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Abstract. We construct a cocycle model for complex analytic equivariant elliptic co-

homology that refines Grojnowski’s theory when the group is connected and Devoto’s
when the group is finite. We then construct Mathai–Quillen type cocycles for equivari-

ant elliptic Euler and Thom classes, explaining how these are related to positive energy

representations of loop groups. Finally, we show that these classes give a unique complex
analytic equivariant refinement of Hopkins’ “theorem of the cube” construction of the

MString-orientation of elliptic cohomology.
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1. Introduction

Equivariant K-theory facilitates a rich interplay between representation theory and
topology. For example, universal Thom classes come from representations of spin groups;
power operations are controlled by the representation theory of symmetric groups; and the
equivariant index theorem permits geometric constructions of representations of Lie groups.

Equivariant elliptic cohomology is expected to lead to an even deeper symbiosis be-
tween representation theory and topology. First evidence appears in the visionary work of
Grojnowski [Gro07] and Devoto [Dev96]. Grojnowski’s complex analytic equivariant elliptic
cohomology (defined for connected Lie groups) makes contact with positive energy repre-
sentations of loop groups [And00, Gan14]. Devoto’s construction (defined for finite groups)
interacts with moonshine phenomena [BT99, Gan09, Mor09].

Equivariant elliptic cohomology over the complex numbers is already a deep object.
By analogy, equivariant K-theory with complex coefficients subsumes the character the-
ory of compact Lie groups, which in turn faithfully encodes their representation theory.
Analogously, equivariant elliptic cohomology over the complex numbers should be viewed
as a home for “elliptic character theory,” although the complete picture of what elliptic
representation theory really is remains an open question [Seg88, GKV95, HKR00, BZN15].

This paper gives a cocycle model for complex analytic equivariant elliptic cohomology
as a sheaf of commutative differential graded algebras on the moduli space of G-bundles
over elliptic curves. The approach is uniform in the group G. When G is connected, we
recover a cocycle model for Grojnowski’s equivariant elliptic cohomology, and when G is
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finite we recover a cocycle model for Devoto’s. One great utility of cocycle models is that
they bring new computational tools for applications. The elliptic cocycles presented below
are concrete and explicit, namely compatible equivariant differential forms on certain fixed
point sets. This makes them well-suited for applications.

One source of such applications has been long in the making. Indeed, Grojnowski’s
original motivation for studying equivariant elliptic cohomology was to construct certain
elliptic algebras, e.g., an elliptic analog of the affine Hecke algebra. Crucially, he recognized
that such algebras should arise geometrically by applying equivariant elliptic cohomology
to certain varieties, such as the Steinberg variety. This is the third step in the program
that produces increasingly sophisticated representation-theoretic objects by applying first
ordinary equivariant cohomology, then equivariant K-theory, and next equivariant elliptic
cohomology to varieties built out of algebraic groups. The cohomological and K-theoretic
variants of this paradigm have already met great success, notably in Kazhdan–Lusztig’s
K-theoretic construction of the affine Hecke algebra [KL87]. The program has seen further
development in recent years with the expectation of new examples from supersymmetric
gauge theory [BDGH16, BDG+16]. In the corresponding mathematical theory of symplectic
resolutions, the closely related work of Maulik–Okounkov [MO12] constructs representations
of generalized quantum groups by applying equivariant cohomology theories to Nakajima
quiver varieties. Equivariant elliptic cohomology is starting to play an increasingly impor-
tant role at this nexus of representation theory, geometry and physics, e.g., in the work of
Zhao–Zhong [ZZ15] and Yang–Zhao [YZ17]. The construction by Aganagic–Okounkov of
elliptic stable envelopes [AO16] in the (extended) equivariant elliptic cohomology of sym-
plectic resolutions has far-reaching consequences in enumerative geometry and integrable
systems. In particular, it interweaves with the recent elliptic Schubert calculus of Rimanyi
and Weber [RW19]. We emphasize that these applications are already quite interesting for
complex analytic equivariant elliptic cohomology; refinements to objects over Z will further
deepen the story.

Such refinements are the subject of Lurie’s ongoing work as surveyed in [Lur09] with
the state of the art being finite group equivariant elliptic cohomology [Lur19]. The setup
is inherently derived: Lurie’s equivariant elliptic cohomology arises as a certain sheaf of
E∞-ring spectra. The cocycle model below begins to bridge the gap between Grojnowski’s
approach and Lurie’s. Indeed, over the complex numbers E∞-ring spectra can be modeled
by commutative differential graded algebras (cdgas). Our model for equivariant elliptic
cohomology is a sheaf of cdgas on a moduli space of G-bundles over elliptic curves. The
higher derived sections of this sheaf are previously unexplored and further intertwine rep-
resentation theoretic data with the rich geometry of elliptic curves, e.g., see Remark 3.15
and Example 6.19 below.

Motivation for the definition of elliptic cocycles. The precise form of our definition
of elliptic cocycles (Definition 3.3) takes motivation from three sources.

The first is the preexisting de Rham model for complexified equivariant K-theory. Co-
cycles in this case are “bouquets” of equivariant differential forms that assemble into sec-
tions of a sheaf over the moduli space of G-bundles on the circle S1, or equivalently, the
quotient of a Lie group G acting on itself by conjugation; see Block–Getzler [BG94, §1],
Duflo–Vergne [DV93] and Vergne [Ver94, Definition 23]. These bouquets appear naturally
in equivariant index theory, as discussed in [BGV92, Chapter 7 Additional remarks]. With
the correct perspective, Definition 3.3 is a natural generalization to elliptic bouquets as a
sheaf on the moduli space of G-bundles on elliptic curves. Indeed, Vergne has recently (and
independently) produced a de Rham model similar to Definition 3.3 in the special case of
U(1)-equivariant elliptic cohomology [Ver20].

The second motivation comes from “delocalizing” Borel equivariant elliptic cohomology,
as emphasized by Grojnowski [Gro07, §1]. As reviewed in §3.2 below, the Atiyah–Segal
completion theorem compares equivariant K-theory with Borel equivariant K-theory. For
G = U(1), the Atiyah–Segal completion map (30) restricts functions on the multiplicative
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group Gm to functions on the formal multiplicative group, Ĝm. Demanding naturality
in the group G and using techniques of reduction to maximal tori, much of equivariant
K-theory can then be constructed out of the multiplicative group [Lur09, §2]. By the
definition of elliptic cohomology, the Borel equivariant elliptic cohomology group Ell(BU(1))
can be interpreted as functions on the (moduli of) formal elliptic groups. In the spirit of
delocalization, one might expect U(1)-equivariant elliptic cohomology to be (the sheaf of)
functions on the universal elliptic curve. If one then starts with the de Rham model for Borel
equivariant elliptic cohomology and then follows Grojnowski’s delocalization procedure, this
gives another road to Definition 3.3 for G = U(1). Further exploiting naturality in the group
and reducing to maximal tori then leads to the general definition, much in the same spirit
of [Gro07, §2.6] and [Lur09, §3.4-3.5].

The third motivation for Definition 3.3 is an anticipated relationship between elliptic
cohomology and 2-dimensional supersymmetric quantum field theory through a conjectured
isomorphism [Wit88, Seg88, ST04, ST11]{

2−dimensional quantum field theories
with N = (0, 1) supersymmetry over M

}
/deformation

∼
99K TMF(M)(1)

that realizes deformation classes of field theories as classes in the universal elliptic cohomol-
ogy theory of topological modular forms (TMF). This cohomology theory is constructed as
the global sections of a sheaf of E∞-ring spectra over the moduli stack of elliptic curves. One
of the great challenges is to relate this sophisticated homotopical object to quantum field
theory: at a superficial level, the candidate objects from physics have absolutely nothing to
do with the objects in homotopy theory. In confronting this challenge, Lurie suggests [Lur09,
§5.5] that an equivariant refinement would go a long way to constructing the map (1).

Pondering such an equivariant refinement of (1) is what originally lead us to Defini-
tion 3.3 of equivariant elliptic cocycles, albeit by a fairly circuitous route. To summarize,
a model for (non-equivariant) complex analytic elliptic cohomology of a manifold M comes
from considering functions on the moduli space of classical fields for the 2-dimensional
N = (0, 1) supersymmetric sigma model with target M [BE20]. Turning on background
gauge fields for a gauge group G that acts on M results in a moduli space of fields
whose functions are a model for complex analytic equivariant elliptic cohomology of the
G-manifold M [BET19]. This equivariant moduli space is a union of twist fields parame-
terized by pairs of commuting elements in G, e.g., see [DHVW85]. Functions on twist fields
for a fixed pair of commuting elements is precisely the data (24) for an elliptic cocycle, and
compatibility between twist fields begets properties (1) and (2) in Definition 3.3. We explain
this connection to physics more fully in the companion paper [BET19]. Together with the
de Rham model of this paper, we obtain an equivariant refinement of the isomorphism (1)
over C. The easier case of a finite group is treated in [BE14]. We view these results as a
first step towards Lurie’s proposed construction of the isomorphism (1).

Outline and overview of results. Let G be a compact Lie group. We construct a cocycle

model for G-equivariant complex analytic elliptic cohomology as a functor Êll•G from G-
manifolds to sheaves of commutative differential graded algebras (cdgas) on a stack BunG(E).

In §2 we define the stack BunG(E) and describe some of its basic geometric features.
Roughly, BunG(E) classifies isomorphism classes of flat G-bundles over complex analytic
elliptic curves. When G = T is a torus, we identify

BunT (E) ' E∨ ×Mell
· · · ×Mell

E∨︸ ︷︷ ︸
rk(T ) times

(2)

with the iterated fiber product of the (dual) universal elliptic curve over the moduli stackMell

of elliptic curves. This gives BunT (E) a holomorphic structure, and BunG(E) has a similar
holomorphic structure for general G. Supposing that G is connected, BunG(E) supports
holomorphic line bundles called Looijenga line bundles. When G is simple and simply con-
nected, sections are spanned by (super) characters of positive energy representations of the
loop group LG, where the level of the representation determines the isomorphism class of
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the Looijenga line bundle. When G is finite, BunG(E) supports line bundles constructed
by Freed and Quinn [FQ93] in their study of Chern–Simons theory. Such line bundles are
central to generalized moonshine when G is the monster group; see Remark 2.28.

In §3 we define the sheaf Êll•G(M) for a G-manifold M and derive some of its basic

properties. For example, there is a canonical identification Êll0G(pt) ' OBunG(E) with the

sheaf of holomorphic functions on BunG(E). This gives Êll•G(M) the canonical structure of

a sheaf of OBunG(E)-modules (Proposition 3.10). We show that restricting Êll•G(M) along
the section 0: Mell → BunG(E) associated to the trivial G-bundle gives a map to Borel
equivariant elliptic cohomology. This constructs an elliptic Atiyah–Segal completion map
(Theorem 3.9) in the same spirit as advocated in [Lur09, §2].

In §4 we prove that Êll•G(M) is a cocycle refinement of Grojnowski’s complex analytic
equivariant elliptic cohomology when G is connected (Theorem 4.1). In §5 we prove that

Êll•G(M) is a cocycle refinement of Devoto’s equivariant elliptic cohomology over C when G
is finite (Theorem 5.1). In these sections we also briefly review the preexisting definitions.

In §6 we construct cocycle representatives of equivariant elliptic Euler and Thom classes
for the groups G = U(n) and Spin(2n) (Propositions 6.8 and 6.13, respectively). These cocy-

cles come from products of certain theta functions, interpreted as sections of the sheaf ÊllG
twisted by a (Looijenga) line bundle. In this way, the Euler and Thom cocycles are deter-
mined by characters of level 1 vacuum representations of loop groups, see Proposition 6.10.

Thom classes determine orientations for equivariant elliptic cohomology, leading to ellip-
tic Chern classes of vector bundles, wrong-way maps, and elliptic fundamental classes of ap-
propriately oriented submanifolds. The U(n)-equivariant Thom cocycle therefore leads to an
equivariant and cocycle refinement of the MU〈6〉-orientation, and the Spin(2n)-equivariant
Thom cocycle leads to an equivariant and cocycle refinement of the MString = MO〈8〉-
orientation. We verify compatibility with the corresponding nonequivariant classes in com-
plex analytic elliptic cohomology in Theorem 6.17.

In §7, we compare the equivariant characteristic classes from §6 with the ones studied
by Hopkins [Hop94] and Ando–Hopkins–Strickland [AHS01] in their construction of MU〈6〉-
and MString-orientations of elliptic cohomology theories and TMF. First, we make a ba-
sic observation: complex orientations of elliptic cohomology theories over C do not admit
equivariant refinements (Proposition 7.5). However, they do admit unique twisted equi-
variant refinements (Proposition 7.8). Next we turn our attention to MU〈6〉-orientations.
Recall there is a version of the splitting principle for bundles with U〈6〉-structure so that
characteristic classes are determined by the class associated to the virtual vector bun-
dle (L1 − 1) ⊗ (L2 − 1) ⊗ (L3 − 1) over [pt/U(1)]×3 for Li the tautological bundles on
their respective factors. There is a (non-equivariant) characteristic class of this virtual
vector bundle determined by the MU〈6〉- and MString-orientations of elliptic cohomology.
We show this class has a unique complex analytic equivariant refinement (Theorem 7.11),
whose existence is a consequence of the theorem of the cube. Finally, we show that this
equivariant class agrees with the Euler class associated from the unique twisted equivariant
complex orientation.

In Appendix A, we give some essential background for the paper, starting in §A.1
with some useful results in Lie theory. We briefly review the Cartan model for equivariant
cohomology in §A.2. Finally, we use the language of smooth stacks (i.e., stacks on the site
of smooth manifolds) throughout the paper; we review some key aspects in §A.3.

Notation and conventions. For simplicity we assume that a G-manifold M embeds G-
equivariantly into a finite-dimensional G-representation. This is automatically satisfied
when M is compact by results of Mostow [Mos57] and Palais [Pal57].

For a G-manifold M , we use the notation M/G to denote the Lie groupoid quotient with
underlying stack [M/G]. Let M/cG denote the coarse quotient, taken in sheaves on the site
of smooth manifolds. When the G-action is free, the stack [M/G] is representable and we
often identify it with the (coarse) quotient in manifolds. We refer to §A.3 for more detail.
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We remark that in topology sometimes M//G is used to denote the stacky quotient, but we
avoid this notation because it conflicts with the standard notation for the GIT quotient.

Sheaf conditions are always imposed in the strict (i.e., non-homotopical) sense. For
example, a sheaf of commutative differential graded algebras is a chain complex of sheaves
with a commutative graded multiplication.

Tensor products of algebras of functions or spaces of sections will always be taken as
the projective tensor product of Fréchet spaces. This is a completion of the algebraic tensor
product having the key property that C∞(M)⊗C∞(N) ' C∞(M ;C∞(N)) ' C∞(M×N)
for manifolds M and N .

Finally, we view modular forms as functions on the upper half plane H with proper-
ties. The sheaf of holomorphic functions on H will always be taken to be the one that
imposes meromorphicity at infinity, so that by “modular forms,” we always mean “weakly
holomorphic modular forms.” More precisely, for an open U ⊂ H, the sections O(U) are
the holomorphic functions on U with at most polynomial growth along any geodesic (in the
hyperbolic metric) escaping to ∂H.

Acknowledgements. Ian Grojnowski’s vision for deploying equivariant elliptic cohomol-
ogy to study representation-theoretic problems has been a constant source of inspiration
throughout the duration of this project. A tremendous amount of elliptic cohomology was
also developed in notes of Mike Hopkins, to whom we owe a great intellectual debt. We also
wish to thank Matt Ando, Nora Ganter, Tom Nevins, Andrei Okounkov, and Charles Rezk
for stimulating conversations, Kiran Luecke for comments on an earlier draft, and anony-
mous referees whose comments helped improve the exposition. Finally, A.T. acknowledges
the support of MSRI and the NSF through grants 1705008 and 1440140.

2. G-bundles on elliptic curves

This section uses the language of smooth stacks; we refer to §A.3 for a brief introduction.
In particular, see Example A.20 for the definition of a quotient stack, Definition A.23 for
the notion of an atlas of a differentiable stack, and Definition A.25 for the notion of a
holomorphic structure on a smooth stack.

2.1. Elliptic curves. Consider the SL2(Z)-action on the upper half plane H by fractional
linear transformations,([

a b
c d

]
, τ

)
7→ aτ + b

cτ + d
,

[
a b
c d

]
∈ SL2(Z), τ ∈ H.(3)

Define the moduli stack of elliptic curves as the quotient stack,

Mell ' [H/SL2(Z)].

Since the SL2(Z)-action preserves the complex structure on H, the map H → Mell is a
holomorphic atlas that endows the smooth stack Mell with a complex analytic structure.

Consider the quotient manifold

Ẽ := (C×H)/Z2,(4)

for the free Z2-action (n,m) · (z, τ) = (z + τn+m, τ) where z ∈ C, τ ∈ H and (n,m) ∈ Z2.

There is an action of SL2(Z) on Ẽ that covers the action (3) on H,([
a b
c d

]
, z, τ

)
7→
(

z

cτ + d
,
aτ + b

cτ + d

)
, z ∈ C, τ ∈ H,

[
a b
c d

]
∈ SL2(Z).

Define the universal elliptic curve as the quotient stack E ' [Ẽ/SL2(Z)]. The evident map
C × H → E provides a holomorphic atlas for E , and the projection C × H → H induces a
map of complex analytic stacks E → Mell. We remark that for a complex manifold S and
a map f : S →Mell of complex analytic stacks, the 2-pullback f∗E → S gives the family of
complex analytic elliptic curves over S classified by f .
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There is a similarly defined universal dual elliptic curve, E∨ ' [Ẽ∨/SL2(Z)], for Ẽ∨
defined as a quotient as in (4) but for the Z2-action

(n,m) · (z, τ) = (z + n− τm, τ).(5)

The evident map C × H → E∨ also provides a holomorphic atlas for E∨, and the obvious
map E∨ →Mell is again a map of complex analytic stacks.

Remark 2.1. More geometrically, the dual of an elliptic curve is its space of degree-zero
line bundles. In the complex analytic setting, this is the space of topologically trivial line

bundles endowed with flat, unitary connections. We identify a point in Ẽ∨ with such a line

bundle as follows: (x− τy, τ) ∈ Ẽ∨ for x, y ∈ R gets sent to the line bundle L corresponding
to the one-dimensional representation of the fundamental group

π1(Eτ ) = π1(C/〈τ, 1〉)→ U(1), τm+ n 7→ e2πi(mx+ny).

2.2. The smooth stack BunG(E) of G-bundles. A smooth manifold N determines a
sheaf on the site of manifolds whose value on S is the set of smooth maps S → N . Below
we will often identify a manifold with its representable sheaf, where N(S) denotes the value
of this sheaf on the manifold S, also called the S-points of N .

An interesting class of non-representable sheaves on the site of smooth manifolds arises
by considering (non-smooth) subsets of a smooth manifold. We refer to Example A.14 for
a discussion of subobject sheaves.

Definition 2.2. Define C2(G) as the subobject of the representable sheaf G × G whose
S-points are smooth maps S → G×G that pointwise commute in G,

C2(G)(S) := {h1, h2 : S → G | h1(s)h2(s) = h2(s)h1(s) ∀s ∈ S}.
Equivalently, C2(G) is the sheaf of smooth families of homomorphisms Z2 → G.

Typically the sheaf C2(G) fails to be representable when G is nonabelian. To avoid
cluttering some formulas below, we often use the notation h ∈ C2(G) to denote a pair of
commuting elements h = (h1, h2) ∈ G×G, rather than the more cumbersome h ∈ C2(G)(pt).

We refer to Example A.15 for a discussion of coarse quotients in sheaves.

Definition 2.3. Let C2[G] denote the coarse quotient sheaf, C2(G)/cG0 =: C2[G] where
G0 < G is the connected component of the identity acting on C2(G) ⊂ G×G by restriction
of the conjugation action g · (h1, h2) = (gh1g

−1, gh2g
−1) for g ∈ G0 and (h1, h2) ∈ G×G.

There is a left action of SL2(Z) on the sheaf C2(G)

(h1, h2) 7→ (hd1h
−b
2 , h−c1 ha2),

[
a b
c d

]
∈ SL2(Z), h1, h2 : S → G.(6)

This is the precomposition SL2(Z)-action on families of homomorphisms Z2 → G; note that
precomposition actions are naturally right actions, and the signs in (6) are the result of
turning this into a left action. The action (6) descends to the quotient C2[G]. There is a
residual π0(G)-action on C2[G] by conjugation, and this commutes with the SL2(Z)-action.
Viewing H as a representable sheaf with the SL2(Z)-action (3), we obtain an SL2(Z) ×
π0(G)-action on the sheaf H × C2[G] which defines the generalized (action) Lie groupoid
H× C2[G]/SL2(Z)× π0(G), i.e., a groupoid object in sheaves, see Definition A.16.

Definition 2.4. Define the smooth stack

BunG(E) ' [H× C2[G]/SL2(Z)× π0(G)](7)

as the stack underlying the generalized Lie groupoid. This stack is natural in G: a homo-
morphism G→ H determines a functor BunG(E)→ BunH(E).

Remark 2.5. The projection BunG(E)→Mell witnesses BunG(E) as a relative coarse moduli
space of G-bundles on elliptic curves. Indeed, a pair of commuting elements defines a flat
G-bundle on an elliptic curve with chosen generators for its fundamental group, and a
conjugacy class of such a pair is a G-bundle up to isomorphism. Hence for G connected,
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if we fix an elliptic curve and generators for its fundamental group (specified in terms of
τ ∈ H), the fiber of BunG(E) at τ is the moduli space of isomorphism classes of G-bundles.

Remark 2.6. Categorically-minded readers might find the above version of BunG(E) peculiar,
preferring instead the stack that records all isomorphisms between G-bundles. However,
BunG(E) as defined in (7) turns out to be the right home for complex analytic equivariant
elliptic cohomology. Lurie’s construction also takes place over a moduli space of G-bundles
rather than the full moduli stack [Lur09, Remark 5.1]. One subtlety in (7) is that we do
not pass completely to the coarse quotient C2(G)/cG = C2[G]/cπ0(G) because the action
by π0(G) is important for certain desired applications of equivariant elliptic cohomology for
finite groups; see Remark 2.27.

2.3. Sheaves on BunG(E). We shall define sheaves on BunG(E) as SL2(Z)×π0(G)-equivariant
sheaves on H × C2[G]. Since C2[G] typically fails to be representable, we first require the
following definition.

Definition 2.7. A subsheaf of a sheaf F is a morphism of sheaves U → F with the
property that the induced map of sets U(S) → F (S) is injective for each manifold S. An
open subsheaf of a sheaf F is a subsheaf U ⊂ F with the property that for any representable
sheaf S and any S-point S → F , the pullback

US U

S F
(8)

is representable by a manifold, and the map US → S of representable sheaves is determined
by the inclusion of an open subsubmanifold in S. Let Open(F ) denote the category whose
objects are open subsheaves of F and morphisms are inclusions, which we write e.g., as
U ⊂ V ⊂ F . An open cover of a sheaf F is a collection of open subsheaves {Uα → F} with
the property that for any representable sheaf S and any S-point S → F , the pullback (8)
is representable and determines an open cover {(Uα)S → S} of the manifold S.

Example 2.8. An open submanifold U ⊂ N of a manifold N determines an open subsheaf
of the sheaf represented by N . Similarly, an open cover of N determines an open cover of
the sheaf represented by N .

For more properties of the category of open subsheaves, we refer to [BET19, §A.4].

Definition 2.9. A presheaf on a sheaf F is a functor Open(F )op → Set. A presheaf is a
sheaf if it satisfies the usual sheaf condition for open covers of F .

Definition 2.10. A presheaf on BunG(E) is an SL2(Z) × π0(G)-equivariant presheaf on
H×C2[G]. A presheaf on BunG(E) is a sheaf if its underlying presheaf on H×C2[G] satisfies
the sheaf condition.

To construct sheaves on BunG(E), we will need a supply of open subsheaves. We will
build these by starting with open submanifolds of G × G viewed as open subsheaves via
Example 2.8, and then restricting along the inclusion C2(G) ⊂ G × G to obtain an open
subsheaf of C2(G). We descend to an open subsheaf of C2[G] using the following lemma.

Lemma 2.11. Let U be a G0-invariant open submanifold of G × G. Identify U with its
representable open subsheaf. Then the pulback is a G0-invariant open subsheaf of C2(G)

U
⋂
C2(G) U

C2(G) G×G,
(9)

and the coarse quotient sheaf (U
⋂
C2(G))/cG0 is an open subsheaf of C2[G].

Proof. The argument is largely formal, e.g., see [BET19, Proposition A.40]. �
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Next, let Bεh = Bεh1
× Bεh2

⊂ G × G denote the product of ε-balls in G around h1 and
h2, which we parameterize by Ad-invariant ε-balls in the Lie algebra,

Bεh = {(X1, X2) ∈ Bε(g)×Bε(g)} → G×G (X1, X2) 7→ (h1e
X1 , h2e

X2).(10)

Let G0 ·Bεh ⊂ G×G denote the orbit of Bεh under the conjugation action by G0. We observe
that G0 ·Bεh is again an open submanifold of G×G, which we identify with its representable
open subsheaf. The restriction of G0 ·Bεh

⋂
C2(G) to the subsheaf C2(G) ↪→ G×G defines

a G0-invariant open subsheaf of C2(G). Applying Lemma 2.11 yields the following.

Corollary 2.12. For any δ > 0, the collection {U εh}(h,ε)∈C2(G)×(0,δ) of open subsheaves
defined by

U εh := (G0 ·Bεh
⋂
C2(G))/cG0

is an open cover of C2[G].

The next step is to describe the open subsheaves U εh in a manner that will be useful
in later constructions. We start with some notation. For each pair of commuting elements
h ∈ C2(G), and a choice of maximal commuting subalgebra tgh ⊂ gh, define the following
(non-open) submanifold of G×G:

T εh = {(X1, X2) ∈ Bε(tgh)×Bε(tgh)} ↪→ G×G, (X1, X2) 7→ (h1e
X1 , h2e

X2)(11)

where Bε(tgh) is an ε-ball about the origin for an Ad-invariant metric on g restricted to tgh .
There is an evident map of smooth manifolds T εh ↪→ Bεh → G0 · Bεh ⊂ G×G. The induced
map of representable sheaves factors through the subsheaf C2(G) ⊂ G×G. Next define the
finite group

Wh := NGh0 (TGh0 )/TGh0(12)

where (G0)h =: Gh0 < G0 is the h-fixed subgroup, TGh0 denotes a maximal torus of the

identity connected component of Gh0 , and NGh0 (TGh0 ) < Gh0 is the normalizer of TGh0 in Gh0 .

The notation Wh is intended to evoke a Weyl group, though in general Gh0 need not be
connected in which case Wh is larger than the Weyl group of the identity component of Gh0

Lemma 2.13. For a fixed pair of commuting elements h = (h1, h2) ∈ C2(G), there exists a
real number δ = δ(h) > 0 depending on h such that for all ε ∈ (0, δ), there is an isomorphism
of subsheaves of C2[G],

T εh/
cWh

C2[G]

U εh

'

between the open subsheaf U εh of C2[G] and the coarse quotient sheaf T εh/
cWh.

Proof. Consider the (strictly) commuting triangle in generalized Lie groupoids

T εh/NGh0 (TGh0 )

C2(G)/G0

(G0 ·Bhε
⋂
C2(G))/G0.

ϕ

The arrows come from regarding the sheaves of objects of these groupoids as subsheaves
of the representable sheaf G × G and taking the obvious inclusions; on morphisms these
arrows are determined the inclusion NGh0 (TGh0 ) < G0. For ε sufficiently small, the map ϕ

is essentially surjective by Lemma A.9. By Lemma A.1 and Proposition A.6, ϕ induces an
isomorphism on isomorphism classes of objects (as sets). This implies an isomorphism of
subsheaves of C2(G)/cG0 ⊂ (G×G)/cG0. Passing to coarse quotients, ϕ determines an iso-

morphism of sheaves T εh/
cNGh0 (TGh0 )

∼→ U εh over C2[G]. Next we identify the coarse quotient

sheaves T εh/
cNGh0 (TGh0 ) ' T εh/

cWh using that the conjugation action of TGh0 < NGh0 (TGh0 )
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on TGh0 is trivial, as TGh0 is a torus acting on itself by conjugation. Commutativity of the

diagram therefore identifies T εh/
cWh with the open subsheaf U εh of C2[G] = C2(G)/cG0. �

For each pair of commuting elements h ∈ C2(G), we fix once and for all a choice of
maximal commuting subalgebra tgh ⊂ gh, which in turn gives a map T εh → U εh for each U εh
in the cover of C2[G] from Corollary 2.12, where we assume that δ = δ(h) is sufficiently
small to satisfy the hypothesis of Lemma 2.13. Below, we drop the h-dependence of δ in
the notation. We use this data to construct sheaves on BunG(E) as follows.

Proposition 2.14. Fixing the choices described above, suppose we are given data:

(D1) Wh-equivariant sheaves Fεh on each manifold H× T εh for all ε < δ;
(D2) for each (g, γ) ∈ G × SL2(Z) determining an isomorphism from an open subset of

V ⊂ T εh to an open subset V ′ ⊂ T ε
′

h′ , we require the data of an isomorphism of

sheaves (g, γ)∗(Fε′h′ |V ′) ' Fεh|V on V .

We require these data satisfy the following conditions.

(C1) The equivariant structure on the sheaf Fεh from (2) associated with automorphisms
of T εh for g ∈ NGh0 (TGh0 ) agrees with the equivariant structure in (1) via the action

through the quotient Wh = NGh0 (TGh0 )/TGh0 .

(C2) The isomorphisms (D2) satisfy the natural compatibilities for nested open subsets
and products of elements of G× SL2(Z).

Then the above determines a π0(G) × SL2(Z)-equivariant sheaf on H × C2[G], which we
identify with a sheaf on BunG(E) ' [H× C2[G]/π0(G)× SL2(Z)].

Proof. Throughout, we shall identify open subsets of H × T εh with open subsheaves of the
associated representable sheaf. First define a sheaf subordinate to the open cover {H×U εh}
of H× C2[G] as the direct image of the data (D1) along the Wh-quotient maps

qh : H× T εh → H× T εh/cWh ' H× U εh.

Explicitly, the sections of the direct image (qh)∗Fεh assign to an open subsheaf U ⊂ H×U εh
the Wh-invariant sections of Fεh on q−1

h (U) ⊂ H× T εh.
Next we wish to descend the sheaf on {H × U εh} defined above to a π0(G) × SL2(Z)-

equivariant sheaf on H × C2[G]. This is both data and property, namely, the data of
isomorphisms of sheaves covering isomorphisms between open subsheaves specified by the
action of π0(G) × SL2(Z), and the property of compatibility between multiplication in the
group π0(G)× SL2(Z) and composition of isomorphisms of sheaves.

We first construct the descent data. So suppose we are given ([g], γ) ∈ π0(G)× SL2(Z)

that sends an open subsheaf U ⊂ H×U εh to an open subsheaf U ′ ⊂ H×U ε′h′ . Since all maximal
abelian subalgebras tgh ⊂ gh are conjugate, there exists a choice (g, γ) ∈ G×SL2(Z) sending

q−1
h (U) ⊂ H × T εh to q−1

h′ (U ′) ⊂ H × T ε′h′ . Then the data (D2) specifies an isomorphism
between invariant sections. This gives the descent data for the desired π0(G) × SL2(Z)-
equivariant sheaf on H× C2[G].

It remains to verify the descent property. This amounts to showing that the isomor-
phisms constructed above are well-defined (i.e., independent of the choice of representative
g of [g] ∈ π0(G)) and compatible with the group structure on π0(G)× SL2(Z). So suppose
we have two lifts (g, γ), (g′, γ) ∈ G× SL2(Z). Then (g′)−1g ∈ G0; as it must also commute
with h, (g′)−1g ∈ Gh0 . But now, using Lemma A.10, g and g′ must both conjugate tgh
to tgh′ and hence (g′)−1g preserves tgh . It follows that (g′)−1g ∈ NGh0 (TGh0 ), and so the

requirement (C1) implies that (g′)−1g acts through Wh, and hence the action is trivial on
Wh-invariant sections. This shows that the isomorphisms of sheaves are well-defined. The
compatibility of these isomorphism is a direct consequence of condition (C2), using that the
quotient map G→ G/G0 ' π0(G) is a homomorphism. �
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2.4. Holomorphic functions on BunG(E). We endow BunG(E) with a sheaf of holomor-
phic functions whose definition is motivated by the identification between flat U(1) bundles
on an elliptic curve with the dual elliptic curve: the former is a priori only a smooth mod-
uli space whereas the latter has an obvious holomorphic structure; see Remark 2.1. More
generally, we have the following holomorphic structure on flat T -bundles.

Example 2.15. Let T be a torus, so that all pairs of elements commute and

BunT (E) ' [H× T × T/SL2(Z)].(13)

Then there is an isomorphism of smooth stacks BunT (E) ' E∨,rk(T ) where

E∨,rk(T ) := E∨ ×Mell
· · · ×Mell

E∨︸ ︷︷ ︸
rk(T ) times

(14)

is the iterated fibered product of the universal (dual) elliptic curve. Here we use that the
map E∨ → Mell is induced by an isofibration of complex analytic groupoids so that the
2-fibered product of stacks (14) agrees with the strict fibered product of groupoids. Hence,
we obtain a holomorphic atlas H× Crk(T ) → BunT (E) from

u : H× Crk(T ) ' H× tC ' H× t× t
exp→ H× T × T → BunT (E)

(τ,X1 − τX2)
u7→ (τ, eX1 , eX2), X1, X2 ∈ t.(15)

The SL2(Z)-actions preserve the evident complex structures, so that we indeed have a
holomorphic atlas for BunT (E).

For an open subset U0 ⊂ H, we promote U0 × T εh (for T εh from (11)) to a complex
manifold, with holomorphic structure coming from the isomorphism ϕ

U0 × T εh ⊂ U0 × tgh × tgh
ϕ→ U0 × (tgh)C, ϕ(τ,X1, X2) = (τ,X1 − τX2)(16)

that for each τ identifies T εh as an open submanifold of the complex vector space (tgh)C with
the standard complex structure.

Definition 2.16. Let U ⊂ H × C2[G] be an open subsheaf. A function f ∈ C∞(U)
is holomorphic if for every U0 × T εh for U0 ⊂ H and T εh from (11), f is holomorphic on
restriction to the pullback

Ph U

U0 × T εh H× C2[G]

(17)

using the evident complex structure on the open subset Ph ⊂ U0 × T εh ⊂ H× (tgh)C.

Lemma 2.17. Definition 2.16 defines a subsheaf of smooth functions on BunG(E) that when
G = T is the sheaf of holomorphic functions defined in Example 2.15.

Proof. Holomorphic structures on a complex vector space are invariant under linear trans-
formations and translations. For the vector space (tgh)C, this implies that the subsheaf of

functions defined above is invariant under the Wh-action (which acts linearly on (tgh)C)
and that these subsheaves are compatible under restriction (which compares holomorphic
functions on (tgh)C related by a translation). We further observe that these subsheaves

are invariant under the action of SL2(Z), since gh = gγ·h for γ ∈ SL2(Z) and so we
may take (tgh)C = (tgγh)C. By Proposition 2.14, Definition 2.16 therefore determines a
π0(G) × SL2(Z)-equivariant subsheaf of smooth functions on H × C2[G]. Comparing for-
mulas (15) and (16), we find that this subsheaf agrees with the one from Example 2.15
when G = T . �

Notation 2.18. Let OBunG(E) denote the sheaf of holomorphic functions on BunG(E).



A DE RHAM MODEL FOR EQUIVARIANT ELLIPTIC COHOMOLOGY 11

Example 2.19. Let G be connected with torsion-free fundamental group, maximal torus
T < G, and Weyl group W = N(T )/T . Borel [Bor62, Corollary 3.5] shows that in this case
any pair of commuting elements can be simultaneously conjugated into T , and that pairs
of elements in T are conjugate if and only if they are conjugate by an element of N(T ). In
brief, we have C2[G] ' (T × T )/cW . This gives the description

BunG(E) ' [(Ẽ∨,rk(T )/cW )/SL2(Z)].

so that holomorphic functions on BunG(E) are determined by W -invariant holomorphic

functions on Ẽ∨,rk(T ). More explicitly, a locally-defined function on BunG(E) is holomorphic
if and only if its pullback along

H× tC
ϕ
' H× t× t→ H× T × T → H× (T × T )/cW → BunG(E)(18)

defines a holomorphic function on a (necessarily W -invariant) open subset of H× tC. In the
above, the isomorphism ϕ is defined in (16).

Example 2.20. When G is connected (without any additional hypotheses) a choice of
maximal torus T < G induces an inclusion of stacks

[(Ẽ∨,rk(T )/cW )/SL2(Z)] ' [(H× (T × T )/cW )/SL2(Z)] ↪→ BunG(E)(19)

as the connected component of trivial bundle on BunG(E). Hence, holomorphic functions

on the image of this inclusion are determined by holomorphic functions on Ẽ∨,rk(T ) as in
the previous example.

Example 2.21. When the fundamental group of G has torsion, (19) can fail to be surjective
even whenG is connected. For example, takeG = SO(3). Then pairs of commuting elements
are given by either pairs of rotations about a fixed common axis or pairs of reflections about
orthogonal axes. In the former case, both elements are in a common maximal torus, whereas
there is a unique conjugacy class for the latter pair. Hence C2[G] = (T ×T )/cW tpt, where
T = SO(2) parameterizes rotations about a fixed axis and W = Z/2 acts by inversion. So
we find

BunSO(3)(E) ' [(Ẽ∨/cZ/2)/SL2(Z)] tMell.(20)

The forgetful map BunSO(3)(E) →Mell comes from the projection E∨ →Mell on the first
component and is the identity on the second component. The holomorphic functions on
BunSO(3)(E) from Definition 2.16 are then the obvious ones in the description (20).

2.5. Modular forms and theta functions.

Definition 2.22. A holomorphic line bundle on BunG(E) is a locally free rank one sheaf of
modules over OBunG(E).

There is a holomorphic line bundle ω over Mell whose fiber at a given elliptic curve E
is the vector space of holomorphic 1-forms on E. Pulling back along H → Mell, the line
ω⊗k trivializes with trivializing section determined by the holomorphic 1-form descending
from dz on C along the quotient (4). Sections can be described explicitly as

F (γ · τ) = (cτ + d)kF (τ) for γ =

[
a b
c d

]
∈ SL2(Z).

Global sections of ω⊗k are then modular forms of weight k. We recall our standing conven-
tion from the end of §1: we always impose meromorphicity at the cusp and hence global
sections of ω⊗k are (weakly holomorphic) modular forms. For cohomology theories valued
in modular forms, it is customary to double the degree and take the dual grading as follows.

Definition 2.23. Define the graded commutative algebra of modular forms, MF whose
2kth graded piece MF2k is weakly holomorphic modular forms of weight −k, and whose
(2k + 1)st graded piece MF2k+1 is zero.
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Remark 2.24. We recall that

MF = C[c4, c6,∆
±1]/(c34 − c26 − 1728∆)

where c4 = E4

2ζ(4) and c6 = E6

2ζ(6) are normalized Eisenstein series (for our conventions,

see (47)), and ∆ = η24 is the discriminant. With our grading conventions, |cj | = |Ej | = −2j,

and |∆| = −24. Finally, since ∆ is invertible, we have MF• ' MF•+24.

Consider now the case of G connected with maximal torus T < G and Weyl group
W = N(T )/T , and let X∗(T ) = ker(t→ T ) be the cocharacter lattice.

Definition 2.25. Let ` be a W -invariant positive definite inner product on t satisfying
`(n, n) ∈ 2Z for n ∈ X∗(T ). The level ` Looijenga line L` is a holomorphic line bundle on the
substack [(E∨,rk(T )/cW )/SL2(Z)] ⊂ BunG(E) whose sections are W -invariant holomoprhic
functions f on H × tC ' H × t × t (using the isomorphism (18)) satisfying the X∗(T )⊕2 o
SL2(Z)-equivariance properties

f(τ, z +m+ nτ) = exp
(
− πi(2`(n, z) + `(n, n)τ)

)
f(τ, z)

f(γ · τ, z/(cτ + d)) = exp
(
πic(cτ + d)−1`(z, z)

)
f(τ, z)

for z ∈ tC, n,m ∈ X∗(T ), and γ ∈ SL2(Z), where we use that E∨,rk(T ) ' [(H×tC)/X∗(T )⊕2].

Remark 2.26. As noted in Example 2.19, ifG in addition has torsion-free fundamental group,
then the above in fact defines a holomorphic line bundle on BunG(E) (as opposed to simply
some substack thereof). If one additionally supposes that G is simple and simply-connected,
we have that W -invariant positive definite inner products ` are naturally identified with
elements of H4(BG;Z) ' Z. We often make this identification, taking ` ∈ Z in these cases.

Now consider the case that G is finite so that π0(G) = G and C2(G) = C2[G]. For a
3-cocycle ` : G × G × G → U(1) defining a class [`] ∈ H3(BG; U(1)) ' H4(BG;Z), Freed
and Quinn [FQ93] construct a line bundle on [C2(G)/G × SL2(Z)]; see also [Gan09, §2].
The vector space of sections of this line bundle is the value of Chern–Simons theory for the
group G on the torus. An explicit cocycle for the line bundle on the groupoid C2(G)/G is
given by (e.g., see [Wil08, §3.4])

`(g, h1, h2)`(gh2g
−1, g, h1)`(gh1g

−1, gh2g
−1, g)

`(g, h2, h1)`(gh1g−1, g, h2)`(gh2g−1, gh1g−1, g)
∈ C∞(C2(G)×G; U(1))(21)

where h = (h1, h2) ∈ C2(G), g ∈ G. Pulling back along

BunG(E)→ [C2(G)/SL2(Z)×G]

defines line bundles L` on BunG(E). Since C2(G)/SL2(Z) × G is a discrete groupoid, L`
canonically comes with the structure of a holomorphic line bundle on BunG(E).

Remark 2.27. By virtue of (21), L` does not pull back from the coarse quotient,

BunG(E) = (H× C2(G))/(G× SL2(Z))→ (H× C2(G)/cG)/SL2(Z),

but rather depends on the conjugation action of π0(G) = G on C2(G). This motivated
our Definition 2.4 of BunG(E). The line bundles L` are important for applications of equi-
variant elliptic cohomology to generalized moonshine (see the next remark) and discrete
torsion [Vaf86, Sha03, AF07, BE14].

Remark 2.28. For G = M the monster group, there is a particularly interesting line bundle
on BunG(E). Johnson-Freyd has identified a class [ω]] ∈ H4(BM;Z) of order 24 [JF19]. The

resulting line bundle Lω] is important in generalized moonshine [Mas87, Car10]. Roughly,
the statement of generalized moonshine is that there exists a lift of the modular function

J(τ) ∈ O(H) to a holomorphic section Jω] ∈ Γ(BunM(E);Lω]) so that the restriction of
Jω] to the trivial M-bundle recovers the function J . Explicitly, such a lift is data for each
pair of commuting elements in the monster with compatibility properties for conjugation
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and SL2(Z)-actions. Ganter has explained how the section Jω] (and certain important
additional properties, see [Gan09, §1.1]) can be rephrased in the language of equivariant
elliptic cohomology and its power operations. It is expected that a deeper picture will
emerge from a better geometric understanding of equivariant elliptic cohomology [Mor09].

3. A cocycle model for equivariant elliptic cohomology

We briefly review the notation used throughout this section. A pair of commuting
elements in a compact Lie group G is denoted by h = (h1, h2) ∈ C2(G). For g ∈ G,
let ghg−1 = (gh1g

−1, gh2g
−1) denote the conjugate commuting pair. For G acting on a

manifold M , let Mh = Mh1,h2 denote the submanifold of M fixed by h1 and h2. The
connected component of the identity of G is denoted G0 < G, and let Gh0 = (G0)h < G0

denote the subgroup fixed by the conjugation action of h1 and h2 on G0. When h1, h2 ∈ G0

are in the connected component of the identity, we note that Gh0 = C(h) = C(h1, h2) is the
centralizer of h1 and h2. Let g be the Lie algebra of G, equipped with its adjoint G-action.
We observe that the Lie algebra of Gh0 is gh, the subalgebra of g fixed by the adjoint action
of h1, h2. Let tgh be a maximal commuting subalgebra of gh, or equivalently, tgh is the Lie

algebra of a maximal torus of the identity component of Gh0 .

3.1. The sheaf of equivariant elliptic cocycles on BunG(E). The goal of this subsection

is to assign to a G-manifold M a complex of sheaves Êll•G(M) on BunG(E). Roughly,

Êll•G(M) is constructed from stitching together Gh0 -equivariant de Rham complexes of Mh

for all h ∈ C2(G). To state an important compatibility condition between these complexes,
we require some control over how fixed point sets Mh vary with h. Recall the notation
T εh := Bε(tgh)×Bε(tgh) ⊂ tgh × tgh from (11). Informally, the following lemma states that

fixed points Mh get smaller for small deformations of h parameterized by T εh.

Lemma 3.1. Fix a G-manifold M . For any pair of commuting elements h = (h1, h2) ∈
C2(G), there exists a real number δ = δ(h) > 0 such that for all ε ∈ (0, δ), any (X1, X2) ∈ T εh
has the property that

Mh′ ⊂Mh, Gh
′

0 < Gh0 ,(22)

where h′ = (h′1, h
′
2) = (h1e

X1 , h2e
X2). Furthermore, for such (X1, X2) ∈ T εh, the vector

fields on Mh generated by X1 and X2 vanish on the submanifold Mh′ ⊂Mh.

Proof. Block and Getzler [BG94, Lemma 1.3] prove a version of the above for fixed points
by a single element h deformed by an element X ∈ gh, and we apply their lemma twice.

Indeed, their lemma provides a ball so that X1 ∈ Bε1(tgh1 ) has Mh1e
X1 ⊂Mh1 and another

ball so that X2 ∈ Bε2(tgh2 ) has Mh2e
X2 ⊂ Mh2 . Setting ε = min(ε1, ε2) and considering

the special case where h1 and h2 commute and X1, X2 ∈ tgh , we have

Mh′ = Mh′1,h
′
2 = Mh1e

X1 ,h2e
X2

= Mh1e
X1 ∩Mh2e

X2 ⊂Mh1 ∩Mh2 = Mh1,h2 = Mh.

The same argument applied to M = G0 shows that Gh
′

0 < Gh0 , proving the first assertion

of the lemma. For the second assertion, for a fixed X1, X2 we claim that Mh1e
εX1 ,h2e

εX2 ⊂
Mh1,h2 is constant for ε > 0 sufficiently small. This is a consequence of our assump-
tion (see the end of §1) that M can be equivariantly embedded in a finite-dimensional
G-representation. Indeed, choosing an invariant metric on the representation reduces to
the case that M = V is a (finite-dimensional) vector space with its standard action by
G = O(V ) the orthogonal group. Fixed-point loci are now determined by the subspace
corresponding to eigenvalue 1 and the constancy of the fixed-point loci for ε sufficiently
small may be seen directly. Hence X1 and X2 both vanish on Mh′ . �

Given a commutative algebra A over C and a G-manifold M , define

Ω•G(M ;A[β, β−1]) :=
⊕
j

O0(gC; Ωj(M ;A[β, β−1]))G |β| = −2,(23)
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as the stalk at 0 ∈ gC of G-invariant holomorphic functions on gC valued in Ωj(M ;A[β, β−1])
for the adjoint G-action on gC and the G-action on Ωj(M) induced by the G-action on M .
Endow this with the total grading from differential forms and the graded ring A[β, β−1].
Equip Ω•G(M ;A[β, β−1]) with the Cartan differential Q = d− β−1ι (see (75)).

Remark 3.2. We emphasize that the grading on (23) is not the usual Z-grading for equi-
variant de Rham cohomology with values in a graded ring: germs of holomorphic functions
on the Lie algebra (and in particular, polynomials) are in degree zero in (23). This choice is
essentially forced upon us because power series rings can only be equipped with the trivial
grading. Another option is to work with Z/2-graded complexes. This approach works well
for equivariant elliptic cohomology at a fixed elliptic curve (as in [Gro07]), where elliptic
cohomology is 2-periodic and so can be computed by a Z/2-graded complex. However for
families of elliptic curves this 2-periodicity is typically broken, so one can no longer express
equivariant elliptic cohomology in terms of a sheaf of Z/2-graded complexes.

We now give the main definition of the paper. Below let U0 ⊂ H denote an open subset
and U εh ⊂ C2[G] an open subsheaf defined in Corollary 2.12. We recall from Lemma 2.13
that U εh ' T εh/cWh, and we demand that ε < δ = δ(h) is chosen so that deformations in T εh
satisfy (22), where the existence of such a δ is guaranteed by Lemma 3.1.

Definition 3.3. Given a G-manifold M , for each U0 × U εh ⊂ H× C2[G] defined above, let

Êll•G(M)(U0 × U εh) denote the cdga whose elements α ∈ Êll•G(M)(U0 × U εh) are sets {αh′}
of compatible equivariant differential forms defined as follows. For all h′ ∈ C2(G) such that
[h′] ∈ U εh ⊂ C2[G], we require the data of

αh′ ∈ Ω•
Gh
′

0

(Mh′ ;O(U0)[β, β−1]) ' O(U0; Ω•
Gh
′

0

(Mh′ ;C[β, β−1])).(24)

These data are required to satisfy:

(1) Invariance: for all g ∈ G0, there is an equality of equivariant differential forms

αh′ = g∗αgh′g−1(25)

where g∗ is the pullback along left multiplication by g, Mh′ →Mgh′g−1

.
(2) Analyticity : for h′1 = h1e

X1 and h′2 = h2e
X2 as in Lemma 3.1, there is an equality

of germs of holomorphic functions on (tgh′ )C ⊂ gh
′

C determined by αh and αh′ ,

αh′(X) = res(αh(X + (X1 − τX2))) ∈ Ω•
Gh
′

0

(Mh′ ;O(U0)[β, β−1])(26)

where X ∈ (tgh′ )C and res : Ω•
Gh0

(Mh;O(U0)[β, β−1]) → Ω•
Gh
′

0

(Mh′ ;O(U0)[β, β−1])

is restriction along the inclusions Mh′ ↪→Mh and Gh
′

0 < Gh0 from Lemma 3.1.

Define the differential Q on Êll•G(M)(U0×U εh) via the Cartan differentials applied to each αh′

in (24). Compatibility of these differentials with the analyticity property follows from the
last statement in Lemma 3.1. If ([g], γ) ∈ π0(G)× SL2(Z) maps the open subsheaf U0 ×U εh
to an open subsheaf of V0 × U ε

′

k ⊂ H× C2[G], define the restriction map

Êll•G(M)(V0 × U ε
′

k )→ Êll•G(M)(U0 × U εh)(27)

in terms of maps for each [h′] ∈ U εh,

Ω•
Gγ·gh

′g−1

0

(Mγ·gh′g−1

;O(V0)[β, β−1])−→Ω•
Gh
′

0

(Mh′ ;O(U0)[β, β−1])(28)

using the pullback of functions along U0 ↪→ V0 and the isomorphisms Mh′ ' Mγ·gh′g−1

,

Gh
′

0 ' Gγ·gh
′g−1

0 . We then modify this pullback map by rescaling the Lie algebra gh
′

by

cτ + d (so z ∈ (gh
′
)∨ is sent to z

cτ+d ), and sending β to β/(cτ + d). The map (28) is

independent of the choice of lift g ∈ G because of the G0-invariance property (25).

Remark 3.4. By the analyticity property, the data of {αh′} comprising α ∈ Êll•G(M)(U0 ×
U εh) is completely determined by the equivariant differential form αh. We carry around the
additional data {αh′} to make the definition of the restriction maps (27) transparent.
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Proposition 3.5. The cdgas Êll•G(M)(U0 × U εh) have the following properties.

(1) There is a uniquely determined sheaf of cdgas Êll•G(M) on BunG(E) that when viewed

as a π0(G)×SL2(Z)-equivariant sheaf on H×C2[G] takes the value Êll•G(M)(U0×U εh)
on the open subsheaf U0 × U εh ⊂ H × C2[G], and has restriction maps determined
by (27) and (28).

(2) The sheaf Êll•G(M) is functorial in the pair (M,G): a G-equivariant map M →M ′

induces a morphism of sheaves of cdgas Êll•G(M ′) → Êll•G(M) on BunG(E), and a

homomorphism G → H induces a map of sheaves of cdgas Êll•H(M) → Êll•G(M)
over the map BunG(E)→ BunH(E).

(3) The sheaf Êll•G(M) has Mayer–Vietoris sequences: a G-invariant open cover of M
determines an exact sequence of sheaves of cdgas on BunG(E).

Proof. Part (1) follows from realizing the values Êll•G(M)(U0 ×U εh) as coming from a sheaf
on BunG(E) constructed via Proposition 2.14. To spell this out, we first observe that the

cdga Êll•G(M)(U0×U εh) arises as the Wh-invariant elements of cdga associated with H×T εh
using the isomorphism of cdgas,

Ω•Gh0
(Mh;O(U0)[β, β−1]) ' Ω•T

Gh0

(Mh;O(U0)[β, β−1])W
h

,(29)

where TGh0 < Gh0 is a maximal torus of the connected component of the identity and Wh

is defined in (12). We next realize the right hand side of (29) as the Wh-invariant global
sections of a sheaf of cdgas on H×T εh. Indeed, define a sheaf that to the basis of open subsets

U0 × T ε
′

h′ ⊂ H× T εh assigns data {αk ∈ Ω•T
Gk0

(Mk;O(U0)[β, β−1])} where k and h′ differ by

(the exponential of) a point in T ε
′

h′ , and the αk satisfy the compatibility condition (26). Note
that since H × T εh is a manifold, a sheaf is completely determined by its values on a basis

of open subsets (e.g., see [Sta18, Lemma 6.30.6]) and the open subsets U0 × T ε
′

h′ ⊂ H× T εh
afford such a basis. We promote this to an Wh-equivariant sheaf on H × T εh by pulling
back along the left action of the normalizer N(TGh0 ) on Mh and the conjugation action of

N(TGh0 ) on TGh0 . Since the action of the torus TGh0 on equivariant cohomology is trivial,

this action by the normalizer factors through the quotient Wh = N(TGh0 )/TGh0 as desired.

This completes the construction of the Wh-equivariant sheaf of cdgas on each H×T εh whose
Wh-invariant sections are computed by (29). Next we define the equivariance data required
in Proposition 2.14 using maps completely analogous to (28). The required conditions in
Proposition 2.14 follow from the fact the Weyl action is compatible with the equivariant
structure using the invariance property (25). Naturality of this structure for restrictions
and the action by π0(G)×SL2(Z) follows from composition of pullbacks and that the action
on coefficients going into the definition of (28) is a well-defined action.

Property (2) in the statement of the present proposition follows from the naturality of
the data (24) in the G-manifold M , while property (3) follows from applying naturality of
Mayer–Vietoris sequences in equivariant de Rham cohomology to the data (24). �

Definition 3.6. Define the sheaves Ell•G(M) on BunG(E) as the cohomology sheaves of the

complex of sheaves Êll•G(M).

3.2. Stalks and elliptic Atiyah–Segal completion. The Atiyah–Segal completion the-
orem compares equivariant K-theory and Borel equivariant K-theory. When applied to G
acting on the point, it gives a map

Rep(G) ' KG(pt)→ KG(pt)Î ' K(BG)(30)

witnessing the target as a completion of Rep(G) at the augmentation ideal I. For the
delocalized K-theory of Block–Getzler [BG94], Vergne [DV93], and Vergne [Ver94], the
completion map (30) takes the form

C∞(G)G → C∞0 (g)G
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sending a smooth class function f ∈ C∞(G)G to its germ at e ∈ G. This is related to (30) by
sending a G-representation ρ to its character Tr(ρ) ∈ C∞(G)G (as a smooth class function),
Taylor expanding this class function at e ∈ G, and identifying C∞0 (g)G with Z/2-graded
Borel equivariant cohomology of a point. We now explain a similar structure in equivariant
elliptic cohomology.

Given a pair of commuting elements h ∈ C2(G), we obtain a map

jh : H/Γ→ BunG(E)(31)

that on objects includes at [h] ∈ C2[G], and where Γ < π0(G) × SL2(Z) is the stabilizer of
[h] ∈ C2[G].

Proposition 3.7. There is an isomorphism of Γ-equivariant sheaves on H that on U ⊂ H
is given by

j∗hÊll•G(M)(U) ' Ω•Gh0
(Mh;O(U)[β, β−1]).

Proof. We recall that j∗hÊll•G(M)(U) is the colimit of the values of Êll•G(M) for open sub-
sheaves containing the image of jh. We define a map,

j∗hÊll•G(M)(U)→ Ω•Gh0
(Mh;O(U)[β, β−1]).(32)

that extracts αh ∈ Ω•
Gh0

(Mh;O(U)[β, β−1]) from the data of a section over U×U εh from (24).

However, the analyticity condition implies that a section on U × U εh for ε sufficiently small
is completely determined by αh. Therefore, the map (32) is indeed an isomorphism. �

Corollary 3.8. There is an isomorphism of Γ-equivariant sheaves on H that on U ⊂ H is
given by

j∗hEllkG(M)(U) '

{
Hev
Gh0

(Mh;O(U)) k = even

Hodd
Gh0

(Mh;O(U)) k = odd

i.e., the 2-periodic Borel equivariant cohomology of Mh with its Gh0 action.

A special case of the above takes h = (e, e), where (31) is the map je : Mell → BunG(E)
that assigns to each elliptic curve the trivial G-bundle over that curve. This allows us to
compare complex analytic equivariant elliptic cohomology to the Borel equivariant refine-

ment of Êll(M) as follows. For a G-manifold M , the Borel equivariant refinement is the

sheaf ÊllG,Bor on Mell whose value on U ⊂ H→Mell is

Êll•G,Bor(M)(U) = Ω•G(M ;O(U)[β, β−1]),(33)

i.e., a chain complex that computes the 2-periodic Borel equivariant cohomology of M .

Theorem 3.9 (Atiyah–Segal completion). Let je : H/SL2(Z) × π0(G) ↪→ BunG(E) be the

inclusion at the trivial G-bundle. The π0(G)-invariant sections of j∗e Êll•G(M) determines a
natural isomorphism of sheaves of commutative differential graded algebras on Mell

j∗e Êll•G(M)π0(G) ∼→ Êll•G,Bor(M).

Proof. This follows from Proposition 3.7, using that

Ω•G0
(M ;O(U)[β, β−1])π0(G) ' Ω•G(M ;O(U)[β, β−1])

from the isomorphism π0(G) ' G/G0. �

3.3. Holomorphicity and periodicity. The terminology “analytic” in Definition 3.3 is
justified by the following.

Proposition 3.10. There is a canonical isomorphism of sheaves on BunG(E)

Êll0G(pt) ' OBunG(E).(34)

For a G-manifold M , this implies Êll•G(M) is canonically a sheaf of OBunG(E)-modules.
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Proof. Let U0 ⊂ H be an open subset and U εh ⊂ C2[G] an open subsheaf with ε sufficiently
small to satisfy Lemma 3.1. Define a map

OBunG(E) → Êll0G(pt)

that to an f ∈ OBunG(E)(U0 × U εh) assigns

j∗hf ∈ O0(tgh ;O(U0))W
h

' Ω0
Gh0

(pt;O(U0)[β, β−1])

for each h in the image. We observe that this is a well-defined morphism of sheaves: the
holomorphic condition from Definition 2.16 implies the analytic condition in Definition 3.3.
By inspection, this morphism induces an isomorphism on stalks, so gives the claimed iso-
morphism of sheaves. �

Recall that ω⊗k denotes the sheaf on BunG(E) that is the pullback of ω⊗k in O-modules

under the forgetful morphism BunG(E) → Mell. The sheaves Êll•G(M) exhibit a form of
2-periodicity twisted by ω:

Proposition 3.11 (Twisted Bott periodicity). There is a natural isomorphism of chain
complexes of sheaves of O-modules

Êll•+2
G (M)⊗ ω → Êll•G(M)

(α, f) 7→ αβf,

where the formula defines a map on local sections, and the tensor product is in sheaves of
O-modules.

Proof. Indeed, one may identify β−1 with a trivializing section of the Hodge bundle pulled
back along H→Mell. This is because the transformation properties of β−1 under SL2(Z)
are precisely as for a section of the Hodge bundle. For a fixed family of elliptic curves
associated to an open submanifold U ⊂ H, the Hodge bundle trivializes and so Γ(U ;ω⊗j) '
β−jO(U). Hence, in the displayed formula above, βf is a cocycle in Êll−2

G (pt), pulled back
along the canonical map M → pt. This verifies the claimed isomorphism. �

Remark 3.12. The failure of β to be SL2(Z)-invariant means that it does not descend to a

global section along H→Mell. This implies that global sections of Êll•G(M) over BunG(E)
are no longer 2-periodic. However, ∆−1β−12 is a globally defined invertible element of
degree 24 where ∆ ∈ O(H) is the discriminant (an invertible weight 12 modular form).

This gives the global sections of Êll•G(M) a 24-periodicity.

Proposition 3.13. For G acting on pt, the G-equivariant elliptic cocycles are the sheaves

ÊllnG(pt) '

{
ω⊗−n/2 for n even

0 for n odd
(35)

equipped with the zero differential.

Proof. This follows from Propositions 3.10 and 3.11, together with the observation that
there are no nonzero cocycles in odd degrees. �

As a corollary to Proposition 3.11, we also have twisted Bott periodicity at the level of
cohomology sheaves.

Corollary 3.14 (Twisted Bott periodicity). There are natural isomorphisms of sheaves

Ell•+2
G (M)⊗ ω → Ell•G(M).

Remark 3.15. The chain complex of sheaves Êll•G(M) allows one to consider spaces of derived

global sections over BunG(E), i.e., the hypercohomology groups H∗(BunG(E); Êll•G(M)).
The applications considered in this paper either concern the non-derived sections (i.e.,

H0(BunG(E); Êll•G(M))) or the sheaf Êll•G(M) rather than its global sections. Therefore,
we postpone a full discussion of the derived global sections for future work. For now we
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observe that the higher cohomology is often nontrivial. For example, when G = U(1), and
M = pt, Serre duality shows that the nonvanishing cohomology groups are

H0(BunU(1)(E); Êll•U(1)(pt)) ' H0(E∨;ω•/2) = MF•,

H1(BunU(1)(E); Êll•U(1)(pt)) ' H1(E∨;ω•/2) = MF•,

where we emphasize that the degree 1 cohomology is a module over the degree zero coho-
mology. These fit together as

RΓ(BunU(1)(E); Êll•U(1)(pt)) ' MF• ⊕MF•−1

where as an algebra, the second summand is a square zero extension of the first. This is
compatible with Gepner and Meier’s computation of U(1)-equivariant topological modular
forms over Z [GM20, Corollary 1.2].

3.4. Twistings and loop group representations. When G is connected with torsion-

free fundamental group, Proposition 3.10 shows that we shouldn’t expect Êll0G(pt) to have
many interesting global sections. Indeed, the only global holomorphic functions on an

elliptic curve are constant, and so (for example) global sections of Êll0G(pt) pull back from
functions on Mell: the group plays no role. More generally, if G acts on M so that the

stabilizers are connected with torsion-free fundamental group, the global sections of Êll•G(M)
are just the ordinary de Rham complex valued in modular forms. However, global sections
are more interesting for twisted versions of equivariant elliptic cohomology.

Definition 3.16. Let L be a holomorphic line bundle on BunG(E). The L-twisted equi-

variant elliptic cocycles of a G-manifold M is the sheaf of chain complexes Êll•G(M) ⊗ L
on BunG(E).

Note that in this definition, the category of twists for G-equivariant elliptic cohomology
is the category of line bundles on BunG(E). An important class of twists for finite groups G
come from the Freed–Quinn line bundles; see (21). For (twisted) elliptic Thom and Euler
classes associated with connected Lie groups, the relevant line bundles are the Looijenga
line bundles from Definition 2.25. The L-twisted G-equivariant elliptic cohomology of a
point for the Looijenga twist is the sheaf whose sections are (nonabelian) theta functions.

Proposition 3.17. Let G be a simple, simply connected compact Lie group and L` be the
level ` Looijenga line bundle over BunG(E). Then the space of global sections of the twisted
equivariant elliptic cohomology sheaf

Γ(BunG(E); Êll•G(pt)⊗ L`) ' Rep`(LG) ⊗
MF0

MF•

is the free module over the ring of modular forms generated by super characters of positive
energy representations of LG at level `, i.e., the vector space underlying the Verlinde algebra.

Proof. From Proposition 3.13 and the remarks after its proof, Γ(BunG(E); Êll•G(pt)) ' MF•.
Then the claim follows from the fact that global sections of the Looijenga line bundle
are spanned by the characters of loop group representations at the relevant level (e.g.,
see [And00, Corollary 10.9]), and super characters are differences of ordinary characters. �

3.5. A few examples.

Example 3.18 (Trivial group). When G = {e} is the trivial group, Êll•(M) = Êll•{e}(M)

is a sheaf on Bun{e}(E) = Mell whose value on U ⊂ H →Mell is the 2-periodic de Rham
complex

Êll•(M)(U) = Ω•(M ;O(U)[β, β−1]).

The global sections of Êll(M) are given by

Γ(Mell; Êll•(M)) '
⊕
j+k=•

Ωj(M ; MFk)
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i.e., the de Rham complex of differential forms valued in modular forms. We note that the
complexification of topological modular forms, TMF⊗C, is an ordinary cohomology theory
with values in the graded ring TMF(pt)⊗C ∼= MF. Hence, the above complex is a cocycle
model for TMF⊗ C.

Remark 3.19. When G = {e}, the map from global sections to derived global sections of

Êll(M) is a quasi-isomorphism; this follows from the SL2(Z)-action on H has finite stabilizer
groups.

The first nontrivial example in ordinary equivariant cohomology is for the U(1)-action
on S2 via rotation. We compute the equivariant elliptic cohomology for this example.

Example 3.20 (U(1) acting on S2). Consider the sheaf ÊllU(1)(S
2) on BunU(1)(E) ' E∨

for the U(1)-action on S2 = CP1 that rotates the sphere about an axis. We observe that for
h ∈ U(1) × U(1) not equal to (e, e), the fixed points are the poles (S2)h = {poles}. Hence
by Proposition 3.13 we have the isomorphism of sheaves

Êll2kU(1)(S
2)|E∨\{0 section} ' ω−k ⊕ ω−k.(36)

Next, a section defined in a small neighborhood of the zero section in E∨ ' BunU(1)(E) is

determined by an element of the stalk Ω•U(1)(S
2;O(H)[β, β−1]). Extending this section to

a larger neighborhood demands a compatibility with (36) given by the restriction map

Ω•U(1)({poles};O(H)[β, β−1]) '
(
O0(C;O(H)[β, β−1])

)⊕2 res→
(
O0(C \ 0;O(H)[β, β−1])

)⊕2

,

where the last map restricts a germ of a holomorphic function at the origin in C to one
in a punctured neighborhood of the origin. We then identify this neighborhood in C with
a neighborhood of zero in E∨. We identify a function on this punctured neighborhood
with one on a punctured neighborhood of 0 in E∨ (which is uniquely specified from the
analytic condition in Defintion 3.3). Finally, we identify βn with a section of ω⊗n. A global

section of ÊllU(1)(S
2) is therefore given by an element of Ω•U(1)(S

2;O(H)[β, β−1])SL2(Z) =

Ω•U(1)(S
2; MF) (i.e., a Borel equivariant cocycle) whose restriction to the poles is a constant

function on the Lie algebra of U(1). This gives a cocycle-level description. We compute the
associated cohomology (using different techniques) in §6.7.

Example 3.21 (U(1) acting on S2 with twisting). More generally, BunU(1)(E) admits

Looijenga line bundles L` parametrized by levels ` ∈ H4(BU(1);Z) ' Z and we have the

twisted equivariant elliptic cohomology ÊllU(1)(S
2) ⊗ L`. We recall that global sections of

ÊllU(1)(pt)⊗ L` over BunU(1)(E) are θ-functions (or Jacobi forms) of index `,

Γ(BunU(1)(E), ÊllU(1)(pt)⊗ L`) '
⊕
k

JFk,`,

where JFk,` is the space of (weakly holomorphic) Jacobi forms of weight k and index `

sitting in degree −2k. Global sections of ÊllU(1)(S
2)⊗ L` are then given by

Γ(BunU(1)(E), ÊllU(1)(S
2)⊗ L`) ' Ω•U(1)(S

2; MF) ×
Ω•

U(1)
({poles};MF)

Ω•({poles}; JF∗,`).

We note that there is no twisting by L in the factor Ω•U(1)(S
2; MF) because this corresponds

to the pair of commuting elements (e, e), over which L trivializes canonically. In words,
elements of the above fibered product are U(1)-equivariant, modular form-valued differential
forms on S2 whose restriction to the poles are germs of specified Jacobi forms of index `.

4. Comparing with Grojnowski’s equivariant elliptic cohomology

Throughout this section, let G be a connected Lie group, M a G-manifold, and τ ∈ H a
point defining a (marked) elliptic curve E = Eτ = C/〈τ, 1〉. Grojnowski [Gro07] constructs

a Z/2-graded sheaf EllGroj
G (M) of O(E∨)×rk(T )/cW -modules on (E∨)×rk(T )/cW . We compare
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this with the restriction of the cocycle model from the previous section along the map

(E∨)×rk(T )/cW → BunG(E). We recall Ell•G(M) are the cohomology sheaves of Êll•G(M);
see Definition 3.6.

Theorem 4.1. The pullback in O-modules of the sheaf Ell•G(M) along {τ}×(T×T )/cW ↪→
BunG(E) is naturally isomorphic to the 2-periodic version of the Z/2-graded sheaf EllGroj

G (M).

4.1. A review of Grojnowski’s equivariant elliptic cohomology. Our presentation
below hews closely to the original source [Gro07], though we also refer to [Ros01, §3] for
an accounting when G = U(1). To begin, let G = T be a torus. As we have fixed a curve
E = Eτ , the identification (13) specializes to T ×T ' (E∨)×rk(T ), endowing the smooth Lie
group T ×T with a complex analytic structure. For h = (h1, h2) ∈ T ×T ' (E∨)×rk(T ), let

Lh : (E∨)×rk(T ) × T × T h·→ T × T ' (E∨)×rk(T )

denote the map induced by left multiplication by h, and let T εh ⊂ T × T ' (E∨)×rk(T ) be
an open subset specified as in (11) where ε satisfies the hypothesis of Lemma 3.1, i.e., for

all h′ = (h′1, h
′
2) ∈ T εh, we have Mh′ ⊂Mh and Gh

′
< Gh. We note that in the abelian case,

T εh = U εh for U εh defined as in Corollary 2.12.

Definition 4.2 (Grojnowski). For a T -manifoldM , define a sheaf EllGroj
T (M) on (E∨)×rk(T )

that assigns to each T εh ⊂ (E∨)×rk(T ) with ε satisfying Lemma 3.1 the Z/2-graded OT εh -
module

Γ(T εh; EllGroj
T (M)) := L∗h

(
HT (Mh)⊗HT (pt) L

∗
h−1O(T εh)

)
where we have identified the polynomial algebra HT (pt) ' S(t∨C) (in degree zero) with a
subalgebra of holomorphic functions O(T εe ) using that Lh−1(T εh) = T ε0 ⊂ tC can be identifies
with an open ball around 0 ∈ tC. Define restriction maps on open subsets T εh′ ⊂ T εh with

h /∈ T ε′h′ by

i∗ : HT (Mh)⊗HT (pt) L
∗
h−1O(T εh)→ HT (Mh′)⊗HT (pt) L

∗
h′−1O(T εh′)(37)

induced by pulling back along the inclusions Mh′ ↪→Mh and the isomorphism from pulling
back along left multiplication

L∗h′−1h : L∗h−1O(T εh)
∼→ L∗h′−1O(T εh′).

By Atiyah–Bott localization [AB84, Theorem 3.5], (37) is an isomorphism, and so this data
on opens defines a sheaf without a need for further sheafification.

Let T < G be a maximal torus with associated Weyl group W = NG(T )/T . For
h = (h1, h2) ∈ T×T ⊂ G×G a pair of commuting elements in the torus, observe that T < Gh

is a maximal torus for the connected component of the identity of Gh. In this case the
finite group Wh defined in (12) has the simpler description Wh = (Gh ∩N(T ))/T , and in
particular, Wh < W is a subgroup of the Weyl group of G.

Let T εh ⊂ T × T be an open subset as above satisfying the additional properties

w · T εh = T εh for w ∈Wh, w · T εh ∩ T εh = ∅ for w ∈W \Wh.

This condition can always be arranged by shrinking the previously defined T εh, as Wh is
finite and w · h = h for w ∈ Wh. Let W · T εh ⊂ T × T denote the orbit of T εh under the

action of the Weyl group, so that W · T εh is a W -invariant open subset of (E∨)×rk(T ).

Definition 4.3 (Grojnowski). ForG connected, define a sheaf EllGroj
G (M) on (E∨)×rk(T )/cW

that assigns to each W -invariant open W · T εh ⊂ E∨,rk(T ) the Z/2-graded OW ·T εh -module

Γ(W · T εh,EllGroj
G (M)) := L∗h

(
HGh(Mh)⊗H

Gh
(pt) L

∗
h−1O(W · T εh)W

h
)

(38)

where we use the isomorphism HGh(pt) ' HWh

T (pt) to define the tensor product. The
transition maps are defined identically to those in the case that G = T .



A DE RHAM MODEL FOR EQUIVARIANT ELLIPTIC COHOMOLOGY 21

4.2. The comparison map.

Proof of Theorem 4.1. Let U ⊂ T × T be a W -invariant open subset. Then a section of

Êll•G(M) on {τ} × U is given by the data of a collection

αh ∈ O0(ghC; Ω•(Mh;C[β, β−1]))G
h

' O0(tC; Ω•(Mh;C[β, β−1])T )W
h

for all [h] ∈ U , which we identify with a Wh-invariant form on the right hand side. The
{αh} are required to satisfy the conjugation invariance and analyticity properties. The
conjugation invariance property is equivalent to a condition on αh and αh′ when h′ = w · h
for w ∈W . Hence, the collection {αw·h}w∈W is determined by a single W -invariant form

αWh ∈
( ⊕
w∈W/Wh

O0(tC; Ω•(Mw·h;C[β, β−1])T )
)W

.

We observe the above element αWh determines an Ω•(Mw·h;C[β, β−1])-valued holomorphic
function on some ball Bε(tC) ⊂ tC centered at 0 ∈ tC for some ε > 0

α̃Wh ∈
( ⊕
w∈W/Wh

O(Bε(tC); Ω•(Mw·h;C[β, β−1])T )
)W

.

The image under the exponential map of such ε-balls Bε(tC) cover U . If each α̃Wh is also
closed under the Cartan differential, we obtain classes

[α̃Wh ] ∈
( ⊕
w∈W/Wh

H(O(Bε(tC); Ω•(Mw·h;C[β, β−1])T ), Q)
)W

'

(( ⊕
w∈W/Wh

HT (Mw·h)
)
⊗HT (pt) O(Bε(tC);C[β, β−1])

)W

'
(

HT (Mh)⊗HT (pt) O(Bε(tC);C[β, β−1])
)Wh

,

where the last isomorphism comes from restricting to the summand labeled by the identity
coset Wh ⊂W . Then finally, the correspondence between 2-periodic cohomology and Z/2-
graded cohomology yields a class corresponding to [α̃Wh ] in Grojnowski’s equivariant elliptic
cohomology sheaf (38) on each open ball W ·T εh. The analyticity condition guarantees that

these classes glue to give a section of EllGroj
G (M) over U : the translations in Grojnowski’s

formulas are precisely the translations appearing in the analytic condition. This determines
the morphism of sheaves in the statement of the theorem. To see that is an isomorphism of
sheaves it suffices to demonstrate an isomorphism on stalks, but this is clear from the maps
defined on each Bε(tC). �

5. Comparing with Devoto’s equivariant elliptic cohomology

In this section we compare our model with previous ones for G-equivariant elliptic
cohomology where G is finite. The definition of Devoto’s equivariant elliptic cohomology
we adopt is used by Ganter [Gan09] and Morava [Mor09] in their studies of generalized
moonshine; it is also the complexification of a version of equivariant elliptic cohomology
appearing in the work of Baker and Thomas [BT99]. These definitions are based on the
early work of Devoto [Dev96, Dev98], simplifying his construction over Z[1/2, 1/3] to one
over C, and replacing the congruence subgroup Γ0(2) by the full modular group SL2(Z).
As such, we refer to this finite group version of equivariant elliptic cohomology as Devoto’s
equivariant elliptic cohomology, EllDev

G (M), to be defined shortly; we first state the main
theorem of the section.

Theorem 5.1. For G finite, the space of global sections of Ell•G(M) over BunG(E) is De-
voto’s equivariant elliptic cohomology over C, i.e.,

Γ(BunG(E),Ell•G(M)) ' EllDev,•
G (M).



22 DANIEL BERWICK-EVANS AND ARNAV TRIPATHY

5.1. A review of Devoto’s equivariant elliptic cohomology. Consider

SL2(Z) �
( ⊕
h∈C2(G)

H•(Mh;O(H))
)G

(39)

where SL2(Z) acts through the indexing set C2(G) = Hom(Z2, G) by precomposition and on
H through the usual fractional linear transformations. The G-invariants in (39) are taken
with respect to the G-action by conjugation on C2(G) and left multiplication by g on fixed

point sets, Mh → Mghg−1

. The following is an adaptation of [Dev98, Definition 3.2] to
complex coefficients and the full modular group SL2(Z).

Definition 5.2. Let G be a finite group and M a G-manifold. Define Devoto’s G-
equivariant elliptic cohomology of M as a subspace

EllDev,k
G (M) ⊂

⊕
j

( ⊕
h∈C2(G)

Hj(Mh;O(H))
)G

whose jth summand consists of functions that transform under the SL2(Z)-action (39) with
weight (j − k)/2 (so in particular, j − k must be even for the jth summand to be nonzero).

Remark 5.3. We recall our convention (stated at the end of §1) that OH denotes the sheaf
whose sections are holomorphic functions with polynomial growth along any geodesic that
escapes to the infinity, or equivalently, the meromorphicity condition at the cusps. We
re-emphasize this point now as the modularity condition for classes in Devoto’s equivariant
elliptic cohomology will typically be for finite-index subgroups of SL2(Z). Our convention
agrees with the usual notion of weakly holomorphic modular forms of higher level (in terms
of imposing meromorphicity at all cusps). Devoto imposes this same condition in terms of
Fourier expansions in e2πiτ/|G| = q1/|G| for τ ∈ H.

5.2. The comparison map.

Proof of Theorem 5.1. We evaluate Ell•G(M) on the cover H×C2(G) of BunG(E), and then
compute the action of G× SL2(Z). On this cover, a section is the data of

[αh] ∈ H•(Mh;O(H)[β, β−1])

for each pair of commuting elements h ∈ C2(G) satisfying a conjugation invariance property
and an SL2(Z)-equivariance property; the analytic property in this case is trivially satisfied
because the Lie algebra is the zero vector space (and C2(G) is discrete). Conjugation
invariance implies that the set {[αh]}h∈C2(G) determines a class

[α] ∈
(⊕

h

H•(Mh;O(H)[β, β−1])
)G
.

Finally, the SL2(Z)-invariance extracts Devoto’s EllDev,k
G (M): invariant classes come with

a power of β that reads off the weight. �

6. Loop group representations and cocycle representatives of Thom classes

In this section we construct cocycle representatives of universal Euler and Thom classes
in complex analytic equivariant elliptic cohomology. These refinements can be understood
as coming from the representation theory of loop groups, giving an elliptic version of Chern–
Weil theory: characteristic classes in (non-equivariant) complex analytic elliptic cohomol-
ogy are determined by universal equivariant classes, which in turn are constructed out of
Lie-theoretic data. The approach applies to both real and complex vector bundles, recov-
ering universal characteristic classes for the complexifications of the MString- and MU〈6〉-
orientations of TMF, respectively.

The construction of equivariant elliptic Thom classes for a fixed elliptic curve was
first sketched by Grojnowski [Gro07, §2.5-2.6]. For a torus T , aspects of Grojnowski’s T -
equivariant Thom classes were studied further by Rosu and Ando [Ros01, And03]. The
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cocycle-level description below is new, which leads to a more explicit description of the
underlying characteristic classes and verification of their claimed properties.

6.1. Review from K-theory and ordinary cohomology. Let V → M be a real d-
dimensional oriented vector bundle. The Thom class of V in ordinary cohomology [ThV ] ∈
Hd

cs(V ) has compact vertical support and the property that the exterior product map

H•(M)
∼→ H•+dcs (V ), [α] 7→ [α]� [ThV ]

is an isomorphism, called the Thom isomorphism. The Euler class [EuV ] ∈ Hd(M) is the
pullback of [ThV ] along the zero section 0 ↪→ V . The Thom class determines pushforwards
in cohomology using the Pontrjagin–Thom collapse map. The Euler and Thom class are
both natural for the oriented vector bundle V , and so they are determined by the Euler and
Thom classes for the universal bundle over BSO(n). An analogous story for complex vector
bundles again yields universal Euler and Thom classes for the universal bundle over BU(n).
The cohomology of these classifying spaces is the equivariant cohomology of a point

H(BU(n)) = HU(n)(pt), H(BSO(n)) = HSO(n)(pt)

so that universal Euler and Thom classes are (canonically) classes in the coefficient ring of
equivariant cohomology.

For K-theory one again finds Euler and Thom classes living in equivariant refinements.
However, the existence of refinements is a more interesting question if one considers the
non-Borel version of equivariant K-theory coming from equivariant vector bundles. For
example, we recall that the Euler class of a complex vector bundle V in K-theory is the
class underlying the virtual vector bundle ΛevV 	 ΛoddV , or equivalently, the Z/2-graded
vector bundle given by the total exterior bundle Λ•V of V (compare Example 7.2 below).
By universal properties, the Euler class is determined by the corresponding virtual vector
bundle on BU(n). It admits an equivariant refinement,

Rep(U(n)) = KU(n)(pt)
completion−→ K(BU(n))(40)

as the virtual representation ΛevR	 ΛoddR where R is the defining representation of U(n)
and (40) is the Atiyah–Segal completion map. There is a similar story for equivariant
refinements of K-theory Thom classes, as well as analogous constructions in KO-theory
built from spinor representations S+ 	 S− [ABS64, Part III]; see also Example 6.1.

Below we construct refinements of Euler and Thom classes in elliptic cohomology with
two goals that run in analogy to (40): (i) refine pre-existing non-equivariant classes, and
(ii) give representation-theoretic meaning to the refinements.

6.2. Positive energy representations and the Weierstrass sigma function. We
briefly review positive energy representations of loop groups; a standard reference is [PS86,
§9]. The loop group of a compact Lie group consists of smooth maps LG := C∞(S1, G)
endowed with pointwise multiplication. Transgression of a class [`] ∈ H4(BG;Z) determines
an S1 central extension

1→ S1 → L̃G→ LG→ 1.(41)

When G is simple and simply connected, H4(BG;Z) ' Z and [`] ∈ Z is customarily called
the level of the extension (41); we use the terminology of a level for arbitrary compact Lie
groups even though [`] ∈ H4(BG;Z) need not be determined by an integer.

The loop group LG has an S1-action from precomposing with the rotation action of
S1 on itself; this is called the action of the energy circle (to distinguish from the central

circle in (41)). The action of the energy circle lifts to L̃G and one may form the semidirect

product S1 n L̃G. A positive energy representation of LG is a representation H of S1 n L̃G
such that the weight spaces of the energy circle are finite-dimensional and bounded below.
In more detail, define the nth weight space Hn ⊂ H by

Hn := {v ∈ H | λ · v = λnv, ∀λ ∈ S1},
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where λ ∈ S1 is in the energy circle. Then the positive energy condition demands that Hn
is finite-dimensional for all n and there exists some N ∈ Z such that Hn = {0} for n < N .

Given a positive energy representation H of a loop group LG, each weight space Hn is
itself a finite-dimensional G-representation; this comes from restricting along the embedding
G ↪→ LG as the constant loops, using that the energy circle acts trivially on the constant
loops and that the central extension (41) canonically splits over the constant loops. This
leads to the definition of the character of a positive energy representation as the formal
power series

χH :=
∑
n≥N

χnq
n ∈ (Rep(G)⊗ C)((q))(42)

where χn ∈ Rep(G) ⊗ C ⊂ C∞(G)G can be identified with the character of the associated
G-representation on Hn, i.e., a class function on G. More generally, we can consider formal
differences H+ 	 H− of positive energy representations of loop groups, where then the
character (42) is the difference χn = χ+

n − χ−n of characters of G-representations on Hn.
Equivalently, one can consider Z/2-graded positive energy representations whose characters
are defined using the supertrace. Finally, we note that (42) is only defined as a formal
series in q; however, it turns out that taking q = exp(2πiτ) gives a (convergent) power
series expansion of a holomorphic function of τ ∈ H. By reduction to maximal tori, the
following example essentially determines this holomorphic behavior.

Example 6.1. First recall that there are two irreducible representations of Spin(2), denoted
S+ and S−. The character of the Z/2-graded representation S+ 	 S− is

2i sinh(2πiz) = exp(πiz)− exp(−πiz) = y1/2 − y−1/2(43)

where y = exp(2πiz) ∈ C∞(SO(2)) is the coordinate function that admits a square root
when pulled back along the double cover Spin(2) → SO(2). Generalizing to loop groups,
consider the level [`] ∈ H4(BSpin(2);Z) ' Z given by one of the two generators. For
one choice, there will exist no positive energy representations, while for the other there are
precisely four, typically denoted S±,S±, e.g., see [Liu96, §1.2]. For the intended applications
in equivariant elliptic cohomology, the most important of these is the Z/2-graded positive
energy representation S+ 	 S− of LSpin(2) whose (super) character is the holomorphic
function

χS+	S−(q, y) = (y1/2 − y−1/2)
∏
n>0

(1− qny)(1− qny−1) ∈ O(H× C).(44)

Below we refer to S+ 	 S− as the level 1 vacuum representation of LSpin(2). Similarly,
there is a Z/2-graded level 1 vacuum representation of LSpin(2n) whose super character is

χ(q, y1, y2, . . . , yn) =

n∏
i=1

χS+	S−(q, yi)

where the functions χS+	S−(q, yi) on the right are given by (44) for coordinates yi on the
standard maximal torus of SO(2n) pulled back to Spin(2n).

Example 6.2. Starting instead with the virtual representation 1	R of U(1) with character
1−y ∈ C∞(U(1)), there is an extension to a vacuum representation of the loop group LU(1)
with character

χ(q, y) =

(
(1− y)

∏
n>0

(1− qny)(1− qny−1)

)
,(45)

e.g., see [And00, §11].
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A common normalization of the character (44) leads to the Weierstrass sigma function

σ(τ, z) :=

(
(y1/2 − y−1/2)

∏
n>0

(1− qny)(1− qny−1)

(1− qn)2

)

= z exp

(
−
∑
k>0

E2k(τ)zk

2k

)
∈ O(H× C)(46)

where τ ∈ H, q = exp(2πiτ), z ∈ C, y = exp(2πiz) (so y1/2 = exp(πiz)), and E2k(τ) ∈ O(H)
is the 2kth Eisenstein series, defined as

E2k(τ) =
∑

n,m∈Z2
∗

1

(mτ + n)2k
, Z2

∗ = {(n,m) ∈ Z2 | (n,m) 6= (0, 0)}(47)

for k > 1, and we take E2 to be the standard holomorphic version of the 2nd Eisenstein
series (the above sum is conditionally convergent when k = 1). The equality (46) was first
demonstrated by Zagier [Zag86]; see also [AHR10, Proposition 10.9].

We also consider the normalization of the LU(1) character (45),

υ(τ, z) := −y1/2σ(τ, z) =

(
(1− y)

∏
n>0

(1− qny)(1− qny−1)

(1− qn)2

)
.(48)

The relevance of the σ-function in elliptic cohomology originally came by way of the
Witten genus, the Hirzebruch genus associated with the power series

Wit(q, z) =
z

σ(τ, z)
= exp

(∑
k>0

E2kz
k

2k

)
∈ C[[z, q]].(49)

The families refinement of this genus leads to the MU〈6〉 and MString orientations of topo-
logical modular forms reviewed in the next subsection [Hop94, AHS01, AHR10].

6.3. Characteristic classes in (non-equivariant) elliptic cohomology over C. The
universal elliptic cohomology theory of topological modular forms has Thom and Euler
classes for U〈6〉 and O〈8〉 bundles. We recall that BU〈6〉 is the classifying space for complex
vector bundles with vanishing first and second Chern classes, c1 = c2 = 0; BO〈8〉 = BString
classifies real vector bundles with vanishing first and second Stiefel–Whitney classes, as
well as the vanishing of the fractional first Pontryagin class, w1 = w2 = p1

2 = 0. These
classifying spaces sit in the diagram

BU〈6〉 BSU BU

BString BSpin BSO.

(50)

Remark 6.3. The notation BU〈6〉 and BO〈8〉 comes from canonical maps BU〈6〉 → BU and
BO〈8〉 → BO giving the 5-connected cover and the 7-connected cover in the Whitehead
towers of BU and BO, respectively.

Let MString = MO〈8〉 and MU〈6〉 denote the Thom spectra associated with the uni-
versal bundles on BString = BO〈8〉 and BU〈6〉, respectively. The σ-orientation of TMF is
a map of ring spectra

σ : MString→ TMF(51)

that assigns a (vertically) compactly supported Thom class ThV ∈ TMFmcs(V ) to an m-
dimensional real vector bundle V →M with string structure [AHS01, AHR10]. The Chern–
Dold character is a map

ch: TMF(M)→ H(M ; TMF(pt)⊗ C) ' H(M ; MF)
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from TMF to ordinary cohomology with coefficients in the graded ring of modular forms MF.
The Riemann–Roch theorem compares the Thom class in TMF with the Thom class uV in
ordinary cohomology by means of the commuting square

TMF•(M) H•(M ; MF)

TMF•+mcs (V ) H•+mcs (V ; MF).

ch

ThV

ch

[uV ·Wit(V )−1](52)

where the vertical arrows are exterior multiplication with the indicated class, Wit(V ) is
the characteristic class associated with the power series (49), and the cohomology groups
TMF•+mcs (V ) and H•+mcs (V ; MF) are with compact vertical support. This defines the elliptic
Thom class in Hm

cs(V ; MF) as the class [uV ·Wit(V )−1]. The elliptic Euler class is gotten
by pulling back along the zero section, and is therefore [eV ·Wit(V )−1] where eV is the
ordinary Euler class of V . We have two flavors of these classes, depending on whether V is
real (as was assumed above) or complex, corresponding to the MU〈6〉 or MString orientation
respectively. These orientations are related by precomposing (51) with the map MU〈6〉 →
MO〈8〉 coming from taking Thom spectra of universal bundles in (50).

6.4. Equivariant elliptic Euler forms. Below, t ' Rn denotes the Lie algebra of the
standard maximal tori of U(n) and SO(2n), given by diagonal unitary matrices in the
former case, and block diagonal matrices whose blocks are 2 × 2 rotation matrices in the
latter case. The standard (real) coordinates on t also give standard complex coordinates
{z1, . . . , zn} on tC.

Definition 6.4. For q = exp(2πiτ) with τ ∈ H, consider the holomorphic functions on
H× tC given by

σSO(2n)(τ, z1, . . . , zn) =

n∏
j=1

σ(τ, zj) ∈ O(H× tC).(53)

σU(n)(τ, z1, . . . , zn) =

n∏
j=1

υ(τ, zj) =

n∏
j=1

e−πizjσ(τ, zj) ∈ O(H× tC)(54)

We recall that the transformation properties of the function σ(τ, z) with respect to the
action of Z2 o SL2(Z) on H× C show that it is a Jacobi form of weight −1 and index 1/2,
e.g., see [BET19, Equations 140-141]. Equivalently, these transformations define a cocycle
for a line bundle on the quotient [H×C/Z2oSL2(Z)] ' E∨ ' BunSO(2)(E) for which σ(τ, z)
determines a section. The same reasoning shows that the transformation properties of the
functions (53) and (54) for the action of X∗(T )⊕2 o SL2(Z) on H × tC define cocycles for
line bundles on BunSpin(2n)(E) and BunU(n)(E) respectively, where we consider descent of
these functions along

H× tC → BunG(E) G = U(n),Spin(2n)(55)

where the map is from (18) and we use Example 2.19 to understand the target. Here, the
action of X∗(T )⊕2 on H× tC ' H× t× t is by the cocharacter lattice for Spin(2n) or U(n),
whose quotient gives (H× t× t)/X∗(T ) ' H×T ×T for T the maximal torus of Spin(2n) or
U(n). In the spin case, the action of this cocharacter lattice on H× t× t can be understood
explicitly (since t is the Lie algebra of the maximal torus of SO(2n)) by describing the
cocharacter lattice of Spin(2n) as sublattice of the cocharacter lattice of SO(2n); e.g., see
the proof of Proposition 6.10. The reason for the intermediate descent to BunSpin(2n)(E) in
the spin case (rather than all the way to BunSO(2n)(E)) is described in Remark 6.7.

Definition 6.5. For G = U(n) or Spin(2n), let AG denote the holomorphic line bundle
over BunG(E) defined by the transformation properties of σU(n) or σSO(2n), as described
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above. These holomorphic line bundles have preferred sections determined by σU(n) and
σSO(2n), and we use the same notation for these sections. Define LG := AG ⊗ ωn.

Remark 6.6. The notation LG is meant to evoke the Looijenga line bundles in Defini-
tion 2.25, and we will shortly see comparison results in Proposition 6.10 below. In the case
of U(1), LU(1) is in fact canonically a square root of the Looijenga line of level one, i.e.

L⊗2
U(1) ' L1. As such, one often denotes LU(1) by L1/2, i.e., as a Looijenga line of level

one-half.

Remark 6.7. It is also possible to define a line bundle ASO(2n) over BunSO(2n)(E) us-
ing the transformation law for σSO(2n), but there are some technical issues to address.
Namely, SO(2n) does not have torsion-free fundamental group, so the map H × tC →
BunSO(2n)(E) has as image the connected component of the trivial bundle, see Example 2.20.
Hence, transformation properties of the function σSO(2n) can only construct a line bundle
on this image. The determinant line bundle (e.g., [BET19, §7]) extends this partially-
defined line bundle to the whole of BunSO(2n)(E) and pulls back along the homomorphism
Spin(2n)→ SO(2n) to LSpin(2n) from Definition 6.5. However, for the applications below it
suffices to work with LSpin(2n) on BunSpin(2n)(E).

Proposition 6.8. The functions σSO(2n) and σU(n) given by the formulas (53) and (54)
respectively define twisted equivariant elliptic Euler classes as the global sections

EuSpin(2n) := β−n · σSO(2n) ∈ Γ(BunSpin(2n)(E); Êll2nSpin(2n)(pt)⊗ LSpin(2n))

EuU(n) := β−n · σU(n) ∈ Γ(BunU(n)(E); Êll2nU(n)(pt)⊗ LU(n))

of equivariant elliptic cocycles as twisted by the holomorphic lines LG.

Proof. For G = U(n),Spin(2n), we have the isomorphisms of sheaves on BunG(E),

Êll2nG (pt)⊗ LG ' Êll2nG (pt)⊗ (AG ⊗ ωn) ' AG

using the definition LG := AG ⊗ ωn and periodicity from Proposition 3.11. The above
composition sends β−n · σG to σG, which is a global section of AG by definition. We

conclude that β−n · σG is a global section of Êll2nG (pt)⊗ LG. �

Naturality of Êll•G for homomorphisms of groups gives the following.

Corollary 6.9. Let G be a compact Lie group. For any homomorphism ρ : G → U(n) or
ρ : G→ Spin(2n), we obtain a G-equivariant elliptic Euler class by pullback,

Euρ ∈ Γ(BunG(E), Êll2nG (pt)⊗ Lρ)

where Lρ is the holomorphic line bundle on BunG(E) that pulls back from LU(n) or LSpin(2n)

on BunU(n)(E) or BunSpin(2n)(E), respectively, along the map induced by ρ.

Next we compare the line bundle LG with the more classical Looijenga line. For this
comparison, we restrict to the substack BunSU(n) ⊂ BunU(n)(E). Then from Definition 2.25

we recall that for the simply-connected1, simple Lie groups SU(n) and Spin(2n), the possible
Looijenga line bundles are labeled by an integer ` ∈ Z, called the level.

Proposition 6.10. The line bundle LSpin(2n) is isomorphic to the level 1 Looijenga line L1

on BunSpin(2n)(E). The pullback of LU(n) along the functor BunSU(n)(E) → BunU(n)(E)

1Although Spin(2) is not simply-connected, its Looijenga lines are still classified by a level ` ∈
H4(BSpin(2);Z) ' Z, and the results below apply to this case as well. Similarly, Spin(4) ' SU(2)× SU(2)
is not simple and its levels are labelled by pairs of integers, but there is a canonical copy of Z ↪→
H4(BSpin(4);Z) arising, for example, from pullback under the natural inclusions Spin(4) ↪→ Spin(2n)
for n ≥ 3.
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associated with the inclusion SU(n) ↪→ U(n) is isomorphic to the level 1 Looijenga line L1

on BunSU(n)(E). This identifies the sections determined by Proposition 6.8

EuSU(n) := β−n · σU(n) ∈ Γ(BunSU(n)(E); Êll2nSU(n)(pt)⊗ L1)

EuSpin(2n) := β−n · σSO(2n) ∈ Γ(BunSpin(2n)(E); Êll2nSpin(2n)(pt)⊗ L1)

with super characters of level 1 vacuum representations of LSU(n) and LSpin(2n), respec-
tively.

Proof. The identifications between LG and Looijenga line bundles come from the com-
paring the classical formulas for the transformation properties of σU(n) and σSO(2n) (e.g.,
see [BET19, Equations 146-149]) with Definition 2.25 of the Looijenga line bundle. In
computing these transformation properties in the SU(n) case, we use that the restriction
along SU(n) < U(n) on the cover (55) corresponds to restriction of (54) to the subspace
of H × tC with c1 =

∑
j zj = 0. In the Spin(2n) case, we use that σSO(2n) as a section of

a line bundle over BunSpin(2n)(E) considers the quotient of the cover (55) by the sublattice

ker(Zn +→ Z/2) ⊂ Zn ' X∗(T ) of the cocharacter lattice of SO(2n). The identification of
sections with characters of loop group representations then follows from Proposition 3.17,
together with well-known formulas for the level 1 characters of vacuum representations. �

6.5. Equivariant elliptic Thom forms. For G = Spin(2) ' U(1), recall that the ordinary
(non-elliptic) equivariant Mathai–Quillen Thom form on V = R2 ∼= C is given by

uV =
1

π
e−|x|

2

(β−1z + dvol) ∈ Ω2
G(V )

where z ∈ t∨C
∼= C is the monomial generator for polynomial functions on tC (the occurrence

of β is from our grading conventions, see §3.1), dvol ∈ Ω2(V ) is the orientation 2-form, and

e−|x|
2

is the Gaussian on V relative to the standard norm | − |. Our convention here and
throughout is that for a vector space V , Ω•G(V ) denotes differential forms that are rapidly
decreasing (which computes compactly supported cohomology, e.g., see [MQ86, §4]). Also
recall that the ordinary equivariant Euler class is given by β−1z ∈ Ω2

G(pt).
In the respective cases of U(n) and Spin(2n) below, let V = Cn be the standard

representation of U(n), and V = R2n denote the representation of Spin(2n) as factoring
through the standard representation of SO(2n). For h = (h1, h2) a pair of commuting
elements, let V h⊥ ⊂ V be the orthogonal complement of the fixed point subspace V h ⊂ V .
Without loss of generality, we may assume that h is in the maximal torus of U(n) or
Spin(2n). As before, we use the standard coordinates on the Lie algebra t ' Rn of the

maximal torus T . Next choose logarithms h̃1, h̃2 ∈ t so that hi = exp(h̃i) and a permutation
of the standard coordinates of t ' Rn so that

h̃1 = diag(0, . . . , 0, h̃k+1
1 , . . . , h̃n1 , ), h̃2 = diag(0, . . . , 0, h̃k+1

2 , . . . , h̃n2 ), h̃ji ∈ R.(56)

Above, the zero entries correspond to the subspace V h ⊂ V on which h = (h1, h2) acts
trivially, and the remaining entries correspond to V h⊥ the orthogonal complement. As before,
let Wh denote the Weyl group of the centralizer Gh = C(h) = C(h1, h2), which is necessarily
connected in this case for the Lie groups U(n) and Spin(2n).

Definition 6.11. The U(n)-equivariant elliptic Thom form at h̃ = (h̃1, h̃2) is defined as

(ThU(n))h̃ =

 k∏
j=1

uj
υ(τ, zj)

zj

 n∏
j=k+1

βυ(τ, zj + h̃j1 − τ h̃
j
2)

 ∈ Ω2n
T (V h;O(H))W

h

(57)

where uj = e−|x|
2

(β−1zj + dvolj) is the Mathai–Quillen Thom form associated with the
Chern root zj . Similarly, the Spin(2n)-equivariant elliptic Thom form is defined as

(ThSpin(2n))h̃ =

 k∏
j=1

uj
σ(τ, zj)

zj

 n∏
j=k+1

βσ(τ, zj + h̃j1 − τ h̃
j
2)

 ∈ Ω2n
T (V h;O(H))W

h

.(58)
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The SU(n)-equivariant elliptic Thom form at h̃ = (h̃1, h̃2) is defined as the restriction of
(ThU(n))h̃ along SU(n) ⊂ U(n).

Remark 6.12. We recall our notational convention that the T -equivariant differential forms (57)
and (58) have rapidly decreasing support. This is guaranteed by the rapidly decreasing (or-
dinary) T -equivariant Thom forms

∏
uj in (57) and (58). This standard Thom form is

modified by the invertible functions σ(τ, zj)/zj , whereas the second factor in these for-

mulas is an (h̃-translated) elliptic Euler class of the orthogonal complement, V h⊥ . These
modifications to the standard Thom form do not change the rapidly decreasing property.
Furthermore, we observe that the resulting equivariant Thom class is formally analogous to
formulas for the image of the equivariant Thom class in K-theory under the (delocalized)
Chern character, e.g., see [BGV92, pg. 245].

Proposition 6.13. For G = U(n) or Spin(2n), the values (ThT )h̃ assemble to give a global

section of Êll2nG (V ) ⊗ LG that implements the universal Thom isomorphism in equivariant
elliptic cohomology twisted by the holomorphic line LG of Definition 6.5,

Êll•G(pt)
∼→ Êll•+2n

G (V )⊗ LG, α 7→ α� ThG

as a quasi-isomorphism of sheaves of chain complexes over BunG(E), where (following the
prior notation) the target consists of cocycles that are rapidly decreasing on V .

Proof. The Thom isomorphism statement is equivalent to showing that the elliptic Thom
form is a nowhere vanishing section of the claimed line bundle. This statement can be
checked locally, and the definitions (57) and (58) show that ThG is nonzero at every stalk.
To see this, first note that nonzero in the stalk means that the power series (57) and (58)
define functions that are nowhere vanishing in some neighborhood of z1 = z2 = · · · = zn = 0.
The function σ(τ, zj)/zj vanishes at lattice points with the exception of zj = 0, so is nonzero

on a neighborhood. In the other factor, σ(τ, zj + h̃j1− τ h̃
j
2) vanishes at lattice points shifted

by h̃j1 − τ h̃
j
2. This shift corresponds to the action of (h1, h2) on V h⊥ , and so is necessarily a

nonzero shift, implying that there exists a neighborhood of zj = 0 on which σ(τ, zj+h̃
j
1−τ h̃

j
2)

is not zero. This verifies the Thom isomorphism statement for (57); the argument for (58)
is identical.

Showing that the stalk-level definition lifts to a global section is a bit more delicate.

First we observe that the Wh-action on (ThU(n))h̃ permutes the factors in
∏k
j=1 uj

υ(τ,zj)
zj

and
∏n
j=k+1 βυ(τ, zj + h̃j1 − τ h̃

j
2) separately, leaving the overall function (ThU(n))h̃ invari-

ant. The statement for (ThSpin(2n))h̃ is completely analogous. The action of the full Weyl
group W also permutes these factors, but the specific action depends on the permutation
of coordinates defining the {h̃j1, h̃

j
2} in (56); however, by inspection the formulas for ThG

are invariant under these reorderings.
It remains to check the analyticity condition from Definition 3.3. For this we consider

deformations of (h̃1, h̃2) together with a translation in the Lie algebra dependence of the
equivariant differential form as in (26). It suffices to check the following two types of
deformations: (i) deformations in the first k coordinates of (56), and (ii) deformations of the
last n− k coordinates in (56). In case (ii), compatibility is easy to check because (for small
deformations) the fixed point sets are unchanged through the deformation. Compatibility
then follows because we are just pulling back functions on the Lie algebra by a translation.
In case (i), first we recall that the ordinary equivariant Thom class uj restricts at the origin
to the ordinary equivariant Euler class zj . In our case, this means for res as in (26),

res

(
uj
σ(τ, zj)

zj

)
= σ(τ, zj).

Compatibility for case (i) then amounts to showing this restriction pulls back correctly along
a translation in the Lie algebra, which it manifestly does. Finally, because uj transforms
the same way as zj under the action of the cocharacter lattice and SL2(Z), we have that

uj
σ(τ,zj)
zj

transforms the same as σ(τ, zj). Hence, the transformation properties of the
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elliptic Thom class are the same as those for the elliptic Euler class from Propositions 6.8
and 6.10. Therefore, the stalks (57) and (58) glue together to give a section of LG, and we

have produced the elliptic Thom form as a global section of the sheaf Êll2nG (V )⊗ LG. �

Analogously to Corollary 6.9, naturality gives the following.

Corollary 6.14. Let G be a compact Lie group. For any homomorphism ρ : G→ U(n) or
ρ : G→ Spin(2n), we obtain a G-equivariant elliptic Thom class by pullback,

Thρ ∈ Γ(BunG(E), Êll2nG (V )⊗ Lρ)

where Lρ is the holomorphic line of Corollary 6.9.

6.6. The elliptic Chern–Weil map. Let A be a graded commutative C-algebra and
V →M a real or complex vector bundle classified by a map f : M → BG for G = U(n) or
O(n), respectively. The Chern–Weil map in ordinary cohomology is

Poly(g;A)G ' HG(pt;A) ' H(BG;A)
f∗→ H(M ;A).(59)

To any invariant polynomial on the Lie algebra, this map associates a characteristic class of
V in the cohomology of M . When V is equipped with a connection, (59) refines to a map
of chain complexes, Poly(g;A)G → (Ω•(M ;A), d), where the source has trivial differential.
Using Proposition 3.17, we will construct elliptic versions of the Chern–Weil maps

Rep`(LSU(n))⊗MF0 MF 99K (Ω•(M ; MF), d),

Rep`(LSpin(2n))⊗MF0 MF 99K (Ω•(M ; MF), d)
(60)

that send (characters of) level ` representations of loop groups to cocycle representatives of
characteristic classes for complex vector bundles with U〈6〉-structure or real vector bundles
with O〈8〉-structure.

The first step in constructing (60) is an L`-twisted version of the completion map from
Theorem 3.9 on the SL2(Z)-cover H of Mell. Consider the composition

e : H ↪→ H× t× t→ H× (T × T )/cW ' H× C2[G]→ BunG(E)

where the first arrow includes at 0 ∈ t×t ' tC, the second map is induced by the exponential
map from the Lie algebra to the Lie group, and the remaining maps are from Example 2.19.
By Definition 2.25, sections of the Looijenga line bundle are functions on H × t × t '
H× tC with properties. Said differently, the pullback of L` along H× tC → BunG(E) has a
preferred trivialization that identifies sections of the pullback with holomorphic functions.
In particular, this gives a canonical trivialization of L` in a neighborhood of e : H→ BunG(E)
corresponding to a neighborhood of H×{0} in the cover H×t×t. This permits the following.

Construction 6.15. Let L` denote the level ` Looijenga line forG = SU(n) or Spin(2n); see

Definition 2.25. The restriction of the sheaf Êll•G(pt)⊗ L` along the map e : H→ BunG(E)
together with the trivialization of L` specified above gives an isomorphism of sheaves of
commutative differential graded algebras on H that on global sections is

Γ(H; e∗Êll•G(pt)⊗ L`)
∼→ Ω•G(pt;O(H)[β, β−1]),(61)

where the target is the Cartan model for Borel equivariant cohomology of the point with
coefficients in O(H)[β, β−1].

Definition 6.16. Define the level ` elliptic Chern–Weil map as the composition

Rep`(LG)⊗MF0 MF ' Γ(BunG(E); Êll•G(pt)⊗ L`)
→ Ω•G(pt;O(H)[β, β−1])→ Ω•(M ;O(H)[β, β−1])(62)

where the isomorphism is from Proposition 3.17, the middle map is restriction to H along e
followed by (61) and the final map is the usual Chern–Weil map determined by a vector
bundle with G-structure and G-invariant connection for G = SU(n) or Spin(2n).
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The nontriviality of the line bundle L` manifests in the image of the elliptic Chern–Weil
map as a possible failure of invariance under the action of SL2(Z) on H. We analyze this
question of descent from H to [H/SL2(Z)] ' Mell for the equivariant elliptic Euler class,
which we recall corresponds to the vacuum representation of the appropriate loop group at
level 1. We recall from Example 3.18 that

(Ω•(M ;O(H)[β, β−1])SL2(Z), d) ' (Ω•(M ; MF), d)

is a cochain model for TMF(M) ⊗ C ' H(M ; MF), i.e., cohomology with coefficients in
modular forms.

Theorem 6.17. For G = SU(n) and V → M a complex vector bundle with c1(V ) =
c2(V ) = 0, the image of EuG under (62) (for ` = 1) is a cocycle representative for the
elliptic Euler class in TMF(M)⊗ C coming from the MU〈6〉 orientation of TMF⊗ C.

Similarly, for G = Spin(2n) and V → M a real vector bundle with spin structure and
p1
2 (V ) = 0, the image of EuG along (62) (for ` = 1) is a cocycle representative for the

elliptic Euler class coming from the MString orientation of TMF⊗ C.

Proof. The image of the section EuG under (61) is a cocycle representative of the Borel
equivariant characteristic class defined in terms of Chern roots zj via the formulas (54)
and (53), using a choice of G-invariant connection on V →M . The image under the elliptic
Chern–Weil map sends the Lie algebra dependence to traces of powers of curvature of the
connnection. The obstruction to the underlying class in H(M ;O(H)[β, β−1]) being SL2(Z)-
invariant is the coefficient of the 2nd Eisenstein series for the description of the Witten
class as in (49). At the level of the Euler cocycle, this coefficient is precisely the Chern–
Weil representative for c2(V ) or p1(V ) in the complex and real cases, respectively. �

Remark 6.18. An analogous result to the above holds for the images of cocycle representa-
tives of elliptic Thom classes under the elliptic Chern–Weil map: the equivariant refinement
does indeed recover the standard non-equivariant Thom class.

6.7. Some examples. To give a flavor for how to compute with Euler and Thom classes,
we spell out a couple examples.

Example 6.19. This is a continuation of Example 3.20 for S1 = U(1) acting on S2 by
rotation about an axis. First we identify compactly supported cohomology for U(1) acting
on V = C with relative cohomology of the 2-sphere

Ell•U(1)(V ) ' Ell•U(1)(CP
1,∞)

where ∞ ∈ CP1 ' S2 is the standard base point at infinity. Applying the Thom isomor-
phism for U(1)-equivariant elliptic cohomology from Proposition 6.13, we observe

Ell2U(1)(S
2,∞) ' Ell•U(1)(V )⊗ (LU(1) ⊗ L∨U(1)) ' Ell0U(1)(pt)⊗ L∨U(1) ' L

∨
U(1).

One may then apply the long exact sequence for the pair (S2,∞) in sheaves of chain
complexes on BunU(1)(E) ' E∨. We obtain the following:

Ell0U(1)(S
2) ' Ell0U(1)(pt)⊕ Ell0U(1)(S

2,∞)

' O ⊕
(

Ell2U(1)(S
2,∞)⊗ ω

)
' O ⊕

(
L∨U(1) ⊗ ω

)
as a consequence of the LU(1)-twisted Thom isomorphism and ω-twisted Bott periodicity.
As a sanity check, we observe that L∨U(1) ⊗ ω is indeed a trivial bundle away from the zero

section in E∨ and this conforms with the computations in Example 3.20.
More generally, we have the isomorphism of sheaves

Ell0U(1)(S
2)⊗ Lm/2 ' Lm/2 ⊕

(
L(m−1)/2 ⊗ ω

)
, m ∈ Z,
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where Lm/2 := (L1/2)⊗m, using the notation L1/2 = LU(1) justified in Remark 6.6. We
observe this sheaf has global sections if and only if m is nonnegative. However, there are
nontrivial derived global sections for any m ∈ Z, e.g., by Serre duality on BunU(1)(E) ' E∨.

In the literature, authors often identify the (quasi-coherent) sheaf Ell0G(M) with a
scheme by taking the relative Spec over BunG(E), especially when the cohomology is
concentrated in even degrees. We now explain this perspective for Ell0U(1)(S

2), i.e., for

SpecE∨
(
O⊕ (L−1/2 ⊗ ω)

)
' SpecE∨

(
O⊕O(−0)

)
, where we freely use the isomorphism of

L1/2⊗ω−1 ' O(0), via the function υ(τ, z) ∈ O(H×C) determining a section of L1/2⊗ω−1

that vanishes to first order at the zero section 0: Mell → E∨. We determine the algebra
structure on O⊕O(−0) by the Mayer–Vietoris sequence for the standard U(1)-equivariant
cover of S2 by the upper and lower hemispheres. One finds

Ell0U(1)(S
2) ' ker

(
Ell0U(1)(pt)⊕ Ell0U(1)(pt)→ Ell0U(1)(U(1))

)
' ker(O ⊕O → O0),

where the above computations are in the category of sheaves on E∨ and O0 is the structure
sheaf of the zero section 0: Mell → BunU(1)(E). Indeed, the above description makes it
clear that as a coherent sheaf, the above kernel is isomorphic to O⊕O(−0), but the Mayer-
Vietoris description has the additional property of making manifest the algebra structure.
Pullbacks of sheaves of algebras become pushouts of schemes under (relative) Spec, so we
have that SpecE∨(Ell0U(1)(S

2)) is simply two copies of the (universal) elliptic curve E∨ glued
along their zero sections.

Example 6.20. More generally, consider U(1) acting on S2 by n times the rotation action;
to emphasize the dependence of the equivariant structure on n, we denote this representation
sphere as S2[n].

We repeat the computation of Ell0U(1)(S
2[n]) from the previous example using the Thom

isomorphism, only now we use the “charge n” representation of U(1) on V = R2 with
character yn ∈ C∞(U(1)). By naturality, the Thom class of this representation is the
pullback of the universal Thom class from [pt/U(1)] along the multiplication by n map
U(1) → U(1). Hence, the induced twisting bundle on E∨ is given by the pullback of the

bundle L1/2 under the map E∨ n→ E∨ and if we apply the Thom isomorphism as before, we
find

Ell0U(1)(S
2[n]) ' O ⊕

(
n∗L−1/2 ⊗ ω

)
.

Next we repeat the Mayer–Vietoris computation from the previous example, using the
same cover to find

Ell0U(1)(S
2[n]) ' ker

(
Ell0U(1)(pt)⊕ Ell0U(1)(pt)→ Ell0U(1)(S

1[n])
)

' ker
(
O ⊕O → On-torsion

)
,

where we use similar notation for S1[n] as an S1 with its U(1)-equivariant structure given
as n times the usual. The above description makes it clear that SpecE∨(Ell0U(1)(S

2[n])) is

now two copies of E∨ glued along their n-torsion subschemes, while as a sheaf, one may
rewrite Ell0U(1)(S

2[n]) as O ⊕ O(−{n-torsion}). Indeed, as L1/2 ⊗ ω−1 ' O(0), we have

n∗L1/2 ⊗ ω−1 ' n∗
(
L1/2 ⊗ ω−1

)
' n∗O(0) ' O({n-torsion}) and so our two descriptions

indeed agree: the n-torsion of an elliptic curve over C is a subgroup of order n2.

We recall that on a fixed elliptic curve, O({n-torsion}) ' O(0)n
2

. This follows from
Abel’s theorem, or equivalently the fact that addition in the Picard group of an ellip-
tic curve corresponds to addition in the elliptic curve itself. This affords an explicit de-
scription of n∗L1/2 ⊗ ω−1 as follows. Using the relative Picard functor, the isomorphism

O({n-torsion}) ' O(0)n
2

still exists in moduli up to twists coming from the base. Hence

over the universal dual curve E∨, we have O({n-torsion}) ' O(0)n
2 ⊗ ω` for some `. But
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pulling back along the zero section 0: Mell → E∨ and using, for example, that

O(0)|Mell
' ω−1,

we find ` = n2 − 1. Hence, n∗L1/2 ⊗ ω−1 ' Ln2/2 ⊗ ω−1.

7. Equivariant orientations and the theorem of the cube

This section studies a more algebro-geometric point of view on the string orientation
following the constructions in [Hop94, AHS01]. This leads to a canonical string orienta-
tion of elliptic cohomology relying on the theorem of the cube. We show that this refines
equivariantly, yielding a unique string orientation of equivariant elliptic cohomology.

7.1. Background: Elliptic cohomology and the theorem of the cube. Let h be a
multiplicative cohomology theory and h̃ the associated reduced cohomology theory. The
isomorphism h̃2(S2) ' h0(pt) identifies a canonical generator of h̃2(S2) as an h0(pt)-module.

Definition 7.1. A complex orientation (or MU-orientation) of a cohomology theory h is an

element c̃ ∈ h̃2(CP∞) whose restriction to CP1 = S2 is the canonical generator of h̃2(S2).

A complex orientation defines a Chern (equivalently, Euler) class for line bundles valued
in h-cohomology, where c̃ = c̃(O(1)) is defined to be the Chern class of the tautological line
on CP∞. From this class one can build h-valued Chern classes for all (virtual) vector bundles
using the splitting principle and the Whitney sum formula.

Now suppose that h is even (h• = {0} for • odd) and 2-periodic (there exists an
invertible element β ∈ h−2(pt)). Then the Atiyah–Hirzebruch spectral sequence can be
used to show that a complex orientation for h exists. The class β allows one to put a choice
of complex orientation c̃ in degree zero, c = c̃β ∈ h0(CP∞). Pulling c back along the three
maps

c ∈ h0(CP∞)
p∗1 ,p

∗
2 ,m

∗

−→ h0(CP∞ × CP∞), p1, p2,m : CP∞ × CP∞ → CP∞(63)

gives a formula, m∗c = F (p∗1c, p∗2c) where F is a formal power series in two variables satisfy-
ing properties codifying (homotopy) associativity and unitality of the multiplication map m.
Quillen observed that these properties make F into a formal group law over h0(pt) [Qui69].

Example 7.2. Complex K-theory is even, 2-periodic, and complex oriented with c =
1− [O(1)] ∈ K0(CP∞) where O(1) is the tautological line bundle on CP∞. Note that as a
Z/2-graded bundle, 1 − [O(1)] = [C 	 O(1)] = [Λ•O(1)] is the total exterior power O(1).
The associated formal group law is the multiplicative formal group law, i.e., for line bundles
L and L′ we have

c(L⊗ L′) = c(L) + c(L′)− c(L) · c(L′).(64)

Recall that a formal group law is equivalent to the data of a formal group with a choice
of coordinate, i.e., a function on the formal group that vanishes to first order at the identity.
Hence, for an even, 2-periodic, complex oriented cohomology theory h, forgetting the choice
of c leaves the formal spectrum Spf(h0(CP∞)) with the structure of a formal group.

Definition 7.3. An elliptic cohomology theory is (i) an elliptic curve E defined over a
commutative ring R, (ii) an even, 2-periodic cohomology theory h with h0(pt) ' R, and

(iii) an isomorphism of formal groups Spf(h0(CP∞)) ' Ê where Ê is the formal completion
of E at its identity section.

Choosing an MU-orientation of elliptic cohomology is an under-constrained problem:
there are typically many choices of coordinate on an elliptic formal group. As described
by Hopkins [Hop94], if we instead ask for an a priori weaker structure, namely an MU〈6〉-
or MO〈8〉-orientation, there is a more canonical choice. Just as one can define Chern
classes for all complex vector bundles from the data of the top Chern class of the universal
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line bundle, there is a similar type of splitting principle for characteristic classes of U〈6〉-
bundles. Namely, all U〈6〉-bundles formally split into direct sums of trivial bundles and
virtual bundles pulled back from

V3 = (L1 − 1)⊗ (L2 − 1)⊗ (L3 − 1)(65)

over BU(1)×3 ' (CP∞)×3. Hence, a theory of MU〈6〉 characteristic classes is determined
by a universal characteristic class [Hop94, §4-6]

s ∈ h(CP∞ × CP∞ × CP∞).(66)

This class is required to satisfy the additional consistency conditions:

(rigid) e∗s = 1 ∈ h0(pt) where e is inclusion of the basepoint e : pt ↪→ CP∞×CP∞×CP∞;
(symmetric) s pulls back to itself along the maps CP∞ × CP∞ × CP∞ → CP∞ × CP∞ × CP∞

that permute the factors; and
(cocycle) (m∗12s)(p

∗
134s) = (m∗23s)(p

∗
234s) where mi(i+1) : (CP∞)×4 → (CP∞)×3 is multiplica-

tion on the i and (i+ 1)st factors, and pijk : (CP∞)×4 → (CP∞)×3 is the projection
to the i, j and kth factors.

When the cohomology theory h is part of the data of an elliptic cohomology theory, Ando–
Hopkins–Strickland [AHS01] show that a class (66) satisfying these consistency conditions
may be produced from a cubical structure on the line bundle O(−0) on the elliptic curve E,
as we review presently. Recall that sections of O(−0) are functions that vanish to first order
at 0 ∈ E. A cubical structure for a line bundle L on E is the data of a section s of a line
bundle Θ3(L) on E × E × E whose fiber at (x, y, z) ∈ E × E × E is

Θ3(L)(x,y,z) = Lx+y+z ⊗ Lx ⊗ Ly ⊗ Lz ⊗ L∨x+y ⊗ L∨x+z ⊗ L∨y+z ⊗ L∨e .

This section is required to satisfy analogous properties to the three above:

(rigid) s(e, e, e) = 1;
(symmetric) s(zσ(1), zσ(2), zσ(3)) = s(z1, z2, z3) for any permutation σ;

(cocycle) s(w + x, y, z)s(w, x, z) = s(w, x+ y, z)s(x, y, z)

where there are implicit (canonical) isomorphisms between line bundles used in the equal-
ities. The theorem of the cube (or Abel’s theorem) shows that there is a unique cubical
structure on O(−0). When passing from the elliptic group to the formal group, this de-
termines a canonical MU〈6〉-orientation of an elliptic cohomology theory. Further work of
Hopkins shows that if the line bundle L has the additional structure of an isomorphism
Lx ' L−x and the section s satisfies s(x, y,−x − y) = 1, then the MU〈6〉-orientation
extends to an MO〈8〉-orientation. Under certain conditions on the elliptic cohomology
theory [Hop94, Theorem 6.2], this additional condition is guaranteed, giving a canonical
MO〈8〉 = MString-orientation of such elliptic cohomology theories.

7.2. Orientations in complex analytic elliptic cohomology. We give a quick overview
of (non-equivariant) orientations in complex analytic elliptic cohomology. These facts are
surely known to the experts; most of the following can be deduced from the introduction
of [AHS01]. Consider the elliptic curve Eτ = C/Z⊕ τZ. Viewing C as a complex analytic
group under addition, the quotient map C → Eτ is a homomorphism with discrete kernel
and so determines an isomorphism of formal groups over C

Ĝa ' Êτ(67)

where Ĝa is the additive formal group. Consider H(−;C[β, β−1]), ordinary cohomology
with values in the graded ring C[β, β−1] where |β| = −2. The formal group associated
with ordinary cohomology is the additive formal group, so the isomorphism (67) gives
an elliptic cohomology theory Ellτ whose underlying cohomology theory is H(−;C[β, β−1]).

The standard coordinate z on C determines a coordinate on Êτ giving a complex orientation
of Ellτ associated with the additive formal group law,

c(L⊗ L′) = c(L) + c(L′).(68)
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This choice of coordinate gives the identification

Ẽllτ (CP∞) := H̃(CP∞;C[β, β−1]) ' C[[c]][β, β−1], |β| = −2, |c| = 0

where c̃ = β−1c is the standard degree 2 generator of the cohomology of CP∞.
More generally, recall the H-family of complex analytic elliptic curves E from (4). The

quotient map

H× C→ Ẽ
gives an H-family of isomorphisms (67) of formal groups over O(H). This gives a com-

plex analytic elliptic cohomology theory defined by the elliptic curve Ẽ , the cohomology
theory H(−;O(H)[β, β−1]) and the H-family of isomorphisms (67). This complex analytic
elliptic cohomology theory has an SL2(Z)-action induced by the action on coefficients from
fractional linear transformations on O(H) and β 7→ β/(cτ + d). Considering this action
applied to O(U) for open submanifolds U ⊂ H defines a sheaf of cohomology theories de-
noted Ell on the stack Mell ' [H/SL2(Z)]. We observe that the global sections of Ell are
cohomology with values in modular forms, i.e., TMF⊗C. Furthermore, for any τ ∈ H, the
sheaf Ell restricts to the elliptic cohomology theory Ellτ from the previous paragraph via
the evaluation map evτ : O(H)→ C.

The standard coordinate from z on C determines an SL2(Z)-invariant complex orien-

tation of Ell: the Chern class c̃ = β−1c pulls back to itself under isomorphisms Ẽ → Ẽ
associated with elements of SL2(Z) since z 7→ z/(cτ + d) (therefore c 7→ c/(cτ + d)) and
β−1 7→ (cτ + d)β−1. In particular, this determines a complex orientation of TMF⊗ C.

Although the coordinate z is perhaps the most obvious one, there is a huge amount
of freedom in choosing complex orientations of the Ellτ and Ell. Indeed, any holomorphic
function on H × C that vanishes to first order on H × {0} ↪→ H × C defines a different
orientation of Ell. Such a function can be expressed as a power series in z with coefficients
in O(H) whose lowest order nonvanishing term is z. In the language of formal group laws,
this is the statement that all coordinates are related to the coordinate z via an isomorphism
of formal group laws. We consider two such choices, namely the variants of the Weierstrass
sigma function from §6.2

σ(τ, z), υ(τ, z) ∈ O(H× C).(69)

These coordinates lead to different tensor product formulas for Chern classes than (68).
Furthermore, the orientations from (69) are not invariant under the SL2(Z)-action on E,
and hence fail to descend to a consistent complex orientation of the sheaf Ell or its global
sections, TMF⊗ C.

The construction of MU〈6〉- and MO〈8〉-orientations from a cubical structure can be
made completely explicit for elliptic curves over C. In this case, the coordinate z on C
from (67) allows one to express the cubical structure Ẽ ×H Ẽ ×H Ẽ in terms of a function

on the universal cover C × C × C × H → Ẽ ×H Ẽ ×H Ẽ . One can check explicitly that the
(necessarily unique) cubical structure in these coordinates is given by

s =
σ(τ, x+ y)σ(τ, x+ z)σ(τ, y + z)σ(τ, 0)

σ(τ, x+ y + z)σ(τ, x)σ(τ, y)σ(τ, z)
=
υ(τ, x+ y)υ(τ, x+ z)υ(τ, y + z)υ(τ, 0)

υ(τ, x+ y + z)υ(τ, x)υ(τ, y)υ(τ, z)
(70)

which we interpret as a class in s ∈ H0(CP∞×CP∞×CP∞;O(H)[β, β−1]) ' O(H)[[x, y, z]].
We observe further that s is SL2(Z)-invariant; this follows from the standard transforma-
tion properties of the σ-function. Hence, (70) determines a compatible family of MU〈6〉-
orientations for the sheaf of cohomology theories Ell as well as the global sections TMF⊗C.

We observe that the pullback of O(−0) under the inversion map Ẽ → Ẽ is canonically
isomorphic to O(−0), so that we can ask for the additional condition on s to obtain an
MO〈8〉-structure. By inspection (e.g., because σ is odd) the cubical structure s satisfies
this additional requirement and hence gives an MO〈8〉-orientation.

We further observe that the class s ∈ H0(CP∞×CP∞×CP∞;O(H)[β, β−1]) is the top
Chern class of V3 relative to the complex orientations given by (69). Indeed, the value of
the MU〈6〉-orientation on any complex vector bundle can be computed using the splitting
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principle and the complex orientation associated with (69). To summarize, although these
complex orientations of Ell fail to descend to Mell, they determine the canonical MU〈6〉-
orientation that does descend. This turns out to mirror the equivariant refinement of the
string orientation.

7.3. Equivariant refinements of orientations. We start with a motivating example.

Example 7.4. This is a continuation of Example 7.2. We can ask for an equivariant
refinement of the complex orientation of K-theory relative to the Atiyah–Segal completion
map,

Rep(U(1)) = KU(1)(pt)
completion−→ K(BU(1)) = K(CP∞)

∈

cU(1)
?7→ ∈

c
(71)

i.e., a virtual representation that maps to the chosen complex orientation. There is in-
deed a unique such virtual representation, namely cU(1) = 1 − R where R is the defining
representation of U(1).

Using the elliptic Atiyah–Segal completion map from §3.2, we can ask for a similar
equivariant refinement of a complex orientation of elliptic cohomology over C,

Γ(OE∨) = Γ(EllU(1)(pt))
completion−→ Ell(BU(1)) = Ell(CP∞).

∈

cU(1)
?7→ ∈

c
(72)

However, one immediately finds that no such class can exist, even for elliptic cohomology
for a single elliptic curve: the class c defines a function on a formal neighborhood of 0 ∈ E∨τ
that vanishes to first order at zero, and since globally defined functions on E∨τ are constant,
any putative class cU(1) is the zero class. Stated in more algebro-geometric language, a
lift (72) for a fixed curve Eτ is asking for a global section of O(−0) on E∨τ ,

Γ(E∨τ ;O(−0))
completion−→ Ellτ (BU(1)) = Ell(CP∞).

∈

cU(1)
?7→ ∈

c

and the only such global section cU(1) is the zero section. Under completion this is sent to
the zero class in Ell(CP∞), which does not define a complex orientation. We summarize
this observation as follows:

Proposition 7.5. No MU-orientation of a complex analytic elliptic cohomology theory
Ellτ may be refined to an equivariant MU-orientation of the corresponding complex analytic
equivariant elliptic cohomology theory defined over E∨τ .

Although this is not particularly deep, it highlights a crucial point: Chern classes in
elliptic cohomology—even for a single elliptic curve—do not admit equivariant refinements.

The resolution to this is to introduce a twisting. This twisting refers to a relaxing of
the setup in (72),

Γ(E∨τ ;O(−0)⊗ L⊗ ω−1)
completion−→ Ell2τ (BU(1)) = Ell2(CP∞)

∈

c̃U(1)
?7→

∈

c̃
(73)

where L is a line bundle on E∨τ , and for convenience we have changed points of view, taking
Chern classes c̃ and c̃U(1) in degree 2. The twisted completion map (73) requires additional
data, namely a trivialization of L near 0 ∈ E∨τ to identify the section c̃U(1) with a class

in Ell2τ (BU(1)).

Definition 7.6. Let E denote the restriction of Ẽ to a holomorphic submanifold U ⊂ H.
A twisted equivariant refinement of a complex orientation of a complex analytic elliptic
cohomology theory associated with E is a line bundle L on E∨ together with a nowhere
vanishing section c̃U(1) ∈ Γ(E∨;O(−0) ⊗ L ⊗ ω−1) and a choice of trivialization of L near
the zero section 0: U → E∨ that identifies the restriction of c̃U(1) with the non-equivariant
Chern class c̃.
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Remark 7.7. We recall that a nowhere vanishing section c̃U(1) ∈ Γ(E∨;O(−0) ⊗ L ⊗ ω−1)

is the data as a section c̃U(1) ∈ Γ(E∨;L ⊗ ω−1) that is nowhere vanishing away from the
zero section of E∨ and vanishes to precisely first order at 0.

With respect to a fixed elliptic cohomology theory, the freedom to choose a complex
orientation is absorbed by the many ways to trivialize a fixed line bundle—in the notation
of the previous definition, the line bundle L and the section c̃U(1) are essentially unique:

Proposition 7.8. Let E be a family of elliptic curves as in Definition 7.6.

(1) Any complex orientation of the complex analytic elliptic cohomology theory associ-
ated to E admits a twisted equivariant refinement.

(2) The data (L, c̃U(1)) of the twisted equivariant refinement are unique up to unique
isomorphism, with any (L, c̃U(1)) having a unique isomorphism to line bundle de-
termined by the function υ(τ, z) defined in (48).

Remark 7.9. The line bundle on BunU(1)(E) ' E∨ determined by υ(τ, z) has well-known de-

scriptions, e.g., as the Quillen determinant line bundle for the family of twisted ∂̄-operators
parameterized by Pic(E) = E∨ (e.g., [BET19, Lemma 7.2]) or as a square root of the level 1
Looijenga line bundle (e.g., [BET19, Remark 7.9]).

Proof of Proposition 7.8. We tackle the uniqueness (2) first. Given two line bundles L
and L′ with sections c̃U(1) and c̃′U(1) satisfying the requirements, c̃′U(1)/c̃U(1) is a nowhere

vanishing section of L′ ⊗L∨ and so determines an isomorphism L′ ' L that sends c̃′U(1) to

c̃U(1). Hence (L, c̃U(1)) is unique up to unique isomorphism.
To prove (1), we construct an equivariant refinement where L is the line bundle with

section c̃U(1) determined by the function υ(τ, z) defined in §6.2. Recall this line bundle is
defined as the trivial line bundle on H × C with descent data to E∨ constructed from the
transformation properties of υ(τ, z). This specifies a preferred trivialization near the zero

section 0: H → Ẽ∨: view the section c̃U(1) as the function υ(τ, z) on H × C and restrict
to a neighborhood of H × {0} ⊂ H × C. Now given any E → U we can restrict along

the associated inclusions U ⊂ H and E∨ ⊂ Ẽ∨ to obtain a line bundle on E∨ with section
and a trivialization in the neighborhood of the zero section 0: U → E∨. This recovers the
complex orientation specified by the coordinate υ(τ, z), as described near (69). All other
complex orientations arise from changing the coordinate for the corresponding formal group
law, but changes of coordinate exactly correspond to changes of trivialization of L near the
zero section of E∨, so all coordinates can be recovered this way. �

One can similarly ask for an equivariant refinement of the MU〈6〉-orientation and
MString-orientation, namely as a class

Γ((E∨)×3; Θ3(O(−0)))
completion−→ Ell(BU(1)×BU(1)×BU(1))

∈

sU(1)
?7→ ∈

s
(74)

lifting the class s defined by (70) to a section of Θ3(O(−0)) on (E∨)×3 ' BunU(1)×3(E).

Definition 7.10. An equivariant refinement of the MO〈8〉-orientation is a Θ3(O(−0))-
twisted U(1)×3-equivariant elliptic cohomology class whose image under (74) is the Ando–
Hopkins–Strickland characteristic class for the canonical MO〈8〉-orientation.

Theorem 7.11. Let E be a family of elliptic curves as in Definition 7.6.

(1) There exists a unique equivariant refinement of the MO〈8〉-orientation for complex
analytic elliptic cohomology for the curve E.

(2) Furthermore, the equivariant refinement sU(1) equals the twisted equivariant Euler
class of Proposition 7.8 for the virtual vector bundle V3 from (65).

(3) In the universal case E = Ẽ, the refinement sU(1) descends to the stack BunU(1)×3(E).

Proof. By inspection, the formulas (70) for the non-equivariant cubical structure have a
unique equivariant extension given by the same formulas: when considered as a function
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on H × C × C × C, the formulas (70) give sections of Θ3(O(−0)) on Ẽ∨ ×H Ẽ∨ ×H Ẽ∨.
This gives the equivariant characteristic class (74) for V3. On inspection of the formulas,
this equals the twisted equivariant Euler class of V3, using the class from Proposition 7.8.
Finally, we observe that this cubical structure is invariant under the action of SL2(Z), and so
descends to E∨×Mell

E∨×Mell
E∨, and therefore is a global class for Ell0U(1)×U(1)×U(1)(pt)⊗

Θ3(O(−0)). �

Remark 7.12. The uniqueness of a cubical structure for O(−0) on the elliptic curve produces
a canonical MU〈6〉-orientation of non-equivariant elliptic cohomology. However, there are
possibly more cubical structures for O(−0) on the formal group, so this canonical class need
not be unique. We find it striking that the cubical structure on O(−0) produces a unique
equivariant MU〈6〉-orientation: the possible ambiguities on the formal group disappear in
the equivariant refinement.

Appendix A. Background

A.1. Some Lie theory. A reference for the following results is [Seg68].

Lemma A.1. Let T < G be a maximal torus for a connected compact Lie group with
normalizer N(T ) < G. If t1, t2 ∈ T are conjugate in G, they are conjugate by an element
of N(T ).

Let t be the Lie algebra of a maximal torus T of a compact connected Lie group G, and
W = N(T )/T be the Weyl group. The following is proved in the same way as the above.

Corollary A.2. If X1, X2 ∈ t are conjugate by the adjoint action of G on t, then they are
conjugate by an element of N(T ).

Proposition A.3. The ring of W -invariant holomorphic functions on tC is equivalent to
the ring of G-invariant holomorphic functions on gC.

Proof. Any conjugation-invariant function on gC clearly restricts to a W -invariant function
on tC; the interesting direction is to extend a W -invariant function on tC to a G-invariant
function on gC. On the (Zariski) open sublocus grs

C of regular semisimple elements, any
element by definition may be conjugated into tC, so that a holomorphic function on tC
can automatically be extended to a holomorphic function on grs

C . By Corollary A.2, the
extension is conjugation invariant if the original function is W -invariant. It remains to
extend further to gC (which would automatically continue to be conjugation-invariant). But
we may approximate a holomorphic W -invariant function on tC by a W -invariant polynomial
on tC and instead simply have to extend a polynomial from grs

C to all of gC. By Algebraic
Hartogs’ Lemma, the polar locus is a closed subset of pure codimension one. However, the
closures of all codimension one points of gC \ grs

C contain 0, where our polynomial is clearly
well-defined, and so the polar locus must be empty and we have a polynomial extension, as
desired. �

Remark A.4. The same result holds, with the same proof, replacing holomorphic functions
in Proposition A.3 with germs of holomorphic functions.

Proposition A.5. Let G be a compact Lie group, not necessarily connected. Given h ∈ G
and X,X ′ ∈ gh sufficiently small, the set of elements which conjugates heX to heX

′
is

contained in C(h), the centralizer of h.

Proof. Let S = {g ∈ G|gheXg−1 = heX
′}; by construction, it is a coset of C(heX).

By [BG94, Lemma 1.3], we may assume X is sufficiently small such that C(heX) ⊂ C(h)
(compare Lemma 3.1 above). Hence either S ⊂ C(h), as desired, or S is entirely disjoint
from C(h). Choose a faithful representation G ↪→ U(n) and assume for now the result for
U(n). Then S ⊂ CU(n)(h), where CU(n)(h) ⊂ U(n) is the subgroup of U(n) which central-
izes h. But then S ⊂ G∩CU(n)(h) = CG(h), as desired. Hence, it suffices to show the result
for G = U(n).
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The statement is clearly invariant under conjugation, so we may assume h is diagonal
and of some block-form for a partition n = n1 + · · ·+ nk, where h has distinct eigenvalues
λ1, · · · , λk with each eigenvalue λi occurring with multiplicity ni. Then C(h) is the cor-
responding group of block-diagonal matrices. Pick disjoint open intervals Ui centered at
the λi and interpret “sufficiently small” to mean that the eigenvalues of the ith block of
heX , heX

′
remain within Ui. Then one may show directly any element conjugating heX to

heX
′

must be block-diagonal, i.e., lie in C(h), as desired. �

Corollary A.6. For G, h,X,X ′ as in the previous proposition, the set of elements of G0

(the identity connected component) which conjugate heX to heX
′

is contained in Gh0 .

Lemma A.7. Let G be a compact Lie group. For a fixed g ∈ G, consider the adjoint action
Adg : g→ g. Define Ag = Adg− id so that kerAg = Lie(C(g)). Then imageAg∩kerAg = 0.

Proof. We wish to show kerA2
g = kerAg, i.e., the generalized eigenspace of Adg with eigen-

value 1 is in fact just a usual eigenspace. But this follows from Adg being self-adjoint with
respect to the nondegenerate Killing form, so that all generalized eigenspaces of Adg are
usual eigenspaces. �

Lemma A.8. Given G as above and g ∈ G, for any element X ∈ g sufficiently small, there
exists some small Y ∈ gg such that geX is conjugate to geY .

Proof. It suffices to prove the above infinitesimally, i.e., to show that on the tangent space
TgG ' g as identified with the Lie algebra by left-translation under g−1, the orbit of
gg under the (g-twisted) adjoint action spans the full tangent space. But indeed, the
centralizer gg is exactly kerAg as in the previous lemma, while the infinitesimal adjoint
action under conjugacy spans imageAg. The prior lemma plus a simple dimension count
yields that g ' kerAg ⊕ imageAg, i.e., the full tangent space is spanned by the centralizer
and infinitesimal deformations under conjugacy, which is what we wished to show. �

We recall from Definition 2.2 that C2(G) ⊂ G×G is the subsheaf of pairs of commuting
elements in G, and we use the notation h = (h1, h2) ∈ C2(G) to denote an element of the
set h ∈ C2(G)(pt), i.e., (h1, h2) ∈ G×G are just a pair of commuting elements in G.

Lemma A.9. Given G as above and (h1, h2) ∈ C2(G), suppose X1, X2 ∈ g sufficiently
small are such that (h1e

tX1 , h2e
tX2) ∈ C2(G) for 0 < t < 1. Then there exists some small

Y1, Y2 ∈ tgh such that heX is conjugate to heY .

Proof. The commutation hypothesis is equivalent to X1 ∈ gh2 , X2 ∈ gh1 , [X1, X2] = 0.
Hence, we may first use the above Lemma A.8 with G = C(h2) to conjugate X1 into
Y1 ∈ gh1 ; as it is still also in gh2 , it is in gh; let us suppose X2 has now been conjugated to
some X ′2. We may then apply Lemma A.8 with G = C(h1, Y1) to conjugate X ′2 further into
gh2 and hence also lie in gh; note that Y1 stays fixed under this further conjugation. Finally,
as [X1, X2] = 0, we also have that Y1, Y2 commute. We may hence simultaneously conjugate
them from gh into a Cartan (maximal abelian subalgebra) tgh as they are certainly inside
some Cartan, and all Cartans are conjugate. �

Lemma A.10. For h ∈ C2(G), the function h 7→ rank Gh0 is locally constant.

Proof. This follows from Lemma A.9 and Lemma 3.1: it suffices to check local constancy
as h is deformed to heεX for X ∈ tgh and ε sufficiently small, whereupon one may take TGh0
to be a maximal torus for both Gh0 and Ghe

εX

0 . �

A.2. The Cartan model for equivariant cohomology. The equivariant cohomology of
a manifold with G-action is defined by the Borel construction,

HG(M) := H(M ×G EG),

where above H(−) denotes ordinary cohomology with complex coefficients. By naturality,
HG(M) is a module over HG(pt) = H(BG). The following standard facts will be useful;
cohomology is taken with complex coefficients, H(−) = H(−;C).



40 DANIEL BERWICK-EVANS AND ARNAV TRIPATHY

Lemma A.11. For G connected there is a natural isomorphism HG(M) ' HT (M)W for
any maximal torus T < G with Weyl group W = N(T )/T .

Lemma A.12. For H < G a normal subgroup of finite index, there is a natural isomorphism
HG(M) ' HH(M)G/H .

The Cartan model for equivariant cohomology starts with the graded algebra Ω•G(M) :=
Sym(gC; Ω•(M))G, where the polynomial generators in g∨C ⊂ Sym(g∨C) have degree 2 and
differential forms have their standard degree. We identify elements of Sym(gC; Ω•(M))G

with G-invariant polynomial functions on gC valued in Ω•(M). In this description, define a
differential Q on Ω•G(M)

(Qα)(X) = d(α(X))− ιXα(X), X ∈ gC α ∈ Ω•G(M)(75)

extended complex-linearly, where d is the ordinary de Rham differential on forms, and ιX
denotes contraction with the vector field on M associated to X under the infinitesimal
action of G on M . One verifies that Q2 = 0 on G-invariants using Cartan’s magic formula.

The chain complex (Ω•,pol
G (M), Q) is the Cartan model for equivariant cohomology, and we

have an isomorphism
H((Ω•G(M)), Q) ' HG(M).

We refer to [Mei06] for an excellent introduction to equivariant cohomology in the Cartan
model.

A.3. Lie groupoids, sheaves, and smooth stacks. Let Mfld denote the category of
manifolds and smooth maps. A Lie groupoid, denoted {G1 ⇒ G0}, consists of a manifold
of objects, G0, a manifold of morphisms, G1, source and target maps, s, t : G1 → G0, a unit
map G0 → G1, and a composition map c : G1 ×G0

G1 → G1. We further require that s is
a submersion so that the fibered product G1 ×G0

G1 exists in manifolds. These data are
required to satisfy the usual axioms of a groupoid.

Example A.13. Let a Lie group G act on a manifold M . The action Lie groupoid, de-
noted M/G, has M as objects and G×M as morphisms. The source map s : G×M →M is
the projection, and the target map t : G×M →M is the action map. The unit M → G×M
is the inclusion along the identity element e ∈ G. Composition is inherited from multipli-
cation in G.

A presheaf is a functor F : Mfldop → Sets. A presheaf F is a sheaf if for all open covers
{Ui} of all manifolds S, the diagram

F (S)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui
⋂
Uj)

is an equalizer. The set F (S) are the S-points of the (pre)sheaf F . A (pre)sheaf is rep-
resentable when its values are determined by the set of maps to a fixed smooth manifold,
F (S) = Map(S,N), N ∈ Mfld. Note that a representable presheaf is a sheaf. When working
with the functor of points, we will frequently use the same notation to denote a smooth
manifold and its representable sheaf so that, e.g., N(S) = Map(S,N) is the S-points on N .
The following examples indicate the flavors of non-representable presheaves that appear in
the body of the paper, namely sub-objects and (coarse) quotients.

Example A.14. Given a smooth manifold Z, let Y ⊂ Z be a subset (not necessarily a
smooth submanifold). Define a presheaf whose S-points are maps S → Z with image in the
subset Y ⊂ Z. It is easy to check that this presheaf is in fact a sheaf. In a mild abuse of
notation, we usually denote the presheaf defined above by Y .

Example A.15. Given a G-manifold M , define the coarse quotient presheaf (M/cG)pre

as having S-points the set M(S)/G(S); explicitly, these are S-points of M subject to the
equivalence relation that a pair of maps f, f ′ : S → M are equivalent if there is g : S → G
such that f ′ = g · f using the G-action on M on the right hand side. Define the coarse
quotient sheaf, denoted M/cG, as the sheafification of the presheaf (M/cG)pre.
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Definition A.16. Define a generalized Lie groupoid as a groupoid objects in presheaves on
manifolds, denoted {G1 ⇒ G0}. Explicitly, the data of a generalized Lie groupoid consists
of presheaves G1, G0, and maps of presheaves called source, target, unit, and composition.
These data are required to satisfy the properties of a functor Mfldop → Grpd from manifolds
to groupoids given by S 7→ {G1(S)⇒ G0(S)}.
Definition A.17. A smooth stack is a category fibered in groupoids over manifolds satis-
fying descent with respect to open covers.

For each manifold S a stack assigns a groupoid, and to each map S → S′, a stack
assigns a functor between groupoids. These data can be assembled into a weak 2-functor
from manifolds to groupoids. A weak 2-functor from manifolds to groupoids that doesn’t
necessarily satisfy descent is called a prestack. Stackification is the left adjoint to the
forgetful functor from stacks to prestacks.

Example A.18. Any presheaf (of sets) on the site of smooth manifolds determines a
prestack, and any sheaf determines a stack. Indeed, there is a faithful embedding of sheaves
into stacks. In particular, smooth manifolds (regarded as representable sheaves) embed into
smooth stacks. We often use the same notation, e.g., N , to denote a smooth manifold, its
representable sheaf, and the associated smooth stack.

A reference for the relationship between Lie groupoids and stacks is [BX11, §1]. We
briefly review some of the highlights.

Example A.19. The S-points of a generalized Lie groupoid G = {G1 ⇒ G0} define a
prestack whose value on S is the groupoid {G1(S)⇒ G0(S)}. All the stacks in this paper
come from applying stackification to prestacks of this form. We use the notation [G1 ⇒ G0]
or [G0/G1] to denote the stackification of the prestack {G1 ⇒ G0}.
Example A.20. Given a G-manifold M , the quotient stack [M/G] is the stack underlying
the action Lie groupoid M/G. Explicitly, a map S → [M/G] is the data of a pair (P, σ),
where P → S is a principal G-bundle on S, and σ : P → M is a G-equivariant map.
Isomorphisms between S-points (P, σ) ⇒ (P ′, σ′) are isomorphisms of principal bundles
P → P ′ compatible with the G-equivariant maps to M .

Remark A.21. Note that there is always a map (in the category of smooth stacks) [M/G]→
M/cG from the stack quotient to the coarse quotient sheaf. This is an isomorphism (in the
category of stacks) if and only if the G-action on M is free so that the sheaf M/cG is
representable.

Definition A.22. A groupoid presentation of a stack X is a Lie groupoid {G1 ⇒ G0}
whose underlying stack is equivalent to X , i.e., X ' [G1 ⇒ G0]. When such a presentation
exists, X is a differentiable stack.

Definition A.23. An atlas for a stack X is a map p : U → X whose source is a manifold U
with the property that for any other map q : V → X whose source is a manifold V , the
2-fibered product U×X V is representable by a smooth manifold, and the map U×X V → V
is a submersion of manifolds.

Lemma A.24. An atlas U → X defines the groupoid presentation, {U ×X U ⇒ U} where
all the structure maps in the groupoid are constructed from the universal property of the
pullback. Hence a stack has a Lie groupoid presentation if and only if it admits an atlas.

Finally, we will construct holomorphic structures on stacks in terms of holomorphic
atlases, defined as follows.

Definition A.25. A holomorphic atlas is an atlas U → X where U and U×XU are given the
structure of a complex manifold and all the structure maps in the groupoid {U ×X U ⇒ U}
are holomorphic. Given a smooth stack X , a choice of holomorphic atlas U → X is a choice
of holomorphic structure, and X with this fixed choice is a complex analytic stack.

Example A.26. Suppose that a discrete group G acts on a complex manifold Z preserving
the complex structure. Then Z → [Z/G] is a holomorphic atlas for the quotient stack.
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