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ABSTRACT

Edge-resolved transient imaging (ERTI) is a method for non-line-of-
sight imaging that combines the use of direct time of flight for mea-
suring distances with the azimuthal angular resolution afforded by a
vertical edge occluder. Recently conceived and demonstrated for the
first time, no performance analyses or optimizations of ERTI have
appeared in published papers. This paper explains how the difficulty
of detection of hidden scene objects with ERTI depends on a va-
riety of parameters, including illumination power, acquisition time,
ambient light, visible-side reflectivity, hidden-side reflectivity, target
range, and target azimuthal angular position. Based on this analysis,
optimization of the acquisition process is introduced whereby the
illumination dwell times are varied to counteract decreasing signal-
to-noise ratio at deeper angles into the hidden volume. Inaccuracy
caused by a coaxial approximation is also analyzed and simulated.

Index Terms— direct time-of-flight, non-line-of-sight imaging,
single-photon detection, Skellam distribution

1. INTRODUCTION

Non-line-of-sight (NLOS) optical imaging is a rapidly growing field
inspired by both serious applications (e.g., sensing for autonomous
vehicles) and the delight in defying human perception [1]. Since
light scatters in all directions at a rough (i.e., not mirror-like) sur-
face, when looking at a rough surface the contributions have come
from all directions. Though this makes NLOS imaging seem impos-
sible, unmixing of light originating at different locations is possible
computationally when the set of measurements includes a diverse
enough collection of mixtures.

Initial methods for NLOS imaging used hardware for direct time
of flight (DTOF) measurement to produce combinations defined by
equal light travel distances [2,3]. The visible-surface point at which
a pulsed laser is focused becomes a virtual source, and the visible-
surface point at which a single-photon detector is focused becomes a
virtual detector. Through varying the locations of virtual sources and
virtual detectors, the diversity of measurements could be sufficient
for inverse problem solutions. Making virtual sources and virtual
detectors almost colocated simplifies the inverse problem and has
become the prevalent paradigm [4-6]. Imaging with this approach
is limited to the volume opposite to the area scanned by the virtual
source and detector, in addition to having resolution and accuracy
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Fig. 1. Imaging scenario. a. Positions on a semi-circle on the floor,
centered on the occluding wall edge, are illuminated by a pulsed
laser. b. A histogram of photon arrival times is collected for each
laser illumination spot. ¢. The difference between two sequential
histograms provides a ‘difference histogram’ containing, on average,
photon arrivals from a small wedge in the scene.
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limited by the number of virtual sources and detectors and the re-
ceived signal strength.

A wholly different NLOS imaging paradigm uses only ordinary
digital cameras. The presence of known or estimable occluding ob-
jects result in shadows cast onto the measurement region, which pro-
duce enough diversity such that inversion can be achieved without
requiring time-of-flight information [7-14]. The shape and position
of the occluder relative to a camera field of view (FOV) determines
the computational FOV [12]. For example, the corner camera [7]
with a single vertical edge makes azimuthal resolution much better
than radial resolution [14]. Passive methods have limited resolution,
especially for static portions of the hidden volume.

Edge-resolved transient imaging (ERTI) [15] uses aspects of
these approaches to achieve NLOS imaging through a small aper-
ture using a small number of illumination positions. The most
analogous previous works estimate only moving parts of the hidden
scene [16] or projections thereof [17].

2. OVERVIEW OF ERTI

ERTI Data Acquisition. As illustrated in Fig. 1a, a pulsed laser
sequentially illuminates points on the floor along a semi-circle with
small radius (1.5 cm), centered on the point where a wall edge meets
the floor. The laser light reflects in all directions from the Lambertian
floor. Some of this light enters the hidden room, reflects off of the



hidden surfaces and returns to the FOV on the floor of the single-
photon avalanche diode (SPAD) sensor. Together, the SPAD and
a time-correlated single photon counting module record the arrival
times of photons reaching the sensor. Arrival times relative to laser
pulse emission are histogrammed over many repetitions of the laser
(Fig. 1b). Here, a histogram is a vector of length N = ¢, /t;, where
t,- is the repetition period of the laser, and ¢; is the resolution of
the timing hardware. Each entry is the number of arriving photons
counted within a particular time interval.

Neglecting for now any sources of noise (e.g., shot noise), the
histogram measured at illumination point k, denoted my, contains
photon count contributions from the hidden scene denoted hy,. There
are also contributions from the laser light reflecting back from any
surfaces on the observer’s (i.e., visible) side, as well as ambient and
dark counts, which we combine together in b. Note that b is constant
for every illumination position, assuming the radius of the semi-
circle is reasonably small. As the position on the semi-circle moves
further away from the wall, i.e., k increases, a larger portion of the
hidden scene is illuminated. This implies that hy 1 = hy + uy,
where u;, is the component of the histogram contributed by the part
of the scene that is illuminated from spot &£ 4 1 but not from spot k.

Consider taking the difference between the histograms collected
from neighboring illumination positions:

k k—1
yk:mkﬂfmk%bJrZujfbquj:uk. (D)
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Doing so provides a difference histogram y containing only the
response from the part of the hidden scene that was illuminated from
spot k£ 4 1 but not spot k (the green wedge in Fig. 1c), as the rest of
the terms cancel. Hence, the difference histograms {yx x=1,...,n—1
represent photons arriving from disjoint wedges in the hidden area.

Reconstruction Procedure. The presence of the occluding edge
and the subtraction of histograms provides azimuthal resolution,
while the arrival times of the photon detections provide longitudinal
resolution within these wedges.

Difference histograms are treated as noisy observations of ide-
alized parametric responses from the hidden scene wedge. Planar
surfaces with a certain reflectivity, height and orientation about
the floor-to-ceiling axis are fit via parametric estimation to the
difference histogram for each wedge separably, thus providing a
2.5-dimensional recovery of the hidden area. An approximate,
closed form solution to the temporal response from such surfaces
(including occlusions between them) is derived in [15] and allows
efficient evaluation of the forward model. The fitting of these pla-
nar surfaces is achieved in the original ERTI paper using Bayesian
inference through a Markov chain Monte Carlo (MCMC) sampling
approach that accounts for prior beliefs about scene structure and
only requires evaluations of the forward model [18, 19].

3. DATA MODELING AND ANALYSIS

Let Ay represent the azimuthal angular extent of one wedge in ra-
dians, or equivalently the angular spacing of illumination spots. For
acquisitions of the full 7 radians of hidden volume, Ay = 7/(n—1),
where n is the number of illumination points. While all our ex-
perimental data collection was for this setting, one might use ERTI
with attention on a limited region of interest or with variable angular
resolution. Analyses and simulations in this section do not include
variation of the rotation angles of facets; facet normal vectors are
horizontal and point toward the imaging edge.

3.1. Signal strength dependence on range

For a facet of fixed size in linear units (e.g., 1 m by 1 m, contrasting
with angular units), assuming Lambertian reflection of the illumina-
tion on the floor, the amount of laser light reaching the facet scales
as 1/2%, where z is the distance between the facet and the illumina-
tion spot. Lambertian reflection from the facet then implies another
1/2? scaling for the amount of light that reaches a detector FOV of
fixed area near the edge. Hence, signal strength for a fixed-size facet
scales as 1/2*. Note that this is a total signal strength from the facet,
which may be split across multiple angular wedges.

Instead of considering a fixed-size facet, one may also naturally
be interested in a vertical facet of fixed height that occupies the full
Ay angular extent of a wedge. Then, the amount of laser light reach-
ing the facet scales as 1/z. The 1/22 solid angle extent of the de-
tector FOV from the vantage point of the facet remains unchanged
from the argument of the previous paragraph. Hence, signal strength
for a fixed-height facet of full angular extent scales as 1/z°.

3.2. Signal-to-noise ratio analysis

For the analysis of this section, we omit height variations and con-
centrate on variations of signal and clutter strengths with angular
position 6 at the center of the wedge with index j. Seeking a fun-
damental scaling law, we consider facet recovery in one wedge (i.e.,
solved from one histogram pair, which are differenced). While the
MCMC method exploits scene priors and joint processing of all data,
here we consider one wedge in isolation to simplify our problem to
a hypothesis test. Since radial distance is mapped to TOF, we reduce
the problem to determination of the presence or absence of a fixed-
height facet of full angular extent at one specified radial distance z.

Since histogram entries are independent Poisson random vari-
ables, histogram differences have Skellam-distributed entries. We
parametrize these Skellam distributions by mean and variance be-
cause this is sufficient for the analysis. Our problem is to decide
between

No facet Hyp: m; — mj—_1 ~ Skellam(0, 032-,1), and

Facet Hi: m; —mj_1 ~ Skellam(u;, o7 4 + p1;),

where m; is one entry of interest in the histogram measured for the
jth illumination position, p; is the mean counts added by a facet
present in wedge j, and 0]2,1 is the Skellam variance due to ambient
light, visible-side scene elements, and hidden-side scene elements
up to wedge 5 — 1. If the distributions under the two hypotheses had
the same variance, performance of the hypothesis test would simply
depend on the difference of means after standardization. For sim-
plicity, we take p;/oj—1 as the approximate signal-to-noise ratio
(SNR) and require it to be held approximately constant to attain ap-
proximately constant probability of error. The mean counts p; can
be expressed as

pj = PAgay, @)

where P is the product of laser power and dwell time per spot and o
is the effective reflectivity per azimuthal radian of the facet in wedge
J, including distance-based falloff effects. The variance a?-_l can be
expressed as

j—1
o}, =2B+2P (V A, Zak> ) 3)

k=0

where B represents ambient light contributions, V' the visible-side
reflections of laser light, and {ak}fc;é the contributions of earlier



hidden-side wedges. By substituting (2) and (3), we get
j PApa;
N = f‘; = = )
Vi \/QB+2P (V+A9 Sl ak)

as a figure of merit. To more easily draw some insights from this
analysis, let us set B ~ 0 because optical filtering can make ambi-
ent light contributions negligible; set V' = v, where v represents
visible-side reflectivity per azimuthal radian; and set ax, ~ h for
k=0,1,...,7— 1, representing constant hidden-side reflectivity.
Then Ag fc;é ar ~ Oh and

PAgh h

Nt = VPN 5
7 V2P (mv + 0h) ’ ®)

V2(wo + 0h)

An actionable use of (5) is to see how P should scale to maintain
a constant facet-recovery success probability. Rearranging (5) gives

9/7r+v/h.

AZh ©)

(laser power) (dwell time per spot) o
For example, without changing the laser power, to double the angular
resolution (halve Ag) requires 4 x increase of dwell time per illumi-
nation spot, resulting in 8 x increase of total acquisition time. Also,
we see that increasing dwell time as € increases would be beneficial.

4. ACQUISITION OPTIMIZATION

For our analysis in this section, we consider an approximately semi-
circular room such that in each angular wedge there is a planar sur-
face whose normal points towards the corner, at the same distance
from the corner. The measurements from further around the cor-
ner hence contain more ‘clutter’, that is, the responses from all the
surfaces at previous angles — as they are all localized at the same
position in time and hence in the histogram. This is the worst-case
scenario in terms of increasing measurement variance with angle. To
simplify the derivations, we assume there is no background contribu-
tion and we define the visible scene contribution as the same as that
of one wedge in the semi-circular hidden room, which we denote
i, in order to avoid the special case where the first measurement is
entirely zero.

In the original ERTI paper [15], the laser illuminates each point
for the same amount of time. Consequently, the later wedges become
harder to reconstruct. To alleviate this issue, we consider allowing
the dwell time to be different for each illumination point. Given a
total dwell time budget 7', we consider the resource allocation prob-
lem of assigning a dwell time to each illumination point. Optimality
can be defined in many ways. Here we will consider:

1. Ensuring constant variance of each difference measurement,
so that reconstruction performance does not degrade as the
angle increases (as with fixed dwell times).

2. Minimizing sum of the variances of difference measurements.
Begin by denoting the dwell time at the kth illumination point by
gr. For these derivations it suffices to consider a single histogram
time bin mj where there is some response ur. Using a Gaussian
approximation of the Poisson distribution,

i ~ N (gkpe, grpe), ©)
and the difference measurement corresponding to the kth wedge is

m
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In our semi-circular room, the response in each wedge is the same
and is denoted i, hence pg+1 = pr + i1, and py = kji. Then,
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Constant Variance. For the variances to be equal for all difference
measurements we can require that o7 = 0‘;%_,_12

ki, (k4 Di_ (k+Di (k+2)0
9k gk+1 gk+1 Gk+2
k42
= Ght2 = G 9)

We now have a recurrence relation for a sequence of dwell times that
ensures the variance is constant for wedges at all angles. However,
the initial conditions for g; and g2 must be determined in order to
generate and use the sequence. We can formulate an optimization
problem to determine the best values of g1 and g2 for a fixed total
dwell time 71"

.M 20 "
g1, 92 :argm1nﬂ+ﬁ s.t. ng =T (]())
g1,92 91 g2 et

where, from (9),
a1k, k odd;
Ik = 192k, keven.
To solve (10), we use a gradient method with the Lagrangian form

_ n/2 n/2
2
arg min LA Z(gl (2k —1)) + Z(ggk) -T

g1,92 91 g2 1 et

Minimizing the Sum of Variances. Instead of maintaining a
constant variance among wedges, dwell times can be computed to
achieve the minimum sum of the variances of all difference his-
tograms. To do so, one can solve

n—1 _ _ n
argmin » (k—“ + M) st. Y ge=T. (D)
915-9n =1 \9k Jk+1 =1
Fig. 2 shows the dwell times determined by solving (10) and (11) as
well as the resulting difference measurement variances and SNR. To
achieve constant variance, we find that the dwell time must increase
as the angle around the corner increases, to counteract the noise con-
tributed by the surfaces in preceding wedges. This is consistent with
the conclusion drawn from (6).

5. DETECTOR OFFSET

The approximate, closed-form solution to the temporal response
from an arbitrary planar surface allows for fast evaluation of the
forward model, providing the measurements one would collect from
any scene comprising such facets with high efficiency. Without this,
evaluating the forward model requires significant rendering effort.
However, one major assumption made in the derivation of this ap-
proximation is that the detector FOV is a point coinciding with the
corner itself. This is problematic in practice because it would require
extremely effective temporal gating, and the FOV needs to be able
to receive light from the entire hidden scene. In the experiments
in [15], the detector FOV is a small spot located about 20 cm away
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Fig. 2. Measurement variance due to different dwell time allot-
ments. a. Proposed dwell time allotment schemes that sum up to a
total dwell time of 1, for 45 illumination points and a semi-circular
room with arbitrary i = 1. b. The variance of the 44 difference
measurements resulting from the different schemes. ¢. The SNR of
the 44 difference measurements.

from the corner following the direction of the wall. This placement
of the virtual detector allows it to detect light from all positions in
the hidden scene. The reconstruction algorithm in [15] does not
account for this discrepancy, assuming it to be negligible. Neverthe-
less, there is indeed an error caused by this model mismatch which
we explore here.

Denote the vector from the corner to the true SPAD FOV po-
sition by ds and the vector from the corner to a point on a target
surface by d;. The round-trip distance assumed in the original re-
construction algorithm is » = 2||d¢||2, whereas the true round-trip
distance is given by # = ||d¢||2 + ||ds — d¢||2. This gives a model
mismatch error of:

e =2[dell2 = ([dell2 + [|ds = dell2) = [[del2 = [|ds — dello-

The error hence depends on the position of the target in the room,
and the magnitude of the error is also upper-bounded by ||d;||2 from
the triangle inequality. Fig. 3a shows the error as a heatmap within a
hidden area for targets at floor height.

A simple improvement to the recovery algorithm is to compen-
sate after the recovery is formed by subtracting the error to the cen-
tral point on each estimated surface from the surface’s radial dis-
tance. Fig. 3b shows the result of the reconstruction of a square,
empty room performed using the MCMC algorithm from [15] with
the detector FOV 30 cm offset from the corner. Displayed in green
is the reconstruction with this compensation applied.

6. EXPERIMENTS

As discussed in Section 3.2, one way to estimate whether or not there
is a surface in a particular wedge is considering the difference in
Skellam likelihood between the case where there is a surface present
(i.e., the mean is nonzero), or the case with zero mean. To determine

b Room Reconstruction Correction

a Distance Estimation Error cm
5+ 30 3

——
7 = =

S e
7S ==

/

I

|

El
]
|
|

0
3 -2 -1

) m
@ Detector FOV position

Fig. 3. Reconstruction distance error due to model mismatch
and correction. a. Distance error at floor level with SPAD FOV
30 cm to the left of the corner. b. Bird’s-eye view of ground truth
room in black, MCMC reconstruction in red, corrected offset error
in green.

1400

Constant Variance
Constant Dwell Time

od Diff.
=)
1S3
S

Skellam Log-Likeliho

0 5 10 15 20 25 30 35 40 45
Wedge number
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results shown for two dwell time schemes.

the effect of dwell-time optimization on such an estimation, we per-
form the following experiment. For each of 1000 trials, a realization
of the noisy histograms that would be measured from a semi-circular
room of radius 2 m and wall height 2.5 m is computed. Then, for
each difference histogram, the difference between the logarithms of
the Skellam likelihoods with mean given by the true underlying sur-
face response with zero mean is calculated. If this value is above
zero it implies a surface exists in that wedge, and below zero implies
the wedge is empty.

This allows us to empirically confirm that the constant-variance
dwell time allotment from the solution to (10) developed in Section 4
provides approximately constant performance between each wedge
(i.e., it is equally easy to determine whether a surface is present at
every angle). Indeed, we see in Fig. 4 that this is the case. There is
a dip in the likelihood difference at the first angle. The dwell time
allotted to the first position is very small and hence the number of
counts recorded is so low that the Gaussian approximation no longer
holds well. Therefore, it may be prudent in practice to include a
lower bound on the expected number of total photon counts in the
dwell time optimization, if required.

7. CONCLUSION

We have developed theory for performance analysis of edge-resolved
transient imaging, aiming to show how the detection of hidden ob-
jects depends on various parameters. Furthermore, we propose and
demonstrate a revised acquisition method with non-constant dwell
times assigned to each illumination position to either minimize the
sum of the measurement variances or achieve constant measurement
variance for every wedge. We also explore the effect on scene esti-
mation of the model mismatch between the modelled and true posi-
tion of the detector’s FOV.
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