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Abstract

We study the nonconvex optimization landscape for maximum likelihood estima-
tion in the discrete orbit recovery model with Gaussian noise. This is a statistical
model motivated by applications in molecular microscopy and image process-
ing, where each measurement of an unknown object is subject to an independent
random rotation from a known rotational group. Equivalently, it is a Gaussian
mixture model where the mixture centers belong to a group orbit.

We show that fundamental properties of the likelihood landscape depend on
the signal-to-noise ratio and the group structure. At low noise, this landscape is
“benign” for any discrete group, possessing no spurious local optima and only
strict saddle points. At high noise, this landscape may develop spurious local
optima, depending on the specific group. We discuss several positive and neg-
ative examples, and provide a general condition that ensures a globally benign
landscape at high noise. For cyclic permutations of coordinates on Rd (mul-
tireference alignment), there may be spurious local optima when d � 6, and we
establish a correspondence between these local optima and those of a surrogate
function of the phase variables in the Fourier domain.

We show that the Fisher information matrix transitions from resembling that
of a single Gaussian distribution in low noise to having a graded eigenvalue struc-
ture in high noise, which is determined by the graded algebra of invariant poly-
nomials under the group action. In a local neighborhood of the true object, where
the neighborhood size is independent of the signal-to-noise ratio, the landscape
is strongly convex in a reparametrized system of variables given by a transcen-
dence basis of this polynomial algebra. We discuss implications for optimization
algorithms, including slow convergence of expectation-maximization, and possi-
ble advantages of momentum-based acceleration and variable reparametrization
for first- and second-order descent methods. © 2021 Wiley Periodicals LLC.
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1 Introduction
We study statistical estimation of a vector �� 2 Rd from noisy observations,

where each observation is subject to a random and unknown rotation. Letting G �
O.d/ be a known subgroup of orthogonal rotations in dimension d , we consider
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the observation model

(1.1) Y D g � �� C �":

Here, g � Unif.G/ is an unobserved uniform random element of this group, � > 0
is the noise level, and " � N .0; Id/ is observation noise that is independent of g.
This model is sometimes referred to as multi-reference alignment, the group action
channel, or the orbit recovery problem [1, 2, 6, 7, 10, 13, 14, 37].

Study of this model has largely been motivated by its relevance to the struc-
ture recovery problem arising in single-particle cryoelectron microscopy (cryo-
EM) [19, 22, 25]. Cryo-EM is an experimental method of determining the 3D
structure of a molecule by imaging many cryogenic samples of the molecule from
different and unknown viewing angles. Due to limitations of electron dose, the
individual images are subject to high levels of measurement noise, and they must
be aligned and averaged to obtain a high-resolution reconstruction of the molecule.
There is extensive literature on computational methods for this problem, and we
refer readers to the recent surveys [9,47]. In our work, we study the simpler model
(1.1), which omits many complications in cryo-EM such as a tomographic projec-
tion, the contrast-transfer function, and structural heterogeneity. We do this so as
to focus our attention on some of the fundamental features of this reconstruction
problem that may arise due to the latent rotation g.

It has been observed since [45] that the difficulty of estimation in the model (1.1)
has an atypically strong dependence on the noise level � , and this is a common
theme in subsequent study [2, 6, 7, 37]. Figure 1.1 contrasts a low-noise and high-
noise setting in a simple example, where G is the group of threefold rotations
on the plane R2. Three distinct clusters corresponding to the orbit points fg�� W
g 2 Gg are observed in low noise, whereas only a single large cluster is apparent
in high noise. The number of samples needed to recover �� and the dependence
of this sample complexity on � were studied in [2, 6]. In particular, [6] showed
that method-of-moments estimators can achieve rate-optimal sample complexity
in � , and connected this complexity to properties of the algebra of G-invariant
polynomials.

The focus of our current work is, instead, on maximum likelihood estimation
for ��. Maximum likelihood is a widely used approach in practice, for either ab
initio estimation of �� or for iterative refinement of a pilot estimate obtained by
other means [41–43, 45]. Letting Y1; : : : ; Yn be i.i.d. observations from the model
(1.1), the maximum likelihood estimate (MLE) is a vector y� 2 Rd that maximizes
the log-likelihood function

� 7! 1

n

nX
iD1

logp� .Yi /;
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FIGURE 1.1. Data samples and contours of negative log-likelihood
Rn.�/ for the group of threefold rotations on R2, where �� D .1; 0/.
Left: 10,000 samples at noise level � D 0:4. Right: 100,000 samples at
noise level � D 4. (Note the difference in axis limits between the data
plots and contour plots.) Values in the contour plots are displayed under
an affine transformation for better visualization.

where p� is the probability density of Y marginalizing over the latent rotation
g � Unif.G/. We denote the negative log-likelihood function by Rn.�/; this func-
tion is also depicted in Figure 1.1 for low and high noise. The success of optimiza-
tion algorithms for computing the MLE for ab initio estimation and for iterative
refinement depends, respectively, on the global function landscape of Rn.�/ and
on its local landscape in a neighborhood of ��.

In this work, we study the function landscape of Rn.�/, assuming that the true
vector �� 2 Rd is suitably generic. We restrict attention to discrete groups G, so
thatRn.�/ has isolated critical points, and we derive several results. First, we show
that the global landscape is “benign” for sufficiently low noise, having no spurious
local minimizers for any discrete group. Second, we show that the local landscape
in a � -independent neighborhood of �� is also benign at any noise level � > 0, and
that Rn.�/ is strongly convex in this neighborhood after suitable reparametriza-
tion. Third, we relate the critical points of the global landscape in high noise to
a sequence of simpler optimization problems defined by the symmetric moment
tensors underG. We show that for discrete rotations in R2 as in Figure 1.1, and for
the symmetric group that permutes the coordinates of Rd , the global landscape is
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benign also at high noise. In contrast, for the group of cyclic permutations in Rd ,
the global landscape may not be benign for even d � 6 and odd d � 53.

Our motivations for studying the MLE and the likelihood landscape are twofold.
First, classical statistical theory indicates that in the limit n!1 for fixed dimen-
sion d , the MLE achieves asymptotic efficiency, meaning that y� converges to ��
at an O.1=

p
n/ rate, with asymptotically optimal covariance I.��/�1 (the inverse

of the Fisher information matrix) matching the Cramer-Rao lower bound (see [31,
sec. 2.5]). This need not hold for method-of-moments estimators as studied in [6].
Our results connect one aspect of [6] regarding the sample complexity for “list-
recovery of generic signals” to the MLE, by showing that the eigenstructure of
the Fisher information matrix I.��/ corresponds to a sequence of transcendence
degrees in the graded algebra of G-invariant polynomials.

Second, a body of empirical literature in cryo-EM suggests that Rn.�/ may
have spurious local minimizers. For ab initio estimation, this has motivated the de-
velopment of a variety of optimization algorithms including stochastic hill climb-
ing [21], stochastic gradient descent [40], and “frequency marching” [8]. However,
at present, the function landscape of Rn.�/ is not theoretically well understood,
even in simple examples of group actions. For instance, it is unclear how this
landscape depends on properties of the group, and whether the roughness of this
landscape is due to insufficient sample size or is a fundamental aspect of the model
even in the n!1 limit. Our work takes a step towards understanding these ques-
tions, and our results have concrete implications for descent-based optimization
algorithms in this problem. We discuss these implications in Section 1.3 below.

1.1 The orbit recovery model
We study the orbit recovery model (1.1) in the setting of a discrete group. Let

G � O.d/ � Rd�d be a discrete subgroup of the orthogonal group in dimension
d , with finite cardinality

jGj D K:

Each observation is modeled as

Y D g � �� C �"

where g � Unif.G/, " � N .0; Id/, and these are independent. Here, � > 0 is
the noise level, which we will assume is known. This is a K-component Gaussian
mixture model with equal weights, where the centers of the mixture components
are the points of the orbit of �� under G, given by

O�� D fg�� W g 2 Gg:
The marginal density of Y in this model is the Gaussian mixture density

(1.2) p��.Y / D
1

K

X
g2G

�
1p
2��2

�d
exp

�
�kY � g��k

2

2�2

�
:
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For �; � 0 2 Rd , note that p� D p� 0 if and only if the K mixture components have
the same centers, i.e., O� 0 D O� . This means the parameter �� is statistically
identifiable in this model up to its orbit.

Given n independent samples Y1; : : : ; Yn distributed according to (1.1), we study
the landscape of the negative log-likelihood empirical risk

(1.3) Rn.�/ D �1
n

nX
iD1

logp� .Yi /C const:

Here, const denotes a � -independent value that we introduce to simplify the ex-
pression for this risk; see (2.2) for details. Our results will apply equally to a
setting where the true group element g in (1.1) is not uniform, and we discuss this
in Remark 2.1.

This function Rn.�/ is nonconvex for any nontrivial group G. A maximum
likelihood estimator y� 2 Rd is any global minimizer of Rn.�/. Note that if y�
minimizes Rn.�/, then all points in its orbit Oy�

also minimize Rn.�/, so the MLE
is also only defined up to its orbit.

Fixing the true parameter �� 2 Rd , we denote the mean of Rn.�/ by

(1.4) R.�/ D �E� logp� .Y /
�C const;

where E is the expectation over both g and " in the model Y D g � �� C �".
This function R.�/ depends implicitly on the true parameter ��. We call R.�/ the
population risk, and this may be understood as the n ! 1 limit of Rn.�/. Note
that

(1.5) R.�/ D DKL.p��kp� / � E�logp��.Y /�C const

where DKL.pkq/ D
R
p.y/ log p.y/

q.y/
dy is the Kullback-Leibler divergence be-

tween densities p and q, and the remaining two terms do not depend on � . Thus, a
point � 2 Rd is a global minimizer of R.�/ if and only if p�� D p� , i.e., � 2 O�� .

It was established in [34] that under mild conditions for empirical risks such
as (1.3), due to concentration of the gradient and Hessian of Rn.�/ around those
of R.�/, various properties of the function landscape of R.�/ translate to those
of Rn.�/ for sufficiently large n—these properties include the number of critical
points and the number of negative Hessian eigenvalues at each critical point. Ver-
sions of this argument were also used in the analyses of dictionary learning and
phase retrieval in [49, 50]. Our analysis will follow a similar approach, and the
core of our arguments will pertain to the population risk (1.4) rather than its finite-
n counterpart (1.3).

We will also study properties of the Fisher information matrix in this model.
This is given by

(1.6) I.��/ D �E�r2� logp� .Y /
��
�D��

� D r2�R.��/;
which is the Hessian of the population risk R.�/ evaluated at its global minimizer
� D ��. It was shown in [14] that I.��/ is invertible if and only if all K points of
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the orbit O�� are distinct. We assume this condition in all of our results, and some
of our results will further restrict �� to satisfy additional generic properties that
hold outside the zero set of an analytic function on Rd . Identifying the MLE y� as
the point in its orbit closest to ��, [2] verified that y� is an asymptotically consistent
estimate for �� as n!1. By the classical theory of maximum likelihood estima-
tion in parametric models (see [51, Chapter 5]), we then have the convergence in
law

(1.7)
p
n.y� � ��/! N

�
0; I.��/

�1
�
:

Thus the eigenvalues of the Fisher information matrix determine the coordinate-
wise asymptotic variances of the MLE in an orthogonal basis for Rd .

1.2 Overview of results
We will be interested in the geometric properties of the function landscapes of

Rn.�/ and R.�/. The most ideal setting for nonconvex optimization is when these
landscapes are benign in the following sense.

DEFINITION 1.1. The landscape of a twice continuously differentiable function
f W Rd ! R is globally benign if the only local minimizers of f are global
minimizers, f is strongly convex at each such local minimizer, and each saddle
point of f is a strict saddle point.

This is equivalent to saying that the only points � 2 Rd where rf .�/ D 0 and
�min.r2f .�// � 0 are the global minimizers of f , and �min.r2f .�// > 0 strictly
at all such points. This condition has been discussed in [23, 26, 30], which show
that randomly initialized gradient descent converges to a global minimizer almost
surely under this condition, and that gradient descent perturbed with additive noise
can furthermore converge in polynomial time under a quantitative version of this
condition.

In our results, we will fix a generic true parameter �� 2 Rd . We study low-noise
and high-noise regimes, where the low-noise regime is defined by � < �0 for a
sufficiently small .��; d;G/-dependent constant �0 > 0, and the high-noise regime
by � > �0 for a (different) sufficiently large .��; d;G/-dependent constant �0 > 0.
It is the high-noise regime that is of primary interest in applications such as cryo-
EM. We provide results also for low noise, to contrast with the high-noise behavior,
and because these results may be of separate interest in other applications.

Global landscape and Fisher information at low noise
We show in Section 3 that both R.�/ and Rn.�/ are globally benign in the low-

noise regime for any discrete groupG, any �� whose orbit points are distinct under
G, and sufficiently large sample size n. That is, there exists �0 � �0.��; d;G/ for
which R.�/ and Rn.�/ do not have any spurious local minimizers when � < �0.

We also show that the Fisher information satisfies I.��/ � ��2 Id, where the
error of this approximation is exponentially small in ��2. Here, ��2 Id is the
Fisher information of the single Gaussian distribution N .��; �2 Id/. Thus the local
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geometries of R.�/ and Rn.�/ near �� resemble those of a single Gaussian, and
they do not “feel” the effects of the other mixture components.

We remark that the group structure plays an important role in our proof of this
global landscape result, and such a result is not true for general Gaussian mixture
models: For the three-component Gaussian mixture model

1

3
N .�1; �2 Id/C 1

3
N .�2; �2 Id/C 1

3
N .�3; �2 Id/;

it is known that the negative log-likelihood population risk as a function of .�1; �2; �3/ 2
R3d can have spurious local minimizers, even in the � ! 0 limit. Similar exam-
ples may be constructed for any number of mixture components K � 3 [27].

Fisher information at high noise
As the noise level � increases, a transition occurs in the structure of the Fisher

information matrix I.��/. We show in Section 4.4 that in the high-noise regime,
for any generic �� 2 Rd , there is a decomposition d D d1C d2C � � � C dL where

(1.8) I.��/ has d` eigenvalues on the order of ��2` for each ` D 1; : : : ; L:

The number d` is trdeg.RG
�`
/� trdeg.RG

�`�1
/, where trdeg.RG

�`
/ is the transcen-

dence degree over R of the space of G-invariant polynomials having degree � `.
The number L is the smallest integer for which trdeg.RG�L/ D d .

For the group of K-fold discrete rotations in R2, as in Figure 1.1, we have
L D K, d2 D 1, dK D 1, and d` D 0 for each other `. Thus I.��/ has one
eigenvalue of magnitude ��4, corresponding to the curvature of R.�/ in the radial
direction, and one eigenvalue of magnitude ��2K , corresponding to the direction
tangent to the circle f� 2 R2 W k�k D k��kg. For the symmetric group of all
permutations in Rd , we have L D d and d` D 1 for each ` D 1; : : : ; d . For cyclic
permutations in Rd , we haveL D 3, d1 D 1, d2 D dd�1

2
e, and d3 D bd�1

2
c. Here

d1 corresponds to the sum �1 C � � � C �d , d2 to the magnitudes of the remaining
Fourier coefficients of � , and d3 to the phases.

Applying (1.8) to the classical efficiency result (1.7) for the MLE, this shows that
y� estimates �� with an asymptotic covariance of O.�2L=n/. This rate agrees with
the results of [6] on list-recovery of generic signals �� by a method-of-moments
estimator. More precisely, (1.8) exhibits a decomposition of Rd into orthogonal
subspaces of dimensions d1; : : : ; dL such that the MLE y� estimates �� with an as-
ymptotic covariance of O.�2`=n/ in its component belonging to the `th subspace.
For any continuously differentiable function  W Rd ! R, a Taylor expansion of
 (i.e. the statistical delta method) yields also the convergence in law

(1.9)
p
n
�
 .y�/ �  .��/

�! N
�
0;r .��/>I.��/�1r .��/

�
as n ! 1. We show that when  is any G-invariant polynomial of degree `, the
gradientr .��/ belongs to the span of the first ` subspaces, so that .y�/ estimates
 .��/ with variance O.�2`=n/.
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Global landscape at high noise
Denote by

(1.10) T`.�/ D Eg �.g�/
`� 2 .Rd /
`
the `th moment tensor of g� , where Eg is the expectation over the uniform law g �
Unif.G/. The entries of T`.�/ consist of all order-` mixed moments of entries of
the random vector g� 2 Rd . Let k � kHS be the Euclidean norm of the vectorization
of such a tensor in Rd` . We relate the local minimizers of R.�/ and Rn.�/ in
the high-noise regime to a sequence of simpler optimization problems, given by
successively minimizing

(1.11) P`.�/ D kT`.�/ � T`.��/k2HS

over the variety

(1.12) V`�1 D
�
� 2 Rd W Tk.�/ D Tk.��/ for k D 1; : : : ; ` � 1	;

for ` D 1; : : : ; L. This sequence of optimization problems is related to the method
of moments, in that (1.11) may be interpreted as matching the order-` moments
T`.�/ to T`.��/, subject to the constraint (1.12) that the moments of lower order
have already been matched.

We show in Section 4.5 that for generic ��, if VL D O�� , each variety V`
is nonsingular with constant dimension, each restriction P`jV`�1 satisfies a strict
saddle condition, and the only local minimizers of each restriction P`jV`�1 are the
points � 2 V`, then the global landscape of R.�/ is also benign in the high-noise
regime. In such examples, the landscape of the empirical risk Rn.�/ is then also
globally benign with high probability when n � �2L. This requirement for n
matches the sample complexity for recovery of generic signals in [6]. We analyze
the two concrete examples of K-fold rotations in R2 and the symmetric group of
all permutations in Rd , showing that the global landscape is benign at high noise
in these examples.

The first condition VL D O�� means that �� is uniquely specified, up to its
orbit, by its first L moment tensors T1.��/; : : : ; TL.��/. These are the examples
in [6] where the notions of “generic list recovery” and “generic unique recovery”
coincide. We note that this condition alone is not sufficient to guarantee a benign
landscape. For instance, in the cyclic permutations example below, we have L D 3

and V3 D O�� for generic points �� 2 Rd in any dimension d , but spurious local
minima may exist.

Spurious local minimizers for cyclic permutations
The complexity of the sequence of optimization problems in (1.11)–1.12 de-

pends on the structure of the G-invariant polynomial algebra. As a more complex
example, we study in Section 4.6 the group G of cyclic permutations in Rd . Some
authors refer to this specific action as the multi-reference alignment (MRA) model,
and the invariant polynomial algebra for this group bears some similarities to the
continuous action of SO.3/ that is relevant for cryo-EM applications [6, 7, 37].
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For this group, we have L D 3, and P`.�/ does not have spurious local min-
imizers over V`�1 for ` D 1 and 2. For ` D 3 and odd d , denoting I D
f1; 2; : : : ; d�1

2
g, we show in Theorem 4.28 that minimizingP3.�/ over V2 is equiv-

alent to minimizing

FC.t1; : : : ; tjIj/ D �1
6

X
i;j;k2I[�I

iCjCk�0 mod d

r2i;�r
2
j;�r

2
k;� cos.ti C tj C tk/

over phase variables t1; : : : ; tjIj 2 �0; 2�/, where we identify t�i D �ti and set
ri;� as the modulus of the i th Fourier coefficient of ��. When d is even, there is an
additional term to this function as well as a second function F�.t1; : : : ; tjIj/, and
we refer to Section 4.6 for details.

We show that for high noise and generic �� 2 Rd , local minimizers of R.�/ are
in correspondence with local minimizers ofF�.t1; : : : ; tjIj/, where the magnitudes
of the Fourier coefficients of any such local minimizer � 2 Rd are close to those
of ��, and the differences in phases between the Fourier coefficients of � and those
of �� are close to the corresponding local minimizer of F�. In dimensions d � 5,
there are no spurious local minimizers, and the landscapes of R.�/ and Rn.�/ are
globally benign. In even dimensions d � 6 and odd dimensions d � 53, we
exhibit an open set U � Rd such that R.�/ and Rn.�/ do have spurious local
minimizers, for all �� 2 U . This is a phenomenon of the population risk R.�/ and
is not caused by finite-n behavior, so descent procedures may converge to these
spurious local minimizers even in the limit of infinite sample size. (We have found
via a computer search that spurious local minimizers may exist for odd d � 13,
but we will not attempt to make this rigorous.)

In the method-of-moments approach to MRA, the Fourier magnitudes of � are
recovered from the power spectrum, or the set of degree-2 polynomial invariants,
and the Fourier phases are recovered from certain degree-3 polynomial invariants
known as the bispectrum. The above surrogate functions F�.t1; : : : ; tjIj/ are func-
tions of the bispectrum, and it may be checked that they are examples of the non-
convex bispectrum inversion objective in [10, eq. (III.4)]. The spurious local min-
ima that we exhibit for even d � 6 correspond to the local minima also identified
in [10, p. 17]. The spurious local minima for odd d form a new family, which
demonstrates also that the objective in [10] may not be globally benign in such
settings.

Local landscape at high noise
Motivated by the possibility that R.�/ and Rn.�/ are not globally benign, we

study also their local landscapes restricted to a smaller neighborhood of �� in Sec-
tion 4.4. We show that there is a � -independent neighborhood U of ��, and a local
reparametrization by an analytic map ' W Rd ! Rd that is 1-to-1 on U , such that



MLE FOR THE DISCRETE ORBIT RECOVERY MODEL 11

R and Rn are strongly convex as functions of ' 2 '.U /, with unique local mini-
mizers in U . The coordinates of this map ' may be taken to be d polynomials that
form a transcendence basis of the G-invariant polynomial algebra.

We remark that this result does not automatically follow from the invertibility
of the Fisher information I.��/ established in [14], as this invertibility does not
preclude the possibility that the size of this neighborhood U shrinks as � !1. In
fact, it is not true that R.�/must be convex over � 2 U for a � -independent neigh-
borhood U , and the reparametrization by ' is important to ensure convexity. For
instance, in the high-noise picture of Figure 1.1, it is evident from the nonconvex
level sets that Rn.�/ is convex only in a small neighborhood of ��. However, it is
convex in a much larger neighborhood of �� when reparametrized by two coordi-
nates that represent the radius and angle.

High-noise expansion of the population risk
Our results in the high-noise regime are enabled by a series expansion of the

population risk function in ��2, given by

R.�/ D
1X
`D1

��2`S`.�/

for certain G-invariant polynomial functions S`.�/. For fixed �� 2 Rd , each
polynomial S`.�/ takes the form

S`.�/ D
1

2.`�/
kT`.�/ � T`.��/k2HS CQ`.�/

where Q`.�/ is in the algebra generated by G-invariant polynomials of degree
� ` � 1. We derive these results and provide a rigorous interpretation of this
expansion in Section 4.2.

By the relation (1.5), this is equivalent to a series expansion of the KL-divergence
DKL.p��kp� / in ��2. In the works [2,6,7], analogous expansions were performed
instead for upper and lower bounds to the KL-divergence, and these were then used
to study the sample complexity of estimating ��. To study the log-likelihood land-
scape, we must perform this expansion for R.�/ itself. Our proof of this series
expansion does not require G to be discrete (or �� to be generic), and this result
may be used also to study continuous group actions. Following the initial post-
ing of this work, this series expansion has recently been extended to more general
high-noise Gaussian mixture models in [28].

1.3 Implications for optimization
In this section, we discuss some implications of our results for descent-based

optimization algorithms in high-noise settings.
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Slow convergence of expectation-maximization
One of the most widely used optimization algorithms for minimizing Rn.�/ is

expectation-maximization (EM) (see [18], and [9, 45, 46] for applications in cryo-
EM). Starting from an initialization � .0/ 2 Rd , the EM algorithm iteratively com-
putes

� .tC1/ D arg min
�2Rd

Q.� j � .t//
where

Q.� j � .t// D �1
n

nX
iD1

EgjYi ;�.t/

"
log

 �
1p
2��2

�d
exp

�
�kYi � g�k

2

2�2

�!#

is the expectation of the full-data negative log-likelihood over the posterior law of
g 2 G. For each sample Yi , the density of this posterior law is

p.g j Yi ; � .t// D exp

 
�kYi � g�

.t/k2
2�2

!�X
h2G

exp

 
�kYi � h�

.t/k2
2�2

!
;

leading to the following explicit form of the EM iteration:

� .tC1/ D 1

n

nX
iD1

EgjYi ;�.t/ �g
>Yi �:

It is straightforward to verify that this is equivalent to the gradient descent (GD)
update

� .tC1/ D � .t/ � � � rRn.� .t//
with a fixed step size � D �2.

Our results indicate that in the high-noise regime, this step size � D �2 corre-
sponding to EM may not be correctly tuned for optimal convergence. For applying
GD to a smooth and strongly convex function f .�/ where

� Id � r2f .�/ � � Id;

the optimal step size is � � 1=�, and GD with this step size achieves a convergence
rate

(1.13) k� .t/ � � .0/k2 � O�.1 � c�=�/t�
for a constant c > 0 (see [36, theorem 2.1.14]). For any mean-zero group G, we
have (by Lemma 4.9) that d1 D 0 in the decomposition d D d1 C � � � C dL in
(1.8), so that �max.r2Rn.�// � ��4 locally near ��. Thus there is a flattening
of the landscape near ��, and GD should instead be tuned with the larger step size
� � �4 after reaching a small enough neighborhood of ��.

Figure 1.2 illustrates this for threefold rotations in R2, comparing 250 iterations
of EM versus GD with step size � D �4 on the high-noise example of Figure 1.1.
EM converges quite slowly after reaching a vicinity of the circle f� 2 R2 W k�k D
k��kg, and the improved convergence rate for step size � D �4 is apparent.
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(A) Distances dist.� .t/;O��/ to the or-
bit of the true parameter �� D .1; 0/,
for 250 iterates � .1/; : : : ; � .250/ of each
algorithm.

(B) First 30 iterates for each algorithm,
depicted on the contour plot of the neg-
ative log-likelihood function Rn.�/. It-
erates for EM and GD are rotated by an-
gles of 2�=3 and 4�=3 for easier visual-
ization.

FIGURE 1.2. Convergence of expectation-maximization (EM), gradient
descent (GD) with step size � D �4, and Nesterov-accelerated gradient
descent (AGD) with step size � D �4 on the threefold rotations example
with n D 100;000 samples and noise level � D 4. All three algorithms
are initialized at � .0/ D .1; 1/.

Nesterov acceleration for gradient descent
The structure (1.8) for the eigenvalues of I.��/ also indicates that the Hessians

of the risk functionsRn.�/ andR.�/may be highly anisotropic and ill-conditioned
near �� in high-noise settings. This poses a known problem for the convergence of
gradient descent with any fixed step size, including EM, as evident from the factor
�=� in (1.13).

This also suggests that substantial improvements in convergence may be ob-
tained by using momentum or acceleration methods [36, 39]. For example, by
using the Nesterov acceleration scheme,

�.tC1/ D � .t/ � � � rRn.� .t//;
� .tC1/ D .1C �/�.tC1/ � ��.t/;

accelerated gradient descent (AGD) can achieve the improved convergence rate

(1.14) k� .t/ � � .0/k2 � O�.1 � cp�=�/t�;
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see [36, theorem 2.2.3]. Figure 1.2 also illustrates the convergence of AGD on the
same threefold rotations example, with step size � D �4 and momentum parame-
ters � � �t defined as (see [15, section 3.7.2])

�0 D 0; �t D
�
1C

q
1C 4�2t�1

�.
2; �t D .�t � 1/=�tC1:

The iterates � .t/ reach the orbit O�� within 30 iterations of AGD, when neither EM
nor standard GD with � D �4 is close to having converged.

Reparametrization for second-order trust region methods
Second-order descent procedures may also be applied to minimizeRn.�/. Since

Rn is nonconvex, it is possible for its second-order approximation at an iterate � .t/

to have a direction of negative curvature. When this occurs, it is common to apply
a trust-region approach, where the next update � .tC1/ is constrained to lie within a
fixed-radius ball around � .t/ [34,48–50]. This trust region is used until the iterates
� .t/ reach a neighborhood of strong convexity around a local minimizer of Rn.�/,
after which the algorithm naturally transitions to a standard second-order Newton
method for minimizing convex objectives.

At high noise, the region of convexity for R.�/ and Rn.�/ around �� may be
vanishingly small in � , requiring more careful tuning of this trust-region algorithm
and a large number of iterations before reaching this convex region. However, as
mentioned in Section 1.2, our results indicate that the region of convexity is much
larger and is � -independent upon reparametrizing by G-invariant coordinates ' �
'.�/. This suggests that second-order methods may be more effective and stable
when applied in the parametrization by ', rather than the original parametrization
by � .

1.4 Notation
We write E" for the expectation over " � N .0; Id/. We write

Eg �f .g/� D 1

K

X
g2G

f .g/

for the expectation over the uniform law g � Unif.G/, and Varg and Covg for
the associated variance and covariance. Similarly, Eh is the expectation over h �
Unif.G/, and Eg1;g2 is the expectation over independent elements g1; g2 � Unif.G/
unless stated otherwise.

We consider ��; d;G as constant throughout the paper. We write C;C 0; c; c0 >

0 for constants that may depend on ��; d;G and change from instance to instance.
These do not depend on the noise level � , and we will be explicit about the depen-
dence of our results on � .

For a function f W Rd ! R, we denote its gradient and Hessian by rf 2 Rd
and r2f 2 Rd�d . More generally, we denote by rkf 2 .Rd /
k the symmetric
tensor of its kth-order partial derivatives. For a coordinate �i of � , @�if is the



MLE FOR THE DISCRETE ORBIT RECOVERY MODEL 15

partial derivative in �i . For f W Rd ! Rk , df 2 Rk�d is its full derivative
(i.e., Jacobian matrix). When k D 1, we take the convention that rf is a column
vector, so rf D df >. We writer� , r`

�
, and d� to clarify that these are taken with

respect to � , and we write r�f .��/, r`�f .��/, and d�f .��/ for their evaluations
at � D ��.

For a symmetric matrix M 2 Rd�d , �max.M/ and �min.M/ are its largest and
smallest eigenvalues, and � and � denote the positive-semidefinite and positive-
definite ordering. For � 2 Rd and � > 0, B�.�/ is the open `2 ball of radius �
around �. k � k is the `2 norm for vectors and `2 ! `2 operator norm (largest sin-
gular value) for matrices, h� ; �i is the `2 inner product, and k � kHS is the vectorized
`2 norm for higher-order tensors. dist.x; S/ D infy2S kx � yk is the `2-distance
from x to a set S . Id is the identity matrix, N . � ; �/ denotes the Gaussian distribu-
tion parametrized by mean and variance/covariance, and �`� D f1; : : : ; `g.

For � D 1; 2, we denote by kW k � D infft > 0 W E"�exp..jW j=t/�/� � 2g
the subexponential and sub-Gaussian norms of the random variable W . (See [52,
chap. 2].)

2 Preliminaries
This section collects several more basic results about the population risk R.�/

and its empirical counterpart Rn.�/, including expressions for their derivatives,
bounds on critical points, and the concentration of Rn.�/ around R.�/.

2.1 The risk, gradient, and Hessian
Let us first derive some simpler expressions for the risks Rn.�/ and R.�/. We

represent each sample Y as

(2.1) Y D h.�� C �"/

where h 2 G, and " � N .0; Id/ is independent of h. This is equivalent to the model
(1.1), by the rotational invariance of the law of ". Then the marginal log-likelihood
(1.2) is given by

� logp� .Y / D � logEg

"�
1p
2��2

�d
exp

�
�kh.�� C �"/ � g�k2

2�2

�#
:

Applying kh.��C�"/�g�k D k��C�"�h>g�k and the equality in law h>g LD g

for any fixed h 2 G, we have

� logp� .Y / D � logEg

"�
1p
2��2

�d
exp

�
�k�� C �" � g�k2

2�2

�#

D d

2
log.2��2/C k�� C �"k2

2�2
C k�k2
2�2

� logEg
�

exp
�h�� C �"; g�i

�2

��
:
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The first two terms above do not depend on � , and we omit them in the sequel.
We define the empirical risk as

(2.2) Rn.�/ D k�k2
2�2

� 1

n

nX
iD1

logEg
�

exp
�h�� C �"i ; g�i

�2

��
:

Then Rn.�/ is a constant shift of the negative log-likelihood for independent sam-
ples Y1; : : : ; Yn, as stated in (1.3). We define the corresponding population risk
R.�/ D E�Rn.�/� by

(2.3) R.�/ D k�k2
2�2

� E"
�

logEg
�

exp
�h�� C �"; g�i

�2

���
:

Remark 2.1. The above arguments do not require h 2 G to be uniformly dis-
tributed. That is to say, if h is modeled as uniformly distributed, the law of p� .Y /
does not depend on the true distribution of h. Thus our results apply also for non-
uniform h 2 G. Our results do not describe the landscape if the non-uniformity is
incorporated into the likelihood model. Existing work on method-of-moments sug-
gests that, in such settings, the Fisher information may have a different dependence
on � in the high-noise regime [1, 44].

Next, let us express the gradients, Hessians, and higher-order derivatives of these
risk functions in terms of a reweighted law for g 2 G. Given � and ", we introduce
the reweighted probability law on G defined by

(2.4) p.g j "; �/ D exp
�h�� C �"; g�i

�2

� � X
h2G

exp
�h�� C �"; h�i

�2

�
:

We write Pg �� j "; ��, Eg �� j "; ��, Varg �� j "; ��, and Covg �� j "; �� for the probabil-
ity, expectation, variance, and covariance with respect to this reweighted law of g.
We also write �`g �� j "; �� for the `th cumulant tensor with respect to this law; see
Appendix A.1 for the definition.

LEMMA 2.2. The derivatives of Rn.�/ take the forms

rRn.�/ D 1

�2

 
� � 1

n

nX
iD1

Eg
h
g>.�� C �"i /

���"i ; �i
!

(2.5)

r2Rn.�/ D 1

�2

 
Id� 1

�2
� 1
n

nX
iD1

Covg
h
g>.�� C �"i /

���"i ; �i
!

(2.6)

r`Rn.�/ D � 1

�2`
� 1
n

nX
iD1

�`g

h
g>.�� C �"i /

���"i ; �i for ` � 3:(2.7)

PROOF. For any random vector u 2 Rd , the derivatives of its cumulant gener-
ating function are given by

r`� logE�ehu;�i� D �`�u j ��



MLE FOR THE DISCRETE ORBIT RECOVERY MODEL 17

where �`�u j �� 2 .Rd /
` is the `th cumulant tensor of u under its reweighted
law defined by E�f .u/ j �� D E�f .u/ehu;�i�=E�ehu;�i�. (See Appendix A.1.) In
particular, for ` D 1; 2, these are the mean and covariance with respect to this
law. Then (2.5)–2.7 follow from differentiating (2.2) in � , and applying this to the
random vector u D g>.�� C �"i /=�

2 conditional on "i . �

LEMMA 2.3. The derivatives of R.�/ take the forms

rR.�/ D 1

�2

�
� � E"�Eg �g>.�� C �"/ j j"; ���(2.8)

D 1

�2

�
E"
�
Eg �g j "; ��>Eg �g j "; ��

�
� � E"

�
Eg �g j "; ��

�>
��
�

(2.9)

r2R.�/ D 1

�2

�
Id� 1

�2
E"
�

Covg �g>.�� C �"/ j "; ����(2.10)

r`R.�/ D � 1

�2`
E"
�
�`g �g

>.�� C �"/ j "; ��� for ` � 3(2.11)

PROOF. The identities (2.8), (2.10), and (2.11) are obtained by taking the ex-
pectations of (2.5)–2.7 over "1; : : : ; "n. (The derivatives ofR.�/ in � may be taken
inside E" by a standard application of the dominated convergence theorem.)

For (2.9), we apply Gaussian integration by parts to rewrite the E"�Eg �g>" j
"; ��� term in (2.8): Denote by g�j the j th column of a matrix g 2 G, and by gij
the .i; j / entry. Then recalling the density (2.4) and applying the integration-by-
parts identity E�f .�/�� D E�f 0.�/� for � � N .0; 1/, we get

E"
h
Eg
�
g>�j " j "; �

�i D dX
iD1

E"
�
Eg �p.g j "; �/gij �"i

� D dX
iD1

E"
�
@"iEg �p.g j "; �/gij �

�
:

Write .g�/i as the i th coordinate of g� , and note that differentiating (2.4) in "i
gives

@"ip.g j "; �/ D
1

�

�
p.g j "; �/.g�/i � p.g j "; �/Eh�p.h j "; �/.h�/i �

�
where h � Unif.G/ is independent of g. Then

� E"
h
Eg
�
g>�j " j "; �

�i D dX
iD1

E"
�
Covg �gij ; .g�/i j "; ��

�
D E"

h
Eg
�
g>�jg� j "; �

� � Eg �g�j j "; ��>Eg �g� j "; ��
i

D �j � E"
h
Eg �g�j j "; ��>Eg �g j "; ��

i
�;

the last line using g>�jg� D �j for any fixed orthogonal matrix g 2 G. Combining
this for j D 1; : : : ; d ,

� E"
�
Eg �g>" j "; ��

� D � � E"
�
Eg �g j "; ��>Eg �g j "; ��

�
�:

Substituting into (2.8) yields (2.9). �
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2.2 Subgroup decompositions
If the group G is the product of two groups G1 and G2 acting on orthogonal

subspaces of Rd , then both the empirical and population risks decompose as a sum
corresponding to these two components. This is stated formally in the following
lemma.

LEMMA 2.4. Let V D �V1 j V2� be an orthogonal matrix, where V1 2 Rd�d1 ,
V2 2 Rd�d2 , and d1 C d2 D d . Suppose that G � O.d/ decomposes as

G D
�
V

�
g1 0

0 g2

�
V > W g1 2 G1; g2 2 G2

�
for subgroups G1 � O.d1/ and G2 � O.d2/, and write the corresponding decom-
positions �1 D V >

1 � , �2 D V >
2 � , �1;� D V >

1 ��, �2;� D V >
2 ��. Then

Rn.�/ D RG1
n .�1/CRG2

n .�2/ and R.�/ D RG1.�1/CRG2.�2/;

where RG1
n and RG1 denote the empirical and population risks (1.3) and (1.4)

defined by G1 and �1;� in dimension d1, and similarly for G2.

PROOF. Note that k�k2 D k�1k2 C k�2k2. Writing g 2 G as g D V1g1V
>
1 C

V2g2V
>
2 , we have

h�� C �"i ; g�i D


�1;� C �V >

1 "i ; g1�1
�C 


�2;� C �V >
2 "i ; g2�2

�
:

The expectation Eg may be written as independent expectations over g1 � Unif.G1/
and g2 � Unif.G2/. Furthermore, V >

1 "i and V >
2 "i are independent Gaussian vec-

tors of dimensions d1 and d2. Applying these to (2.2) yields Rn.�/ D R
G1
n .�1/C

R
G2
n .�2/. Taking the expectation yields R.�/ D RG1.�1/CRG2.�2/. �

In particular, we may always reduce our study to a group G where Eg �g� D 0,
because of the following result. (Here Eg �g� is the expectation in Rd�d when we
consider G � O.d/.)

LEMMA 2.5. Suppose Eg �g� has rank d1 where 0 < d1 � d , and set d2 D d �d1.
Let V D �V1 j V2� be an orthogonal matrix where the columns of V2 2 Rd�d2
span the kernel of Eg �g�. Then

(2.12) G D
�
V

�
Id 0

0 g2

�
V > W g2 2 G2

�
where G2 � O.d2/ is a subgroup that is group-isomorphic to G, and Eg2 �g2� D 0

for g2 � Unif.G2/.

PROOF. Observe that if g � Unif.G/, then g> D g�1 � Unif.G/, so Eg �g� D
Eg �g>� D Eg �g�>. Furthermore, if g; h � Unif.G/ are independent, then gh �
Unif.G/, so Eg �g� D Eg;h�gh� D Eg �g�Eh�h� D Eg �g�2. Hence Eg �g� is sym-
metric and idempotent, so it is an orthogonal projection. For any � in the range of
this projection, � D Eg �g�� D Eg �g��, so k�k2 D �>Eg �g��. As each g� is also
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a vector on the sphere of radius k�k, we have �>g� < k�k2 unless � D g� . Thus,
� D g� for every g 2 G, so G acts as the identity on the column span of V1. This
shows that each g 2 G has the form (2.12) for some matrix g2 2 O.d2/, and this
1-to-1 mapping from g to g2 must be a group isomorphism between G and G2.
Since G2 represents the action of G on the column span of V2, which is the kernel
of Eg �g�, we have Eg2 �g2� D 0. �

Combining Lemmas 2.4 and 2.5, we may always decomposeRn.�/ D RId
n .�1/C

R
G2
n .�2/ and R.�/ D RId.�1/C RG2.�2/, where �2 is the component of � in the

kernel of Eg �g�. For �1, the risks RId
n .�1/ and RId.�1/ correspond to the single

Gaussian model N .�1;�; �2 Id/. Then RId.�1/ and RId
n .�1/ are strongly convex,

and our study of the landscapes of R.�/ and Rn.�/ reduces to studying RG2.�2/

and RG2
n .�2/ for the mean-zero group G2.

2.3 Generic parameters and critical points
Throughout, we will assume that the true parameter �� 2 Rd is generic in the

following sense.

DEFINITION 2.6. For a connected open set U � Rd , a statement holds for generic
�� 2 U if it holds for all �� outside the zero set of an analytic function f W U !
Rk that is not identically zero on U .

The zero set of any such analytic function has measure zero (see [35]), so in
particular, a statement that holds for generic �� 2 Rd holds everywhere outside a
measure-zero subset of Rd .

At a minimum, we will require that the points of the orbit O�� are distinct, so
jO�� j D jGj D K. This holds for generic �� because for any g ¤ h 2 G, the
condition .g � h/�� D 0 defines a subspace of dimension at most d � 1.

DEFINITION 2.7. For an open domain U � Rd and f W U ! R twice contin-
uously differentiable, a point � 2 U is a critical point of f if rf .�/ D 0. The
critical point is nondegenerate if r2f .�/ is nonsingular. The function f is Morse
if all critical points are nondegenerate. The same definitions apply to f W M ! R
for any manifold M , upon parametrizing M by a local chart.

A correspondence between nondegenerate critical points of a function f1 W U !
R and those of a function f2 uniformly close to f1 was shown in [34]. We will
apply the following version of this result for only the local minimizers, which has
a more elementary proof.

LEMMA 2.8. Let �0 2 Rd , and let f1; f2 W B".�0/ ! R be two functions that
are twice continuously differentiable. Suppose �0 is a critical point of f1, and
�min.r2f1.�// � c0 for some c0 > 0 and all � 2 B".�0/. If

jf1.�/ � f2.�/j � � and kr2f1.�/ � r2f2.�/k � �
for some � < min.c0; c0"2=4/ and all � 2 B".�0/, then f2 has a unique critical
point in B".�0/, which is a local minimizer of f2.



20 FAN ET AL.

PROOF. The given conditions imply �min.r2f2.�// > 0 for all � 2 B".�0/, so
f2 is strongly convex and has at most one critical point. They also imply that for
each � 2 B".�0/ with k� � �0k D r ,

f2.�/ � f2.�0/ � f1.�/ � f1.�0/ � 2� � c0r
2

2
� 2�:

For r sufficiently close to ", we have c0r2=2 � 2� > 0. Then f2 must have a local
minimizer in Br.�0/. �

2.4 Bounds for critical points
A consequence of (2.5) and (2.8) is the following simple bound for critical points

of R.�/ and Rn.�/.

LEMMA 2.9. For d -dependent constants C;C 0; c > 0, we have �2krR.�/k �
k�k�k��k�C� , and �2krRn.�/k � k�k�k��k�C� with probability at least
1�C 0e�cn. In particular, any critical point � of R.�/ satisfies k�k � k��kCC� ,
and the same holds for Rn.�/ with probability 1 � C 0e�cn.

PROOF. The bound for krR.�/k follows from (2.8) and

E"�Eg �g>.�� C �"/ j "; ���

 � E"�k�� C �"k� � k��k C � E"�k"k�
� k��k C �

p
d:

The bound for krRn.�/k follows similarly from (2.2), on the event

n�1
nX
iD1

k"ik � C;

which has probability at least 1�C 0e�cn by Hoeffding’s inequality for sub-Gaussian
random variables (see [52, theorem 2.6.2]). Since rR.�/ D 0 at a critical point � ,
and similarly for Rn.�/, the statements for critical points follow. �

When � is large, this bound is not sharp in its dependence on � . We will in
fact show that any critical point � of R.�/ satisfies k�k � C for a � -independent
constant C > 0. The following strengthening of Lemma 2.9 first provides the
a priori bound k�k � C�2=3. Then, combined with a series expansion of R.�/ in
��2, we will improve this to k�k � C in Lemma 4.19 of Section 4.

LEMMA 2.10. For some .��; d;G/-dependent constants C; c; �0 > 0 and all � >
�0,

(2.13) �2krR.�/k > cmin
�k�k3
�2

;
k�k
�2=3

�
� k��k;

and every critical point � of R.�/ satisfies k�k < C�2=3.
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PROOF. We apply the form of rR.�/ given in (2.9). Denote xY D .�� C
�"/=k�� C �"k and x� D �=k�k. Then

�2krR.�/k � hx�; �2rR.�/i
� x�>E"

�
Eg �g j "; ��>Eg �g j "; ��

�
� � x�>E"

�
Eg �g j "; ��>

�
��

D k�k � E"
�kEg �gx� j "; ��k2� � x�>E"

�
Eg �g j "; ��>

�
��

� k�k � E"
�
. xY >Eg �gx� j "; ��/2

� � k��k
D k�k � E"

�
Eg � xY >gx� j "; ��2

� � k��k:(2.14)

We analyze the quantity Eg � xY >gx� j "; �� for fixed " (and hence fixed xY ): Note
that j xY >gx� j � 1. LetK.s/ be the cumulant generating function of xY >gx� over the
uniform law g � Unif.G/, and let K 0.s/ be its derivative. Denote

t � t ."; �/ D k�� C �"kk�k
�2

:

Then

Eg � xY >gx� j "; �� D Eg �p.g j "; �/ xY >gx��

D Eg � xY >gx� � et xY>gx� �

Eg �et xY>gx� �
D d

ds
logEg �es

xY>gx� �
���
sDt

D K 0.t/:(2.15)

Writing �` as the `th cumulant of this law, we have

(2.16) K.s/ D
1X
`D1

�`
s`

`�
;

where this series is absolutely convergent for jsj < 1=e by Lemma A.1. Set

t� � t� ."; �/ D min.t."; �/; ��1=3/;

where t� < 1=e for � > �0 and large enough �0. Since K.0/ D 0, using the
convexity of the cumulant generating function K we can bound its derivative from
below by

K 0.t/ � K 0.t� / � K.t� /

t�
D

1X
`D1

�`
t`�1�

`�
:

Applying j�`j � `` from Lemma A.1 and `� � ``=e`,

K 0.t/ � �1 C t�

2
�2 �

1X
`D3

e`t`�1� � �1 C t�

2
�2 � 30t2�

for � > �0 and large enough �0. Here, �1 D Eg � xY >gx�� and �2 D Varg � xY >gx��.
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Now observe that there exists a constant c0 � c0.d/ > 0, such that if v is any
random vector on the unit sphere in Rd , then there is a deterministic vector u0 on
the unit sphere for which

min
�
E
�
u>0 v

�
;Var

�
u>0 v

��
> 2c0:

This is because if the mean of v is near 0 and v lies on the sphere, then the variance
of v must be bounded below by a constant in some direction. Then also for some
�0 > 0 depending only on c0, we have

min
�
E�u>v

�
;Var

�
u>v�

�
> c0 for all u 2 B�0.u0/:

Let us apply this to the random vector v D gx� under the uniform law of g. (So u0
depends on G and � .) Then for � > �0, on the event xY 2 B�0.u0/, we get

K 0.t/ � c0

2
t� � 30t2� �

c0

3
t� :

Recalling (2.15) and applying this to (2.14),

�2krR.�/k

� k�k � E"
��c0

3
t� ."; �/

�2
1f xY 2 B�0.u0/g

�
� k��k

� k�k � E"
��c0

3
t� ."; �/

�2
1f xY 2 B�0.u0/; k�� C �"k � �g

�
� k��k:

On the event k�� C �"k � � , we have t ."; �/ � k�k=� , and hence t� ."; �/ �
min.k�k=�; ��1=3/. Then

�2krR.�/k � c20
9

min
�k�k3
�2

;
k�k
�2=3

�
P
� xY 2 B�0.u0/; k�� C �"k � �� � k��k:

Recalling the definition xY D .�� C �"/=k�� C �"k, as � !1, we have

P
� xY 2 B�0.u0/; k�� C �"k � ��! P

�
"=k"k 2 B�0.u0/; k"k � 1

�
:

Since "=k"k is uniformly distributed on the sphere, the limit is a positive constant
depending only on the dimension d and �0. Furthermore, for fixed ��, this conver-
gence is uniform over u0 on the unit sphere. Thus we obtain

P
� xY 2 B�0.u0/; k�� C �"k � �� � c

for a constant c � c.d/ and all � > �0.��; d;G/. This yields (2.13). For a
large enough constant C � C.��; d;G/ > 0, this implies krR.�/k > 0 when
k�k � C�2=3, so any critical point satisfies k�k < C�2=3. �
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2.5 Concentration of the empirical risk
We establish uniform concentration of Rn.�/, rRn.�/, and r2Rn.�/ around

their expectations. This will allow us to translate results about the population land-
scape of R.�/ to the empirical landscape of Rn.�/.

LEMMA 2.11. There exist .��; d;G/-dependent constants C; c > 0 such that for
any r; t > 0, denoting Br � Br.0/ D f� 2 Rd W k�k < rg,

(2.17) P
h

sup
�2Br

jRn.�/ �R.�/j � t
i
�
�
Cr.1C �/

�2t

�d
e
�cn

�2t2

r2 C Ce�cn

P
h

sup
�2Br

krRn.�/ � rR.�/k � t
i

�
�
Cr.1C �2/

�4t

�d
e
�cn

�4t2

1C�2 C Ce�cn
(2.18)

P
h

sup
�2Br

kr2Rn.�/ � r2R.�/k � t
i

�
�
Cr.1C �3/

�6t

�d
e
�cnmin

�
�8t2

1C�4
;
�4t
1C�2

�
C Ce�cn

2=3

:

(2.19)

We prove this by first showing pointwise concentration in Lemma 2.12, then
establishing Lipschitz continuity of these risks, gradients, and Hessians in Lemma
2.13, and finally applying a covering net argument.

LEMMA 2.12. For some .��; d;G/-dependent constants C; c > 0, any � 2 Rd ,
and any t > 0,

P�jRn.�/ �R.�/j � t � � C exp
�
�cn �

2t2

k�k2
�

(2.20)

P�krRn.�/ � rR.�/k � t � � C exp
�
�cn �4t2

1C �2

�
(2.21)

P
�kr2Rn.�/ � r2R.�/k � t�
� C exp

�
�cnmin

�
�8t2

1C �4
;

�4t

1C �2

��
:

(2.22)

PROOF. We apply the Bernstein and Hoeffding inequalities. Recall that for � D
1 or 2, kf ."/k � denotes the subexponential or sub-Gaussian norm of the random
variable f ."/ over the law " � N .0; Id/.

For Rn.�/, recall the form (2.2). Set

f1."/ D logEg
�

exp
�h�� C �"; g�i

�2

��
:
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Then r"f1."/ D Eg �g� j "; ��=� , so kr"f1."/k � Eg �kg�k j "; ��=� � k�k=�
and f1 is k�k=� -Lipschitz. By Gaussian concentration of measure and Hoeffding’s
inequality (see [52, theorems 2.6.2, 5.2.2]), for constants C; c > 0 and any t > 0,

kf1."/ � E"f1."/k 2 �
Ck�k
�

;

P
�����1n

nX
iD1

f1."i / � E"�f1."/�
���� � t

�
� 2 exp

�
�cn �

2t2

k�k2
�
:

Applying this to (2.2) yields (2.20).
For rRn.�/, recall (2.5). Denote by g�j the j th column of g. Momentarily

fixing j , denote

f2."/ D Eg
h
g>�j .�� C �"/

���"; �i; f2;g."/ D g>�j .�� C �"/

where f2;g is defined for each fixed g 2 G. Then

kf2."/k 2 D



X
g2G

p.g j "; �/f2;g."/




 2

� K �max
g2G

kp.g j "; �/f2;g."/k 2 � K �max
g2G

kf2;g."/k 2 ;

the last inequality applying jp.g j "; �/j � 1 and the definition of the sub-Gaussian
norm. For each fixed g 2 G, we have kf2;g."/k 2 � C.1C �/. Then by Hoeffd-
ing’s inequality,

P
�����1n

nX
iD1

f2."i / � E"�f2."/�
���� > t

�
� 2 exp

�
�cn t2

.1C �/2

�
:

This establishes concentration of the j th coordinate of Rn.�/. Applying a union
bound over indices j D 1; : : : ; d and replacing t by �2t yields (2.21).

For r2Rn.�/, recall (2.6). Momentarily fixing the indices j and k, denote

f3."/ D Covg
�
g>�j .�� C �"/; g>�k.�� C �"/

�� "; ��
D Eg

�
g>�j .�� C �"/ � g>�k.�� C �"/

�� "; ��
� Eg

�
g>�j .�� C �"/

�� "; �� � Eg�g>�k.�� C �"/
�� "; ��

Using the same argument as above, we have the bounds


Eghg>�j .�� C �"/ � g>�k.�� C �"/
��� "; �i




 1
� C.1C �2/;


Eghg>�j .�� C �"/

���"; �i



 2
� C.1C �/:
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Together with the inequality kXY k 1 � kXk 2kY k 2 , this yields kf3."/k 1 �
C.1C �2/. Then by Bernstein’s inequality (see [52, theorem 2.8.1]),

P
�����1n

nX
iD1

f3."i / � E"�f3."/�
���� > t

�
� 2 exp

�
�cnmin

�
t2

.1C �2/2
;

t

1C �2

��
:

This establishes concentration of the .j; k/ entry of r2Rn.�/. Taking a union
bound over j; k 2 f1; : : : ; dg and replacing t by �4t yields (2.22). �

LEMMA 2.13. For a .��; d;G/-dependent constant C 0 > 0, as functions over
� 2 Rd ,

(a) R.�/ � k�k2=.2�2/ is C 0.1C �/=�2-Lipschitz.
(b) Each entry of rR.�/ � �=�2 is C 0.1C �2/=�4-Lipschitz.
(c) Each entry of r2R.�/ � Id =�2 is C 0.1C �3/=�6-Lipschitz.

For d -dependent constants C; c > 0, statements (a) and (b) also hold for Rn.�/�
k�k2=.2�2/ and rRn.�/��=�2 with probability at least 1�Ce�cn, and (c) holds
for r2Rn.�/ � Id =�2 with probability at least 1 � Ce�cn2=3 .

PROOF. To prove the desired Lipschitz property, it suffices to bound the first
three derivatives of R.�/. Recall the expressions (2.8), (2.10), and (2.11) for
r`R.�/. Note that kg>.�� C �"/k D k�� C �"k. Thus, under the law (2.4),
each entry of g>.�� C �"/ has magnitude at most k�� C �"k. Invoking Lemma
A.1(b), we conclude that for each ` � 1 and some constant C � C.`; d; k��k/,

�`g �g>.�� C �"/ j "; ��

HS � C.1C �`k"k`/
where ` D 1; 2 for the mean and covariance.

Applying these bounds to (2.8), (2.10), and (2.11) and taking the expectation
over " � N .0; Id/ yields the Lipschitz properties for the population risk R.�/.
Recalling the forms (2.5)–2.7, this also shows the Lipschitz properties for the em-
pirical risk Rn.�/ on the events

E� D
(
1

n

nX
iD1

k"ik� � C0
)

for � D 1; 2; 3 respectively, where C0 > 0 is any fixed constant. For � D 1; 2 and
a sufficiently large constant C0 > 0, we have P�E�� � 1�Ce�cn by the Hoeffding
and Bernstein inequalities. For � D 3, we show in Appendix A.3 using the result
of [4] that

(2.23) P

"
1

n

nX
iD1

k"ik3 � C0
#
� 1 � Ce�cn2=3

for a sufficiently large constant C0 > 0. (Note that this bound is optimal, by
considering the deviation of a single summand n�1k"ik3.) This concludes the
proof. �
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PROOF OF LEMMA 2.11. Denote xRn.�/ D Rn.�/ � k�k2=.2�2/ and xR.�/ D
R.�/�k�k2=.2�2/. Note that concentration ofRn.�/;rRn.�/;r2Rn.�/ is equiv-
alent to that of xRn.�/;r xRn.�/;r2 xRn.�/.

For xRn.�/, we take a �-net N of Br having cardinality jN j � .C r=�/d . Apply-
ing (2.20) and a union bound over N ,

P
h

sup
�2N

��� xRn.�/ � xR.�/
��� � t=3i � �Cr

�

�d
exp

�
�cn �

2t2

r2

�
:

By the Lipschitz bounds for xR.�/ and xRn.�/ in Lemma 2.13, picking

� D c�2t=.1C �/

for a small enough constant c > 0 ensures on an event of probability 1 � Ce�cn
that j xR.�/ � xR.�/j � t=3 and j xRn.�/ � xRn.�/j � t=3 for each point � 2 Br and
the closest point � 2 N . Combining these shows (2.17). The bounds (2.18) and
(2.19) are obtained similarly. �

3 Landscape Analysis for Low Noise
In this section, we analyze the function landscapes of R.�/ and Rn.�/ in the

low-noise regime � < �0.��; d;G/. Section 3.1 analyzes the local landscapes in
a neighborhood of ��, as well as the Fisher information I.��/ D r2

�
R.��/, and

Theorem 3.1 shows that these behave similarly to a single-component Gaussian
model N .��; �2 Id/. Section 3.2 analyzes the global landscapes, and Theorem 3.3
and Corollary 3.5 show that these are globally benign for small � and large n.

3.1 Local Landscape and Fisher Information
THEOREM 3.1. For any �� 2 Rd where jO�� j D jGj D K, there exist .��; d;G/-
dependent constants �0; c; � > 0 such that as long as � < �0, every � 2 B�.��/
satisfies

(3.1) kr2R.�/ � ��2 Id k < e�c=�2 :
In particular, the Fisher information satisfies kI.��/ � ��2 Id k < e�c=�2 .

Note that by rotational symmetry of R.�/, the same statements hold for B�.�/
and each � 2 O�� .

PROOF. Since the K points of O�� are distinct and have the same norm, we
must have k��k2 > �>� � for each � 2 O�� different from ��. Pick (��-dependent)
constants c0; � > 0 such that .�� ��/>�� > 3c0 and k�� ��k� < c0 for all such
�, and also � < k��k=2. Define

(3.2) E D f" 2 Rd W 2�k"kk�k � c0g:
Consider � 2 B�.��/, and recall the form (2.10) for r2R.�/. For any unit

vector v 2 Rd , we have

v>E"
�
Covg �g>.�� C �"/ j "; ���v D E"

�
Varg �hv; g>.�� C �"/i j "; ���
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D E"
�
Varg �hgv; �� C �"i j "; ���

� E"
�
Eg �hgv � v; �� C �"i2 j "; ���:

Let us decompose the last line as IC II where

I D E"
�
1f" � EgEg �hgv � v; �� C �"i2 j "; ���;

II D E"
�
1f" 2 EgEg �hgv � v; �� C �"i2 j "; ���:

For I, we have k�k � k��k C �. Applying the chi-squared tail bound P�k"k2 >
t� < e�ct for all t > C , we get P�" � E � < e�c=�2 . Then by Cauchy-Schwarz,

I � P�" � E �1=2E"�Eg �hgv � v; �� C �"i2 j "; ��2�1=2

� P�" � E �1=2E"�.2k�� C �"k/4�1=2 < e�c0=�2

for constants c0; �0 > 0 and all � < �0. For II, let us bound Pg �g ¤ Id j "; ��
when " 2 E : For any g ¤ Id, letting � D g>��,

h�� C �"; � � g�i � .�� � �/>� � 2�k"kk�k
� .�� � �/>�� � 2�k"kk�k � k�� � �k� > c0:

Then recalling (2.4), p.Id j "; �/=p.g j "; �/ > ec0=�2 , and so

(3.3) p.Id j "; �/ > ec0=�2=.ec0=�2 CK � 1/ > 1 � e�c=�2

for constants c; �0 > 0 and all � < �0. Thus Pg �g ¤ Id j "; �� D 1 � p.Id j
"; �/ < e�c=�

2

, so

II � E"�1f" 2 EgPg �g ¤ Id j "; �� � .2k�� C �"k/2� < e�c0=�2 :
Combining these, we get v>E"�Covg �g>.��C �"/ j "; ���v < e�c=�2 for any unit
vector v 2 Rd . Then (3.1) follows from (2.10). Specializing to � D �� yields the
statement for I.��/. �

The following corollary then shows that with high probability when the sample
size n � ��1 log ��1, the empirical risk Rn.�/ is strongly convex with a unique
local minimizer in B�.��/. By rotational symmetry, the same statement holds for
B�.�/ and each � 2 O�� .

COROLLARY 3.2. For some .��; d;G/-dependent constants C; c; �0 > 0, if � <
�0, then with probability at least 1 � Ce�cn2=3 � ��C e�c�n, �min.r2Rn.�// �
1=.2�2/ for all � 2 B�.��/, and Rn.�/ has a unique local minimizer and critical
point in B�.��/.

PROOF. This follows from Lemma 2.8 and Theorem 3.1 if we can show that

sup
�2B�.��/

kRn.�/ �R.�/k � c1=�2;

sup
�2B�.��/

kr2Rn.�/ � r2R.�/k � c1=�2;
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for a small enough constant c1 > 0. Applying (2.17) with r D k��k C � and
t D c1=�

2, we obtain sup�2B�.��/ kRn.�/ � R.�/k � c1=�
2 with probability

1�Ce�cn. Applying (2.19), we also obtain sup�2B�.��/ kr2Rn.�/�r2R.�/k �
c1=�

2 with probability 1 � ��C e�c�4n � Ce�cn2=3 . To reduce �4 to � in this
probability bound, let us derive a sharper concentration inequality for r2Rn.�/
than the general result provided by (2.22), when � 2 B�.��/ and � < �0.

Recall the set E in (3.2) and the form for r2Rn.�/ in (2.6). Let us write this as

(3.4) r2Rn.�/ D 1

�2
Id� 1

�4
� 1
n

nX
iD1

.Xi C Yi / � 1

�2
� 1
n

nX
iD1

Zi

where Xi ; Yi ; Zi 2 Rd�d are given by

Xi D
�
Covg

�
g>.�� C �"i /

�� "i ; �� � �2 Covg
�
g>"i

�� "i ; ���1f"i 2 Eg;
Yi D

�
Covg

�
g>.�� C �"i /

�� "i ; �� � �2 Covg
�
g>"i

�� "i ; ���1f"i � Eg;
Zi D Covg

�
g>"i

�� "i ; ��:
Observe that since kZik � kEg �g>"i">i g j "i ; � �k � k"ik2, and k"ik2 has

constant subexponential norm, each entry of Zi also has constant subexponential
norm (where constants may depend on d ). Applying Bernstein’s inequality entry-
wise and taking a union bound over all entries, for constants C; c > 0 and any
t > 0,

(3.5) P

"




1n
nX
iD1

Zi � E�Zi �






 � t
#
� Ce�cnmin.t;t2/:

ForXi , note that p.Id j "; �/ > 1�e�c=�2 when " 2 E , as shown in (3.3). Then
for any unit vector v 2 Rd ,��v>Xiv��

D ��Varg
�hgv; �� C �"i i

�� "i ; �� � �2 Varg
�hgv; "i i��"i ; ����1f"i 2 Eg

� �Eg�hgv � v; �� C �"i i2
��"i ; ��C �2Eg

�hgv � v; "i i2��"i ; ���1f"i 2 Eg
� Pg �g ¤ Id j "i ; � �

�
4k�� C �"ik2 C 4�2k"ik2

�
1f"i 2 Eg � Ce�c=�2 :

Thus kXik � Ce�c=�
2

for each i D 1; : : : ; n. Applying Hoeffding’s inequality
entrywise to Xi and taking a union bound over all entries,

(3.6) P
�



1n

nX
iD1

Xi � E�Xi �




 � t�2

�
� C exp

��nec0=�2 t2�:
For Yi , let us fix indices j; k 2 f1; : : : ; dg and consider

P
i .Yi /jk . Let W1; : : : ;

Wm be i.i.d. random variables whose law is that of .Yi /jk conditional on "i �
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E . We apply Hoeffding’s inequality for W1; : : : ; Wm: Observe that since the two
quadratic terms in "i cancel in the definition of Yi , we have

j.Yi /jkj � C.1C �k"ik/
for a constant C D C.k��k/ > 0. Then

E

"
exp

 
W 2
i

t2

!#
� E"

�
exp

�
C.1C �2k"k2/

t2

�����" � E
�

D eC=t
2 � E"

"
exp

�
C�2k"k2

t2

������k"k2 >
�

c0

2�k�k
�2#

:

Specializing [16, eq. (2.9)] to the chi-squared distribution, we obtain

E
�
exp.sk"k2/ j k"k2 > x� D P�k"k2 > x.1 � 2s/�

P�k"k2 > x� .1 � 2s/�d=2

for s < 1=2. Here P�k"k2 > x� D �.d=2; x=2/=�.d=2/ where �.a; y/ is the
upper-incomplete Gamma function that satisfies �.a; y/=ya�1e�y ! 1 as y !
1, for fixed a (see [3, eq. (6.5.32)]). Then

P�k"k2 > x.1 � 2s/�
P�k"k2 > x� � .1 � 2s/�d=2C1e�xs ! 1

as x ! 1, uniformly over s 2 .0; 1=2/. Setting x D c20=.2�k�k/2 and t D C1
for a large enough constant C1 > 0, we obtain that C=t2 < 0:05, s � C�2=t2 <

0:05=x, and hence E�exp.W 2
i =t

2/� � 2 when � < �0 for small enough �0 > 0.
Thus kWik 2 � C1, and Hoeffding’s inequality yields, for a constant c > 0 and
any s � 0,

P

"���� 1m
mX
iD1

Wi � E�Wi �
���� � s

#
� 2e�cms2 :

Returning to .Yi /jk , let S D fi 2 �n� W "i � Eg. The above shows that,
conditional on S ,

P

"���� 1jS j
X
i2S

.Yi /jk

���� � s C jEWi j
���� S
#
� 2e�cjS js2 :

Noting that .Yi /jk D 0 when i � S , this implies

P

"����1n
nX
iD1

.Yi /jk � E�.Yi /jk�
���� � �s C jEWi j

� jS j
n
C ��E.Yi /jk��

����� S
#
� 2e�cjS js2 :

We have P�"i � E � � e�c=�
2

, by a chi-squared tail bound. From the bound
kWik 2 � C1, we have jEWi j � C . Then also E.Yi /jk D .EWi / � P�"i � "� �
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Ce�c=�
2

. Setting t�2 D sjS j=n,

P

"����1n
nX
iD1

.Yi /jk � E�.Yi /jk�
���� � t�2 C Ce�c

0=�2
���� S
#
� 2e�cn2�4t2=jS j

for some constants C; c; c0 > 0. On the event jS j � n�3, we obtain the bound
2e�cn�t

2

. By a Chernoff bound, P�jS j > n�3� � exp.�nDKL.�
3jje�c=�2// for

the Bernoulli relative entropy

DKL.�
3ke�c=�2/ D �3 log

�3

e�c=�
2
C .1 � �3/ log

1 � �3
1 � e�c=�2 � c

0�:

Combining these, we obtain unconditionally that

(3.7) P

"����1n
nX
iD1

.Yi /jk � E�.Yi /jk�
���� � t�2 C Ce�c

0=�2

#
� Ce�cn�t2 :

Picking a sufficiently small constant t in (3.5), (3.6), and (3.7) and applying
this to (3.4), we obtain kr2Rn.�/ � r2R.�/k � c1=.2�

2/ with probability at
least 1 � Ce�c�n. This is a pointwise bound for each � 2 B�.��/. Taking a
union bound over a �-net of this ball for � D c�4, and applying the Lipschitz
continuity of r2R.�/ and r2Rn.�/ from Lemma 2.13, we get the uniform bound
sup�2B�.��/ kr2Rn.�/ � r2R.�/k � c1=�

2 with probability 1 � Ce�cn2=3 �
��C e�c�n as desired. �

3.2 Global landscape
THEOREM 3.3. Let �� 2 Rd be such that jO�� j D jGj D K. There exists a
.��; d;G/-dependent constant �0 > 0 such that as long as � < �0, the landscape
of R.�/ is globally benign.

More quantitatively, let � be as in Theorem 3.1. Then there is a .��; d;G/-
dependent constant c > 0 and a decomposition Rd nS�2O��

B�.�/ � A t B,
where for � 2 A

(3.8) �min.r2R.�// < �c=�3;
and for � 2 B

(3.9) krR.�/k > c=�2:
Let us provide some intuition for the proof: Recall the reweighted law (2.4) for

g 2 G. We enumerate
G D fg1; : : : ; gKg;

fix a small constant � > 0, and divide the space of " 2 Rd into the regions

Ei .�; �/ D
�
" 2 Rd W p.gk j "; �/ � � for all k 2 f1; : : : ; Kg n fig	;(3.10)

Eij .�; �/ D
�
" 2 Rd W p.gi j "; �/ > � and p.gj j "; �/ > �

	
:(3.11)
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Here, for � small enough, Ei .�; �/ is the space of noise vectors " for which the
"-dependent distribution (2.4) places nearly all of its weight on gi , and Eij .�; �/
is the space of " for which this distribution “straddles” its weight between at least
two points gi ¤ gj 2 G.

We will choose the set B in Theorem 3.3 to be those vectors � 2 Rd for which
P�" 2 Ei .�; �/� � 1 for some i 2 f1; : : : ; Kg. Thus, for some fixed gi 2 G, with
high probability over ", the law (2.4) places nearly all of its weight on the single
element gi . Intuitively, from the form (2.4), these are the points � 2 Rd which are
closer to g>i �� than to the other points g>j �� for j ¤ i .

The remaining points Rd n B will constitute A. A key step of the proof is to
show that if � � B, then there must be a pair i ¤ j for which P�" 2 Eij .�; �/� & � .
That is, with some small probability of order � , the law (2.4) straddles its weight
between gi and gj . (Note that this is not tautological from the definitions, as we
must rule out the possibility, e.g., that P�" 2 Ei .�; �/� D 1=2 and P�" 2 Ej .�; �/� D
1=2 for some i ¤ j , but P�" 2 Eij .�; �/� D 0. Indeed, from the form of (2.4), we
see that even if � is exactly equidistant from g>i �� and g>j ��, the probability over
" is only O.�/ that p.gi j "; �/ and p.gj j "; �/ are comparable.) We prove this
claim using a Gaussian isoperimetric argument in Lemma 3.4 below.

LEMMA 3.4. Fix any � ¤ 0 and � 2 .0; .K C 9/�1/, and define Ei ; Eij by (3.10)
and (3.11). Suppose, for some i 2 f1; : : : ; Kg and p 2 .0; 1=2�, that

p � P�" 2 Ei � � 1=2:
Then for some j 2 f1; : : : ; Kg n fig,

P�" 2 Eij � � p

.K � 1/p2� min
�
�

k�k ; 1
�
:

PROOF. Let E ti D f" 2 Rd W dist."; Ei / < tg. We first claim that if " 2 E ti n Ei
for t D �=k�k, then there exists some j ¤ i for which " 2 Eij . For this, note that

r"� logp.g j "; �/ � D 1

�

�
g� � Eh�h� j "; ��

�
;

so " 7! logp.gi j "; �/ has the Lipschitz bound kr" logp.gi j "; �/k � 2k�k=� .
Suppose that " 2 E ti n Ei . Then there is "0 2 Ei with k" � "0k < �=k�k, so
logp.gi j "0; �/ � logp.gi j "; �/ � 2 and

p.gi j "0; �/=p.gi j "; �/ � e2 < 8:
Since p.g1 j "0; �/ C � � � C p.gK j "0; �/ D 1 and .K C 9/� < 1, when "0 2 Ei
we must have p.gi j "0; �/ � 1 � .K � 1/� > 8� . Then the above implies
p.gi j "; �/ > � . Since " � Ei , by definition of Ei we must also have p.gj j
"; �/ > � for some j ¤ i , so that " 2 Eij as desired. Note that this index j 2
f1; : : : ; Kg may depend on ". However, this shows that for at least one fixed index
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j 2 f1; : : : ; Kg n fig,

(3.12) P�" 2 Eij � �
P�" 2 E ti n Ei �

K � 1 :

We now apply the Gaussian isoperimetric inequality to lower bound the right
side: For � the standard normal distribution function,

��1.P�" 2 E ti �/ � ��1.P�" 2 Ei �/C t;

see [12, theorem 10.15]. Then, denoting by � the standard normal density,

P�" 2 E ti n Ei � D P�" 2 E ti � � P�" 2 Ei �
� �.��1.P�" 2 Ei �/C t / ��.��1.P�" 2 Ei �//

D
Z ��1.P�"2Ei �/Ct

��1.P�"2Ei �/
�.r/dr:

Applying P�" 2 Ei � 2 �p; 1=2� by assumption, we get

��1.P�" 2 Ei �/ 2 ���1.p/; 0�:
Then there is always an interval of values for r , having length min.t; 1/ and con-
tained in the above range of integration, for which �.r/ � min.�.��1.p//; �.1//
over this interval. Applying the tail bound �.x/ � e�x

2=2 for all x � 0, we
get ��1.p/ � �

p
2 log 1=p and �.��1.p// � p=

p
2� . For p � 1=2 we have

p=
p
2� < �.1/. Combining these observations gives

P
�
" 2 E ti n Ei

� � min.t; 1/ � pp
2�
:

Recalling t D �=k�k and combining with (3.12) yields the lemma. �

PROOF OF THEOREM 3.3. Let us fix two positive constants

(3.13) � < min
�

1

K C 9
;

�

8k��kK
�

and

(3.14) p <

�
�

12k��k
�2 �

K:

Define Ei .�; �/ and Eij .�; �/ by (3.10) and (3.11) with this choice of � , and set

A D
�
� 2 Rd n C W P�" 2 Eij .�; �/� >

p

K
p
2�

� �

3k��k
for some i ¤ j

�
;

B D
�
� 2 Rd n C W P�" 2 Eij .�; �/� � p

K
p
2�

� �

3k��k
for all i ¤ j

�
:

To check (3.8) when � 2 A, recall the form of r2R.�/ in (2.10). We apply
P�" 2 Eij .�; �/� > c� for a constant c > 0 and some i ¤ j , by the definition of A.
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Choose a constant c0 > 0 such that kg>i �� � g>j ��k > 3c0. Then a chi-squared
tail bound yields

(3.15) P
�k"k � c0=� and " 2 Eij .�; �/

�
> c0�

for a different constant c0 < c and all � < �0. For " satisfying (3.15), we have

g>i .�� C �"/ � g>j .�� C �"/


 � 

g>i �� � g>j ��k � 2�k"k � c0;

and also p.gi j "; �/ > � and p.gj j "; �/ > � . Then for such ", denoting
� D Eg �g>.�� C �"/ j "; ��, we have

Tr Covg �g>.�� C �"/ j "; ��
D Eg �kg>.�� C �"/ � �k2 j "; ��
� � � 

g>i .�� C �"/ � �

2 C � � 

g>j .�� C �"/ � �

2 > c:

Combining this with (3.15) implies that

�max
�
E"
�
Covg �g>.�� C �"/ j "; ���� > c�:

Then (3.8) follows from (2.10).
To check (3.9) when � 2 B, note that if k�k � 3k��k, then (3.9) follows from

Lemma 2.9. For � 2 B such that k�k < 3k��k, the definition of B and Lemma
3.4 imply that either P�" 2 Ei .�; �/� < p or P�" 2 Ei .�; �/� > 1=2 for every
i 2 f1; : : : ; Kg. Note that since K� < 1, we must have:

� E1.�; �/; : : : ; EK.�; �/ are disjoint.
� fEi .�; �/gKiD1 and fEij .�; �/gi¤j together cover all of Rd .

The first observation implies that P�" 2 Ei .�; �/� > 1=2 for at most one index i 2
f1; : : : ; Kg, so we must have P�" 2 Ej .�; �/� < p for all other j ¤ i . Combining
this with the second observation,

1 � P�" 2 Ei .�; �/�C
X
j Wj¤i

P�" 2 Ej .�; �/�C
X
j¤k

P�" 2 Ejk.�; �/�

� P�" 2 Ei �C .K � 1/p C
 
K

2

!
c�:

For � < �0 and sufficiently small �0, this implies P�" 2 Ei .�; �/� � 1 �Kp.
Recall the form (2.8) for rR.�/. For this index i , let us write

E"
�
Eg �g>.�� C �"/ j "; ��� � g>i �� D IC IIC III

where

I D E"
�
1f" � Eig

�
Eg �g>.�� C �"/ j "; �� � g>i ��

��
;

II D E"
�
1f" 2 Eig

�
Eg �1fg ¤ gigg>.�� C �"/ j "; ����;

III D E"
�
1f" 2 Eig

�
Eg �1fg D gigg>.�� C �"/ j "; �� � g>i ��

��
:
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Applying Cauchy-Schwarz, the above bound P�" 2 Ei .�; �/� � 1 � Kp, and the
condition (3.14) for p, we get for � < �0 and small enough �0 that

kIk � P�" � Ei �1=2E"�.k�� C �"k C k��k/2�1=2 � .Kp/1=2 � 3k��k < �=4:
When " 2 Ei , we have Pg �g D gi j "; �� D p.gi j "; �/ > 1 � K� . Then by the
condition (3.13) for � , for � < �0,

kIIk � E"
�
1f" 2 EigPg �g ¤ gi j "; �� � k�� C �"k� � K� � 2k��k < �=4:

For III, we cancel g>i �� to get the bound

kIIIk � E"
�
Eg �1fg D gigkg>.�"/k j "; ��

� � � E"�k"k� < �=4:
Combining these with (2.8) yields

�2rR.�/ � �� � g>i ���

 < 3�=4;
and (3.9) follows since k� � g>i ��k � � because � � S

�2O��
B�.�/. These

conditions (3.8), (3.9), and Theorem 3.1 together show that the landscape of R.�/
is globally benign. �

The following then shows that the landscape of Rn.�/ is also globally benign
with high probability, when n� ��2 log ��1.

COROLLARY 3.5. In the setting of Theorem 3.3, the same statements hold for the
empirical risk Rn.�/ with probability at least 1 � ��C e�c�2n � Ce�cn2=3 .

PROOF. For � < �0 and small enough �0, with probability 1�Ce�cn, we have
krRn.�/k � c=�2 for all � such that k�k > 3k��k by Lemma 2.9. Applying
the concentration result (2.18) with t D c0=�

2, and (2.19) with t D c0=�
3, over

the ball Br for r D 3k��k, for small enough c0 we obtain (3.8) and (3.9) also for
the empirical risk Rn.�/, with probability 1� ��C e�c�2n�Ce�cn2=3 . The result
then follows from combining with Corollary 3.2. �

Remark 3.6. For � 2 Rd roughly equidistant to multiple points of the orbit O�� ,
the weights p.g j "; �/ do not concentrate with high probability on a single deter-
ministic rotation g 2 G, so we do not obtain the same refinement of the concentra-
tion probability as in Corollary 3.2 for the local analysis near ��.

4 Landscape Analysis for High Noise
In this section, we analyze the function landscapes of R.�/ and Rn.�/ in the

high-noise regime � > �0.��; d;G/. Our results relate to the algebra of G-
invariant polynomials and systems of reparametrized coordinates in local neigh-
borhoods, which we first review in Section 4.1.

Our analysis for high noise is based on showing that truncations of the formal
��1-series

(4.1)
1X
`D1

��2`S`.�/
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provide asymptotic estimates for the population risk R.�/. We derive this in
Lemma 4.7 using the series expansion of the cumulant generating function

logEg exp.h�� C �"; g�i=�2/

in (2.3). We quantify the accuracy of the approximation to R.�/ by bounding its
deviation from the first k terms of its formal series for any fixed k as � ! 1.
To analyze the concentration of the empirical risk, we provide a similar series
expansion for Rn.�/ in Lemma 4.11.

The functions S`.�/ in (4.1) do not depend on � , and we analyze the form of
these terms also in Section 4.2. We show in Section 4.3 that the local landscape
of R.�/ around any point z� 2 Rd may be understood, for large � , by analyzing
the successive landscapes of these functions S`.�/ in a reparametrized system of
coordinates near z� .

In Section 4.4, we apply this at z� D �� to analyze the local landscape near
��. Theorem 4.16 and Corollary 4.18 show that R.�/ is strongly convex in a � -
independent neighborhood of �� when reparametrized by a transcendence basis
of the G-invariant polynomial algebra. The same holds with high probability for
Rn.�/ when n � �2L, where L is the smallest integer for which trdeg.RG�L/ D
d . Theorem 4.16 also shows that I.��/ has a certain graded structure, where the
magnitudes of its eigenvalues correspond to a sequence of transcendence degrees
in this algebra.

In Section 4.5, we patch together the local results of Section 4.3 to study the
global landscapes of R.�/ and Rn.�/. Theorems 4.20, 4.23 and Corollaries 4.22,
4.26 establish globally benign landscapes for K-fold discrete rotations on R2 and
the symmetric group of all permutations on Rd for large � and large n. Theorem
4.27 then generalizes this to a more abstract condition, in terms of minimizing the
sequence of polynomials P`.�/ in (1.11) over the sequence of moment varieties
V`�1 in (1.12), and shows that the empirical landscape ofRn.�/ inherits the benign
property of R.�/ also when n� �2L.

Finally, in Section 4.6, we analyze the global landscape for cyclic permutations
on Rd (i.e., multireference alignment). Theorem 4.28 and Corollary 4.29 show
that the local minimizers of R.�/ and Rn.�/ are in correspondence with those of a
minimization problem in phase space. Corollary 4.30 shows that their landscapes
are benign in dimensions d � 5 (for large � and large n), but may not be benign
even for generic �� for even d � 6 and odd d � 53.

4.1 Invariant polynomials and local reparametrization
DEFINITION 4.1. For a subgroup G � O.d/, a polynomial function ' W Rd ! R
is G-invariant if '.g�/ D '.�/ for all g 2 G. We denote by RG the algebra (over
R) of all G-invariant polynomials on Rd , and by RG

�`
� RG the vector space of

such polynomials having degree � `.
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DEFINITION 4.2. Polynomials '1; : : : ; 'k W Rd ! R are algebraically inde-
pendent (over R) if there is no nonzero polynomial P W Rk ! R for which
P.'1.�/; : : : ; 'k.�// is identically 0 over � 2 Rd . For a subset A � RG , its
transcendence degree trdeg.A/ is the maximum number of algebraically indepen-
dent elements in A.

One may construct a transcendence basis of d such polynomials according to
the following lemma; we provide a proof for convenience in Appendix A.2.

LEMMA 4.3. For any finite subgroup G � O.d/, there exists a smallest integer
L � 1 for which trdeg.RG�L/ D d . Writing d D d1 C � � � C dL where

d` D trdeg
�
RG�`

� � trdeg
�
RG�`�1

�
;

there also exist d algebraically independent G-invariant polynomials ' D .'1;

: : : ; 'L/, where each subvector '` consists of d` polynomials having degree ex-
actly `.

It was shown in [6] that this number L is the highest-order moment needed for
a moment-of-moments estimator to recover a generic signal �� in the model (1.1),
up to a finite list of possibilities including (but not necessarily limited to) the orbit
points O�� , and that the number of samples required for this type of recovery scales
as �2L.

In our local analysis around a point z� 2 Rd , we will switch to a system of
reparametrized coordinates. Let us specify our notation for such a reparametriza-
tion.

DEFINITION 4.4. A function ' W Rd ! Rd is a local reparametrization in an
open neighborhood U of z� 2 Rd if ' is 1-to-1 on U with inverse function �.'/,
and '.�/ and �.'/ are analytic, respectively, on U and '.U /.

If ' is a local reparametrization, then d�' is nonsingular and equal to .d'�/�1

at each � 2 U . Conversely, by the inverse function theorem, if '.�/ is analytic and
d�'.z�/ is nonsingular, then there is such an open neighborhood U of z� on which
' defines a local reparametrization.

To ease notation, we write (with a slight abuse) f .'/ for f .�.'// when the
meaning is clear, and we write r'f .'/, r2'f .'/, and @'if .'/ for the gradient,
Hessian, and partial derivatives of f .'/ with respect to '. For a decomposition
' D .'1; : : : ; 'L/ of dimensions d1; : : : ; dL, we denote by r'`f .'/ 2 Rd` and
r2
'`
f .'/ 2 Rd`�d` the subvectors and submatrices of r'f .'/ and r2'f .'/ cor-

responding to the coordinates in '`.
Recalling r�f .�/ D d�f .�/>, by the chain rule and product rule, we have

r�f .�/ D .d�'/
>r'f .'/;(4.2)

r2�f .�/ D .d�'/
> � r2'f .'/ � d�' C

dX
iD1

@'if .'/ � r2�'i :(4.3)
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Note that r�f .z�/ D 0 if and only if r'f .z'/ D 0 for z' D '.z�/; i.e., critical
points do not depend on the choice of parametrization. At a critical point z� of
f .�/, letting z' D '.z�/, the identity (4.3) simplifies to just the first term,

r2�f .z�/ D .d�'.z�//> � r2'f .z'/ � d�'.z�/;
so that the rank and signs of the eigenvalues of r2

�
f .z�/ also do not depend on the

choice of parametrization. This may be false when � is not a critical point—in
particular, strong convexity of f .'/ as a function of ' 2 '.U / does not imply
strong convexity of f .�/ as a function of � 2 U .

For analyzing specific groups, we will explicitly describe our reparametrization
'. For more general results, we will reparametrize by the transcendence basis of
polynomials ' in Lemma 4.3. The following clarifies the relationship between
algebraic independence of these polynomials and linear independence of their gra-
dients, and implies in particular that ' is a local reparametrization at generic points
of Rd . We provide a proof also in Appendix A.2.

LEMMA 4.5. Let G � O.d/ be any subgroup, and let '1; : : : ; 'k be polynomials
in RG .

(a) If '1; : : : ; 'k are algebraically independent, thenr'1; : : : ;r'k are linearly
independent at generic points � 2 Rd .

(b) If r'1; : : : ;r'k are linearly independent at any point � 2 Rd , then '1;
: : : ; 'k are algebraically independent.

(c) Ifr'1; : : : ;r'k are linearly independent at a point z� 2 Rd , and '1; : : : ; 'k
2 RG

�`
with k D trdeg.RG

�`
/, then there is an open neighborhood U of

z� such that for every polynomial  2 RG
�`

, there is an analytic function

f W Rk ! R for which  .�/ D f .'1.�/; : : : ; 'k.�// for all � 2 U .

4.2 Series expansion of the population risk
For any partition � of �` C m� � f1; : : : ; ` C mg, denote by j�j the number

of sets in � , and label these sets as 1; : : : ; j�j. For each i 2 �` C m�, denote by
�.i/ 2 f1; : : : ; j�jg the index of the set containing element i . For 0 � m � `,
define
(4.4)

M`;m.� j �; ��/ D Eg1;:::;gj�j

2
4 mY
jD1



g�.2j�1/�; g�.2j /�

� � `CmY
jD2mC1



��; g�.j /�

�35
where the expectation is over independent group elements g1; : : : ; gj�j � Unif.G/.

Example 4.6. Consider ` D 3, m D 1, and � D ff1; 2g; f3; 4gg. For this partition
� , we have j�j D 2 and .�.1/; �.2/; �.3/; �.4// D .1; 1; 2; 2/. Letting g1; g2 �
Unif.G/ be two independent and uniformly distributed group elements,

M3;1.� j �; ��/ D Eg1;g2
�hg1�; g1�ih��; g2�i2�:(4.5)
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For � D ff1; 3g; f2g; f4gg, we have j�j D 3 and .�.1/; �.2/; �.3/; �.4// D
.1; 2; 1; 3/. Then

M3;1.� j �; ��/ D Eg1;g2;g3 �hg1�; g2�ih��; g1�ih��; g3�i�:(4.6)

Similarly, for � D ff1; 3; 4g; f2gg, we have

(4.7) M3;1.� j �; ��/ D Eg1;g2
�hg1�; g2�ih��; g1�i2�:

Define the set
(4.8)
P.`;m/ D �

partitions � of �`Cm� W �.2j � 1/ ¤ �.2j / for all j D 1; : : : ; m
	
:

That is, partitions � 2 P.`;m/ separate each pair of elements f1; 2g; f3; 4g; : : : ;
f2m � 1; 2mg. Define the quantity

(4.9) S`.�/ D
1

`�

X̀
mD0

1

2m

 
`

m

! X
�2P.`;m/

.j�j � 1/�.�1/j�jM`;m.� j �; ��/

and the corresponding k-term expressions

(4.10) Rk.�/ D
kX
`D1

��2`S`.�/:

The following is our rigorous result corresponding to (4.1), which states that R.�/
may be approximated by Rk.�/ for k�k � �= log � and fixed k, as � ! 1. We
provide its proof at the end of this section.

LEMMA 4.7. Fix any function r W .0;1/! �1;1/ such that r.�/ �.log �/=� ! 0

as � !1. For each k � 1, there exist .��; d;G/-dependent constants C; �0 > 0
depending also on k such that for all � > �0 and all � 2 Rd with k�k < r.�/,

jR.�/ �Rk.�/j �
�
C log �
�

�2kC2
.k�k _ 1/2kC2;

krR.�/ � rRk.�/k �
�
C log �
�

�2kC2
.k�k _ 1/2kC1;

kr2R.�/ � r2Rk.�/k �
�
C log �
�

�2kC2
.k�k _ 1/2k :

From the definition in (4.4), we observe that for any fixed �� 2 Rd , the term
M`;m.� j �; ��/ is a G-invariant polynomial function of � . Counting the number
of occurrences of � , M`;m.� j �; ��/ has degree ` C m in � . Hence, S`.�/ is a
G-invariant polynomial of degree 2`. The following shows that, in fact, S`.�/ is
in the algebra generated by the polynomials RG

�`
of degree at most `. (That is,

S` is a polynomial function of elements of RG
�`

.) Furthermore, its dependence on
the polynomials of degree ` has an explicit form in terms of the moment tensor
T`.�/ D Eg �.g�/
`� from (1.10). These properties will allow us to understand the
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dependence of S`.�/ on the transcendence basis for RG
�`

constructed in Lemma
4.3.

LEMMA 4.8. For each fixed �� 2 Rd and each ` � 1, we have

(4.11) S`.�/ D
1

2.`�/



T`.�/ � T`.��/

2HS CQ`.�/

where Q`.�/ is a polynomial (with coefficients depending on ��) in the algebra
generated by RG

�`�1
. In particular, S`.�/ is in the algebra generated by RG

�`
.

PROOF. We consider the terms M`;m.� j �; ��/ that constitute S`.�/. For each
� 2 P.`;m/, applying the constraint that �.2j � 1/ ¤ �.2j / for j D 1; : : : ; m,
we observe that each set in the partition � has cardinality at most `, and hence
each distinct group element gi for i D 1; : : : ; j�j appears at most ` times inside
the expectation in (4.4).

If each set in � has cardinality at most `�1 (e.g., (4.5) and (4.6) in Example 4.6),
then we claim that M`;m.� j �; ��/ is in the generated algebra of RG

�`�1
. To see

this, observe that for any k � ` � 1 and tensor A 2 .Rd /
k , we may write

Eg

2
4 dX
i1;:::;ikD1

0
@ kY
jD1

.g�/ij

1
AAi1;:::;ik

3
5 D Eg

�

.g�/
k; A

�� D hTk.�/; Ai:

Each entry of the moment tensor Tk.�/ is a G-invariant polynomial of degree k,
and hence belongs to RG

�k
. Applying this identity once for each distinct element

g1; : : : ; gj�j in (4.4), and using that each such element appears k � `�1 times, we
get that M`;m.� j �; ��/ belongs to the algebra generated by RG

�`�1
. Absorbing

the contributions of these termsM`;m.� j �; ��/ intoQ`.�/, it remains to consider
those partitions � 2 P.`;m/ where some set in � has cardinality `.

Without loss of generality, let us order the sets of � so that its first set has
cardinality `. Then g1 appears ` times in (4.4), so exactly one of f�.2j�1/; �.2j /g
must be 1 for each j D 1; : : : ; m, and every �.j / must be 1 for j D 2m C
1; : : : ; `Cm. For notational convenience, consider � such that �.2j � 1/ D 1 for
each j D 1; : : : ; m (e.g., (4.7) in Example 4.6). For such � , we have
(4.12)
M`;m.� j �; ��/ D Eg1;:::;gj�j

�hg1�; g�.2/�i : : : hg1�; g�.2m/�ihg1�; ��i`�m�:
Suppose now that there is a second set of � that has cardinality at most ` � 1,
corresponding to the element g2. Then g2 appears between 1 and ` � 1 times in
g�.2/; g�.4/; : : : ; g�.2m/. We may decouple the corresponding g1’s by introducing
a new independent variable zg1 � Unif.G/, setting zg2 D zg1g�11 g2, and writing

hg1�; g2�i D h�; g�11 g2�i D hzg1�; zg2�i:
The expectation over the uniform random pair .g1; g2/ may be replaced by that
over the uniform random triple .g1; zg1; zg2/, reducing (4.12) into an expectation
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where each distinct group element now appears � ` � 1 times. Then by the ar-
gument for the previous case, we also have that M`;m.� j �; ��/ belongs to the
algebra generated by RG

�`�1
in this case, and these terms may be absorbed into

Q`.�/.
The only partitions that remain are those where every set in � has cardinality `.

One such partition corresponds to m D 0, where � D ff1; 2; : : : ; `gg. For this � ,
we have

M`;m.� j �; ��/ D Eg �h��; g�i`� D Eg1;g2 �hg1��; g2�i`� D hT`.��/; T`.�/i:
The remaining 2`�1 such partitions correspond to m D ` and j�j D 2, where we
may assume without loss of generality that 1 2 �.1/ and 2 2 �.2/, and take one
element of each remaining pair f�.2j � 1/; �.2j /g for j D 1; : : : ; ` to belong to
�.1/ and the other to belong to �.2/. For these partitions � , we have

M`;m.� j �; ��/ D Eg1;g2 �hg1�; g2�i`� D kT`.�/k2HS:

Applying the above two displays to (4.9), we obtain

S`.�/ D � 1
`�
hT`.��/; T`.�/i C

1

2.`�/
kT`.�/k2HS CQ`.�/

for some Q` in the algebra generated by RG
�`�1

. Completing the square yields
S`.�/ D 1

2.`�/
kT`.�/�T`.��/k2HS� 1

2.`�/
kT`.��/k2HSCQ`.�/, where kT`.��/k2HS

does not depend on � and can be absorbed into Q`.�/. We thus arrive at the stated
form of S`.�/ in (4.11). Since the entries of T`.�/ belong to RG

�`
, we obtain also

that S` belongs to the algebra generated by RG
�`

. �

The following computation of the first three terms of (4.1) will be useful in
our analysis of specific group actions. By Lemma 2.5, we assume without loss of
generality that Eg �g� D 0.

LEMMA 4.9. If Eg �g� D 0, then

S1.�/ D 0

S2.�/ D �1
2
Eg �h��; g�i2�C 1

4
Eg �h�; g�i2�

S3.�/ D �1
6
Eg �h��; g�i3�C 1

12
Eg �h�; g�i3�

C 1
2
Eg1;g2 �hg1�; g2�ih��; g1�ih��; g2�i�

� 1
3
Eg1;g2 �hg1�; g2�ih�; g1�ih�; g2�i�:

PROOF. If Eg �g� D 0, then by (4.4), any � 2 P.`;m/ that has a singleton
yields M`;m.� j �; ��/ D 0.

For ` D 1 and m 2 f0; 1g, every � 2 P.`;m/ has a singleton, so S1.�/ D 0.
For ` D 2 and m 2 f0; 1; 2g, the only partitions � 2 P.`;m/ that do not have a

singleton are ff1; 2gg for m D 0 and ff1; 3g; f2; 4gg and ff1; 4g; f2; 3gg for m D 2.
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We get

S2.�/ D �1
2
M2;0.ff1; 2gg/C 1

8
M2;2.ff1; 3g; f2; 4gg/

C 1
8
M2;2.ff1; 4g; f2; 3gg/

D �1
2
Eg �h��; g�i2�C 1

4
Eg1;g2 �hg1�; g2�i2�

D �1
2
Eg �h��; g�i2�C 1

4
Eg �h�; g�i2�;

the last line applying the equality in law g>1 g2
LD g1.

For ` D 3, grouping together � 2 P.`;m/ that yield the same value ofM`;m.� j
�; ��/ by symmetry, we may check that

S3.�/ D �1
6
M3;0.ff1; 2; 3gg/C 2 � 1

4
M3;1.f1; 3g; f2; 4g/

C 4 � 1
8
M3;2.f1; 3; 5g; f2; 4g/C 4 � 1

48
M3;3.f1; 3; 5g; f2; 4; 6g/

� 8 � 1
24
M3;3.f1; 3g; f2; 5g; f4; 6g/

D �1
6
Eg �h��; g�i3�C 1

2
Eg1;g2 �hg1�; g2�ih��; g1�ih��; g2�i�

C 1
2
Eg1;g2 �hg1�; g2�i2h��; g1�i�C 1

12
Eg1;g2 �hg1�; g2�i3�

� 1
3
Eg1;g2;g3 �hg1�; g2�ihg1�; g3�ihg2�; g3�i�:

By the equality in joint law .g>1 g2; g1/
LD .g2; g1/, the third term vanishes because

Eg1;g2 �hg1�; g2�i2h��; g1�i� D Eg1;g2 �h�; g2�i2h��; g1�i�
D Eg2 �h�; g2�i2�Eg1 �h��; g1�i� D 0:

Applying g>1 g2
LD g and .g>1 g2; g

>
1 g3; g

>
2 g3/

LD .g>1 g2; g
>
1 ; g

>
2 / to the remain-

ing terms yields the form of S3. �

We now prove Lemma 4.7. We will first show the expansion (4.1) of R.�/ for-
mally in Lemma 4.10 below, and then prove quantitative estimates on the truncation
error. Recalling the form of R.�/ in (2.3), we define the formal series

Rformal.�/ D k�k2
2
��2 �

1X
kD1

1

k�
E"
�
�k
�h��2�� C ��1"; g�i��

using the cumulant generating function

(4.13) logEg �ef .g/� D
1X
kD1

1

k�
�k.f .g//

for f .g/ D h��2�� C ��1"; g�i, where �k.f .g// is the kth cumulant of f .g/
over the law g � Unif.G/, conditional on ". See Appendix A.1 for definitions.
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LEMMA 4.10. As formal power series in ��1, we have the equality

Rformal.�/ D
1X
`D1

��2`S`.�/:

PROOF. For notational convenience, set ´ D ��1. In the rest of the proof, we
treat all series expansions formally and take termwise expectations E". We now
rewrite Rformal.�/ using the cumulant tensors of g: Define the order-k moment
tensor Tk.g/ of g by

(4.14) Tk.g/ D Eg �g
k�

where g
k 2 .Rd�d /
k is the k-fold tensor product of the linear map g W Rd !
Rd , acting on .Rd /
k via g
k.v1 
 � � � 
 vk/ D gv1 
 � � � 
 gvk . Define the
order-k cumulant tensor Kk.g/ by the moment-cumulant relation

(4.15) Kk.g/ D
X

partitions � of �k�

.j�j � 1/�.�1/j�j�1
O
S2�

TS .g/;

which is analogous to the usual moment-cumulant relation for scalar random vari-
ables in (A.1). Here TS .g/ is the order-jS j moment tensor of g acting on .Rd /
S ,
corresponding to the jS j coordinates belonging to S . For vectors vi ; wi 2 Rd , we
have the relation*O
i2S

vi ; TS .g/
 O
i2S

wi

!+
D Eg

"*O
i2S

vi ;
O
i2S

.gwi /

+#
D Eg

"Y
i2S

hvi ; gwi i
#
:

Applying this, (4.15), and (A.1), we obtain

(4.16)

*
kO
iD1

vi ; Kk.g/

0
@ kO
iD1

wi

1
A+ D �k

�hv1; gw1i; : : : ; hvk; gwki�:
Recall that �k.f .g// D �k.f .g/; : : : ; f .g//, where the latter mixed cumulant
function is multilinear and permutation invariant in its arguments. Applying (4.16)
followed by a binomial expansion, we get

�k
�h´2�� C ´"; g�i� D 


.´2�� C ´"/
k; Kk.g/�
k
�

D
kX

jD0

´2k�j

 
k

j

!

"
j 
 �


.k�j /
� ; Kk.g/�
k

�
:

So as formal series we find
(4.17)

Rformal.�/ D k�k2
2
´2 �

1X
kD1

kX
jD0

´2k�j

j �.k � j /�


E"�"
j �
 �


.k�j /
� ; Kk.g/�
k

�
:
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Note that E"�"
j � D 0 if j is odd. Reparametrizing the terms for even j by
j D 2m and ` D k �m, it may be checked that f.k; j / W k � 1; 0 � j � kg is in
bijection with f.`;m/ W ` � 1; 0 � m � `g. Thus, we obtain

(4.18) Rformal.�/ D
1X
`D1

´2`R`.�/;

where

R`.�/ D 1f` D 1gk�k
2

2

�
X̀
mD0

1

.2m/�.` �m/�


E�"
2m�
 �


.`�m/
� ; K`Cm.g/�
.`Cm/

�
:

(4.19)

It remains to check that R`.�/ D S`.�/.
To show this, let us compute explicitly the expectation over " � N .0; Id/ in

(4.19). Consider the identity matrix as an element of .Rd /
2,

Id D
dX
iD1

ei 
 ei ;

where ei is the i th standard basis vector in Rd . For any pairing � of �2m�, denoteN
S2� Id 2 .Rd /
2m as the tensor product of m copies of Id that associates the

two coordinates of each copy of Id with a pair S 2 � . Using that the 2kth moment
of a standard Gaussian variable is the number of pairings of �2k�, we have for any
basis vector ei1 
 � � � 
 ei2m 2 .Rd /2m that

hE"�"
2m�; ei1 
 : : : ei2mi D E"

2
4 2mY
jD1

"ij

3
5

D
X

pairings � of �2m�

Y
.j1;j2/2�

1fij1 D ij2g

D
* X

pairings � of �2m�

 O
S2�

Id

!
; ei1 
 � � � 
 ei2m

+
:

Hence we see that

E"�"
2m� D
X

pairings � of �2m�

O
S2�

Id :

Applying (4.16) and the permutation invariance of �`Cm in its arguments, we get

(4.20)



E"�"
2m�
 �


.`�m/
� ; K`Cm.g/�
.`Cm/

�
D .2m � 1/�� � 
 Id
m
�
.`�m/� ; K`Cm.g/�
.`Cm/

�
;
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since there are .2m � 1/�� total pairings, and by permutation invariance, the term
corresponding to each pairing contributes equally to this inner product. (The right
side of (4.20) corresponds to the consecutive pairing of �2m�.) Applying (4.20) and
.2m � 1/��=.2m/� D 1=.2mm�/ to (4.19) yields
(4.21)

R`.�/ D 1f` D 1gk�k
2

2
� 1
`�

X̀
mD0

1

2m

 
`

m

!

Id
m
�
.`�m/� ; K`Cm.g/�
.`Cm/

�
:

Now we use (4.15) to write

(4.22)



Id
m
�
.`�m/� ; K`Cm.g/�
.`Cm/

�
D

X
partitions � of �`Cm�

.j�j � 1/�.�1/j�j�1
 Id
m
�
.`�m/� ;
�O
S2�

TS .g/
�
�
.`Cm/

�
D

X
partitions � of �`Cm�

.j�j � 1/�.�1/j�j�1M`;m.�/

where we set

M`;m.�/ �


Id
m
�
.`�m/� ;

O
S2�

Eg
�
.g�/
S

��
:

We may move the expectations over g out of the inner product by writing this as
an expectation over j�j independent copies of g, one for each S 2 � , so that

M`;m.�/ D Eg1;:::;gj�j

2
4*Id
m
�
.`�m/� ;

`CmO
iD1

.g�.i/�/

+35;
where for each i 2 �`C m�, �.i/ denotes the index of the part in � containing i .
Then using hId; v 
 wi D hv;wi and ha 
 b; c 
 d i D ha; cihb; d i, we see that
this is exactly the quantity M`;m.� j �; ��/ defined previously in (4.4).

Finally, we combine (4.22) with (4.21) and describe a cancellation of terms that
reduces the expression to S`.�/: First, note that hId; .g�/
2i D hg�; g�i D k�k2,
which does not depend on g. If m � 1 and f1; 2g belong to the same part in � ,
then

(4.23) M`;m.�/ D k�k2M`�1;m�1.�
�/

where �� is the partition of f3; : : : ; `Cmg obtained by removing 1 and 2. Suppose
first that ` � 2 and m � 1. Fix any partition �� of f3; : : : ; `C mg. Let S be the
collection of partitions of �`Cm� that do not separate f1; 2g and that reduce to ��

upon removing 1 and 2. There are two types of such partitions � : (a) � includes
1; 2 into a part of ��. Then j�j D j��j and there are j��j such partitions. (b) �
is the unique partition that adds f1; 2g as a new part to �� so that j�j D j��j C 1.



MLE FOR THE DISCRETE ORBIT RECOVERY MODEL 45

Summing over both types and using (4.23), we getX
�2S

.j�j � 1/�.�1/j�j�1M`;m.�/

D k�k2M`�1;m�1.�
�/
�j��j � .j��j � 1/�.�1/j��j�1 C 1 � .j��j/�.�1/j��j�

D 0:

Summing over all ��, the total contribution to (4.22) from partitions � that put
f1; 2g in the same set is 0. Similarly, the total contribution to (4.22) from partitions
� that put f3; 4g in the same set, but that do not put f1; 2g in the same set, is also 0,
and so forth. Recalling the set of partitions P.`;m/ defined in (4.8) that separate
each pair f1; 2g; : : : ; f2m � 1; 2mg, we get in this case of ` � 2 and m � 1 that
only these partitions contribute to (4.22), i.e.,


Id
m
�
.`�m/� ; K`Cm.g/�
.`Cm/
� D X

�2P.`;m/

.j�j � 1/�.�1/j�j�1M`;m.�/:

Using that P.`; 0/ is simply the set of all partitions of �`�, and applying this to
(4.21), we get that (4.21) is the same as S`.�/ for ` � 2. For ` D 1, we have either
m D 0 or m D 1. When m D 1, the only partition of �`Cm� D �2� not belonging
to P.1; 1/ is ff1; 2gg. Note that M1;1.ff1; 2gg/ D Eg �hg�; g�i� D k�k2, which
cancels the leading term k�k2=2 for ` D 1 in (4.21). Thus (4.21) also coincides
with S`.�/ for ` D 1, concluding the proof. �

PROOF OF LEMMA 4.7. We will apply a truncation argument to handle the ex-
pansion of Lemma 4.10 analytically. Within the rest of the proof, all summations
will be standard (nonformal) summations. For notational convenience, set

´ D ��1; s.´/ D r.´�1/ D r.�/; q.´/ D log.´�1/ D log �:

The given conditions are s.´/!1 and ´s.´/q.´/! 0 as ´! 0.
Consider the event k"k � q.´/ and define the truncation

Rtrunc.�/ D k�k2
2
´2 �

1X
kD1

1

k�
E"
�
�k
�h´2�� C ´"; g�i�1fk"k � q.´/g�:

For k�k < s.´/ and on this event k"k � q.´/, observe that maxg2G jf .g/j �
.´2k��k C ´q.´//s.´/. By the given condition ´s.´/q.´/ ! 0 as ´ ! 0 (which
also implies ´2s.´/! 0), and by Lemma A.1(c), we observe that this series defin-
ing Rtrunc.�/ is absolutely convergent whenever ´ < ´0, for a small enough con-
stant ´0 > 0. Then, writing (2.3) as

R.�/ D k�k2
2
´2 � E"

�
1fk"k � q.´/g � logEg �ef .g/�

�
� E"

�
1fk"k > q.´/g � logEg �ef .g/�

�
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and applying (4.13) and Fubini’s theorem to exchange E" and
P
k in the second

term, we arrive at

R.�/ D Rtrunc.�/ � E"
h
1fk"k > q.´/g � logEg

�
eh´

2��C´";g�i
�i
:(4.24)

Note that E"�"
j 1fk"k � q.´/g� D 0 if j is odd by sign symmetry of the law
of " conditional on k"k � q.´/. Therefore, by the same argument as for (4.18), we
obtain

(4.25) Rtrunc.�/ D
1X
`D1

´2`Rtrunc;`.�/

where

Rtrunc;`.�/ D 1f` D 1gk�k
2

2
�
X̀
mD0

1

.2m/�.` �m/�
� 
E�"
2m1fk"k � q.´/g�
 �


.`�m/
� ; K`Cm.g/�
.`Cm/

�
:

Applying the cumulant bound of Lemma A.1 together with (4.16) and k� � kk=ek ,
for ` � 2,

(4.26)

jRtrunc;`.�/j

�
X̀
mD0

1

.2m/�.` �m/�

� E"
h ���
"
2m 
 �


.`�m/
� ; K`Cm.g/�
.`Cm/

���� 1fk"k � q.´/g
i

�
X̀
mD0

1

.`Cm/�

 
`Cm

2m

!
.`Cm/`Cmq.´/2mk��k`�mk�k`Cm

� e2`k�k2`
X̀
mD0

 
`Cm

2m

!
q.´/2mk��k`�m

� e2`.q.´/C k��k/2`k�k2`:

Then for k�k < s.´/ and ´ < ´0, the series in (4.25) is absolutely convergent.
Differentiating each Rtrunc;`.�/ in � using the product rule, a similar argument
shows that for ` � 2,

krRtrunc;`.�/k � 2`e2`.q.´/C k��k/2`k�k2`�1;(4.27)

kr2Rtrunc;`.�/k � 2`.2` � 1/e2`.q.´/C k��k/2`k�k2`�2:(4.28)
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Then both
P
` ´
2`rRtrunc;`.�/ and

P
` ´
2`r2Rtrunc;`.�/ are also absolutely and

uniformly convergent over k�k < s.´/, so

rRtrunc.�/ D
1X
`D1

´2`rRtrunc;`.�/; r2Rtrunc.�/ D
1X
`D1

´2`r2Rtrunc;`.�/:

We now fix an integer k � 1 and remove the truncation event k"k � q.´/. Note
first that by Cauchy-Schwarz and a chi-squared tail bound, for all ´ < ´0 and some
constants C; c; ´0 > 0, the second term in (4.24) is at most

���E"h1fk"k > q.´/g � logEg
�
eh´

2��C´";g�i
�i���

� E"
�
1fk"k > q.´/g � k´2�� C ´"k � k�k�

� k�k � P�k"k > q.´/�1=2E"�k´2�� C ´"k2�1=2 � s.´/ � e�cq.´/2 � C´:
Recalling ´s.´/! 0 and q.´/ D log.1=´/, there exists ´0 (depending on k) such
that ´s.´/e�cq.´/

2 � ´2kC2 for all ´ < ´0. Applying this to (4.24), and also using
(4.26) to bound the sum over ` � k C 1 in (4.25), we obtain

(4.29)

������R.�/ �
kX
`D1

´2`Rtrunc;`.�/

������ � �C´q.´/.k�k _ 1/�2kC2

for ´ < ´0 and C; ´0 depending on k. For the gradient and Hessian, recall (2.4)
and note that



r� logEg
�
eh´

2��C´";g�i
�

 D 

Eg �g>.´2�� C ´"/ j "; ��

 � k´2�� C ´"k;

r2� logEg

�
eh´

2��C´";g�i
�

 D 

Covg �g>.´2�� C ´"/ j "; ��

 � k´2�� C ´"k2:

Then applying a similar Cauchy-Schwarz argument together with (4.27) and (4.28),
we get







rR.�/ �
kX
`D1

´2`rRtrunc;`.�/







 � �C´q.´/�2kC2.k�k _ 1/2kC1;(4.30)







r2R.�/ �
kX
`D1

´2`r2Rtrunc;`.�/







 � �C´q.´/�2kC2.k�k _ 1/2k :(4.31)
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Next, for all ` � k and some C; ´0 > 0 depending on k, the same Cauchy-
Schwarz argument yields for ´ < ´0 that

jR`.�/ �Rtrunc;`.�/j

�
X̀
mD0

1

.2m/�.` �m/�P
�k"k > q.´/�1=2

� E"
�

"
2m 
 �


.`�m/
� ; K`Cm.g/�
.`Cm/

�2�1=2
� C � P�k"k > q.´/�1=2 � k�k2` � Ce�cq.´/2k�k2` � �C´.k�k _ 1/�2kC2:

Applying this to each term ` D 1; : : : ; k in (4.29), we get������R.�/ �
kX
`D1

´2`R`.�/

������ � �C´q.´/.k�k _ 1/�2kC2:
The differences krR`.�/�rRtrunc;`.�/k and kr2R`.�/�r2Rtrunc;`.�/kmay be
bounded similarly, and combined with (4.30) and (4.31) to show





rR.�/ �

kX
`D1

´2`rR`.�/






 � �C´q.´/�2kC2.k�k _ 1/2kC1;







r2R.�/ �
kX
`D1

´2`r2R`.�/






 � �C´q.´/�2kC2.k�k _ 1/2k :

Recalling that ´ D 1=� and q.´/ D log � and noting that R`.�/ D S`.�/ by
Lemma 4.10 concludes the proof. �

To provide sharper finite-sample concentration bounds, we now establish an
analogous expansion for the empirical risk Rn.�/. Note that whereas in the popu-
lation expansion (4.1) the term for ��` was a polynomial of � belonging to RG

�`=2

(for even `), here the term for ��` in this expansion of the empirical risk is a
polynomial of � only guaranteed to belong to RG

�`
.

LEMMA 4.11. Fix any function r W .0;1/! �1;1/ such that r.�/ � .log �/=� !
0 as � ! 1. There are polynomials P`."; �; ��/ such that for any k � 1, some
.��; d;G; k/-dependent constants C; c; c0; �0 > 0, any � > �0, and any t >
e�c0.log�/2 , with probability at least

1 � Ce�c.logn/2 � .C�.logn/=t/d
�
e�cnt�=.logn/k_2 C e�cnt

2.�= log�/2kC2�
;
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we have ����Rn.�/ � kX
`D1

��` � 1
n

nX
iD1

P`."i ; �; ��/

����(4.32)

�
�
t C C

�
log �
�

�kC1�
.k�k _ 1/kC1;

krRn.�/ �
kX
`D1

��` � 1
n

nX
iD1

rP`."i ; �; ��/




(4.33)

�
�
t C C

�
log �
�

�kC1�
.k�k _ 1/k;





r2Rn.�/ � kX
`D1

��` � 1
n

nX
iD1

r2P`."i ; �; ��/




(4.34)

�
�
t C C

�
log �
�

�kC1�
.k�k _ 1/k�1

simultaneously for all � 2 Rd satisfying k�k < r.�/.
Here each term takes the form

(4.35) P`."; �; ��/ D
MX̀
mD1

A`;m."; ��/P`;m.�/

for some M` � 1 where

� each A`;m is a polynomial in " and �� of total degree at most `,
� each P`;m 2 RG

�`
is a G-invariant polynomial in � of degree at most `,

� E"�P`."; �; ��/� equals S`=2.�/ if ` is even and equals 0 if ` is odd, where
S`=2 is as defined in (4.9) for the series expansion of R.�/, and

� P` and its derivatives satisfy, for some universal constant C0 > 0,

jP`."; �; ��/j � .k"k C k��k C C0/
`.k�k _ 1/`;(4.36)

kr�P`."; �; ��/k � C `0 .k"k C k��k C C0/
`.k�k _ 1/`�1;(4.37)

kr2�P`."; �; ��/k � C `0 .k"k C k��k C C0/
`.k�k _ 1/.`�2/_0:(4.38)

PROOF. As in the preceding proof, let ´ D ��1, s.´/ D r.´�1/ D r.�/, and
q.´/ D log.´�1/ D log � . We write as shorthand En�f ."i /� D n�1

Pn
iD1 f ."i /.

Then analogous to (4.24), we have

Rn.�/ D Rtrunc;n.�/ � En
h
1fk"ik > q.´/g � logEg

�
eh´

2��C´"i ;g�i
�i
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where
Rtrunc;n.�/

D k�k2
2
´2 �

1X
kD1

1

k�
En
�
�k
�h´2�� C ´"i ; g�i

�
1fk"ik � q.´/g

�

D k�k2
2
´2 �

1X
kD1

kX
jD0

´2k�j

j �.k � j /�


En�"
ji 1fk"ik � q.´/g�
 �

k�j
� ; Kk.g/�
k

�
:

Both sums are absolutely convergent, and the second line follows from the same
multilinear expansion of the cumulant �k as in (4.17). Rearranging this sum ac-
cording to powers of ´ and applying the cumulant tensor identity (4.16), we obtain

Rtrunc;n.�/ D
1X
`D1

´` � En�1fk"ik � q.´/g � P`."i ; �; ��/�

where

(4.39)

P`."; �; ��/ D
k�k2
2

1f` D 2g �
X

`=2�k�`

1

k�

 
k

` � k

!

� �k.h"; g�i; � � � ; h"; g�i� �� �
2k � ` times

; h��; g�i; � � � ; h��; g�i� �� �
`� k times

/:

These polynomials P`."; �; ��/ satisfy the conditions of the lemma. In particular,
by the moment-cumulant relationship, in the form (4.35) each P`;m can be taken
to be an entry of the moment tensor T`.�/ D Eg �.g�/
`� (which is a degree-` G-
invariant polynomial) and hence M` � d `. The bounds (4.36)–(4.38) on P` and
its derivatives follow from the same arguments as those that led to (4.26)–(4.28),
in particular, the cumulant bound in Lemma A.1.

Thus, we arrive at

(4.40) Rn.�/ D
kX
`D1

´` � 1
n

nX
iD1

P`."i ; �; ��/C I.�/C II.�/C III.�/

where

I.�/ D
1X

`DkC1

´` � 1
n

nX
iD1

1fk"ik � q.´/g � P`."i ; �; ��/

II.�/ D �
kX
`D1

´` � 1
n

nX
iD1

1fk"ik > q.´/g � P`."i ; �; ��/

III.�/ D �1
n

nX
iD1

1fk"ik > q.´/g � logEg
�
eh´

2��C´"i ;g�i
�
:
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We conclude the proof by bounding these three remainder terms and their deriva-
tives. Throughout,C;C 0; c; c0 > 0 denote .��; d;G; k/-dependent constants chang-
ing from instance to instance. Beginning with II.�/ and III.�/, we define the event
E where k"ik � logn for all i D 1; : : : ; n. Then

P�Ec� D P
h

n
max
iD1

k"ik > logn
i
� ne�c.logn/2 � Ce�c0.logn/2 :

Let f ."/ be either ´` � 1fk"k > q.´/g � P`."; �; ��/ for some ` 2 f1; : : : ; kg in
the case of II.�/, or 1fk"k > q.´/g � logEg �eh´

2��C´"i ;g�i� in the case of III.�/.
Applying the bounds

Eg �h´2�� C ´"i ; g�i� � logEg �eh´
2��C´"i ;g�i� � max

g
h´2�� C ´"i ; g�i;

in both cases and on the event E for small ´ D ��1, we have jf ."i /j � C´.k�k _
1/k.logn/k . Introducing the bounded summand

Lf ."/ D min
�

max
�
f ."/;�C´.k�k _ 1/k.logn/k

�
; C´.k�k _ 1/k.logn/k

�
;

Bernstein’s inequality yields

P
�����1n

nX
iD1

Lf ."i / � E"� Lf ."/�
���� > �

�

� 2 exp
�
�

1
2
n�2

Var"� Lf ."/�C 1
3
� � C´.k�k _ 1/k.logn/k

�
:

We apply this with � D �t � .k�k _ 1/k and some small constant � > 0. By the
definition of f ."/ and Cauchy-Schwarz,

(4.41)
E"�j Lf ."/j� � E"�jf ."/j� � P"

�k"k > q.´/�1=2 � .C´2.k�k _ 1/2k/1=2
� Ce�cq.´/2 � ´.k�k _ 1/k � �;

the last inequality holding when the constant c0 for which t > e�c0.log�/2 is suffi-
ciently small. Similarly,

(4.42) Var"� Lf ."/� � E"�f ."/2� � Ce�cq.´/2 � ´2.k�k_ 1/2k � � � ´.k�k_ 1/k :

Applying this to Bernstein’s inequality above,

P

"����1n
nX
iD1

Lf ."i /
���� > 2�t � .k�k _ 1/k

#
� 2 exp

�
� c�tn

´.logn/k

�
:
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Note that Lf ."i / D f ."i / for all i on the event E . We then have for some constants
C;C 0 > 0

P
�jII.�/j > C�t � .k�k _ 1/k and E

�
; P
h
jIII.�/j > C�t � .k�k _ 1/k and E

i
� C 0 exp

�
� c�tn

´.logn/k

�
:

To obtain a uniform guarantee over the ball k�k < s.´/, observe that on the event
E , both II.�/ and III.�/ are C.logn/k � s.´/k-Lipschitz in � over this ball. Let
us take a �-net of this ball with � D c�t=�s.´/k.logn/k� and a sufficiently small
constant c > 0, where the net has cardinality .C s.´/=�/d . Applying the Lipschitz
continuity and a union bound over � in this net, we then obtain

P
�

sup
� Wk�k<s.´/

jII.�/j > C�t � .k�k _ 1/k
�
; P
�

sup
� Wk�k<s.´/

jIII.�/j > C�t � .k�k _ 1/k
�

� .C s.´/=�/de�
c�tn

´.logn/k C e�c.logn/2 � .C 0�.logn/=�t/de
� c�t �n�

.logn/k C Ce�c.logn/2 :

We may bound rII.�/, r2II.�/, rIII.�/, and r2III.�/ similarly: Defining
f ."i / as the summand corresponding to any entry of one of these quantities, and
recalling the forms of the derivatives of logEg �eh´

2��C´"i ;g�i� from Lemma 2.2,
on E we have jf ."i /j � C´.k�k_ 1/k�1.logn/k in the case of rII.�/ or rIII.�/,
and jf ."i /j � C´.k�k _ 1/.k�2/_0.logn/k_2 in the case of r2II.�/ or r2III.�/.
The inequalities (4.41) and (4.42) continue to hold, and rII.�/, r2II.�/, rIII.�/,
and r2III.�/ all remain C.logn/k_3 � s.´/k-Lipschitz over the ball k�k < s.´/.
Then applying the same arguments as above, we obtain for i D 0; 1; 2,

(4.43) kr.i/II.�/k; kr.i/III.�/k � C�t � .k�k _ 1/.k�i/_0 for all k�k < s.´/

with probability at least 1 � .C 0�.logn/=�t/de
� c�t �n�

.logn/k_2 � Ce�c.logn/2 .
Turning to I.�/, write the summand f ."i / D ´` � 1fk"ik � q.´/g �P`."i ; �; ��/.

Using (4.36), we have jf ."i /j � .C0´q.´//
`.k�k _ 1/` where C0 is a universal

constant independent of `. Then Hoeffding’s inequality yields

P

"����1n
nX
iD1

f ."i / � E"�f ."/�
���� > �

#
� 2e

� 2n�2

C2`
0

´2`q.´/2`.k�k_1/2` :

We apply this with � D �t � .k�k _ 1/kC1=`2, and we also apply

1X
`DkC1

´` � E"
�
1fk"k � q.´/g � P`."; �; ��/

� � 1X
`DkC1

.C0´/
`q.´/`.k�k _ 1/`

� C 0
�
´q.´/.k�k _ 1/�kC1
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for any small enough ´, by the given condition ´q.´/s.´/ D r.�/ log�
�

! 0. Then
taking a union bound over all ` � k C 1 and recalling the definition of I.�/,

P
�jI.�/j > C �´q.´/.k�k _ 1/�kC1 C C�t � .k�k _ 1/kC1�
�

1X
`DkC1

2 exp

 
� 2�2t2.k�k _ 1/2kC2n
C 2`0 ´2`q.´/2`.k�k _ 1/2``4

!
:

Applying again ´s.´/q.´/! 0 as ´! 0, for any constant B > 0 and sufficiently
small ´ we have 1=.C 2`0 ´2`q.´/2`.k�k _ 1/2``4/ � B`. Then the summands of
this probability bound decay at least geometrically fast, so that the sum is at most

C 0 exp

 
� c0�2t2.k�k _ 1/2kC2n
´2kC2q.´/2kC2.k�k _ 1/2kC2

!
� C 0e�c

0�2t2n.�= log�/2kC2

:

The same argument applies to bound rI.�/ and r2II.�/ entrywise except that we
use (4.37) and (4.38) in lieu of (4.36) to get

1fk"ik � q.´/g � krP`."i ; �; ��/k � .C0q.´//`.k�k _ 1/`�1
and

1fk"ik � q.´/g � kr2P`."i ; �; ��/k � .C0q.´//`.k�k _ 1/`�2;
respectively, for all ` � 2. From the previous Lipschitz bounds for P`."; �; ��/,
II.�/, III.�/, and their derivatives, and from those for Rn.�/ and its derivatives
from Lemma 2.13, we see that I.�/, rI.�/, and r2I.�/ are also C.logn/k_3 �
s.´/k-Lipschitz in � over the ball k�k < s.´/. Then applying a union bound over
a �-net as before, we obtain for i D 0; 1; 2,

kr.i/I.�/k � C
� log �
�

�kC1
.k�k _ 1/kC1�i

C C�t � .k�k _ 1/kC1 for all k�k < s.´/
(4.44)

with probability at least 1�.C�.logn/=�t/de�c�
2t2n.�= log�/2kC2

. Applying (4.43)
and (4.44) to (4.40) and now taking � to be a sufficiently small constant, we obtain
the lemma. �

4.3 Descent directions and pseudo-local-minimizers
We now relate the series expansion result of Lemma 4.7 to the landscape of

R.�/ around a fixed point z� 2 Rd for large � . The constants in this section may
depend on this point z� .

The following lemma establishes a condition for z� 2 Rd under which we will
be able to show that R.�/ has either a first-order or second-order descent direction
in a neighborhood z� .

LEMMA 4.12. Fix z� 2 Rd , let ' be a local reparametrization in an open neigh-
borhood U of z� , and let z' D '.z�/. Suppose there exists ` � 1 and a partition
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of ' into subvectors ' D .'1; : : : ; '`/ such that S1.'/; : : : ; S`�1.'/ are functions
depending only on '1; : : : ; '`�1 and not on '`, and

either r'`S`.z'/ ¤ 0 or �min.r2'`S`.z'// < 0:

Then there exist constants c; �0 > 0 and an open neighborhood U0 of z� (all de-
pending on z�; ��; d;G but not on � ) such that for all � > �0 and for every � 2 U0,

either kr�R.�/k � c��2` or �min.r2�R.�// � �c��2`:
PROOF. First suppose that r'`S`.z'/ ¤ 0. Denote c D kr'`S`.z'/k, and note

that this constant c depends only on z�; ��; d;G and not on � . By continuity of
r'`S`, this implies kr'`S`.'/k > c=2 for all ' in a neighborhood V0 of z'. Since
S1; : : : ; S`�1 do not depend on '`, we have r'`S1 D � � � D r'`S`�1 D 0.
Then, recalling (4.10), we get kr'R`.'/k � kr'`R`.'/k > .c=2/��2` for all
' 2 V0. Applying (4.2) and continuity and invertibility of d�' near z� , this implies
that kr�R`.�/k > c0��2` for a constant c0 > 0 and all � in a small enough
neighborhood U0 of z� . Then applying Lemma 4.7, for all � > �0, large enough
� > 0, and all � 2 U0,

kr�R.�/k � .c0=2/��2`:
Now suppose that �min.r2'`S`.z'// < 0. The argument is similar: Denote �c D

�min.r2'`S`.z'//. Then �min.r2'`S`.'// < �c=2 for all ' in a neighborhood V0 of

z' by continuity, so �min.r2'R`.'// � �min.r2'`R`.'// < �.c=2/��2`. Applying
(4.3),

r2�R`.�/ D .d�'/
> � r2'R`.'/ � d�' C

dX
iD1

@'iR
`.'/ � r2�'i :

Then by continuity and invertibility of d�' near z� , for the first term we have

�min
�
.d�'/

> � r2'R`.'/ � d�'
�
< �c0��2`

for a constant c0 > 0 and all � in a neighborhood U0 of z� . Then either

�min.r2�R`.�// < �.c0=2/��2`;
or we must have for the second term and some i 2 f1; : : : ; dg that kr'R`.'/k �
j@'iR`.'/j > c00��2`. Here, we may take c00 D c0=.2d max kr2

�
'j .�/k/, where

this maximum is taken over all j 2 f1; : : : ; dg and � 2 U0. Applying again Lemma
4.7, for all � > �0 and large enough �0 > 0, this implies that for every � 2 U0,
either �min.r2�R`.�// � �.c0=4/��2` or kr�R`.�/k � .c00=2/��2`. �

Conversely, the following is a condition for z� 2 Rd under which we will show
that R.�/ has a local minimizer in any fixed neighborhood of z� for all sufficiently
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large � . We call these points pseudo-local-minimizers, and these will be in corre-
spondence with the true local minimizers of R.�/ for large � . Note that pseudo-
local-minimizers are determined by ��; d;G and do not depend on � , but true local
minimizers of R.�/ not belonging to O�� may in general depend on � . We discuss
an example of this phenomenon in Remark 4.31.

DEFINITION 4.13. A point z� 2 Rd is a pseudo-local-minimizer in a local reparam-
etrization ' D .'1; : : : ; 'L/ around z� if each function S`.'/ for ` D 1; : : : ; L

depends only on '1; : : : ; '` and not on '`C1; : : : ; 'L, and for each ` 2 f1; : : : ; Lg
where '` has nonzero dimension,

r'`S`.z'/ D 0 and �min.r2'`S`.z'// > 0:

For each pseudo-local-minimizer z� , we will also show that the risk R.'/ is
strongly convex in a � -independent neighborhood of z' D '.z�/, and its Hessian
r2'R.'/ has the following graded block structure.

DEFINITION 4.14. Consider a partition of coordinates .'1; : : : ; 'L/ for Rd . Let
H � H.�/ 2 Rd�d be a symmetric matrix, and write its L � L block decompo-
sition with respect to this partition as

H D

0
B@H11 � � � H1L

:::
: : :

:::

HL1 � � � HLL

1
CA:

The matrixH.�/ has a graded block structure with respect to this partition if there
are constants C; c; �0 > 0 such that for all � > �0 and all k; ` 2 f1; : : : ; Lg where
'k and '` have nonzero dimension,

C��2` � �max.H``/ � �min.H``/ � c��2` and kHk`k � C��2max.k;`/:

Thus the upper-left block ofH.�/ has magnitude ��2, the three blocks adjacent
to this have magnitude ��4, and so forth. We allow '` to have dimension 0, in
which case the blocks Hk` and H`k for k D 1; : : : ; L are empty.

LEMMA 4.15. Let z� 2 Rd be a pseudo-local-minimizer in the reparametrization
' D .'1; : : : ; 'L/. Denote z' D '.z�/. Then for any sufficiently small open neigh-
borhood V0 of ', there exist constants c; �0 > 0 depending on z�; V0 and ��; d;G
but not on � , such that for all � > �0 and ' 2 V0:

(a) r2'R.'/ has a graded block structure with respect to the partition ' D
.'1; : : : ; 'L/,

(b) �min.r2'R.'// � c��2L, and
(c) there is a unique critical point of R.'/ in V0, which is a local minimizer of

R.'/.
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PROOF OF LEMMA 4.15. For part (a), observe that the Hessianr2'S`.'/ is non-
zero only in the upper-left ` � ` blocks of the decomposition corresponding to
.'1; : : : ; 'L/. Since r2

'`
S`.z'/ is positive-definite by assumption, by continuity

there is a neighborhood V0 of z' and constants C; c > 0 for which

(4.45) �min.r2'`S`.'// � c and kr2'S`.'/k � C
for all ' 2 V0. Applying this for each ` D 1; : : : ; L and recalling (4.10), we see
that r2'RL.'/ has a graded block structure. Then r2'R.'/ also has a graded block
structure, by Lemma 4.7. This shows (a). Part (b) will follow from (a) and Lemma
4.17, which we prove in the next section.

To show part (c), let us assume for expositional simplicity that each '` has
positive dimension—the same argument applies with minor modification to the
setting where some of the vectors '` have dimension 0. Let L' D . L'1; : : : ; L'L/
be a point that minimizes R.'/ over the compact set V 0. Observe that the given
condition implies z' is a local and global minimizer of S1 over V0, and that

S1. L'/ � S1.z'/ � ck L'1 � z'1k2:
Then by Lemma 4.7, for all � > �0 and large enough �0 > 0,

R. L'/ �R.z'/ � c��2k L'1 � z'1k2 � C
�

log �
�

�4
:

The left side is nonpositive because L' minimizesR.'/, so we get k L'1�z'1k � ���
for, say, � D 0:9. Now consider the functions f .'2/ D S2.z'1; '2/ and Lf .'2/ D
S2. L'1; '2/. The given condition implies that f is strongly convex and has a local
and global minimizer in V0 given by z'2. Applying the bound k L'1 � z'1k � ��� ,
we get that kf � Lf k � C��� and kr2f � r2 Lf k � C��� for some constant
C > 0 and any sufficiently small neighborhood V0 of z'. Then applying Lemma
2.8, Lf is also strongly convex on V0, with a local and global minimizer in V0 given
by some point x'2 for which kx'2 � z'2k � C 0��� . This implies

S2. L'1; L'2/ � S2. L'1; x'2/ � ck L'2 � x'2k2:
Since S1 depends only on '1 and not on '2, we have by Lemma 4.7 that

R. L'/ �R.. L'1; x'2; z'3; : : : ; z'L// � c��4k L'2 � x'2k2 � C
�

log �
�

�6
:

Then, since this is again nonpositive, we obtain k L'2 � x'2k � ��� , and hence also
k L'2 � z'2k � C��� . Now applying this argument to f .'3/ D S3.z'1; z'2; '3/ and
Lf . L'1; L'2; '3/, we obtain similarly k L'3 � z'3k � C��� . Iterating this argument

yields k L' � z'k � C��� for a constant C > 0. For any neighborhood V0, large
enough �0 > 0 (depending on V0), and all � > �0, this implies that this minimizer
L' belongs to the interior of V0, and hence must be a critical point of R.'/. Then
the strong convexity in part (b) implies that this is the unique critical point in V0,
which shows (c). �
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4.4 Local landscape and Fisher information
We apply Lemma 4.15 to analyze the Fisher information I.��/ D r2

�
R.��/ and

the local landscape of R.�/ near ��. By rotational symmetry of R.�/, the same
statements hold locally around each point in the orbit O�� .

Recall the transcendence basis ' in Lemma 4.3, and the decompositions d D
d1 C � � � C dL and ' D .'1; : : : ; 'L/ according to the sequence of subspaces
RG
�`

and their transcendence degrees. Lemma 4.5 establishes that ' is a local
reparametrization around generic points ��, and we will analyze the landscape in
this reparametrization.

THEOREM 4.16. Fix a choice of transcendence basis ' D .'1; : : : ; 'L/ satisfying
Lemma 4.3, and let �� 2 Rd be a point with d�'.��/ nonsingular (which holds
for generic ��). For some constants C; c; �0 > 0 and some neighborhood U of ��,
and for all � � �0,

(a) In the reparametrization by ', the function R.'/ is strongly convex on '.U /
with �min.r2'R.'// � c��2L.

(b) The Fisher information matrix I.��/ has d` eigenvalues belonging to �c��2`; C��2`�
for each ` D 1; : : : ; L, where d` D trdeg.RG

�`
/ � trdeg.RG

�`�1
/.

(c) For any polynomial  2 RG
�`

, there is a constant C > 0 (depending also
on  ) such that

r� .��/>I.��/�1r� .��/ � C�2`:
Note that part (c) describes the limiting variance in (1.9) for estimating  .��/

by the plug-in maximum likelihood estimate  .y�/.
The proof of Theorem 4.16 relies on the following linear-algebraic result for any

� -dependent matrix with the graded block structure of Definition 4.14, and large
enough � .

LEMMA 4.17. Suppose H � H.�/ 2 Rd�d has a graded block structure with
respect .'1; : : : ; 'L/. Let d` be the dimension of each subvector '`. LetHW`;W` and
.H�1/W`;W` denote the submatrices consisting of the upper-left ` � ` blocks in the
L�L block decompositions ofH andH�1. Then for some constants C; c; �0 > 0
and all � > �0:

(a) H has d` eigenvalues belonging to �c��2`; C��2`� for each ` D 1; : : : ; L.
In particular, �min.H/ � c��2L.

(b) For each ` where d1 C � � � C d` > 0, �min.HW`;W`/ � c��2`.
(c) For each ` where d1 C � � � C d` > 0, �max..H

�1/W`;W`/ � C�2`.
PROOF. We first show part (b). This holds for the smallest ` where d1 C � � � C

d` > 0, by the definition of the graded block structure. Assume inductively that
it holds for ` � L � 1, and consider ` C 1 where d`C1 > 0. For any unit vector
v D .vW`; v`C1/ where vW` 2 Rd1C���Cd` and v`C1 2 Rd`C1 , we have by the
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induction hypothesis and Cauchy-Schwarz

v>HW.`C1/;W.`C1/v

D v>W`HW`;W`vW` C v>`C1H`C1;`C1v`C1 C 2v>W`HW`;`C1v`C1

� c��2`kvW`k2 C c��2.`C1/kv`C1k2 � 2C��2.`C1/kvW`kkv`C1k
� .c��2` � .2C=c/��2.`C1//kvW`k2 C .c=2/��2.`C1/kv`C1k2:

For large � , we get v>HW.`C1/;W.`C1/v � c0��2.`C1/ and some c0 > 0. Hence (b)
holds by induction for each ` D 1; : : : ; L.

Next, we show part (a). That �min.H/ � c��2L follows from (b). For the first
statement, for any ` where d` > 0, write H D H .`�1/ C R.`�1/ where H .`�1/

equals HW.`�1/;W.`�1/ on the upper-left .`� 1/� .`� 1/ blocks and is 0 elsewhere,
and R.`�1/ is the remainder. Part (a) implies that H .`�1/ has d1 C � � � C d`�1
eigenvalues at least c��2.`�1/, and remaining eigenvalues 0. The graded block
structure condition implies kR.`�1/k � C��2` for a constant C > 0. Then for a
constant c0 > 0 and all large � , Weyl’s inequality implies thatH has d1C� � �Cd`�1
eigenvalues at least c0��2.`�1/, and remaining eigenvalues at most C��2`. Since
this result holds for every ` D 1; : : : ; L, this implies part (a).

Finally, for part (c), denote G.`/ D �.H�1/W`;W`�
�1. We claim that for all `

where d1C� � �Cd` > 0, this matrixG.`/ has a graded block structure with respect
to .'1; : : : ; '`/. That is to say, there are constants C; c > 0 such that for all large �
and all 1 � j; k � `,
(4.46) C��2j � �max

�
G
.`/
jj

� � �min
�
G
.`/
jj

� � c��2j and


G.`/

jk



 � C��2max.j;k/:

For ` D L, we have G.`/ D H , so this holds by assumption. Assume inductively
that it holds for `C 1, and consider ` where d`C1 > 0. Applying the definition of
G.`/ and the Schur complement identity,

�G.`/��1 D .�G.`C1/��1/W`;W` D
�
G
.`C1/
W`;W`

�G.`C1/
W`;`C1

�
G
.`C1/
`C1;`C1

��1
G
.`C1/
`C1;W`

��1
:

Then
G.`/ D G

.`C1/
W`;W`

�G.`C1/
W`;`C1

�
G
.`C1/
`C1;`C1

��1
G
.`C1/
`C1;W`

:

We have kG.`C1/
W`;`C1

k � C 0��2.`C1/ and k�G.`C1/
`C1;`C1

��1k � C 0�2.`C1/ for some
C 0 > 0, by the induction hypothesis. For large enough � , applying the induction
hypothesis also to each block of G.`C1/

W`;W`
, we get that (4.46) holds for ` (and some

constants C; c > 0 different from those for `C1). Hence (4.46) holds by induction
for each ` D 1; : : : ; L. Then, applying part (b) to this matrix G.`/ in place of H ,
we get that �min.G

.`// � c��2`, which implies �max..H
�1/W`;W`/ � C�2`. This

establishes (c). �

PROOF OF THEOREM 4.16. Since d�'.��/ is nonsingular, ' D .'1; : : : ; 'L/

forms a local reparametrization on an open neighborhood of ��. We first show that
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�� is a pseudo-local-minimizer with respect to this reparametrization. For this, we
apply the form

S`.'/ D
1

2.`�/
kT`.'/ � T`.'�/k2HS CQ`.'/

provided in Lemma 4.8, where T`.'/ and Q`.'/ are shorthand for T .�.'// and
Q.�.'//, and '� D '.��/. Differentiating in ',

r'S`.'/ D
1

`�
d'T`.'/

>.T`.'/ � T`.'�//Cr'Q`.'/;

r2'S`.'/ D
1

`�
d'T`.'/

>d'T`.'/C
1

`�

X
i

.T`.'/i � T`.'�/i /r2'T`.'/i

Cr2'Q`.'/:
Here, T`.'/i is the i th entry of T`.'/ and the summation is over all multi-indices i .
Note that Q` is in the algebra generated by RG

�`�1
, so Lemma 4.5(c) ensures that

Q` depends only on .'1; : : : ; '`�1/ on a neighborhood of ��. Thus, evaluating the
above at ' D '� and restricting to the coordinates '` yields

r'`S`.'�/ D 0; r2
'`
S`.'�/ D

1

`�
d'`T`.'�/

>d'`T`.'�/:

In particular, r2
'`
S`.'�/ � 0. To see that r2

'`
S`.'�/ has full rank d`, observe

that every degree-` polynomial of � 2 Rd is a linear combination of entries of
the tensors �
1; : : : ; �
`. Thus, symmetrizing by G, every polynomial in RG

�`
is a linear combination of entries of T1; : : : ; T` (monomials). This means that
'` D f .T1.'/; : : : ; T`.'// for some linear function f W RdCd2C���Cd` ! Rd` .
Differentiating both sides in '` and observing that T1; : : : ; T`�1 do not depend on
'` by Lemma 4.5(c), we obtain

Id D .dT`f /.d'`T`/;

where the left side is the d` � d` identity. Thus d'`T` has full rank d`, so �� is a
pseudo-local-minimizer and r2

'`
S`.'�/ � 0.

Then part (a) of the theorem follows immediately from Lemma 4.15(b). For (b)
and (c), note that since r�R.��/ D 0, we have from (4.3) that

I.��/ � r2�R.��/ D
�
d'.��/> � r2'R.'�/ � d'.��/

�
where '� D '.��/. Setting zV D d'.��/�1, we find that Lemma 4.15 shows
that r2'R.'�/ D zV >I.��/ zV has a graded block structure. For any polynomial
 2 RG

�`
, Lemma 4.5 shows that  is an analytic function of '1; : : : ; '`, and

hence that r' D zV >r� is nonzero only in its first ` blocks. Writing

r� .��/>I.��/�1r� .��/ D
� zV >r� .��/

�>� zV >I.��/ zV
��1� zV >r� .��/

�
;
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part (c) then follows from Lemma 4.17(c). Also, by the QR decomposition, there is
a nonsingular lower-triangular matrixW for which V D zV W is orthogonal. It may
be verified from Definition 4.14 that the matrix V >I.��/V D W >. zV >I.��/ zV /W
also has a graded block structure for modified constants C; c; �0. As the eigenval-
ues of V >I.��/V are the same as those of I.��/, this and Lemma 4.17(a) show
part (b). �

The following then shows that with high probability for n� �2L, the empirical
risk Rn.'/ is also strongly convex with a local minimizer in '.U /. This require-
ment for n matches the requirement for list-recovery of generic signals in [6].

COROLLARY 4.18. In the setting of Theorem 4.16, for .��; d;G/-dependent con-
stants C; c; c0; �0 > 0, with probability at least 1� ec.logn/2 �Ce�cn1=.2L/��1 , we
have �min.r2'Rn.'// � c0��2L for all ' 2 '.U /, and Rn.�/ has a critical point
and unique local minimizer in U .

PROOF. Note that applying directly Lemma 2.8 and the general concentration
result of Lemma 2.11 with t � ��2L small enough, we may obtain that this corol-
lary holds with probability at least 1 � e�c��4LC2nCC log� � e�cn2=3 .

To strengthen this probability guarantee, we apply a concentration argument
tailored to large � based on Lemma 4.11: We assume throughout that n � �2L, as
otherwise the desired probability guarantee is vacuous. Let A`;m and P`;m be the
polynomials of Lemma 4.11. Since A`;m has degree at most ` in ", by Gaussian
hypercontractivity, for any t > 0 we have

(4.47) P

"����1n
nX
iD1

A`;m."i ; ��/ � E"�A`;m."; ��/�
���� > t

#
� 2e�c.nt2/1=` :

(This follows also from Theorem A.2 applied with " D ."1; : : : ; "n/, the function
f ."/ D P

i A`;m."i ; ��/, and the two bounds kr`f .x/kJ � kr`f .x/kHS �
C
p
n and kE�rjf ."/�kJ � kE�rjf ."/�kHS � C

p
n for any partition J and any

j � `� 1.) For a sufficiently small constant c0 > 0 to be chosen later, let E be the
event where the conclusion of Lemma 4.11 holds with k D 2L, t D ��2L= log � ,
and r.�/ a constant larger than k��k, and also where

(4.48)
����1n

nX
iD1

A`;m."i ; ��/ � E"�A`;m."; ��/�
���� � c0��.`^L/

for every ` D 1; : : : ; 2L andm D 1; : : : ;M`. Note that (4.47) implies (4.48) holds
with probability at least 1 � 2e�cn1=`��2 � 1 � 2e�cn1=L��2 for ` � L, and at
least 1 � 2e�c.n��2L/1=` � 1 � 2e�cn1=.2L/��1 for 2L � ` � L and n � �2L.
Thus, combining with the probability guarantee in Lemma 4.11 and taking a union
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bound,

P�E � � 1 � ec.logn/2 � e�
cn

�2L�1 log� �.logn/2L
CC log� �log logn � Ce� cn1=.2L/

�

� 1 � ec0.logn/2 � C 0e�c
0n1=.2L/��1 :

We now restrict to this event E and parametrize by '. There is a � -independent
neighborhood U of �� on which r2'RL.'/ has a graded block structure: for each
` D 1; : : : ; L and every ' 2 '.U /,

C��2` � �max.r2'`RL.'// � �min.r2'`RL.'// � c��2`;
kr2

'`;'`
0R
L.'/k � C��2max.`;`0/:

Let us denote the first 2L terms of the expansion in Lemma 4.11 by

RLn .'/ D
2LX
`D1

MX̀
mD1

��`
1

n

nX
iD1

A`;m."i ; ��/P`;m.'/;

observe that E�RLn .'/� D RL.'/, and write

r2Rn.'/ � r2RL.'/
D �r2Rn.'/ � r2RLn .'/�C �r2RLn .'/ � r2RL.'/�:(4.49)

On the event E , the first term is controlled by Lemma 4.11, and for our choice of
t D ��2L= log � we have

(4.50)


r2Rn.�/ � r2RLn .�/

 � C

�2L log �
:

For the second term, observe that P`;m 2 RG
�`

and hence P`;m depends only on
the coordinates '1; : : : ; '`. Thus for any `; `0 � L,

r2
'`;'`

0 .R
L
n .'/ �RL.'//

D
2LX

kDmax.`;`0/

MkX
mD1

��k �
 
1

n

nX
iD1

Ak;m."i ; ��/ � E"�Ak;m."; ��/�

!
r2
'`;'`

0Pk;m.'/:

Then on the event E , applying (4.48) and k C .k ^ L/ � 2k ^ 2L, also

r2
'`;'`

0R
L
n .'/ � r2'`;'`0R

L.'/


 � C � c0��2max.`;`0/:

Choosing c0 sufficiently small and combining with (4.49) and (4.50), we obtain
that the Hessian of the empirical risk r2'Rn.'/ also has a graded block structure
over ' 2 U . The lower bound �min.r2'Rn.'// � c0��2L then follows immedi-
ately from Lemma 4.17(b).

To show that Rn.'/ has a critical point (and hence unique local minimizer) in
'.U /, we apply an argument similar to that of Lemma 4.15(c). Let y' 2 '.U /

be any minimizer of Rn.'/ on the closure of '.U /. We aim to show that y' can-
not occur on the boundary of '.U /. Recall from the proof of Theorem 4.16 that
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'� D '.��/ is a pseudo-local-minimizer for the sequence S1; : : : ; SL with respect
to .'1; : : : ; 'L/. In particular, '� minimizes S1 over any sufficiently small neigh-
borhood U , so we have S1.y'/ � S1.'�/ � cky'1 � '1�k2 and

RL.y'/ �RL.'�/ � c��2ky'1 � '1�k2 � C
�

log �
�

�4
:

This implies also for the empirical risk Rn that, on the event E ,

Rn.y'/ �Rn.'�/

� Rn.y'/ �RL.y'/ �Rn.'�/CRL.'�/C c��2ky'1 � '1�k2 � C
�

log �
�

�4

�
2LX
kD1

MkX
mD1

��k

 
1

n

nX
iD1

Ak;m."i ; ��/ � E"�Ak;m."; ��/�

!�
Pk;m.y'/ � Pk;m.'�/

�

� C

�2L log �
C c��2ky'1 � '1�k2 � C

�
log �
�

�4

� c��2ky'1 � '1�k2 � C 0 � c0��2ky'1 � '1�k � C 00

�
log �
�

�4
;

where the last line applies (4.48) and the fact that the polynomials P1;m depend
only on '1 and must be Lipschitz over '.U /. Since y' minimizes Rn, we have
0 � Rn.y'/ � Rn.'�/. Then this implies for some constant C > 0 and all � > �0
that ky'1 � '1�k � C � c0.

Now defining f .'2/ D S2.'
1
�; '

2/ and yf .'2/ D S2.y'1; '2/, these functions
must be Lipschitz over '2.U /, so this yields jf � yf j; kr2f � r2 yf k � C 0 � c0
on '2.U /. Since '� is a pseudo-local-minimizer, taking the neighborhood U suffi-
ciently small ensures that the function f is convex over '2.U /, and is minimized at
'2�. Then for c0 sufficiently small, Lemma 2.8 guarantees that yf also has a critical
point and local minimizer x'2, which satisfies

(4.51)


x'2 � '2�

 � C � c0

and S2.y'1; y'2/ � S2.y'1; x'2/ � cky'2 � x'2k2. Then

RL.y'/ �RL��y'1; x'2; '3�; : : : ; 'L� �� � c��4ky'2 � x'2k2 � C
�

log �
�

�6
;

where there is no ��2 term because S1 depends only on '1, which coincides in
these two arguments of RL. Applying a similar argument as above, this implies on
E that

0 � Rn.y'/ �Rn
��y'1; x'2; '3�; : : : ; 'L� ��

� c��4ky'2 � x'2k2 � C 0 � c0��4ky'2 � x'2k � C 00

�
log �
�

�6
:
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Then for some constant C > 0, ky'2� x'2k � C �c0. Combining with the preceding
bound (4.51), we get ky'2 � '2�k � C 0 � c0.

Now defining f .'3/ D S3.'
1
�; '

2
�; '

3/ and yf .'3/ D S2.y'1; y'2; '3/, we may
repeat this argument to obtain ky'3 � '3�k � C � c0, and so forth. This establishes
ky'` � '`�k � C � c0 for some constant C > 0 and each ` D 1; : : : ; L. Finally, for
c0 sufficiently small, this implies that the minimizer y' must belong to the interior
of '.U /. Since Rn.'/ is differentiable and convex over '.U /, this implies that y'
must be a unique critical point and local minimizer of Rn.'/ over '.U /. �

4.5 Globally benign landscapes at high noise
In the following three subsections, we apply the tools of Section 4.3 to analyze

three examples in which the landscapes of R.�/ and Rn.�/ are globally benign in
this high-noise regime � > �0.��; d;G/ for generic �� 2 Rd .

In each example, for each fixed point z� 2 Rd , we study the landscape of R.�/
near z� using a local reparametrization ' D .'1; : : : ; 'L/ around z� . Note that, in
general, we cannot use the same reparametrization ' at all points z� 2 Rd , as we
must handle nongeneric points where d�'.z�/ is singular for any particular map ',
even if the true parameter �� is generic.

We will combine these local statements over a large enough ball f� 2 Rd W
k�k � M g using a compactness argument. The following result strengthens Lem-
mas 2.9 and 2.10 to provide a lower bound for krR.�/k and krRn.�/k outside
this ball.

LEMMA 4.19. For some .��; d;G/-dependent constants M;�; c0; �0 > 0 and all
� > �0, if k�k > M , then krR.�/k > c0�

�4. If, in addition, kEg �g�� �
Eg �g���k > �, then krR.�/k > c0�

�2. For some .��; d;G/-dependent con-
stants C; c > 0, with probability at least 1 � e�c.logn/2 � Ce�cn1=4��1 , the same
bounds hold for rRn.�/ and all k�k > M .

PROOF. For the empirical risk Rn.�/, we may assume n � �4, as otherwise the
desired probability guarantee is vacuous. By Lemma 2.9, for all k�k � C� and a
large enough constant C > 0, we have krR.�/k � c��1 and krRn.�/k � c��1
with probability 1 � C 0e�cn. By Lemma 2.10, if C 0�2=3 � k�k � C� , then
krR.�/k � c��2. Applying the concentration bound (2.18) in Lemma 2.11 with
r D C� and t D c��2=2, we get krRn.�/k � c��2=2 for all such � , with
probability 1 � e�cn��2CC log� � 1 � C 0e�c

0n1=4��1 when n � �4.
It remains to consider M < k�k � C�2=3. We consider two cases:

Case 1. Suppose that Eg �g� D 0. Then Lemma 4.9 implies S1.�/ D 0 and

rS2.�/ D Eg
�
g��>g>

�
� � Eg

�
g���

>
� g

>
�
�:

For every unit vector v 2 Rd , we have v>Eg �gvv>g>�v D Eg �kv>gvk2� � 1=K
where K D jGj, because g D Id with probability 1=K. Thus kEg �gvv>g>�vk �
1=K, so kEg �g��>g>��k � k�k3=K. For sufficiently large M , this shows
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krS2.�/k � ck�k3. Then by Lemma 4.7, for a constant c0 > 0 (independent
of M ), we have

(4.52) krR.�/k � c0��4k�k3 � c0��4:
For the empirical risk Rn, write

rRn.�/ � rR.�/ D rRn.�/ � rR2n.�/� �� �
E1

CrR2n.�/ � rR2.�/� �� �
E2

CrR2.�/ � rR.�/� �� �
E3

(4.53)

whereR2n.�/ D
P4
`D2 �

�` � 1
n

Pn
iD1 P`."i ; �; ��/ is the degree-4 approximation to

Rn.�/ in Lemma 4.11 and R2.�/ D E�R2n.�/�. Note that the ` D 1 term is absent
in R2n, because by (4.39) we have P1."; �; ��/ D �1.h"; g�i/ D ">E�g�� D 0. By
Lemma 4.9, we have R2.�/ D ��4S2.�/ since S1.�/ D 0.

The first term in (4.53) is controlled by Lemma 4.11: Applying (4.33) with
k D 4, r.�/ D C�2=3, and t D .��1 log �/5, we get kE1k � C.��1 log �/5k�k4
with probability at least

1 � Ce�c.logn/2 � e�
cn.log�/5

�4 logn
CC log� �log logn � 1 � Ce�c.logn/2 � C 0e�c

0n1=4��1 :

For the third term in (4.53), Lemma 4.7 yields kE3k � C.��1 log �/6k�k5. For
the second term in (4.53), using (4.35) we have

(4.54) E2 D
4X
`D2

��`
MX̀
mD1

1

n

nX
iD1

�
A`;m."i ; ��/ � E"�A`;m."; ��/�

�rP`;m.�/:
Applying the polynomial concentration (4.47), we have with probability 1�Ce�cn1=4��1

(4.55)
����1n

nX
iD1

A`;m."i ; ��/ � E"�A`;m."; ��/�
���� � C��2; m D 1; : : : ; M`; ` D 2; 3; 4:

As stated in Lemma 4.11, each rP`;m.�/ is a polynomial in � of degree at most
` � 1. Thus krP`;m.�/k � C.k�k _ 1/`�1 for all m D 1; : : : ;M`. Com-
bining this with the previous two displays and using k�k � � yields kE2k �
C��2

P4
`D2 �

�`k�k`�1 � C 0��4k�k. For sufficiently large M , this implies

kE1k C kE2k C kE3k � .c0=2/��4k�k3
where c0 is the constant in (4.52). Thus also

kRn.�/k � .c0=2/��4k�k3 � c0��4:
This concludes the proof in the case Eg �g� D 0.

Case II. Suppose Eg �g� ¤ 0. We apply Lemmas 2.4 and 2.5 to write R.�/ D
RId.�1/C RG2.�2/ and Rn.�/ D RId

n .�1/C R
G2
n .�2/, where �1 2 Rd1 and �2 2

Rd2 are the components of � orthogonal to and belonging to the kernel of Eg �g�.
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Then k� � ��k2 D k�1 � �1;�k2 C k�2 � �2;�k2, krR.�/k2 D krRId.�1/k2 C
krRG2.�2/k2, and krRn.�/k2 D krRId

n .�1/k2 C krRG2
n .�2/k2. Recall from

the proof of Lemma 2.5 that Eg �g� is the projection orthogonal to its kernel, so
kEg �g���Eg �g���k D k�1 � �1;�k. Since RId.�1/ and RId

n .�1/ correspond to the
model N .�1;�; �2 Idd1�d1/, we may verify that

rRId.�1/ D �1 � �1;�
�2

; rRId
n .�1/ D

�1 � �1;�
�2

� x"
�
;

x" � N .0; Idd1�d1 =n/:

Thus, if kEg �g���Eg �g���k D k�1��1;�k > �, then krR.�/k � krRId.�1/k �
���2 and krRn.�/k � krRId

n .�1/k � .�=2/��2 with probability at least 1 �
Ce�cn�

�2

. Otherwise, for small enough � > 0, we have k�2 � �2;�k > M=2.
Applying the argument of Case I for the mean-zero group G2 shows krR.�/k �
krRG2.�2/k � c��4 and krRn.�/k � krRG2

n .�2/k � c��4 as desired. �

Discrete rotations in R2

We consider first the group of K-fold discrete rotations on R2: For a fixed inte-
ger K, we have

(4.56) G D fId; h; h2; : : : ; hK�1g � Z=KZ

where

(4.57) h D
�

cos 2�=K � sin 2�=K
sin 2�=K cos 2�=K

�
is the counterclockwise rotation in the plane by the angle 2�=K. For fixed �� ¤ 0

and for any � ¤ 0, denote

t .�/ D arccos
h�; ��i
k�kk��k

as the angle formed by � and ��.
The special case of K D 2 and G D fC Id;� Idg is subsumed by results of [53,

cor. 3], which imply that the global landscape of R.�/ is benign for all � > 0.
Thus, we consider here the setting where K � 3.

THEOREM 4.20. Let G be the group of rotations (4.56) on R2, with K � 3. Con-
sider �� ¤ 0. There exists a .��; K/-dependent constant �0 such that for all
� > �0, the landscape of R.�/ is globally benign. More quantitatively, for small
enough � > 0, there are .��; K/-dependent constants c; �0 > 0 such that when
� > �0:

(a) For each z� 2 O�� , reparametrizing by ' D .k�k; t .�// on B�.z�/, we have
the strong convexity �min.r2'R.'// � c��2K for all ' 2 '.B�.z�//.

(b) For each � 2 Rd satisfying k�k � k��k 2 .��; �/ and � �Sz�2O��
B�.z�/,

either krR.�/k � c��2K or �min.r2R.�// � �c��2K .
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(c) For each � 2 Rd satisfying k�k�k��k � .��; �/, either kr�R.�/k � c��4
or �min.r2�R.�// � �c��4.

The proof rests on the following lemma, which characterizes the functions S`.�/
in (4.9) for this discrete rotation group.

LEMMA 4.21. Let G be the group of rotations (4.56) on R2, with K � 3. Then:

(a) S1.�/ D 0 and S2.�/ D k�k4=8 � k�k2k��k2=4.
(b) For each ` 2 f3; : : : ; K � 1g, S`.�/ D p`.k�k2/ for some univariate poly-

nomial p` W R! R (with coefficients depending on ��).
(c) For ` D K and some polynomial pK W R ! R (with coefficients depending

on ��),

SK.�/ D � 1

2K�1K�
k�kKk��kK cos.K � t .�//C pK.k�k2/:

PROOF. Let ´ D .��/1 C i.��/2 and w D �1 C i�2 as elements of C. Let
� D e2� i=K , and denote the set of K th roots of unity by XK D f1; �; : : : ; �K�1g.
Then �k´ D .hk��/1C i.hk��/2 where h is the generator (4.57), and similarly for
w and � . Notice that for a D a1 C ia2 and b D b1 C ib2 we have

h.a1; a2/; .b1; b2/i D a1b1 C a2b2 D 1

4

�
.aC xa/.b C xb/ � .a � xa/.b � xb/�

D 1

2
.axb C xab/:

Then

Eg �h��; g�i2� D 1

4K

X
�2XK

�
��1´ xw C �x́w�2 D j´j2jwj2

2
D k�k2k��k2

2
;

where we have used K � 3 and

(4.58)
X
�2XK

�a D
(
K if a � 0 mod K
0 if a 6� 0 mod K

for the second equality. Similarly, Eg �h�; g�i2� D k�k4=2, and (a) follows from
Lemma 4.9.

Applying this argument for a general term M`;m.� j �; ��/, we have

M`;m.� j �; ��/

D Eg1;:::;gj�j

2
4 mY
jD1

D
g�.2j�1/�; g�.2j /�

E
�

`CmY
jD2mC1

D
��; g�.j /�

E35
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D 1

2`K j�j

K�1X
i1;:::;ij�jD0

"
mY
jD1

�
.�i�.2j�1/�i�.2j/ C �i�.2j/�i�.2j�1//jwj2

�

�
`CmY

jD2mC1

.��i�.j/´ xw C �i�.j/ x́w/
#

D jwj2m
2`K j�j

X
�1;:::;�j�j2XK

"
mY
jD1

.��.2j�1/=��.2j / C ��.2j /=��.2j�1//

�
`CmY

jD2mC1

.��1�.j /´ xw C ��.j /x́w/
#
:

Expanding into polynomials of ´; x́; w; xw, this expression is a linear combination
with constant coefficients of terms of the formX

�1;:::;�j�j2XK

jwj2mC2aj´j2awb x́b�c11 � � � �cj�j
j�j
:

Here, the exponents satisfy a � 0, 2aCjbj D .`Cm/� 2m D `�m,
P
i ci D b,P

i jci j � `Cm, and jci j � mC.`Cm�2m/ D ` for each i . By (4.58), these terms
vanish unless each ci is a multiple of K. In particular, for ` < K, the condition
jci j � ` implies that the only nonzero terms must have c1 D � � � D cj�j D b D 0.
Then M`;m.� j �; ��/ is a polynomial in jwj2 D k�k2. Since S`.�/ is a linear
combination of such terms M`;m.� j �; ��/, this shows (b).

For (c), if ` D K, the only nonzero terms that are not a polynomial of k�k2
must have b ¤ 0, so that the condition 2aC jbj D K �m requires m < K. Then
since

P
i jci j � K Cm < 2K, there is some i� with ci� 2 f�K;Kg and cj D 0

for all j ¤ i�. Such terms can only appear in MK;m.� j �; ��/ when m D 0 and
� D ff1; : : : ; Kgg, for which we have

MK;0.ff1; : : : ; Kgg j �; ��/ D
1

2K
.´K xwK C x́KwK/:

Writing w D k�keir and ´ D k��keir� , this is

MK;0.ff1; : : : ; Kgg j �; ��/ D
k�kKk��kK

2K
.ei.r�r�/K C ei.r��r/K/

D k�kKk��kK
2K�1

cos.Kt.�//:

Substituting into (4.9) and recalling that the remaining terms are polynomial in
k�k2 shows (c). �
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PROOF OF THEOREM 4.20. For each point z� 2 Rd , we consider a local re-
parametrization by ' in a neighborhood Uz� of z� . At z� D 0, we take the repar-
ametrization to be ' D � . At each z� ¤ 0, we take it to be ' D .k�k; t .�//. We
then apply Lemmas 4.12 and 4.15 on Uz� .

For z� D 0, observe that r2
�
S2.z�/ D �1

2
k��k2 Id � 0. For z� ¤ 0 where kz�k ¤

k��k, set z' D '.z�/. Observe that S2.'/ D '41=8 � '21'21;�=4, so r'1S2.z'/ D
1
2
z'1.z'21 � z'21;�/ ¤ 0. In both cases, Lemma 4.12 implies that kr�R.�/k � c��4

or �min.r2�R.�// � �c��4 for some c; �0 > 0 and all � > �0 and � 2 Uz� .
For z� � O�� where kz�k D k��k, observe that S1; : : : ; SK�1 depend only on '1.

For SK , applying z'1 D '1;�, we have

(4.59)
r'2SK.z'/ D

1

2K�1.K � 1/�'
2K
1;� sin.K z'2/;

r2'2SK.z'/ D
K

2K�1.K � 1/�'
2K
1;� cos.K z'2/:

Then either r'2SK.z'/ ¤ 0 (when z'2 � fj�=K W j D 0; 1; : : : ; 2K � 1g), or
�min.r2'2SK.z'// < 0 (when z'2 2 fj�=K W j D 1; 3; 5; : : : ; 2K � 1g). So Lemma
4.12 implies that kr�R.�/k � c��2K or �min.r2�R.�// � �c��2K for all � >
�0 and � 2 Uz� .

Finally, for z� 2 O�� , (4.59) verifies that z' D '.z�/ is a pseudo-local-minimizer
in the parametrization by '. Then Lemma 4.15 implies R.�/ has a unique local
minimizer in Uz� and �min.r2'R.'// � c��2K for all ' 2 '.Uz� / and � > �0. This
unique local minimizer must be z� itself, since z� is a global minimizer of R.�/.

The constants c; �0 > 0 above depend on z� . By compactness, for any M > 0,
there is a finite collection of points z� where the neighborhoods Uz� cover f� 2 R2 W
k�k � M g, and the above statements then hold for uniform choices of c; �0 > 0

in their union. For a sufficiently small constant � > 0, this establishes all claims
of the theorem for points � 2 Rd where k�k � M , and the result for k�k > M

follows from Lemma 4.19. �

The following then shows that with high probability for n� �2K , the empirical
risk Rn.�/ is also globally benign and satisfies the same properties. This is a
special case of the guarantee for Rn.�/ in Theorem 4.27 to follow.

COROLLARY 4.22. For some .��; K/-dependent constants C; c > 0, the state-
ments of Theorem 4.20 hold also forRn.�/, with probability at least 1�e�c.logn/2�
Ce�cn

1=.2K/��1 .

All permutations in Rd

Consider any dimension d � 1, and let G � Sd be the symmetric group of all
permutations of coordinates in Rd . Here, the size of the group is K D d�. Define
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the symmetric power sums in � by

pk.�/ D
1

d

dX
jD1

�kj ;

and (for fixed �� 2 Rd ) the Vandermonde varieties by

(4.60) Vk D f� 2 Rd W p`.�/ D p`.��/ for all ` D 1; : : : ; kg:
The map � 7! .p1.�/; : : : ; pd .�// is injective on f� 2 Rd W �1 � � � � � �d g
(see [29, cor. 1.2]), so Vd D O�� .

THEOREM 4.23. Let G � Sd be the symmetric group acting on Rd by permuta-
tion of coordinates. For generic �� 2 Rd , there exists a .��; d /-dependent con-
stant �0 > 0 such that the global landscape of R.�/ is benign for all � > �0.
More quantitatively, for small enough � > 0 there are .��; d /-dependent constants
c; �0 > 0 such that when � > �0:

(a) For each z� 2 O�� , reparametrizing by the symmetric power sums ' D
.p1; : : : ; pd / inB�.z�/, we have the strong convexity �min.r2'R.'// � c��2d
for all ' 2 '.B�.z�//.

(b) Denote V�
`
D f� 2 Rd W dist.�;V`/ < �g, where V�0 D Rd . Then for

each ` D 1; : : : ; d and each � 2 V�
`�1

n V�
`

, either kr�R.�/k � c��2` or
�min.r2�R.�// � �c��2`.

The proof rests on the following lemma, which characterizes the functions S`.�/
in this example.

LEMMA 4.24. LetG � Sd be the symmetric group acting on Rd by permutation of
coordinates. For each ` D 1; : : : ; d , some constant a` > 0, and some polynomials
q`; r` W R`�1 ! R with coefficients depending on �� and such that

q`
�
p1.��/; : : : ; p`�1.��/

� D 0;

we have

(4.61)
S`.�/ D a`

�
p`.�/

2 � p`.��/
�2 C q`

�
p1.�/; : : : ; p`�1.�/

� � p`.�/
C r`

�
p1.�/; : : : ; p`�1.�/

�
:

PROOF. We apply Lemma 4.8 and the fact that the power sums p1.�/; p2.�/; : : :
generate RG as an algebra over R (see [32, Eq. (2.12)]). Thus, any polynomial
' 2 RG

�`
may be written as

'.�/ D c'p`.�/C q'.p1.�/; : : : ; p`�1.�//

for some c' 2 R and some polynomial q' with real coefficients. In particular,
applying this to each entry of the moment tensor T`.�/ in Lemma 4.8, we obtain
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the form (4.61) where

a` D
X
'

c2'

2.`�/

and

q`
�
p1.�/; : : : ; p`�1.�/

�
D
X
'

c'

`�
� �q'�p1.�/; : : : ; p`�1.�/� � q'�p1.��/; : : : ; p`�1.��/��;

with both summations taken over all entries of T`.�/. We have a` > 0 strictly
because the diagonal entries of T`.�/ are given by

T`.�/i;:::;i D
1

d�

X
�2Sd

�`�.i/ D
.d � 1/�
d �

dX
iD1

�`i D p`.�/;

so that c' D 1 for these entries. �

The derivative of this map ' D .p1; : : : ; pd / is singular at points z� having
repeated entries. To analyze the landscape of R.�/ near such points, we use the
following known (and nontrivial) facts about the symmetric power sums and Van-
dermonde varieties.

LEMMA 4.25. Let Vk be the Vandermonde variety (4.60), with V0 D Rd . For each
k 2 f1; : : : ; dg and any generic �� 2 Rd :

(a) Each point � 2 Vk has at least k distinct entries.
(b) Vk�1 is a nonsingular algebraic variety, and pk.�/ is a Morse function on

Vk�1.
(c) The critical points of the restriction pkjVk�1 are the points � 2 Vk�1 having

exactly k � 1 distinct entries.
(d) If � is a local minimizer or local maximizer of pkjVk�1 , then it is also a

global minimizer or global maximizer of pkjVk�1 .

PROOF. For (a), fixing any integer multiplicities d1; : : : ; dk�1 � 0 summing to
d , the image of the polynomial function F W Rk�1 ! Rk given by

F.x1; : : : ; xk�1/ D
0
@ 1
d

k�1X
jD1

djx
`
j W ` D 1; : : : ; k

1
A

is a constructible set in the Zariski topology on Rk , by Chevalley’s theorem (see
[24, theorem 3.16]). By [24, theorem 11.12], the Zariski closure of this image has
dimension at most k � 1, so its complement is generic. Taking the intersection of
these complements over the finitely many choices of d1; : : : ; dk�1, we find that the
complement of the set�

.p1.�/; : : : ; pk.�// W � has at most k � 1 distinct coordinates
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is also generic in Rk . We conclude that for generic �� 2 Rd , the point .p1.��/; : : : ;
pk.��// does not belong to the above set, meaning that each point � 2 Vk has at
least k distinct coordinates.

For (b), the gradient of p` is given by

rp`.�/ D
`

d

�
�`�11 ; : : : ; �`�1d

�
:

Thus, if rp1; : : : ;rpk are linearly dependent, then there is a nonzero polynomial
P of degree at most k � 1 for which P.�i / D 0 for every i D 1; : : : ; d . Since P
has at most k�1 real roots, this implies that � has at most k�1 distinct coordinates.
Applying (a), this shows that for generic ��, the vectors rp1; : : : ;rpk are linearly
independent at every � 2 Vk.��/, so Vk.��/ is nonsingular. The remaining two
statements then follow from the results of [5, theorems 5, 6, and 7]; see also [29].

�

PROOF OF THEOREM 4.23. For each z� 2 Rd , we consider a local reparametriza-
tion by ' in a neighborhood Uz� . If k is the number of distinct entries of z� , then we
take the first k functions in ' to be the symmetric power sums p1.�/; : : : ; pk.�/.
As shown in the proof of Lemma 4.25 above, the gradients rp1; : : : ;rpk must
be linearly independent at z� . We arbitrarily pick d � k remaining functions to
complete .p1; : : : ; pk/ into the local reparametrization '. Denote z' D '.z�/ and
'� D '.��/.

We apply Lemmas 4.12 and 4.15 on each neighborhood Uz� . Fix ` 2 f1; : : : ; dg
and consider z� 2 V`�1 n V`. By Lemma 4.25(a), z� has at least ` � 1 distinct co-
ordinates, so the first `� 1 coordinates of ' are .'1; : : : ; '`�1/ D .p1; : : : ; p`�1/.
Denote '` D .'`; : : : ; 'd /, and note that S1; : : : ; S`�1 are functions only of
'1; : : : ; '`�1. Furthermore, recalling (4.61) and applying

q`.z'1; : : : ; z'`�1/ D q`.'1;�; : : : ; '`�1;�/ D 0

and the chain rule,

r'`S`.z'/ D 2a`
�
p`.z'/ � p`.'�/

�r'`p`.z'/;
r2
'`
S`.z'/ D 2a`

�r'`p`.z'/r'`p`.z'/> C .p`.z'/ � p`.'�// � r2'`p`.z'/
�
:

Since z� � V`, we have p`.z'/ ¤ p`.'�/. Then either r'`S`.z'/ ¤ 0, or

r'`p`.z'/ D 0 and r2
'`
S`.z'/ D 2a`.p`.z'/ � p`.'�// � r2'`p`.z'/:

In this latter case, note that '` is a local chart for V`�1 around z', so z' is a critical
point of p`jV`�1 . The Morse condition of Lemma 4.25(b) implies that all eigenval-
ues of r2

'`
p`.z'/ are nonzero. If r2

'`
p`.z'/ has both positive and negative eigen-

values, then this guarantees that �min.r2'`S`.z'// < 0. Otherwise, z' is a local min-
imizer or local maximizer of p`jV`�1 . If it is a local minimizer, then all eigenvalues
of r2

'`
p`.z'/ are positive. Lemma 4.25(d) also implies that p`.z'/ < p`.'�/, so all
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eigenvalues of r2
'`
S`.z'/ are negative. The case where z' is a local maximizer of

p`jV`�1 is similar. Combining these observations and applying Lemma 4.12, we
get that either kr�R.�/k � c��2` or �min.r2�R.�// � �c��2` for all � 2 Uz�
and � > �0.

For z� 2 Vd D O�� , we have ' D .p1; : : : ; pd /, so that each S` depends only
on .'1; : : : ; '`/ and

r'`S`.z'/ D 2a`.z'` � '`;�/ D 0; r2'`S`.z'/ D 2a` > 0:

Thus z� is a pseudo-local-minimizer in the reparametrization by '. Lemma 4.15
implies that z� is the unique critical point of R.�/ in Uz� , and that �min.r2'R.'// �
c��2d for all ' 2 '.Uz� / and � > �0.

Fixing any M > 0 and taking a finite collection of these sets Uz� that cover the
compact set f� 2 Rd W k�k � M g, the above results hold for uniform choices of
constants c; �0 > 0 in their union. Then for a sufficiently small constant � > 0,
the claims of the theorem hold for all � 2 Rd with k�k � M , and the result for
k�k > M follows again from Lemma 4.19. �

The following then shows that with high probability for any d � 2 and n �
�2d , the empirical risk Rn.�/ is also globally benign and satisfies the same prop-
erties. Again, this is a special case of the guarantee for Rn.�/ in Theorem 4.27 to
follow.

COROLLARY 4.26. For some .��; d /-dependent constantsC; c > 0, the statements
of Theorem 4.23 hold also for Rn.�/, with probability at least 1 � e�c.logn/2 �
Ce�cn

1=.2d_4/��1 .

General groups
We provide a general condition under which the landscape of R.�/ is globally

benign for high noise, which captures the structure of the previous two examples.
Let M` W Rd ! RdCd2C���Cd` be the combined vectorized moment map

M`.�/ D
�
T1.�/; : : : ; T`.�/

�
:

For fixed �� 2 Rd , recall P`.�/ D kT`.�/ � T`.��/k2HS from Lemma 4.8, and
define the moment varieties

V` D
�
� 2 Rd WM`.�/ DM`.��/

	
; V0 D Rd :

We denote by P`jV`�1 the restriction of the function P` to V`�1. We will assume
that each V` is nonsingular and has the same dimension xd` at every point. We then
denote by rP`jV`�1 2 Rxd` and r2P`jV`�1 2 Rxd`�xd` the gradient and Hessian of
the restriction P`jV`�1 with respect to any choice of local chart on V`�1. Note that
the conditions below do not depend on the specific choice of chart.
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THEOREM 4.27. Let �� 2 Rd be generic, and let L be the constant in Lemma 4.3.
Suppose that

VL D O��
and that for every ` � 1, d�M` has constant rank on V`. Suppose also, for
each ` D 1; : : : ; L and each � 2 V`�1, that either (1) rP`jV`�1.�/ ¤ 0, (2)
�min.r2P`jV`�1.�// < 0, or (3) � 2 V`. Then there exists a .��; d;G/-dependent
constant �0 > 0 such that the landscape of R.�/ is globally benign for all � > �0.

More quantitatively, for small enough � > 0, there exist .��; d;G/-dependent
constants c; �0 > 0 such that when � > �0,

(a) For each z� 2 O�� , there is a local reparametrization ' W B�.z�/! Rd such
that �min.r2'R.'// � c��2L for all ' 2 '.B�.z�//.

(b) Denote V�
`
D f� 2 Rd W dist.�;V`/ < �g, where V�0 D Rd . Then for

each ` D 1; : : : ; L and each � 2 V�
`�1

n V�
`

, either krR.�/k � c��2` or
�min.r2R.�// � �c��2`.

With probability at least 1 � e�c.logn/2 � Ce�cn1=.2L_4/��1 , the same statements
hold for the empirical risk Rn.�/.

PROOF. For generic �� 2 Rd , Lemma 4.5 implies that d�M` has rank d1 C
� � � C d` at ��. Then by the given assumption that d�M` has constant rank over
V`, this rank must be d1 C � � � C d`, and V` is a manifold of dimension xd` D
d � .d1 C � � � C d`/.

Note that for any ` � 2, V` � f� W k�k2 D k��k2g. Hence for large enough
M > 0 and small enough � > 0 (depending on ��), if k�k > M , we have
either � 2 V�0 n V�1 or � 2 V�1 n V�2 . Lemma 4.19 shows that with probability
1 � e�c.logn/2 � Ce�cn1=4��1 , we have krR.�/k; krRn.�/k � c��2 for all � 2
V�0 n V�1 and krR.�/k; krRn.�/k � c��4 for all � 2 V�1 n V�2 .

It remains to consider the points f� W k�k � M g. We will apply a compactness
argument to take a finite cover by neighborhoods of points z� 2 Rd . We consider
two cases for such a point z� :

Case I. Suppose z� � O�� . Then there must exist ` 2 f1; : : : ; Lg where z� 2
V0; : : : ;V`�1 and z� � V`. For each k D 1; : : : ; ` � 1, since d�Mk has rank
d1 C � � � C dk , we may pick dk coordinates 'k of the moment tensor Tk such
that .'1; : : : ; '`�1/ have linearly independent gradients at z� . Let us complete
the parametrization by d � .d1 C � � � C d`�1/ additional coordinates '`, so that
' D .'1; : : : ; '`/ has nonsingular derivative at z� . Then for some neighbor-
hood Uz� of z� , ' forms a local reparametrization on Uz� , and Lemma 4.5(c) en-
sures that each polynomial  2 RG

�`�1
is a function only of .'1; : : : ; '`�1/ in

this reparametrization. In particular, the manifold V`�1 is defined by '1.�/ D
'1.��/; : : : ; '

`�1.�/ D '`�1.��/ on Uz� , so that the remaining coordinates '`

form a local chart for V`�1. By Lemma 4.8, S1; : : : ; S`�1 are functions only of
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.'1; : : : ; '`�1/, and

r'`S`.'/ D
1

2.`�/
r'`P`.'/; r2

'`
S`.'/ D

1

2.`�/
r2
'`
P`.'/:

Since z� � V`, the given condition in the lemma implies that either r'`S`.'/ ¤ 0

or �min.r2'`S`.'// < 0. Then by Lemma 4.12, for � > �0 and large enough

�0, there is a neighborhood Uz� of z� on which either krR.�/k � c��2` or
�min.r2R.�// � �c��2`.

For the empirical risk Rn, the argument is similar to that of Corollary 4.18: We
may assume n � �2`, as otherwise the desired probability guarantee is vacuous.
Observe that since S1; : : : ; S`�1 do not depend on '`, the above and Lemma 4.7
show for ' 2 '.Uz� / that

(4.62)


r'`R`.'/

 � c��2` or �min

�r2
'`
R`.'/

� � �c��2`:
Let E be the event where the guarantee of Lemma 4.11 holds with k D 2L, t D
��2L= log � , and r.�/ a large enough constant, and also where����1n

nX
iD1

Ak;m."i ; ��/ � E"�Ak;m."; ��/�
���� � c0��.k^L/

for each k D 1; : : : ; 2L, m D 1; : : : ;Mk , and a sufficiently small constant c0 > 0.
By Lemma 4.11 and (4.47), we have P�E � � 1�ec.logn/2 �Ce�cn1=.2L/��1 . Since
Pk;m in Lemma 4.11 does not depend on '` for all k � ` � 1, on this event E , the
bounds (4.33) and (4.34) together with (4.62) imply that

kr'`Rn.'/k � c��2` or �min.r2'`Rn.'// � �c��2`:
Then, applying the same argument as in Lemma 4.12, this shows also for the gra-
dient and Hessian in � that for all � 2 Uz� a neighborhood small enough, we have
either krRn.�/k � c��2` or �min.r2Rn.�// � �c��2`.

Case II. Suppose z� 2 O�� . Then Theorem 4.16 and Corollary 4.18 show that
there is a neighborhood Uz� where, parametrizing by the full transcendence basis
' of Lemma 4.3, we have r2'R.'/ � c��2L and r2'Rn.'/ � c��2L on '.Uz� /,
with the desired probability.

Taking a finite collection of these neighborhoods Uz� that cover the compact set
f� 2 Rd W k�k �M g, this establishes the claims of the theorem also for k�k �M
and some sufficiently small constant � > 0. �

4.6 Global landscape for cyclic permutations in Rd

For the group of cyclic permutations of coordinates in dimension d , the orbit
recovery problem is often called multi-reference alignment (MRA). We have

(4.63) G D fId; h; h2; : : : ; hd�1g � Z=dZ
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where the generator

(4.64) h D

0
BBBBB@
0 0 � � � 0 1

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

1
CCCCCA 2 Rd�d

cyclically rotates coordinates by one position. Here, the size of the group isK D d .
Since this is the same as the group of all permutations when d 2 f1; 2g, we consider
d � 3.

We change to the Fourier basis for � . Index Rd and Cd by 0; 1; : : : ; d � 1, and
define the d th root of unity ! D e2� i=d . For all k 2 Z, let

(4.65) vk.�/ D
1p
d

d�1X
jD0

!jk�j

be the coordinates of the normalized Fourier transform of � . Note that v0.�/ is
real, and vd=2.�/ is also real for even d .

Suppose now that �� 2 Rd is such that vk;� WD vk.��/ ¤ 0 for all k 6�
0 mod d . Denoting the unit circle by S � �0; 2�/ and writing Arg.´/ 2 S for the
complex argument of ´ 2 C, we choose new coordinates rk.�/ and tk.�/ 2 S on
� given by

rk.�/ D jvk.�/j; tk.�/ D
(

Arg
�
vk.�/

� � Arg
�
vk;�

�
if vk.�/ ¤ 0;

0 otherwise

The quantities rk.�/2 are known as the power spectrum of � . Finally, we denote
rk;� WD rk.��/.

Because � 2 Rd is real-valued, we have that

vk.�/ D v�k.�/; rk.�/ D r�k.�/; tk.�/ D �t�k.�/;

which means that for

I D f1; : : : ; bd�1
2
cg;

the quantities fti .�/gi2I , fri .�/gi2I , and rd=2.�/ if d is even uniquely specify � .
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We now define two surrogate functions FC W S jIj ! R and F� W S jIj ! R in
these coordinates, making the identification t�i D �ti for i 2 I and ti 2 S:

(4.66)

F�.t1; : : : ; tjIj/

D �
�
1

6

X
i;j;k2I[�I

iCjCk�0 mod d

r2i;�r
2
j;�r

2
k;� cos.ti C tj C tk/

� 1fd is eveng � 1
2

X
i;j2I[�I

iCj�d=2 mod d

r2i;�r
2
j;�r

2
d=2;� cos.ti C tj /

�
:

We have FC D F� when d is odd, and in this case we will only refer to FC.
For generic �� 2 Rd and � > �0 � �0.��; d /, the following shows that local

minimizers ofR.�/ are in correspondence with local minimizers of these surrogate
functions on the manifold S jIj.

THEOREM 4.28. Let G be the cyclic group (4.63) acting on Rd , where d � 3.
Suppose �� 2 Rd has vk;� ¤ 0 for all k 6� 0 mod d . For small enough � > 0,
there exist some .��; d /-dependent constants c; �0 > 0 and all � > �0:

(a) For each local minimizer zt of FC.t/ where �min.r2FC.zt // > 0, there is a
unique local minimizer ofR.�/ in the ballB�.z�/, and a local reparametriza-
tion ' such that �min.r2'R.'// � c��6 for all ' 2 '.B�.z�//. Here,
z� 2 Rd is the point where rk.z�/ D rk;� for all k 2 Z, v0.z�/ D v0;�,
vd=2.z�/ D vd=2;� if d is even, and Arg.vk.z�// D Arg.vk;�/C ztk for each
k 2 I.

(b) If d is even, then in addition, for each local minimizer zt 2 S jIj of F�.t/

where �min.r2F�.zt // > 0, the same statement of (a) holds over B�.z�/ for
z� 2 Rd defined by the same conditions as in (a) except with vd=2.z�/ D
�vd=2;� in place of vd=2.z�/ D vd=2;�.

(c) If FC.t/ and F�.t/ are Morse on S jIj, then (a) and (b) characterize all of
the local minimizers ofR.�/. For each � 2 Rd outside the union of the balls
B�.z�/ in (a) and (b), either kr�R.�/k � c��6 or �min.r2�R.�// � �c��6.

The following shows that the same statements then hold for the empirical risk
Rn.�/, with high probability when n� �6. The proof is the same as the empirical
risk analysis in Theorem 4.27, and we omit this for brevity.

COROLLARY 4.29. For some .��; d /-dependent constantsC; c > 0, the statements
of Theorem 4.28 hold also for Rn.�/, with probability at least 1 � e�c.logn/2 �
Ce�cn

1=6��1 .

The following corollary will then follow from an analysis of the landscape of
the functions F�.
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FIGURE 4.1. Contours of the functions FC.t1; t2/ (left) and F �.t1; t2/

(right) corresponding to �� in (4.67) for the group of cyclic permutations
acting in dimension d D 6. Each function FC and F � is periodic over
t1; t2 2 S � �0; 2�/ and has six local minimizers. Together, these twelve
local minimizers of F�.t1; t2/ correspond to six global minimizers and
six spurious local minimizers of R.�/ under high noise.

COROLLARY 4.30. Let G be the cyclic group (4.63) acting on Rd .

(a) For d � 5 and generic �� 2 Rd , there exists a .��; d /-dependent constant
�0 > 0 such that the landscape of R.�/ is globally benign for all � > �0.

(b) For even d � 6, there exists an open subset U � Rd and a constant �0 > 0
such that for all �� 2 U and � > �0, R.�/ has a local minimizer not
belonging to O�� .

(c) For odd d � 53, there exists an open subset U � Rd and a constant �0 > 0
such that for all �� 2 U and � > �0, R.�/ has a local minimizer not
belonging to O�� .

For .��; d /-dependent constants C; c > 0, the same statements hold for the empir-
ical risk Rn.�/ with probability at least 1 � e�c.logn/2 � Ce�cn1=6��1 .

Remark 4.31. For d D 6, setting .r1;�; r2;�; r3;�/ D .1; 2; 1/ yields a concrete
example

(4.67) �� � .2:86;�0:82;�0:82; 0:41;�0:82;�0:82/
belonging to the open set U , for which R.�/ has spurious local minimizers. Con-
tour maps of FC.t1; t2/ and F�.t1; t2/ for this point �� are displayed in Figure
4.1. It may be verified that FC and F� each has six local minimizers given by

.t1; t2/ D .0; 0/; .�=3; 2�=3/; .2�=3; 4�=3/; .�; 0/; .4�=3; 2�=3/; .5�=3; 4�=3/:
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(A) The fraction of AGD runs con-
verging to the spurious local mini-
mizers Oy� at different noise levels.

(B) Distances from the 250th AGD iterate to the
orbits Oy�

and Oy� for each run.

FIGURE 4.2. Results of applying Nesterov-accelerated gradient de-
scent (AGD) to minimize Rn.�/ for cyclic permutations in dimension
d D 6, with n D 1;000;000 samples and �� as in (4.67). AGD
was applied from 500 random initializations for noise levels � between
5:0 and 6:2. AGD converges to a point near Oy�

or Oy� in all cases.
For � D 6:2, we find y� � .2:84;�0:82;�0:85; 0:42;�0:79;�0:79/

and y� � .2:08;�0:03;�1:47; 1:17;�1:53;�0:21/, which are close to
.��; ��/ in (4.67) and (4.68).

The corresponding twelve points z� constitute the orbits O�� and O�� for a second
point

(4.68) �� � .2:04; 0:00;�1:63; 1:22;�1:63; 0:00/:

Theorem 4.28 implies that for large � and large n, the empirical risk Rn.�/ has
(with high probability) twelve local minimizers, belonging to two orbits Oy�

and
Oy� where y� D �� and y� depends on � and lies in a small neighborhood of ��.

Simulation results in Figure 4.2 verify this behavior: We used the accelerated
gradient descent (AGD) method described in Section 1.3 to minimize Rn.�/, with
n D 1;000;000 samples at various noise levels � . For each noise level, the under-
lying data Y1; : : : ; Yn was fixed, and simulations were performed with 500 random
initializations � .0/ � N .0; Id/. At noise levels � � 5:2, all simulations converged
to the orbit of a point y� near ��, suggesting a benign landscape for Rn.�/. For
� � 5:4, a fraction of simulations converged to the orbit of a second local mini-
mizer y� near ��, and this fraction stabilized to be roughly 28%. This value of 28%
may be understood as the “size” of the domain of attraction for the spurious lo-
cal minimizers Oy� relative to that for the global minimizers Oy�

, for the particular
example of �� in (4.67) and our simulation parameters.
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The proof of Theorem 4.28 rests on the following lemma, which describes the
first three terms S1; S2; S3 of the expansion (4.1).

LEMMA 4.32. Fix �� 2 Rd where vk;� ¤ 0 for all k 6� 0 mod d . Then for some
polynomial q W Rd�1 ! R with coefficients depending on ��,

S1.�/ D �v0;�v0.�/C 1

2
v0.�/

2;(4.69)

S2.�/ D
d�1X
iD1

�
�1
2
r2i;�ri .�/

2 C 1

4
ri .�/

4

�
;(4.70)

S3.�/ D �1
6

d�1X
i;j;kD1

iCjCk�0 mod d

ri;�rj;�rk;�ri .�/rj .�/rk.�/(4.71)

� cos
�
ti .�/C tj .�/C tk.�/

�C q
�
r1.�/

2; : : : ; rd�1.�/
2
�
:

PROOF. Let e D .1; : : : ; 1/=
p
d 2 Rd�1 and let V 2 Rd�.d�1/ complete the

orthonormal basis. Then the columns of V span the kernel of Eg �g�, and Lemma
2.5 applies with G2 D fV >hkV W k D 0; : : : ; d �1g � O.d �1/ for the generator
h in (4.64). Thus, noting that e>� D v0.�/, we have

R.�/ D RId.v0.�//CRG2.V >�/:

Applying the series expansion (4.1) to each of R, RId, and RG2 , we have the anal-
ogous decomposition

S`.�/ D S Id
` .v0.�//C S

G2

`
.V >�/

for every ` � 1. Note that

RId.v0.�// D v0.�/
2

2�2
� v0;�v0.�/

�2

by (2.3), so that S Id
1 .v0.�// D �v0;�v0.�/ C v0.�/

2=2, and S Id
`
.v0.�// D 0 for

all ` � 2.
To compute the terms SG2

`
.V >�/, we apply Lemma 4.9. For ` D 1, since

Eg�Unif.G2/�g� D 0, we have SG2

1 .V >�/ D 0, so we get (4.69). For ` D 2,

S
G2

2 .V >�/ D �1
2
Eg �hV >��; .V

>gV /V >�i2�C 1

4
Eg �hV >�; .V >gV /V >�i2�:

Introduce P D V V > D Id�ee> and the partial Fourier matrix F 2 C.d�1/�d
such that F� D .v1.�/; : : : ; vd�1.�// 2 Cd�1. Denote v D F� , and let v� D
F��. Then note that

PhkP D F �DkF
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where D D diag.!; !2; : : : ; !d�1/, so

S
G2

2 .V >�/ D � 1

2d

d�1X
kD0

hv�;Dkvi2 C 1

4d

d�1X
kD0

hv;Dkvi2:

We may write

1

d

d�1X
kD0

hv�;Dkvi2 D 1

d

d�1X
kD0

0
@d�1X
iD1

vi;� � !kivi

1
A2

D
d�1X
i;jD1

vi;�vj;�vivj

0
@ 1
d

d�1X
kD0

!kiCkj

1
A:

Applying

(4.72)
d�1X
kD0

wjk D
(
d if j � 0 mod d;
0 if j 6� 0 mod d;

and also vi D v�i and vi;� D v�i;�, this yields

1

d

d�1X
kD0

hv�;Dkvi2 D
d�1X
i;jD1

vi;�vj;�vivj � 1fi C j � 0 mod dg

D
d�1X
iD1

jvi;�j2 � jvi j2 D
d�1X
iD1

r2i;�ri .�/
2:

A similar computation shows d�1
P
khv;Dkvi2 D

Pd�1
iD1 ri .�/

4, which yields
(4.70).

For ` D 3, applying Lemma 4.9 and similar arguments,

S
G2

3 .V >�/

D 1

d

d�1X
pD0

�
�hv�;D

pvi3
6

C hv;Dpvi3
12

�

C 1

d2

d�1X
p;qD0

�hDpv;Dqvihv�;Dpvihv�;Dqvi
2

� hDpv;Dqvihv;Dpvihv;Dqvi
3

�

D
d�1X
i;j;kD1

"�
�vi;�vj;�vk;�vivj vk

6
C jvi j2jvj j2jvkj2

12

�
1fi C j C k � 0 mod dg

C
� jvi j2vj;�vk;�vj vk

2
� jvi j2jvj j2jvkj2

3

�
1fi C k � 0 mod d; �i C j � 0 mod dg

#
:
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Observe that for the second term, we must have k � �i and j � i , in which case
vj;�vk;�vj vk D jvi j2jvi;�j2. Then applying also vi;�vi D ri;�rie

iti (where we
write ri ; ti for ri .�/; ti .�/), for some polynomial q W Rd�1 ! R we get

S
G2

3 .V >�/ D �1
6

d�1X
i;j;kD1

ri;�rj;�rk;�rirj rke
i.tiCtjCtk/1fi C j C k � 0 mod dg

C q.r21 ; : : : ; r
2
d�1/:

Taking the real part on both sides yields (4.71). �

PROOF OF THEOREM 4.28. For each z� 2 Rd , we construct a local reparam-
etrization ' D .'1; '2; '3/ as follows: Let '1.�/ D v0.�/. For each k 2 I, if
vk.z�/ ¤ 0, then include rk.�/ as a coordinate of '2. If vk.z�/ D 0, then include
Re vk.�/ and Im vk.�/ as two coordinates of '2. If d is even, include also vd=2.�/
as a coordinate of '2. Then for each k 2 I where vk.z�/ ¤ 0, include tk.�/ as a
coordinate of '3. If there arem coordinates k 2 I where vk.z�/ ¤ 0, then '3 2 Rm
and '2 2 Rd�m�1. It is easily verified that this defines a local reparametrization
in some neighborhood Uz� around every z� 2 Rd . Note that S1 depends only on '1,
and S2 on '1 and '2.

We now apply Lemmas 4.12 and 4.15. Let z' D '.z�/. For z� 2 Rd where
v0.z�/ ¤ v0;�, we have r'1S1.z'/ ¤ 0. For z� 2 Rd where vk.z�/ ¤ 0 and
rk.z�/ ¤ rk;� for some k 2 I, we similarly have r'2S2.z'/ ¤ 0, because the
derivative of S2 in the coordinate rk is nonzero. For z� 2 Rd where vk.z�/ D 0

for some k 2 I, let us write rk.�/2 D .Re vk.�//2 C .Im vk.�//
2 in (4.70).

Differentiating S2 twice in these variables Re vk.�/ and Im vk.�/ and evaluating
at Re vk.z�/ D Im vk.z�/ D 0, we get that the Hessian of S2 in these variables
is �r2

k;�
Id. Thus, �min.r2'2S2.z'// < 0. Finally, for even d and z� 2 Rd where

vd=2.z�/ � fCvd=2;�;�vd=2;�g, let us write rd=2.�/2 D vd=2.z�/2 in (4.70). Then
either vd=2.z�/ ¤ 0 and r'2S2.z'/ ¤ 0, or vd=2.z�/ D 0 and �min.r'2S2.z'// < 0.
In all of these cases, Lemma 4.12 implies either

kr�R.�/k � c��4 or �min.r2�R.�// � �c��4;
for all � 2 Uz� and � > �0.

It remains to consider those points z� 2 Rd where v0.z�/ D v0;� and rk.z�/ D
rk;� ¤ 0 for all k 2 Z. For such z� , we have '3 � .t1; : : : ; tjIj/ 2 RjIj. When d
is odd, the summation defining (4.71) may be written as that over i; j; k 2 I [�I
with i C j C k � 0 mod d , and the restriction of S3.'/ to points ' 2 Rd where
rk D rk;� for all k 2 Z coincides with FC.t/. When d is even, we may isolate the
terms of the summation in (4.71) where some coordinate, say k, equals d=2. Then
we must have iCj � d=2 mod d , and the constraint i; j 6� 0 mod d is equivalent
to i; j 2 I [ �I. When vd=2 D vd=2;�, we have tk D 0 so cos.ti C tj C tk/ D
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cos.ti C tj /. In this case, S3.'/ restricted to rk D rk;� is the function FC.t/,
where the factor 1=2 is produced from 1=6 by considering the three symmetric
settings where i , j , or k is d=2. When vd=2 D �vd=2;�, we have tk D � , so
cos.ti C tj C tk/ D � cos.ti C tj /. In this case, S3.'/ restricted to rk D rk;� is
the function F�.t/.

Thus, if zt D z'3 is not a critical point of F�.t/, then r'3S3.z'/ ¤ 0. If zt is a
critical point where �min.r2F�.t// < 0, then also �min.r'3S3.z'// < 0. In these
cases, Lemma 4.12 implies that either kr�R.�/k � c��6 or �min.r2�R.�// �
�c��6 for all � 2 Uz� and � > �0. If zt is a critical point of F�.t/ where
�min.r2F�.t// > 0, then z' is a pseudo-local-minimizer of R.�/, and Lemma
4.12 implies both that there is a unique local minimizer of R.'/ in '.Uz� / and that
r2'R.'/ � c��6 on '.Uz� /. Finally, if F�.t/ is Morse, then this accounts for all
possible points z� .

Taking a finite collection of these sets Uz� which cover f� W k�k � M g, the
above constants c; �0 > 0may be chosen to be uniform over this finite cover. Then
for small enough � > 0, the above arguments establish the claims of the theorem
for k�k �M . The result for k�k > M follows from Lemma 4.19. �

Finally, let us analyze the functions F� for d � 5, even d � 6, and odd d � 53.

PROOF OF COROLLARY 4.30.
(a) The result for d D 1 or 2 follows from the analysis of all permutations in

Theorem 4.23.
For d D 3 or 4, I D f1g, so F�.t/ is a function of a single scalar argument in

t1 2 S . For d D 3,

rFC.t1/ D r61;� sin.3t1/; r2FC.t1/ D 3r61;� cos.3t1/:

Then FC is Morse and there are six critical points, three of which are the local
minimizers f0; 2�=3; 4�=3g. These correspond to the three points z� 2 O�� . For
d D 4,

rF�.t1/ D �2r61;� sin.2t1/; r2F�.t1/ D �4r61;� cos.2t1/:

Each function FC and F� is Morse with four critical points. For FC, there are two
local minimizers f0; �g, and for F�, there are two local minimizers f�=2; 3�=2g.
These correspond to the four points z� 2 O�� .

For d D 5, we have I D f1; 2g. Let us abbreviate

si D r2i;�; u1 D 2t1 � t2; u2 D t1 C 2t2:

Then

rFC.t/ D �
2s21s2 sinu1 C s1s

2
2 sinu2;�s21s2 sinu1 C 2s2s

2
1 sinu2

�
;

r2FC.t/ D
�
4s21s2 cosu1 C s1s

2
2 cosu2 �2s21s2 cosu1 C 2s1s

2
2 cosu2

�2s21s2 cosu1 C 2s1s
2
2 cosu2 s21s2 cosu1 C 4s1s

2
2 cosu2

�
:
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From this, we may also compute

detr2FC.t/ D 25s31s
3
2 cosu1 cosu2;

Trr2FC.t/ D 5s21s2 cosu1 C 5s1s
2
2 cosu2:

For generic �� and hence generic .s1; s2/, the condition rFC.t/ D 0 for a critical
point requires sinu1 D sinu2 D 0. We have detr2FC.t/ ¤ 0 at such points,
so FC is Morse. The condition r2FC.t/ � 0 for a local minimizer then requires
detHC.t/ > 0 and TrHC.t/ > 0, so we must have cosu1 D cosu2 D 1, and
hence t1 C 2t2 � 2t1 � t2 � 0 mod 2� . This implies that 5t1 � 0 mod 2� ,
and there are five local minimizers .t1; t2/ D .0; 0/, .2�=5; 4�=5/, .4�=5; 8�=5/,
.6�=5; 2�=5/, and .8�=5; 6�=5/. These correspond to the five points z� 2 O�� .
Together with Theorem 4.28 and Corollary 4.29, this shows part (a).

(b) Write d D 2m C 2 with m � 2 so that I D f1; 2; : : : ; mg. Define the
quantities si D r2i;� so that si D s�i . We exhibit a family of points where F�.t/

have spurious local minima. For each a 2 f0; : : : ; d �1g, define ta D .ta1 ; : : : ; t
a
m/

by

(4.73) tai D
2�ai

d
:

For i; j; k 2 I [ �I with i C j C k � 0 mod d , we find that

tai C taj C tak � 0 mod 2�:

Similarly, for i; j 2 I[�I with iCj � d=2 mod d , we have tai Ctaj � 0 mod � .
Together, these imply that rF�.ta/ D 0.

We now restrict to s1 D � � � D sm D 1. We claim that ta is a local minimum of
both FC and F� for sufficiently small values of smC1. Define

F0.t/ WD �1
6

X
i;j;k2I[�I

iCjCk�0 mod d

cos.ti C tj C tk/

so that for d even we have

(4.74) F�.t/ D F0.t/� 1

2
smC1

X
i;j2I[�I

iCj�d=2 mod d

cos.ti C tj /:

We show thatr2F0.ta/ is diagonally dominant: Denote by @p the partial derivative
in tp. For any p 2 I,

@pF0.t/ D 1

6

X
i;j;k2I[�I

iCjCk�0 mod d

sin.ti C tj C tk/�

�
1fi D pg C 1fj D pg C 1fk D pg � 1fi D �pg � 1fj D �pg
� 1fk D �pg�
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D
X

j;k2I[�I
pCjCk�0 mod d

sin.tp C tj C tk/

where the second line applies symmetry with respect to permutations of .i; j; k/
and negation .i; j; k/ 7! .�i;�j;�k/. Then, for any q 2 I,

@pqF0.t/ D
X

j;k2I[�I
pCjCk�0 mod d

cos.tp C tj C tk/�

�
1fp D qg C 1fj D qg C 1fk D qg � 1fj D �qg � 1fk D �qg�

D 1fp D qg
X

j;k2I[�I
pCjCk�0 mod d

cos.tp C tj C tk/

C 1fp C q 6� d=2 mod dg � 2 cos.tp C tq C t�p�q/

� 1fp ¤ qg � 2 cos.tp C t�q C tq�p/:(4.75)

At any point ta, we have tai C taj C tak � 0 mod 2� , so cos.tai C taj C tak / D 1 for
all triples .i; j; k/ above. Then

@ppF0.t
a/ D 2m � 2C 2 � 1fp � d=4 mod dg;

where the first term accounts for the sum over j 2 I [�I excluding j D �p and
j D d=2 � p. We also haveX
qWq¤p

j@pqF0.ta/j D
X
qWq¤p

2 � 1fpC q � d=2 mod dg D 2 � 1fp 6� d=4 mod dg:

Thus, for m � 2,

@ppF0.t
a/ �

X
qWq¤p

j@pqF0.ta/j D 2m � 2 > 0:

This implies that rF0.ta/ is diagonally dominant and thus positive definite. Tak-
ing smC1 sufficiently small in (4.74), we find that the Hessians r2F�.ta/ are
also positive definite, meaning that each ta for a D 0; : : : ; d � 1 is a local min-
imum of both FC.t/ and F�.t/. By continuity, this statement also holds for
.s1; : : : ; smC1/ 2 Us and some open set Us � RmC1.

Now for each �� 2 Rd such that .r21;�; : : : ; r
2
mC1;�/ 2 Us , Theorem 4.28(a,b)

implies that R.�/ has 2d local minima (for sufficiently large � ), corresponding
to these 2d local minima ta for F�.t/. Of these, d local minima constitute the
orbit O�� , and the other d local minima are spurious and lie on another orbit O��
for some �� 2 Rd . The set of such �� contains an open set U � Rd , and this
establishes part (b).

(c) Write d D 2m C 1 so that I D f1; 2; : : : ; mg. We will exhibit a family
of points where FC.t/ has spurious local minima. For each a 2 f0; : : : ; d � 1g,
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define ta;� D .t
a;�
1 ; : : : ; t

a;�
m / by

t
a;C
i D 2�ai

d
and ta;� D ta;C C .�; 0; : : : ; 0/:

For i; j; k 2 I [ �I with i C j C k � 0 mod d , we find

t
a;C
i C t

a;C
j C t

a;C
k

� 0 mod 2�;

t
a;�
i C t

a;�
j C t

a;�
k

� �
�
1fi D 1g C 1fj D 1g C 1fk D 1g� mod 2�:

So rFC.ta;�/ D 0. It may be checked that the d points ta;C are minimizers of
FC.t/ and correspond to the d points of the true orbit O�� . Thus, we focus on the
points ta;�, which correspond to a second orbit O�� for some �� 2 Rd .

Again set si D r2i;�. We now construct .s1; : : : ; sm/ for which these points ta;�

are local minima of FC. By a computation similar to (4.75), we obtain for all
p; q 2 I that

@pqF
C.t/ D 1fp D qg

X
j;k2I[�I

pCjCk�0 mod d

spsj sk cos.tp C tj C tk/

C 2spsqspCq cos.tp C tq C t�p�q/

� 1fp ¤ qg � 2spsqsq�p cos.tp C t�q C tq�p/:

We take m � 8. Let us first consider s4 D � � � D sm D 1 and s3 D 0, with s1 > 0

and s2 > 1 to be chosen later. Then, applying

cos
�
t
a;�
i C t

a;�
j C t

a;�
k

� D .�1/1fiD1gC1fjD1gC1fkD1g;

an explicit computation shows that the diagonal terms of r2FC.ta;�/ are given by

@ppF
C.ta;�/ D

8�������<
�������:

4s2
1
s2 � .2m� 7/s1 p D 1

4s2
2
C s2

1
s2 C .2m� 8/s2 p D 2

0 p D 3

s2
2
� 2s1 C 2s2 C 2m� 8 p D 4

�4s1 C 2s2 C 2m� 9 p D 5

�4s1 C 4s2 C 2m� 10 p D 6

�4s1 C 4s2 C 2m� 13 p D m� 1

�6s1 C 4s2 C 2m� 13 p D m

�4s1 C 4s2 C 2m� 11 for all other p

and the off-diagonal terms (for q > p) are given by

@pqF
C.ta;�/ D

8��������<
��������:

�2s2
1
s2 .p; q/ D .1; 2/

�2s1 .p; q/ D .1; 4/

�2s2
2
C 2s2 .p; q/ D .2; 4/

2s2 .p; q/ D .2; 5/

�2s2 .p; q/ D .m� 2;m/

2s1 C 2s2 .p; q/ D .m� 1;m/

2s1 C 2 .p; q/ D .p;pC 1/ for all p D 4; : : : ;m� 2

�2s2 C 2 .p; q/ D .p;pC 2/ for all p D 4; : : : ;m� 3

2 .p; q/ D .p;pC 3/ for all p D 4; : : : ;m� 3

0 for all other .p; q/
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For v D .0; 2s2; 0;�s2; 0; : : : ; 0/ define

X WD r2FC.ta;�/ � vvT;

which removes the s22 contributions from the entries .2; 2/, .2; 4/, .4; 2/, and .4; 4/.
Let Y 2 R.m�1/�.m�1/ be the minor of X excluding the third row and column,
indexed by f1; 2; 4; : : : ; mg, and set

�p WD Ypp �
X
qWq¤p

jYpqj:

Then the above expressions yield

�1 D 2s21s2 � .2m � 5/s1; �2 D �s21s2 C .2m � 12/s2;
�4 D �6s1 � 2s2 C 2m � 10; �5 D �8s1 � 2s2 C 2m � 13;

�6 D �8s1 C 2m � 12; �p D �8s1 C 2m � 15 for p D 7; : : : ; m:

We now choose s1; s2 to ensure that each �p above is strictly positive: This is true
if and only if

2m � 12 > s21 ; 2s1s2 > 2m � 5; 2m � 13 > 8s1 C 2s2; 2m � 15 > 8s1:
Setting s1 D 1

2

p
m and s2 D 2m�5

2s1
C " for some small " > 0, we may verify that

these expressions hold for m � 26. Then Y is strictly diagonally dominant, and
hence positive definite.

This implies that all eigenvalues of r2FC.ta;�/ are strictly positive except for
a single eigenvalue of 0 corresponding to the eigenvector e3. We now increase s3
from 0 a small constant � to remove this 0 eigenvalue: Fixing s1; s2 and s4 D � � � D
sm D 1 as above, denote by h.s3/ the value of @33FC.ta;�/ at .s1; s2; s3; : : : ; sm/.
Then

h.s3/ D �2s1s2s3 � 2s1s3 C 2s2s3 C 4s23 C s3.2m � 9/:
Since e3 is the eigenvector of r2FC.ta;�/ corresponding to 0, the derivative of
this 0 eigenvalue with respect to s3 is (see [38, eq. (67)])

h0.s3/
��
s3D0

D �2s1s2 � 2s1 C 2s2 C 2m � 9:
For m � 26 and the above choices of s1; s2, this derivative is positive. Then
for some sufficiently small s3 D �, r2FC.ta;�/ is strictly positive definite. We
conclude that for this choice of .s1; : : : ; sm/, each ta;� is a local minimum of
FC.t/. By continuity, this holds also for all .s1; : : : ; sm/ 2 Us and some open
set Us � Rm. Then Theorem 4.28(a) implies that for each �� 2 Rd where
.r21;�; : : : ; r

2
m;�/ 2 Us ,R.�/ has d local minima (for sufficiently large � ), and these

do not belong to the orbit O�� . The condition m � 26 corresponds to d � 53, and
this shows part (c).
The analogous statements for the empirical landscape ofRn.�/ follow from Corol-
lary 4.29. �
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Appendix: Auxiliary Lemmas and Proofs
A.1 Cumulants and cumulant bounds

The order-` cumulant �`.X/ of a random variable X is defined recursively by
the moment-cumulant relations

E�X`� D
X

partitions � of �`�

Y
S2�

�jS j.X/:

More generally, for random variables X1; : : : ; X`, the mixed cumulants �jS j.Xk W
k 2 S/ for S � �`� are defined recursively by the moment-cumulant relations

E

"Y
i2T

Xi

#
D

X
partitions � of T

Y
S2�

�jS j.Xk W k 2 S/:

These relations may be Möbius-inverted to obtain the explicit definition

(A.1) �`.X1; : : : ; X`/ D
X

partitions � of �`�

.j�j � 1/�.�1/j�j�1
Y
S2�

E

"Y
i2S

Xi

#

where j�j is the number of sets in � (see [33, sec. 2.3.4]). If X1 D � � � D X` D X ,
then �`.X1; : : : ; X`/ D �`.X/. The mixed cumulant �`.X1; : : : ; X`/ is multi-
linear and permutation-invariant in its ` arguments. We have �1.X/ D E�X�,
�2.X/ D Var�X�, and �2.X1; X2/ D Cov�X1; X2�.

The cumulant generating function of a random variable X is the formal power
series

(A.2) KX .s/ D
1X
`D1

�`.X/
s`

`�
:

If logE�esX � exists on a neighborhood of 0, then its `th derivative at 0 is �`.X/.
Similarly, the cumulant generating function of a random vector u 2 Rd is the
formal power series

Ku.�/ D
1X

`1;:::;`dD1

�
`1
1 : : : �

`d
d

`1� : : : `d �
�`1C���C`d .u1; : : : ; u1; : : : ; ud ; : : : ; ud /;

where in �`1C���C`d .u1; : : : ; u1; : : : ; ud ; : : : ; ud /, each uj appears j̀ times. If
logE�eh�;ui� exists in a neighborhood of � D 0, its `th derivative at 0 is

�`.u/ 2 .Rd /
`;
where �`.u/ denotes the order-` cumulant tensor of u. This has entries, for i1; : : : ; i` 2
�d �,

�`.u/i1;:::;i` D �`.u1; : : : ; u1; : : : ; ud ; : : : ; ud /

where each coordinate uj appears j̀ times if j̀ of the indices i1; : : : ; i` equal j .
The first two cumulant tensors are �1.u/ D E�u� and �2.u/ D Cov�u�.
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More generally, if logE�eh�;ui� exists in a neighborhood of � , a reweighted ex-
ponential family law p.uj�/ may be defined by the expectation

E�f .u/ j �� D E�f .u/eh�;ui�Ku.�/� D E�f .u/eh�;ui�
E�eh�;ui�

:

Then the `th derivative of logE�eh�;ui� at � is �`.u j �/, the order-` cumulant tensor
of this reweighted law (see [31, theorem 1.5.10]).

The following result provides an upper bound for these cumulants when X;X1;
: : : ; X` are bounded random variables. This bound is tight up to an exponential fac-
tor in `, as may be seen forX � Unif.�0; 1�/where �`.X/ D B`=` andB` is the `th

Bernoulli number (see [11, example 2.7]), satisfying jB2`j � 4
p
�`.`=.�e//2`.

LEMMA A.1.
(a) If jX j � m almost surely, then j�`.X/j � .m`/`.
(b) If jXi j � mi almost surely for each i D 1; : : : ; `, then j�`.X1; : : : ; X`/j �

``m1 : : : m`.
(c) If jX j � m almost surely, then the series (A.2) is absolutely convergent for

jsj < 1=.me/.
PROOF. We apply (A.1). Enumerating over v D j�j, we have

X
partitions � of �`�

.j�j � 1/ D
X̀
vD1

.v � 1/�
v�

X
`1C���C`vD`

 
`

`1; : : : ; `v

!

D
X̀
vD1

1

v
� v` D

X̀
vD1

v`�1 � ``;

so (b) follows from (A.1). Specializing to X1 D � � � D X` yields (a), and (c)
follows from (a) and the bound `� � ``=e`. �

A.2 Reparametrization by invariant polynomials
We prove Lemmas 4.3 and 4.5. Parts of these are well-known, but we provide a

brief proof here for convenience.
We recall the more usual definition of transcendence degree for two fields E �

F , where trdeg.F=E/ is the maximum number of elements in F that are alge-
braically independent over E. We verify also in the proof of Lemma 4.3 that our
definition of trdeg.A/ for any subset A � RG coincides with trdeg.R.A/=R/,
where R.A/ is the field of rational functions generated by A.

PROOF OF LEMMA 4.3. Consider any subsetsA0 � A � RG , whereA0 is alge-
braically independent. Call A0 maximal in A if A0 [ fag is algebraically dependent
for every a 2 A n A0. Let A0 be maximal in A, and suppose jA0j D k. Let R.A/
and R.A0/ be the fields of G-invariant rational functions generated by A and A0.
Algebraic independence of A0 implies that trdeg.R.A0/=R/ D k. Maximality of
A0 implies that each a 2 A is algebraic over R.A0/. Then R.A/ is an algebraic
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extension of R.A0/, so trdeg.R.A/=R.A0// D 0, hence trdeg.R.A/=R/ D k. This
verifies that every such maximal algebraically independent setA0 ofA has the same
cardinality, which coincides with trdeg.R.A/=R/.

Letting R.�1; : : : ; �d / and R.RG/ be the fields of all rational functions and
all G-invariant rational functions in � , respectively, R.�1; : : : ; �d / is an algebraic
extension of R.RG/ (see [17, lemma 11]), so trdeg.R.�1; : : : ; �d /=R.RG// D 0.
Since trdeg.R.�1; : : : ; �d /=R/ D d , this shows trdeg.RG/ D trdeg.R.RG/=R/ D
d . Thus trdeg.RG�L/ D d for some L � 1, and there exists a smallest such
L. To construct ', let '1 be any maximal algebraically independent subset of
RG1 . The above implies that the cardinality of '1 is d1 D trdeg.RG1 /. These
polynomials have degree exactly 1. Now extend this to any maximal algebraically
independent subset .'1; '2/ of RG2 . The above implies that the cardinality of '2

is d2 D trdeg.RG2 /� trdeg.RG1 /. If d2 > 0, then the polynomials of '2 must have
degree exactly 2, by maximality of '1. We may iterate this procedure to obtain
.'1; : : : ; 'L/. �

PROOF OF LEMMA 4.5. For parts (a) and (b), recall by [20, theorem 2.3] that
'1; : : : ; 'k are algebraically independent if and only if r'1; : : : ;r'k are linearly
independent over the field of rational functions C.�1; : : : ; �d /. For part (a), this
linear independence means that some maximal k � k minor of the k � d deriva-
tive d�' does not vanish in C.�1; : : : ; �d /. Then that same maximal minor does
not vanish in C for generic � 2 Rd , showing linear independence for generic � .
For part (b), linear independence at any point � implies that some maximal mi-
nor of d�' does not vanish and hence r'1; : : : ;r'k are linearly independent over
C.�1; : : : ; �d /, implying algebraic independence.

For part (c), let us arbitrarily extend .'1; : : : ; 'k/ to a system of coordinates ' D
.'1; : : : ; 'd /, where d' is nonsingular in a neighborhood of z� . (Here 'kC1; : : : ; 'd
are general analytic functions and need not belong to RG .) By the inverse function
theorem, there is a neighborhood U of z� and corresponding neighborhood '.U /
of '.z�/ for which � is an analytic function of ' 2 '.U /. Then any polynomial
 2 RG

�`
is such that  .�/ is also an analytic function of ' 2 '.U /. Let us write

this function as  D f .'/. Then  .�/ D f .'.�// for all � 2 U , so by the chain
rule,

(A.3) d .�/ D d'f .'/ � d'.�/:
By part (b), since the polynomials .'1; : : : ; 'k;  / are algebraically dependent,
the gradients r'1; : : : ;r'k;r must be linearly dependent at every � 2 U . So
r D d > belongs to the span of r'1; : : : ;r'k at every � 2 U . Since d'.�/
is a nonsingular matrix, this and (A.3) imply that r'f D d'f > has coordinates
k C 1; : : : ; d equal to 0 for every ' 2 '.U /. So f is in fact an analytic function
of only the first k variables '1; : : : ; 'k over '.U /, which is the statement of part
(c). �
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A.3 Concentration inequality for
P

i
k"ik

3

We prove the inequality (2.23). We use the following concentration result, which
specializes [4, theorem 1.2] to Gaussian random variables.

THEOREM A.2 ([4]). Suppose f W Rm ! R is D times continuously differen-
tiable, and rDf .x/ is uniformly bounded over x 2 Rm. Let " 2 Rm have i.i.d.
N .0; 1/ coordinates. Then for a constant c � c.D/ > 0,

P�jf ."/ � Ef ."/j � t � � 2e�c�f .t/:
Here

�f .t/ D min

 
min

partitions J of �D�

�
t

supx2Rm krDf .x/kJ

�2=jJ j
;

min
1�d�D�1

min
partitions J of �d�

�
t

kE�rdf ."/�kJ

�2=jJ j!

where jJ j � K is the number of sets in the partition J D fJ1; : : : ; JKg of �d �,
and

kAkJ D sup

0
@ mX
i1;:::;idD1

ai1;:::;id

KY
kD1

x
.k/

.i`W`2Jk/
W kx.k/kHS � 1 for all k D 1; : : : ; K

1
A:

In this expression, x.k/ denotes an order-jJkj tensor in .Rm/
jJk j, and x.k/
.i`W`2Jk/

is its entry at the indices .i` W ` 2 Jk/.
To show (2.23), let us write the coordinates of "i as "ij . We consider

f ."1; : : : ; "n/ D
nX
iD1

k"ik3

as a function of the m D nd standard Gaussian variables "ij , and apply the above
result with D D 3 and this function f W Rnd ! R. We analyze �f .t/: Applying
@"ij k"ik D "ij =k"ik, a direct computation yields

@"ij f D 3k"ik"ij ;
@"ij @"ikf D 3k"ik1fj D kg C 3"ij "ik=k"ik;

@"ij @"ik@"i`f D 3."i`1fj D kg C "ik1fj D `g C "ij 1fk D `g/=k"ik
� 3"ij "ik"i`=k"ik3;

and all other partial derivatives up to order three are 0. Taking expectations above
and applying sign invariance of "ij , we have E�rf � D 0 and E�r2f � D c Id (in
dimension nd�nd ) for a constant c > 0. Then kE�rf �kf1g D 0, kE�r2f �kf1;2g D
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kE�r2f �kHS D c
p
n, and kE�r2f �kf1g;f2g D kE�r2f �k D c. Thus

(A.4) min
1�d�D�1

min
partitions J of �d�

�
t

kE�rdf ."/�kJ

�2=jJ j
� c0 min.t2=n; t/:

The third derivative A D r3f has n nonzero blocks of size d � d � d , with
entries uniformly bounded in the range ��12; 12�. We observe that for J D
ff1; 2; 3gg,

kAkf1;2;3g D kAkHS � C
p
n:

For J D ff1; 2g; f3gg, denote by B1; : : : ; Bn the n blocks of d consecutive coor-
dinates in �nd �, and by k´Bk22 D

P
i2B ´

2
i . Then, since aijk D 0 unless i; j; k

belong to the same such block,

kAkf1;2g;f3g D sup

0
@ ndX
i;j;kD1

aijkyij´k W kY kHS � 1; k´k2 � 1
1
A

D sup

0
B@ ndX
i;jD1

0
@ ndX
kD1

aijk´k

1
A2 W k´k2 � 1

1
CA
1=2

D sup

0
B@ nX
`D1

X
i;j2B`

0
@X
k2B`

aijk´k

1
A2 W k´k2 � 1

1
CA
1=2

� C sup

 
nX
`D1

k´B`k2 W k´k2 � 1
!1=2

D C:

Similarly kAkf1;3g;f2g; kAf2;3g;f1gk � C , and kAkf1g;f2g;f3g � kAkf1;2g;f3g � C .
Combining with (A.4), �f .t/ � c0 min.t2=3; t; t2=n/ for a constant c0 > 0. Then
applying Theorem A.2 with t D n,

P
�
n�1

�
f ."1; : : : ; "n/ � E�f ."1; : : : ; "n/�

� � 1� � 2e�cn2=3 :
As n�1E�f ."1; : : : ; "n/� D C1 for a constant C1 > 0, this shows (2.23) for C0 D
1C C1.
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