PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: November 12, 2021

REVISED: November 22, 2021
ACCEPTED: December 11, 2021
PUBLISHED: December 17, 2021

Bulk entropy is crucial to validate the second law of
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ABSTRACT: The extended black hole thermodynamics in which the cosmological constant
plays the role of pressure significantly enriches the phase structure of the theory. In order
to understand the extended black hole thermodynamics more precisely, we let the value
of the cosmological constant vary dynamically via tunneling from one vacuum to another
in a black hole induced vacuum decay. In this process, entropy of the matter/energy
released by a black hole is crucial to validate the second law of thermodynamics. In other
words, without taking this bulk entropy into account, entropy associated with the black
hole and cosmological horizons may not always increase. Since the bulk entropy is not
represented by the black hole and the cosmological horizons, this result calls for a more
careful interpretation of the holographic principle in which environmental effects are taken
into account.
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1 Introduction and motivation

Black holes are solutions of Einstein’s general relativity that are constantly surprising.
While black holes are classically black, in the quantum context they can radiate particles
and have a well defined temperature, which allows us to treat them as thermodynamical
objects. Bekenstein, Hawking, Bardeen, Carter and others nicely summed up the four laws
of black hole thermodynamics in the 1970s [1-6].

e The zeroth law: the horizon has a constant surface gravity for a stationary black hole.

e The first law: for perturbations of stationary black holes, the change of energy is
related to the change of area, angular momentum, and electric charge by

dE = 8idA +QdJ + dQ (1.1)
Y[

where F is the internal energy equal to the mass M in the case, k is the surface
gravity, A is the horizon area, §2 is the angular velocity, J is the angular momentum,
® is the electrostatic potential and @ is the charge.

e The second law: the horizon area is a non-decreasing function of time:

dA
= >o. 1.2
i (1.2)

e The third law: it is impossible to form a black hole with vanishing surface gravity.

These four laws directly correspond to the laws of classical thermodynamics, once the
black hole temperature and entropy are assigned as

_heg o 4 (1.3)
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where k is the Boltzmann constant. However, these laws were formulated before the dis-
covery of Hawking’s radiation. Once the Hawking radiation is included, a black hole can
reduce its area and hence reduce its entropy. Then, the second law must be modified to
include the entropy of the black hole environment. In principle, the black hole environment
depends on a cosmological model, but since we live in a de Sitter (dS) universe it is natural
to include a cosmological constant in these laws, even though, in general, the physics of the
black hole environment is not only captured by the cosmological constant. Since there are
many models in which the cosmological constant, A, is not a constant but it can change in
time (e.g. [7, 8]), we can treat the cosmological constant as a thermodynamical variable.
A more general black hole first law of thermodynamics with varying cosmological constant
was proposed in [9, 10] as

AM = TdS + QdJ + ®dQ + VdP. (1.4)

3
Here, P = % and V = 47?”, where rp, is the black hole horizon radius. Thus, the
cosmological constant A is identified with pressure. This equation coincides with classical
thermodynamics in which H = E + PV, and therefore M is considered to be the enthalpy

in this proposal. This model has been extended to include extra variables and phase

structures [11-13], which further enrich the theory, by assuming the fine tuning of extra
variables so that a phase transition is induced.

However, virtually all of the previous extensions were based on the modifications of the
first law. Replacing the cosmological constant with pressure and discussing the evolution
of a black hole alone (without taking environment into account) is incomplete, since the
cosmological constant cannot be tuned freely like pressure. For a self-consistent description,
one has to describe how these variables actually change dynamically. Without the entropy
of the environment, a black hole entropy on its own is not a good indicator if a process is
allowed or not.

In general, an isolated black hole can change its own state by emitting (or absorbing)
matter /energy or a field (e.g. in figure 1). Eventually, the emitted matter escapes to infinity
and the black hole becomes an isolated object once again. Without taking into account the
middle steps (b and c in figure 1), all the information about the environment is neglected.
A black hole entropy on its own can increase or decrease with no full thermodynamical
meaning. Here we want to study a complete system of the black hole plus environment,
in the context of a realistic model where the cosmological constant changes its value. We

will verify that the total entropy of the system always increases.

2 Black hole induced vacuum decay

One of the ways to change the value of the cosmological constant is to tunnel from one
de Sitter vacuum to another. [While we concentrate on a de Sitter space with positive
cosmological constant, identical analysis can be done in anti-de-Sitter space with negative
cosmological constant, what we will do at the end of the paper.] This tunneling can be
spontaneously triggered by the presence of the black hole, and has been well studied in
the literature [14, 15]. For our purpose, we adopt a simple scalar field model where the



Figure 1. A process in which a black hole changes its state. Initially, the black hole is in the state
a. Then it emits (for simplicity) a spherically symmetric wave, and the system changes its state
to b. The dashed line represents emitted matter or field. The emitted matter keeps moving away
from the black hole and the system changes its state to c. The matter completely escapes from a
black hole and the state becomes d. This represents an emission process (a — b — ¢ — d). An
absorption process can be made by reversing the order of steps (d — ¢ — b — a).
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Figure 2. The potential of the scalar field with two local minima. One is the false vacuum (¢y)
and the other one is the true vacuum ().

non-zero vacuum energy of the scalar field, ¢, plays the role of the cosmological constant.
The action of the model is

5= ﬁ /M Ry=gd'z + /M [Oup0" e — h(p)] V—gd'z, (2.1)

where R is the Ricci scalar, while h(yp) is the scalar field potential. We set A=k =c = 1.
To allow A to change, we consider a potential like in figure 2. The scalar field is initially
stuck in the false vacuum, ¢y, and then decays to the true vacuum, ¢;. The cosmological
constant goes from A = 87Gh(py) to A = 8mGh(p:). Thus, the cosmological constant
varies discretely in this model, and it can change only in one direction. A continuously
varying A model is possible by considering a quintessence-like potential, but for our purpose
this discrete model will suffice.



To simplify the discussion, we focus on a spherically symmetric metric as a background
in which the scalar field ¢ propagates

ds® = —f(r)dt® + dr’ + r2dQ (2.2)
f(r)
2
fr)y=1- QGiwi _ Azr . (2.3)

Here M, and M_ are the values of the black hole mass before and after tunneling. In
the process of the vacuum decay, a spherical bubble filled with new vacuum is formed.
This bubble is enveloped with a spherical domain wall separating two vacua. Some of the
original black hole mass/energy is invested into the phase transition, and its mass changes
from M, to M_. Thus, some of the energy of the domain wall comes from the energy of
the original black hole, so the situation is similar to the configuration b in figure 1.

To study the dynamics of the bubble (domain wall), we use the thin wall approximation.
The energy density and wall tension depend on the potential

g =

bt
/¢ (2h)1/2d¢‘ (2.4)
£

The absolute value mark is inserted to ensure the energy density is positive and physical.
The cosmological constant takes values A_ and A inside and outside the bubble respec-

2 2

QGSL — A_?)r and fi =1— QGi\/[* — A+TT inside and outside the
bubble respectively. The equation of motion of the wall can be obtained from the junction

tively, and also f_ =1 —

condition

fity — f i = —47GoR, (2.5)

with & = dz/dX\ , where X is the proper time of an observer sitting on the wall enveloping
the bubble. The wall is located at the radius R. Combining this equation with the motion

in the following coordinates
52
Ry _

f«it — N L, (2.6)
the equation of motion is simplified to
R\* _ 5 (Ap?
<R> ~ 7 TR i6RigY &1)

Here, 6 = 2nGo, f = (f- + f1)/2 and Af = f, — f_. The exact solution represents
a bounce, i.e. the bubble first contracts and then expands. To describe the expanding
case, the solution is usually cut at the bounce. Exactly at the bounce, the domain wall is
generated with Ry = 0. Eq. (2.5) implies

\/JT—— f+>0, (2.8)

R*3
6G

or

My—M_>—

(Ap —A). (2.9)
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Figure 3. A bubble (domain wall) with radius R is generated in Euclidean space. The entire
space is between the black hole horizon, r;, and the cosmological horizon, r.. The coordinate 7 is
periodic, and its period is the inverse temperature.

Here R* is the bubble radius of the bounce solution. M_ must satisfy the following inequal-
ity M_ < My + }g—g)(AJr — A_). This implies that the final black hole (after the tunneling)
can be either heavier or lighter than the initial black hole. Since ¢ cannot be 0, the actual
constraint is more stringent.

3 The second law of thermodynamics for the whole system: black hole
plus environment

In order to study the thermodynamical properties of the wall, one must perform the Wick

rotation, ¢t = —i7. The action becomes the Fuclidean action, and the metric becomes
ds* = f(r)dr* + ar” + 72dQ (3.1)
f(r) ‘ '

The domain wall equation of motion is

RN*_ L, f , (Af?
—<R> L R (3.2)
This equation can be written as
52
% +U=0, (3.3)
with
2U = AR* ~ 1+ BR ' +CR™ (3.4)
_ 1 (Ay —A_)?
_ -2, 1 +
A=g +6(A++A_)+714462 (3.5)
_ (My —M_)(Ay —A-)
B=GM++M_)+G 1552 (3.6)
(M — M)
C=G 152 . (3.7)

This equation is identical to that of a non-relativistic particle moving in a potential
U with total energy 0. According to thermal quantum field theory, the period of 7 is the
inverse temperature, which can be read out from the period of motion of the object. This
period can be calculated from [dR/R. In the case of small oscillations around the bounce



condition (i.e. U = U’ = 0), a simple harmonic oscillator approximation can be applied.
Eq. (3.3) is then approximated as

52 11 ( x
AE = % + (2R)AR2 (3.8)
U"(R) = A+ BR™® +10CRS, (3.9)

where R* is the radius of the bubble in the bounce solution and AR = R — R*. The period

of \is
27

The bubble temperature is

T, = \/f:l:(R) _ \/U//f:l:(R) (311)

B 2T

Here, T’y and T_ are the values of the temperature at the outer and inner side of the wall

respectively. In general ¢ is determined by the scalar field potential. Since we do not have
a precise form of f(¢) we keep it as a free parameter which will be determined by the initial
and final states. We note from eq. (3.4) that ¢ cannot be 0, which implies that there are
no massless domain walls in this context. Here R* and & are obtained from My and A4.
The condition for U = U’ = 0 at R* is

2AR*S — BR*™ —4C = 0 (3.12)
6AR*™ —AR* +3B = 0. (3.13)

If My = M_, there is a special solution R* = 3GM,, where the value of ¢ determines
whether this solution exists. The relation between R* and 17 is shown in figure 4. Just
like for black holes, larger radius implies lower temperature. There is a clear region of a
sharp change at around M, = M_, which may be a sign of a phase transition. The same
transition can also be seen from the relation between the energy density and temperature,
shown in figure 5, where a very quick transition appears at around M_ ~ M. Physically,
this transition may be explained as the critical point where a black hole releases or absorbs
energy from the vacuum decay.

Figure 6 shows that the bubble has a lower temperature than the black hole horizon
(Tn = (1—Ar})/(4mry)) if the cosmological constant reduces its value in the process. The
change in entropy can be calculated directly from the initial black hole, final black hole
and the bubble’s entropy as

4o R*? N
T+ )2 —wrpy, (3.14)

AS =7ri_ +

where we set G = 1. The outer (cosmological) horizon stays the same in this instantaneous
process of tunneling, so its contribution cancels out. [Note that the situation is very similar
in the anti-de-Sitter (AdS) case, though cosmological horizon is not involved.] We added
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Figure 4. The relation between the bubble radius and its temperature. The bubble temperature
gets lower as the radius is increasing. We set My = 0.02, AL = 3, A_ = 0.03 and G = 1, and
change the black hole rest mass M_.
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Figure 5. The relation between the bubble wall’s energy density (¢) and its temperature (77.).
There is a sharp change at the point where M_ = M., which might indicate a phase transition
of some sort. Physically, this represents the critical point where a black hole releases or absorbs
energy from the vacuum decay. We set M, = 0.02, Ay =3, A_ =0.03 and G = 1, and change the
black hole rest mass M_.

the term f(R*)'/? to compensate for the redshift. Figure 7 and figure 8 show how entropy
changes with M_ in de-Sitter and anti-de-Sitter spaces respectively. As expected, entropy
always increases. As long as M_ 5 My, AS reduces with M_ slowly. The reduction
becomes very quick when M_ Z My. We emphasize that the entropy of the bubble
(second term in eq. (3.14) is crucial for providing that the total entropy of the system
always increases. Without it, entropy could decrease, thus apparently violating the second
law of thermodynamics. We note that this is the entropy created during the instanton
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Figure 6. The temperatures of the bubble and the black hole as functions of the black hole rest
mass. The solid, dashed, doted and dot-dashed lines are the temperatures at the outer side of the

bubble wall, inner side of the wall, initial black hole surface and final black hole surface respectively.
We set My =0.02, AL =3, A_ =0.03 and G = 1, and change the black hole rest mass M_.
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Figure 7. The change in total entropy of the system as a function of M_ in de Sitter space. The
entropy is always increasing. As long as M_ T M4, AS reduces with M_ slowly. The reduction
becomes very quick when M_ T M, . This implies that the black hole prefers to reduce its energy

while triggering the vacuum decay. We set My = 0.02, Ay =3, A_ =0.03 and G = 1, and change
the black hole rest mass M_.

process when wall has just been created, but has not been expanding yet. The expanding
process also create entropy, which will be discussed in the next section.

4 Other mechanisms which increase entropy

Vacuum change, slow of abrupt, is always accompanied with particle production. A change
in the value of the cosmological constant is no exception. In our case of the bubble produc-
tion during tunneling, particles are generated during the nucleation and expanding phase.
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Figure 8. The change in total entropy of the system as a function of M_ in anti de Sitter space.
The situation is very similar to de Sitter space, i.e. the entropy is always increasing. As long as

_ S M4, AS reduces with M_ slowly. The reduction becomes very quick when M_ T M, . This
implies that the black hole prefers to reduce its energy while triggering the vacuum decay. We set
M, =0.02, Ay =—-0.03, A_ = -3 and G = 1, and change the black hole rest mass M_.

This particle production increases the entropy; however, it is not taken into account in the
extended black hole first law of thermodynamics.

First we consider the bubble nucleation phase, where particles are extracted from
vacuum during the formation of the domain wall (figure 1b). Though the vacuum decay
involves gravitational effects, here we just want to clarify the essential physics of particle
production and, therefore, in what follows we use the results from flat space. In flat space,
the spectrum of created particles is obtained from the Bogoliubov transformation [16]

B, 2
ny = ‘TAP , (4.1)
where p is the particle momentum and

_ 'ulz{p(m)KiP(y) — polip(z) K7, (y)

A = T @) Kop() — plp(@) K () (42
K (@) Kip(y) + noKip(2) K, (y)

B, = pull () Kip(z) — plip(2) K] () (4.3)

with, x = pR and y = poR. Here pg and p are the masses of a particle in the false and true

vacuum regions respectively. The functions I, and K, are the modified Bessel functions of
the first and second kind, while 7 is the standard imaginary unit. Apparently, particles are
created if u # pg and this instanton process is an irreversible process. The entropy can be
calculated according to the Gibbons entropy formula

Sq =—Nk Z p; log(p;). (4.4)

where NV is the particle number and p; is the probability for a particle to be in the state
1. These particles will also increase the entropy ensuring that the second law of thermody-
namics is satisfied.



Second, bubble expansion also creates particles (figure 1c¢) [16-18]. The particle spec-
trum can be calculated again using eq. (4.1) by replacing A, and B, with

Py (@) () - Hm(m)H@'(y)
Ay, = £ i 4.5
poHO () H () — o HY () HE (y) o
1 (1) (1),
. <az>H <> o HY (2)HY' (y)
B, = e P" t o 4.6
g MoHl <y>H§§><y>—me,)(y)Hf,?”(y) 0

Hﬁl) and H£2) are the first and second kind Hunkel functions. Thus, though the bubble
expands like a classical object, the fields propagating in its background change their vacuum
state which leads to particle production. The particle spectrum is not completely thermal
(eq. (4.1)), nevertheless, the entropy is increasing during this process.

If we repeat the same procedure in which A is increasing instead of decreasing, we will
find that the bubble wall’s energy density cannot be positive and is therefore unphysical.

We can extend the evolution of the bubble to extreme cases. As the bubble wall
approaches the cosmological horizon size, the whole horizon volume gets converted into a
new vacuum with lower value of the cosmological constant, and the entropy will increase
further. The entropy increases by

i — e, (4.7)

where 7.+ is the radius of the cosmological horizon in the false and true vacuum.

Since the entropy increases, this is also an irreversible process. However, once the wall
crosses and leaves the cosmological horizon behind, it will take away entropy with it. The
domain wall’s entropy then disappears and does not leave (a classical) imprint on the stuff
inside the cosmological horizon.

5 Conclusions

In this letter we have studied the extended black hole thermodynamics by discussing a
realistic model in which the cosmological constant is variable. We have found that the
vacuum decay triggered by an instanton has the temperature lower than the black hole
horizon. During this process more entropy is produced than the change in the black hole
entropy. The modified second law of thermodynamics for black holes only gives a complete
picture provided the entropy of the environment is included in order to preserve the second
law (see also [19]).

To summarize, the entropy is increasing with time schematically as shown in figure 9.
If we neglect Hawking radiation, the total entropy is a constant at first. The black hole
then triggers the vacuum decay through instanton process at ts. The entropy increases
according to eq. (3.14), and in addition due to the entropy of particles created during
vacuum tunneling. The bubble wall produced during the tunneling keeps expanding and
generating more entropy, since more particles are created during the expanding phase. At £,
the wall grows to the size of the old cosmic horizon (associated with the higher value of the
cosmological constant) and keeps pushing the horizon outward to its final size (associated

~10 -
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Figure 9. The schematic picture of the entropy evolution in time. The black hole triggers the
vacuum decay through instanton process at ts. The entropy increases according to eq. (3.14), and
in addition due to the entropy of particles created during the vacuum tunneling. The bubble wall
produced during the tunneling keeps expanding and generating more entropy, since more particles
are created during the expanding phase. At t. the wall grows to the size of the old cosmic horizon
and keeps pushing the horizon outward to its final size. Entropy is produced by both particle
creation and the expansion of the cosmic horizon after t.. Finally the wall leaves the new horizon
and the entropy remains constant. The horizontal dashed line shows the entropy counted in the
first law of the black hole thermodynamics, which is always lower than the actual entropy.

with the lower value of the cosmological constant). Entropy is produced by both particle
creation and the expansion of the cosmic horizon after t.. Finally the wall leaves the new
horizon and the entropy remains constant. The entropy created between ts and t. is not
included in the first law of the extended black hole thermodynamics. The first law assumes
the black hole entropy coming purely from the horizon size, which is always lower than
the entropy shown here. The situation is very similar in the anti-de-Sitter case, though
cosmological horizon is not involved.

Our analysis thus suggests that the environmental effects are crucial in the context of
the extended black hole thermodynamics, and they call for a more careful interpretation of
the holographic principle [20, 21]. We note that such a sharpening of the idea of holography
has been recently suggested in different contexts [22-24]. Finally, we note that our analysis
is valid both for anti-de-Sitter (AdS) and de Sitter (dS) spaces, which we find significant,
given their radically different causal structures and holographic formulations [25-32].
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