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ABSTRACT

Most research on deep learning algorithms for image denoising has
focused on signal-independent additive noise. Focused ion beam
(FIB) microscopy with direct secondary electron detection has an
unusual Neyman Type A (compound Poisson) measurement model,
and sample damage poses fundamental challenges in obtaining train-
ing data. Model-based estimation is difficult and ineffective because
of the nonconvexity of the negative log likelihood. In this paper,
we develop deep learning-based denoising methods for FIB micro-
graphs using synthetic training data generated from natural images.
To the best of our knowledge, this is the first attempt in the literature
to solve this problem with deep learning. Our results show that the
proposed methods slightly outperform a total variation-regularized
model-based method that requires time-resolved measurements that
are not conventionally available. Improvements over methods us-
ing conventional measurements and less accurate noise modeling are
dramatic — around 10 dB in peak signal-to-noise ratio.

Index Terms—image denoising, CNN, particle beam mi-
croscopy, Neyman Type A distribution

1. INTRODUCTION

Focused ion beam (FIB) microscopy plays a crucial role in imaging
fine sample structures at sub-nanometer resolution [1-4]. A focused
beam of ions is raster scanned over the sample. The interaction of
incident ions with the sample produces secondary electrons (SEs) to
be detected. The mean number of SEs per ion reveals information
such as the composition and topography of sample components.

Measurements obtained by FIB microscopy are inherently noisy
due to randomness in both the numbers of incident ions and the num-
bers of detected SEs per incident ion. Each of these sources of ran-
domness is conventionally modeled with Poisson distributions, re-
sulting in a Neyman Type A distribution for measurements that is
detailed in Section 3. The signal-dependent noise level of this model
is illustrated in Fig. 1. Existing image denoising techniques fare
poorly on FIB micrographs because they are developed for Poisson
measurements or measurements corrupted by additive white Gaus-
sian noise (AWGN).
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In many types of imaging, one may improve quality by using
averaging to reduce noise variance. This often takes the form of
increased acquisition time. In FIB microscopy, this corresponds to
increasing the dose, i.e., the mean number of incident ions per pixel
A, which may be achieved by increasing the product of beam cur-
rent and pixel dwell time. However, various studies have shown
that sample damage due to sputtering and radiation increases with
dose [5-7]. For dose-sensitive samples, this introduces a limit to the
image quality that can be achieved without sophisticated data pro-
cessing. Sample damage also makes it fundamentally infeasible to
collect clean—noisy FIB micrograph pairs for training-based meth-
ods. Even for samples less prone to damage, acquiring these image
pairs would be expensive and time consuming.

The concept of time-resolved (TR) measurement that has re-
cently been introduced to FIB microscopy [8] can be viewed as a
way to make measurements more informative without increasing
dose. For each pixel, dwell time ¢ is divided into n sub-acquisitions
of length ¢/n, and the number of SEs is counted within each sub-
acquisition. Estimation methods developed for TR measurements
show significant improvements that are approximately equivalent to
making the source produce a deterministic number of ions — mit-
igation of source shot noise [8,9]. Note that these methods have
only been developed for unregularized (pixel-by-pixel) estimation,
and they require unconventional data collection. Though measur-
ing n sub-acquisitions at each pixel is feasible, it can increase total
imaging time, which can increase cost and susceptibility to sample
motion. To achieve similar improvement without TR measurement
is thus of interest.

In this work, we use our knowledge of an accurate generative
model for FIB microscope data to develop a deep learning-based
method that significantly outperforms methods intended for AWGN
or Poisson noise removal — without having a database of high-
quality FIB micrographs. We adopt a state-of-the-art denoising
convolutional neural network (DnCNN) [10], developed mainly for
the AWGN denoising task. We train our network on noisy natural
images where the noise is synthetically generated according to the
FIB microscope model. We also extend the network architecture by
adding a VGG-16 network to incorporate perceptual loss. Through
extensive experiments, we show that deep learning-based denoising
algorithms can be effective on FIB micrographs. Furthermore, we
demonstrate that perceptual loss may help to preserve the structure
in FIB images during denoising. The deep learning-based methods
trained with physically-accurate synthetic noise — operating only
on conventional data — perform slightly better than total variation-
regularized maximum likelihood estimation applied to TR data.



(a) Ground truth

(b) Simulated observation — AWGN

(c) Simulated observation — FIB microscope model

Fig. 1: Examples of different noise models on a microscopic image. (a) A clean image. (b) A simulation with additive white Gaussian noise.
(c) A simulation with a physically accurate model for FIB microscopy. Note that the noise variance is signal dependent to a greater extent

than with Poisson data.

2. RELATED WORK

Traditional methods. Various techniques have been proposed to
recover a clean image from a noisy observation based on a measure-
ment model and a regularizer or prior. For instance, total variation
(TV) regularization [11] is very broadly successful in reducing noise
without excessive smoothing of sharp edges. We include a compari-
son with a TV-regularized method here.

Deep neural network for image denoising. Deep neural net-
works [10, 12—14] have received increasing attention for the past
decade. DnCNN [10] combines a very deep neural network [15],
batch normalization [16] and residual learning [17] for a series
of computer vision tasks, including image denoising for Gaussian
noise, super-resolution, and deblocking. DnCNN is based on the
assumption that the residual mapping is easier to learn than the
original signal of interest, where residual is defined as the differ-
ence between the noisy observation and ground truth image. The
network employs a single residual unit to output the residual image
and exhibits a boost of performance from the contribution of batch
normalization and residual learning.

Perceptual loss. Pixelwise difference losses have achieved suc-
cesses in recovering images from distortions. However, they fail to
capture the perceptual quality of images and often result in over-
smoothed reconstructions. Perceptual loss [18] quantifies perceptual
differences between images in a feature space and can be used to
increase the spatial-structure fidelity between the ground truth and
restored images. It is commonly used in style transfer [19] and su-
per resolution [18] and can be adapted to image denoising [20]. A
pre-trained convolutional neural network (e.g., VGG-16 [15]) is em-
ployed to extract high-level features of the output from the denoising
neural network to enhance the perceptual appearance with respect to
the ground truth image.

3. DATA MODEL AND MODEL-BASED ESTIMATION

In this section, we introduce the measurement model for FIB mi-
croscopy with noiseless direct SE detection. Compared with com-
mercially prevalent use of scintillators and photomultiplier tubes,
direct SE detection offers higher signal-to-noise ratio [21] and is

easier to model. This measurement model underlies both model-
based reconstruction and our generation of synthetic noisy images
for training and testing of learning-based reconstruction. We assume
a square micrograph with J pixels and use 7 = {1,...,v/J}? to
denote the pixel index set. Here the focus is on the SE yield image
1 € [0,00)” and measurements that allow estimation of this image.
These are related to network inputs and outputs in Section 5.2.
Measurement model. Our model for measurements is sepa-
rable across the pixels, so we present it here without pixel indexing.
During a fixed dwell time ¢, ion incidences follow a Poisson process.
The number of incident ions M is a hidden Poisson random variable
with mean A = At, where A represents the rate of incident ions per
unit time. Dose A is assumed to be equal for all the pixels. Incident
ion ¢ causes Z; number of SEs to be detected. Each Z; is Poisson
distributed with mean 7, which is called the SE yield. Both uses of
Poisson distributions are well-established in the particle beam mi-
croscopy literature [22]. The total detected SEs @) = Zfil Ziis a
Neyman Type A random variable with probability mass function
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Note that both mean and variance depend on 7, making the noise nei-
ther additive nor white. Furthermore, the relationship between mean
and variance is substantially different than for Poisson-distributed
data, assuming 7 is not too small. Combining measurements across
pixels gives Q € N7 A comparison of AWGN and this microscopic
noise model can be seen in Figure 1.

If each pixel dwell time ¢ is split over n sub-acquisitions, at each
pixel we obtain an SE count vector of length n with independent
entries V™, k € {1,...,n}, distributed according to (1) with X
replaced by A\/n. When A/n is small, the measurement model for
the TR vector can be approximated well by using only the m =
0 and m = 1 terms in (1). The counts from the sub-acquisitions



together comprise the full SE count above, so
[€9) (2) n _ .
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for any pixel index 5 € J. Thus, a TR datasetis V' € N7 X ALond
where summing over the last dimension of the tensor gives non-TR
dataset Q.

Model-based estimation. At any pixel, scaling the detected SE
counts () by total dose A yields the unbiased estimator

ﬁconventional = Q/)\, (4)

which has mean-squared error (MSE) n(n + 1)/\. The (n + 1)
factor in the MSE is rooted in the (1 + 1) factor in (3) by which
the variance of a Neyman Type A random variable exceeds the vari-
ance of a Poisson random variable with the same mean. This cost of
randomness of the number of incident ions can be mitigated by TR
measurement [8, 9]. The pixelwise separable maximum likelihood
(ML) estimator using the TR data,

fTR = arg max H Po(w™:A/n|n), 5)

n€l0,00) k=1

has been shown empirically to realize most of the performance im-
provement from TR measurement that is predicted by Fisher infor-
mation [9].

Regularized estimation without TR measurement is made dif-
ficult by the series form of (1) and the non-convexity of its nega-
tive logarithm. With TR measurement, provided A/n is sufficiently
small, the derivative of log Pg(v'®; A\ /n | 1) with respect to 7 can
be approximated efficiently. This allows us to compute the TV-
regularized ML estimator for a full SE yield image,

argmin | > “logPo(w”; A/n|n;) +wrv|nllrv |, (6)
n€l,00)” | jeg k=1

where wrv is the regularization weight on the 2D TV norm || - ||Tv.

4. DEEP LEARNING ARCHITECTURES AND LOSS
FUNCTIONS

To reconstruct the clean image y € RY from noisy observation
x € R7, we use a feed-forward convolutional neural network called
DnCNN [10] as the backbone architecture, which can be seen in Fig-
ure 2. We modified the original network architecture for our method.
We pass the predicted image ¢ through a ‘sigmoid’ function to en-
sure that § € [0,1]7. In the remainder of this section, we discuss
three different types of loss functions that we combined separately
with DnCNN [10].

4.1. Direct Loss

One natural way to apply a deep learning method to an image denois-
ing problem is to estimate the clean image directly from the noisy
image. In this approach, loss is measured on the difference between
the clean image and estimated image. We use the MSE metric:

L(y,9) = ly — 9% )

v

Conv + BN + RelU

Conv + BN + RelU

|
|
|
|
|
|
|
|
|
|
|
|
I Conv + BN + RelU
|
|
|
|
|
|
|
|
|
|
|

P - .
< «

Conv + Sigmoid

Fig. 2: Denoising network architecture proposed by Zhang et
al. [10]. The network consists of 17 layers: the first layer is com-
posed of a convolutional layer followed by a ReLLU; the intermediate
15 layers are composed of a convolutional layer followed by batch
normalization and a ReLU; and the last layer consists solely a con-
volutional layer. The output of the network is modified to be either
an estimated clean image or an estimated residual image.

4.2. Residual Loss

In DnCNN [10], the loss function is designed to estimate the residual
between the noisy and clean image instead of estimating the image
directly. Let the ground-truth residual = be defined as

r=x—y, (8)

and let 7 = x — g be the estimated residual. The residual loss func-
tion is calculated as the MSE between the ground-truth and estimated
residuals:

L(r,#) = ||r — 7|7 ©)

4.3. Perceptual Loss

In [18], Johnson et al. proposed a perceptual loss network. This loss
network is used to extract descriptive features of the images. From
different intermediate layers of this loss network, features with dif-
ferent characteristics can be extracted. For each of the chosen layers,
we compute the MSE between the feature vectors of the recovered
image from DnCNN [10] and the clean image. Perceptual loss is
then defined as

£
L(y,9) = > willFi(y) — B9, (10)
=1



where ¢ denotes the number of different layers chosen to extract fea-
tures from the loss network, F;(-) denotes the feature vector coming
from the ¢th layer of the loss network, and w; represents its weight.
We select the weights empirically. For our application, we choose
VGG-16 [15] as our loss network. The layers for extracting the fea-
ture vectors are kept the same as in [18].

5. DATA AND EXPERIMENTS

5.1. Datasets

Due to lack of a FIB micrograph denoising dataset, we use regular
camera images to train our network. We used the Berkeley Segmen-
tation Data Set and Benchmarks 500 (BSDS500) [23] for training.
We use 400 images for training and the remaining 100 images for
validation. We use the techniques introduced in the next section to
distort the images for training, validation and testing. Distorted im-
ages will serve as the input, and the clean images will serve as the
ground truth.

Our testing is two-fold. The first testing phase is quantitative
using two benchmark datasets: the Berkeley segmentation dataset
(BSD68) [24] composed of 68 images and the 12-image dataset used
in [10]. The second testing phase is qualitative using the microscopic
image shown in Figure 3. For the chosen microscopic image we also
provide quantitative results.

5.2. Data Generation and Experimental Setup

In this work, three sets of experiments vary the training loss, vary
the synthetic generation of training data, and provide model-based
reconstructions for comparison. In all trained networks, we use the
same network parameters (number of layers, number of channels,
batch normalization, etc.) as the original DnCNN [10]. For opti-
mization, we use Adam optimizer with a learning rate of 5 x 107°.
We schedule a learning rate decay at every 20 epochs by a factor of
0.2. Overall, we use 100 epochs to train each model. Experiments
are performed on a PC with Intel(R) Core(TM) i7-6700K CPU at
4.00 Ghz and Nvidia GeForce GTX 1070. Training a single network
takes approximately 16 hours on a GPU.

The first set of experiments compares the three networks dis-
cussed in Section 4, all trained with noisy images generated follow-
ing the data model described in Section 3. We refer to these methods
as CNN-Direct, CNN-Residual, and CNN-Perceptual. Each clean
image y € [0, 1] is scaled through

n =6y + 2 (11)

to give ground-truth SE yield values in the interval [2, 8] to match
the range suggested in [1]. Given the SE yield image n, an image
of total detected SEs @ is generated for ion dose A = 20 following
the model described in (1). The final noisy image x is Q/320, with
the scaling chosen so that most pixels in most realizations are in the
range [0, 1].

The second set of experiments is designed to demonstrate the
impact of lacking an accurate noise model for FIB microscopy. We
present results only with the direct loss of Section 4.1; the resid-
ual and perceptual loss give worse quantitative performance and no
additional insights. We maintain the image scaling of (11) and the
dose of A = 20, but we model the data generation in three ways. If
the source beam provided A incident particles deterministically, the
number of SEs would follow a Poisson distribution with mean A7.
Without the physical justification of a deterministic source beam,
one might also use a Poisson model out of naivety or because it

is a suitable model for scanning electron microscopy. We refer to
the denoising method trained with Poisson data as CNN-Direct-
Poisson. Two additional networks are trained using images distorted
by AWGN. Let 77 denote the mean over the pixels of the SE yield
image m. Then training with AWGN variance A7 is called CNN-
Direct-AWGN-Poisson because it matches the average variance to
Poisson-distributed data, and training with AWGN variance A7j(1 +
7) is called CNN-Direct-AWGN-Neyman because it matches the
variance to (3).

The final set of experiments simulates performance of the
model-based methods. The values of 1 and A are unchanged from
above. We refer to the estimator in (4) as Conventional. The total
dose A is split over n = 100 sub-acquisitions for TR methods.
We refer to the estimator in (5) as TR-Unregularized and to the
estimator in (6) as TR-TV. The value of wrv = 1.4 is optimized to
minimize MSE.

6. RESULTS AND DISCUSSION

In this section, we present qualitative and quantitative results for all
the experiments discussed in Section 5.2. Table 1 shows quantitative
results on methods tested on noisy images corrupted following the
model in (1) using peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) metrics. The best-performing al-
gorithm with respect to both evaluation metrics is CNN-Direct. We
also observe that the performance of CNN-Residual is very close to
CNN-Direct. Recalling that the Neyman Type A distribution gives
signal-dependent variance, this finding suggests that learning based
on residual loss is less effective when the residual is not signal-
independent. Moreover, both CNN-Direct and CNN-Residual out-
perform CNN-Perceptual in the stated metrics. However, these met-
rics do not always align with human perception. For instance, based
on the qualitative results in Figure 3, it is arguable that CNN-Direct
oversmooths somewhat. Depending on the application, loss of de-
tails such as textures and edges may be not acceptable. For assessing
how well the texture is preserved, we can focus on the red-framed
section of the images and any detailed part of this mesh structure.
Perceptual loss may be the best method in terms of preserving the
texture and edges.

Among the three methods representing less accurate modeling
of the FIB microscopy data, CNN-Direct-AWGN-Poisson achieves
the worst performance. This modeling accounts for neither the par-
ticle nature of the data nor the correct signal-dependent variance
model (3). Slightly better performance — though still more than
10 dB worse than CNN-Direct — is obtained with CNN-Direct-
Poisson.  Both CNN-Direct-Poisson and CNN-Direct-AWGN-
Poisson underestimate the variance of the measurements by a
large margin. By matching the average variance to (3), CNN-
Direct-AWGN-Neyman achieves performance within about 2 dB to
networks that are trained under the Neyman Type A model, which
demonstrates the significance of the correct noise knowledge.

The improvement of TR-Unregularized over Conventional re-
construction is by about 6 dB, which is roughly consistent with pre-
vious theoretical and empirical results [8,9]. Including TV reg-
ularization significantly improves the quantitative and visual per-
formances; the PSNR increases by more than 7 dB and the SSIM
is doubled. The TR-TV method achieves performance comparable
with the best deep learning method, with PSNR difference less than
0.7 dB. While the use of TV regularization is not generally compet-
itive with deep learning-based methods, here it is not a comparison
based on the same input data; time-resolved measurements are fun-
damentally more informative.



Table 1: Performance comparison of the proposed algorithms on BSDS68 and 12-image dataset using PSNR and SSIM. The highest values
for PSNR and SSIM for each dataset are shown in boldface. The last two columns are the performances for a single representative microscopic
image in Figure 3. Rows of the table are different denoising algorithms specified in Section 5.2. The first three rows are for the networks
that are discussed. The following three rows are for networks trained with less accurate synthetic noise. The last rows are for model-based
algorithms.

BSDS-68 12-image Microscopic Image
PSNR | SSIM | PSNR | SSIM | PSNR SSIM
CNN-Direct 27.57 | 0.844 | 28.19 | 0.885 | 28.58 0.889
CNN-Residual 27.53 | 0.842 | 28.11 0.882 | 28.52 0.886
CNN-Perceptual 2499 | 0.793 25.58 | 0.829 | 25.83 0.823
CNN-Direct-Poisson 16.64 0.367 15.77 0.327 17.04 0.353

CNN-Direct-AWGN-Poisson 16.45 | 0.398 1573 | 0.349 17.23 0.382
CNN-Direct-AWGN-Neyman | 25.70 | 0.815 26.10 | 0.854 | 26.61 0.860

Conventional 1428 | 0201 | 13.67 | 0.180 | 15.01 0.173
TR-Unregularized 20.05 | 0.384 | 19.73 | 0.352 | 20.36 0.355
TR-TV 27.31 0.753 27.91 0.792 27.94 0.788

(a) Clean (b) CNN-Direct (c) CNN-Residual (d) CNN-Perceptual
(28.58/0.889) (28.52/0.886) (25.83/0.823)

(e) CNN-Direct-Poisson ® CNN-Direct-AWGN-Poisson (g) CNN-Direct-AWGN-Neyman
(17.04/0.353) (17.23/0.382) (26.61/0.860)

(h) Conventional (i) TR-Unregularized (j) TR-TV
(15.01/0.173) (20.36/ 0.355) (27.94 1 0.788)

Fig. 3: Qualitative comparison of the algorithms on a microscopic image. Numbers in parentheses are PSNR in dB and SSIM values.



7. CONCLUSION

In this paper, we demonstrated how to apply deep learning-based im-
age denoising algorithms on FIB microscopic image denoising de-
spite a lack of training data from that imaging modality. We show
that deep learning algorithms can achieve similar performance to
a TV-regularized model-based method that requires unconventional
time-resolved data. The original versions of the deep learning meth-
ods that we adapted were mainly tested for AWGN. In our work,
we used the compound Poisson noise model that is physically accu-
rate for FIB microscopy. We studied how the performance degrades
under less accurate modeling of the noisy observations. Results sug-
gest that CNN-Direct and CNN-Residual perform the best in terms
of PSNR and SSIM. Furthermore, we show that perceptual loss can
be used to preserve the structure.

We have provided results only for the ion dose level of A =
20, which combines with the SE yield to determine the noise level.
Among our areas of future work is to demonstrate the robustness of
the proposed methods to a range of noise levels. In addition, data fol-
lowing a Neyman Type A distribution displays spatially variant noise
related to the ground truth value, as shown in (3). The employed
DnCNN neural network lacks the flexibility to deal with spatially
variant noise, while we want to design a network that can handle
such noise. Finally, our results reinforce the merit of having time-
resolved data. We want to extend our work to be able to incorporate
time-resolved measurements into learned-denoiser technology.
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