 1 is the tree with a single
vertex and 0 is just the zero of a vector space, so these three notations are completely different.
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We define of & [1,ce W, where the (W : £ € N“*!) are distinct copies of the

space W¢. One should think of A € o as describing the jet of both the noise and the
solution to a system of PDEs of the form (5.1). We equip o with the product topology.

Given any two topological vector spaces U and B, we write (U, B) for the
space of all maps IF': U — B with the property that, for every element £ € B*, there exists
a continuous linear map £: U — R” and a smooth function F ¢.7: R" = Rsuch that, for
every u € U,

(5.36) (0, Fw) =F,; (@) .

When our domain is U = & we often just write 6> (B) instead of 8 (d, B). Note that
when B is finite-dimensional then for each F € 6°°(B), F(A) is a smooth function of
(A, : 0 € &) for some finite subset & C E.

Remark 5.49. — One difference in the point of view of the present article versus
that of [BCCH21] is that here we will treat the solution and noise on a more equal
footing. As an example, in [BCCH21] the domain of our smooth functions would be a
direct product indexed by £, x N?™! rather than one indexed by £. The fact that, in the
case of the stochastic Yang—Mills equations considered here, the dependence on the noise
variables has to be affine is enforced when assuming that the nonlinearity obeys our rule
R, see Definition 5.54 below.

In particular, when defining the Y map in [BCCH21] through an induction on
trees T, the symbols associated to the noises (and derivatives and products thereof)'® were
treated as “generators” — the base case of the T induction. In our setting, however, the

sole such generator will be the symbol 1 and noises will be treated as branches/edges
Ji(1) for t € £_. See also Remark 5.59 below.

A specification of the right-hand side of our equation determines an element in

(5.37) QEe* (P (VieW)) =D (VioW,).

tel tel

Writing an element F € Q as F = @tez F with Fy € € (Vi ® Wy), F for t € £ plays
the role of the function appearing on the right-hand side of (5.23) namely a smooth
function in the variable'” A € o taking values in Vi ® W >~ W,.

Remark 5.50. — Note that the vector space o depends on (£, W, K). However,
if (2, W, /C) is a decomposition of (£, W, K) under p and we define gy [Lcs W then

'8 Here we are referring to the “drivers” of [BGCH21].
17 The (A, &) written in (5.23) corresponds to the A here, see Remark 5.49.
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there is a linear natural surjection ¢ : A — o given by setting, for each A = (A;);.z,
t(A) =A=(A)),ce to be given by

Y A ifoe gy x N,
oep(0)

538 ASTAVA iees x N

oep(0)

where p(0) 1s understood as in Remark 5.37.
Observe that there is an induced injection

B*(B) = 6>°(d, B) — €¥(d, B),

given by G > G ot — we will often treat this as an inclusion and identify ‘€*°(B) as a

subset of B®(d, B)
It follows that, for any t € £, and Fy € €°(V; ® W,) one has

Fo= @ Fie @ 6 (Via W) c P 6. Vie Wy .

EEP(t) iEp(t) {Ep(t)

In the first equality above we are using that

(5.39) VieW.= P View.= P view:.

tep(t) tep(t)

This shows that our definitions allow the £, -indexed non-linearities to make sense as
£, -indexed non-linearities after decomposition. However, this does not hold for [ € £_
since the (5.39) fails in this case.

Indeed, given a finite-dimensional vector space B, the identity idg is the unique
(up to multiplication by a scalar) element of L(B, B) >~ B* ® B such that, for every de-
composition B = @D, B; one has idy € @, L(B;, B)) ~ P, (B; ® B;). This suggests that if
we want to have nonlinearities that continue to make sense under decomposition (and
constant for [ € £_ as enforced by Assumption 5.45), we should set Iy = idy, for [€ £_.

This is indeed the case and will be enforced in Definition 5.55 below.

5.8.1. Derwvatives

Just as in [BCCH21] we introduce two families of differentiation operators, the
first {D,},ce corresponding to derivatives with respect to the components of the jet o and
the second {9;} ]‘-1:0 corresponding to derivatives in the underlying space-time.

Consider locally convex topological vector spaces U and B. Suppose that B =
[ 1,c; Bi, where each B, is finite-dimensional, equipped with the product topology. Let
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F € €°(U,B) and £ € B*, £, and F,; as in (5.36). For m > 0 and u € U, consider the

symmetric m-linear map
(5.40) U" 3 (vy, ..., 0,) = D"Fy ; (L) (E(v), ..., £(v,)) €R.
For fixed u, vy, ..., v,, the right-hand side of (5.40) defines a linear function of £ which

one can verify is independent of the choice of £. Since B* = @, B, the algebraic
dual of which is again B, there exists an element D"F(«)(vy, ..., v,) € B such that
(¢, D"F(u)(vy, ..., v,)) agrees with the right-hand side of (5.40). It is immediate that
U”s (vy,...,v,) —= D"F(w)(vy,...,v,) €B is symmetric and m-linear for every u € U.

Turning to the case U=dl, for o, ..., 0, € £ and A € d, we define
D, ---D, FA) =D"F(A) [\, x..xw,, € LW, ..., W, ;B).
Due to the finite-dimensionality of W, by Assumption 5.42, the map

D, ---D, F: A~ D, ---D, F(A)

Om

is an element of @ (L(W,,, ..., W, ;B)). The operators {D,},c¢ naturally commute,
modulo reordering the corresponding factors.

Remark 5.51. — 1If (f.‘,, W, /@) is a decomposition of (£, W, K) under p then our
definitions give us another set of derivative operators {D;};.z. Via the identifications W, =
Dicpiy Wi for any o € £, we have for any I € € (B)

> DiF ifoe &, x N,
_ oep(0)
- @D;F ifoe £ x Ni+! |

oep(0)

(5.41) D,F

For 0 € £, x N”! this equality follows from a simple computation using the chain
rule to handle the composition with ¢ and the right hand side is a sum of elements of
G (L(W,; B)) — recall that W; =W, for all o € p(0). For 0 € £ x N’"! the equality
follows from the fact that W, = Zaep(o) W, so 8 (L(W,; B)) = @kp(,}) G (L(Ws; B)).

Analogous identities involving iterated sums hold for iterated derivatives.

Remark 5.52. — Note that we will not always distinguish direct sums from regular
sums in what follows — we chose to do so in Remarks 5.50 and 5.51 simply to illustrate
the slight difference in how types in £, and £_ behave under decompositions.

Forje{0,1,...,d} and 0 = (L, p) € &, we first define 9,0 € € by do= (L, p+ ¢).
We then define operators d; on ‘€*°(B) by setting, for A= (A,),c¢ € 9 and I € € (B),

(5.42) (BF) A=) (DF)A) A, .
0e€
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Note that the operators {9;} j”-i:O commute amongst themselves and so 97 is well-defined for
any p € N1,

Remark 5.53. — Combining (5.41) with (5.42), we see that the action of the deriva-
tives {0;} ]4:0 remains unchanged under decompositions of (£, W, K), thus justifying our
notation.

Just as in [BCCH21], we want to restrict ourselves to F € Q that 0bey'® the rule R
we use to construct our regularity structure.

Defination 5.54. — We say ¥ € @ obeys a rule R of; for each t € £ and oy, . .., 0, € &,
(5.43) (01,...,00)¢R(H = D, ---D,F¢=0.

Note that, for any type decomposition £ of & under p, F obeys a rule R if and only if it obeys R as
defined in Remark 5.37.

Definition 5.55. — Given a subcritical and complete rule R, define Q C Q 10 be the set of F
obeying R such that furthermore F((A) = idw, for all 1 € £_.

Recall that, by Assumption 5.45, for any I obeying the rule R, F(A) is indepen-
dent of A for [ € £_. The reason for imposing the specific choice F{(A) = idyy, is further
discussed in Remark 5.50 above and Remark 5.63 below.

5.8.2. Coherence and the definition of Y

In this subsection we formulate the notion of coherence from [BCCH21, Section 3]
in the setting of vector regularity structures. In particular, in Theorem 5.62, we show that
the coherence constraint is preserved under noise decompositions.

We first introduce some useful notation. For 0 = (t, p) € £ we set

BUF (@) =[]Ve". B YR (IT)CB,

Te¥

and equip B with the product topology. As usual, we use the notation B¢ = %y o). Note
that 9B is an algebra when equipped with the tree product, or rather its image under Fy.
The following remark, where we should have in mind the case 98, = FV((T\ {1})), is

crucial for the formulation of our construction.

18 The notion of obey (and the set @) we choose here is analogous to item (i) of [BCCH21, Prop. 3.13] rather than
[BCCH21, Def. 3.10]. In particular, our definition is not based on expanding a nonlinearity in terms of a polynomial in
the rough components of A and a smooth function in the regular components of A. This means we don’t need to impose
[BCCH21, Assump. 3.12] to use the main results of [BCCH21].
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Remark 5.56. — Let B, be an algebra such that B, = lim_ B with each B
nilpotent, let U and B be locally convex spaces where B is of the same form as in Sec-
tion 5.8.1, and let F € ‘€*°(U, B). Write &8 = R @ 9., which is then a unital algebra.
Then F can be extended to amap BRU — B R B as follows: foru e Uandue B, @ U,

we set

(5.44) Fl@u+i) =) DF@W - o

m!
meN

where D"F(x) € L(U, ..., U; B) for each u € U naturally extends to a m-linear map (%8 ®
U)" — B @ B by imposing that

(5.45) D"F(w)(by @ vy, ..., 0, Qv,) =(by---b,) D"F(w)(vy,...,v,) .

Note that the first term of this series (5.44) belongs to R ® B while all other terms belong
to B, ® B. Since i € B, ® U, the projection of this series onto any of the spaces B ®
B contains only finitely many non-zero terms by nilpotency, so that it is guaranteed to
converge. If B and all the 935:0 are finite-dimensional, then the extension of F defined in
(5.44) actually belongs to (B ® U, LB ® B), where 9B, is equipped with the projective
limit topology, under which it is nuclear, and B ® U, is equipped with the projective
tensor product. Furthermore, in this case, every element of (B ® U, & ® B) extends
to an element of (B ® U, B ® B), where & denotes the (completion of the) projective
tensor product.

We introduce a space'” of expansions # = @, # with

def

H=(BDT)OW CBOW,, TE [] IX1T.
keNd+1
Given A € #, we write A=) _,_. A with
Xk
(5.46) At=A§+( Y F@A(m)e%, AR e B OW,,

keNd+1

and write A* = (A,),ce € o, where the coefficients Ay are as in (5.46).° Note
that (5.46) gives a natural inclusion d C % .

Remark 5.57. — 1In (5.46) and several places to follow, we write ) to denote an
element of a direct product. This will simplify several expressions below, e.g. (5.58).

19 The space 7 introduced here plays the role of the space #* in [BCCH21, Section 3.7].
20" As a component of At e d, A, € W,, while as a term of (5.46), A, € W. This is of course not a problem since
W, >~ W;q.
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For o = (%, p) € € we also define

e .4
(5.47) AL (Y — @Aipin) €EBBW,,

keNd+1

where A® € B, ® W, is given by the image of AR under the canonical isomorphism

B, W, >~ B, ® W¢ (but note that B, and 9B, are different subspaces of &B when p # 0).

Collecting the A, into one element AY (A,:0€e &), we see that Ais naturally viewed
as an element of B ® 4.

Note also that, for any 0 = (, p) € &, our construction of the morphism .%, on sym-
metric sets built from trees in Section 5.4.1 gives us, via the functor Fy, an isomorphism
J,: BRVi— 3B,.

WEe fix for the rest of this subsection a choice of F € @Q. Then the statement that
A € # algebraically solves (5.1) corresponds to

(5.48) AR = (F, @ idw) (F(A)) .

Here, we used Remark 5.56 to view Fi: A — Vi ® W¢ as a map from 9B ® 9 into
B R Vi ® Wy, which J; then maps into By ® Wy.

The coherence condition then encodes the constraint (5.48) as a functional de-
pendence of AR = @), AR on A, This functional dependence will be formulated by
defining a pair of (essentially equivalent) maps Y and Y where

(5.49) Ye[[6*(BRV.®@W) and YTe[[6 (B,W,).

teg =t

The coherence condition on A € # will be formulated as AR = Y (A#).

To define Y and Y, we first define corresponding maps Y and Y (belonging to
the same respective spaces) from which ¥ and Y will be obtained by including some
combinatorial factors (see (5.57)). We will write, for t€ £, 0€ £, and t € T, Y,[7] for
the component of T in B (RB[F,t] @ W,) and Y[t] for its component in *(B[r] ®
Vi ® W).2' We will define Y and T by specifying the components Y,[7] and Y [t]
through an induction in 7. Before describing this induction, we make another remark
about notation.

Remark 5.58. — Forte £, G € B2 (Vi@ Wy), (01, 71), ..., (0, T,) €E X T, and
k € N1 consider the map

3D, ---D, G €BL(W,,....,W, ; V.QW))).

2l This means that our notation for Y'[t] breaks the notational convention we’ve used so far for other elements of
spaces of this type (direct products of Fy((1)), possibly tensorised with some fixed space). The reason we do this is to be
compatible with the notations of [BCCH21], and also to keep notations in Sections 6.2 and 7.3 cleaner.
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It follows from Remark 5.56 that if we are given elements ®,; € € (B ® W,,) we have a
canonical interpretation for

(5'50) (akD(J] e DomG(A))(®l (A)9 R ®m(A)) S % ® Vt ® Wt )

which, as a function of A, is an element of B*°(%B ® V; ® W{) which we denote by
(#D,, ---D,,G)(®.....0,).
We further note that if ®; € C6"0(% ®W,,) for some subspaces B; C A, then (5.50)

belongs to % Q@ V,® Wy, where B C B is the smallest closed linear space containing all
products of the form b, - - - b,, with b; € 9B,.

Now consider an isomorphism class of trees T € T. Then 7 can be written as
(5.51) b S AR

where k =1n(0),m>0,7,€ ¥, and o; € £.

Remark 5.59. — TFollowing up on Remark 5.49, in the analogous expression

[BCCH21, Eq. (2.11)] a tree T may also contain a factor & representing a noise. How-
ever, in (5.51) a noise (or a derivative of a noise) is represented by ¥, (1) with [€ £_.

Given t € £ and 7 of the form (5.51), Yt] and Y plt] are inductively defined
by first setting

(5.52) Y1E1®F,,

which belongs to B[1] ® B°(V, ® W) ~ E*(AB[1] @ Vi@ W) C B*(BV(®
W) (the first isomorphism follows from the fact that Vi ® Wy is finite dimensional by
assumption) so this is indeed of the desired type. We then set

T EX[9'D,, D, T (Fla, - Tlm])
(5.53)

Yplt] E (Fp @ idw, ) (TulT]) -

We explain some of the notation and conventions used in (5.53). By Remark 5.58, the
term following X* in the right-hand side for Y¢[7] is an element of

%m( []_[J (r)] ®Vt®Wt>

]_
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We then interpret X*e as the canonical isomorphism

(5.54) 93[]2[3@(;,-)} ~ %[xkﬁjoj(;/)] = %B[1],
j=1

J=1

acting on the first factor of the tensor product, hence the right-hand side of the definition
of Y¢[t] belongs to €*°(RB[r] ® Vi ® Wy), which is mapped to G (B[F,)T] ® Wy)
by F) ® idw, as desired.

Remark 5.60. — We have two important consequences of (5.53) and (5.52):
(i) Since F obeys R, we have, for any o = (t,p) € £, Y,[t] =0 and Y] = 0 unless
Ji(r) € TRR).
(ii) Forany t€ £_, p € N“*! and r € T\ {1}, one has T plt]l =0 and Yd{r]=0, due
to annihilation by the operators 9 and D.
In particular, our assumption that the rule R is subcritical guarantees that for any given
degree y, only finitely many of the components Y[7] with degT < y are non-vanishing.

Remark 5.61. — Although it plays exactly the same role, the map Y introduced
in [BCCH21] is of a slightly different type than the maps Y and Y introduced here.
More precisely, in [BCCH21], Y,[t](A) € R played the role of a coefficient* of a basis
vector in the regularity structure. In the present article on the other hand, Y,[7](A) €
B[, 7] ® W,. In the setting of [BCCH21], these spaces are canonically isomorphic to R

and our definitions are consistent modulo this isomorphism.

The Y and Y defined in (5.53) are missing the combinatorial symmetry factors
S(7) associated to a tree T € ‘¥, which we define in the same way as in [BCCH21]. For
this we represent T more explicitly than (5.51) by writing

L
(5.55) r=X ]_[ I, (1),

J=1

with £ > 0, B; > 0, and distinct (01, T1), ..., (0, T¢) € € x T, and define

L
(5.56) S(1) défk!(l_[ S(rj)ﬁfﬁj!) .

J=1

22 The coefficient of .%,(t) in a coherent jet and the coefficient of T in the expansion of the non-linearities evaluated
on a coherent jet.
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We then set, forte £,0€ &, and 7 € T,

Y= ) 7Yt Y[1]= 1,[7]/8(r)
0c€,7eT
(5.57) ) ) o
Y= ) Tdrl, Y] = Ylel/S(r) .
tel,te¥

We can now state the main theorem of this section.

Theorem 5.62. — X and Y as defined in (5.57) are left unchanged under decompositions of
(£, W, K). Precisely, given a decomposition (£, W, IC) of (£, W, K) under p, forany t € £,7 € T
and A € A,

(5.58) Tl = Y TIFIA),

lep(V).7ep(7)

where (Y1) ca on the right-hand side is defined as above but with (2, W, /@) i 1ts construction, and
p () s defined as in Remark 5.32. The equality (5.58) also holds when Y s replaced by Y .

Progf. — We prove (5.58) inductively in the number of edges of r. Writing 7 in
the form (5.51), our base case corresponds to m = 0, i.e. T = X" for £ € N“™!, so that
p(XH) = {X*} and S(X*) = £!. This case is covered by Remark 5.50. For our inductive
step, we may assume that m > 11in (5.51).

Then, inserting our inductive hypothesis in (5.53) (including the special case
T(1] = Z[ep(t) T([1]) and also applying Remark 5.51 we see that (5.58) follows if we
can show that, for any [ € p(t),

(5.59) Y (J®idw,) [Xk(ak(D,] Dy YN (Tylon], ... Ty, [a,,,])>]

(l,o)ed(T)

_ vy SO
=Y s TiE.

Tep(t)

where d(7) consists of all pairs of tuples (/, o) with [ = (/)" ,, 0 = (0))"_,, ; € p(0;) and

=1> =1

o; € p(1;). Given ([, 0) € d(t) we write T(/,0) gt [1L, J,.(0:) € T5. Clearly one has
7(/,0) € p(7) and for fixed (/, o) the corresponding summand on the left-hand side of
(5.99) 1s simply Y[z (/, 0)]. Finally, for any T € p(7), it is straightforward to prove, using
a simple induction and manipulations of multinomial coefficients, that

S(t) _

o= =o)ed(@):z(,0) =1},

S(7)
which shows (5.59). Using natural isomorphisms between the spaces where Y and Y live,
it follows that (5.58) also holds for Y. UJ
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Remark 5.63. — We used Remark 5.50 in a crucial way to start the induction,
which shows that since we consider rules with R(l) = {()} for [ € £_, the choice F; = idyy,
is the only one that complies with (5.43) and also guarantees invariance under noise de-
compositions. See however [GHM?22] for an example where R([) # {()} and it is natural
to make a different choice for F,.

We now precisely define coherence in our setting. For L. € N U {oo}, we denote by
p<1. the projection map on .. B ® W, which vanishes on any subspace of the form
T[] @ Weif

[Ecl+ ) In()| > L

veVy

and 1s the identity otherwise. Above we write E, for the set of edges of t, V; for the set
of nodes of 7, and n for the label on 7. Note that p- 1s just the identity operator.

Definition 5.64. — We say A € F is coherent to order 1. € N U {oo} with F if
(5.60) P AR = p Y AY)
where AR = @, o AL with AR determined from A as in (5.46).

Note that, by Theorem 5.62, coherence to any order L is preserved under noise
decompositions. Thanks to Theorem 5.62 we can reformulate [BCCH21, Lem. 3.21] to
show that our definition of Y encodes the condition (5.48); we state this as a lemma.

Lemma 5.65. — A € F is coherent to order L. € N U {00} with ¥ if and only f; for each
te g,

(5.61) ﬁgLA}j :pgl,(jt ® ith)Ft(A) .

Remark 5.66. — Combining Lemma 5.65 with Definition 5.64 shows that Y does
indeed have the advertised property, namely it yields a formula for the “non-standard
part” of the expansion of any solution to the algebraic counterpart (5.48) of the mild
formulation of the original problem (5.1).

Conversely, this provides us with an alternative method for computing Y (A)[t] for
any T € . Given A € o, set A? = A € # (recall (5.46) for the identification of of as a
subspace of #') and then proceed iteratively by setting

AU = A+ (F @ idw ) F(A™) .

Subcriticality then guarantees that any of the projections A™[7] stabilises after a finite
number of steps, and one has Y([t](A) = A[].
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Remark 5.67. — The material discussed in Section 5.8 up to this point has been
devoted to treating (5.1) as an algebraic fixed point problem in the space #. We also want
to solve an analytic fixed point problem in a space of modelled distributions, namely in a
space of # -valued functions over some space-time domain.

Posing the analytic fixed point problem requires us to start with more input than we
needed for the algebraic one. After fixing F € @ one also needs to fix suitable®® regularity
exponents (¥ : t € £) for the modelled distribution spaces involved and initial data (u :
t € £,) for the problem. Moreover, one prescribes a modelled distribution expansion for
each noise, namely for every [ € £_, we fix a modelled distribution Oy of regularity 2"
of the form

(9.62) Oz) = Z Oun (D)X + F(1) .

keNd+1

The corresponding analytic fixed point problem [BCCH21, Eq. (5.6)] is then posed on a
space of modelled distributions U = (U : t € £) such that U € P (at least locally). On
some space-time domain D (typically of the form [0, T] x RY), the fixed point problem is
of the form

Uy = Pt1t>0Ft((u LO)()) + Gy .
In this identity, Py is an operator of the form

(Ptf) @) =p<p FF () +(...),

where (...) takes values in Q:t df b N+ T [XF®@ Wy, and G is the “harmonic extension
map” as in [Hail4, (7.13)] associated to (3, — -Z)~" (possibly with suitable boundary
conditions). Here, p-,, is the projection onto components of degree less than y;. Since
Gy also takes values in 9, it follows that for any solution U to such a fixed point problem
and any space-time point z € D, U(z) LI O(z) is coherent with F to some order L which
depends on the exponents (y; : t € £); see [BCCH21, Thm. 5.7] for a precise statement.

Note that, depending on the degrees of our noises, there can be some freedom
in our choice of (5.62) depending on how we choose to have our model act on symbols
Ji(1) for [ € £_ — the key fact is that O represents the corresponding driving noise in
our problem, not necessarily #;(1). However, when deg(l) < 0, a natural choice for the
input (5.62) is to simply set O 4)(z) = 0 for all £ € N“*! and this is the convention we use
in Sections 6 and 7.

5.8.3. Renormalised equations

We now describe the action of the renormalisation group G_ on nonlinearities,
which is how it produces counterterms in equations. We no longer treat I € Q as fixed

2 Here, “suitable” means sufficiently large so that the fixed point problem is well-posed. Subcriticality guarantees
that setting y¢ = y for all t is a suitable choice provided that y € Ry is sufficiently large.
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and when we want to make the dependence of ¥ on F € @ explicit we write T We
re-formulate the main algebraic results of [BCCH21] in the following proposition; the
proof is obtained by using Theorem 5.62 to restate [BCCH21, Lem. 3.22, Lem. 3.23,
and Prop. 3.24].

Proposition 5.68. — Fix £ € G_. There is a map ¥ +— M,F, taking Q 1o itself; defined by,
Jorte Land Aed,

def

5.63) (M) (&) £ (b1, M, ® idy,ew,) T} (A)

. -F
=FA)+ Y (®idyew) T [TIA),
e¥_(R)

where py ¢ denotes the projection onto T [1] and the operator My on the right-hand side is given by (5.28).
Moreover, for any L. € N U {00},
. —F ~ M/F
(9.64) ﬁsL( Pm. e ldV@m) Y =pa ¥,

tel

and there exists T € N U {00}, which depends only on L and the rule R and which can be taken finite
if L is finite, such that if A € F is coherent to order L with F € Q then (M, ® id).A is coherent to
order L with M, F.

Remark 5.69. — Note that for t € £, Yf[t](A) €T [t]® Vi® Wy, so every term
on the right-hand side of (5.63) is an element of Vi ® Wy.

6. Solution theory of the SYM equation

In this section we make rigorous the solution theory for (1.7) and provide the proof
of Theorem 2.4. In particular, we explicitly identify the counterterms appearing in the
renormalised equation as this will be needed for the proof of gauge covariance in Sec-
tion 7. Recalling Remark 2.8 we make the following assumption.

Assumption 6.1. — The Lie algebra g is simple.

The current section is split into two parts. In Section 6.1 we recast (1.7) into
the framework of regularity structures with vector-valued noise using Section 5. In Sec-
tion 6.2 we invoke the black box theory of [Hail4, CH16, BHZ19, BCCH21] to prove
convergence of our mollified/renormalised solutions and then explicitly compute our
renormalised equation (using Proposition 5.68) in order to show that, when d = 2, the
one counterterm appearing converges to a finite value as ¢ |, 0.
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6.1. Regularity structure for the SYM equation

We set up our regularity structure for formulating (1.7) in d = 2 or d = 3 space

dimensions. However, when, computing counterterms, we will again fix d = 2. We write
def

[dl={1,...,d}.
Our space-time scaling s € [1, 00 is given by setting §p = 2 and 5; = 1 for
1 € [d]. We define £ &« {ai}flz1 and £ & {[i}le. We define a degree deg: £ — R on our

label set by setting

)d+1

6.1) deg(t) 4 ]° te Ly,
—d/2—1—k teg.

where we fix k € (0, 1/4).
Looking at equation (1.8) leads us to consider the rule R given by setting, for each

i € [d), R(L) = () and
3 def {([ia 0)}’ {(ai, O)’ (Cl, O)’ (av O)} .

6.2 R(a) = J / Jeld]y .
6.2) () { (@, 0). (. )} {(a,0). (a )} 7 <)
It is straightforward to verify that R is subcritical. The rule R has a smallest normal
[BHZ19, Definition 5.22] extension and this extension admits a completion R as con-
structed in [BHZ19, Proposition 5.21] — R is also subcritical and will be the rule used to
define our regularity structure.

We fix our target space assignment (W¢)c¢ and kernel space assignment by setting

(6.3) W ¥y Vief and K=R Vteg,.

The space assignment (V)¢ used in the construction of our concrete regularity struc-
ture via the functor Fy is then given by (5.25).

Remark 6.2. — While the notation A = (A : (t, p) € £) € A was convenient for
the formulation and proof of the statements of Section 5.8, it would make the computa-
tions of this section and Section 7 harder to follow. We thus go back to using the symbol
A for the components A 5 of A with t € £, and the symbol § for the components A )
with [ € £_. To streamline notations, we also write the subscript p as a derivative, namely
we write

(6.4) §=Au0 . A=A, 0 and i = Aaig) -
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Regarding the specification of the right-hand side F = @, . F; € Q, we set, for
eachie[d] andAe d, I, (A) =id, and

d
(6.5) Fo,(A) =Aq0) + D _[Aw.0: 28, — A T [Aw.0: Aol

J=1
d
=&+ Z[Aj, 20,A; — 0:A; + [Aj, Al
=1

where the identification of the two lines uses the notations of Remark 6.2.

The right-hand side of (6.5) is clearly a polynomial in a finite number of compo-
nents of A taking values in Wy, = g, so indeed F € Q. The derivatives D, ---D,, Fq,(A),
for o1,...,0, € £, are not difficult to compute. For instance, for fixed A € oA,
D(aj,o)Fai(A) € L(W(q/.’o), W(a,-,(])) = L(g, g) 1s given by

(Dia.00Fa (A)) (o) = [0, 20,A; — B + [A, Al + [A;, [0, Al

d
+8,; ) [Aw[Ar o]l

k=1

It is then straightforward to see that F € @, namely, it obeys the rule R in the sense of
Definition 5.54.

6.2. The BPHZ model/counterterms for the SYM equation in d = 2

We remind the reader that we now restrict to the case d =2 and |[|s = —2 — k for
every € £_.

As mentioned in Remark 5.59, we will use the symbol E; u J1..0)(1) for the noise.
Similarly to Remark 6.2, we also use the notations .%; and .%;; as shorthands for J, )
and F(q, ) respectively.

Below we introduce a graphical notation to describe forms of relevant trees. The
noises &; are circles o, noises with polynomials X%& with j € [d] are crossed circles e,
and edges .%; and .;; are thin and thick grey lines respectively. It is always assumed that
the indices ¢ and j appearing on occurrences of &;, .%;, and .%;; throughout the tree are
constrained by the requirement that our trees conform to the rule R.

We now give a complete list of the forms of trees in T (R) with negative degree, the
form is listed on the top and the degree below it.

T ———
qpapep X/C Ei’ |/~C| 5 = 2

—2—k —1 -2 -1 -« —3K —2K —K
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Note that each symbol above actually corresponds to a family of trees, determined by
assigning indices in a way that conforms to the rule R. For instance, when we say that ©
is of the form <», then T could be any tree of the type

$1 ($2(Ei2)ji3zj3(Eis))‘yiwdf(am)

for any 1y, 1, 13, 4, /3,4 € [d] satisfying both of the following two constraints: first, one
must have either ¢ = ¢ or j, = ¢, and, second, one must have either iy =73 and j3 =1, or
1o =y3 and 13 =1;.

Note that a circle o or a crossed circle @ actually represents an edge when we think
of any of the corresponding typed combinatorial trees; for instance, in the sense of Sec-
tion 5.4, °» has four edges and not two. In Section 6.2.4, we will further colour our
graphical symbols to encode constraints on indices.

6.2.1. Kernel and noise assignments for (1.7)

We fix a kernel assignment by setting, for every t € £, K;{ = K where we fix K
to be a truncation of the Green’s function G(z) of the heat operator which satisfies the
following properties:

1. K(2) is smooth on R\ {0}.
K(2) =G(2) for 0 < |z]s < 1/2.
K(z) =0 for |z]s > 1
Writing z = (¢, x) with x € T?, K(0, x) = 0 for x # 0, and K(¢, x) = 0 for ¢ < 0.
Writing z = (¢, x1, x9) with xy, x9 the spatial components, K(¢, x, x0) = K(¢, —x1, x9)
= K(¢, x1, —x9) and K(¢, x1, x9) = K(¢, x9, x1).
We will also use the shorthand K = K % x°.

Ot 0D

Remark 6.3. — Property 4 is not strictly necessary for the proof of Theorem 2.1
but will be convenient for proving item (ii) of Theorem 2.9 in Section 7 so we include it
here for convenience. Property 5 is also not strictly necessary, but convenient if we want
certain BPHZ renormalisation constants to vanish rather than just being finite.

Note that we do not assume a moment vanishing condition here as in [Hail4,
Assumption 5.4] — the only real change from the framework of [Hail4] that dropping
this assumption entails is that, for p, k € N“*!| we can have presence of expressions
such as Fm ) (X*) when we write out trees in T(R). Works such as [CH16], [BHZ19],
[BCCH21] already assume trees containing such expressions are allowed to be present.

Next, we overload notation and introduce a random smooth noise assignment ¢ =
(CDies_ by setting, for i € [d], i) = & where we recall that §F = &; % x° and (§,)2_, are
the 1.1.d. g-valued space-time white noises introduced as the beginning of the paper. With
this fixed choice of kernel assignment and random smooth noise assignment ¢ for € > 0
we have a corresponding BPHZ renormalised model Z;,,,,. We also write £5,,,, € G_ for
the corresponding BPHZ character.
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6.2.2. Convergence of models for (1.7)
We now apply [CH16, Theorem 2.15] to prove the following;

Lemma 6.4. — The random models 235y, converge in probability, as € |, 0, to a limiting
random model Zppyry.

Proof. — We note that [CH16, Theorem 2.15] is stated for the scalar noise setting
so to be precise one must verify its conditions after applying some choice of scalar noise
decomposition. However, it is not hard to see that the conditions of the theorem are
completely insensitive to the choice of scalar noise decomposition. Let { = ({)ce_ be
the unmollified random noise assignment, that 1s, {;;) = §&;.

For any scalar noise decomposition, it is straightforward to verify the condition that
the random smooth noise assignments ¢° are a uniformly compatible family of Gaussian
noises that converge to the Gaussian noise ¢ (again, seen as a rough, random, noise
assignment for scalar noise decomposition in the natural way).

The first three listed conditions of [CH16, Theorem 2.15] refer to power-counting
considerations written in terms of the degrees of the combinatorial trees spanning the
scalar regularity structure and the degrees of the noises. Since this power-counting is not
affected by decompositions, they can be checked directly on the trees of T(R). We note
that

min{deg(r) : T € T(R), IN(7)| > 1} =—-1 -2« > -2

is achieved for 7 of the form @, — here N(7) is as defined in (5.32). This is greater
than —|s|/2, so the third criterion is satisfied. Combining this with the fact that deg(l) =
—|s|/2 — Kk for every [ € £_ guarantees that the second criterion is satisfied. Finally, the
worst case scenario for the first condition is for 7 of the form < with the subtree S therein
being » and the set A therein being a single noise, so

[Sls + [ls +|Alls|=—1 -k =2 —k+4=1—-2k>0
as required. 0J
6.2.3. The BPHZ renormalisation constants
The set of trees T_(R) is given by all trees of the form
L, \I/, P \y, \</, <,, ({‘), L, AL, or &S .

Our remaining objective for this section is to compute the counterterms

(6.6) 3 Il ®@idw) T[]

1e¥_(R)
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for each te £4. In what follows, we perform separate computations for the character

Loy [T] and for T , before Comblnlng them to compute (6.6). The following lemma

identifies some cases where Lo [T] =

Lemma 6.3, — (1) £yp, [T] =0 for each T consisting of an odd number of noises, that is
any T of the form 30, /", and “».
(i) On every subspace T [T] of the regulcmty structure with T of the form .2, %, 2, or <, one has
A_ = —id, 5o that €5, [T] = =M, [7].
(1) Lippy, [T]1 =10 for every T oft/zeform V3
(i) For T of the form °.2, < or *2, one has €5, [T] = O unless the two noises E;, and E;, appearing
in T carry the same index, that is 1, = 1.
(v) For T of the form <2 or <5, one has €., [T] = O unless the two spatial derivatives appearing on
the two thick edges in T carry the same index.

Progf. — Ttem (i) is true for every Gaussian noise. For item (i1), the statement about
the abstract regularity structure is a direct consequence of the definition (5.35) of the
twisted antipode (see also [BHZ19, Prop. 6.6]) and the statement about £;,,,,[T] then
follows from (5.33).

For item (iii) if we write T = Ji(&;).5;,(E)) then

f..[r]= f dudv K(~0)dK(—v)E[E () ® £ (v)].

Performing a change of variable by flipping the sign of the /-component of v, followed by
exploiting the equality in law of §% and the change in sign of 9,K under such a reflection,
shows that the integral above vanishes.

For item (iv), the fact that E[§(x) ® éjs(v)] = 0 if 7 # enforces the desired con-
straint.

For item (v), the argument is similar to that of item (ii1) - namely the presence of pre-
cisely one spatial derivative in a given direction allows one to argue that IT.,,[7] vanishes
by performing a reflection in the appropriate integration variable in that direction.  [UJ

Remark 6.6. — We now start to use splotches of colour such as # or # to repre-
sent indices in [d], since they will allow us to work with expressions that would become
unwieldy when using letters. We also use Kronecker notation to enforce the equality of
indices represented by colours, for instance writing u u.

We can use colours to include indices in our graphical notation for trees in an
unobtrusive way, for instance writing * = %, (¢) = %,(E,). Note that the splotch of » in the
symbol * fixes the two indices in .%,(E,) which have to be equal for any tree conforming
to our rule R. The edges corresponding to integration can be decorated by derivatives
which introduce a new index, so we introduce notation such as 1 = Ju4(E,), where the
colour of a thick edge determines the index of its derivative.
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For drawing a tree like J,(E.)F. u(Fu#(EL)), our earlier way of drawing <> didn’t
give us a node to colour », so we add small triangular nodes to our drawings to allow us

to display the colour determining the type of the edge incident to that node from below,
for example S =9,(E,)YS, #(Tuu(EN)).

We will see by Lemma 6.13 that Y;[t] = 0 for any 7 of the form ¢ or #,». There-
fore, (6.6) will only have contributions from trees of the form

(6.7) . >, or .

Thanks to the invariance of our driving noises under the action of the Lie group we
will see in Lemma 6.9 below that £3,,.,[t] has to be a scalar multiple of the Casimir
element (in particular, it belongs to the subspace g ®; g C g ® g). This is an immediate
consequence of using noise that is white with respect to our inner product (-, -) on g. In
particular, note that this inner product on g induces an inner product (-, ), on g ® g
and that there is a unique element Cas € g ®, g C g ® g with the property that, for any
}ll > }lQ €4y,

(6.8) (Cas, =y ® ho)o = (hy, ho) .

One can write Cas explicitly as Cas = ) . ¢ ® ¢ for any orthonormal basis of g but we
will refrain from doing so since we want to perform computations without fixing a basis.
Cas should be thought of as the covariance of the g-valued white noise, in particular for
i,J € {1, 2} we have

(6.9) E[5(1, x) ® &(5,9)]1 = 6;j0(1 — 5)6(x — ») Cas .
Thanks to (6.8), Cas is invariant under the action of the Lie group G in the sense that
(6.10) (Ad, ® Ad,) Cas = Cas, VgeG.

The identity (6.10) is of course just a statement about the rotation invariance of our
noise. Alternatively, we can interpret Cas as an element of U(g), the universal enveloping
algebra of g. The following standard fact will be crucial in the sequel.

Lemma 6.7. — Cas belongs to the centre of U(g).

Proof. — Let h € g and let 8 be a random element of g with E(6 ® 6) = Cas.
Differentiating E[Ad,0 ® Ad,0] at g = ¢ in the direction of / yields

(6.11) E([#01®60)=—E(0 ®[40]) .
We conclude that
[k, Cas] =[LE(0 ®0)| =E(h®0 Q60 —0 Q6 ®h)
=E([%0]®60+6®[h6])=0,

as claimed, where we used (6.11) in the last step. 0J
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Remark 6.8. — We note that Cas is of course just the quadratic Casimir. Moreover,
recall that every element / € U(g) yields a linear operator ad,: g — g by setting

adj, @@ X = [hi, ... [l X] -]

With this notation, Lemma 6.7 implies that ad¢,, commutes with every other operator of
the form ad, for /4 € g (and therefore also 2 € U(g)). If g is simple, then this implies that
adg,s = Aldy.

We now describe £5,,,,[7] for T of the form (6.7). We define

6.12 = f K (2% = f dz 9K (DK *K) (), O, =407 —CF

where, on the right-hand side of the second equation one can choose either j =1 or 2 —
they both give the same value.

Lemma 6.9. — For C¢ and C¢ as in (6.12), one has

6.13) Con [ 2] = =050, [03] = —C*Cas,  £5,,[**]=—C’Cas.

&

Furthermore, Cgy,,

as defined in (6.12) converges to a finite value Csyyy as € — 0.
Remark 6.10. — The last statement of Lemma 6.9 is the special feature of working
in two spatial dimensions; see Remark 2.5.

Remark 6.11. — The first identity of (6.13) makes sense since, even though there
are two natural isomorphisms T [42]* ~ g ® g and T [«>]* ~ g ® g (corresponding to the
two ways of matching the two noises), Cas is invariant under that transposition. For the
second identity, note that I [**]* >~ g ®, g.

Progf. — The identities (6.13) readily follow from direct computation once one uses
that in all cases £, [T] = —1..[7] (this 1s item (i1) of Lemma 6.5), writes down the cor-
responding expectation/integral, moves the mollification from the noises to the kernels,
and uses (6.9).

Regarding the last claim of the lemma, since K is a truncation of the heat kernel,

observe that
(6.14) 0, —AK=8+0Q,

where Q) is smooth and supported away from the origin. Using the shorthand Int[F] =
f dz F(z) it follows that

(6.15) Int[(AK % KS)K®] = —Int[(K*)?] + Int[(3,K % K*)K*] — Int[(Q * K*)K*] .
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On the other hand, we also have

(6.16) Int[(AK % K*)K?] = Int[(K * K®) AK?]
= —Int[(K % K) x°] — Int[(0,K * K*)K*] — Int[(K % K*)(Q * x*)] .

Observe that Int[ (K % K®) x ], Int[(Q * K*)K?], and Int[(K % K*)(Q * x*)] all converge?*
as ¢ — 0. Hence, adding (6.15) and (6.16), we obtain that

(6.17) — 2Int[(AK * K*)K*] — Int[(K®)?]
= Int[(K * K) x*] + Int[(K * K*)(Q * x*)] + Int[(Q * K*)K*]

&

converges as & — 0. We now note that the quantity above equals C%,, since C* =

Int[(K?)?] and, by integration by parts,
A 1
Cf = —EInt[(AK x* KO)K],
which completes the proof. 0J

6.2.4. Computation of '

Before continuing, we introduce some notational conventions that will be conve-

nient when we calculate T .

Recall that, for » € [d], the symbol E, is a tree that indexes a subspace J [ E,] of our
concrete regularity structure J . We introduce a corresponding notation E, € I [E,]® g
which, under the isomorphism J[E&,] ® g >~ g* ® g ~ L(g, g), is given by E, =idg. The
expression Z, really represents the corresponding noise in the sense that (II.,,E,)(:) =
&:(-), where we are abusing notation by having I, only act on the left factor of the
tensor product.

Continuing to develop this notation, we also define

\Ijn:jnaneg[ﬂ®gy

where we continue the same notation abuse, namely %, acts only on the left factors ap-
pearing in E,. In particular, we have I, W, (-) = (K*&})(-). We also have a correspond-
ing notation

\Ijn,n: n,nEnEg[t]®g'

2 These facts follow easily from the fact that K % K is well-defined and bounded and also continuous away from
the origin. To see this note that the semigroup property gives (G * G)(¢, x) = tG(¢t, x) and G — K is smooth and supported
away from the origin.



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

We now show how this notation is used for products/non-linear expressions. Given some
h € g, we may write an expression such as

(6.18) [V, [k W]l €eT[]®g.

In an expression like this, we apply the multiplication I [?] ® T [1] — T [*/] to combine
the left factors of W, and W, ,. The right g-factors of ¥, and W, . are used as the actual
arguments of the brackets above, yielding the new g-factor on the right.

Remark 6.12. — FYor what follows, given 1, j € [d], we write T; and T;; for T, and
Y(a,.,) respectively. In particular, we will use notation such as Y, and Y, ». We extend this
convention, also writing Y, and Y, along with W, and W, ,.

With these conventions in place the following computations follow quite easily from
our definitions:

(6.19) Yol =08,uBu. Yol =80V, Y. [o]=08,uVs..

(Since S(t) = 1 for these trees, the corresponding Y are identical.) Moreover, for £ € N¢*!
with £ # 0,

(6.20) Y, [X'E.] =T, [X'E.]=0.

Note that the left-hand sides of (6.19) are in principle allowed to depend on an argument
A € d, but here they are constant in A, so we are using a canonical identification of
constants with constant functions here.”

We now compute Y¥ for all the trees appearing in (6.7).

Lemma 6.13.
Y[ *1A) = LoV, [, A,]]
(6-21) YE[O](A) = (2851,'18 e 8;1,:18 ,n) [[28!', A" - 8", A" ’ 87 (\Ij",”)] ’ ‘.IJ""']

Yi[é](A) = (28 ,n&l,n - an,nan, )[\IJ"’ [28;1, An - 8:1, An, j ,n(\pn,n)]]
Moreover, for any T of the form o2 or ., ?i[‘r] =0 forevery t € £,.

% In (6.19) we are also exploiting canonical isomorphisms between Wy and Wa » and g. For instance, one also has

Y5 ,[8] = 8uwZu but here the last g factor on the right-hand side should be interpreted via the isomorphism with Wy,
rather than Wy, of (6.19).



AJAY CHANDRA, ILYA CHEVYREV, MARTIN HAIRER, HAO SHEN

Proof — Let T = Ju(1)).5.(1o) for trees 1) and . Then, by (5.53),
THEIA) = Lumea (1] 7114, [ 221(A), ALY
+ [T (1A, [V Tn]A), Al
+ Lo (YR A), [A Y] [ 1CA]
+[A [T 1A, Tim@)
o Lo (][ 1CA). A, X [0 (A)])
+ A [0 1A), Y] @)
Specifying to 7 = * #, using (6.19) in the above identity gives
(6.22) TN = Lo ([0 [0 A+ [, [0, ALY
o Lo (W, [, WT] + (A, [, ,11)
L ([0 [A a1+ AL 19, 411
Therefore,2
(6.23) T 1A) = 2 L[ W, [V, AJ]] .

By (5.56) we have S(*.*) = (2!) S(2)? = 2 and so the first identity of (6.21) follows.
Before moving onto the second identity we recall that, again using (5.53),

(6.24) T A = [28,.A0 — 8u.Au, Yo, [+1(A)]
= (260, Au — 80y W] -
It follows that
T [421(A) = (28,48, — 804 ) [ YL TTIA), Y [e](A)]
= (280u80w — 8uu) [[280. A — 80 A, T(WL )], W],

where again, in J.(W,..) € T [£] ® g, the operator .%, is acting only on the left factor of
W, ., € T[1] ® g. We then obtain the second identity of (6.21) since S(£p) =1.

% Note that Luzs here is necessary, because different colours only means “not necessarily identical”!
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For the third identity we recall that, by (5.53) and (6.24),

TLINA) = FW(C D A) = [26,.A0 — 80 Fou(Wa) ]

so that
TiT31(A) = (28, 4800 — S0ud ) TS [1(A), YL, IT1(A)]
= (28 ,n(Sn,n - 8n,n3n, )[\Ijm [28:!, An - 8;1, Am j ,n(\pn,n)]] .
Since S(+3) = 1 we obtain the desired result.
The final claim of the lemma regarding trees of the form <2 or =, follows imme-
diately from the induction (5.53) combined with (6.20). O
6.2.5. Putting things together and proving Theorem 2.4

Before proceeding, we give more detail on how to use our notation for computa-
tions. We note that, given any w € g ®, g, one can use the isomorphism?’ I [*2]* ~ g® g
to view w as acting on the expression (6.18) via an adjoint action, namely,

(6.25) (W @ idg) [ W, [k, Wuul] = —(w ® idy) [Wa, [Wiu, £]] = —ad,hr .
Lemma 6.14.
> E 1 @ idg) FolT](A) = ACE, A,
(6.26) 7eT_(R)

where M. 1s the constant gien in Remark 6.8 and Gy, s as i (6.12).

Progf. — By (6.21) and Lemma 6.9,

D W [42] ® idy) Tul£21(A)
= —(CrCas @ idg) (H1Aws TV, Wl = Y 2[[Aws T W], W]

= D2 T W] + (A, TV, W)

= 3C*adc. Ay,

where we used d = 2 to sum over the free indices » and », as well as (6.25) in the last step.

%7 Again, this is only canonical up to permutation of the factors, but doesn’t matter since w is symmetric.
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Also, by (6.21) and Lemma 6.9

D U 3] ®idg) Tul=>1(A)

= (C&Cas &® ldg)(4[wn’ [An, jn,n\l"n,n]] - 2["Ijn7 [Am jn,u"pn,n]]

- Z 2[\11,, [An» jn,nan,n]] + [an9 [Am jn,nan,n]]>

Ae
=C adCasAn ,

where d =2 and (6.25) are used again. Finally by (6.21) and Lemma 6.9,

> E 1 ® idg) Tl #1A) = —Cfade, A

Adding these three terms and recalling Remark 6.8 gives (6.26). O
With these calculation, we are ready for the proof of Theorem 2.4.

Remark 6.15. — It would be desirable to apply the black box convergence theo-
rem [BCCH21, Thm. 2.21] directly. However, we are slightly outside its scope since we
are working with non-standard spaces €2 and are required to show continuity at time
t = 0 for the solution A®: [0, T] — Qi Nonetheless, we can instead use several more
general results from [BCCH21, CH16, Hail4].

Proof of Theorem 2.4. — Consider the lifted equation associated to (2.1) in the bun-
dle of modelled distributions 27" X .4 for y > 1+« and n € G %, o — 1], where
o€ (%, 1) as before. We further take x € (0, }r) sufficiently small such that —2« > 7.
Note that y > 1 + « and n > —% ensure that, by the same argument as in [Hail4,
Section 9.4], the lifted equation admits a unique fixed point A € 27, and is locally
Lipschitz in (a, Z) € QC" x M , where A is the space of models on the associated reg-
ularity structure equipped a metric analogous to that in [Hail4, Prop. 9.8]. Specialising
to Z = 72y, the computation of Lemma 6.14 along with [BCCH21, Thm. 5.7] (and its
partial reformulation in the vector case via Proposition 5.68) show that the reconstruction
A* ER A, Z: ) 1s the maximal solution in QC” to the PDE (2.1) starting from a with
C replaced by C* given by
(6.27) G = ACg

SYM

where Cg,,, is as in Lemma 6.9.
We now show that A converges in the space (£2.)*. To this end, let us decompose
Af = W¢ + Bf, where W¢ solves 9,¥¢ = AW¢ + £ on R, x T? with initial condition
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a € Q. Write also W for the solution to 3, = AW +& on R, x T? with initial condition
a € Q). Combining Theorem 4.13 and Proposition 4.6, we see that ¥ € C(R,, ), and,
by Corollary 4.14, ¥ — W in C(R, 2)).

Observe that B® = R(P1,H(A)), where H is the part of the non-linearity F
in (6.5) involving the Lie brackets, and that H(A) € 277,°*""". It follows from the
convergence of models given by Lemma 6.4, the continuity of the reconstruction map,
and [Hail4, Thm. 7.1], that B¢ converges in (QC%%/?)**! with B¢(0) = 0, where we used

o 1

the condition n > ¢ — 7 & 2n+ 1 > §. Due to the embedding QC? < QL (Re-
mark 3.23) and the fact that we can start the equation from any element of ., it readily
follows that A* = W* 4 B® converges in (Qg()“’l as e — 0.

Finally, observe that we can perturb the constants C° in (2.1) by any bounded
quantity while retaining convergence of maximal solutions to (2.1) and so, thanks to the
convergence of (6.27) promised by Lemma 6.9, we obtain the desired convergence for any

family (C®).c(0.17 such that lim,_,, G exists and is finite. O

Remark 6.16. — The proof of Theorem 2.4 allows us to make the following im-
portant observation about dependence of the solution on the mollifier. Namely, given any
fixed constant §C € R, the limiting maximal solution to (2.1) obtained as one takes € | 0
with C = 6C 4 ACgy, 1s independent of the choice of mollifier, namely all dependence of
the solution on the mollifier is cancelled by Cgyy’s dependence on the mollifier.”®

Moreover, recall that Csyy; 1s the € | 0 limit of the right-hand side of (6.17) and

lgi?g/dz (K*K)()(Q=* x)(2) and lgiir&/dz (Q*K)(2)K*(2)

are both independent of x, where Q) is as in (6.14). In particular, if one chooses

C =A1€i{51/dzx€(z)(K*Ks)(z)

then the limiting solution to (2.1) is independent of the mollifier x.

7. Gauge covariance

The aim of this section is to show that the projected process [A(#)] on the orbit
space is again a Markov process, which is a very strong form of gauge invariance. The
first three subsections will be devoted to proving Theorem 2.9 — most of our work will
be devoted to part (1) and we will obtain part (i1) afterwards by a short computation with
renormalisation constants. We close with Section 7.4 where we construct the desired
Markov process.

28 This is because ACsyp1 is the renormalisation arising from limiting BPHZ model Zgpnz which is independent of
the mollifier.
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7.1. The full gauge transformed system of equations

One obstruction we encounter when trying to directly treat the systems (2.5) and
(2.6) using currently available tools is that the evolution for g takes place in the non-linear
space G. Fortunately, it is possible to rewrite the equations in such a way that the role of
g 1s played by variables that both live in linear spaces.

Recall that &% was defined as a quotient of &”* but we embed it into a linear
space by appealing to the inclusion

(7.1) GOy @0 — o0« (TQ’ L(g, g)) % O!

- 9
o-gr

given by [g] — (U, &) where, for g € éo’“, one defines

def

(7.2) h

def

(dg)g™' = —0¢ and U=Ad,.

Remark 7.1. — Note that the inclusion in (7.1) is a homeomorphism onto its image,
so we often identify &”* with its image under this inclusion (7.1), and write (U, &) rather
than [¢g] to denote an element of &** where it is understood that U and # are of the form
(7.2) for some g € &"*. With this identification, 8" is a closed, nonlinear subset of &%,

We can rewrite the first equation in (2.5) and (2.6) respectively as

(7.3) 3B, = AB; +[B;, 20B; — 3;B, + [B;, B,]] + Ux* % £ + CB; + Ck,
and
(7.4) OA; = AN+ A, 20,A; — 0:A + [A;, Al + x°  (UE) + CA; + (C = Oy

where U and / are defined from the g of (2.5) via (7.2) and U and /% are defined analo-
gously from the g of (2.6). o
The following lemma identifies the equations solved by U, 4 and U, 4.

Lemma 7.2. — Consider any smooth B: (0, T] — QC* and suppose g solves the second
equation in (2.5). Then h and U defined by (7.2) satisfy
Oy = Ahy — [hy, O] + [[B), ], kil + 9,[B;, y]

(7.5)
atU = AU - Ul]a [}lja ]] o U + [[Bj’ /Zj]’ ] o U .

In particular (h, U) (resp. (h, [:J) ) defined below (7.3)-(7.4) satisfies the above equation with B solving
(7.3) (resp. with B replaced by A which solves (7.4)).
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Proof. — By definition (7.2) of # and the equation for g in (2.5), one has the follow-
ing identities
(0g)g™" =divh+[B;, i,
A}ll‘ — 81' leh - aj'[kj’ hl] )

where the last identity follows from the second. One then obtains

Ohi =109g "+ hil+ 3:((39)g™ )

= [divi+ [By, 4], ;] + 0;div i + 0i[B;, /]

= Ah; — Iy, O] + [[B;, 4], h;] + 0:[B;, 4] .
For the U equation, we start by noting that
(7.7) dU=1[h, 10U
and therefore
(7.8) AU = [divh, - Jo U+ [#;, [A, - ]]oU.
By the first identity in (7.6)
(7.9) U=[0gg ", 1oU=[divh+[B;, k], 10U,

and the claim follows from (7.8). U

7.2. Regularity structure for the gauge transformed system

To recast (7.3), (7.4), and (7.5) in the language of regularity structures, we use the
label sets

def

£+:

{a, b, m}l Ufu} and £ o

{L, LY -

Our approach is to work with one single regularity structure to study the systems (B, U, /)
and (A, U, &), allowing us to compare their solutions at the abstract level of modelled
distributions.

Our particular choice of label sets and abstract non-linearities also involves some
pre-processing to allow us to use the machinery of Section 5.8.3 to obtain the form of our
renormalised equation. The label b, indexes the solutions 4; or /_zi, u indexes the solutions
U or U, and [; indexes the noise & (while [; indexes a noise mollified at scale ¢, see below).

The other labels are used to describe the B; and A; equations (7.3) and (7.4). To
explain our strategy, we first note that (ignoring for the moment the contribution coming
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from the initial condition) the equation for A can be written as the integral fixed point
equation

A=Gx ([Aj, 23]‘Ai - aiAj + [Aj, A1+ CA; + (C— C)ili) + G, * (UE))

where G, = x* * G. While this can be cast as an abstract fixed point problem at the level
of jets/modelled distributions, it does not quite fit into the framework of Section 5.8.3
since it involves multiple kernels on the right-hand side. We can deal with this problem by
introducing a component m; to index a new component of our solution that is only used to
represent the term G, * (USZ»). The label a; then represents the remainder A —G, % (I_Jéi);
see (7.12) and the non-linearity F below.

Turning to the equation for B, the corresponding fixed point problem is

B, =G ([B;, 20,B; — 9;B; + [B;, B]] + CB; + Ch; + Uy % &) .

Note that we cannot combine the mollification by x® with a kernel that acts on the whole
RHS above, so we instead use the label I; to represent x° * & which we treat, at a purely
algebraic level, as a completely separate noise from &;.

Turning to our kernel space assignment KC = (Ky)ce, and target space assignment
(W) (ee we set

e t=a; b, L, L, i s
(7.10) Ki=RVtegf, and W X[? ¢ orm
L(g,9) t=u.

The space assignment (V)¢ used to build our regularity structure is then again given
by (5.25). We also define deg: £ — R by setting

2—« t=a;orm;,
deg(t) o 2 t=h,oru,
—d/Q—I—K t:[iOI'_[i,
where k € (0, 1—12) is such that 2k <1 —«a for o € (%, 1) as before.
The systems of equations (7.3), (7.4), and (7.5) and earlier discussion about the roles

o

of our labels lead us to the rule R given by setting29
R() =R ={p}, Rm)={ul},
R(w) = {ub’, uqib; : g€ {a,m}, j€[d]},
R(b) = {h;9h:, qbbs, 0,00, 99 = g € {a, m}, j e [d]},
R(a) = {ai. b 9 406, 496, uli, uli: 9.4.4 € {a,m}, je[d]} .

(7.11)

9 The node type {ul;} € R(a;) does not appear in the expansion of (7.3) or (7.4) individually but naturally appears
when we want to compare their fixed point problems, see (7.27).
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Here we are using monomial notation for node types: a type t € £ should be associated
with (t, 0) and the symbol 9;t represents (t, ¢;). We write products to represent multisets,
for instance q]-Qakaz- = {(a;, &), (a;,0), (a;,0)}. We write q, g, and q as dummy symbols
since any occurrence of B; or A, can correspond to an occurrence of a; or m,.

It is straightforward to check that R is subcritical and as in Section 6.1 the rule R
has a smallest normal extension which admits a completion R which is also subcritical.
This is the rule that is used to define the set of trees T(R) which is used to build our
regularity structure.

We adopt conventions analogous to those of Remark 6.2 and (6.4), writing (using
our monomial notation)

Ai = ACI, + Am,] 5 a]Az = Aa/a, + Aa;m'a ’
(7.12) B, = Aa,' s 8]B1' = Aé)/-ag , U= O =A,, U= az[_J = AON ’
XExE=&, E=§&, h=h=Ay, dh=0h=Ay,.

Here, we choose to typeset components of A in purple in order to be able to identify them
at a glance as a solution® —dependent element. This will be convenient later on when we
manipulate expressions belonging to 5 ® W for some vector space W (typically W = g or
W = L(g, 9)), in which case purple variables are always elements of the second factor W.
Note that, when referring to components of A = (A,),c¢ the symbols U, %, and 9;4; are
identical to their unbarred versions but we still use both notations depending on which
system of equations we are working with.

We now fix two non-linearities F = @, . F, F = @tes Ft € @, which encode our
systems (7.3) and (7.4) respectively. For some constants (4, and Cy to be fixed later’! we
set Iy and Iy to be idg for t € £_ and

[B,, 208, — 0,B; + [B), B + CiB, + Coli + Ux* & ift=a,,

Fy(A) & )~V Ol LBy, A1, il £ 08, /] ift=b;,
_[}_l]" [}Z]’ ]] oU+[[B/ﬁhj]5 ']OU lft:u’
0 ift=m

(The term 9:[B;, /] should be interpreted by formally applying the Leibniz rule.) For
Fi(A) we set B ~ ~ o _ _
[A,28]AZ—BA +[ A]]+CIA1+CQ}ZI lft:al’

o | =0, 3] + [[A;, A1, /z]—l—a[A,fz«] ift="n,,

.1 F A def _j j_ > J )
(7.13) =N G, o U+ AL R To U ift=u
U§g ft=m

% Components of A corresponding to the noise such as &, and &1, will be left in black since their values are not
solution-dependent.

31 One will see that these constants are shifts of the constant C by some finite constants that depend only on our
truncation of the heat kernel K.
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For j € {0} L [d] we also introduce the shorthands

Ei=Juol), B=Ii00, I =Tan) Ji) = Fmy(),
I =T 00y IO = TFuwn ()

When j; = 0 in the above notation we sometimes suppress this index, for instance writing

J;(+) instead of F; o(+).

7.2.1. Rernel/noise assignments and BPHZ models

We write K© = (K{” : t € £,) for the kernel assignment given by setting

K fort=a;,b;,oru
(6)_ 19 Y >
(7.14) Ky = {KS =Kxx® fort=m,.

We also write . for the space of all models and, for ¢ € [0, 1], we write 4. C .# for
the family of K -admissible models.

Note that in our choice of degrees we enforced deg(a;) = deg(m;) = 2 — « rather
than 2. The reason is that this allows us to extract a factor € from any occurrence of
K — K?, which is crucial for the estimates in Section 7.2.3 below.

We make this more precise now. Recall first the notion of a B-regularising kernel
from [Hail4, Assumption 5.1]. We introduce some terminology so that we can use that
notion in a slightly more quantitative sense. For B, R > 0, » > 0 we say that a kernel ]
is (r, R, B)-regularising, if one can find a decomposition of the form [Hail4, (5.3)] such
that the estimates [Hail4, (5.4), (5.5)] hold with the same choice of C =R for all multi-
indices &, [ with |k|s, |/|s < 7. We use the norms || « |4, on functions with prescribed
singularities at the origin that were defined in [Hail4, Definition 10.12]. If J is a smooth
function (except possibly at the origin), satisfies [Hail4, Assumption 5.4] with for some
r > 0, and 1s supported on the ball [x| < 1, then it is straightforward to show that J is
(7, 2 g=/s1,-» B)-regularising. We then have the following key estimate.

Lemma 7.3. — For any m € N one has ||K||l.,, < 00 and there exists R such that K — K®
s (m, e“R, 2 — k) -regularising for all € € [0, 1].

Proof. — 'The first statement is standard. The second statement follows from com-
bining the first statement, our conditions on the kernel K, [Hail4, Lemma 10.17], and
the observations made above. 0J

We now turn to our random noise assignments. In (7.3) and (7.4) both a mollified
noise x° * & =& and an un-mollified noise & appear. In order to start our analysis
with smooth models, we replace the un-mollified noise with one mollified at scale §. In
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particular, given &, 8 € (0, 1] we define a random noise assignment {*¢ = (¢: [ € £_) by
setting

{X‘S*&:Si‘s for [=1;
1=

X x&=6&° for [=1;.

We also define Z%’PSHZ = (I1%¢,T%¢) € .4, to be the BPHZ lift associated to the kernel
assignment K® and random noise assignment ¢%¢. We will first take § | O followed
by & | 0 — the first limit is a minor technical point while the second limit is the limit
referenced in part (i) of Theorem 2.9.

Note that we have “doubled” our noises in our noise assignment by having two
sets of noise labels {[;}¢, and {L}f:] — we will want to use the fact that these two sets of
noises take values in the same space g (and in practice, differ only by mollification). This
is formalised by noting that there are canonical isomorphisms J[E;] >~ g* ~ J[&/] for
each ¢ € [d], which we combine into an isomorphism

d d
(7.15) o: @‘J‘[Ei] — @‘3[@] .
i=1 i=1

7.2.2. e-dependent regularity structures

In the framework of regularity structures, analytic statements regarding models
and modelled distributions reference norms || « ||, on the vector space T, of all elements
of degree £ € deg(R) = {deg(7) : T € T(R)} — in our setting this is given by

T,= @ JIrl.

TeT(L,R)

where T(£,R) = {t € T(R) : deg(r) = ¢£}. In many applications the spaces T, are finite-
dimensional and there is no need to specify the norm || « ||, on T, (since they are all
equivalent).

While the spaces T, are also finite-dimensional in our setting, we want to encode
the fact that K® is converging to K and &° is converging to § as € | 0 in a way that allows
us to treat discrepancies between these quantities as small at the level of our abstract
formulation of the fixed point problem. We achieve this by defining, for each £ € deg(R),
a family of norms {|| « ||l¢.. : € € (0, 1]} on T,. Our definition will depend on a small
parameter 6 € (0, k] which we treat as fixed in what follows.

Heuristically and pretending for a moment that we are in the scalar noise setting,
we define these || « [|¢,. norms by performing a “change of basis” and writing out trees in
terms of the noises &;, &; — &,, operators %, , i, — Fiy, Jf; and J* instead of E;, &;,
Fips jl-,p, jig, and J", respectively. For instance, we rewrite

F(B) = (Fi—IF)NE)+F(E) and J(E)=I(E—E)+F(E).
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We then define, for any £ € deg(R) and v = th(z’R) v, T eTy,
[vlle.c =max{e"™|v|: T € T(L,R)},

where m(t) counts the number of occurrence of ji,p — Y, and E,— E;int.

We now make this idea more precise and formulate it our setting of vector-valued
noise. Recall that in our new setting the trees serve as indices for subspaces of our regu-
larity structure, instead of basis vectors, so we do not really “change basis”. We note that
there is a (unique) isomorphism ®: J — J with the following properties.

e O preserves the domain of .%; , 3:}} and J* and commutes with these operators on
their domain.

e lor any 7 with jg(t) € T(R), one has ® o jiJ(t) = (jiJ +.3) 0 O(7).

e Lor any u, v € J with uv € J one has ®(x)® (v) = O (uv) — here we are referencing
the partially defined product on I induced by the partially defined tree product on
T(R).

e The restriction of ® to T[E,] is given by id + o' where o~
map o given in (7.15).

' is the inverse of the

e O restricts to the corresponding identity map on both 7 [X*] and T [&,].
It is immediate that ® furthermore preserves T, for every £ € deg(R).

We now fix, for every T € T(R), some norm . on J[t]. Since each I [t] is
isomorphic to a subspace of (g*)®" and the isomorphism is furthermore canonical up to
permutation of the factors, this can be done by choosing a norm on g* as well as a choice
of uniform crossnorm (for example the projective crossnorm).

We then define a norm [ « [, . on T, by setting, for any v € T,

[v0e. =max{e"™’||Pv|, : T € TR, )},

where P; is the projection from T, to I[r] and now m(t) counts the number of occur-

rences of the labels {[;, m;}?_, appearing in 7. Finally, the norm ¢.¢ 18 given by setting

[vllee = DOV
The following lemma, which is straightforward to prove, states that these norms
have the desired qualities.

Lemma 7.4. _
o Let £ € deg(R) and v € Ty with v in the domain of the operator F;, — F; ,. Then one has,
uniform in €,

(7.16) 1(Fip = Fip) @) lles2-re S MMVIlee -
o Forany u € T [E;] one has, uniformly in ¢,

(7.17) lo(u) — ull —g2—1—x.e S g’ lull —a/2—1-c.c -
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Once we fix these ¢-dependent norms on our regularity structure we also obtain
corresponding
e ¢-dependent seminorms and pseudo-metrics on models which we denote by || « ||
and d; (¢, +) respectively; and
e ¢-dependent seminorms on 27" X ., which we denote by |« |, , ..

The seminorms . and pseudo-metrics d, =

We recall that they and

0, E[—1, 7] x T, we will simply write | + |, ¢, for

and d,.

*; |l are defined as in Appendix A.1.

y.me are indexed by compact sets. When the compact set is

v.ne:0., and likewise for ¢

Remark 7.5. — Recall that modelled distributions in the scalar setting take values
in the regularity structure J, so in the definition of a norm on modelled distributions

we reference norms ¢ on the spaces T;. When our noises/solutions live in finite-
dimensional vector spaces, our modelled distributions will take values in  ® W for some
finite-dimensional vector space W, so when specifying a norm on such modelled distribu-

tions we will need to reference norms on T, ® W. We thus assume that we have already

fixed an e-independent norm w on the space W. Then we view our normon T, @ W
as induced by the norm on T, by taking some choice of crossnorm (the particular choice

does not matter).

Remark 7.6. — Clearly, all of our e-dependent seminorms/metrics on models are
equivalent for different values of € € (0, 1], but not uniformly so as ¢ |, 0. The distances
for controlling models (resp. modelled distributions) become stronger (resp. weaker) as
one takes € smaller.

Remark 7.7. — In general, one would not expect the estimates of the extension
theorem [Hail4, Thm. 5.14] to hold uniformly as we take ¢ |, 0. However, it is straight-
forward to see from the proof of [Hail4, Thm. 5.14] that they do hold uniformly in ¢ for
models in .#, (and, more trivially, .#) thanks to Lemma 7.3 and the fact that 0 <«.

7.2.3. Comparing fixed point problems

For sufficiently small § > 0, one has a classical Schauder estimate

G *f — G * fleze SE°|flpesi s

which holds for all distributions /* and non-integer regularity exponents. Our conditions
on our g-dependent norms let us prove an analogous estimate at the level of modelled
distributions. In what follows we write X,;, K, for the abstract integration operators on
modelled distributions associated to a;, and m;, respectively.

We will be careful in this section to ensure that convolution estimates on a time
interval [—1, 7] depend only on the size of the model on [—1, 7]. This is used in the proof
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of Proposition 7.37 to ensure that the existence time 7 > 0 of the fixed points (7.22)-(7.23)
is a stopping time.

We will assume throughout this subsection that x is non-anticipative. This implies,
in particular, that K® is non-anticipative.

Lemma'1.8. — Fixi € [d] and letV be a sector of regularity o in our regularity structure which
is tn the domain of both .F; and F;. Fix y > 0 andn <y suchthaty +2 —«x ¢ N,n+2—«k ¢ N,
andn Ao > —2.

Then, for fixed M > 0, one has for all T € (0, 1)

[ Kl f — KL flyro-rier < 891f|%n,8;r

uniformly in € € (0, 11, Z. € M, with ||Z|e.. <M, and f € D7"(V) X Z, where 0 € (0, k] is
the fixed small parameter as above and n = N AN a) +2 — k.

Progf. — This result follows from the proof of [Hail4, Thm. 5.12 and Prop. 6.16]
together with the improved reconstruction theorem Lemma A.2. Indeed, in the context
of this reference, and working with some fixed norm on the given regularity structure, if
the abstract integrator . (-) of order B in question has an operator norm (as an operator
on the regularity structure) bounded by M, and the kernel . realises is (y 4+ 8, M, B)-
regularising, then as long as y + 8 ¢ N and n 4+ 8 ¢ N, one has

|%1+fly+ﬂ,(nm)+ﬂ;r 5 Mlﬂy,n;r .

Here, & is the corresponding integration on modelled distributions and the proportional-
ity constant only depends on the size of the model in the model norm (which corresponds
to the fixed norm on the regularity structure). The fact that the compact set for the model
norm can be taken as O, (rather than [—1, 2] x T as in [Hail4]) is due to Lemma A.2
substituting the role of [Hail4, Lem. 6.7] together with the fact that K is non-anticipative.

Our result then follows by combining this observation with the fact that we can
view .J; — ; as an abstract integrator of order 2 — k on our regularity structure realising
the kernel K — K* which is (m, ¢“R, 2 — «)-regularising by Lemma 7.3, and the fact that
J; — .F; has norm bounded by &’ by (7.16). O

To state the next two lemmas, we refer to Appendix A for definitions of integration
operators of the form K as well as spaces Z. The e-dependent norms on 27" X A in
particular induces e-dependent norms on 27" x .#, denoted by | - |5,.,...

Lemma 7.9. — Under the same assumptions as Lemma A.10, and assuming x and K are
non-antictpative, one has_for fixed M > 0 and all T € (0, 1)

<7°18) |%w1+f_ 32(01+f|}7ﬂ(,ﬁ,8;r 5 Eglfly,n,s;r s
uniformly in € € (0, 11, Z. € M, with ||Z||e.. <M, and f € 27" (V) X Z.
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Proof. — This follows verbatim as in the proofs of Lemma 7.8 and [GHI9a,
Lem. 4.12]. U

Lemma 7.10. — Fixy >0 and n < y such thaty +2 —k ¢ N, n+ 2 —«k ¢ N, and
n > —2. Suppose that K® is non-anticipative. Then, for fixed M > 0 and all T € (0, 1)

|%f - %f|@1’+2*’(ﬂl+2*'ﬂ5;f S EGU[l@AWJ-S;f

uniformly in € € (0, 11, Z € M with ||Z|e.. <M, and f € @””’(V) X 7.

Progf. — This follows in the same way as Lemma 7.8 (with an obvious change that
(n A a) 1s replaced by 1) combined with Theorem A.9 (for non-anticipative kernels). [

We also remark that the standard multiplication bound [Hail4, Prop. 6.12] and
Lemma A.8 also hold for these e-dependent norms.
Now we define, as in Section 6, E; € T [E;] ® g and éi ceT[E]® g to be given
by “id,” via the canonical isomorphisms T[E] ® g~ T[E] ® g~ ¢* ® g =~ L(g, 9).
Note that we have 0 B; = éi where we continue our abuse of notation with o acting
only on the left factor. We also remark that, as g-valued modelled distributions, =, E €
%/a-1_- Then, thanks to (7.17) and Remark 7.5 one has, uniform in ¢ € (0, 1],

(7‘19) |Ei_ Ei|oo,oo,s§89‘

,—2—k

Note that 2" coincides with the space of elements in 2°727* which vanish on

{t < 0}. One also has
(7.20) 1L E — 1 e S&7,

where 1, is the map that restricts modelled distributions to non-negative times.

We now write out the analytic fixed point problems for (7.3), (7.4), and (7.5). We
introduced the labels m; just to assist with deriving the renormalised equation and so
when we pose our analytic fixed point problem we stray from the formulation given in
Remark 5.67 and instead eliminate the components m; appearing in (7.4) by performing
a substitution. B

In what follows, we write R for the reconstruction operator. Recall that K;, K,; are
the abstract integration operators associated to a; and m;; we also write Kj, and X, for
the abstract integration operators on modelled distributions corresponding to Jih and
S, and R the operator realising convolution with G — K as a map from appropriate
Holder—Besov functions into modelled distributions as in [Hail4, (7.7)].

We assume henceforth that d = 2. Recall that we have fixed a € (%, 1) and n €
Gl %, o — 1]. Given initial data

(7.21) B, U, 1) € Q"= QC" x C*(T% L(g, g)) x 2C°"



AJAY CHANDRA, ILYA CHEVYREV, MARTIN HAIRER, HAO SHEN

the fixed point problem associated with (7.3) and (7.5) for the g-valued modelled distri-
butions (B,)%,,(H,;)%, and L(g, g)-valued modelled distribution I/ is

Bi=g1, ([B}, 20,8, — 8.3, + [B;, Bl + C\ B, + Co H, + Zf{éZ)
+G(GU"E,) +GB?,
(7.22) H =Gy 1, ([’Hj, OH1+ (1B, H,1, Hil + a8, %j]) +GH”
U =Gul,((— [, [, T oU + (1B, 1, 10U
U=GUO+1f

where G; £ #, +RR and G- refers to the “harmonic extension” map of [Hail4, (7.13)].
Here, @; is compatible with GU® E; and we refer to Appendix A.3 for the operator G:”.
We remark that the input to the ﬁxed point problem is a model Z, the initial conditions,
and the distributions ;.

Remark 7.11. — The reason that we introduced the “intermediate” object U is
that it will be in a 9 space (see Appendix A) which has improved behaviour near /= 0,
so that we can apply integration operator to UE, using Theorem A.9. Note that the stan-
dard integration result [Hail4, Prop. 6.16] would require that the lowest degree of UE,
is larger than —2 (for purpose of reconstruction) which is not true here; but Theorem A.9
does not require this assumption. The distribution @; in our case will simply be GUY&?.

The modelled distribution fixed point problem for the (A, U, %) system (7.4)
and (7.5) is the same as (7.22) except that the first equation is replaced by

(7.23) Bi=G1,(1B, 208, — 8 + B, BI + €. B, + G, 7))
+G(GUYE) + W, +G1,(UE) + GBY,

where G; = K; + RR with R defined just like R but with G — K replaced by G* — K.
As before, w; is compatible with GUY E; and is part of the input which we will later take
as w; = GUYE?. The modelled distribution W, takes values in the polynomial sector and
is likewise part of the input — we will later take W; as the canonical lift of the (smooth)
function G * (1, x° * (§,1_)) for € > 0, and simply as W, = 0 for ¢ = 0. Here 1_ is the
indicator function of set {(¢, x) € R x T? : ¢ < 0}. B

In (7.23) we have written B; instead of something like A; to make it clearer that
we are comparing two fixed point problems which have “almost” the same form — only
the terms involving the noises él- or E; and the term W; are different. We can now make
precise what we mean by the two problems being “close”.
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For r, 7 > 0, we call an e-wmput of size r over time T a collection of the following
objects: a model Z € ., distributions ®;, w; compatible with GUOE, GUD=E E;, initial
data (B, U©, ) € Q| and a modelled distribution W = W)~ such that

0 170) 70 = 9 -
(7.24) IZle;x + 1B, U, A0 | quuic + || g2 + |4l g2— + €77 |w; — @i -2
- 7 qre 7 Grm
+¢€ K|W|g,_2,<;f + M F[Elleqo,n.ay + T F[Elleqo, .y <7,

7 def

where |« |o-2-« is shorthand for |  |¢«(0,) which is defined in Appendix A.3 and I” = Tl
where we denote as usual Z = (I, I'). (The choice ‘0" in Iy is of course arbitrary since
IM,F[E]=1,F[E] forall x € R x T?)

Remark 7.12. — The left-hand side of (7.24) is increasing in 7, hence an &-input
of size r over time T is also an ¢-input of size 7 over time T for all T € (0, 7) and 7 > 7.

Remark 7.13. — The final two terms on the left-hand side of (7.24) play no role in
Lemma 7.14, but will be important in Lemma 7.15.

Lemma 71.14. — Consider the bundle of modelled distributions

(I 4+ 3k, =2k, 1) ift=a;,

(7.25) (B Zim)x A where (roan) =1 @+2,0,1+ 1) ift=u
t=ai.biu (1+3k,0,n) ift=5;.
Consider further r > 0 and € € [0, 1]. Then there exists T € (0, 1), depending only on r, such that,
Jor every e-input of size r over time T, there exist solutions S and S 1o (7.22) and (7.23) respectively in

the space of modelled distributions defined by (7.25) on the time interval (O, T). Furthermore, unyformly
i e €10, 1] and all e-inputs of size 1,

(7.26) IS =Sl S

Here | « |5 5 6.0 i the multi-component modelled distribution seminorm for (7.25) over the time interval
(0, 7). Finally, S and S are each locally uniformly continuous with respect to the input when the space
of models ts equipped with d,. .

Proof. — We first prove well-posedness of (7.22) in the space (7.25), where
L? c qu»nu — 9(?4—2/{,7]4—1 )

A

Since 1. &, € @Oo ~>7 by Lemma A.8 one has U UE,; e D5 “.Sincen—1—«x > -2,
by Theorem A.9, one has

g (z/[ul) c 92 K,n+1-2k C .@aa[ »Ta; )
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Also, since GU® € 25, by standard multiplication bounds [Hail4, Prop. 6.12], fol-
lowed by Lemma A.10, one has

GUVE, e 2% = G"(GUYE) e %5 C Zay "™,

where we used —2x > 1 — o > 5. Here, note that the compatibility condition of
Lemma A.10 is satisfied by assumption.

It 1s standard to check that the other terms in (7.22) belong to the desired spaces.
The only subtlety is to check that the right-hand side of the equation for U indeed be-
longs to .@g “ For this we note that U € Z]*"™, so one can check that the two terms
[H;, [H;, 11 o U and [[B;, H,], -] o U both belong to 2'$7%*" which is identical with

.@l;f“", since these modelled distributions are supported on {t > 0} and 2n < —2«.

Integration using Theorem A.9 then gives elements in 928/ i

The fact that, for sufficiently small T > 0, the corresponding map stabilises and is a
contraction on a ball in (7.25) follows from the short-time convolution estimates (A.3) and
Proposition A.4. It follows that the solution map S for (7.22) is locally well-posed. The
local uniform continuity of S follows from stability of the fixed point established in the
proof of [Hail4, Thm 7.8] together with (A.3) and Lemma A.10. Local well-posedness
and local uniform continuity of the solution map S for (7.23) follows in the same way.

It remains to prove (7.26). Note that the two fixed point problems differ in the B;
components. By standard multiplication bounds and Lemma A.10,

IGZ(GUVE)) — G (GUVE))|so.0mr.e
SIGUO(E, — E)lsa—t-re T 1@ — @il e S 67
Moreover, by Lemma 7.9,
(G — GENGUVE ) |soamve S

Also, by similar arguments as above using Lemma A.8 and Theorem A.9, but combined
with the difference estimates (7.20) and Lemma 7.10, one has

GUE) - GWUE)

SIGUE —UE) + (G — G)UE )| jrssaerce S &

(7.27)

.@K+2,n+l—x.s
—K

Finally, by assumption, [W,| 39 S7E° S re?. Summarising these bounds, one has that
the difference between the B; components in the two fixed point problems is bounded by
a multiple of &?.

We remark that the integration results from Appendix A which we apply above are
stated in terms of operators K, and K;. But their differences with G; and G; are bounded
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much more easily since they are smooth. For instance, regarding
RRUE,) —RRUE)).

we write 1t as RR(Z/A{( E—E)+R- R)R(LA{ Z;). The first piece can be estimated as in
[Hail4, Lemma 7.3] together with Theorem A.6. By definition [Hail4, (7.7)] of R — R,
the second piece is of order ¢ since, for any o > 0, one has [[(G — K) — (G* —K?)||c« Sce.

The estimate (7.26) then follows in a routine way from the these bounds together
with the short-time convolution estimates for modelled distributions. 0

In the situation we consider, we further have convergence of the most singular tree
¢ in the space C(R, ©2)) (Corollary 4.14). The next lemma shows that this suffices to also
obtain convergence of solutions in C((0, t], Q ;).

Lemma 7.15. — Suppose we are in the setting of Lemma 7.14. For every T > 0, we equip M,
with the pseudo-metric>

(2, 7) + |(M% — T2).F[E]leqonal) -

Let BB denote the corresponding component of S and let ). € (0, 1), r > 0. Then there exists T € (0, 1),
depending only on r, such that RB is a uniformly continuous function into C([At, T], Q.) on the set

def

7= {I =(Z,&, BV, U, k")) e ) x C777 x Q™"

: I'is a I-input of size » over time t} .

The same statement holds with B replaced by B, the B-component of S, F[E] replaced by F[E],
and  replaced by w. Furthermore, as € |, 0,

'RB — RB|C([M,:],Q}1) -0
ungformly over all € -inputs of size r over time T which satisfy

(7.28) n-y[2]=O%¥[E].

Progf. — We choose 7 as half the ‘T’ associated to 2r+ 1 appearing in Lemma 7.14.
Let U and U denote the U-component of S and S respectively. The idea is to use the
uniform continuity on Z, ; of RU in a space of good regularity. Truncating at level y =
1 — 6k, we obtain

B(t, x) = u(t, x) F[E] + bz, x)1 .

Note that the structure group acts trivially on F[Z£] and 1.

32 More precisely, we redefine .#; as the closure of smooth models under this pseudo-metric with T = 1.
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We know that u(t, x) = RU(t, x) € C([At, T],C**) and is a uniformly continuous
function on Z, ; due to Lemma 7.14 and continuity of the reconstruction map. Recalling
the embedding QC**? < Q! (Remark 3.23) and that 1 — 6k > /2 we also see that
beC([rt, t],C'"%) < C([rt, 7], 2)) is a uniformly continuous function on Z, ,.

Furthermore, on [AT, T] x T2,

RB=ull”’F[E]+b.

It follows from the continuity of ) x C** 3 (A, «) — uA (Lemmas 3.32 and 3.33, which
we note only use that « € C** and not that u = Ad, for some g € &%), that ull*F[E] €
C([rt, 7], 2)) is a uniformly continuous function on Z, ;, which proves the first claim.
The second claim concerning B follows in an identical manner.

Finally, due to (7.26) and the continuity of the reconstruction map, |RU —
RZ/_IIC(W,,])CO,H) — 0 as ¢ | 0 uniformly over all ¢-inputs of size r. Therefore the final
claim follows from (7.28) by the same argument as above. 0J

Remark 7.16. — With more technical effort, one should be able to set A =0 in
Lemma 7.15 once the initial conditions are taken in the appropriate spaces and extra
assumptions of the type G * w, G * @ € C([0, 1], 2!) are made to handle behaviour at
t=0.

7.2.4. Maximal solutions

To prove convergence of maximal solutions for the (A, U, £) system (7.4) and (7.5),
we require a slightly different fixed point problem than (7.23) which includes knowledge
of the modelled distribution ¢/ E on an earlier time interval (this is to substitute the role

of W in (7.23)).

Remark 7.17. — It is much easier to show convergence of the maximal solutions of
the (B, U, %) system by using the probabilistic bounds in Section 7.2.5 below and stopping
time arguments to patch together local solutions. Alternatively, one can take advantage
of the fact that (B, U, /) is gauge equivalent to an equation with additive noise — see the
argument in the proof of Proposition 7.37.

Remark 7.18. — The results of this subsection will not be used to control the dif-
ference between the maximal solution of the (B, U, 4) and (A, U, %) systems. This will be
done instead in the proof of Proposition 7.37 using the strong Markov property.

We assume again in this subsection that x is non-anticipative. The initial data
taken as input for our fixed point problem will be richer than (7.21), consisting of
(BO, 40y € QC" x QC*! along with a modelled distribution I € 2272 (V) with sup-
port on an interval [—T, 0] x T? for some T € (0, 1) and taking values in the same sector

V asU in (7.22).
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We extend U to positive times ¢ > 0 by Z;l(t) = (GU(O))(L‘), where U = 7'\’];[(0)
is the reconstruction of I at time zero and GU© is the lift to the polynomial sector of
its harmonic extension. Since R: D2 (V) — C*7* is continuous, it holds that Ue
P2:2=3¢ a5 a modelled distribution on [—T, 00) x T?, where we recall the definition of
9 from Appendix A.2.

Then the fixed point problem we pose for (A, U, /) system is the same as (7.22)
except that the first equation is replaced by

(7.29) B, =61, (18,208, — 98 + B, Bl + C. B + ()
+G/WUE) — Gu, +G1,UE) +GB,

and the definition of U is now U + U. Here Gv; is the harmonic extension of

(7.30) v = RGUE) ).
Remark that B; is now supported on times ¢ > —T', not just ¢ > 0, and for ¢ < 0 we have
B,=GWE,).

14+3k,n

Lemma 7.19. — The fixed point problem specified above is well-posed with B; € .@_QK s

Ue @§+2K’"+1, and H € @éwk’" on an wnterval [T, T], where T > O depends only on the size of
the tuple

(U, 2, BV, 1", v) € GHE x My x QC" x QC*' x QC"

where Z. 1s the underlying model. Furthermore (B, U, H) | o), as an element of the space (7.25), is a
locally uniformly continuous function of the same tuple.

Proof. — Remark that E € 923_0?(, and therefore, by Lemma A.7, UE € @f’;‘f )

Therefore, by Theorem A.9, G:UE,) € .@EEE’Q_M. The rest of the proof is essentially
identical to the proof of Lemma 7.14. U

Lemma 7.20. — Equip M\ with the same pseudo-metric as in Lemma 7.15. Then, for fixed
A >0, RB and {RG;UE)}._, are both uniformly continuous, functions into C([AT, T], QL) of the
tuple as in Lemma 7.19.

Progff — Identical to Lemma 7.15. U

We now combine Lemmas 7.14, 7.15, 7.19 and 7.20 to define maximal solutions of
the (A, U, %) system and show they are continuous functions of the inputs.

Consider, for the rest of this subsection, a family of inputs {I°}.¢jo.1) with I* € Z, ;
and such that I* — I’ as ¢ |, 0 — here Z, | and the metric on .# are as in Lemma 7.15.
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Suppose further that, for every ¢ € [0, 1], stj[E] e C(R, Qé) and, for all T > 0,

lim . (77, 2°) + (M = 0%)F[E]leqoray =0

Recall that the kernel K = K % x* corresponding to K, =G, —RR is non-anticipative
and comes with the same parameter ¢ and the model component of I* realises K* for the
associated abstract integration operator .5 .

Definition 7.21. — The maximal solution of the system (7.23) and (7.29) associated to I° 1s
defined as_follows. We first solve the fixed point problem (7.23) for (B, U, H) in the space (7.25) over

some interval (0, o] o (0, 27,] using the fact that 1° is a 1-input (see Remark 7.22 on the choice of
71). By Lemma 7.15, we can_furthermore assume that RB (o) takes values in Qé — C". By the
proof of the same lemma, we can likewise assume RGUE) (o)) € Q L.

We then solve the fixed point problem (7.29) with tume centred around o\ wnstead of 0, and with
T =1 and U, 1, playing the role of U. The initial condition is chosen as B© = RB(o)

and I = RH (0,). We therefore extend the solution to an interval (0, o) o (0,01 4+ 219], and, by
Lemma 7.20 (and its proof), we can again assume that RI3(0y) and RGUE) (o) both take values
n QL —Cn.

We then again solve (7.29) with time centred around oy, and with'I' = 9 and U [\, 1 ) play-
ing the role of U. The initial condition is chosen as B® = RB (09) and ' = RH (0y). Proceeding
inductively, we define (B, U, H) on the interval (0, T)7) where T} = Zzoil ;.

Let QOf o (A%, U%, /) denote the reconstruction on each interval (o, 0,41] of the
corresponding modelled distribution. Observe that, by Lemma 7.19, if 7} < 00 then

(7.31) Tim A (@0)len + [ (00 lew + Ul 92010, 00 + (V@R or = 00

2

where v = (vi); | 1s defined on o7, 09, ... as in (7.30).

Remark 7.22. — The 7; taken in Definition 7.21 is not unique — it can be chosen
as any value 7; < 7, with 7 as in Lemmas 7.19 and 7.20. Furthermore, if we choose two
different t,, T, with 7, A T, < &> for some n > 1, then we will, in general, obtain different
reconstructions Q¢ on (0, o, A 0,].

However, if we make two choices 7;, T; with T; A T; > ¢2 for all i =1, ..., n, then
Q¢ remains unaffected on (0, o, A 0,] — this is because the term Gv; in (7.29) removes the
dependence of —g'l-(Zf{ E;) on times in (—00, £?) upon reconstruction.

Remark 7.23. — In a similar vein to Remark 7.22, the reconstructions Q° will not
in general solve an equation of the form (7.4)+(7.5). They will only solve such an equation
on the interval (0, o,] provided that * < t; for all i < n. However, since I* — 1 as ¢ |, 0,
for every n > 1 there exists &, > 0 such that we can take the same {7;}/_, forall:=1,...,n
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and ¢ € [0, &,] and such that ¢ < ;. In particular, this discrepancy won’t matter in the
¢} 0 limit.

Proposition 7.24. — It holds that Q° € C((0, 1)), Q. x (%0’“). Furthermore, define
Qf () =@ for t > 7, and, for A > 0, denote Q¥*(¢) = Q° (¢t — 1). If Q%* € (QL x &%),
then Q°* — Q%* as ¢ |, 0 in same sense as in Lemma 1.2(ii) where the underlying metric space is
QL x B0,

Proof: — The fact that Q° € C((0, 7}), Q; X 650*“) follows from Lemma 7.20 and
the fact that we can also restart the fixed point (7.29) at times o} — érk instead of o, but

with the same U/ on loy — T, 00 — %‘L’k] (which gives the same reconstruction).

The convergence Qf* — Q"* in the sense of Lemma 1.2(ii) readily follows from
the stability results in Lemmas 7.14, 7.15, 7.19 and 7.20. The key remark is that the
modelled distributions (B°, U*, H®) stay close to (B°,U°, H") until either the modelled

distribution norm of U” becomes large or |RG;(U"E)|q1 + Q|1 @0« becomes large,
and this is enough to control the difference |Q° — QO|% c0e (as well as the difference
IRG:(UE) — R(Z(UOEN%) by Lemmas 7.15 and 7.20. The assumption Q%* € (2} x
&)l ensures that Qf* can only be far from Q%" when both are large, which implies
the condition stated in Lemma 1.2(11). U

7.2.5. Probabilistic bounds

The key input in our argument regarding stochastic control of models is given by
the following lemma.

Lemma 7.25. — One has, for any p > 1,

(7.32) sup sup E[[|Z35, 2] < 00
£€(0,1]18€(0,¢)

Moreover, there exist models Zoye, € M, Jor € € (0, 1] such that, for any such €,

BPHZ BPHZ

(7.33) limZ2¢ = 7%¢
340
wn probability with respect to the topology of de(s, +).
Finally, there exists a model Zgigﬁ € M, such that

(7.34) leiilol Lz = Lo,

wn probability with respect to the topology of d, (s, *).

Proof. — As in Lemma 6.4 we proceed by using the results of [CH16]. We start by
proving (7.33) and here we appeal to [CH16, Theorem 2.15]. We first note that for any
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scalar noise decomposition, it is straightforward to verify that the random smooth noise
assignments ¢%¢ are a uniformly compatible family of Gaussian noises that converge to
the Gaussian noise ¢%¢. The verification of the first three listed power-counting condi-
tions of [CHI16, Theorem 2.15] is analogous to how they were checked for Lemma 6.4.
This gives the existence of the limiting models 7%, and the desired convergence state-
ment (note that for fixed ¢ > 0, the metric 4, (-, «) is equivalent to d, (s, )).

To prove (7.34) we will show

(7.35) lim sup E[d\(Zyh,. Zyn,)'1=0.

el0 5 5¢(0,6)

By using Fatou to take the limit § |, O, this gives us that Zgifm is Cauchy in I? as ¢ |, 0 and
so we obtain the desired limiting model Z(B)’POHZ and the desired convergence statement.

To prove (7.35) we will use the more quantitative [CH16, Theorem 2.31]. Here
we take £, to be the set of all pairings of £_ and so the three power-counting condi-
tions we verified for [CH16, Theorem 2.15] also imply the super-regularity assumption
of [CH16, Theorem 2.31]. Since we only work with pairings, the cumulant homogeneity
¢ is determined by our degree assignment on our noises. After rewriting the difference of
the action of models as a telescoping sum which allows one to factor the corresponding
difference in the kernel assignment K — K¢ or noise assignment £ — &¢, one is guaran-
teed at least one factor of order £“ the right-hand side of the bound [CHI16, (2.15)] —
coming from ||[K — K¢||y_,  in the first case or the contraction & — £° with another noise
measured in the || « ||_4—9c; kernel norm in the second case. This gives us the estimate
(7.35).

The above argument for obtaining (7.35) can also be applied to obtain (7.32),
namely, with the constraint that § € (0, £), any occurrence of J; , — jt,/) gives a factor
of & through the difference K — K and any occurrence of E;, — &y, gives a factor &*
through the difference ég“f — &/ and since 0 € (0, k] this gives the suitable uniform in &
bounds on the moments of the model norm || « ||,. [

The next bound helps to control the difference between two solutions started from
different (possibly random) initial conditions. This is important when restarting the equa-

tion to obtain convergence of the maximal solutions. For o € R and U € C*(T?), we

def . P ..
denote G)U(¢, -) = GU(t — o, ) the heat flow started at time ¢ with initial condition

U. In particular G U = GU. Let F = (F))>¢ denote the filtration generated by the
white noise £ = (&, &).

Lemma 7.26. — Let k > 0 and & C R x T? be compact. For all 0 <& <& <1, F-
stopping times o € [0, 11, and F, -measurable U € C*(T?), there exists an JF,-measurable random
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variable M > 0 such that

(7.36) E[|G(U)U§g|c—2—wﬁ) | -7:0] < |Ule«M,
(7.37) E[|G)U(E" —€)lc2v(n | Fo] < [U[e<Me®,

where ¢ > O depends only on k. Furthermore every moment of M s bounded uniformly in o, U, €, and
g. In particular, for every JF -measurable U € C* (T?), the limit

def

(7.38) Gy U & 1im G UE*
exists in C~27%,

Progf. — We prove the statement for o = 0; the general case follows in an identical
manner. It suffices to prove the statement for € € [%, €] with the general case following
from telescoping. Observe that £ [(y,2 o) and & [y, o, are independent of F; and there-
fore of GU.

It follows that, uniformly in ¥ € B%, A, ¢ € (0, 1),

E[(GUE [p2.00, U1 | Fo] < Ix° % (GUYH P, S IGURA.
Likewise, uniformly in ¥ € B%, A, & € (0, 1), and & € (0, &),
E[(GUGE" — ) ey W) 1 F] <1065 — x°) % (GUYH 2,
ST U -

Hence the required estimates hold for GUE? [ |y2 o) and GU(§° — &) [ 5,2 o, by the equiv-
alence of Gaussian moments and a Kolmogorov argument.
For the contribution on [0, 2¢?], define the random variable

M=¢e*"% sup [£°(1, )], -

t€[0,8]

Note that every moment of M is bounded uniformly in €. Then

{GUE® [0, Y1) S A2 267 sup [(GU) (L, )E° (1, )] -4

1<92g2

<MA 2267 Ue

uniformly in ¥ € B®, A € (0,1), and & € (0,1). The same bound holds for
(GUE[1g.9625 ¥2)|, which is where we use s<e<e. O

Our final probabilistic estimates controls the term W in (7.23).
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Lemma 7.27. — Let £ = G *x 1, x° % (§1_) € C*(R,) and let WV be its Uift to the
polynomual sector defined for positive times. Then, for all k € (0, 1), there exists a random variable M
with moments bounded of all orders such that, for all T € (0, 1),

W3 _geir < Me® .

Progf. — Recall that sup g 2 [x° * (§1-)(D]c-2 < Me =% Therefore, for all y €
[0,2 — 2«)\ {1} and ¢ € [0, 2¢%]

! t
€0ler = [ 160+ @I d S [ =9 M as
0 0
< M S e

For ¢ € (2¢%, T), we simply have

[E(D]er < / G (" * (1) () |er ds S f (1 —5) T Mg~ ds
0 0

< 82(t— 82)—%—/{M8—2+K
SMrEer,

from which the conclusion follows. L]

7.3. Renormalised equations for the gauge transformed system

In this section we derive the renormalised equations for the B system and the A
system and prove that they converge to the same limit, i.e. Proposition 7.37.

Given 6 € (0, 1] and ¢ € (0, 1], we write ngm [+] for the BPHZ renormalisation
group character that goes between the canonical lift and Zds,,. The rule given below
(7.11) determines the set €_(R) of trees as in (5.22) and we only list the trees in ‘€_(R)
that are relevant to deriving the renormalised equations in the following two tables (for
the F system and the F system respectively). The reason that we will only need to be
concerned with these trees will be clear by Lemma 7.28 below, which follows easily from
the definition of Y{[-] and the parity constraints on the noises and spatial derivatives that
are necessary for £55,,[+] not to vanish.

Here the graphic notation is similarly as in Section 6: (thick) lines denote (deriva-
tives of) .¥, colours denote spatial indices, and the colour of a tiny triangle labels the spa-
tial index for the kernel immediately below it. Moreover, we draw a circle (resp. crossed
circle) for E (resp. X&), with a convention that the line immediately below it understood
as .J, and a square (resp. crossed square) for E (resp. XE), with a convention that the
line immediately below it understood as .¥. We also draw a zigzag line = for J*" and a
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wavy line ~ for F". Their thick versions and tiny triangles above them are understood
as before.

Table 1 Table 2
v SACHE n F.(2,)2
S F(B)TW(Fu(EL) D F(B)Fu(Fuu(EL)
% Fuu(BD)IATu(ED) & F (B F(Fun(EL))
2 J(E)T.(X.EL) B F(E)Tu(X.E)
e, .(X.E.)T.(E) 5y F,(X,E)Fu(E)
. F4(Iu(EL))E, g F4(F(EL))E,
Zp Fuu(B)IN(Iuu(E)) 2 Fuu(B)IN(I.u(B))
> F(E)IN(I(E) D F(E)IN(Tu(B)

The first five trees in each of the two tables have the same structure as the ones that
appeared in Section 6, except that now the noises are understood as & or E, and edges
understood as .F or .F. An important difference from Section 6 is that the trees of the
type ©# and =, had vanishing Y in Section 6 and therefore no effect on the renormalised
equation, but this is not the case now, as we will see below, due to the term Uyx® * & (or
x° % (I_JS )) in our equation. Moreover, the tables also show trees in T_(R) such as those

of the form % which do not have any counterpart in Section 6.

Lemma 7.28. — If T € T_(R) is not of any of the forms listed in Table 1 (resp. Table 2) then
ether Eﬁ}fﬁz[t] =00 Y{[t] =0 (resp. either K’SB’IfHZ[t] =00 Y{[t]=0)forevery t € £,.

Proof. — The proof of this lemma follows similar lines as Lemma 6.5, so we do not
repeat the details. We only remark that for trees with a “polynomial” X, namely

j""(é“)j"(x E")’ jﬂ(én)jn,n(x En)’
jﬂ,n(En)jn(X E,,), jx(Eu)jn’n(X E")’

the polynomial can be dealt with in the same way as for the derivative in Lemma 6.5;
for instance for the first tree, if # 7 #, then flipping the sign of the #-component (or, #-
component) of the appropriate integration variable shows that IT.,[t] = 0. [

We now state a sequence of lemmas with identities for Y¥ and Y¥, but we will not
give the detailed calculations within the proof of each lemma, since these are straightfor-
ward (for instance they follow similarly as in Section 6). We first show that in both F and
F systems we don’t see any renormalisation of the u or h; equations.
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Lemma 7.29. — For any of the T of the form listed in “lable 1 (resp. Table 2) one has Yﬁ[r 1=
0 (resp. Ti[t] = 0). Moreover, we have

3 @ 1T @ = Y (@, 18T, [t14) =0.

1€T_(R) TeT_(R)

Progf. — The fact that Ti[r] = Ti[r] = 0 for T appearing in the tables follows

from direct computation. One has Y:’"[‘L’] =0 (resp. TE’,[T] = 0) for any 7 in Table 1
(resp. Table 2) of the first six shapes. For the other trees one has, by integration by parts,

(7.39) G (221 = =L, 03], G (2] = — L, 23]
Additionally, one has
(7.40) Th,n[b] = Th,n[.\}] s Th,n[b] = Tf),n[(}] .

Above we are exploiting the canonical isomorphisms between the spaces where the ob-
jects above live — namely for any two trees 7, T of any of the four forms appearing above,
one has a canonical isomorphism J [t] >~ I [7] by using Remark 5.13 and the canonical
isomorphisms between these trees obtained by only keeping their tree structure. Com-
bining (7.39) with (7.40) then yields the last claim. 0J

We define a subset sl C o that encodes additional constraints on the jet of our
solutions which comes from (7.2). These constraints will help us simplify the counterterms
for the a; and m; equations.

Defination 7.30. — We define A to be the collection of all A= (A),ce € A such that
o A, is unitary.
e Foralla,be g, Ayla, b] =[A,a, A,b].

We now turn to explicitly identifying the renormalisation counterterms for the a;
and m; equations in the F system.

We start by collecting formulae for the renormalisation constants. Write K%¢ =
K¢ % x® = K * x® % x° and recall the constants C¢ and C¢ defined in (6.12). We then
define the variants

(7.41) CHe = / dz K> (2), Che = /dz 3K () (K *K*)(2)
where one can choose any j € {1, 2} as in (6.12). We then have the following lemma.
Lemma 7.31. — For C¢ and C¢ as in (6.12), one has

(7.42) G 4ol = 03 [o3] = —C Cas, €55, [**]=—C’Cas.
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For C2¢ and G defined as in (7.41) one has
(7.43) KSB;HZ[\”] = _E(SB’;HZ[‘}] = —C"*Cas ) E%}sz[V] = —C**Cas..
Finally, for any € > 0, one has limg Gt = C* and limy Che =Ce.

Progf. — The statements (7.42) and (7.43) follow in the same way as Lemma 6.9.
The final statement about convergence as é |, 0 of the renormalisation constants is obvi-
ous. UJ

We introduce additional renormalisation constants
(7.44) Cr= / dz X (QEK*K) (), CE / dz x* (K *K*)(2) .

The following lemma is straightforward to prove.
Lemma 7.32. — One has
Zg}fHZ[é:] = —C*Cas ) Ziﬁﬂz[’”:] = —C**Cas )

: ~ def ~ . :
and furthermore lims o C*¢ = (K % K®)(0) = C"¢. Additionally, there are finite constants Cgsyy
and Cgsyy Ssuch that

lsiﬁ)l és = Cgsyn and lsiﬁ)l éo,g = CGSYM .

Finally, we have that £, [2 2], L * P, Lo, [82], and Ly, ["F) are each given by a multiple of
Cas where the prefactor only depends on 8, & and the form®® of the tree.

The rest of our computation of the renormalised equation is summarised in the
following lemmas. In what follows we refer to the constant A fixed by Remark 6.8. We
also introduce the shorthand®*

; ; T, g Lol T, T —
\IJ,ZJ“.':.,, \'I‘In,n: TI-TE \I’,:j”."_‘.”, \IJ”’": W —y

We now walk through the computation of renormalisation counterterms for the system

of equations given by F. We will directly give the expressions for T such as (7.45) and
(7.48) below, which follow by straightforward calculations from the definitions.

Recall the convention (7.12) for writing components of A as B, A, U, etc. The
following lemma gives the renormalisation for the m; equation in this system.

3% That is, they do not depend on the specific colours/spatial indices appearing in the tree as long as they obey the
constraints given in Tables 1 and 2.
%' Note that our use of the notations W, and Wy differs slightly from Section 6.
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Lemma 7.33. — Ti’,[t] =0 for all T of the form in Table 2 except for T = o where

-

[X]

(7.45) ! I214) = 5, [[0F*F,. 1], U
In particular, for A € o,

(7.46) 3 (U1 @id) T, [T1(A) = ACT, .

1eT_(R)

Proof. — Using the assumption that A € df we have
[[Bju(an), 75#]1 UE#] = _U[Em [ju(qln)» G_liln]] .

Inserting this into the left-hand side of (7.46) and combining it with Lemma 7.32, we see
that it is equal to

C>(Cas @ id) U[E,, [F*(8), Uil = € Uadeo U™ i = 4G4,
since adg,s = Aidg. ]
For the a; components we have the following lemma.
Lemma 7.34. — i‘i,[é] =0, and

(7.47) T AA) = L0, [0F,, A]],

i [\’] (A) (2354,#8 ", 3,’“8 ,n) [[2851, An - 3n, Ana [_Jj (\I‘In,n)]a U\I"n,n]s

"ljl

a [‘/](A) - (28 3;1 " 8#,;13;1, )[Ulilﬂa [23;1 An - 8#, Ana Uj ,n(an,n)]] s

(7.48) Yo [ FI(A) = 8,u(28, — DIUD,, 8,05, (KE)].

(7.49) Tz,u[l’] (A) = 8",“(28"," - 1)[8,Gj"(X,E,), qun,n] .

In particular, for A € o,

(7.50) Y @ T ®id) T [r](A) = (4 — C)AA, .
te€T_(R)

Progf. — The right-hand side of (7.50) comes from the contribution of trees of
the form ==, <x, and »3, which can be shown as in Lemma 6.14, combined with the
condition that A € ¢f (namely, the second relation of Definition 7.30) to cancel the factors



LANGEVIN DYNAMIC FOR THE 2D YANG-MILLS MEASURE

of U. The total contributions from the trees of the form *® and those of the form =
each vanish. For the case of trees of form = 2 this total contribution is given by

C ) (280 — D(Cas @ id)[UW,, 0,05, (XL E )],

ll=l,2

for some constant C. Other than the factor (28, — 1), the summand above does not
depend on » and since ), ,(26,, — 1) = 0 it follows that the sum above vanishes as
claimed. A similar argument takes care of the case of ® . O

The computation of the renormalisation of the a; components in the F system of
equations mirrors the computations we have just done for the I system with the one
difference that the term Uy® % &, which is the analogue of the term U¢; that was part

of Fm,i, is included in Fg ;. In particular, Yi[r] for T € {22, 3, 2 p &p 4} are given by
formulas as in (7.47) and (7.48) with the following replacement

AB, U—U, UV, JFXE)- F(XE)
and T, [21(A) =4, [[UT"Y,, 1], UE,].
By using the renormalisation constants given in Lemma 7.32 and performing again

computations of the type found in Lemmas 7.33 and 7.34, one obtains the following
lemma.

Lemma 7.35. — For A e d,

- Al e ~e
D @[Tl ®id) Y, [T](A) = AC, By + AC

€T _(R)

&
where Cgyy,

s as i (6.12).

Remark 7.36. — Lemmas 7.33, 7.34, and 7.35, still hold if one replaces the first
condition of Definition 7.30 by only requiring the invertibility of A,,.

The main result of this section is the following proposition.

Proposition 7.37. — Suppose that x is non-anticipative. Fix any constants Cy and Cy and
mitial data a € Q. and g(0) € &*. Consider the system of equations

(7.51) A = AN+ x° % @Eg ) + CIA + C5 (328!
+[A}, 20:A; — 0:A; + [A, Al A(0)=a,
and
(7.52) 3B, = AB; +g&fg ' + C:B, + C5(di9)g™"
+ [B;, 20;B;, — 9,B; + [B;, B/]] , B(0) =a,
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where g and g are given by the corresponding equations i (2.6) and (2.5) started with the same wnitial
data g(0) = g(0), and where we set g =1 on (—00, 0) wn (7.51). The constants are defined by

Ce=C) +ACE Ct=Cy 410",

SYM

(7.53) .
C=C+ACL,, =040,

Then, for every € > 0, (7.51) is well-posed in the sense that, replacing & by 1,.0& + 1,50&?, the
(smooth) maximal solution (A, g) converges as 8 |, 0 to a limiting (smooth) maximal solution in (2, x
&%yl Furthermore (A, [g]) and (B, [g]) converge in probability in (Qi X Q°50’0‘)S°l to the same
hmat as € |, 0.

Remark 7.38. — It follows from the explicit expression (7.44) that x being non-
anticipative implies C** = 0. (The convolution of non-anticipative functions is non-
anticipative and any continuous non-anticipative function vanishes at the origin.)

Proof. — We first claim that, for €,6 > 0 the solution to (7.51), with &, replaced
by 1,.0§ + 1 ,2052-‘3, is equal on a small interval (0, 7) to the reconstruction of the solu-

tion to the fixed point problem (7.23) with model Z%,,, and with o; o GU®ES and W,

the canonical lift of Q K « 1. x® % (§;1_) therein. Here T > 0 is random but indepen-
dent of § (and ¢). The fact that (7.51) is well-posed in the sense of maximal solutions
converging as § |, 0 follows from this claim due to the convergence of ngm and w; as
81 0((7.33) and (7.38)) and standard PDE arguments since g is smooth (and thus g&g~"
1s well-defined) for positive times.

We deploy [BCCH21, Thm. 5.7] and Proposition 5.68 to get the renormalised
reconstruction (A, U, A) of the equation (7.23). For A, in terms of the indeterminates A =
(A,),ee and nonlinearity F, this amounts to summing the renormalised and reconstructed
integral fixed point equations for the indeterminates A, and Ay, with nonlinearity F,
and recalling (7.14).

We first argue that U satisfies the conditions of Definition 7.30. Lemma 7.29 im-
plies that U and £ satisfy the same PDE as the corresponding components in (7.5) with
B replaced by A. Consider the process g which solves (2. .6) for the given A, and define
fi=(09)g 'and V= Adz. Then Lemma 7.2 applied to A,V ,J) implies that (V, /) also
solves (7.5) with B replaced by A and with the same initial condition as (U, z). Hence
V., /)=, %) and thus U satisfies the conditions of Definition 7.30.

We can now apply Lemmas 7.33 and 7.34, and take the limit § |, O of the renor-
malisation constants as given in Lemmas 7.31 and 7.32 to conclude that A solves (7.51)
but with g&z " replaced by UE; and (3,g)g " replaced by #;. It remains to observe that if
(D, 2) is the solution to (7.51) and the second equation in (2.6) with A replaced by D, then
a similar argument as above using Lemma 7.2 implies A = D, which proves the claim.

A similar argument shows that (7.52) is the renormalised equation obtained via the

reconstruction (with respect to Zppy, ) of the fixed point problem (7.22) with & o GUW®Eg?.
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The minor difference is that one is aiming for the renormalised and reconstructed inte-
gral fixed point equations for just the indeterminates A, with non-linearity I so the
computations of Lemma 7.33 and 7.34 are replaced by that of Lemma 7.35.

We now turn to proving the statements concerning convergence in probability as
€ | 0. Let us denote

def

aet 1 < 0,a
=Q, x &7,

We first claim that Y & (B, [g]) converges in probability in S*!. Indeed, recall from The-
orem 3.27 that (A, g) — A¢ is uniformly continuous from every ball in S into L. In
particular, the map (A, g) = (A%, [g]) 1s continuous and both (A, g) = (A%, [g]) and its
inverse (which is well-defined up to a constant multiple of g) are bounded on every ball.

Next, a similar calculation to that at the start of Section 2.2 shows that B = A¢
where A solves (2.1) with initial condition a =2 and C = C¢, and with an addition
drift term on the right-hand side of the form (A]g(aigfl)g for some C* converging to a
finite value as € | 0, and where g solves

(7.54) 29,9 = 0;(g ' 9;9) + [As, g 0ig] 2(0) e &,

A proof similar to that of Theorem 2.4, using in particular that (7.54) is classically
well-posed for any A € (21)*!, shows that (A, [g]) converges in S*. An application of
Lemma 1.2 then shows that Y = (A¢, [g]) converges in probability in S*! as claimed.

It remains to prove that X LA, [g]) converges to the limit of Y in probability in
S*!. We first note that, because yx is non-anticipative, X is equal in law to (A, [g]) where

A solves (2.1) with initial condition ¢ and C « C¢, and with the additional drift term
C5(8:9)g™" on the right-hand. Here 7 solves the corresponding equation in (2.6) with A
replaced by A. Again, a proof similar to that of Theorem 2.4 show that (A, [¢]) converges
in S*!. It follows that X converges in law in S,

Recall from Remark 7.1 that we identify &% with a subset of &%¢. Observe that
for every A € (0, 1), |X — Yl¢(az.rr.s) — O in probability due to Corollary 4.14, Lem-
mas 7.15, 7.25, and 7.27, and the bound (7.37) in Lemma 7.26 with o = 0 therein. Here
7 € (0, 1) is the time appearing in Lemma 7.15. Observe that T > 0 can be taken as an F-
stopping time, where F is the filtration generated by the noise, since x is non-anticipative
and therefore the necessary conditions on the models 7%, and input distributions w, ®
which ensure existence and convergence of the solutions on an interval [0, {] can be
checked on [—1, ¢] x T?.

To handle time ¢ = 0, observe that for all A, § > 0, the set

{res: o=@, sw IF® -/ Ols =6

te[0,]
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is closed in S*!. Therefore, the convergence in law of X and the Portmanteau Lemma
imply that, for all § > 0,

lim lim supP[ sup [X(0) — X(0)]s = 3] —0.

A=0 o9 1€[0,27]

Since Y(0) = X(0), it follows that |Y — X]¢(0.z1.5) — 0 in probability.

To conclude the proof, let Q) denote the reconstruction of maximal solutions as
defined in Section 7.2.4 with the model taken as Zyiy,, along with the blow-up time
7% (and extended to all positive times by Q(¢) =@ for ¢ > t*). By Proposition 7.24, )
converges in probability in the sense of Lemma 1.2(ii) as € |, 0.

We now claim that Q € S*! for & = 0. Indeed, for & = 0, the fixed point prob-
lem (7.29) 1s easily seen (using Lemmas 7.26 and 7.27) to give the same reconstruction
as (7.23) with YW = 0 and the input distribution o defined through (7.38) (we use here
that each o} can be taken as an F-stopping time). Therefore, when &€ = 0, we obtain a
maximal solution Qe S*! directly from Lemmas 7.14 and 7.15, and Q = Qon 0, ).

On the other hand, (B, U, H) is coherent with F on each interval (o, 0y+1) (more
precisely, it is coherent after we add the component m;, see (7.13)). It readily follows that
U is determined by the reconstruction of the tuple. Because U in (7.23) is controlled
purely by the input as in Lemma 7.15, it follows as in the proof of that lemma that the
final two terms on the left-hand side of (7.31) can only blow up once Q blows up, i.e. T*
is the blow-up time of Q in S. Therefore Q = Q € $*' as claimed.

Observe now that, for ¢ > 0 and with notation as in Definition 7.21, X is equal to
Q on the interval [0, 27, + - - - 4 27,] provided that e <rtforali=1,...,n Following
Remark 7.23 and using that, for ¢ > 0, X is an element of S*!, we obtain that X converges
in probability in $*! as & | 0 (to the same limit as Q).

Finally, remark that the & | 0 limits of X and Y agree almost surely on an interval
[0, 7], where T is an F-stopping time which is stochastically bounded from below by a
distribution depending only on the size of the initial condition. Both limits are further-
more strong Markov with respect to F, from which it follows that the limits are almost
surely equal as elements of S*°!. UJ

Proof of Theorem 2.9. — We first prove statement (i). Given C € R, which is assumed
to be a real constant by Remark 2.8_and Assumption 6.1, we fix G} = C — ACgyy and
Cy = C — ACgsynm. We then take the C as claimed in the theorem as

= def =
C = A(Casym — Gasym) -
With these choices and the definitions of (7.53), together with

CS — Cgsym = o(l), Csyn — Cim =o(l), CO’E - CGSYM =o(1)
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it follows that, as € | 0,
C=C+o(l)=Cs+o(1) =C +o(1), C—C=C5+o(l).

The desired statement then follows from Proposition 7.37. Note that if x is non-
anticipative then C*¢ = 0 by Remark 7.38, but we don’t use this here in the proof of

(1).

We now prove (ii). Since x is non-anticipative, C*¢ = 0 for every £ > 0 and so
Casyn = 0. Tt follows that C = AC sy = = Alim, fd.z x°(2)(K % K®)(2) and so the de-
sired statement follows from Remark 6.16. O

7.4. Construction of the Markov process

In this subsection, we prove Theorem 2.13. We begin with several lemmas.

Lemma 7.39. — Leta € (%, 1] and A, B € Qi Then

(7.55) inf |B|,

gquﬂa

+ [Bla)|A = Blo

where the proportionality constant depends only on .

Proof. — As in the proof of Theorem 3.27, for g € "* we can write
Af—B=((A-—BF¥—0*—(A—B))+(A—B),
from which it follows by Lemmas 3.32 and 3.33 that
(7.56) |A* = Bflo S (1 + Igla-o) A — Bla

where the proportionality constant depends only on «. Consider a minimising sequence
2, € %% for A. Then, by Proposition 3.35, lim SUP,_, o 1@ la-tisl S [Alg, and thus by (7.56)

inf |Bf|, — 1nf |A®|, <limsup |B*|, — |A*"

ge®l g€ n—00

(I +1Al)|A = Blq .

le S
Swapping A and B and applying the same argument, we obtain (7.55). U

Lemma 7.40. — Let o € (%, 1). There exists a measurable (Bovel) selection S: O, — )
such that |S(x)|q < 1 4 infac, |Aly for all x € O,.

Progf. — Consider the subset Yy {A € Ql | [Ale < 1 + infycgoe |[A%],}, which is
open due to Lemma 7.39. In particular, Y is Pohsh (Alexandrov’s theorem) and, by
Lemma 3.40, the gauge equivalence classes in Y are closed. Note that 7: Q) — O, is an
open map since 7~ (7 (U)) = U,es0.« U? is open for every open subset U C Q.. Therefore
m:Y — 9, is also open and the conclusion follows by the Rokhlin—Kuratowski-Ryll-
Nardzewski selection theorem [Bog07, Thm. 6.9.3]. UJ
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For the rest of the section, let us fix a non-anticipative mollifier x and set C = C,
the constant from part (i) of Theorem 2.9. By a “white noise” we again mean a pair of
i.i.d. g-valued white noises & = (&, &) on R x T?.

Proof of Theorem 2.15. — (i) By Lemma 7.40, there exists a measurable selection

A

S: Oy — flé such that for all x € O,
(7.57) IS()y < 1 + inflala
acx

and S(®) = . Let & be white noise and let (F;),>¢ be the filtration generated by .
Consider any a € SZI We define a Markov process A: O — Dy(R,, Q! ») with

A(0) = a and a sequence of stopping times (0;)7%, as follows. For j = 0, set 09 =0 and
A(0) = a. Define further

dd S([a]) if|a|oz = 2+ infge@ﬁ““" |ag|a s
a otherwise.

Consider now j > 0. If 0; = 00, then we set 0j;; = 00. Otherwise, if 0; < 00, suppose
that A is defined on [0, o;]. If A(0;) = @, then define 0; = 0;,,. Otherwise, define © €

C([o;, 00), QL) by

OO0 = {q)glt(A(o'j)) lf] o1
Dy, (b) =0,

where we used the notation @, as in Definition 2.11. We then set

oj1 =mf{t > 0; [ O ()] 22+ lnf 1©@)Fa}
and define A(t) = ©(?) for all ¢ € (0}, 0741) and A(0j;1) = S([O(0j41)]). Observe that
0; < 0j1) a.s. due to Lemma 7.39, the condition (7. 57) and the continuity of ® at o;.

In fact, defining M(?) = inf,c g0« |A(t4)%]q, then by decomposing ® into the SHE with
initial condition A(o;+) and a remainder as in the proof of Theorem 2.4, we see that the
law of 07, | — 0j depends only on A(0;+) and can be stochastically bounded from below by

a strictly positive random variable depending only on M(o0;). In particular, if the quantity

def
T = lim;_, o 0; is finite, then a.s. lim, ~p« M(#) = 00. In this case, we have defined A on

[0, T*), and then set A= & on [T%, 00). If T* = 00, then we have defined A on R, and
the construction is complete. Note that, in either case, a.s. T* =inf{t > 0 | A(¢) = &}.

To complete the proof of (i), we need only remark that items 3 and 4 of Defini-
tion 2.11 are satisfied and that A is Markov, which all follow from the construction of
(Uj)f.io: the definition of 4, and the above discussion.

(i1) The idea of the proof is to couple any generative probability measure [t to the
law of the process A constructed in part (i). Consider a white noise & with an admissible
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filtration (.E),>o, a F- -stopping time o, a solution AeC(s 0), Q! ») to the SYM driven
by &, and a gauge equivalent initial condmon A(s) = A(s)E0. Remark that, by part (1) of
Theorem 2.9, we can construct on the same probability space a stopping time 7, a time-
dependent gauge transformation g € C([s, T), &"%) (namely g~' = g, the solution to that
component of (2.6) driven by A started with initial data g(s) = g~'(s)) and a solution

A eC([s,1),2)) to the SYM driven by the white noise & dzefAdgé such that A¢ = A on
[s, 7). Moreover, by the bound (3.24) in Proposition 3.353, |g|y-ns cannot blow-up before
|A|O,_gr + [Alg-gr does. Since Qi_gr — QC"*! (see Section 3.3), and since by Theorem 2.4
we can start the SYM from any initial condition in QC", n € (—%, 0), it follows that we
can take T = o A T* where T* is the blow-up time of |Al,. Note also that ¢ and § are
adapted to the filtration generated by &, and A is adapted to the filtration generated by
£.

Consider a,a € Ql with [¢] = [a] and a generative probability measure @ on
Dy(R,, €2 ) with initial condition a. Let AeDyR,, Q! ») denote the corresponding pro-
cess with filtration (.7:;) =0, white noise S and blow-up time T* as in Definition 2.11. It
readily follows from the above remark and the conditions in Definition 2.11 that there
exist, on the same probability space,

e aprocess g: Ry — &% adapted to (.7:—,) =0, which is cadlag on the interval (0, T*),
for which lim,( g(¢) exists, and which remains constant g =1 on [1*, 00), and
e a Markov process A € Dy(R, fZl) constructed as in part (1) using the white noise

£ £ Ad,€ such that A = A¢ and A(0) = a.

(Specifically, the process g s constructed to have jumps in [0, T*) only at the jump times of
A and A, and g =g~ solves (2.6) driven by A on its intervals of continuity.) In particular,
the pushforwards 7,1 and 7, coincide, where p is the law of A.

To complete the proof, it remains only to show that for the process A from part (1)
with any initial condition «a € Ql the projected process A takes values in O and is
Markov. The Markov property of A follows from that of A and from taking [t in the
above argument as the law of A with initial condition @ ~ a. The fact that w A takes values
in O is due to items 2, (a), (b), and 4 of Definition 2.11 together with the fact that, due

to Lemma 3.42, for any sequence x, € O,, inf,c, |a|l, > 00 = x, > @ in 9,5 ]
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Appendix A: Singular modelled distributions

We collect in this appendix several results on singular modelled distributions used in
Section 7.

A.1 Shori-time convolution estimates

In Section 7, it is important that the short time 7 > 0 for which the fixed point
maps (7.22) and (7.23) are contractions is a stopping time with respect to the white
noise. This requires short-time convolution estimates which only depend on the size of
the model up to time 7 > 0 (see Proposition A.4). In this appendix, we prove a refined
version of the reconstruction theorem, Lemma A.2, which is used to prove this result.

Fix a regularity structure 7 on R?*! an arbitrary scaling s, as well as an integer
r > 1 such that —r is smaller than the lowest homogeneity appearing in I and such that
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furthermore r > sup;, s;. Given model Z = (I1, ') and a compact set & C R**!, we denote
by [|IZ]| & the smallest constant C such that, for all homogeneous elements T € J,

|(TL,7)(¢h)

forall ¢ € B, ; and all x € &, A € (0, 1] such that Bs(x, 24) C &, as well as

< Cllzfatsr,

degT—
”Fx,)z'f“a = C”TH ||x_y||s€gr o ’

for all x,y € R. Note that K ||Z]| 1s increasing by definition. We likewise define the
pseudo-metric ||Z; Z||| ¢ with IT, replaced by IT, — I1, and I', , replaced by I', , — I"

X,

Remark A.1. — The definition of ||| « || g and |||+; «|| ¢ in [Hail4, Eq. (2.16)-(2.17)] 1s
not equivalent to our definition above, the difference being that we enforce Bs(x, 21) C &
instead of just ¢ € B, and x € &.

With this definition at hand, we then have the following sharpening of [Hail4,
Prop. 7.2].

Lemma A2. — Lety >0,F e 27, ¢ € B, andﬁdzdsupp VY. Then

|(RF — ILF () (¥

SNz (1 +11Zlls) -

Proof. — We claim that one can construct a countable collection of compactly sup-
ported functions ¢, with the following properties:

e For every £ there exists A, € 27N such that the support of ¢, belongs to the (scaled)
ball B, (x;, A;) for some x; € R such that also B4 (x, 2A;) C K but B, (x;, 30;) € R.

e Onehas) , ¢(x)=1forallxe A

e There exists C > 0 such that sup [D'e;| < CA; " for all |£] <.

e There exist G > 0 such that the number of values £ such that A, = 27" is bounded by
CA/apt,

The construction of this partition of unity is virtually identical to the one given in [Whi34,
SIL.9], except that the axes are scaled according to s.

Since ¥ € C’ for some r > sup; |s;| and since all of its derivatives vanish outside
of &, it follows that [¥*(»)| < A7¥I(ds(y, dR) /A1) uniformly over all £ > 0. By the first
property above, points in the support of ¢; are at scaled distance at most O(;) of the
boundary of K. Since we furthermore have A; < A for every £ by the first property and
since DY < A7 for every € with [€] < 7, it follows that

a.b sup (DY) S G /A0

JESUpp oy
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uniformly over £ > 1 and |£| <7.
We then write ¢ =) =0 Y with ¥, = @Y and note that one has the bound

DYl S Z ID @l DY oo uppege)
£1+69=¢
5 )L/{—|f1|s)\‘—|5|—\52|s (A/Ak)—l+llzls
— k;lﬁrlﬁl(k/)\k)—lqm ’
provided that [£]| <.

It follows that v is of the form aklﬁzf for some ¥ € B, and for a; < (A /Al
It then follows from [Hail4, Lem. 6.7] that

|(RF = T F(x)) ()| S ad] IFllpy (14 1 Z s, 200) -

and in particular that

[(RE = T F()) (W) | S ad” I Fllpz (1 + 1Z1ls) -

It then remains to sum over £, using the last property above to show that ) _, o, is of order
l. 0J

Remark A.3. — The quantity |(IT.F(x)) (¥}
A F ()| (1 + |IZ]| ﬁ) for o < 0 the lowest degree appearing in the regularity structure,
provided that 7 is sufficiently large as a function of @. The reason is that in order to be

able to retrace the exact same proof as above, we need to replace the bound (A.1) by a
bound of order A~1*I(A/1,)!ls=# for some B > —a.

itself can similarly be bounded by

We assume henceforth that we are in the periodic setting, i.e. we work over R x T¢.
def

For T > 0, let Oy = [—1,T] x T
Proposition A4, — The statement of [Hail4, Thm 7.1] holds with the improvement that
s lo and ||+ <llo therein are replaced by ||| « o, and ||+ «llo, respectively.

Proof. — The proofis very similar to that of [Hail4, Thm 7.1]; the only difference
1s that the application of [Hail4, Prop. 7.2] is replaced by Lemma A.2. 0

A.2 Modelled distributions with prescribed behaviour at t =0

Assume henceforth that we are given a regularity structure J as well as a model
on R™*! endowed with the parabolic scaling, (Other scalings can be dealt with in exactly
the same way.) We write P = {(¢, x) : ¢ = 0} for the time 0 hyperplane and consider the
corresponding spaces 27" defined as in [Hail4, Section 6].
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We also recall that the reconstruction operator defined in [Hail4] is local, so that
there exists a continuous reconstruction operator R: 97" — D' (R \ P) satisfying the
bound above [Hail4, Lem. 6.7]. One problem is that there is in full generality no way
of canonically extending R to an operator R: "1 — D'(R**"). [Hail4, Prop. 6.9]
provides such an extension under the assumption o A n > —2 (where « is the lowest
degree of our modelled distributions) which is insufficient for our purposes in Section 7.
However, below we show that assuming improved behavior near P, one only needs n >
—2 for the extension to be unique.

We write Y = Pr1 N PN aswell as D71 C D7 for the subspace of those func-
tions /' € 7" such that f({,x) =0 for ¢ < 0. Similarly to [Hail4, Lem. 6.5] one can
show that these are closed subspaces of 27", so that we endow them with the usual
norms [||fl,.,. We also note that 1. f = f forall / € g,

Note that elements of 27" have the improved behaviour that its component of
degree £ vanishes at the rate |z|} * when z is near P if £ < 5 (rather than just being
bounded as for generic elements of Z7°").

Defination A.5. — Gen f € DV for y > 0 and w € C"™, we say that @ s compatible
with f if (@) = (Rf) (@) for all p € C>*(R\P).

Recall as in [Hail4] that Q_, is the projection to the subspace of the regularity
structure of degree less than 7.

Theorem A.6. — Lety > 0 and n € (=2, y]. There exists a unique continuous hinear oper-
ator R : D" — C"* such that Rf is compatible with | and such that

A.2) (Rf = TLQ/ )W) S,
uniformly over A <1 and over € B.

Proof. — The proof is virtually identical to that of [HP21, Thm. C.5] with the
boundary of the domain D there playing the role of the time-0 hyperplane P. In par-
ticular, the exponent 1 in our statement should be compared to that of o in [HP21,
Thm. C.5] and the exponent —2 appearing here is analogous to the exponent —1 there
due to parabolic scahng Finally, the quantlty R+f+ +R_f_ appearing there should be re-
placed throughout by RO o/ where R denotes the (continuous) reconstruction operator
for y < 0 given in the second part of [Hail4, Thm. 3.10]. U

Lemma A.7. — For F; € 9222?”’1' with a; <0 < y; and n; < y;, one has Fy - Fy € 923:]'1&2
with y = (a1 + y2) A (@ + 1) and n = (a1 + n2) A (a2 + 1) A (91 + 12).

Proof. — This follows from [Hail4, Proposition 6.12] and the definition of 7.
O
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Lemma A.8. — For F; € 92;’;'”7" witha; <0 < y; and n; < y;, one has Fy - Fy € grmtn,

o]+ag

Proof: — The proof is virtually identical to that of [Hail4, Proposition 6.12]. I

In the rest of this appendix we work on R x T“. For T > 0, we denote by || - Wy n:r

the modelled distribution norm as defined earlier for the set O o [—1,T] x T? Asin
[Hail4] we assume henceforth that we have an abstract integration map Z of order f
defined on a sector V and admissible models Z, Z realising a kernel K for Z. We fur-
thermore assume that ¢ 4+ 8 ¢ N for all homogeneities ¢ of V, except for the polynomial
sector. B

For the spaces 27", we have the following version of Schauder estimate. A typical
situation to apply this result is @ < —2 < 1. Note the improved exponent n + B (rather
than (n A o) 4 B) as well as the improved dependence on Z only on the interval [—1, T]
(rather than [—1, T 4 1]) in the non-anticipative case.

Theorem A.9. — Let y > 0, and n > —2 such that y + B,n + B & N. Then, there exists
an operator K : DV (V) — DY such that RES = K x Rf with the reconstruction R from
T heorem A.6.

If furthermore K is non-anticipative i the sense that K (¢, x) = 0 for t < 0, then K maps

DY) to DY and for T € (0, 1) and ¢ > 0

2
WSS Wy +—mp—ir S TP My

A.3) _ ;! _
WFS s Ff Wy s psct S T2 S Wy + WZ: Zlloy)

where f € 9&’ (V) is a modelled distribution with respect to 7. The first proportionality constant above
depends only on || Zllloy and the second depends on [ Zlloy + WZIow =+ W/ Mymer + WM v

Progf. — The proof of the first statement is very similar to that of [Hail4,
Prop. 6.16], so we only point out where it differs. As usual, one writes K=" _ K,
where we further assume that K, annihilates polynomials of sufficiently high order for
n > 1. Regarding the bound on K, the only point where the proof differs is when one
considers the X‘-component of Hf in the regime when 27" > |x|p. What is required
there is a bound on

(RS = TL.Qqei,-pf (0) (DIK, (x, ) |
Instead of simply bounding the two terms separately as in [Hail4], we bound it by

A4) (Rf = MLQf @) (DK, () [+ Y [(MQyf @) (DIK,(x. )]

n=¢=<|tls—p

5 Q(I/le—ﬂ—n)n+ Z 2(\lls—/3—§)n|x|i7’—§ ,
n<¢<|lls—B
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where we used Theorem A.6 to bound the first term and where the sum in the second
line has a strict inequality ¢ < |£|s — B if n > 1 due to our assumption that K, annihilates
polynomials of sufficiently high degree. After summing over #, this is then bounded by
|x|§17+ﬂ"“5“° as required.

If we further assume that K is non-anticipative, then we can improve the bound to

|x|¥,+'S _ws, which is required for K to take values in Gr+BatE To see this, we redo the
above bound by
(A.5) |(Rf = 1,119,/ () (DK, (x, )|

+ (141, Q- f (%) + T, Qg —af () (DIK, (x, 1)) |

where 1. is the indicator function for positive time. The second term is bounded by
Z{sl/ﬁ\s—ﬂ 90ts=F=0n|x]1~¢ " and summing over the relevant values of # indeed yields a
bound by [x[7771 since €], — B —¢ > 0ifn>1.

Since [ € .@V’”, and K is non-anticipative, the contribution to the first term in
(A.5) only comes from ¢ € (0, |x|p) where ¢ is the time variable of the implicit argument
n DfK,l(x, -). Let m be such that 27" < |x|p < 27", One can find a partition of unity
{¢.}:ea for some index set A, such that each function ¢, has a support of diameter 27",
and the first term in (A.5) is equal to

YIRS = 1, ILQ,f () (DK, (x. ) |

yEA

and finally the number of terms contributing to the above sum is (27"/|x|p)”. Since each
term here can be bounded by 2(@Hng=m(@+5+n " the above expression is bounded by
ltlsng=mB+m) Since €|, > 0, summing over the relevant n we get a bound by |x|’}l+ﬁ"“5.
Regarding the bound on (Ff)(x) — I'y,(Kf)(y) again, the only regime in which
the proof differs is when considering the X‘-component in the regime 27" > |x[p. As

shown in [Hail4, Eq. (5.48)], the term that needs to be bounded can be written as

(A.6) (M 0) —RAL)EK) + Y (M,0/0)) (K1)
n=<g{<y
— Y (MQ(Tuf ) —f ) (DK, (x, ) -
c<|l|s—p

It follows furthermore from the Taylor remainder formula [Hail4, Eq. (5.28)] that in this
Ly
n;xy

Theorem A.6 then implies that the first term in (A.6) is bounded by some multiple

regime one has K7 = ||x — p||7 £~ 27702™ for some test function ¢ € B.
g .y 5 90)’ (p

of ||x — p||7 #1620 =2 vhich sums up to [|lx — |71 [x|87"" as required. The
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second term in (A.6) is bounded by some multiple of

—Jtls oy =Ly 1t
Z ||x_y||}5/+ﬂ lEls o (v C)ﬂmg ’

n=f<y

which again leads to an analogous bound after summing over .
The ¢-summand of the last term in (A.6) is bounded by some multiple of

IE: _y||}5/—§|x|g—72(lfls—ﬂ—5)n ,
which then sums up to (recalling again that ¢ < |€|; — B by assumption if n > 1)

gy Byl —Jels | o1~
llc = pllZ = Jclp T Sl =l e

where we used that ¢ < |€|s — B and ||x — y||s < |x|p for the inequality. This is again of
the required form, thus concluding the proof that Kf takes values in 27 +F-1F,
It remains to show (A.3). The proof of this is similar to that of [Hail4, Thm. 7.1]

upon using [Hail4, Lem. 6.5] and using Lemma A.2 in place of [Hail4, Prop. 7.2]. [

A.3 Schauder estimates with input distributions

Assume we are in the setting of Section A.2. As in [GH19a, Section 4.3], given a
space-time distribution @ and a modelled distribution f, we write K/ for the modelled
distribution defined as in [Hail4, Section 5] with Rf replaced by w.

Given a distribution @ € D'(R**"), a compact set £ C R and a € R, we let
|w|ce(s) be the smallest constant C such that

lw ()] < C”
for all ¢ € B;,o and all x € R, A € (0, 1] such that B, (x, 21) C R.

Lemma A10. — Fix y > 0. Let f € D" (V), and w € C"* which is compatible with f .
Set y =y + B, n=mAa)+ B, which are assumed to be non-integers, &« = (o + B) A 0 and
nAa>—2 Then K°f € DL", and one has RE*f = K * w.

Furthermore, if f € 97" (V) with respect to 7., and & € C* is compatible with [, then, for
every compact & C R,

1K ES i ma S S i + W2 Zll & + 0 — @lenai)

locally uniformly in models, modelled distributions and space-time distributions @, where R is the 2-
Jattening of K. The above bound also holds uniformly in € for the €-dependent norms on models and
modelled distributions defined in Section 7.2.2.

Finally, if K is non-anticipative and we are in the spatially periodic setting, then the same bound

holds with f, f replaced by 1. f, 1. f, and with R = R = O forany T € (0, 1).
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Proof. — All the statements except for the last one follow from [GH19a, Lem.
4.12(1)]. The last statement follows from a similar proof as that of [GH19a, Lem. 5.2]
upon using the improved reconstruction bound Lemma A.2. We remark that the input
distributions @, @ need only be evaluated on DK, (z, -) for z = (¢, x) with ¢ < . [

Appendix B: Symbolic index

We collect in this appendix commonly used symbols of the article, together with their
meaning.

Symbol Meaning

| e Extended norm on 2

II's le.e g-dependent norms on regularity structure of degree £
e le, de g-dependent seminorms and metrics on models

[ lyne &-dependent norms on modelled distributions

1, Indicator function of {(¢, x) : ¢ > 0}

a4 Target space of the jet of the noise and the solution
A LA Negative twisted antipode and its abstract version

AA Element of @ describing the polynomial part of A € #
Cas Covariance of g-valued white noise = quadratic Casimir
Ce, Cr Renormalisation constants for stochastic YM equation

Céyar Gsym  Combination of renormalisation constants and its limit
A generic Banach space

F Natural filtration F = (F,) > of the noise &

‘] Isomorphism classes of labelled forests

Fy The monoidal functor between SSet and Vec

G Compact Lie group

G- Renormalisation group

g Lie algebra of G

B« a-Hélder continuous gauge transformations
& Closure of smooth functions in &*

B0 Quotient of "¢ by kernel of action

E4 Set of expansions with polynomial part and tree part
Hom(3, 3) Morphisms between two symmetric sets 3 and 3
K® Kernel assignment for gauge transformed system
K Integration operator with input distribution @
{BPHZ BPHZ renormalisation character

M, The family of K -admissible models

O, [, 7] x T¢fort >0

Q Space of additive E-valued functions on X

Qq Banach space {A € Q| |Al, < o0}

QB E-valued 1-forms with components in B

QL Closure of smooth E-valued 1-forms in €2,

Oy Space of orbits . /&

P(A) Powerset of a set A

P’ Functor from SSetge to TStruc g

6> (B) Space of smooth functions from & to B

Q (resp. @) The set of choices of RHS of SPDE (resp. obeying R)
0 Distance function on X

R Subcritical, complete rule




[AB83]
[AK20]
[BCCH21]
[BCFP19]
[BG20]
[BHST87)
[BHZ19]
[Bog07]
[Bou94]
[CCHS22]
[CG13]
[CHI16]
[Chal9]
[Chel9]
[CW16]
[DeT83]

[DHS87]
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Symbol Meaning

3 A generic symmetric set

SSet e The category of symmetric sets with types £
TStruc Category of typed structures, objects are [ [, 4 3a
(1) The symmetric set for a labelled rooted tree t

T Isomorphism classes of labelled trees

T(R) Trees strongly conforming to R

T (R) Negative degree unplanted trees in T(R) with n(p) =0
I, F Our abstract regularity structures

I, F Vector spaces for concrete regularity structure
Ve Tensor product determined by the symmetric set 3
X Set of line segments

E; Symbol for noise, defined as Sy, 0)(1) for I; € £
Y, Y Maps describing coherence of expansions

Y, T Unnormalised coherence maps
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