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Abstract

We study the nonconvex optimization landscape for maximum likelihood estima-
tion in the discrete orbit recovery model with Gaussian noise. This is a statistical
model motivated by applications in molecular microscopy and image process-
ing, where each measurement of an unknown object is subject to an independent
random rotation from a known rotational group. Equivalently, it is a Gaussian
mixture model where the mixture centers belong to a group orbit.

We show that fundamental properties of the likelihood landscape depend on
the signal-to-noise ratio and the group structure. At low noise, this landscape is
“benign” for any discrete group, possessing no spurious local optima and only
strict saddle points. At high noise, this landscape may develop spurious local
optima, depending on the specific group. We discuss several positive and neg-
ative examples, and provide a general condition that ensures a globally benign
landscape at high noise. For cyclic permutations of coordinates on R4 (mul-
tireference alignment), there may be spurious local optima when d > 6, and we
establish a correspondence between these local optima and those of a surrogate
function of the phase variables in the Fourier domain.

We show that the Fisher information matrix transitions from resembling that
of a single Gaussian distribution in low noise to having a graded eigenvalue struc-
ture in high noise, which is determined by the graded algebra of invariant poly-
nomials under the group action. In a local neighborhood of the true object, where
the neighborhood size is independent of the signal-to-noise ratio, the landscape
is strongly convex in a reparametrized system of variables given by a transcen-
dence basis of this polynomial algebra. We discuss implications for optimization
algorithms, including slow convergence of expectation-maximization, and possi-
ble advantages of momentum-based acceleration and variable reparametrization
for first- and second-order descent methods. © 2021 Wiley Periodicals LLC.
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1 Introduction

We study statistical estimation of a vector A« € R? from noisy observations,
where each observation is subject to a random and unknown rotation. Letting G C
O(d) be a known subgroup of orthogonal rotations in dimension d, we consider
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the observation model
(1.1) Y =g-0«+o0¢.

Here, g ~ Unif(G) is an unobserved uniform random element of this group, o > 0
is the noise level, and ¢ ~ N (0,1d) is observation noise that is independent of g.
This model is sometimes referred to as multi-reference alignment, the group action
channel, or the orbit recovery problem [11[2,/6,7,10,(13}/14,37].

Study of this model has largely been motivated by its relevance to the struc-
ture recovery problem arising in single-particle cryoelectron microscopy (cryo-
EM) [[19,22,25]]. Cryo-EM is an experimental method of determining the 3D
structure of a molecule by imaging many cryogenic samples of the molecule from
different and unknown viewing angles. Due to limitations of electron dose, the
individual images are subject to high levels of measurement noise, and they must
be aligned and averaged to obtain a high-resolution reconstruction of the molecule.
There is extensive literature on computational methods for this problem, and we
refer readers to the recent surveys [9,47]]. In our work, we study the simpler model
(L.T), which omits many complications in cryo-EM such as a tomographic projec-
tion, the contrast-transfer function, and structural heterogeneity. We do this so as
to focus our attention on some of the fundamental features of this reconstruction
problem that may arise due to the latent rotation g.

It has been observed since [45]] that the difficulty of estimation in the model
has an atypically strong dependence on the noise level o, and this is a common
theme in subsequent study [2,|6,|7,[37]]. Figure contrasts a low-noise and high-
noise setting in a simple example, where G is the group of threefold rotations
on the plane R?. Three distinct clusters corresponding to the orbit points {gfs :
g € G} are observed in low noise, whereas only a single large cluster is apparent
in high noise. The number of samples needed to recover 64 and the dependence
of this sample complexity on o were studied in [2,/6]. In particular, [6] showed
that method-of-moments estimators can achieve rate-optimal sample complexity
in o, and connected this complexity to properties of the algebra of G-invariant
polynomials.

The focus of our current work is, instead, on maximum likelihood estimation
for 6. Maximum likelihood is a widely used approach in practice, for either ab
initio estimation of 8, or for iterative refinement of a pilot estimate obtained by
other means [41-43,45]|. Letting Y71,..., Yy be i.i.d. observations from the model
(T.1)), the maximum likelihood estimate (MLE) is a vector 6 € RY that maximizes
the log-likelihood function

l n
0>~ log py(Yi),

i=1
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FIGURE 1.1. Data samples and contours of negative log-likelihood
R, (0) for the group of threefold rotations on R2, where 6, = (1,0).
Left: 10,000 samples at noise level o = 0.4. Right: 100,000 samples at
noise level 0 = 4. (Note the difference in axis limits between the data
plots and contour plots.) Values in the contour plots are displayed under
an affine transformation for better visualization.

where pg is the probability density of ¥ marginalizing over the latent rotation
g ~ Unif(G). We denote the negative log-likelihood function by R, (6); this func-
tion is also depicted in Figure [T.1]for low and high noise. The success of optimiza-
tion algorithms for computing the MLE for ab initio estimation and for iterative
refinement depends, respectively, on the global function landscape of R,(6) and
on its local landscape in a neighborhood of 6.

In this work, we study the function landscape of R;(6), assuming that the true
vector By € R? is suitably generic. We restrict attention to discrete groups G, so
that R, (0) has isolated critical points, and we derive several results. First, we show
that the global landscape is “benign” for sufficiently low noise, having no spurious
local minimizers for any discrete group. Second, we show that the local landscape
in a o-independent neighborhood of 6. is also benign at any noise level ¢ > 0, and
that R, (6) is strongly convex in this neighborhood after suitable reparametriza-
tion. Third, we relate the critical points of the global landscape in high noise to
a sequence of simpler optimization problems defined by the symmetric moment
tensors under G. We show that for discrete rotations in R? as in Figure and for
the symmetric group that permutes the coordinates of R?, the global landscape is
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benign also at high noise. In contrast, for the group of cyclic permutations in R,
the global landscape may not be benign for even d > 6 and odd d > 53.

Our motivations for studying the MLE and the likelihood landscape are twofold.
First, classical statistical theory indicates that in the limit # — oo for fixed dimen-
sion d, the MLE achieves asymptotic efficiency, meaning that 0 converges to Oy
at an O(1/4/n) rate, with asymptotically optimal covariance /(fx)~" (the inverse
of the Fisher information matrix) matching the Cramer-Rao lower bound (see 31}
sec. 2.5]). This need not hold for method-of-moments estimators as studied in [6].
Our results connect one aspect of [6] regarding the sample complexity for “list-
recovery of generic signals” to the MLE, by showing that the eigenstructure of
the Fisher information matrix /(6,) corresponds to a sequence of transcendence
degrees in the graded algebra of G-invariant polynomials.

Second, a body of empirical literature in cryo-EM suggests that R,(6) may
have spurious local minimizers. For ab initio estimation, this has motivated the de-
velopment of a variety of optimization algorithms including stochastic hill climb-
ing [21]], stochastic gradient descent [40]], and “frequency marching” [|§8]. However,
at present, the function landscape of R, () is not theoretically well understood,
even in simple examples of group actions. For instance, it is unclear how this
landscape depends on properties of the group, and whether the roughness of this
landscape is due to insufficient sample size or is a fundamental aspect of the model
even in the n — oo limit. Our work takes a step towards understanding these ques-
tions, and our results have concrete implications for descent-based optimization
algorithms in this problem. We discuss these implications in Section[I.3]below.

1.1 The orbit recovery model

We study the orbit recovery model (I.1) in the setting of a discrete group. Let
G C O(d) C R%*4 be a discrete subgroup of the orthogonal group in dimension
d, with finite cardinality

|G| = K.
Each observation is modeled as
Y=g -60i+0¢

where g ~ Unif(G), ¢ ~ N(0,1d), and these are independent. Here, 0 > 0 is
the noise level, which we will assume is known. This is a K-component Gaussian
mixture model with equal weights, where the centers of the mixture components
are the points of the orbit of 8, under G, given by

Op, = {36+ : g € G).
The marginal density of Y in this model is the Gaussian mixture density

1 1 Y — g6l
(12) 1"’*(”=EZ(W) exp(—%).

geG
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For §,0" € R¥, note that P = py if and only if the K mixture components have
the same centers, i.e., Ogr = Og. This means the parameter 60, is statistically
identifiable in this model up to its orbit.

Given n independent samples Y7, . . ., ¥}, distributed according to (I.I)), we study
the landscape of the negative log-likelihood empirical risk

n
(1.3) R,(0) = ! ) "log pg(¥i) + const.
n i=1

Here, const denotes a f-independent value that we introduce to simplify the ex-
pression for this risk; see (2.2) for details. Our results will apply equally to a
setting where the true group element g in (I.1)) is not uniform, and we discuss this
in Remark 2,11

This function R, (9) is nonconvex for any nontrivial group G. A maximum
likelihood estimator # € RY is any global minimizer of R,(6). Note that if 6
minimizes Ry (#), then all points in its orbit O also minimize R, (6), so the MLE
is also only defined up to its orbit.

Fixing the true parameter 6, € R?, we denote the mean of R, (#) by

(1.4) R(6) = —E[log pg(Y)] + const,

where E is the expectation over both g and ¢ in the model ¥ = g - 6, + oe.
This function R(#) depends implicitly on the true parameter 6. We call R(0) the
population risk, and this may be understood as the n — oo limit of R, (6). Note
that

(1.5) R(0) = Dxr(ps, [ pg) — Ellog pg, (Y)] + const
where Dki(pllg) = [ p(y)log %dy is the Kullback-Leibler divergence be-

tween densities p and ¢, and the remaining two terms do not depend on 8. Thus, a
point 6 € R? is a global minimizer of R(8) if and only if Do, = Po.i.e.,0 € Oy,.

It was established in [34] that under mild conditions for empirical risks such
as (1.3), due to concentration of the gradient and Hessian of R, (6) around those
of R(#), various properties of the function landscape of R(f) translate to those
of R, () for sufficiently large n—these properties include the number of critical
points and the number of negative Hessian eigenvalues at each critical point. Ver-
sions of this argument were also used in the analyses of dictionary learning and
phase retrieval in [49,|50]]. Our analysis will follow a similar approach, and the
core of our arguments will pertain to the population risk (1.4) rather than its finite-
n counterpart (1.3).

We will also study properties of the Fisher information matrix in this model.
This is given by

(1.6) 1(6x) = —E[Vglog pg(Y)|4_g. ] = VGR(6:),

which is the Hessian of the population risk R(8) evaluated at its global minimizer
6 = 0,. It was shown in [14] that 7(6) is invertible if and only if all K points of
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the orbit Oy, are distinct. We assume this condition in all of our results, and some
of our results will further restrict 6, to satisfy additional generic properties that
hold outside the zero set of an analytic function on R, Identifying the MLE 6 as
the point in its orbit closest to By, [2] verified that fisan asymptotically consistent
estimate for 6, as n — oo. By the classical theory of maximum likelihood estima-
tion in parametric models (see [51, Chapter 5]), we then have the convergence in
law

(1.7) V(8 —6) — N(0,1(8:)71).

Thus the eigenvalues of the Fisher information matrix determine the coordinate-
wise asymptotic variances of the MLE in an orthogonal basis for R4,

1.2 Overview of results

We will be interested in the geometric properties of the function landscapes of
R, (0) and R(6). The most ideal setting for nonconvex optimization is when these
landscapes are benign in the following sense.

DEFINITION 1.1. The landscape of a twice continuously differentiable function
f RY - R is globally benign if the only local minimizers of f are global
minimizers, f is strongly convex at each such local minimizer, and each saddle
point of f is a strict saddle point.

This is equivalent to saying that the only points § € R where V f(8) = 0 and
Amin(V2 f(8)) > 0 are the global minimizers of £, and Amin(V2 f(#)) > O strictly
at all such points. This condition has been discussed in [23,[26,/30], which show
that randomly initialized gradient descent converges to a global minimizer almost
surely under this condition, and that gradient descent perturbed with additive noise
can furthermore converge in polynomial time under a quantitative version of this
condition.

In our results, we will fix a generic true parameter 6, € RY. We study low-noise
and high-noise regimes, where the low-noise regime is defined by o < oy for a
sufficiently small (64, d, G)-dependent constant gg > 0, and the high-noise regime
by o > oy for a (different) sufficiently large (6, d, G)-dependent constant gg > O.
It is the high-noise regime that is of primary interest in applications such as cryo-
EM. We provide results also for low noise, to contrast with the high-noise behavior,
and because these results may be of separate interest in other applications.

Global landscape and Fisher information at low noise

We show in Section 3| that both R(#) and R, (6) are globally benign in the low-
noise regime for any discrete group G, any 84 whose orbit points are distinct under
G, and sufficiently large sample size n. That is, there exists g = 0¢(0x«, d, G) for
which R(0) and R, (6) do not have any spurious local minimizers when o < 0gy.

We also show that the Fisher information satisfies /(6«) ~ o~21d, where the
error of this approximation is exponentially small in 2. Here, 0~ 2Id is the
Fisher information of the single Gaussian distribution A/(8x, o2 Id). Thus the local
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geometries of R(6) and R,(6) near 6, resemble those of a single Gaussian, and
they do not “feel” the effects of the other mixture components.

We remark that the group structure plays an important role in our proof of this
global landscape result, and such a result is not true for general Gaussian mixture
models: For the three-component Gaussian mixture model

1 1 1
§N (01,0%1d) + 5/\f (05,02 1d) + 5/\/ (63,02 1d),

it is known that the negative log-likelihood population risk as a function of (61, 6, 83) €
R34 can have spurious local minimizers, even in the ¢ — 0 limit. Similar exam-
ples may be constructed for any number of mixture components K > 3 [27]].

Fisher information at high noise

As the noise level o increases, a transition occurs in the structure of the Fisher
information matrix /(6s). We show in Section that in the high-noise regime,
for any generic 0y € R9, there is a decomposition d = di + d» + - -- + dy, where

(1.8)  1(0+) has dy eigenvalues on the order of o2t foreach = 1,..., L.

The number d; is trdeg(RY 6) — trdeg(RE <0 1)» Where trdeg(RY 6) is the transcen-
dence degree over R of the space of G-invariant polynomlals havmg degree < /.
The number L is the smallest integer for which trdeg(R L)

For the group of K-fold discrete rotations in R2, as in Flgure we have
L =K,d, =1,dg = 1, and dy = 0 for each other £. Thus I(fx) has one
eigenvalue of magnitude o—#, corresponding to the curvature of R() in the radial
direction, and one eigenvalue of magnitude o 2%, corresponding to the direction
tangent to the circle {§ € R? : ||@]| = ||f«]|}. For the symmetric group of all
permutations in R?, we have L = d and dy = 1 foreach £ = 1,...,d. For cyclic
permutations in R?, wehave L = 3,d; = 1,d, = [%L and d3 = L%J Here
dy corresponds to the sum 6; + --- + 8, d» to the magnitudes of the remaining
Fourier coefficients of 8, and d3 to the phases.

Applying (1.8) to the classical efficiency result (I.7)) for the MLE, this shows that
§ estimates 05 with an asymptotic covariance of O(o2L/n). This rate agrees with
the results of [6] on list-recovery of generic signals 6, by a method-of-moments
estimator. More precisely, exhibits a decomposition of R4 into orthogonal
subspaces of dimensions dy, ..., dy, such that the MLE 8 estimates 04 with an as-
ymptotic covariance of O(c2¢/n) in its component belonging to the £ subspace.
For any continuously differentiable function i : R? > R, a Taylor expansion of
Y (i.e. the statistical delta method) yields also the convergence in law

(1.9) V(W (0) = ¥ (8:)) > N(0. VY (6) T 10 Vi (6)
as n — oo. We show that when  is any G-invariant polynomial of dggree £, the

gradient Vi (6,) belongs to the span of the first £ subspaces, so that ¥/ (0) estimates
¥ (65) with variance O(c2¢/n).
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Global landscape at high noise

Denote by
(1.10) Ty(0) = Egl(g0)%] € ®R)®*
the ¢™ moment tensor of g6, where E ¢ 18 the expectation over the uniform law g ~
Unif(G). The entries of T;(8) consist of all order-£ mixed moments of entries of
the random vector g6 € R¥. Let || - ||ys be the Euclidean norm of the vectorization
of such a tensor in R?*. We relate the local minimizers of R(0) and R, (0) in

the high-noise regime to a sequence of simpler optimization problems, given by
successively minimizing

(1.11) Py(9) = |ITe(0) — Te(0»)lliis

over the variety

(1.12) Vi1 = {0 e R : T4 (8) = T3 (0s) fork = 1,...,0—1},

forf =1,..., L. This sequence of optimization problems is related to the method

of moments, in that (I.TT) may be interpreted as matching the order-£ moments
Ty (0) to T¢(Bs), subject to the constraint (I.12)) that the moments of lower order
have already been matched.

We show in Section that for generic 04, if Vi = Oy,, each variety Vy
is nonsingular with constant dimension, each restriction Pyly,_, satisfies a strict
saddle condition, and the only local minimizers of each restriction Py|y,_, are the
points 8 € Vg, then the global landscape of R(6) is also benign in the high-noise
regime. In such examples, the landscape of the empirical risk R, () is then also
globally benign with high probability when n > o2L. This requirement for n
matches the sample complexity for recovery of generic signals in [6]. We analyze
the two concrete examples of K-fold rotations in R? and the symmetric group of
all permutations in RY, showing that the global landscape is benign at high noise
in these examples.

The first condition Vi, = Oy, means that 6, is uniquely specified, up to its
orbit, by its first L moment tensors 77(0x), ..., T1(6«). These are the examples
in [6] where the notions of “generic list recovery” and “generic unique recovery”
coincide. We note that this condition alone is not sufficient to guarantee a benign
landscape. For instance, in the cyclic permutations example below, we have L = 3
and V3 = Og, for generic points 6, € R? in any dimension d, but spurious local
minima may exist.

Spurious local minimizers for cyclic permutations

The complexity of the sequence of optimization problems in (L.IT)HI.12] de-
pends on the structure of the G-invariant polynomial algebra. As a more complex
example, we study in Section the group G of cyclic permutations in R?. Some
authors refer to this specific action as the multi-reference alignment (MRA) model,
and the invariant polynomial algebra for this group bears some similarities to the
continuous action of SO(3) that is relevant for cryo-EM applications [6}7,37].
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For this group, we have L. = 3, and P;(0) does not have spurious local min-
imizers over Vy_q for £ = 1 and 2. For £ = 3 and odd d, denoting Z =
{L2,..., %}, we show in Theorem that minimizing P3(0) over Vs is equiv-
alent to minimizing

1
2 .2 2
F+(l1,.--,t|I|) = —g E TisT i aTh x cos(t; + ¢ + 1)
i,j,k€eTU-T
i+j+k=0modd

over phase variables f1,...,f7 € [0,27), where we identify _; = —¢; and set
ri,» as the modulus of the i th Fourier coefficient of 6. When d is even, there is an
additional term to this function as well as a second function F'~(z1,...,#7), and

we refer to Section [4.6] for details.

We show that for high noise and generic 6 € R¥, local minimizers of R(#) are
in correspondence with local minimizers of F* (71, . . ., 1i71), where the magnitudes
of the Fourier coefficients of any such local minimizer # € R? are close to those
of B, and the differences in phases between the Fourier coefficients of 8 and those
of B4 are close to the corresponding local minimizer of F*. In dimensions d < 5,
there are no spurious local minimizers, and the landscapes of R(6) and R, (6) are
globally benign. In even dimensions d > 6 and odd dimensions d > 53, we
exhibit an open set U C R< such that R(#) and R,(6) do have spurious local
minimizers, for all 8, € U. This is a phenomenon of the population risk R(6) and
is not caused by finite-n behavior, so descent procedures may converge to these
spurious local minimizers even in the limit of infinite sample size. (We have found
via a computer search that spurious local minimizers may exist for odd d > 13,
but we will not attempt to make this rigorous.)

In the method-of-moments approach to MRA, the Fourier magnitudes of 8 are
recovered from the power spectrum, or the set of degree-2 polynomial invariants,
and the Fourier phases are recovered from certain degree-3 polynomial invariants
known as the bispectrum. The above surrogate functions F (11, ..., t17)) are func-
tions of the bispectrum, and it may be checked that they are examples of the non-
convex bispectrum inversion objective in [[10} eq. (III.4)]. The spurious local min-
ima that we exhibit for even d > 6 correspond to the local minima also identified
in [[10, p. 17]. The spurious local minima for odd d form a new family, which
demonstrates also that the objective in [10] may not be globally benign in such
settings.

Local landscape at high noise

Motivated by the possibility that R(6) and R, () are not globally benign, we
study also their local landscapes restricted to a smaller neighborhood of 8 in Sec-
tion[4.4l We show that there is a o -independent neighborhood U of 0y, and a local
reparametrization by an analytic map ¢ : R? — R¥ that is 1-to-1 on U, such that
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R and R, are strongly convex as functions of ¢ € ¢(U), with unique local mini-
mizers in U. The coordinates of this map ¢ may be taken to be d polynomials that
form a transcendence basis of the G-invariant polynomial algebra.

We remark that this result does not automatically follow from the invertibility
of the Fisher information /(6,) established in [14], as this invertibility does not
preclude the possibility that the size of this neighborhood U shrinks as ¢ — oo. In
fact, it is not true that R(6) must be convex over 8 € U for a o-independent neigh-
borhood U, and the reparametrization by ¢ is important to ensure convexity. For
instance, in the high-noise picture of Figure [I.T] it is evident from the nonconvex
level sets that R, (6) is convex only in a small neighborhood of 8.. However, it is
convex in a much larger neighborhood of 6, when reparametrized by two coordi-
nates that represent the radius and angle.

High-noise expansion of the population risk
Our results in the high-noise regime are enabled by a series expansion of the
population risk function in o=2, given by

R(O) =) 0728,(6)

=1

for certain G-invariant polynomial functions S;(6). For fixed 6, € R?, each
polynomial S, () takes the form

1

Se(0) = 20

IT¢(6) — Te(6x) g + Qe(6)

where Qy(6) is in the algebra generated by G-invariant polynomials of degree
< £ — 1. We derive these results and provide a rigorous interpretation of this
expansion in Section 4.2

By the relation (I.5])), this is equivalent to a series expansion of the KL-divergence
Dx1(pe, || pg) in o~2. In the works [2,647]], analogous expansions were performed
instead for upper and lower bounds to the KL.-divergence, and these were then used
to study the sample complexity of estimating 0. To study the log-likelihood land-
scape, we must perform this expansion for R(6) itself. Our proof of this series
expansion does not require G to be discrete (or 8« to be generic), and this result
may be used also to study continuous group actions. Following the initial post-
ing of this work, this series expansion has recently been extended to more general
high-noise Gaussian mixture models in [28].

1.3 Implications for optimization

In this section, we discuss some implications of our results for descent-based
optimization algorithms in high-noise settings.
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Slow convergence of expectation-maximization

One of the most widely used optimization algorithms for minimizing R, () is
expectation-maximization (EM) (see [18]], and [9,45,146] for applications in cryo-
EM). Starting from an initialization 6© e R4, the EM algorithm iteratively com-
putes

07D = arg min Q(0 | 6©)
ferd

where

¢ 1 4 1Y — g6l
00 109)= —~S"E_p 401 B -
w1 n ; g8 |: Og((VZnaz) exp( 202

is the expectation of the full-data negative log-likelihood over the posterior law of
g € G. For each sample Y;, the density of this posterior law is

Y; — e(t) 2 Y; —he(ﬂ 2
(g | Yi’g(t)) = exp ( I g I )/ < || B | ’
heG

leading to the following explicit form of the EM iteration:

1 n
9(t+1) = ’; 2; Eg|Yi,9(t) [gTYi].
i=
It is straightforward to verify that this is equivalent to the gradient descent (GD)
update
e+l — g0 _ n- VRn(Q(t))

with a fixed step size n = o2.
2

Our results indicate that in the high-noise regime, this step size n = o~ corre-
sponding to EM may not be correctly tuned for optimal convergence. For applying
GD to a smooth and strongly convex function f(6) where

ald < V2 f() < B1d,

the optimal step size is n < 1/, and GD with this step size achieves a convergence
rate

(1.13) 16© — 6@ < 0((1 - ca/B))

for a constant ¢ > 0 (see [36, theorem 2.1.14]). For any mean-zero group G, we
have (by Lemma [4.9) that d; = 0 in the decomposition d = d; + --- + d, in
(T), so that Ayax (V2 R, (6)) < 0~ * locally near 6. Thus there is a flattening
of the landscape near ., and GD should instead be tuned with the larger step size
n = o* after reaching a small enough neighborhood of 6.

Figureillustrates this for threefold rotations in R%, comparing 250 iterations
of EM versus GD with step size = o* on the high-noise example of Figure 1.
EM converges quite slowly after reaching a vicinity of the circle {# € R? : |8 =
16«1}, and the improved convergence rate for step size = o* is apparent.
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(B) First 30 iterates for each algorithm,
depicted on the contour plot of the neg-
ative log-likelihood function R,(0). It-
erates for EM and GD are rotated by an-
gles of 27/3 and 47 /3 for easier visual-
ization.

(a) Distances dist(®), Og,) to the or-
bit of the true parameter 6. = (1,0),
for 250 iterates 0, ..., 6259 of each
algorithm.

FIGURE 1.2. Convergence of expectation-maximization (EM), gradient
descent (GD) with step size = o*, and Nesterov-accelerated gradient
descent (AGD) with step size = o* on the threefold rotations example
with n = 100,000 samples and noise level 0 = 4. All three algorithms
are initialized at 6 = (1, 1).

Nesterov acceleration for gradient descent

The structure (T.8) for the eigenvalues of 1(64) also indicates that the Hessians
of the risk functions R, (68) and R(8) may be highly anisotropic and ill-conditioned
near 8 in high-noise settings. This poses a known problem for the convergence of
gradient descent with any fixed step size, including EM, as evident from the factor
a/f in (LT3).

This also suggests that substantial improvements in convergence may be ob-
tained by using momentum or acceleration methods [36,|39]. For example, by
using the Nesterov acceleration scheme,

pttD =90 _p vR,(6D),
9(l‘+1) — (1 + T)/L(t+1) o T/’L(t)v

accelerated gradient descent (AGD) can achieve the improved convergence rate

(1.14) 16© — 6|2 < O((1 — ¢/ B)').
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see 36l theorem 2.2.3]. Figure [I.2]also illustrates the convergence of AGD on the
same threefold rotations example, with step size n = ¢* and momentum parame-
ters T = 1; defined as (see [15}, section 3.7.2])

Lo =0, At=(1+,/1+4xg_l)/z, t = (A — 1)/ A1,

The iterates §*) reach the orbit O, within 30 iterations of AGD, when neither EM
nor standard GD with n = o# is close to having converged.

Reparametrization for second-order trust region methods

Second-order descent procedures may also be applied to minimize R, (). Since
R, is nonconvex, it is possible for its second-order approximation at an iterate 6®
to have a direction of negative curvature. When this occurs, it is common to apply
a trust-region approach, where the next update 8¢ +1 is constrained to lie within a
fixed-radius ball around 6 [344/48-50]]. This trust region is used until the iterates
0® reach a neighborhood of strong convexity around a local minimizer of R, (8),
after which the algorithm naturally transitions to a standard second-order Newton
method for minimizing convex objectives.

At high noise, the region of convexity for R(f) and R, (6) around 6, may be
vanishingly small in o, requiring more careful tuning of this trust-region algorithm
and a large number of iterations before reaching this convex region. However, as
mentioned in Section 1.2 our results indicate that the region of convexity is much
larger and is o-independent upon reparametrizing by G-invariant coordinates ¢ =
@(6). This suggests that second-order methods may be more effective and stable
when applied in the parametrization by ¢, rather than the original parametrization
by 6.

1.4 Notation
We write E, for the expectation over ¢ ~ N (0, 1d). We write

Eglf(@)] = 3 /(®)

geG

for the expectation over the uniform law g ~ Unif(G), and Varg, and Cov, for
the associated variance and covariance. Similarly, E;, is the expectation over /i ~
Unif(G), and Eg, ¢, is the expectation over independent elements g1, g2 ~ Unif(G)
unless stated otherwise.

We consider 6, d, G as constant throughout the paper. We write C, C’, ¢, ¢’ >
0 for constants that may depend on 6y, d, G and change from instance to instance.
These do not depend on the noise level o, and we will be explicit about the depen-
dence of our results on o.

For a function f : R¢ — R, we denote its gradient and Hessian by V f € R?
and V2 f € R*4_ More generally, we denote by VX f € (R%)®* the symmetric
tensor of its kM-order partial derivatives. For a coordinate ; of 6, dg, [ is the
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partial derivative in 6;. For f : R — R¥ df e R¥*4 s its full derivative
(i.e., Jacobian matrix). When & = 1, we take the convention that V f is a column
vector,so V£ = df T. We write Vg, Vg, and dg to clarify that these are taken with

respect to &, and we write Vg f(04), Vg f(6+), and dg f(6+) for their evaluations
at 6 = 6,.

For a symmetric matrix M € RA*d Amax (M) and Apin (M) are its largest and
smallest eigenvalues, and > and > denote the positive-semidefinite and positive-
definite ordering. For u € R and p > 0, B, () is the open £, ball of radius p
around p. || - | is the £, norm for vectors and £, — £, operator norm (largest sin-
gular value) for matrices, (-, -) is the £, inner product, and || - ||gs is the vectorized
£ norm for higher-order tensors. dist(x, S) = infjeg [[x — y| is the £>-distance
from x to a set S. Id is the identity matrix, A/(-,-) denotes the Gaussian distribu-
tion parametrized by mean and variance/covariance, and [£] = {1,...,£}.

For o = 1,2, we denote by ||W|ly, = inf{r > 0 : Eglexp((|W|/1)¥)] < 2}
the subexponential and sub-Gaussian norms of the random variable W. (See [52,
chap. 2].)

2 Preliminaries

This section collects several more basic results about the population risk R(8)
and its empirical counterpart R,(6), including expressions for their derivatives,
bounds on critical points, and the concentration of R, (6) around R(6).

2.1 The risk, gradient, and Hessian

Let us first derive some simpler expressions for the risks R, (6) and R(f). We
represent each sample ¥ as

@.1) Y = h(6s + 0¢)

where h € G, and ¢ ~ N (0, 1d) is independent of /. This is equivalent to the model
(1.1), by the rotational invariance of the law of €. Then the marginal log-likelihood
(1.2) is given by

4 h(Bs + oe) — g0)2
_IOgPQ(Y):_IOgEg|:( _2;02) exp(—” ( +2f;82) g0 )}

Applying |h(8«+0e)—gb| = ||« —i—as—thGH and the equality in law th L g
for any fixed & € G, we have

d 2
1 |0« + o0 — g0
—log pg(Y) = —logE, |:( 27102) exp(— * 792

16« +oel? 1107
202 202
(0+ + 0, g@))]

o2

d
=5 log(2n0?) +

—logEg |:exp(



16 FAN ET AL.

The first two terms above do not depend on 6, and we omit them in the sequel.
We define the empirical risk as

161> 1< (0« + 0¢i, g0)
. Ra(6) = - e T 08897 ) |
(2 2) I’l(e) 20_2 n — IOg Eg €Xp 0_2

1

Then R, (6) is a constant shift of the negative log-likelihood for independent sam-
ples Yi,..., Yy, as stated in (I.3). We define the corresponding population risk
R(0) = E[Rx(0)] by

2.3) R(9) = ”9”22 —Eg[logEg [exp(—<9* * 08’g9>)”

20 02

Remark 2.1. The above arguments do not require 2z € G to be uniformly dis-
tributed. That is to say, if /& is modeled as uniformly distributed, the law of pg(Y)
does not depend on the true distribution of /2. Thus our results apply also for non-
uniform 4 € G. Our results do not describe the landscape if the non-uniformity is
incorporated into the likelihood model. Existing work on method-of-moments sug-
gests that, in such settings, the Fisher information may have a different dependence
on ¢ in the high-noise regime [/1,/44].

Next, let us express the gradients, Hessians, and higher-order derivatives of these
risk functions in terms of a reweighted law for g € G. Given 6 and ¢, we introduce
the reweighted probability law on G defined by

heG
We write Pg[- | €, 0], Eg[- | €, 0], Varg[- | €, 0], and Covg][- | €, 8] for the probabil-
ity, expectation, variance, and covariance with respect to this reweighted law of g.
We also write K§ [- | &, 0] for the £ cumulant tensor with respect to this law; see
Appendix [A.T]for the definition.
&, 9])

1 R
(2.6) V2R, (0) = = <Id—0—2 - > Covg [gT(H* + 0&;)
i=1

LEMMA 2.2. The derivatives of R,,(0) take the forms

1 1
(2.5) VRy(0) = — (9 - > E, [gT(G* + 0&;)
i=1

8,’,9])

R
Q7 VER,(6) = > 3kl [gT(H* +oe)ler, 9] fort > 3.
i=1

PROOF. For any random vector u € R4, the derivatives of its cumulant gener-
ating function are given by

Vi logEle™ 9] = ktlu | 6]
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where «f[u | 8] € (R?)®* is the £ cumulant tensor of u under its reweighted
law defined by E[ f(u) | 6] = E[f(u)e?]/E[e™?)]. (See Appendix ) In
particular, for £ = 1,2, these are the mean and covariance with respect to this
law. Then follow from differentiating in 0, and applying this to the
random vector u = g | (84 + o&;)/0? conditional on &;. O

LEMMA 2.3. The derivatives of R(0) take the forms

(2.8) VR = é(@ — Eg[Eg[g " (6« + 0¢) | ¢, 0])

1

(2.9) = ;(ES[Eg [g ] e 6] Eglg | &, 60110 — Es[Eglg | . 9]]T9*)
1 1

(2.10) V2R(H) = = (Id—; Ee[ Covglg T (05 + 0e) | &, 9]])

(2.11) V*R(6) = L EE[Kﬁ[gT(Q* +o0¢e) | e 0]] fort=3

o2l

PROOF. The identities (2.8), (2.10), and are obtained by taking the ex-
pectations of over €1, ..., &,. (The derivatives of R(6) in § may be taken
inside E, by a standard application of the dominated convergence theorem.)

For (2.9), we apply Gaussian integration by parts to rewrite the E.[Eg [gTe |
g, 0]] term in (2.8): Denote by g.; the j™ column of a matrix ¢ € G, and by g;;
the (7, j) entry. Then recalling the density (2.4) and applying the integration-by-
parts identity E[ £ (§)€] = E[f/(§)] for £ ~ N(0,1), we get

d

d
Es[Eg[g.;s | 3,9]] =) Ee[Belp(g | e.0)gijlei] = Y Ee[0e,Eglp(g | £.6)gij1]-

i=1 i=1
Write (g6); as the i™ coordinate of g#, and note that differentiating (Z.4) in &;
gives

1
de; p(g | 6.0) = ;(p(g | £.0)(g0)i — p(g | &, DEp[p(h | &, 0)(h6);])
where & ~ Unif(G) is independent of g. Then
d
0B Egg]e | 2.6]] = 3 Ee[Covelgy. (g0): | & 0]]

i=1

= Eo[Bq[g]g0 | 2.0] ~ Eglg.; | e.0] Eqlgh | 2.6]]

= 0 ~Ee[Eelg.s | o0 Eqlg | 2,016,

the last line using g . g6 = 6; for any fixed orthogonal matrix g € G. Combining
j J
thisfor j = 1,...,d,
0 Ee[Eglg e | e, 0]] =0 —Es[Eglg | &, 0] Eglg | &, 60]]6.

Substituting into (2.8)) yields (2.9). O
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2.2 Subgroup decompositions

If the group G is the product of two groups G and G, acting on orthogonal
subspaces of R4, then both the empirical and population risks decompose as a sum
corresponding to these two components. This is stated formally in the following
lemma.

LEMMA 2.4. Let V = [V} | Va] be an orthogonal matrix, where Vi € R4*41,
Vo € R4%% and dy + dy = d. Suppose that G C O(d) decomposes as

GZ{V(gl O)VT:gleGl,gzer
0 g
for subgroups Gy C O(dy) and G, C O(d2), and write the corresponding decom-
positions 01 = VITG, 6, = V2T9, 01,5 = VITH*, 024 = VZTG*. Then

Rn(8) = R (01) + RJ2(62) and  R(6) = R%'(81) + R%(62).

where RS and RC' denote the empirical and population risks (L.3) and (1.4)
defined by G and 01 « in dimension dy, and similarly for G,.

PROOF. Note that ||0[|? = ||01]|> + [|62]|>. Writing g € G as g = V1 g1 VlT +
Voago VZT, we have

(6« + 0¢j,g0) = (91,* + OVlTsi, g191) + (92,* + 0V2T8,',g292).
The expectation E; may be written as independent expectations over g1 ~ Unif(G1)
and g» ~ Unif(Gy). Furthermore, VlTsi and Vszi are independent Gaussian vec-
tors of dimensions d; and d». Applying these to (2.2) yields R, (6) = RS (61) +
R,?z (6»). Taking the expectation yields R() = RC1(6;) + RC2(65). d

In particular, we may always reduce our study to a group G where Eg[g] = 0,

because of the following result. (Here Eg[g] is the expectation in R4
consider G C O(d).)

LEMMA 2.5. Suppose Eg[g] has rank di where O < dy < d, and setd>» = d —d.

when we

Let V. = [Vi | Va] be an orthogonal matrix where the columns of Vo € R4*d2
span the kernel of Eg[g]. Then
(2.12) G = {V(Id O)VT tgo € Gz}

0 g

where Go C O(d3) is a subgroup that is group-isomorphic to G, and Eg,[g2] = 0
for go ~ Unif(G»).

PROOF. Observe that if g ~ Unif(G), then g = g~ ~ Unif(G), so Eelg] =
E, gT] = E, [g]". Furthermore, if g, 7 ~ Unif(G) are independent, then gh ~
Unif(G), so Eg[g] = Eg nlgh] = Egl[g]Eplh] = Eg[g]?. Hence Eg[g] is sym-
metric and idempotent, so it is an orthogonal projection. For any 6 in the range of
this projection, § = E¢[g]0 = Ez[g6], so [|0]|> = GTEg [g0]. As each g0 is also
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a vector on the sphere of radius |6, we have 8 T g8 < ||6||? unless § = g#. Thus,
6 = g0 for every g € G, so G acts as the identity on the column span of V;. This
shows that each g € G has the form (2.12)) for some matrix g € O(d2), and this
1-to-1 mapping from g to g» must be a group isomorphism between G and G».
Since G, represents the action of G on the column span of V5, which is the kernel
of E¢[g], we have Eg,[g2] = 0. O

Combining Lemmasand 2.5, we may always decompose R, (6) = RI4(0;)+
RnG2 (62) and R(0) = RY(0;) + R92(65), where 65 is the component of 6 in the
kernel of Eg[g]. For 61, the risks R(6;) and R™(6;) correspond to the single
Gaussian model N (01 «,021d). Then R'(#;) and R(6;) are strongly convex,
and our study of the landscapes of R(6) and R, (8) reduces to studying R°2(6,)
and R,? 2(6,) for the mean-zero group G».

2.3 Generic parameters and critical points

Throughout, we will assume that the true parameter 6, € RY is generic in the
following sense.

DEFINITION 2.6. For a connected open set U C R4 , a statement holds for generic
By € U if it holds for all 8, outside the zero set of an analytic function f : U —
R¥ that is not identically zero on U.

The zero set of any such analytic function has measure zero (see [35]]), so in
particular, a statement that holds for generic 64 € R4 holds everywhere outside a
measure-zero subset of R? .

At a minimum, we will require that the points of the orbit Og,_ are distinct, so
|0p,| = |G| = K. This holds for generic 6, because for any g # h € G, the
condition (g — h)8x = 0 defines a subspace of dimension at most d — 1.

DEFINITION 2.7. For an open domain U C R? and f : U — R twice contin-
uously differentiable, a point 6 € U is a critical point of f if V f(8) = 0. The
critical point is nondegenerate if V2 f(#) is nonsingular. The function 1 is Morse
if all critical points are nondegenerate. The same definitions apply to f : M — R
for any manifold M, upon parametrizing M by a local chart.

A correspondence between nondegenerate critical points of a function f : U —
R and those of a function f> uniformly close to f; was shown in [34]. We will
apply the following version of this result for only the local minimizers, which has
a more elementary proof.

LEMMA 2.8. Let 6y € R?, and let fi, f> : B:(6p) — R be two functions that
are twice continuously differentiable. Suppose 0y is a critical point of f1, and
Amin(V2 £1(0)) > ¢ for some co > 0 and all 6 € Be(6y). If

1/1(6) = f2(0)| <& and |V?f1(6) — V> 2(6)] <

for some 8§ < min(cg, coe?/4) and all 6 € Bg(6y), then f» has a unique critical
point in B¢(6y), which is a local minimizer of f>.
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PROOF. The given conditions imply Amin(VZ £2(6)) > 0 for all 6 € B¢(6y), so
/> is strongly convex and has at most one critical point. They also imply that for
each 6 € B.(6p) with || — 6| =7,

6072

12(0) = f2(60) = f1(0) — f1(Bo) — 26 = —— —25.

For r sufficiently close to &, we have cor?/2 — 2§ > 0. Then f> must have a local
minimizer in B; (6p). a

2.4 Bounds for critical points

A consequence of (2.5) and (2.8) is the following simple bound for critical points
of R(9) and R, (0).

LEMMA 2.9. For d-dependent constants C,C’,c > 0, we have %|VR(9)| >
10]| — 10| — Co, and 62|V R (0)|| = ||6]| — |16+ || — Co with probability at least
1—C’e™“". In particular, any critical point 6 of R(9) satisfies ||0| < ||6«|| + Co,
and the same holds for R, (6) with probability 1 — C'e™°".

PROOF. The bound for |V R(8)]| follows from (2.8) and

|Ee[Eglg T (64 + 0e) | £.01]| < Eelllbs + o2ll] < 6« + 0 Ee[lle]]
< 16« + od.
The bound for ||V R, (6)]| follows similarly from (2.2)), on the event

n
U el = C.

i=1

which has probability at least | —C’e™¢" by Hoeffding’s inequality for sub-Gaussian
random variables (see [52, theorem 2.6.2]). Since VR(8) = 0 at a critical point 8,
and similarly for R, (), the statements for critical points follow. O

When o is large, this bound is not sharp in its dependence on o. We will in
fact show that any critical point 6 of R(0) satisfies ||| < C for a o-independent
constant C > 0. The following strengthening of Lemma [2.9] first provides the
a priori bound ||| < Co2/3. Then, combined with a series expansion of R(8) in
02, we will improve this to ||#]| < C in Lemmaof Section

LEMMA 2.10. For some (04, d, G)-dependent constants C,c,0¢ > 0 and all ¢ >
00,

(2.13) o?|[VR(9)| > ¢ min 161’ L4} — (|64 ]|
. 02 ’02/3 k|

and every critical point 0 of R(0) satisfies ||0] < Co2/3.
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PROOF. We apply the form of VR(6) given in (2.9). Denote Y = (6« +
0e)/||6« + o¢||and 8 = 8/||0|. Then

o?|[VR(6)| = (6.0°VR(H))
> 0 Be[Eglg | . 60] Eglg | &, 6]]0 — 0 Ee[Eq[g | £,6]" ]6s
= 6]l - Ec[|IEg (26 | &, 0]1*] — 6 " Ee[Eglg | &, 6] ]6s
> 0] Ee[(Y TEg[g0 | &.0)] — [16x]
(2.14) = 1611 Ee[Eg[Y ' g8 | &.01] — 16!
We analyze the quantity Eg[Y Tg6 | 0] for fixed & (and hence fixed Y ): Note

that |Y Tgf| < 1. Let K(s) be the cumulant generating function of ¥ T g6 over the
uniform law g ~ Unif(G), and let K’(s) be its derivative. Denote

P +028|||'0|'-
o
Then
EolY g0 | &.0] = Eglp(g | &, 0)Y " gb]

E. (VT o0 - 1Y g6 _
= gl 80-¢ ]=—10g]Eg[eSYTg9] = K'(v).

2.15 ——
1) EgletY "89] ds s=t

Writing k¢ as the £ cumulant of this law, we have
o0 S(

(2.16) K(s) = ZZ Kegr
=1

where this series is absolutely convergent for |s| < 1/e by LemmalA.1] Set
ly = ty(e,0) = min(t (g, 0), 0~ /3),

where ¢, < 1/e for ¢ > o¢ and large enough og. Since K(0) = 0, using the
convexity of the cumulant generating function X we can bound its derivative from
below by

[o,¢]

K(ty) i1
K'(t) > K'(ts) > z(: = ZZK@ e
=1

Applying |k¢| < £¢ from Lemmaand 0> 0/t

00
t f,
K/([) > K1+ EUKQ — E eztﬁ_l > K1+ 30162 — 30l‘§
{=3

for 0 > 0 and large enough ay. Here, k1 = Eg[I?ng] and ky = Varg[l_’ng].



22 FAN ET AL.

Now observe that there exists a constant cog = ¢o(d) > 0, such that if v is any
random vector on the unit sphere in R4 , then there is a deterministic vector u¢ on
the unit sphere for which

min (E[u] v], Var[ug v]) > 2co.

This is because if the mean of v is near 0 and v lies on the sphere, then the variance
of v must be bounded below by a constant in some direction. Then also for some
8o > 0 depending only on ¢g, we have

min(E[u "], Var[uTv]) > ¢o forall u € B, (uo).

Let us apply this to the random vector v = g# under the uniform law of g. (So uo
depends on G and 6.) Then for o > 09, on the event Y € Bg, (1), we get

Co co
K'(t) > o= 3012 > 3o
Recalling (2.15) and applying this to (2.14)),
a?|IVR()]
Co 2 _
= 161 | (10 0)) 1T € By} | - 1
Co 2 _
= 101 | (S10(6.6)) 1T € By (o). 164 + 2] = )| ~ 6]

On the event |6« + o¢| > o, we have t(¢,0) > |#]|/o, and hence t,(s,0) >
min(||6]| /o, a~'/3). Then

¢ (||9||3 161

2 o .
o |[VRO)| = e © 2/3

JET € Byt 162 + el = o] 161,

Recalling the definition Y = (6« + 0¢)/||fx + o¢l|, as 0 — oo, we have
P[Y € Bs, (o). [0« + o¢ll > o] — P[e/|lell € Bs, (uo), llell > 1].

Since ¢/||¢|| is uniformly distributed on the sphere, the limit is a positive constant
depending only on the dimension d and 8. Furthermore, for fixed 6y, this conver-
gence is uniform over #¢ on the unit sphere. Thus we obtain

IP’[)_’ € Bs,(up), |0« +ocl| > cr] >c

for a constant ¢ = ¢(d) and all ¢ > 0¢(6«,d, G). This yields (2.13). For a
large enough constant C = C(6x,d,G) > 0, this implies ||[VR(8)|| > 0 when
16]] = Co2/3, so any critical point satisfies |6 ]| < Co2/3. O
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2.5 Concentration of the empirical risk
We establish uniform concentration of R,(#), VR, (), and V2R, (8) around

their expectations. This will allow us to translate results about the population land-
scape of R(6) to the empirical landscape of R, (6).

LEMMA 2.11. There exist (6«,d, G)-dependent constants C,c¢ > 0 such that for
anyr,t > 0, denoting B, = B,(0) = {# e R? : |0 < r},

Cr(l +O’))de—cn 0‘21‘2

(2.17) P[qul;; |Rn(0) — R(6)| > t} < ( 3, 2 4+ Ce™ "
€By

P[ sup [VRx(6) — VR(O)| = 1]
6eB,

(2.18) i d 4
gt
< (—Cr(;; ? )) e " 107 4 Comen
P[ sup [V2Ra(8) — V2R(9)] = 1]
peB,
(2.19) J 82 g4
3 o o822 o*t
< (Cr((lj:;a )) e_cnmm<1+(r4’1+02) + Ce—cn2/3.

We prove this by first showing pointwise concentration in Lemma [2.12] then
establishing Lipschitz continuity of these risks, gradients, and Hessians in Lemma
[2.13] and finally applying a covering net argument.

LEMMA 2.12. For some (6. d., G)-dependent constants C,c¢ > 0, any 6 € R4,
and any t > 0,

2.2
(2.20) P[|R(8) — R()| > t] < C exp(—cn ﬁ)
4,2
(2.21) P[||[VR,(8) — VR(O)| =] < Cexp(—cn ot 2)
l1+o
P[IV*R,(6) — VZR(O)| = 1]
(2.22) _( o082 ot
< Cexp(—cnmm(1 i +02)).

PROOF. We apply the Bernstein and Hoeffding inequalities. Recall that for ¢ =
1or2, | f(e)|ly, denotes the subexponential or sub-Gaussian norm of the random
variable f(g) over the law ¢ ~ N(0,1d).

For R, (0), recall the form (2.2)). Set

fl (8) = log Eg [exp(w)]

o2
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Then Vg fi(e) = Eg[g0 | &,0]/0, 50 [V fi(e)| = Eglllgf|l [ &.0]/0 < [|0]|/0
and f7 is ||| /o-Lipschitz. By Gaussian concentration of measure and Hoeffding’s
inequality (see [52, theorems 2.6.2, 5.2.2]), for constants C, ¢ > 0 and any ¢ > 0,

Clé
1/1(8) = B /i (@)llyy <

g
i=1

o2t?
>t < 2exp(—cn —)
} 19112
Applying this to (2.2) yields (2.20).
For VR, (6), recall (2.5). Denote by g.; the j th column of g. Momentarily
fixing j, denote

B[ 3 it~ Ealicen

fa(e) = Eg | (0 + 0¢)

g, 9], fa.g(e) = g,;(@* + 0¢)
where f5 ¢ is defined for each fixed g € G. Then
1@y = | X plele.0) S
Y2
geqG
< K-max|p(g|e0)frge)ly, = K-max|l f2,¢()lly,.
geG geG
the last inequality applying |p(g | €, 8)| < 1 and the definition of the sub-Gaussian

norm. For each fixed g € G, we have || f2,¢(¢) ||y, < C(1 + o). Then by Hoeffd-
ing’s inequality,

t2
> l:| < ZCXP(—CI’I (1—|——0')2)

This establishes concentration of the j™ coordinate of R,(#). Applying a union
bound over indices j = 1,...,d and replacing ¢ by o?¢ yields (Z.21).
For V2 R, (), recall (2.6). Momentarily fixing the indices j and k, denote

p[[2 3 e~ Bal e

i=1

f3(e) = Covg[g} (6 + 06). gf(Bs + 02) | &.6]
=[Eg [g}(e* +o¢) - gj,;(e* + 0¢) ‘ &, 9]
—Eg[g,—;(e* + 0¢) ‘ g, 9] -Eg[g.—',;(Q* +0¢) ‘ g, 0]

Using the same argument as above, we have the bounds

<C(1 +0?),

1

HEg [g,j(e* +0e) - gL (0 + 02) ‘ e, 9]‘ .

o]

HEg [gj (05 + 0¢)

<C(1 + o).
Yy ( )
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Together with the inequality | XY [y, < [|X [y, [|Y ||y, this yields || f3(e)|[y, <
C(1 + 0?). Then by Bernstein’s inequality (see [52, theorem 2.8.1]),

_ 12 t
> t:| < Zexp(—cn mm((1 n 02)2, e 02)).

This establishes concentration of the (j, k) entry of V2R, (6). Taking a union
bound over j,k € {1,...,d} and replacing ¢ by o* yields ([2.22). O

p[[2 X e - L)
i=1

LEMMA 2.13. For a (0«.d, G)-dependent constant C' > 0, as functions over
6 € RY,

(@) R(0) —611?/(20?) is C'(1 + 0)/0?-Lipschitz.

(b) Each entry of VR(9) — 0/02 is C'(1 4+ 02)/o*-Lipschitz.

(c) Each entry of VZR(9) —1d /o2 is C'(1 + 03)/0®-Lipschitz.

For d-dependent constants C, ¢ > 0, statements (a) and (b) also hold for R,(6) —
10112/ (20?%) and V R, (8)—6/c? with probability at least | —Ce ™", and (c) holds
for V2R, (6) — 1d /o2 with probability at least 1 — Ce—<n*"”.

PROOF. To prove the desired Lipschitz property, it suffices to bound the first
three derivatives of R(6). Recall the expressions (2.8)), (2.10), and (2.11)) for
VER(8). Note that ||g" (6« + o¢)|| = ||6x + o¢|. Thus, under the law 2.4),
each entry of g ' (6« + o¢) has magnitude at most |6« + o¢|. Invoking Lemma
[A.1b), we conclude that for each £ > 1 and some constant C = C({,d, ||6x]|),

|kilg T (0 +0e) | £.6]] s < C1 + 0 e]lY)

where £ = 1, 2 for the mean and covariance.

Applying these bounds to (2.8)), (2.10), and (2.11) and taking the expectation
over ¢ ~ N(0,1d) yields the Lipschitz properties for the population risk R(6).
Recalling the forms (2.5)-2.7] this also shows the Lipschitz properties for the em-
pirical risk R (6) on the events

l n
% = %;Z”gi”a < Co

i=1

for @ = 1, 2, 3 respectively, where Cy > 0 is any fixed constant. For « = 1, 2 and
a sufficiently large constant Cy > 0, we have P[£¥] > 1 —Ce™“" by the Hoeffding
and Bernstein inequalities. For & = 3, we show in Appendix [A.3|using the result
of [4]] that

1 —en2/3

(2.23) P{; Zl lei|)* < C0i| > 1—Ce™”
i=

for a sufficiently large constant Co > 0. (Note that this bound is optimal, by

considering the deviation of a single summand n~!||e;||3.) This concludes the

proof. U
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PROOF OF LEMMA .11l Denote R, (6) = R,(8) — ||0]|?/(20?) and R(0) =
R(6)—]|6%/(20?). Note that concentration of R, (6), VR, (9), V2R, (0) is equiv-
alent to that of R,,(8), VR,(8), V2R, (6).

For R, (), we take a §-net N of B, having cardinality |N| < (Cr/8)?. Apply-
ing (2.20) and a union bound over N,

d 2.2
IP’[sup Ry (1) —E(u)‘ > t/3] < (%) eXP(—cn Gr—;)

HEN
By the Lipschitz bounds for R(#) and R,(#) in Lemma [2.13] picking
§ =cot/(1 4+ 0)
for a small enough constant ¢ > 0 ensures on an event of probability 1 — Ce™"
that |R(A) — R(u)| <t/3 and |R,(0) — Ry (10)| < t/3 for each point 8 € B, and

the closest point 4 € N. Combining these shows (2.17). The bounds (2.18) and
(2.19) are obtained similarly. O

3 Landscape Analysis for Low Noise

In this section, we analyze the function landscapes of R(6) and R, (6) in the
low-noise regime o < 09 (f«,d, G). Section [3.1| analyzes the local landscapes in
a neighborhood of 6, as well as the Fisher information 7(6x) = VgR(G*), and
Theorem [3.1] shows that these behave similarly to a single-component Gaussian
model NV'(6x, 52 1d). Section [3.2|analyzes the global landscapes, and Theorem
and Corollary show that these are globally benign for small o and large n.

3.1 Local Landscape and Fisher Information
THEOREM 3.1. For any 0x € R? where |Og,| = |G| = K, there exist (0x,d, G)-
dependent constants oo, c, p > 0 such that as long as o < o0g, every 8 € B,(04)
satisfies
3.1) IV2R(0) — o 21d || < e~/
In particular, the Fisher information satisfies | 1(6x) — o ~21d || < ¢/ o2

Note that by rotational symmetry of R(6), the same statements hold for B, (1)
and each pu € O, .

PROOF. Since the K points of Oy, are distinct and have the same norm, we
must have ||0« |2 > 6,7 11 for each u € Oy, different from . Pick (f«-dependent)
constants cg, p > 0 such that (A« — ;) T 0% > 3¢ and |65 — || p < co for all such
WU, and also p < ||0«]|/2. Define
(3.2) E=1{eeR?: 2 |¢|||6] < co)

Consider 6 € B,(6x), and recall the form (2.10) for V2R(6). For any unit
vector v € R4 , we have

v Es[Covelg " (6« + 0e) | &, 0]]v = Eg[Varg[(v, g ' (6« + 0¢)) | &, 6]]
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= Eg[Varg[(gv, O« + o€) | &, 9]]
<Ee[Egl{gv — v, s + 0&)? | & 0]].
Let us decompose the last line as I 4 II where
I=E;[1{e ¢ E}Eg[(gv — v, O« +06)? | &,0]],
I = E.[1{e € E}Eg[{gv — v, b« + 0&)* | &,6]].
For I, we have ||| < ||6«|| + p. Applying the chi-squared tail bound P[||¢||*> >
t]<e“ forallt > C,wegetPe ¢ &) < ¢=¢/%” Then by Cauchy-Schwarz,
1< Ple ¢ V2R B [(gv — v, Ox + 08)? | £.017]"/2
< Ple ¢ £]'/2Ee[2]16x + oel)*"/? < e/
for constants ¢’, 09 > 0 and all 0 < o0¢. For II, let us bound Pg[g # Id | &, 6]
when ¢ € £: Forany g # Id, letting 0 = g 6,4,
(6x +0e. 0 —g0) > (6 — ) "6 —20]|e]]|6]
> (0 — 1) T 0 — 20l [l — 16 — llp > co.
Then recalling 2.4), p(Id | ¢,0)/p(g | €,6) > eCO/"z, and so
(3.3) p(Id | &,0) > /%% /(€0/0% L K — 1) > | — ¢/

for constants ¢,09 > 0 and all 0 < 0g. Thus Pg[g # Id | ¢,0] = 1 — p(d |
g, 0) < e_c/"z, SO
2

II < Eg[l{g S g}Pg[g # Id | £, 6] . (2”9* + 08||)2] < e—c’/()' .

Combining these, we get v E¢[Covg[g ' (64 +0¢) | &, 0]]v < e=¢/9 for any unit
vector v € R?. Then (3.1) follows from (Z.10). Specializing to # = 6 yields the
statement for 7(6y). O

The following corollary then shows that with high probability when the sample
size n > o~ !'logo ™!, the empirical risk R, (#) is strongly convex with a unique
local minimizer in B, (64). By rotational symmetry, the same statement holds for
By(p) and each € Og, .

COROLLARY 3.2. For some (0«,d, G)-dependent constants C,c,009 > 0, if 0 <
00, then with probability at least 1 — Ce=en?? _ =Cpcon, Amin(VZR,(0)) >
1/(262) for all 6 € B, (04), and Ry (0) has a unique local minimizer and critical
point in B,(04).

PROOF. This follows from Lemma[2.8 and Theorem [3.1]if we can show that

sup  [[Ra(8) — R(O)|| < c1/02,
0€B,(6:)

sup  [[VZRn(0) — VZR(O)|| < c1/0?,
0€B,(65)
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for a small enough constant ¢; > 0. Applying with r = ||0«]| + p and
t = c1/0?, we obtain SUPgeB, 9, | Rn(0) — R(O)|| < c¢1/0? with probability
1—Ce™“". Applying (2.19), we also obtain supgep, (4,) [V2R,(6)—V2R(0)| <
¢1/0? with probability 1 — 0 Ce=co*n _ Ce=n*® o reduce o* to o in this
probability bound, let us derive a sharper concentration inequality for V2R, (6)
than the general result provided by (2.22), when 6 € B,(6+) and o < 0p.

Recall the set € in (3.2) and the form for V2R, (6) in (2.6). Let us write this as

1 11 11
2 — . . .
(3.4) v Rn(9)—pld—F-EE(X,—l—Y,)—G—Z-;.X;Z,
1= 1=
where X;, Y;, Z; € R9%4 are given by
X; = (Covg [gT(H* +o¢i) | &.0] - o2 Covg[ngi | &, 0])1{e; € £},
Y; = (Covg[gT(Q* +o¢g;) ‘ &, 0] — o? Covg[gTsi ‘ gi. 0])1{e; ¢ E},
Z; = Covg[gTsi ‘ 8,~,9].
Observe that since || Z; || < ||Eg[gT8,~8;'—g | €,0]| < llei||?, and ||&; || has
constant subexponential norm, each entry of Z; also has constant subexponential
norm (where constants may depend on d). Applying Bernstein’s inequality entry-

wise and taking a union bound over all entries, for constants C,c > 0 and any
t >0,

1 n
- > Zi —E[Zi]

i=1

3.5) ]P’|:

- tj| < Ce—cn min(¢,12)

For X;, note that p(Id | ¢.0) > 1 —¢7¢/%% when ¢ € &, as shown in (3.3). Then
for any unit vector v € RY,

‘vTXiv‘
= |Varg [{gv.0x + 0&;) | £.0] — 0> Varg [(gv. &i)|ei, 0]|1{e; € €}
< (Eg[(gv—v.0x + 0&:)?|e;. 0] + 0*Eg[(gv — v.&:)?|e;. 0])1{e; € £}
<Pglg #1d | &.0](46x + o0& |* + 407 |l&; |*)1e; € £} < Ce™elo”,

Thus || X;|| < Ce=¢/9” foreachi = 1,...,n. Applying Hoeffding’s inequality
entrywise to X; and taking a union bound over all entries,

1 n
(3.6) P[H;Z)ﬁ — E[X;]

i=1

> taz] <C exp(—nec//gztz).

For Y;, let us fix indices j,k € {1,...,d} and consider ) ; (¥;);x. Let Wy,...,
W be ii.d. random variables whose law is that of (¥;);x conditional on &; ¢
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E. We apply Hoeffding’s inequality for Wi,..., Wy,: Observe that since the two
quadratic terms in &; cancel in the definition of Y;, we have

|(Yi)jkl = C(1 + olle )
for a constant C = C(||6«]|) > 0. Then

w2 C(1 + o?le||?
o) el 22222
2 2 2
cn g [ (COPUEN [ (o

Specializing [[16, eq. (2.9)] to the chi-squared distribution, we obtain

Pllle]* > x(1 = 2s)]
Plllell* > x]
for s < 1/2. Here P[||l¢||*> > x] = T'(d/2,x/2)/T'(d/2) where T'(a, y) is the

upper-incomplete Gamma function that satisfies I'(a, y)/y* 'e™ — las y —
oo, for fixed a (see [3| eq. (6.5.32)]). Then

P[|le]|*> > x(1 —25)]
Pllle]|* > x]

(1—25)"%/2

E[exp(slel®) | llel* > x] =

_(l_zs)—d/2+1e—xs — 1

as x — oo, uniformly over s € (0, 1/2). Setting x = c%/(20||0||)2 and 1 = C
for a large enough constant C; > 0, we obtain that C /1% < 0.05, s = Co?/1? <
0.05/x, and hence E[exp(Wiz/tz)] < 2 when ¢ < og for small enough gg > 0.
Thus ||W; ||y, < Ci, and Hoeffding’s inequality yields, for a constant ¢ > 0 and
any s > 0,

1 m
PUEZWi —E[W]

i=1

_ 2
zsj|§2e cms=

Returning to (¥;)jk, let S = {i € [n] : & ¢ &}. The above shows that,
conditional on S,

1
PUW > ()i

i€eS

> s+ [EW;|

S:| < 2¢¢ISIs?

Noting that (¥;);x = 0 when i ¢ S, this implies
S|

= (s + [EWil)— + [E(¥) x|

PU% > i) — Bl ] s} < 2¢7ISIs”,

i=1

We have Ple; ¢ &] < e~ ¢/ o2 by a chi-squared tail bound. From the bound
[Willy, < C1, we have [EW;| < C. Then also E(Y;);x = (EW;) - Ple; ¢ €] <
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Ce=clo”, Setting to? = s|S|/n,

1 /
PUZ > Wik —El(Yi)je]| = to? + Ce™1o” ‘ S} < 2e—cn?0*i?/IS|
i=1

for some constants C,¢,c¢’ > 0. On the event |S| < no3, we obtain the bound

2e—cnot’, By a Chernoff bound, P[|S| > no3] < exp(—n DKL(03||e_C/"2)) for
the Bernoulli relative entropy
3 1= 3

+ (1 —0?) log—(7 > c'o.

[—e—clo? ~

o

3 ,—c/o*\ _ 3
D (03e™1%%) = 0 log =2

Combining these, we obtain unconditionally that

n
(3.7) PU% > ik —E[(Y)]| = to® + Ce_C//UZ} sce
i=1

Picking a sufficiently small constant ¢ in (3.3), (3.6), and and applying
this to (3.4), we obtain [|V2R,(6) — VZR(0)| < c1/(202) with probability at
least 1 — Ce™“?". This is a pointwise bound for each 6 € B,(0«). Taking a
union bound over a §-net of this ball for § = co®, and applying the Lipschitz
continuity of V2R(6) and V2R, (9) from Lemma we get the uniform bound
SUPge B, (6,) V2R, (9) — VZ2R(9)| < c1/o? with probability 1 — Ce—cn?? _
0~ Ceco" a5 desired. O

3.2 Global landscape

THEOREM 3.3. Let 05 € R? be such that |Og,| = |G| = K. There exists a
(0%, d. G)-dependent constant og > 0 such that as long as 0 < 09, the landscape
of R(9) is globally benign.

More quantitatively, let p be as in Theorem Then there is a (0«,d, G)-
dependent constant ¢ > 0 and a decomposition R? \ UMGOG* By(n) = AU B,
where for 6 € A

(3.8) Amin(VZR(6)) < —c/o”,
and for 8 € B
(3.9) IVR()| > ¢/o>.

Let us provide some intuition for the proof: Recall the reweighted law (2.4)) for
g € G. We enumerate

G = {gl”gK}a
fix a small constant ¢ > 0, and divide the space of ¢ € R4 into the regions
(3.10)  &B.1)={e € R : p(gx | &,0) < tforallk € {l,....K}\ {i}},
3.11)  &j0.7v) = {8 eR?: p(gile 0)>rtand p(gj | e 0) > ‘L’}.
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Here, for v small enough, &; (6, ) is the space of noise vectors ¢ for which the
e-dependent distribution (2.4) places nearly all of its weight on g;, and &; (6, 1)
is the space of ¢ for which this distribution “straddles” its weight between at least
two points g; # g;j € G.

We will choose the set B in Theorem[3.3 to be those vectors § € RY for which
Ple € &(0,1)] ~ 1 forsome i € {1,..., K}. Thus, for some fixed g; € G, with
high probability over ¢, the law (2.4)) places nearly all of its weight on the single
element g;. Intuitively, from the form (2.4)), these are the points 6 € R? which are
closer to giT B than to the other points gJTQ* for j #1i.

The remaining points R? \ B will constitute A. A key step of the proof is to
show that if ¢ B, then there must be a pairi # j for whichPle € &;;(0,7)] 2 0.
That is, with some small probability of order o, the law (2.4) straddles its weight
between g; and g;. (Note that this is not tautological from the definitions, as we
must rule out the possibility, e.g., that Ple € & (0, 7)] = 1/2and P[e € £;(0,7)] =
1/2 for some i # j,but Ple € &; (6, v)] = 0. Indeed, from the form of (2.4)), we
see that even if 8 is exactly equidistant from giT 0 and gjT 0+, the probability over
e is only O(o) that p(g; | €,0) and p(g; | €, 0) are comparable.) We prove this
claim using a Gaussian isoperimetric argument in Lemma [3.4] below.

LEMMA 3.4. Fixany 6 # 0and v € (0,(K + 9)™1), and define &;, Eij by
and (B.11). Suppose, for somei € {1,...,K}and p € (0,1/2], that

p=Plee &l <1/2.
Then for some j € {1,..., K} \ {i},

1 14 il 2
P[seé’u]_(K_l)mmn(ugu,l).

PROOF. Let & = {¢ € RY : dist(e, &) < t}. We first claim that if ¢ € ENN&
fort = o/||0|, then there exists some j # i for which & € &;;. For this, note that
1
Vellog p(g | .6)] = — (g6 — Exlh6 | £.6]).
s0 ¢ > log p(g; | &, 0) has the Lipschitz bound |V log p(gi | &, 6)| < 2||0]/0.
Suppose that ¢ € & \ &. Then there is ¢ € & with le — €| < o/[6], so

log p(gi | €',6) —log p(gi | &, 0) <2and

plgi 1€,0)/p(gi|e.0) <e® <8

Since p(g1 | ¢/,0) + -+ p(gx | ¢,0) = land (K + 9)t < 1, when &’ € &;
we must have p(g; | ¢.6) > 1 — (K — 1)t > 8t. Then the above implies
p(gi | €,8) > 1. Since ¢ ¢ &;, by definition of £ we must also have p(g; |
e,0) > v for some j # i, sothat ¢ € &;; as desired. Note that this index j €
{l,..., K} may depend on . However, this shows that for at least one fixed index
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Jjell . K¥\{i},
Ple € 8\ &]
We now apply the Gaussian isoperimetric inequality to lower bound the right
side: For @ the standard normal distribution function,

O (Ple € £1) = @7 (Ple € &) + 1,
see [[12} theorem 10.15]. Then, denoting by ¢ the standard normal density,
Ple € &\ &) = Ple € ] —Ple € &]
> OO (Pl € &) +1) — (O (Ple € &1))
O~ (PlecE )+t
= / ¢(ridr.
P (Ple€s;])
Applying Ple € &;] € [p, 1/2] by assumption, we get
o~ (Ple € &]) € [ (). 0],

Then there is always an interval of values for r, having length min(¢, 1) and con-
tained in the above range of integration, for which ¢ (r) > min(¢(®~1(p)), #(1))
over this interval. Applying the tail bound ®(x) < e=**/2 for all x < 0, we

get @ 1(p) > —/2log1/p and ¢(®"(p)) > p//27. For p < 1/2 we have
p/~2m < ¢(1). Combining these observations gives

. p
Ple € '\ & | > min(z, 1) - —.

[ 1 \ l] - ( ) m
Recalling ¢t = 0/||6| and combining with (3.12) yields the lemma. O

PROOF OF THEOREM [3.3] Let us fix two positive constants

(3.13) t<min( ! i )

K+9 861K

and

2
0
G19 p<QM@0 /K

Define &; (6, v) and &;; (6, v) by (3.10) and (3.11)) with this choice of 7, and set

p o . .
A=10cRI\C:Plec &0, 1) > . for some 7 },
p o . .
B=10ecRr? C:Plee&i(,1)] < . for all i }
lo et \cFlec ey 6.0 = e S8 toralli £

To check (B.8) when 6 € A, recall the form of VZR(6) in (Z.10). We apply
Ple € &;(0, 1)] > co foraconstant ¢ > 0 and some i # j, by the definition of A.
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Choose a constant ¢g > 0 such that || giT Os — g]TQ* | > 3co. Then a chi-squared
tail bound yields
(3.15) IP’[||8|| <co/oand ¢ € &;(0, r)] > co
for a different constant ¢’ < ¢ and all 0 < 0. For ¢ satisfying (3:13)), we have
|6 B +00) =g (Bs +00)]| = |8 6x — ] 6]l = 20 el] = co.
and also p(g; | €,6) > v and p(g; | €,60) > t. Then for such &, denoting
pn=Eg[gT (6 + 0e) | & 0], we have
Tr Covg (¢ (65 + 0¢) | &, 6]
= Eglllg " (0x + o) — ]| | &, 6]
>7- HgiT(Q* +0¢) —/LHZ +- Hg}r(Q* + 0¢) —/LHZ > c.
Combining this with (3.15]) implies that
Amax(ES[Covg[gT(G* + o¢) | ¢, 9]]) > co.

Then (3.8) follows from (2.10).
To check (3.9) when 6 € B, note that if |6] > 3]|6x], then (3.9) follows from

Lemma[2.9] For 6 € B such that ||0]] < 3|04, the definition of B and Lemma
3.4 imply that either Ple € & (6,1)] < p or Ple € & (0, 7)] > 1/2 for every
i €{l,...,K}. Note that since K7 < |, we must have:

e £1(0,71),...,Ek (B, ) are disjoint.
e {&i(0, r)}iK:1 and {&;; (0, 7)}; ; together cover all of R4,

The first observation implies that P[e € &; (6, )] > 1/2 for at most one index i €
{1,..., K}, so we must have Pl € £;(0, )] < p for all other j # i. Combining
this with the second observation,

1<Plee&@.0]+ Y Plee&®.0]+ Y Pleei@.0)]
Jii# J#k

<Pee&l+(K-Dp+ (1;)(:0.
For 0 < o9 and sufficiently small o9, this implies P[e € & (6, 1)] = 1 — Kp.
Recall the form (2.8) for VR(8). For this index 7, let us write
Ee[Eelg " (0x +0¢) | &,0]] — g 05 = T+ 11 + III
where
I=E[l{e ¢ &} Egle" (Ou + 0e) | £.0] — g 6],
I = Ee[Lie € &}(Eg[Ug # gi}g | (6 +06) | &,6])],
Il = E,[e € &} (Ee[lig = gitg ' (B« + 08) | &.6] — g 64)].
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Applying Cauchy-Schwarz, the above bound Ple € &;(6,7)] = 1 — Kp, and the
condition (3.14) for p, we get for 0 < o and small enough oy that

Il < Ple ¢ &1 Bel(16s + o6l + 1641)°1"% < (Kp)'/? - 31164 < p/4.

When ¢ € &;, we have Pg[g = g; | €.0] = p(gi | €,0) > 1 — Kt. Then by the
condition (3.13)) for 7, for o < oy,

|| < E¢[1{e € &3Py (g # gi | €.0]- 65 +oel|] < Kv- 2|64 < p/4.
For III, we cancel giT 0+ to get the bound
I < E¢[Eg[1{g = gi}llg " (ce)ll | &, 0]] < o Eclllell] < p/4.
Combining these with (2.8) yields
|02V R(0) — (0 — g/ 0+) | <3p/4,

and (3.9) follows since ||6 — gl.T9*|| > p because 0 ¢ J,co,, Bo(1). These
conditions (3.8)), (3.9), and Theorem [3.1|together show that the landscape of R(8)
is globally benign. 0

The following then shows that the landscape of R,(8) is also globally benign

with high probability, when n > o2 logo .

COROLLARY 3.5. In the setting of Theorem[3.3] the same statements hold for the
empirical risk R, (8) with probability at least 1 — oCeco’n _ ce—en?’?,

PROOF. For o < 0¢ and small enough ¢q, with probability 1 —Ce ™", we have

IVR,(8)|| = c/o? for all § such that ||§]] > 3||6«| by Lemma Applying
the concentration result with 1 = ¢o/02, and with ¢ = co/03, over
the ball B, for r = 3||6«||, for small enough c¢ we obtain and also for
the empirical risk R, (8), with probability 1 —o~Ce=¢9°" — Ce="*" The result
then follows from combining with Corollary [3.2] O

Remark 3.6. For § € R? roughly equidistant to multiple points of the orbit Og_,
the weights p(g | €, ) do not concentrate with high probability on a single deter-
ministic rotation g € G, so we do not obtain the same refinement of the concentra-
tion probability as in Corollary [3.2| for the local analysis near .

4 Landscape Analysis for High Noise

In this section, we analyze the function landscapes of R(6) and R, (6) in the
high-noise regime o > 0¢(6%,d,G). Our results relate to the algebra of G-
invariant polynomials and systems of reparametrized coordinates in local neigh-
borhoods, which we first review in Section (.1}

Our analysis for high noise is based on showing that truncations of the formal

o~ L-series

(4.1) > o728(0)
{=1
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provide asymptotic estimates for the population risk R(6). We derive this in
Lemma[.7|using the series expansion of the cumulant generating function

log Eg exp((6s + o€, g0)/0?)

in (2.3). We quantify the accuracy of the approximation to R(6) by bounding its
deviation from the first k terms of its formal series for any fixed k as 0 — oc.
To analyze the concentration of the empirical risk, we provide a similar series
expansion for R, (#) in Lemmafd.11]

The functions Sy(0) in (@.1) do not depend on o, and we analyze the form of
these terms also in Section d.2] We show in Section [4.3] that the local landscape
of R(6) around any point 6 € RY may be understood, for large o, by analyzing
the successive landscapes of these functions S;(6) in a reparametrized system of
coordinates near 6. _

In Section 4__41 we apply this at # = 6, to analyze the local landscape near
0x. Theorem and Corollary show that R(0) is strongly convex in a o-
independent neighborhood of 6, when reparametrized by a transcendence basis
of the G-invariant polynomial algebra. The same holds with high probability for
R, (6) when n > o2L, where L is the smallest integer for which trdeg(T\’g 1) =
d. Theorem also shows that /(6) has a certain graded structure, where the
magnitudes of its eigenvalues correspond to a sequence of transcendence degrees
in this algebra.

In Section [4.5] we patch together the local results of Section 4.3] to study the
global landscapes of R(6) and R, (6). Theorems and Corollaries
establish globally benign landscapes for K-fold discrete rotations on R? and
the symmetric group of all permutations on R? for large o and large n. Theorem
M.27|then generalizes this to a more abstract condition, in terms of minimizing the
sequence of polynomials Py (8) in over the sequence of moment varieties
Vy—1 in (I.12)), and shows that the empirical landscape of R, (6) inherits the benign
property of R(#) also when n > o2L.

Finally, in Section 4.6] we analyze the global landscape for cyclic permutations
on R (i.e., multireference alignment). Theorem and Corollary show
that the local minimizers of R(#) and R, (0) are in correspondence with those of a
minimization problem in phase space. Corollary .30 shows that their landscapes
are benign in dimensions ¢ < 5 (for large o and large »), but may not be benign
even for generic 04 for even d > 6 and odd d > 53.

4.1 Invariant polynomials and local reparametrization

DEFINITION 4.1. For a subgroup G C O(d), a polynomial function ¢ : RY — R
is G-invariant if p(g0) = ¢(6) for all g € G. We denote by RY the algebra (over
R) of all G-invariant polynomials on R, and by Rge C RY the vector space of
such polynomials having degree < £. B
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DEFINITION 4.2. Polynomials ¢1,...,¢x : R? — R are algebraically inde-
pendent (over R) if there is no nonzero polynomial P : R¥ — R for which
P(@1(0), ..., (6)) is identically 0 over § € R?. For a subset A € RY, its
transcendence degree trdeg(A) is the maximum number of algebraically indepen-
dent elements in A.

One may construct a transcendence basis of d such polynomials according to
the following lemma; we provide a proof for convenience in Appendix

LEMMA 4.3. For any ﬁmte subgroup G C O(d), there exists a smallest integer
L = 1 for which trdeg(R <) =d. Writingd = dy + ---+ dp where

dy = trdeg(Rgé) — trdeg(Rge_l),

there also exist d algebraically independent G-invariant polynomials ¢ = (¢!,
... @L), where each subvector (pe consists of dy polynomials having degree ex-
actly {.

It was shown in [6] that this number L is the highest-order moment needed for
a moment-of-moments estimator to recover a generic signal 6 in the model (I.1),
up to a finite list of possibilities including (but not necessarily limited to) the orbit
points Oy, , and that the number of samples required for this type of recovery scales
as o 2L

In our local analysis around a point 6 € RY, we will switch to a system of
reparametrized coordinates. Let us specify our notation for such a reparametriza-
tion.

DEFINITION 4.4. A function ¢ : R? — R? is a local reparametrization in an
open neighborhood U of 8 € R¥ if ¢ is 1-to-1 on U with inverse function 6(¢),
and ¢(0) and 8(¢) are analytic, respectively, on U and ¢(U ).

If ¢ is a local reparametrization, then dg¢ is nonsingular and equal to (d(,,Q)_1
at each 8 € U. Conversely, by the inverse function theorem, if () is analytic and
dg(p(@) is nonsingular, then there is such an open neighborhood U of 6 on which
¢ defines a local reparametrization.

To ease notation, we write (with a slight abuse) f(¢) for f(6(¢)) when the
meaning is clear, and we write V,, f(¢), V(% f(@), and 9y, f(¢) for the gradient,
Hessian, and partial derivatives of f(¢) with respect to ¢. For a decomposition
¢ = (¢!, ..., ¢L) of dimensions d1, . .., dr, we denote by Voo fp) € R and

V;l f(p) € Réexde the subvectors and submatrices of Vo f(¢) and V;f (p) cor-

responding to the coordinates in (pé.
Recalling Vg £(0) = dg f(9) ", by the chain rule and product rule, we have

(4.2) Vo £(6) = (da9) Vo f(9),

d
(4.3) Vi f(0) = ([dgp) T - V2 f(@)-dgo + D 3y, f(@) - Viei.
i=1
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Note that Vg £(8) = 0 if and only if Vof(@) = 0for g = ¢(8); i.e., critical
points do not depend on the choice of parametrization. At a critical point 8 of
f(0), letting ¢ = ¢(H), the identity (4.3) simplifies to just the first term,

V2 £(@) = (de@(@) " - V2 (@) - dge().

so that the rank and signs of the eigenvalues of Vg f (5) also do not depend on the
choice of parametrization. This may be false when 6 is not a critical point—in
particular, strong convexity of f(¢) as a function of ¢ € ¢(U) does not imply
strong convexity of f(8) as a functionof 8 € U.

For analyzing specific groups, we will explicitly describe our reparametrization
@. For more general results, we will reparametrize by the transcendence basis of
polynomials ¢ in Lemma @3] The following clarifies the relationship between
algebraic independence of these polynomials and linear independence of their gra-
dients, and implies in particular that ¢ is a local reparametrization at generic points
of RZ. We provide a proof also in Appendix

LEMMA 4.5. Let G C O(d) be any subgroup, and let ¢1, ..., ¢r be polynomials
in RE.

(a) If 1, ..., ¢ are algebraically independent, then V1, ..., Vg are linearly
independent at generic points 6 € RY.

(b) If Vo1, ..., Vo are linearly independent at any point 6 € R, then 1,
.., @ are algebraically independent.

(©) If Vo1, ..., Vg are linearly independent at a point 6 e RY, and Ol Ok

€ Rgz with k = trdeg(Rgz), then there is an open neighborhood U of

6 such that for every polynomial € Rgé’ there is an analytic function

f Rk — R for which y(0) = f(@1(0).....0(0)) forall € U.

4.2 Series expansion of the population risk

For any partition 7 of [{ + m] = {l,...,£ + m}, denote by || the number
of sets in m, and label these sets as 1, ..., |n|. For eachi € [ + m], denote by
m(@i) € {1,...,|n|} the index of the set containing element ;. For 0 < m < /,
define
4.4

m L+m
My (| 0,04) = Eg) ., glxl 1_[ (gzr(2j—1)9a gn(2j)9>' 1_[ (9*, g:r(j)g)
j=1 j=2m+1
where the expectation is over independent group elements g1, . . ., || ~ Unif(G).

Example 4.6. Consider £ = 3, m = 1, and # = {{1,2}, {3, 4}}. For this partition
mw,we have |7| = 2 and (z(1),7(2), m(3),7(4)) = (1,1,2,2). Letting g1, g2 ~
Unif(G) be two independent and uniformly distributed group elements,

4.5) M3 (r | 6.04) = Eg, g,[(216. 810) (6. £20)°].
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For # = {{1,3},{2},{4}}, we have || = 3 and (7(1),7(2),7(3),7(4)) =
(1,2,1,3). Then

(4.6) M3,1(7T | 6,0) = Eg1,82,g3[<g197g29><9*,g19)<9*,g39>]-

Similarly, for 7 = {{1, 3.4}, {2}}, we have

4.7) Ms,1(w | 60, 6x) = Eg, ¢,[(g16. 826) (6. g16)7].
Define the set
4.8)

P(L,m) = {partitions 7 of [{ +m] : w(2j —1) # n(2j) forall j =1,....m }.

That is, partitions &7 € P (£, m) separate each pair of elements {1,2}, {3,4},...,
{2m — 1, 2m}. Define the quantity

£
4.9) Sz(9)=%zzim<£) D (= DD My (16,64

m
m=0 weP,m)

and the corresponding k-term expressions

k
(4.10) RE@0) = " 07245,(0).
=1
The following is our rigorous result corresponding to (4.1)), which states that R(6)
may be approximated by R¥ () for ||9]| < o/logo and fixed k, as o — oo. We
provide its proof at the end of this section.

LEMMA 4.7. Fix any functionr : (0, 00) — [1, 00) such that r(6)-(logo) /o — 0
as 0 — 00. For each k > 1, there exist (6, d, G)-dependent constants C, o9 > 0
depending also on k such that for all o > oo and all 6 € R? with ||0]| < r(0),

r©) - R) < (ST env

Cl 2k+2
IVR®) — VRE@9)] < ( "g") 81 v 2+,
[0

C logo\ 2+2
V2RO - V2R @) < (ST ey 0,

From the definition in @#4), we observe that for any fixed fx € R?, the term
My (7t | 0,04) is a G-invariant polynomial function of 6. Counting the number
of occurrences of 6, My ,,(7 | 6, 04) has degree £ + m in 6. Hence, S¢(0) is a
G-invariant polynomial of degree 2¢. The following shows that, in fact, Sy(8) is
in the algebra generated by the polynomials Rgé of degree at most £. (That is,

Sy is a polynomial function of elements of RSZ.) Furthermore, its dependence on

the polynomials of degree £ has an explicit form in terms of the moment tensor
Ti(0) = Eg [(g6)®¢] from (I.10). These properties will allow us to understand the
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dependence of S¢(8) on the transcendence basis for Rgz constructed in Lemma

43l

LEMMA 4.8. For each fixed 04 € R4 and each { > 1, we have

1 2
(4.11) Se(0) = %HTe(Q) — Tg(65) |5 + Qe(6)
where Qy(0) is a polynomial (with coefficients depending on 0,) in the algebra
generated by Rge-r In particular, Sy(0) is in the algebra generated by Rgé'

PROOF. We consider the terms My ,, (7 | 0, 04) that constitute Sy(6). For each
w € P({,m), applying the constraint that 7 (2j — 1) # =n(2j) for j = 1,...,m,
we observe that each set in the partition 7 has cardinality at most £, and hence
each distinct group element g; fori = 1,...,|x| appears at most £ times inside
the expectation in (@4.4).

If each set in 7 has cardinality at most £—1 (e.g., (#.3) and #.6) in Example[4.6),
then we claim that My ,,, (7 | 0, 0x) is in the generated algebra of Rgé—l' To see
this, observe that for any k < £ — 1 and tensor 4 € (Rd)®k, we may write

d

k
Ee| Y | ][] |An.ic | = Ee[{(€)®*. A)] = (Tk(6). A).

i1enig=1\j=1

Each entry of the moment tensor 7% (8) is a G-invariant polynomial of degree &,
and hence belongs to ng. Applying this identity once for each distinct element

g1.---.&|x| in @#.4), and using that each such element appears k < £—1 times, we
get that My ,,(r | 6, 0x) belongs to the algebra generated by Rgé—l‘ Absorbing

the contributions of these terms My ,, (7w | 6, 0«) into Q¢(6), it remains to consider
those partitions 7 € P (£, m) where some set in 7 has cardinality £.

Without loss of generality, let us order the sets of & so that its first set has
cardinality £. Then g; appears £ times in (4.4)), so exactly one of {7 (2j—1), 7 (2/)}
must be 1 for each j = 1,...,m, and every =n(j) must be 1 for j = 2m +
1,...,£ + m. For notational convenience, consider & such that 7 (2j — 1) = 1 for
eachj =1,...,m(e.g., in Example [4.6). For such 7, we have
(4.12)

Mym( | 60,65) = Eg, g [(816. 8x2)0) . (€16, 8ram)0)(g16. 0:)].
Suppose now that there is a second set of 7 that has cardinality at most £ — 1,
corresponding to the element g,. Then g, appears between 1 and £ — 1 times in
gn(2): &x(4)s - - - » &x(2m)- We may decouple the corresponding g1’s by introducing
a new independent variable g; ~ Unif(G), setting g, = g gl_1 g2, and writing

(g16.820) = (0. g7 ' g20) = (§16.220).

The expectation over the uniform random pair (g, g2) may be replaced by that
over the uniform random triple (g1, g1, &2), reducing (@.12)) into an expectation
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where each distinct group element now appears < £ — | times. Then by the ar-
gument for the previous case, we also have that My ,,(w | 6, 64) belongs to the
algebra generated by REE—l in this case, and these terms may be absorbed into
Q(0).

The only partitions that remain are those where every set in 7 has cardinality £.
One such partition corresponds to m = 0, where & = {{1,2,...,£}}. For this x,
we have

M (| 0,605) = Eg[(6x, 20)°] = Eg, .4 [(¢16x. £20)] = (Te(6s). T(6)).

The remaining 2¢~! such partitions correspond to m = £ and || = 2, where we
may assume without loss of generality that 1 € 7(1) and 2 € 7(2), and take one
element of each remaining pair {7 (2j — 1), w(2j)} for j = 1,...,£ to belong to
(1) and the other to belong to 7 (2). For these partitions 7, we have

My (| 6.64) = Eg, £,[(16. 820)°] = I Te(0)Ifs.
Applying the above two displays to (4.9), we obtain
1 1 5
Se(0) = = (Te(04). Te(9)) + mllTe(Q)HHs + 0(0)

for some Qy in the algebra generated by Rgé—l' Completing the square yields

Se(®) = 5 I Te(8) —Te(0:)Iis — 2y 1 Te(0) s + Qe (8), where || Te (65) 17
does not depend on 8 and can be absorbed into Q,(6). We thus arrive at the stated
form of S¢(#) in @I1)). Since the entries of T;(8) belong to R, we obtain also

=

that Sy belongs to the algebra generated by Rgé. U

The following computation of the first three terms of (@.I) will be useful in
our analysis of specific group actions. By Lemma [2.5] we assume without loss of
generality that Eg[g] = 0.

LEMMA 4.9. IfEg[g] = 0, then
S1(6) =0
S2(6) = —3E¢[(0x. £6)%] + E¢[(6. g6)]
S3(0) = —1Eg[(6+. 80)°] + 5 E[(6. g0)°]
+ 1Eg,0,1(816. £20)(0x. £10) (64, £26)]
— 1Eg, g,1(810. £20)(0. £16)(6. g20)].

PROOF. If E4[g] = O, then by @.4), any = € P({,m) that has a singleton
yields My ., (m | 0,04) = 0.

For { = 1and m € {0, 1}, every m € P(£,m) has a singleton, so S;(8) = 0.

For £ =2 and m € {0, 1, 2}, the only partitions & € P (£, m) that do not have a
singleton are {{1,2}} for m = 0 and {{1, 3}, {2, 4}} and {{1, 4}, {2,3}} form = 2.
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We get

S$2(8) = —AMa0({{1,2)) + I M2 2({{1.3},{2.4})
+ i M2 ({{1,43.{2,3}})
= —3Eg[(0+. 86)°] + §Eq¢, £, [(216. 826)7]
= —1Eg[(0+. g0)%] + LE[(6. £6)2).

. . e T L
the last line applying the equality in law g g2 = g1.
For £ = 3, grouping together m € P (£, m) that yield the same value of My ,, (7 |
8, 65) by symmetry, we may check that

S3(0) = —gM30({{1,2.3}}) +2- 1 M3.1({1.3},{2.4})
+ 4 §Map({1.3.50{2.4)) + 4+ JgMs5({1.3.5).{2.4.6))
— 8- 5 M3 3({1.3}.{2,5}.{4.6})
= —¢Eg[(0x,20)°] + 3Eg, ¢,[(210, £26) (0, £16) (0x, £26)]
+ 3Eg, (210, 220)7 (65, £10)] + 5Eg, 5 [(216, 226)°]
— 3Eg1.02.051(810. 820)(g16. g36)(g26. g30)].

By the equality in joint law (gi'— £2,.81) L (g2, £1), the third term vanishes because

Eg.g:[(216.820)* (05, 810)] = Eg,.¢,[(0. £26)(6x. £16)]
= Eg, [(0, £20)°|Eg, [{6, £16)] = 0.

. L L .
Applying g] g2 = ¢ and (¢] g2. 8] €347 €3) = (g] g2.&] - &3 ) to the remain-
ing terms yields the form of S5. 0

We now prove Lemma[4.7] We will first show the expansion @.I) of R(6) for-
mally in Lemma.T0|below, and then prove quantitative estimates on the truncation
error. Recalling the form of R(#) in (2.3)), we define the formal series

190 2 _ 5 L g [ (026, + 0~"e. g6))]
5 P k * ’

k=1

Rformal (9) =

using the cumulant generating function

[o,¢]

(4.13) log B[] = 3 i (/(9))

for f(g) = (0726« + 0 le, g6), where Kk (f(g)) is the k™ cumulant of f(g)
over the law g ~ Unif(G), conditional on ¢. See Appendix for definitions.
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1

LEMMA 4.10. As formal power series in 60—, we have the equality

o0
Riorma(0) = Y 072£84(6).
{=1

PROOE. For notational convenience, set z = o~ !. In the rest of the proof, we
treat all series expansions formally and take termwise expectations E,. We now
rewrite Rforma(€) using the cumulant tensors of g: Define the order-k moment
tensor T (g) of g by

(4.14) Ti(g) = E¢[g®]

where g® ¢ (R4*4)®k i the k-fold tensor product of the linear map g : R¢ —
R, acting on (R¥)®* via g® (v, ® --- ® vx) = gv1 ® -+ ® gvg. Define the
order-k cumulant tensor K (g) by the moment-cumulant relation

@15 K@= Y. (xl-DE=DN ) Ts (9
partitions 7 of [k] Sern

which is analogous to the usual moment-cumulant relation for scalar random vari-
ables in (A.T). Here Ts(g) is the order-|.S| moment tensor of g acting on (R4)®S
corresponding to the | S| coordinates belonging to .S. For vectors v;, w; € RY, we
have the relation

<® Vi, Ts<g>(® w,-)> = Eg [<® vi, ®(gwi)>} = E{]‘[(vi,gwi)}.

ieS ShY €S i€S ShY
Applying this, (@.13), and (A.T), we obtain

(416) <®U;, ICk(g) ®wl >_Kk v1,gUJ1),...,(Uk,gwk))-

i=1 i=1

Recall that k. (f(g)) = «x(f(g),..., f(g)), where the latter mixed cumulant
function is multilinear and permutation invariant in its arguments. Applying (4.16))
followed by a binomial expansion, we get

i (2205 + ze, g0)) = (2205 + z6)®F, Ky (2)6%F)

Xk: < ) ®j ®9®(k 7) IC (g)9®k)

So as formal series we find
“4.17
k k—i
||9||2 - z2k— k—
> ZZ '(k_ )'<E8[8®J]®9®( 7) ’C (g)9®k>
k=1]=0

Rformal (0)
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Note that E¢[¢®/] = 0 if j is odd. Reparametrizing the terms for even j by
J =2mand £ = k — m, it may be checked that {(k, j) : k > 1,0 < j < k}isin
bijection with {(£,m) : £ > 1,0 < m < £}. Thus, we obtain

0
4.18) Rformal(e) = Z ZZZRK(Q),
=1
where
(4.19)
2
Ry(0) = 1{t = 1}@
K ! (£—m)
- S — 9® -m , K 9®(€+m) '
mZ:O GmiE i e O t+m(8) )

It remains to check that Ry(6) = S¢(8).
To show this, let us compute explicitly the expectation over ¢ ~ AN(0,1d) in
@.19). Consider the identity matrix as an element of (R%)®2,

d
Id = Zei R e;,
i=1

where ¢; is the i™ standard basis vector in R?. For any pairing 7 of [2m], denote
Rse,Id € (R4)®2m a5 the tensor product of m copies of Id that associates the
two coordinates of each copy of Id with a pair § € 7. Using that the 2k moment
of a standard Gaussian variable is the number of pairings of [2k], we have for any
basis vector ¢;, ® --- ® e;,, € (R%)?™ that

2m
(Ee[e®2™). i) ® ... e0,,) =Ee| [ ] &,
j=1

= Y [T Yin=in

pairings 7 of [2m]  (j1,j2)€Em

:< > (@m), e,~1®---®e,~2m>-

pairings 7 of [2m] \Sexm

Ey[¢5%7"] = > X 1d.

pairings 7 of [2m] Sexn

Hence we see that

Applying (4.16)) and the permutation invariance of k¢ ,, in its arguments, we get
R(U—
(E[e®2m] @ 02, Ky ym(2)02E™)

(4.20)
= @m— D1 (14®" ®OPC™, Ky m(g)6®¢H™)
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since there are (2m — 1)!! total pairings, and by permutation invariance, the term
corresponding to each pairing contributes equally to this inner product. (The right
side of (4.20) corresponds to the consecutive pairing of [2m].) Applying (4.20) and

2m — DHIN/2m)! = 1/(2™m!) to @.19) yields

(4.21)
4
lo]* 1 L (L) 0m on@U—m)
_ _ 1 - . m RU+m)
Ry(9) = 1{t = 1} “n;oz’" N (1d®™" @68 . Koim(2)0 )
Now we use to write

(Id®m ®9;®(K—m). Icl+m (g)0®(l+m))

- > (7] = DD {1887 @68 () Ts(2))02¢™)
(422) partitions 7z of [{+m] Sex

= > (| = DD My ()

partitions 7 of [{+m]

where we set

My () = (18®" @02 (R Eg[(26)®5]).

Sex

We may move the expectations over g out of the inner product by writing this as
an expectation over || independent copies of g, one for each S € 7, so that

{+m
Z_
Mg m(m) = Egy,...01q <Id®m @oS ¢, ®(gn(i)9)> :

i=1

where for each i € [£ 4+ m], (i) denotes the index of the part in 7 containing 7.
Then using (Id,v ® w) = (v, w) and (a ® b,c ® d) = (a,c){b,d), we see that
this is exactly the quantity My ,, (1 | 6, 6x) defined previously in (4.4).

Finally, we combine (#.22)) with (4.21]) and describe a cancellation of terms that
reduces the expression to Sy(6): First, note that (Id, (g6)®?) = (g6, g6) = ||9]|>,
which does not depend on g. If m > 1 and {1, 2} belong to the same part in 7,
then

(4.23) My () = |02 Mp—y 1 (™)

where 7~ is the partition of {3, ..., £+ m} obtained by removing 1 and 2. Suppose
first that £ > 2 and m > 1. Fix any partition 7~ of {3,....£ + m}. Let S be the
collection of partitions of [£ 4 m] that do not separate {1, 2} and that reduce to 7w~
upon removing 1 and 2. There are two types of such partitions 7: (a) 7 includes
1,2 into a part of 7. Then |7| = |7 ™| and there are |7~ | such partitions. (b) &
is the unique partition that adds {1, 2} as a new part to 7~ so that |[7| = |7 | + 1.
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Summing over both types and using (4.23)), we get
> Izl = DU=DE My (o)

TES
= 01PMe—1 g1 ) (177 - (77| = DI=D 4 1 (=D )
= 0.

Summing over all 7~, the total contribution to (4.22)) from partitions 7 that put
{1, 2} in the same set is 0. Similarly, the total contribution to (4.22)) from partitions
7 that put {3, 4} in the same set, but that do not put {1, 2} in the same set, is also 0,
and so forth. Recalling the set of partitions P (£, m) defined in (4.8) that separate
each pair {1,2},...,{2m — 1,2m}, we get in this case of £ > 2 and m > | that
only these partitions contribute to (¢.22)), i.e.,

(1% @02 Kppm(@)0®H™) = 3 (Im| = DI=D My ().
weP(L,m)

Using that P (£, 0) is simply the set of all partitions of [£], and applying this to
#@.21)), we get that (4.21)) is the same as S¢(0) for £ > 2. For £ = 1, we have either
m = Qorm = 1. When m = 1, the only partition of [{ + m] = [2] not belonging
to P(1,1) is {{1,2}}. Note that My 1({{1,2}}) = Eg[(g0,g6)] = ||0]|>, which
cancels the leading term [|||?/2 for £ = 1 in @21)). Thus (#21) also coincides
with Sy (0) for £ = 1, concluding the proof. O

PROOF OF LEMMA 4.7l We will apply a truncation argument to handle the ex-
pansion of Lemma analytically. Within the rest of the proof, all summations
will be standard (nonformal) summations. For notational convenience, set

z=0 ", s(z) =r(z7Y) = r(o), q(z) =log(z™!) = logo.

The given conditions are s(z) — oo and zs(z)q(z) — 0as z — 0.
Consider the event ||¢|| < g(z) and define the truncation

|t9||2

Ruune(6) = Zkl [k (226, + ze. gO) Ll < g()}].

For [|8] < s(z) and on this event ||| < g(z), observe that maxgeg | f(g)| <
(22116« + zq(z))s(z). By the given condition zs(z)g(z) — 0 as z — 0 (which
also implies z2s(z) — 0), and by Lemma c), we observe that this series defin-
ing Ryunc(0) is absolutely convergent whenever z < zg, for a small enough con-
stant zog > 0. Then, writing (2.3) as

2
r(O) = 1022 g 116l < g0} 0g Byl @]

s[ {lell > g(2)} - log Eg e/ ®)]]
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and applying (.13) and Fubini’s theorem to exchange E, and ) in the second
term, we arrive at

(424)  R(®) = Rounc(®) = Eo | L{le] > q(2)} - log Eg [P F2e501] .

Note that E¢[¢®7 1{||¢|| < ¢(z)}] = 0if j is odd by sign symmetry of the law
of ¢ conditional on [|¢|| < g(z). Therefore, by the same argument as for {#.18), we
obtain

o)

(4.25) Rtrunc(e) = ZZZéRtrunc,ﬁ (9)
{=1

where
£

16112 1
R =1 =1\—— — B
trunc,(( ) { } 2 ”12=:0 (2m)!(€ _ m)'

0—
x (E[¢¥2™1{Jle]l < q(2)}] ® 0ZC™, Kysm()0®EH™),

Applying the cumulant bound of Lemmatogether with and k! > kK /ek,
forf > 2,

|Rtrunc,€ (0)|

V4
1
= mZ:O @m)€ —m)!

XEEI:

(82" ® 62 Km0 )| 1e]) < ¢(2)}]
(4.26)

L
1 {+m ‘ _
- y) +m 2m 0 {—m 6 L4+m
s”;mm),( . )( +m) g ()20, 16]

¢ {+m
<oy ( )q(z)zmue*uﬁ—m

2m
m=0
< e?Y(q(2) + 116+ 11011%¢.

Then for [|6]] < s(z) and z < Zg, the series in (4.25)) is absolutely convergent.
Differentiating each Ryypc ¢(6) in 6 using the product rule, a similar argument
shows that for £ > 2,

(4.27) IV Riunc. () || < 2£e2(q(2) + 16« 1DZ¢ 11611257,
(4.28) 1V Ryunc.e (D] < 2£(2¢ — 1) (q(z) + [|6+1D 16011472
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Then both ), ZMVRtrunc,é (6) and ), Z2ZV2Rtrunc,€ (6) are also absolutely and
uniformly convergent over |8 || < s(z), so

0 00
VRtrunc(g) = ZZZ(VRtrunc,l (9), V2Rtrunc(0) = Zzzgsztrunc,é(G)-
£=1 {=1

We now fix an integer k£ > 1 and remove the truncation event ||¢]| < g(z). Note
first that by Cauchy-Schwarz and a chi-squared tail bound, for all z < z¢ and some
constants C, ¢, zg > 0, the second term in (4.24) is at most

B[ Ullell > q(2)} - log Eg [0+ 20801 |

< Ee[Ullell > q(2)} - 1226 + zell - 16]]]

< 161 Pllell > ¢(2)]) *Ee[ 12264 + z7]'? < 5(2) - 4@ . Cz.
Recalling zs(z) — 0 and ¢(z) = log(1/z), there exists zo (depending on k) such

that Zs(z)e_cq(Z)2 < z2k+2 forall z < zo. Applying this to (4.24)), and also using
(#.26) to bound the sum over £ > k + 1 in (#.25)), we obtain

k
(4.29) R(O) =Y 2% Ruune,t(0)| < [Czq(2)(0] v D] F2
=1

for z < zp and C, z¢ depending on k. For the gradient and Hessian, recall (2.4))
and note that

Ve logEg[e(Zza*“E’ge)]H = |Eglg T (z%0x + z&) | &, 01| < 1220« + ze.
| V210g B [eZ°0: 422800 | = || Covglg T (226« + z&) | &, 01| < [1220s + z&l|>.

Then applying a similar Cauchy-Schwarz argument together with and (4.28),
we get

k
(4.30) VR() = Y 22V Ryunct(0) | < [Czq@)PFT2(16] v P,

=1

k
@31 |[V2R(O) = > 22V Ryunet(0) | < [C2q@PF2(1I6] v 1),
{=1
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Next, for all £ < k and some C,zo > 0 depending on k, the same Cauchy-
Schwarz argument yields for z < z¢ that

[R¢(6) = Riunc,e(0)]

b4
- 1 1/2
<3 Gy llel > 462

X Ee[(6227 © 027, Ky (g)02 M)

< C-Plle]l > g2 10]2¢ < Ce=9@7% 912 < [Cz(||6] v D2,
Applying this to eachterm £ = 1, ...,k in (4.29), we get
k
R(O) = 2?'Ry(0)| < [Czq(2)(I0]] v DI F2.
=1

The differences |V Ry(8) —V Ryyne,¢(0) ] and V2R (0) — Vthrunc,Z (6)]| may be
bounded similarly, and combined with (4.30) and (4.31) to show

k
VR(O) - Y 22'VRy(0)| < [Czq@P*2(||6] v )T,
=1
k
VZR(0) — Y 22 V2Ry(0) | < [Czq(@)PFT2(161 v 1),
=1

Recalling that z = 1/0 and ¢(z) = logo and noting that Ry(6) = S¢(8) by
Lemma [4.10|concludes the proof. O

To provide sharper finite-sample concentration bounds, we now establish an
analogous expansion for the empirical risk R, (). Note that whereas in the popu-
lation expansion (4.1)) the term for o~¢ was a polynomial of § belonging to Rgz /2
(for even £), here the term for o—¢ in this expansion of the empirical risk is a
polynomial of 8 only guaranteed to belong to Rg@'

LEMMA 4.11. Fix any function r : (0, 00) — [1, 00) such that r(0) - (logo)/c —
0 as 0 — o0. There are polynomials Py(e, 8, 0«) such that for any k > 1, some
(0«,d, G, k)-dependent constants C,c,co,00 > 0, any 0 > 09, and any t >
e—c0(0g0)? gy probability at least

1— Ce—c(logn)2 _ (Co(logn)/t)d (‘g—cntcr/(logn)’"vz + e—cntz(o/ 10g0)2/"+2)

’
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we have
k 1 n
(4.32) ‘Rn(e) =D 0 Y Pulei6.6)
=1 L
1 k+1
s[z+c(°g") ](nenvl)k“,
g
k | n
(4.33) IVR,(0) =Y 078 = " VPy(e;.0.65)
(=1 n i=1
k+1
1
< [z i c(ﬂ) ](IIGII v D,
e}
k 1 n
(4.34) Hszn(e) -y o7t - ZVng(si,G,G*)H
n
(=1 i=1

k+1
< [z +C (l"g) ](||9|| v k!

simultaneously for all 0 € R? satisfying ||0|| < r (o).
Here each term takes the form

M,
(4.35) Py(e,0.0:) = Y Agm(e, 0) Pem(6)

m=1
for some My > 1 where

e each Ay p, is a polynomial in & and O of total degree at most £,

e each Py, € Rgz is a G-invariant polynomial in 6 of degree at most £,

o E.[Py(e,0,04)] equals Sg/»(0) if £ is even and equals O if £ is odd, where
Sy /2 is as defined in (4.9) for the series expansion of R(0), and

e Py and its derivatives satisfy, for some universal constant Coy > 0,

(4.36) |Pe(e, 0. 05)] < (lell + 16«1 + Co) (6] v D,
(4.37) Ve Pe(e, 6, 0:)| < CEClell + 161 + Co)E(16] v 1)L,
(4.38) IVZPy(e, 0,05 < CE(lell + 11651l + Co)E(||0] v 1) EDVO,

PROOF. As in the preceding proof, let z = 07!, s(z) = r(z™!) = r(0), and
q(z) = log(z™!) = logo. We write as shorthand E, [ f(g;)] = n~! Yoroy S
Then analogous to (@.24)), we have

Ra(8) = Rywnesn(8) = En[1lei | > (2)} - log By [70+251 001
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where
Rirune,n (0)

||9||2 o 1 22
Zk_ O + zei, g0) Uil < q(2)}]

2_.

0 2 oo k B
- = 2 syl el = g @ 087, Kior*)

Both sums are absolutely convergent, and the second line follows from the same
multilinear expansion of the cumulant « as in (4.17). Rearranging this sum ac-
cording to powers of z and applying the cumulant tensor identity (4.16)), we obtain

Ritune,n (6) = Zz allleill < q(2)} - Pelei, 6,64)]

where
e, L[ k
Py(e.0,6,) = —-1{l =2} - > il s
(4.39) e/2<k<t
XKk(<87g9>7"' 7(87g9)7<0*5g9>’”' ’(9*’g9))
2k — £ times £ — k times

These polynomials Py (e, 8, 6,) satisfy the conditions of the lemma. In particular,
by the moment-cumulant relationship, in the form each Py ,, can be taken
to be an entry of the moment tensor 7¢(0) = E, [(g0)®¢] (which is a degree-£ G-
invariant polynomial) and hence My < d*. The bounds @#36)—@38) on P, and
its derivatives follow from the same arguments as those that led to (4.26)—(4.28),
in particular, the cumulant bound in Lemma[A.T]

Thus, we arrive at

k n
1
(4.40) Ry(0) =) z*- - ,221 Py(si, 6. 65) + 1(6) + 11(6) + I11(6)
where

@)= Y o Y Ml 9@} Peer.6.6.)

{=k+1 i=1

i=1

k n
1
ey =-y zt - > Hleill > q(2)} - Pelei. 0.64)
=1

1 < '
1(6) = - Z 1{|lei || > q(2)} - logEg [e(z29*+zs, ,g@)]'
i=1
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We conclude the proof by bounding these three remainder terms and their deriva-
tives. Throughout, C, C’, ¢, ¢’ > 0denote (6«.d, G, k)-dependent constants chang-

ing from instance to instance. Beginning with I1(6) and II1(6), we define the event
& where ||&;|| <logn foralli = 1,...,n. Then

P[&€] = P[m’éx lei || > logn] < pe—clogm?® < o=/ tlogn)®,
i=1
Let f(e) be either z¢ - 1{||le]| > q(2)} - Py(e, 6, 05) for some £ € {1,....k}in

the case of II(), or 1{||¢|| > q(z)} - logE, [6(129*"‘“"’5’9)] in the case of III(0).
Applying the bounds

Egl(z*0s + 261, 26)] < logEg [ % +20-5%)] < max(2?6, + zé1. g6).

in both cases and on the event £ for small z = 6~!, we have | f(g;)| < Cz(||0] v
1) (log n)¥ . Introducing the bounded summand

£ (@) = min (max (£(e). ~Cz(I6]] v D (logm)* ). Cz(16] v 1)*Gogm)),

-]

%nr2
< 2exp(— - N )
Var[f (€)] + 37 - Cz(|0] v ¥ (logn)*

Bernstein’s inequality yields

pH%Zf(si) SN0

i=1

We apply this with 7 = 5z - (]|@]| v 1)¥ and some small constant > 0. By the
definition of f (&) and Cauchy-Schwarz,

Eoll /)] < Ell F)) < Pe[llell > ()] (C22(16]) v H*)1/?

(4.41) ,
< Ce D" . (18| v DF <=,

the last inequality holding when the constant ¢q for which ¢ > e~¢0 (log ) ig suffi-
ciently small. Similarly,

(4.42) Vare[f(e)] < Ee[f(£)2] < Ce 4@ 22(0] v D < z-z(|0] v D¥.

Applying this to Bernstein’s inequality above,

P[‘%Zf(ei) > 2t (1611 v 1)"} < 2exp( ).

k
P z(logn)
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Note that fv (¢i) = f(&;) for all i on the event £. We then have for some constants
C,C'>0

P[|1(0)| > Cnt - (18] v D and €], IP[|III(6)| > Cnt - (]|0] v 1)¥ and 5]

cntn )

, e —
=¢ exp( z(logn)k

To obtain a uniform guarantee over the ball ||8| < s(z), observe that on the event
&, both 11(#) and II(0) are C(logn)* - s(z)*-Lipschitz in 6 over this ball. Let
us take a §-net of this ball with § = ¢nt/[s(z)F (log n)¥] and a sufficiently small
constant ¢ > 0, where the net has cardinality (Cs(z)/8)?. Applying the Lipschitz
continuity and a union bound over 8 in this net, we then obtain

}P’|: sup |(B)] > Cnt - (|6] v l)k:|. P|: sup |OI(B)| > Cnt- (|6 v l)ki|
0:110]<s(z) 0:110]<s(z)
cnt-no

_ _cntn _
< (Cs(z)/8)%e ztoenw® 4 emcllogn)® < (C'o(logn)/nt)de wemk 4 Ceclozm?,

We may bound VII(9), V21I(6), VIII(A), and V?III(#) similarly: Defining
f(e;) as the summand corresponding to any entry of one of these quantities, and
recalling the forms of the derivatives of log E¢ [e<229* +2£1.29)] from Lemma ,
on & we have | f(¢;)] < Cz(||0] v 1)*~1(log n)* in the case of VII(6) or VIIL(H),
and | f(g;)] < Cz(]|0| v 1)*=DVO(log n)kV2 in the case of V2II(H) or V2III(H).
The inequalities (#4T)) and [@#42) continue to hold, and VII(6), V21I(8), VIII(H),
and V2I11(0) all remain C(logn)*V3 - s(z)F-Lipschitz over the ball |0 < s(2).
Then applying the same arguments as above, we obtain fori = 0, 1, 2,

443) [IVOI@). [vOI@)| < Cnr - (6] v DEDYO forall 8] < s(z)
__cntno
with probability at least 1 — (C’o(logn)/nt)%e Goen 2 _ Ce—clogn)?,
Turning to I(6), write the summand f(e;) = z¢ - 1{||&; || < g(2)}- Pe(ei, 0, 65).
Using @36), we have | f(g;)] < (Cozq(2))*(]|6] v 1)¢ where Cy is a universal
constant independent of £. Then Hoeffding’s inequality yields

_ 2nt2
> 1| <26 €3'2la@?tasivne

IPU% S fer) — Eel /()

i=1

We apply this with = 5z - (|6 v 1)¥+1/£2, and we also apply

> Ee1{llell < (@)} Pe(e 0.60] = D (Cona@ (6] v D
i=k+1 {=k+1

< C'[zq@)(16] v D]
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for any small enough z, by the given condition zg(z)s(z) = r("{# — 0. Then
taking a union bound over all £ > k + 1 and recalling the definition of 1(9),

P1O) > C[zg@)(10] v DT + Cye - lo) v DF1]

2.2 2k+2
2 1
- Z°° pexp(— 2L UGNV D)
Co2 22bq ()2 (0] v 1)24e

Applying again zs(z)q(z) — 0 as z — 0, for any constant B > 0 and sufficiently
small z we have 1/(C02€Z,2€q(z)2€(||0|| v 1)24¢%) > B*. Then the summands of
this probability bound decay at least geometrically fast, so that the sum is at most

C'exol — (18] v 1)2k+2n < C/e—c’nztzn(a/logc)2k+2
sz—i—zq(z)zk—i—z(”g” WV 1)2k+2 - ’

The same argument applies to bound VI(6) and V21I(#) entrywise except that we
use (4.37) and (@.38) in lieu of {.36) to get

el < ()} - IV Pelei. 8. 61| < (Cog@) (6] v D!
and

leill < q(2)} - V2 Pe(ei, 0.6 < (Cog@D (O] v D2,
respectively, for all £ > 2. From the previous Lipschitz bounds for Py(s, 9, 64),
I1(8), III(A), and their derivatives, and from those for R,(f) and its derivatives
from Lemma , we see that 1(6), VI(6), and V2I(0) are also C(logn)<V3 .

s(z)*-Lipschitz in @ over the ball ||@]| < s(z). Then applying a union bound over
a 5-net as before, we obtain fori = 0, 1, 2,

. log o k+1 »
vOre)| < c o v k1
way  WOI@I=C(ZZ)aenvy

+ Cnt - (|0 v DXL forall |6 < s(z)

with probability at least 1—(Co (log n)/nt)? e=cn’t?n(0/log0)?k+2 Applying (4.43)
and (4.44) to (4.40) and now taking 7 to be a sufficiently small constant, we obtain
the lemma. O

4.3 Descent directions and pseudo-local-minimizers

We now relate the series expansion result of Lemma to the landscape of
R(60) around a fixed point 6 € RY for large o. The constants in this section may
depend on this point 6.

The following lemma establishes a condition for 6 € R? under which we will
be able to show that R(6) has either a first-order or second-order descent direction
in a neighborhood 6.

LEMMA 4.12. Fix § € RY, let ¢ be a local reparametrization in an open neigh-
borhood U of 8, and let ¢ = @(0). Suppose there exists £ > 1 and a partition



54 FAN ET AL.

of ¢ into subvectors ¢ = (@', ..., %) such that S1(p), ..., S¢_1 () are functions
depending only on @', . . ., (pé_l and not on (pg, and

either V¢ Se(@) A0 or lmin(végsﬁ(@) <0.

Then there exist constants ¢, 09 > 0 and an open neighborhood Uy of 6 (all de-
pending on 8, 04, d, G but not on o) such that for all 6 > o¢ and for every 6 € Uy,

cither  |[VoR®)| > co™2¢  or  Amin(VZR(H)) < —co™2¢.

PROOF. First suppose that V,,¢S¢(¢) # 0. Denote ¢ = [|V,¢S¢(@) ||, and note

that this constant ¢ depends only on ) ,0%,d, G and not on ¢. By continuity of
V¢ Sy, this implies ||V ¢ S¢(¢)|| > ¢/2 for all ¢ in a neighborhood Vp of ¢. Since

S1,...,87_1 do not depend on gae, we have V(peSl = ... = V(pzSg_l = 0.
Then, recalling @.10), we get ||V, R (p)|| > ||szR£(<p)|| > (¢/2)o~2¢ for all
@ € Vp. Applying @]) and continuity and invertibility of dg¢ near 0, this implies
that |VgR ()| > ¢’0~2¢ for a constant ¢/ > 0 and all § in a small enough

neighborhood Uy of 6. Then applying Lemma 4.7 for all o > o9, large enough
o > 0,and all 8 € Uy,

IVoR(©)]| > (¢'/2)072".

Now suppose that )Lmin(V;[ S¢(@)) < 0. The argument is similar: Denote —¢ =
/\min(V;g S¢(©)). Then /\min(V;g S¢(¢)) < —c/2 for all ¢ in a neighborhood Vy of
@ by continuity, 50 Amin(Va R (9)) < Amin(VZ, R (9)) < —(c/2)02¢. Applying
4.3),

d
VZRY() = (dow) T - V2R () -dgo + Yy, R (9) - Vi0i.
i=1

Then by continuity and invertibility of dg¢ near 8, for the first term we have
Amin((dg@) T - V2R (9) - dggp) < —c'o ™2
for a constant ¢/ > 0 and all # in a neighborhood Uy of 6. Then either
Amin( Vg RE(0)) < —(c//2>o—2f,

or we must have for the second term and some i € { ,d} that |V, Rt ()| =
|0¢; RY(¢)| > ¢"o72¢. Here, we may take ¢/ = c//(2d max ||V9goj (&)])), where
this maximum is taken overall j € {1,...,d}and 8 € Uy. Applying again Lemma
for all ¢ > o¢ and large enough o > 0, this implies that for every 8 € Uy,
either Amin(V3 R (9)) < —(c’/4)0 =" or [VeR*(O) || = (/202" O

Conversely, the following is a condition for 6 € R? under which we will show
that R(6) has a local minimizer in any fixed neighborhood of 6 for all sufficiently
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large . We call these points pseudo-local-minimizers, and these will be in corre-
spondence with the true local minimizers of R(8) for large ¢. Note that pseudo-
local-minimizers are determined by 8+, d, G and do not depend on o, but true local
minimizers of R(6) not belonging to Oy, may in general depend on . We discuss
an example of this phenomenon in Remark [4.31]

DEFINITION 4.13. A point 6 cR?isa pseudo-local-minimizer in a local reparam-
etrization ¢ = (¢!, ..., ¢r) around 0 if each function Se(p) for £ = 1,...,L
depends only on 7N <p‘Z and not on <p€+1, el (pL, and foreach £ € {1,..., L}
where (pz has nonzero dimension,

VoeSe@ =0 and  Amin(V3eSe(@) > 0.

For each pseudo-local-minimizer 5, we will also show that the risk R(¢) is
strongly convex in a o-independent neighborhood of ¢ = ¢(8), and its Hessian
V(%R((p) has the following graded block structure.

DEFINITION 4.14. Consider a partition of coordinates (¢!, ..., ¢L) for RZ. Let
H = H(o) € R?*? be a symmetric matrix, and write its L. x L block decompo-
sition with respect to this partition as

Hy -+ Hyip
H=[: -~
Hpn -+ HpL

The matrix H (o) has a graded block structure with respect to this partition if there

are constants C, ¢, 0g > O such that forall o > og and all k,£ € {1,..., L} where
gok and (p"Z have nonzero dimension,

Co™ 2 > dmax(Heg) = Amin(Hyg) = co2t and  ||Hygl| < Co2m&:D),

Thus the upper-left block of H (o) has magnitude o =2, the three blocks adjacent
to this have magnitude o4, and so forth. We allow <pZ to have dimension 0, in
which case the blocks Hyg and Hy fork = 1,..., L are empty.

LEMMA 4.15. Let 6 € R? be a pseudo-local-minimizer in the reparametrization
¢ = (¢',....¢%). Denote § = (p(g) Then for any sufficiently small open neigh-
borhood Vy of ¢, there exist constants c,og > 0 depending on 6 Vo and 04.,d, G
but not on o, such that for all 6 > o¢ and ¢ € Vy:

(a) V;R((p) has a graded block structure with respect to the partition ¢ =
('.....oh),

(b) Amin(VaR(9)) = co™2L, and

(c) there is a unique critical point of R(¢) in Vo, which is a local minimizer of
R(g).
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PROOF OF LEMMA .13] For part (a), observe that the Hessian V(% Sy (@) is non-
zero only in the upper-left £ x £ blocks of the decomposition corresponding to
(!, ....9L). Since V;z S¢(@) is positive-definite by assumption, by continuity
there is a neighborhood Vj of ¢ and constants C, ¢ > 0 for which

(4.45) Anin(VorSe(9) = ¢ and  |VgSelp)| < C

for all ¢ € Vp. Applying this for each £ = 1,..., L and recalling @.10), we see
that V(% Ry (¢) has a graded block structure. Then V;R(<p) also has a graded block
structure, by Lemma[4.7] This shows (a). Part (b) will follow from (a) and Lemma
which we prove in the next section.

To show part (c), let us assume for expositional simplicity that each ¢t has
positive dimension—the same argument applies with minor modification to the
setting where some of the vectors ¢¢ have dimension 0. Let ¢ = (¢',...,¢L)
be a point that minimizes R(¢) over the compact set V. Observe that the given
condition implies ¢ is a local and global minimizer of S; over Vp, and that

S1(@) = S1@) = cllg' = |1%.
Then by Lemma[4.7] for all ¢ > o9 and large enough o > 0,

Y oy ~ logo 4
RG) = RP) = a3 =712~ ¢ (%)

The left side is nonpositive because ¢ minimizes R (), so we get ||¢! 31| < o~
for, say, T = 0.9. Now consider the functions f(¢?) = S>(3', ¢?) and fv((p2) =
S>(¢', ¢?). The given condition implies that f is strongly convex and has a local
and global minimizer in V; given by 2. Applying the bound ||¢p' — &'|| < 077,
we get that || f — fv|| < Co % and |V2f — sz|| < Co~*F for some constant
C > 0 and any sufficiently small neighborhood Vj of ¢. Then applying Lemma
f is also strongly convex on Vj, with a local and global minimizer in Vy given
by some point @2 for which [|g% — @%|| < C’o . This implies

$2(@',¢%) = 5261, 9%) = cll¢® - @1
Since S depends only on ¢! and not on ¢?, we have by Lemma that

6

RG) = R 75 70 = o1 =7 - ¢ (<27
Then, since this is again nonpositive, we obtain ||¢? — @Z|| < o7, and hence also
|¢% — @%|| < Co~". Now applying this argument to f(¢3) = S3(@!, 32, ¢>) and
f(gbl, @2, @), we obtain similarly ||¢> — 3| < Co~7. Iterating this argument
yields ||¢ — @|| < Co~F for a constant C > 0. For any neighborhood Vj, large
enough gg > 0 (depending on Vp), and all ¢ > oy, this implies that this minimizer
¢ belongs to the interior of Vj, and hence must be a critical point of R(¢). Then
the strong convexity in part (b) implies that this is the unique critical point in Vj,
which shows (c). Il
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4.4 Local landscape and Fisher information

We apply Lemmato analyze the Fisher information 7(6,) = VgR(Q*) and
the local landscape of R(6) near 6. By rotational symmetry of R(f), the same
statements hold locally around each point in the orbit Og, .

Recall the transcendence basis ¢ in Lemma and the decompositions d =
di + - +dp and ¢ = (¢'..... L) according to the sequence of subspaces
Rge and their transcendence degrees. Lemma establishes that ¢ is a local
reparametrization around generic points 6y, and we will analyze the landscape in

this reparametrization.

THEOREM 4.16. Fix a choice of transcendence basis ¢ = (¢, ..., oL) satisfying
Lemma and let 0 € R? be a point with dg@(0s) nonsingular (which holds
for generic 0y). For some constants C, c, 09 > 0 and some neighborhood U of 0,
and for all o > oy,

(a) In the reparametrization by @, the function R(y) is strongly convex on ¢(U)
with /\min(V%R((p)) > co 2L,
(b) The Fisher information matrix 1(0x) has dy eigenvalues belonging to [co~2¢, Co~2¢]
foreachl =1,..., L, whered; = trdeg(Rge) — trdeg(Rgé_l).
G < <

=0

(c) For any polynomial v € R
on V) such that

there is a constant C > 0 (depending also

Vo (05) T 1(8:) ™ Vo (85) < Co?t.

Note that part (c) describes the limiting variance in (I.9) for estimating v (6)
by the plug-in maximum likelihood estimate (5).

The proof of Theorem[d.16]relies on the following linear-algebraic result for any
o-dependent matrix with the graded block structure of Definition 4.14] and large
enough o.

LEMMA 4.17. Suppose H = H(o) € R?*? has a graded block structure with
respect (p1, ..., o). Let dy be the dimension of each subvector (p[. Let H.y ¢ and
(H _1):&:@ denote the submatrices consisting of the upper-left £ x £ blocks in the
L x L block decompositions of H and H™'. Then for some constants C,c,oq > 0
and all o0 > oy:

(a) H has dy eigenvalues belonging to [ca‘ze, Ca_zz]for eacht{ =1,...,L.

In particular, Apin(H) > co2L,
(b) For each { where dy + +++ + dg > 0, Amin(H.¢ ¢) > co2t,
(c) For each £ where dy + -+ + dy > 0, Amax((H ™ 1).g.¢) < Co?t.

PROOF. We first show part (b). This holds for the smallest £ where dy + --- +
dy > 0, by the definition of the graded block structure. Assume inductively that
it holds for £ < L — 1, and consider £ + 1 where dy4; > 0. For any unit vector
v = (v, vgq1) Where vy € RA1+++de gng Vgr1 € R4+1, we have by the
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induction hypothesis and Cauchy-Schwarz

-
v Hig41),:+1)V
=v) H T H 2.0 H
= Vg gV + Vg g1 0410041 + 20,0 Mg g 410041
—24 2 —2(£+1 2 —2(+1
> co 2 v )? + co 2D o 12 = 2Co 2D vl lugs |

> (co7? = 2C/c)o2E D) luyg |2 + (/202D Jugs |1

For large o, we get v H.(g41).:¢+1)V > ¢’o—2W+D and some ¢’ > 0. Hence (b)
holds by induction foreach £ = 1,..., L.

Next, we show part (a). That Ay (H) > co 2L follows from (b). For the first
statement, for any £ where dy > 0, write H = H¢D 4+ R where H*-1
equals H._1).(¢—1) on the upper-left (£ — 1) x (£ — 1) blocks and is 0 elsewhere,
and R“=D is the remainder. Part (a) implies that (=1 has di + -+ di—
eigenvalues at least co~2U=1 and remaining eigenvalues 0. The graded block
structure condition implies | R~V | < Co~2¢ for a constant C > 0. Then for a
constant ¢/ > 0 and all large o, Weyl’s inequality implies that H has d{+---+dy_;
eigenvalues at least ¢’ o2E=1 and remaining eigenvalues at most C o2t Since
this result holds for every £ = 1,..., L, this implies part (a).

Finally, for part (c), denote G® = [(H _1):g,:g]_1. We claim that for all £
where dy +---+dg > 0, this matrix G® has a graded block structure with respect
to (¢!, ..., (pz). That is to say, there are constants C, ¢ > 0 such that for all large o
andall 1 < j, k </,

(4.46) Co™2 > Amax(Gj(-f-)) > Amin(GJ(-f-)) >co™? and | G}? | < Co~2max(j.k)

For £ = L, we have G) = H |, s0 this holds by assumption. Assume inductively
that it holds for £ + 1, and consider £ where d; 1 > 0. Applying the definition of
G® and the Schur complement identity,

— — { £ £ -1~ -1
[G(K)] 1 _ ([G(C-I-l)] 1):&:( — (G(g’—zl) . G( +1) [G( +1) ] G( +1)) .

L1170 1,041 41,4
Then
) _ ~U+1) “+1) “+1) =1 (L+1)
G _G:E,:E _G:e,e+1[Gz+1,é+1] G2+1,:£'
We have ||G:(f’zlr)l|| < C'o~2¢+D gpgd ||[Géﬁ:2+l]_1|| < C'o2¢+D for some

C’ > 0, by the induction hypothesis. For large enough o, applying the induction
hypothesis also to each block of G(f ;1), we get that holds for £ (and some
constants C, ¢ > 0 different from those for £+ 1). Hence (#.46) holds by induction
foreach £ = 1,..., L. Then, applying part (b) to this matrix G® in place of H,
we get that Amin(G®) > co~2¢, which implies /\max((H_l):g’;g) < Co2t. This
establishes (c). Il

PROOF OF THEOREM BTG, Since dg(fy) is nonsingular, ¢ = (¢!, ..., L)
forms a local reparametrization on an open neighborhood of 6. We first show that
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O+ is a pseudo-local-minimizer with respect to this reparametrization. For this, we
apply the form

1
Se(0) = 5 1Te(@) = Te(pe) s + Qel)

provided in Lemma [4.8] where 7;(¢) and Q,(¢) are shorthand for T'(9(¢)) and
0(0(¢)), and @ = @(64). Differentiating in ¢,

VeSi(9) = e Te9) (Tip) — Telp)) + Vg Qe(o).

1

Vo Siy) = 7

BTe(e) 0 Telo) + 7 Y (Tl — Telow) VAT

+ V2 0u(9).

Here, T;(p); is the i" entry of T;(p) and the summation is over all multi-indices i .

Note that Qy is in the algebra generated by RgZ—l’ so Lemma c) ensures that

Qy depends only on (¢, ..., ¢*1) on a neighborhood of 6. Thus, evaluating the
above at ¢ = @, and restricting to the coordinates (pe yields

1
V¢€SZ(¢*) =0, V;«&(‘P*) = Edw T((‘P*)Td(pe To (@)

In particular, V;Z S¢(px) > 0. To see that V;Z S¢(¢+) has full rank dy, observe
that every degree-£ polynomial of 6 € R? is a linear combination of entries of
the tensors O®, ... 6%, Thus, symmetrizing by G, every polynomial in Rgz
is a linear combination of entries of T71,..., T, (monomials). This means that
ot = f(T1(9),...,T;(¢)) for some linear function f : RA+d*+-+d" _ Rde,
Differentiating both sides in ot and observing that 77, ..., Ty—; do not depend on
ot by Lemma c), we obtain
Id = (d7, f)(dye To),
where the left side is the dy x dy identity. Thus d ¢ Ty has full rank dy, so 0y is a

pseudo-local-minimizer and V;e Se(ps) > 0.

Then part (a) of the theorem follows immediately from Lemma[@4.15|b). For (b)
and (c), note that since Vg R(6x) = 0, we have from (4.3) that

1(6:) = VaR(0x) = (dp(6:) T - V2R (px) - d(6:))

where ¢« = @(0x). Setting V = dp(fx)"!, we find that Lemma m shows

that V(%R((p*) = VTI(0,)V has a graded block structure. For any polynomial
¥ € RY,, Lemma shows that v is an analytic function of ¢!, ..., (pz, and

=

hence that V, ¢ = VTVQW is nonzero only in its first £ blocks. Writing

Vo (6:) 187 Ve (8) = (7T Vv (8)) (VT 16.07) ™ (VT Vo (82)).
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part (c) then follows from Lemma[d.17]c). Also, by the QR decomposition, there is
a nonsingular lower-triangular matrix W for which V' = VW is orthogonal. It may
be verified from Definition that the matrix V1 1(8:)V = WT (VT 1(6:)V)W
also has a graded block structure for modified constants C, ¢, 0. As the eigenval-
ues of V T 1(6,)V are the same as those of /(6y), this and Lemma a) show
part (b). [l

The following then shows that with high probability for n > 2L, the empirical
risk R, (¢) is also strongly convex with a local minimizer in ¢(U). This require-
ment for » matches the requirement for list-recovery of generic signals in [6].

COROLLARY 4.18. In the setting of Theorem[4.16} for (9*, d, G)-dependent con-
stants C, ¢, c’, 09 > 0, wzthprobabzlzty at least 1 — e€Uogm? _ ce—en!/@Ho™! , we
have )me(V Ru(9)) = c'o72L for all ¢ € o(U), and R, (0) has a critical point
and unique local minimizer in U.

PROOF. Note that applying directly Lemma [2.8] and the general concentration
result of Lemma with ¢ =< 0~2L small enough, we may obtain that this corol-
lary holds with probability at least 1 — ¢=¢0 = ?n+Clogo _ —cn?/3

To strengthen this probability guarantee, we apply a concentration argument
tailored to large o based on Lemma We assume throughout that n > 2L, as
otherwise the desired probability guarantee is vacuous. Let Ay ,, and Py ,, be the
polynomials of Lemma Since Ay, has degree at most £ in &, by Gaussian

hypercontractivity, for any # > 0 we have

1 n
(4.47) ]P’U; Z Ag (i, 05) — Ee[Ag m (e, 0:)] >

i=1

t:| < 2¢7c@)Y"

(This follows also from Theorem applied with ¢ = (e1,..., &), the function
f(&) = X Agm(ei. 0s), and the two bounds [|VE f(x)|7 < [VEf(x)ms <
C /n and |[E[V/ f(e)]|l7 < IIE[V/ f(¢)]lus < C +/n for any partition 7 and any
J < £ —1.) For a sufficiently small constant ¢o > 0 to be chosen later, let £ be the
event where the conclusion of Lemma holds with k = 2L, t = 072L/logo,
and r (o) a constant larger than ||6, ||, and also where

1 ¢ _
(4.48) ‘; D Agmlei. 02) — Ee[Ag (e, 02)]| < oo™ D)
i=1
forevery{ = 1,...,2L andm = 1,..., M. Note that implies (4.48) holds
with probability at least 1 — 2e=<""/0"> > | —2¢=n"""0™2 for ¢ < L, and at

least 1 — 2e—co M)/ > 11— 2e=cn'/Pe7t gor o), >¢>Landn > oL,
Thus, combining with the probability guarantee in Lemma.TT]and taking a union
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bound,
_ cn K 2 1/(2L)
PlE] =1 — €ogn)® _ ool TiogoromaL TC oz 0loglogn 1 —enoC

’ 2 —e'pl/2L) =1
Zl_ec(logn) _Clecn o

We now restrict to this event £ and parametrize by ¢. There is a o-independent
neighborhood U of 6, on which V(%RL (¢) has a graded block structure: for each
£=1,....Landevery ¢ € p(U),

CO'_2€ > Amax(végRL(gﬂ)) > /\min(V;ZRL((p)) > 60'_26’
||V<§‘,<pf’RL(‘P)|| < Co2max(t.4)

Let us denote the first 2L terms of the expansion in Lemma[4.T1| by

2L M, 1 n
RII{((/)) = Z Z G_KZ ZAZ,m(Ei,G*)Pé,m((p)a
{=1m=1 i=1

observe that ]E[R,% ()] = RE(¢), and write
V2Ru(¢) = V2R (p)
= (V2Ru(p) — V?Ry (9)) + (V2 Ry (9) — VZR" ().

On the event &, the first term is controlled by Lemma4.11] and for our choice of
t =0 2L /logo we have

(4.49)

C
4.50 VZRy(0) — V2RE(O)|| < —7——.
( ) H n( ) n( )H _O'ZLIOgO—

For the second term, observe that Py ,, € Rgé and hence Py ;, depends only on

the coordinates (pl, e, (pe. Thus for any £,¢' < L,

V2, o (Ri(@) = R (9))

2L M n
_ 1
= > Y o* <; D" Ak m(ei. ) — Ee[Ag m e, 9*)1) V21 o0 Pim(@).

k=max({,{’) m=1 i=1
Then on the event &, applying (4.48) and k + (k A L) > 2k A 2L, also
[V2, o REG@) = V2, o RE(@)] < C o= 2m®0),
Choosing cg sufficiently small and combining with (#.49) and (#.50), we obtain

that the Hessian of the empirical risk V(% R, (p) also has a graded block structure
over ¢ € U. The lower bound )Lmin(V(%Rn (@) = o0 2L then follows immedi-

ately from Lemma[4.T7\(b).

To show that R, (¢) has a critical point (and hence unique local minimizer) in
¢(U), we apply an argument similar to that of Lemma c). Let § € o(U)
be any minimizer of R, (¢) on the closure of ¢(U). We aim to show that ¢ can-
not occur on the boundary of ¢(U). Recall from the proof of Theorem that
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@« = @(B%) is a pseudo-local-minimizer for the sequence Sy, ..., Sz with respect
to (¢',...,05). In particular, ¢, minimizes S; over any sufficiently small neigh-
borhood U, so we have S1(@) — S1(¢«) > ¢||@' — ¢}||? and

~ oA logo\*
RH@) - REpo) = co 2o — gl P - (27 |
This implies also for the empirical risk R;, that, on the event &,
Ry (®) — Ru(px)

~ ~ oA logo 4
= Ra(@) ~ RE@) = Ralie) + REpo) + co 2" — gl — ¢ (227

2L My 1 n
> Z Z ok (; Z Aom(&is 0x) — Ee[Ag m (e, 9*)]) (P (@) — Prm(9x))

k=1m=1 i=1

logo 4
—2yAl _ 152

——— +co — - C
o02Llogo 10" = ¢l ( o )

oA oA logo 4
> ™29t = phIP = € coo 29" - ph - " (2E7) |

where the last line applies (4.48)) and the fact that the polynomials Pj ,, depend
only on ¢! and must be Lipschitz over ¢(U). Since $ minimizes R,, we have
0> Ry, ((ﬁ) — Ry, (¢x«). Then this implies for some constant C > 0 and all o > 0y
that [|§" — g, || < C - co.

Now defining f(¢?) = S» ((p*, 2) and f (goz) = S,(¢1, ¢?), these functions
must be Lipschitz over (p2(U) so this yields | f — f| ||V2f V2f|| <C’.
on ¢2(U). Since ¢ is a pseudo-local-minimizer, taking the neighborhood U sufﬁ—
01ently small ensures that the function f is convex over ¢2(U), and is minimized at
@2. Then for cq sufficiently small Lemma 8| guarantees that f also has a critical
point and local minimizer @2, which satisfies

4.51) |7* — 97| < C-co
and S2(¢', $2) — S2(¢1, 72) > ¢||¢? — >||%. Then

~ ~1 — Ay~ logo 6
RE@) — RE((8".8%.¢3.....0L)) = co™1¢% - %> - C(T) ,
where there is no 02 term because S; depends only on ¢!, which coincides in

these two arguments of RL. Applying a similar argument as above, this implies on
£ that

0 = Rn(@) —Rn(((ﬁl»‘ﬁz»(ﬂz»vﬁﬂf))

4 — 4~ _ logo 6
oG~ T - € ear 1 - ) - € ()
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Then for some constant C > 0, [|$? —@?| < C -co. Combining with the preceding
bound @31)), we get [|§% — 2| < C' - co.

Now defining f(¢%) = S3(p}.¢2.¢%) and f(¢®) = $2(§'.$2. ¢*). we may
repeat this argument to obtain ||¢> — ¢3|| < C - ¢o, and so forth. This establishes
3¢ — @&|| < C - o for some constant C > 0 and each £ = 1, ..., L. Finally, for
co sufficiently small, this implies that the minimizer ¢ must belong to the interior
of ¢(U). Since R, (¢) is differentiable and convex over ¢(U), this implies that ¢
must be a unique critical point and local minimizer of Ry, (¢) over ¢(U). O

4.5 Globally benign landscapes at high noise

In the following three subsections, we apply the tools of Section 4.3]to analyze
three examples in which the landscapes of R(6) and R, (6) are globally benign in
this high-noise regime o > 0(6x. d, G) for generic 6, € R?.

In each example, for each fixed point 6 € R, we study the landscape of R(6)
near 6 using a local reparametrization ¢ = (¢!,..., ¢%) around 6. Note that, in
general, we cannot use the same reparametrization ¢ at all points 6 € RY, as we
must handle nongeneric points where dg(p(5) is singular for any particular map ¢,
even if the true parameter 8, is generic.

We will combine these local statements over a large enough ball {§ € RY -
18]l < M} using a compactness argument. The following result strengthens Lem-
mas 2.9 and to provide a lower bound for ||[VR(8)| and ||[VR,(0)| outside
this ball.

LEMMA 4.19. For some (04, d, G)-dependent constants M, p, co, 0o > 0 and all
o > oo, if |0]l > M, then |[VR(®)| > coo™. If, in addition, |Eg[g6] —
Eg(g0«]ll > p, then |VR(O)|| > coo™2. For some (0«,d,G)-dependent con-
stants C, ¢ > 0, with probability at least 1 — e—clogm)® _ cp—en!/io™!
bounds hold for V R, (0) and all ||0] > M.

, the same

PROOF. For the empirical risk R, (#), we may assume 1 > o'*, as otherwise the

desired probability guarantee is vacuous. By Lemma[2.9] for all ||| > Co and a

large enough constant C > 0, we have |[VR(8)|| > co~! and |[VR,(0)|| = co™!

with probability 1 — C’e™". By Lemma if C'02/3 < ||| < Co, then

IVR(9)|| > co~2. Applying the concentration bound (Z.I8) in Lemmal[2.11] with

r = Coandt = co2/2, we get |[VR,(9)|| = co—2/2 for all such 6, with

probability | — e—¢n0 >+Clogo > | _ cre=¢n' 07! ypenp > o4,
It remains to consider M < 6] < Co2/3

. We consider two cases:
Case 1. Suppose that Eg[g] = 0. Then Lemmaimplies S1(0) =0 and
VS2(0) = Eg[g00 g7 ]0 — Eg[g040, g ]6.
For every unit vector v € R?, we have vIEg[gvvTg v =EgllvTgv|?] > 1/K

where K = |G|, because g = Id with probability 1/K. Thus ||Eg [gvvTgTv|| >
1/K, so ||Eg[g99TgT]9|| > ||0||13/K. For sufficiently large M, this shows
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VS2(0)|| = ¢||f]|3>. Then by Lemma for a constant ¢y > O (independent
of M), we have
(4.52) IVR@)] = coo™|10]° = o™,
For the empirical risk R, write
VR, (0) — VR(O) = VR, (0) — VRI(6) + VRZ(9) — VR*(0)
&l &
+ VR*(0) — VR(6)

&3

(4.53)

where R2(6) = ZZLZ ot % Y71 Pe(ei, 0, 05) is the degree-4 approximation to
R, (0) in Lemmaand R?(9) = E[R2(9)]. Note that the £ = 1 term is absent
in R2, because by we have Py (¢, 0,04) = k1((e, g0)) = ¢ ' E[g]6 = 0. By
Lemma we have R2(0) = 6 ~*55(6) since S1(0) = 0.

The first term in (£.53) is controlled by Lemma #.11} Applying @.33) with
k =4,r(0) = Co?/3 andr = (67 logo)?, we get |E1| < C(o~ " logo)?||6]*
with probability at least
1 — Ce~clogm? _ e_%
For the third term in (@.53), Lemmayields €3]] < C(o™'1logo)®||9]]°. For
the second term in {.53)), using (4.35)) we have

+C logo-loglogn ~1— Ce_c(log”)z _ C/e_clnlMU_I.

4 M, n
1
454) &= o0t ;2 (Agm (s 0x) — Ee[Ag (e, 0:)])V Py m(0).

{=2 m=1 i=1
—cnl/4g~1

Applying the polynomial concentration (4.47), we have with probability 1—Ce

1 & ‘
(4.55) ‘nZAg,m(ai,Q*) —EelAgm(e,00)]| <Co™2, m=1,..., My, £ =234

i=1
As stated in Lemma |4.11} each V Py ,,(6) is a polynomial in 6 of degree at most
¢ — 1. Thus [VP;,(0)| < C(|8] v D¢ forallm = 1,...,M;. Com-
bining this with the previous two displays and using ||f| <« o yields ||& <
Co™2 2222 o=¢)16]|¢t < C’6~*||#||. For sufficiently large M, this implies
1€+ €20 + €3]] < (co/20 161
where ¢y is the constant in (#.52)). Thus also
IRA ()]l = (co/2)a™ 6] = ¢'o™*.

This concludes the proof in the case Eg[g] = 0.

Case 11. Suppose Eg[g] # 0. We apply Lemmas 2.4] and 2.5]to write R(6) =
RY(6;) + R%2(6,) and R,(6) = R9(6;) + RE2(6,), where 6; € R91 and 6, €
R?% are the components of  orthogonal to and belonging to the kernel of E¢[g].
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Then [0 — 0«[1> = 161 — 01,4 1> + 162 — 2,41 IVR(O)II> = [[VR(6)I* +
IVRC2(0,)]12, and [VR,(0)[> = VRO + |VRZ?(62)]|2. Recall from
the proof of Lemma that [E¢ [g] is the projection orthogonal to its kernel, so
IEg[g6] — Eg (g6l = 161 — 01.%l. Since RY(6;) and RI4(8;) correspond to the
model N (61 «, 02 Idg, x4, ), we may verify that

01 —61« €

VR (B) = == — —.

91 - 91,*
o2

g~ N(0.1dg,xq, /7).

Thus, if [|E¢ [¢0] —Eg[g04]]l = [|01 —01.4]l > p. then [[VR(®)| = [VRY(B)| =
po~2 and [|[VR,(0)|| > |VRY®G))| > (p/2)0~2 with probability at least 1 —
Ce" "2 Otherwise, for small enough p > 0, we have |0y — 02 «|| > M/2.
Applying the argument of Case I for the mean-zero group G, shows ||[VR(0)| >
[VRC2(6,)| > co~* and |[VR,(0)| > ||VR,?2(92)|| > co—* as desired. O

VRY(6)) =

Discrete rotations in R?

We consider first the group of K-fold discrete rotations on R?: For a fixed inte-
ger K, we have

(4.56) G={dhh?. WX "W~7/KZ

where

(4.57)

__(cos2n/K —sin2mx/K
~ \sin27/K  cos2n/K

is the counterclockwise rotation in the plane by the angle 257/ K. For fixed 85 # 0
and for any 6 # 0, denote

(0. 04)
t(0) = arccos A
as the angle formed by 6 and 6.

The special case of K = 2 and G = {+ 1d, —1d} is subsumed by results of [53|
cor. 3], which imply that the global landscape of R(6) is benign for all ¢ > 0.

Thus, we consider here the setting where K > 3.

THEOREM 4.20. Let G be the group of rotations #56) on R?, with K > 3. Con-
sider 0« # 0. There exists a (0«, K)-dependent constant oy such that for all
o > 0g, the landscape of R(0) is globally benign. More quantitatively, for small
enough p > 0, there are (04, K)-dependent constants ¢,o¢ > 0 such that when
o > 09’
(a) For each 0 e Og,, reparametrizing by ¢ = (||0],£(0)) on Bp(g), we have
the strong convexity )\min(V%R(go)) > co 2K forall g € o(B,(0)).
(b) For each 6 € R satisfying |0 — ||6x|| € (—p. p) and 6 ¢ Uge(% Bp(g),
either ||VR(O)| = co™2K or Anin(VZR(9)) < —co 2K,
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(c) Foreach® € R? satisfying ||0]|—||0x | ¢ (—p. p), either |VgR(0)| > co~*
or /\min(VgR(G)) < -—co™%

The proof rests on the following lemma, which characterizes the functions Sy (6)
in for this discrete rotation group.

LEMMA 4.21. Let G be the group of rotations #56) on R?, with K > 3. Then:

(@) S1(8) = 0and S2(0) = [16]1*/8 — 181> 16« 1> /4.

(b) Foreacht € {3,...,K — 1}, S¢(8) = py(||6||?) for some univariate poly-
nomial py : R — R (with coefficients depending on 6.).

(¢) For{ = K and some polynomial pg : R — R (with coefficients depending
on By),

Sk (0) = 161%116x 1% cos(K - 1(6)) + px (16]%).

- 2K-1k1

PROOF. Let z = (64)1 + i(f«)2 and w = 61 + i6, as elements of C. Let
¢ = e2™/K and denote the set of K™ roots of unity by Xg = {1.,¢,...,¢K-1}.
Then £Kz = (W 6,)1 +i(h¥64), where  is the generator @37)), and similarly for
w and 6. Notice that for a = a1 + iap and b = by + ib> we have

((@r.2). (b1, b2)) = arby +azby = (@@ + @b+ )~ @~ )b~ b)
= %(a5+ab).

Then

1 P S - il [ i (] (N
Eg[(6x, 26)%] = 1K (¢ Lzw +¢zZw)” = = > .
teXk

where we have used K > 3 and

K ifa=0mod K
0

(4.58) 2 = ifa £ 0mod K

teXk

for the second equality. Similarly, E¢[(6, g6)?] = ||0]|*/2, and (a) follows from
Lemma/d.9
Applying this argument for a general term My ,, (7 | 6, 04), we have

My (7w | 6, 04)
m L+m

= Egi,ogin H(gn(Zj—l)ev gn(zj)9>' l_[ <9*, gn(j)9>
Jj=1 j=2m+1
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1 K—1 m ) . . .

= Ll Z |:l_[ ((é-lﬂ(Zj—l)_ln'(Zj) + é‘ln(Zj)_ln(Zj—l))|w|2)

i1,enijz=0Lj=1

L+m
x l_[ (7D + ;in(j>zw):|
j=2m+1
|w|2m m

= Jam 2 [1‘[(;”(2,-_”/%(2,-) + Cn2i)/ En2i—1)

é'l,...,§|ﬂ|€XK j=1

{+m

j=2m+1

Expanding into polynomials of z,zZ, w, w, this expression is a linear combination
with constant coefficients of terms of the form

2m+2a,,2a,,b=bsc1  Clxl
D U e e e SER e
ISPRPIICD. §'q

Here, the exponents satisfy a > 0,2a + |b| = (€ +m)—2m =L—m, ) ;c; = b,
> ilcil <€+m,and |c;| < m+(£+m—2m) = £ foreachi. By (#.58)), these terms
vanish unless each ¢; is a multiple of K. In particular, for £ < K, the condition
lci| < € implies that the only nonzero terms must have ¢; = --- = ¢| = b = 0.
Then My ,, (7 | 6,0%) is a polynomial in |lw|?> = ||0]|?>. Since S;(f) is a linear
combination of such terms My ,, (7 | 6, 84), this shows (b).

For (c), if £ = K, the only nonzero terms that are not a polynomial of ||6|?
must have b # 0, so that the condition 2a + |b| = K — m requires m < K. Then
since ) ; |ci| < K +m < 2K, there is some i * with ¢;+ € {—K, K} andc; =0
for all j # i*. Such terms can only appear in Mg (7 | 6, 65) when m = 0 and
o ={{1,..., K}}, for which we have

1
Mico(il, . K1} 10,60.) = S Rt +Z8w®).
Writing w = ||0]|¢’” and z = |04 ||e?"*, this is

181K N0E ik L iGe—nk
MK,O({{l,,K}}|9,9*)—2—K(€ +e )

_ 1 ne. 1

JK—1 cos(Kt(9)).

Substituting into (.9) and recalling that the remaining terms are polynomial in
16]1? shows (c). a
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PROOF OF THEOREM .20l For each point 6 e Rd, we consider a local re-
parametrization by ¢ in a neighborhood Uy of 6. At = 0, we take the repar-

ametrization to be ¢ = 0. At each § # 0, we take it to be ¢ = (||6]],7(6)). We

then apply Lemmas @ and@]on Ug.
For § = 0, observe that VZSQ(G) —21164]1>1d < 0. For 6 = 0 where ||0]| #

6], set ¢ = go(@). Observe that Sz((p) = gof/S — (plgol’*/4, $0 Vg, 82(9) =
%@1 (@% — (ﬁlz*) # 0. In both cases, Lemma implies that |[VgR(9)| > co™*
or kmin(VgR(Q)) < —co~* for some ¢,00 > Oand all o > 0 and 6 € Us.

For 6 ¢ Og, where ||§|| = ||B«]|, observe that S1, ..., Sg—1 depend only on ;.
For Sk, applying ¢1 = ¢1,%, we have

Vo, Sk (§) = 91X sin(K ),

SK—1(K — 1)1
(4.59) 25K =

V2 Sk(@) = 07K cos(K ).

2K-1(K —1)!
Then either Vg, Sk (¢) # 0 (when ¢ ¢ {jn/K : j = 0,1,...,2K — 1}), or
lmin(V(%ZSK(@) <O0(wheng, € {jn/K:j =1,3,5...,2K —1}). So Lemma
B.12]implies that Vo R(9)]| = co™K or Amin(VZR(6)) < —co 2K forall o >
op and 6 € Ug.

Finally, for 6 e Og, , @.39) verifies that § = ¢(§) is a pseudo-local-minimizer
in the parametrization by ¢. Then Lemma implies R(6) has a unique local
minimizer in Uy and kmm(V R(¢)) = co 2K forall ¢ € p(Uy) and 0 > 0. This
unique local minimizer must be 6 itself, since 6 is a global minimizer of R(6).

The constants ¢, gg > 0 above depend on 0. By compactness, for any M > 0,
there is a finite collection of points 6 where the neighborhoods Uy cover {6 € R? :
6]l < M}, and the above statements then hold for uniform choices of ¢, 09 > 0
in their union. For a sufficiently small constant p > 0, this establishes all claims
of the theorem for points # € R¢ where ||#|| < M, and the result for ||0]| > M
follows from Lemma[4.19 O

The following then shows that with high probability for n > o2& the empirical
risk R,(0) is also globally benign and satisfies the same properties. This is a
special case of the guarantee for R, (6) in Theorem to follow.

COROLLARY 4.22. For some (04, K)-dependent constants C,c¢ > 0, the state-
ments of Theorem hold also for R, (0), with probability at least 1—e—clogm)? _

Ce_cnl/(ZK)G—l‘

All permutations in RY
Consider any dimension d > 1, and let G = S; be the symmetric group of all
permutations of coordinates in R?. Here, the size of the group is K = d!. Define
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the symmetric power sums in 6 by

d
1
P(®) == 6F.
J=1

and (for fixed 6, € Rd) the Vandermonde varieties by
(4.60) Ve =10 € R? : pg(0) = pp(6y) forall £ = 1,.... k).

The map 6 +— (p1(9)...., pg(0)) is injective on {# € R4 : ; < --- < O}
(see [29, cor. 1.2]), s0 V; = Oy, .

THEOREM 4.23. Let G == S; be the symmetric group acting on R4 by permuta-
tion of coordinates. For generic 05 € R?, there exists a (6%, d)-dependent con-
stant og > 0 such that the global landscape of R(0) is benign for all 6 > oy.
More quantitatively, for small enough p > O there are (0«, d)-dependent constants
c,o09 > 0 such that when o > 0y:

(a) For each 6 € Oe,, reparametrizing by the symmetric power sums ¢ =

(p1,....pg)in Bp(g), we have the strong convexity )Lmin(V(%R(gz))) > co—2d

for all ¢ € ¢(By(0)).

(b) Denote Vf = {0 € R? : dist(6,V;) < p}, where V{; = RZ. Then for
eachf =1,...,d and each 6 € Vf_l \Vf, either ||VoR(0)| = co~2t or
Amin(VZR(0)) < —co™2.

The proof rests on the following lemma, which characterizes the functions S¢ ()

in this example.

LEMMA 4.24. Let G = S, be the symmetric group acting on R4 by permutation of
coordinates. For eachf = 1,...,d, some constant ay > 0, and some polynomials
qe.te R 5 R with coefficients depending on 0y and such that

qe(p1(0s). ... pe—1(84)) = 0,

we have

Se(0) = ag(pe(6)* — 1)4(19*))2 + q¢(p1(), ..., pr—1(9)) - pe()
+r¢(p1(0). ... pe—1()).

PROOF. We apply Lemmaf4.8|and the fact that the power sums p1(6), p2(6),. ..
generate RC as an algebra over R (see [32, Eq. (2.12)]). Thus, any polynomial
@ € Rge may be written as

9(0) = cope(0) + qp(p1(0). . ... pe—1(6))

for some ¢, € R and some polynomial g, with real coefficients. In particular,
applying this to each entry of the moment tensor T¢(6) in Lemma we obtain

4.61)
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the form (4.61)) where

C2

ag=)_ 2(2)!)

%

and
qe(p1(0). ... p—1(8))

=2 @ (PO Pt ) ~ 4o (P16, ... pr1 (62)),
i

with both summations taken over all entries of 7;(6). We have ay > 0 strictly
because the diagonal entries of 7;(8) are given by

d
1 (d —1)!
To®)ii = 77 D gy = ——— D0 = pu(0).

dl
d! oESy d i=1
so that ¢, = 1 for these entries. O
The derivative of this map ¢ = (p1,..., pg) is singular at points ] having

repeated entries. To analyze the landscape of R(#) near such points, we use the
following known (and nontrivial) facts about the symmetric power sums and Van-
dermonde varieties.

LEMMA 4.25. Let Vi be the Vandermonde variety @60), with Vo = R%. For each
k €{l,...,d} and any generic 05 € R%:
(a) Each point 6 € Vi has at least k distinct entries.
(b) Vr_q is a nonsingular algebraic variety, and py(0) is a Morse function on
Vk—l-
(c) The critical points of the restriction py |y, _, are the points 0 € Vi_y having
exactly k — 1 distinct entries.
(d) If 0 is a local minimizer or local maximizer of pxly,_,, then it is also a
global minimizer or global maximizer of pg|v,_, .

PROOF. For (a), fixing any integer multiplicities d1, ..., d;r_1 > 0 summing to
d, the image of the polynomial function F : Rk-1 5 RK given by

k—1
1
F(X1,...,Xp—1) = EZdjxjf A=1,....k
ot

is a constructible set in the Zariski topology on R¥, by Chevalley’s theorem (see
[24] theorem 3.16]). By [24, theorem 11.12], the Zariski closure of this image has
dimension at most k — 1, so its complement is generic. Taking the intersection of
these complements over the finitely many choices of d1, .. ., dr_, we find that the
complement of the set

{(p1 (0),..., pr(8)) : 6 has at most k — 1 distinct coordinates}
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is also generic in RK. We conclude that for generic 65 € R¥, the point (p1(fx), . . .,
Pir(64)) does not belong to the above set, meaning that each point 6 € V; has at
least k distinct coordinates.

For (b), the gradient of py is given by

. _
Vpg(@)ZE(Qf Lo e,

Thus, if Vpy,...,V py are linearly dependent, then there is a nonzero polynomial
P of degree at most k — 1 for which P(6;) = Oforeveryi = 1,...,d. Since P
has at most £ —1 real roots, this implies that 6 has at most k — 1 distinct coordinates.
Applying (), this shows that for generic 0y, the vectors V py, ..., V py are linearly
independent at every 0 € Vi (6x), so Vi (6«) is nonsingular. The remaining two
statements then follow from the results of [5, theorems 5, 6, and 7]; see also [29].

O

PROOF OF THEOREM .23l Foreach 6 € R, we consider a local reparametriza-
tion by ¢ in a neighborhood Uy. If k is the number of distinct entries of 6, then we
take the first & functions in ¢ to be the symmetric power sums p1(8). ..., pr(9).
As shown in the proof of Lemma above, the gradients Vpy,..., V p; must
be linearly independent at 6. We arbitrarily pick d — k remaining functions to
complete (p1, ..., pr) into the local reparametrization ¢. Denote ¢ = (p(§) and
9x = ¢(0x).

We apply Lemmas [4.12]and 4. 15| on each neighborhood U. Fix £ € {1,...,d}
and consider 6 € Ve_1 \ V. By Lemma @ka), 6 has at least £ — 1 distinct co-
ordinates, so the first £ — 1 coordinates of ¢ are (¢1,...,¢s_1) = (p1...., pe—1).
Denote ¢ = (¢, ...,¢4), and note that Sy, ..., S;_; are functions only of
®1...., 9. Furthermore, recalling (4.61)) and applying

qe(@1. .- Pr—1) = (@15 @p—1,4) =0
and the chain rule,
Vot Se(@) = 2a¢(pe(P) — pe(@x)) Ve pe(P),
V2eSe@) = 2a¢(Vye pe@) Ve @) T + (pe(@) = pe(9)) - Ve pe(@)).
Since 6 ¢ Vg, we have py(@) # py(@«). Then either VeS¢ (@) # 0, or
Voere@) =0 and  V2,S¢(§) = 2a¢(pe(@) — pe(9x)) - Ve pe(P)-

In this latter case, note that (pg is a local chart for Vy_; around @, so ¢ is a critical
point of py|y,_,. The Morse condition of Lemma b) implies that all eigenval-
ues of V;K pe(@) are nonzero. If V;« p¢(@) has both positive and negative eigen-
values, then this guarantees that )Lmin(sz S¢(@)) < 0. Otherwise, ¢ is a local min-

imizer or local maximizer of py|y,_,. If it is a local minimizer, then all eigenvalues
of VZZ pe(@) are positive. Lemma d) also implies that py (@) < pe(@x), so all
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eigenvalues of V;e S¢ (@) are negative. The case where ¢ is a local maximizer of
Dely,_, is similar. Combining these observations and applying Lemma we
get that either |VgR(0)|| > co2¢ or )Lmin(VgR(G)) < —co 2 forall 6 € Uy
and o > oyp.

For§ € Vg = Og,, we have ¢ = (p1,..., pg), so that each S; depends only
on (¢1,...,¢p) and

Vo Se(@) = 2ay(9g — ¢e.) = 0, Vo, S¢(@) = 2a; > 0.

Thus @ is a pseudo-local-minimizer in the reparametrization by ¢. Lemma m
implies that 6 is the unique critical point of R(6) in Uy, and that Amin (V(%R((p)) >
co24 forall ¢ € ¢(Ug) and 0 > 0y.

Fixing any M > 0 and taking a finite collection of these sets Uy that cover the
compact set {0 € R? : ||§|| < M}, the above results hold for uniform choices of
constants ¢, g9 > 0 in their union. Then for a sufficiently small constant p > 0,
the claims of the theorem hold for all & € R with ||| < M, and the result for
6] > M follows again from Lemma4.19] O

The following then shows that with high probability for any d > 2 and n >
024 the empirical risk R, () is also globally benign and satisfies the same prop-
erties. Again, this is a special case of the guarantee for R,(6) in Theorem to
follow.

COROLLARY 4.26. For some (04, d)-dependent constants C, ¢ > 0, the statements
of Theorem hold also for R,(0), with probability at least 1 — e—clogn)® _

Ce_cnl/(zdv4)a—1 )

General groups
We provide a general condition under which the landscape of R(68) is globally
benign for high noise, which captures the structure of the previous two examples.

Let My : R4 — Ré+d?+-+d" be the combined vectorized moment map
M(0) = (T1(6)..... Te(9)).

For fixed 65 € RY, recall Py(0) = ||T¢(6) — TK(G*)”%S from Lemma and
define the moment varieties

Ve = {0 eR? : My(h) = My(65)}, Vo =R,

We denote by Pyl|y,_, the restriction of the function Py to Vy_;. We will assume
that each 1 is nonsingular and has the same dimension dy at every point. We then
denote by V Pyly,_, € R% and V2 Pyly,_, € R¥>4¢ the gradient and Hessian of
the restriction Py|y,_, with respect to any choice of local chart on V;_. Note that
the conditions below do not depend on the specific choice of chart.
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THEOREM 4.27. Let 8, € R4 be generic, and let L be the constant in Lemma
Suppose that

VL = Og,
and that for every £ > 1, dgMy has constant rank on Vy. Suppose also, for
each £ = 1,...,L and each 0 € Vy_,, that either (1) VPy|y,_,(8) # 0, (2)
Amin(V2P6|V£71 (0)) <0, 0r (3) 6 € V. Then there exists a (0, d, G)-dependent
constant oy > O such that the landscape of R(9) is globally benign for all ¢ > oy.

More quantitatively, for small enough p > 0, there exist (0«, d, G)-dependent

constants ¢, g > 0 such that when ¢ > 0y,

(a) For each 6 e Og,, there is a local reparametrization ¢ : Bp(g) — R such
that Amin(V2R(9)) > co™2L for all ¢ € (B, (D).

(b) Denote Vf = {0 € R? : dist(6,V;) < p}, where V{; = RZ. Then for
eachf = 1,...,L and each 6 € Vép_l \Vep, either |VR(8)|| = co=2¢ or
Amin(VZR(0)) < —co2t,

With probability at least 1 — e—clogm? _ cp—cn
hold for the empirical risk Ry (0).

1/2Lv4) —1
9 | the same statements

PROOF. For generic 6, € R¢, Lemma implies that dg M, has rank d; +
.-+ + dy at Ox. Then by the given assumption that dg M, has constant rank over
V), this rank must be dy + --- + dy, and V; is a manifold of dimension d; =
d—(dy+ -+ dy).

Note that for any £ > 2, V, € {0 : ||0]> = |6«]|*}. Hence for large enough
M > 0 and small enough p > 0 (depending on 6), if |8| > M, we have
either 0 € Vg \ Vf or 0 € V{’ \ Vf . Lemma shows that with probability
1 —e—clogm? _ cp=en'’%0™! o have |[VR(O)[, |[VRA(§)| > co2 forall § e
VE\ VT and [VRO)|, VR, (0)]| > co™* forall 6 € V) \ V5.

It remains to consider the points {6 : |8 < M}. We will apply a compactness
argument to take a finite cover by neighborhoods of points 6 € R?. We consider
two cases for such a point 6:

Case 1. Suppose 6 ¢ Op,. Then there must exist £ € {1,..., L} where 6 €
Vo,...,Ve_1 and ] ¢ Vy. Foreach k = 1,...,£ — 1, since dg M} has rank
dy + -+ + di, we may pick di coordinates (pk of the moment tensor 7} such
that (¢',...,¢" 1) have linearly independent gradients at 6. Let us complete
the parametrization by d — (dy + --- + dy_;) additional coordinates ¢¢, so that
o = (p!,. .A:,gog) has nonsingular derivative at f. Then for some neighbor-

hood Uy of 0, ¢ forms a local reparametrization on Uy, and Lemma @4.5(c) en-

G
<{—1

this reparametrization. In particular, the manifold Vy_; is defined by ¢!(0) =
o1 (0%), ..., 1(0) = ¢ 1(h4) on Ug, so that the remaining coordinates ot
form a local chart for Vy_;. By Lemma St1,...,8¢_; are functions only of

sures that each polynomial ¥ € R is a function only of (¢!,...,¢* 1) in
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(gol,...,<p£_1), and
1
Ve Se() = 5o

1
2y Vet Pe@). V2 Se(p) = MV(ing(go),

Since 6 ¢ Vy, the given condition in the lemma implies that either V¢ S¢(¢) # 0
or kmin(VZe S¢(¢)) < 0. Then by Lemma , for 0 > o9 and large enough

0o, there is a neighborhood Uy of 6 on which either IVR(@&)| = co~2t or
Amin(VZR(9)) < —co™2t.

For the empirical risk R, the argument is similar to that of Corollary 4.18} We
may assume n > 02, as otherwise the desired probability guarantee is vacuous.
Observe that since S, ..., Sy_; do not depend on ¢e’ the above and Lemma
show for ¢ € ¢(Uy) that

(4.62) HV(sze(go)H > co 2t or )Lmin(V;(Re(go)) < —co™ 2,

Let £ be the event where the guarantee of Lemma holds with k = 2L, ¢t =
072l /log o, and r(0) a large enough constant, and also where

1 n
‘; D Apm(ei. 02) = Eg[Ag (e, 02)]| < coo™*MD)
i=1
foreachk =1,...,2L,m = 1,..., M, and a sufficiently small constant ¢g > 0.
By Lemma and (@.47), we have P[E] > 1 — ecllogn)® _ co=en!/CPo™ gince
Py, in Lemma does not depend on ¢* for all k < £ — 1, on this event &, the
bounds (4.33)) and (4.34)) together with (4.62)) imply that

IVt Ru(@)ll = co™ or Amin(V2eRa(p)) < —co—2".
Then, applying the same argument as in Lemma[4.12] this shows also for the gra-
dient and Hessian in 6 that for all & € Uy a neighborhood small enough, we have
either VR, ()| = co™2¢ or Amin(VZR,(0)) < —co2¢,
Case II. Suppose 6 Og, . Then Theorem and Corollary show that

there is a neighborhood Uy where, parametrizing by the full transcendence basis

@ of Lemma we have V%R((p) > co 2L and V(%Rn (¢) > co 2L on o(Up),
with the desired probability.
Taking a finite collection of these neighborhoods Uy that cover the compact set

{6 € R9 : ||9|| < M}, this establishes the claims of the theorem also for ||8]] < M
and some sufficiently small constant p > 0. U

4.6 Global landscape for cyclic permutations in R?

For the group of cyclic permutations of coordinates in dimension d, the orbit
recovery problem is often called multi-reference alignment (MRA). We have

(4.63) G ={Id.h K% .. W "V ~7/dZ
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where the generator

0 0 01
1 0 0 0
0 0 I 0

cyclically rotates coordinates by one position. Here, the size of the groupis K = d.
Since this is the same as the group of all permutations when d € {1, 2}, we consider
d > 3.

We change to the Fourier basis for 8. Index R4 and C?¢ by 0,1,...,d — 1, and
define the d™ root of unity w = €274 For all k € Z, let

(4.65) ne(0) = — Y ’*y;

be the coordinates of the normalized Fourier transform of 6. Note that vg(0) is
real, and vy /,(0) is also real for even d.

Suppose now that 6, € R? is such that Vg,x = Uk(0«) # O forall k #
0 mod d. Denoting the unit circle by & 2 [0, 27r) and writing Arg(z) € S for the
complex argument of 7 € C, we choose new coordinates rx (6) and #;(8) € S on
# given by

Arg (vi(0)) — Arg (vg ) if ve(6) # 0,

9 — 9 B { 9 =
1k (0) = |v (0] KO =19, otherwise

The quantities ry ()2 are known as the power spectrum of 6. Finally, we denote
T 2= Tk (0x).
Because § € RY is real-valued, we have that

vk (0) = v_i(0).  1i(0) =r(0).,  4(0) = -1 (6).

which means that for

the quantities {#; (6)}iez, {ri(0)}iez, and rg/(0) if d is even uniquely specify 6.
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We now define two surrogate functions F T : ST > Rand F~: Sl - Rin

these coordinates, making the identification _; = —¢f; fori € Zand t; € S:
+
F>(t1,....07)
1
2 .2 2
= —(8 Z Tl wTiex COS(Li + 1 + k)
i,j,keTU—-T
(4.66) i+j+k=0mod d
1
. 2 .2 2
+ 1{d is even} - > Z il d )2 cos(t; + lj)).
i,jETU-T

i+j=d/2 mod d

We have F™ = F~ when d is odd, and in this case we will only refer to FT.

For generic 0, € RY and o > 00 = 0¢(0«, d), the following shows that local
minimizers of R(#) are in correspondence with local minimizers of these surrogate
functions on the manifold SZI.

THEOREM 4.28. Let G be the cyclic group acting on R%, where d > 3.
Suppose 05 € R has Vk.x # 0 forall k # 0 mod d. For small enough p > 0,
there exist some (Bx, d)-dependent constants ¢, 09 > 0 and all 0 > 09
(@) For each local minimizer T of F T (t) where Anin(V2F1(f)) > 0, there is a
unique local minimizer of R(0) in the ball Bp(g), and a local reparametriza-
tion ¢ such that )Lmin(V(%R(go)) > co™8 for all ¢ € (p(Bp(g)). Here,
6 € RY is the point where rk(g) = rrx forall k € Z, vo(g) = Vo,
va/200) = vy« if d is even, and Arg(vy(0)) = Arg(vy «) + & for each
kel
(b) If d is even, then in addition, for each local minimizer T € SV of F~(¢)
where Amin(VZF (7)) > 0, the same statement of (a) holds over Bp(g) Sfor
6 € RY defined by the same conditions as in (a) except with vd/z(g) =
—g/2.+ in place of va2(8) = Va2
(¢) If F(t) and F~(t) are Morse on STl then (a) and (b) characterize all of
the local minimizers of R(9). For each @ € R? outside the union of the balls
Bp(g) in (a) and (b), either ||V R(0)| = co~ 6 or )\min(VgR(Q)) < —co~".

The following shows that the same statements then hold for the empirical risk
R, (8), with high probability when n > o®. The proof is the same as the empirical
risk analysis in Theorem [#.27] and we omit this for brevity.

COROLLARY 4.29. For some (0«, d)-dependent constants C, ¢ > 0, the statements

of Theorem hold also for R,(0), with probability at least 1 — e—clogm)? _
Ce—cn/%o™"

The following corollary will then follow from an analysis of the landscape of
the functions F .
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FIGURE 4.1. Contours of the functions F ¥ (t1,1,) (left) and F~(ty,5)
(right) corresponding to 6, in (@.67) for the group of cyclic permutations
acting in dimension d = 6. Each function F* and F~ is periodic over
t1,t2 € S = [0, 27) and has six local minimizers. Together, these twelve
local minimizers of F*(t,,) correspond to six global minimizers and
six spurious local minimizers of R(6) under high noise.

COROLLARY 4.30. Let G be the cyclic group @.63) acting on R%.

(a) Ford < 5 and generic 05 € R4, there exists a (0%, d)-dependent constant
o9 > 0 such that the landscape of R(0) is globally benign for all ¢ > oy.

(b) For even d > 6, there exists an open subset U C R? and a constant o9 >0
such that for all 6, € U and ¢ > 09, R(0) has a local minimizer not
belonging to Oy,

(¢) Foroddd > 53, there exists an open subset U C R? and a constant o9 >0
such that for all 6, € U and ¢ > 0¢, R(0) has a local minimizer not
belonging to Oy, .

For (04, d)-dependent constants C, ¢ > 0, the same statements hold for the empir-
ical risk R, (9) with probability at least 1 — e—cllogm)? _ co=en!/%o!

Remark 4.31. For d = 6, setting (r1,«,72.%,73,«) = (1,2,1) yields a concrete
example

(4.67) 0x ~ (2.86,—0.82,—-0.82,0.41, —0.82,—0.82)

belonging to the open set U, for which R(#) has spurious local minimizers. Con-
tour maps of F*(t1,t2) and F~(t1,12) for this point &, are displayed in Figure
It may be verified that F* and F~ each has six local minimizers given by

(t1,t2) = (0,0), (/3,27 /3), 27 /3,47 /3), (7,0), (4 /3,21/3), (57 /3, 47 /3).
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(B) Distances from the 250" AGD iterate to the
orbits O@ and Oy, for each run.

FIGURE 4.2. Results of applying Nesterov-accelerated gradient de-
scent (AGD) to minimize R, () for cyclic permutations in dimension
d = 6, with n = 1,000,000 samples and 0, as in @.67). AGD
was applied from 500 random initializations for noise levels o between
5.0 and 6.2. AGD converges to a point near Oz or Oy in all cases.
Foro = 6.2, we find § ~ (2.84,—-0.82,—-0.85,0.42,—-0.79, —0.79)
and i ~ (2.08,—-0.03,—1.47,1.17,—1.53,—0.21), which are close to

(B, 1t+) in (4.67) and (@.63).

The corresponding twelve points 6 constitute the orbits Og, and O, for a second
point

(4.68) s ~ (2.04,0.00, —1.63,1.22, —1.63,0.00).

Theorem implies that for large o and large n, the empirical risk R, (6) has
(with high probability) twelve local minimizers, belonging to two orbits O and
Op where 6 = 6, and it depends on o and lies in a small neighborhood of jix.

Simulation results in Figure {.2] verify this behavior: We used the accelerated
gradient descent (AGD) method described in Section[1.3|to minimize R, (6), with
n = 1,000,000 samples at various noise levels ¢. For each noise level, the under-
lying data Y1, ..., Y5 was fixed, and simulations were performed with 500 random
initializations 6@ ~ A/(0,1d). At noise levels o < 5.2, all simulations converged
to the orbit of a point 6 near 0s, suggesting a benign landscape for R,(6). For
o > 5.4, a fraction of simulations converged to the orbit of a second local mini-
mizer ji near [4«, and this fraction stabilized to be roughly 28%. This value of 28%
may be understood as the “size” of the domain of attraction for the spurious lo-
cal minimizers O relative to that for the global minimizers Oy, for the particular
example of 4 in (4.67) and our simulation parameters.
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The proof of Theorem {.28] rests on the following lemma, which describes the
first three terms S, Sz, S3 of the expansion ({.1).

LEMMA 4.32. Fix 05 € R? where Vi« # 0forall k # 0 mod d. Then for some
polynomial q : R — R with coefficients depending on O,

469)  $1(6) = —vo,ev0(6) + 1v0(6)’,
d—1

4700 S0 =) (—%ri%*r,- 6)% + %r,- (9)4),
i=1
d—1

1

@70 3Oy =—2 D ki (0)7 (0)ri(6)
i,j,k=1
i+j+k=0mod d

X COS (ti (0) +1;(0) + tk(Q)) +q(r1 62, ..., rd_1(0)2).

PROOF. Lete = (1,...,1)/+/d € R¥*! and let V € R¥*(@=1) complete the
orthonormal basis. Then the columns of V' span the kernel of Eg[g], and Lemma
applies with G, = {VThkV : k =0,...,d —1} C O(d — 1) for the generator
h in (#.64). Thus, noting that e ' § = vo(8), we have

R(0) = RYvo(8)) + RO2(V TH).

Applying the series expansion (@.I)) to each of R, R'9, and R%2, we have the anal-
ogous decomposition

Se(0) = S (vo(0) + SZ2(VT6)
for every £ > 1. Note that
vo(0)>  vo,xv0(h)
202 o2

by ([23), so that S{4(vo(9)) = —vo,+v0(0) + vo(6)?/2, and Séd(vo(G)) = 0 for
all £ > 2.
To compute the terms S €G 2(V'T9), we apply Lemma For £ = 1, since

Eg~unif(G»)[g] = 0, we have Sle(VTG) = 0, so we get (4.69). For £ = 2,

R¥(vo(6)) =

s2(vTh) = —%Eg[(vTe*, VTg)vTey + %Eg[aﬂe, VTgvTe?.

Introduce P = VV T = Id—ee! and the partial Fourier matrix F € clé—1xd
such that FO = (v1(8),...,v4_1(08)) € C4~L. Denote v = F0, and let vy =
F 0. Then note that

Ph¥p = F*DFF
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where D = diag(a),a)z, el a)d_l), SO
d—1 1 d—1
S8 v Te) = ~57 (vs, D¥v)? +52<v,0kv)2.
k=0 k=0
We may write
- d—1{d—1 2
k 1
Z Vi, DM 0)" = — Vi, @V
d
k=0 k=0\i=1
d—1 1 d—1
= Z vl,*v],*vivj g Za)kl—i_kj
i,j=1 k=0
Applying
at d if j =0modd
(4.72) Ywik =0 T ’
0 if j £20modd,
and also v; = v_; and v; « = V_; «, this yields
K= d-1
7 Z(v*,Dkv)2 = Z Vi« U «0iVj - 1{i + j =0 mod d}
k= i,j=1

d—1
=Y |vil® fvil? Zr,*r,w)

i=1 i=1

A similar computation shows d 13", (v, Dky)?2 = Z,_l ri (6)*, which yields

©.70).
For £ = 3, applying Lemma4.9]and similar arguments,

s92(vT)

d—1
1 (vs, DPv)3 (v, DPv)3
- dp;(_ T

p 4t ((Dl’v, D2v){(vy, DPv){(vs, D9v)

d2 2

+

p.q=0
(DPv, D) {v, DPv)(v, qu))
3

“! ViU Uk xViVj vk |vil?|voj |* vk |?
= > |(-=2 c + 5 1{i + j + k = 0mod d}
=1

i,j.k
N (|Ui|2Uj,*Uk,*Ujvk i Pl Pl

5 3 )l{i—i-kEOmodd,—i—i-jEOmodd}i|.
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Observe that for the second term, we must have k = —i and j = i, in which case
UV« Uk «VjVk = |V 1|vi«|?. Then applying also v; v; = rj«riel’i (where we
write 1, t; for r; (8), t; (8)), for some polynomial ¢ : R¥~! — R we get
1 d—1 )
S3GZ(VT9) =5 Z ri,*rj,*rk’*rirjrke'(”'thf+t"')1{i +j+k=0modd}
i,j,k=1
+qri, ... r5_)).
Taking the real part on both sides yields (4.7T). O

PROOF OF THEOREME.28 For each § € R?, we construct a local reparam-
etrization ¢ = (¢!, 2, ¢3) as follows: Let ¢'(8) = vo(@). For each k € Z, if
Vg (5) # 0, then include 74 (@) as a coordinate of 2. If vy (5) = 0, then include
Re vx (#) and Im v (@) as two coordinates of ¢2. If d is even, include also vy /2(0)
as a coordinate of ¢2. Then for each k € T where vy (5) # 0, include 7 (0) as a
coordinate of ¢3. If there are m coordinates k € Z where vy (5) # 0,then 93 € R™
and @2 € R4~ 1 Itis easily verified that this defines a local reparametrization
in some neighborhood Uy around every 6 € RY. Note that § 1 depends only on ¢!,
and S» on ¢! and ¢?.

We now apply Lemmas and Let ¢ = ¢(§). For § € RY where
vo(g) # Vo, we have V,151(¢) # 0. For 6 € RY where vk(g) # 0 and

rk(g) # Ik, for some k € Z, we similarly have V;25>(¢) # 0, because the
derivative of S5 in the coordinate r is nonzero. For 6 € RY where Vg ((3) =0
for some k € Z, let us write r¢(8)> = (Revg(6))? + (Imvg(6))? in @.70).
Differentiating S, twice in these variables Re vy (f) and Im v (6) and evaluating
at Re vy (5) = Imuy (5) = 0, we get that the Hessian of S, in these variables
is —r,f’* Id. Thus, /\min(szSz((ﬁ)) < 0. Finally, for even d and 6 € R? where

va/2(0) & (+v4/2,0: —Vaj2,4} let us write raj2(6)* = va2(8)? in @T0). Then

either vy/2(0) # 0 and V252(¢) # 0, or vg/2(6) = 0 and Amin(Vy252(¢)) < 0.
In all of these cases, Lemma.12]implies either

IVeR()| = co™ or Amn(VER(6)) < —co™*,
for all 6 € Uz and 0 > 0p.

It remains to consider those points 6 € RY where v (5) = v, and 7y ((3) =
"k« # 0 forall k € Z. For such 6, we have 03 =(1,.. 7)) € RZI. When d
is odd, the summation defining may be written as that over 7, j,k € ZU -7
withi 4+ j +k = 0 mod d, and the restriction of S3(¢) to points ¢ € R? where
rk = ry . forall k € Z coincides with F (7). When d is even, we may isolate the
terms of the summation in where some coordinate, say k, equals d /2. Then
we musthave i + j = d/2 mod d, and the constraint 7, j # 0 mod d is equivalent
toi,j € ZU~Z. When vg/s = vg4/2,4, We have 1y = 0socos(t; +tj + tx) =
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cos(f; + tj). In this case, S3(¢) restricted to 1y = 7y is the function F (@),
where the factor 1/2 is produced from 1/6 by considering the three symmetric
settings where i, j, or k is d/2. When vy, = —vg/» «, we have fp = m, so
cos(fj + tj + tx) = —cos(t; + ;). In this case, S3(¢) restricted to ry = rg 4 is
the function F ™ (¢).

Thus, if 7 = @3 is not a critical point of F*(¢), then V,353(@) # 0. Iffisa
critical point where Apin(V2F (1)) < 0, then also Amin(Vp383(¢)) < 0. In these
cases, Lemma implies that either |[VgR(6)| > co™° or kmin(VgR(Q)) <
—co~® for all 6 € Uj and 0 > op. If 7 is a critical point of F*(t) where
Amin(VZFE(t)) > 0, then & is a pseudo-local-minimizer of R(#), and Lemma
implies both that there is a unique local minimizer of R(g) in ¢(Uy) and that
VZR(p) = co~® on ¢(Uj). Finally, if F*(¢) is Morse, then this accounts for all
possible points 6.

Taking a finite collection of these sets Uz which cover {6 : [|0] < M}, the
above constants ¢, g > (0 may be chosen to be uniform over this finite cover. Then

for small enough p > 0, the above arguments establish the claims of the theorem
for ||| < M. The result for [|f]| > M follows from Lemma[4.19] O

Finally, let us analyze the functions F* ford < 5,evend > 6,and odd d > 53.

PROOF OF COROLLARY 4.30]|

(a) The result for d = 1 or 2 follows from the analysis of all permutations in
Theorem 4,231
Ford = 3or4,T = {1}, so FE(¢) is a function of a single scalar argument in
t1 € S.Ford =3,

VF*Y(t1) = rf, sin(3n), VZFH(ty) = 3rf, cos(3y).

Then F* is Morse and there are six critical points, three of which are the local
minimizers {0, 2/3, 47 /3}. These correspond to the three points 6 € Og, . For
d =4,

VFE(t)) = £2rf ,sin(2r).  V2F*(11) = £4rf , cos(21y).

Each function F and F~ is Morse with four critical points. For F T, there are two
local minimizers {0, r}, and for F~, there are two local minimizers {7 /2, 37 /2}.
These correspond to the four points 0 e Oq, .

For d = 5, we have Z = {l, 2}. Let us abbreviate

_ .2
8 = ri’*a

Uy = 2t — ta, U =t + 2.
Then
VF+(I) = (2s%s2 sinuq + sls% sin u», —s%sz sinuq + 2szs% sin uz),

V2F+(t) _ 4s%sz cosuq + sls% CoS Uy —2s%sz cosui + 2s1s% cos Uy
—2s%s2 cosup + 2s1s§ cos Uy s%sz cosui + 4s1s% cosus J°
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From this, we may also compute
det V2F+(t) = 25sfs§’ COS U1 COS Ua,
Tr V2F+(t) = SS%SQ cosuy + 5s1s% CoS U3.

For generic f, and hence generic (s1. s3), the condition VF () = 0 for a critical
point requires sinu; = sinuy = 0. We have det V2FT(¢) # 0 at such points,
so F* is Morse. The condition V2 F T (¢) > 0 for a local minimizer then requires
det HT(¢t) > 0 and Tr H(¢) > 0, so we must have cosu; = cosup = 1, and
hence #; + 2t = 2t1 — t, = O mod 2. This implies that 5¢y = 0 mod 2,
and there are five local minimizers (¢1, %) = (0,0), (27x/5,4n/5), (47 /5,87/5),
(67/5,27/5), and (87/5,6m/5). These correspond to the five points 6 € Oq, .
Together with Theorem {.28]and Corollary {.29] this shows part (a).

(b) Write d = 2m + 2 withm > 2sothat Z = {1,2,...,m}. Define the
quantities s; = ri2 , o that s; = s_;. We exhibit a family of points where ¥ (1)

have spurious local minima. Foreacha € {0,...,d — 1}, define t* = (t{,....17)
by

a 2mai
4.73) ="

Fori, j,k €e ZTU—-Z withi + j + k = 0 mod d, we find that
tff + ¢! +1ff = 0mod 27.
Similarly, fori, j € ZU—Z withi+j = d/2 mod d,wehaveti”—i-tj‘-‘ = O mod 7.

Together, these imply that V.F ¥ (%) = 0.
We now restrict to 51 = --- = 55,; = 1. We claim that ¢ is a local minimum of
both FT and F~ for sufficiently small values of s,,1. Define

1
Fo(t) := ~ Z cos(t; + tj + )

i,j,k€eTU-T
i+j+k=0modd

so that for d even we have
1
(4.74) FE(@t) = Fo(t) ¥ S Sm+1 > cos(t; + t;).

i,jeTu—T
i+j=d/2mod d

We show that V2 Fo(¢4) is diagonally dominant: Denote by d,, the partial derivative
inf,. Forany p € 7,

1 .
dpFo(t) = 2 > sin(t; + t; + tg) %
i,j,k€TU-T
i+j+k=0modd

Wi=pi+1{j=p}+lk=p—1{i=-p—1{j = —p}
— 1{k = —p})
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= Z sin(ty + ¢t + 1)
J.keTU-T
p+j+k=0modd

where the second line applies symmetry with respect to permutations of (i, j, k)
and negation (i, j, k) — (—i,—j,—k). Then, forany g € Z,

dpq Fo(t) = > cos(ty +tj + tp)x
Jk€TU-T
p+j+k=0mod d

Mp=g}+1{j =q} + 1k =g} —1{j = —q} — 1{k = —q})
=1{p =¢q} Z cos(tp +t; + tx)

JjkeTU—T
p+Jj+k=0mod d

+1{p+qgF#d/2modd}-2cos(ty +tg +1—p—q)
At any point 4, we have £{ + t]‘-’ + 1 = 0 mod 27, so cos(z;' + t]‘.’ + 1) = 1 for
all triples (i, j, k) above. Then
ppFo(t?)y=2m—2+2-1{p = d/4 mod d},

where the first term accounts for the sum over j € 7 U —Z7 excluding j = —p and
j =d/2— p. We also have

D NopgFot®) = > 2-{p+q=d/2modd} =2-1{p # d/4 mod d}.
q:q#p q:9#p
Thus, form > 2,
OppFot*) = D~ |0pg Fot®)] = 2m —2> 0.
q:q#p

This implies that V Fy(1%) is diagonally dominant and thus positive definite. Tak-
ing spm41 sufficiently small in @.74), we find that the Hessians V2F*(¢9) are

also positive definite, meaning that each 14 fora = 0,...,d — 1 is a local min-
imum of both £ () and F~(¢). By continuity, this statement also holds for
(51,...,5m+1) € Us and some open set Ug C R™T1,

Now for each 05 € R such that (rlz’*, e "31 +1,*) € Uy, Theorem a,b)
implies that R(6) has 2d local minima (for sufficiently large o), corresponding
to these 2d local minima ¢ for F*(¢). Of these, d local minima constitute the
orbit Og, , and the other d local minima are spurious and lie on another orbit O,,,
for some [« € R4. The set of such B contains an open set U C ]Rd, and this
establishes part (b).

() Writed = 2m + 1 sothat Z = {1,2,...,m}. We will exhibit a family
of points where F 7 (¢) has spurious local minima. For each a € {0,...,d — 1},
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define 14+ = (Zf’i, .. .,t,‘f,’i) by
a+ _ 2mai
P d

Fori, j.k €e TU—T withi 4+ j + k = 0 mod d, we find

t

and t4" =t%T 4 (n,0,...,0).

tia’+ + tja’+ + t,?’Jr = 0 mod 2,
T AT =a(li = 13+ 1{j = 1} + 1{k = 1}) mod 2.

1

So VF1(t%*) = 0. It may be checked that the d points %% are minimizers of
F™T(¢) and correspond to the d points of the true orbit Og, . Thus, we focus on the
points %™, which correspond to a second orbit O,,, for some pi4 € RY.

Again set s; = riz’ «- We now construct (s1, ..., Sy) for which these points 7%~
are local minima of FT. By a computation similar to (#.75), we obtain for all
p,q €7 that

8qu+(t) =1{p =q} Z SpS;Sg cos(ty + tj + tx)
jkeTuU-T
p+j+k=0mod d

+ 28pSgSprq cos(ty +1tg +1-p_yg)
—Up 7 45 - 25p8¢5q—p cOS(tp + l—q + lg—p).

We take m > 8. Let us first consider s4 = -+ = 5, = 1 and s3 = 0, with s1 > 0
and s > 1 to be chosen later. Then, applying

an explicit computation shows that the diagonal terms of V2 F T (+%7) are given by

45255 — (2m — sy
453 + 5252 + (2m — 8)s2
0
s3—2s1+252+2m—38
IppFT (%) =  ~4s1 +25,+2m -9
—4s1 + 452 +2m — 10
—4s1 + 452 +2m —13
—651 + 452 +2m —13
—4s1 + 453 +2m — 11

ST TS T SR ST ST S

_h
<]
2
B

all other p

and the off-diagonal terms (for ¢ > p) are given by

—25782 (p.g)=(1,2)
—251 (p.q9) =(1.4)
—253+25 (p,g)=1(2,4)
2s2 (p.9)=2,5)
+oa,—y _ )25 (p.q9)=(m—-2,m)

aqu (t ’ ) T )2s1+2s82 (p,g) =(m—1,m)
2s1+2 (p,g)=(p,p+1)forallp=4,..., m—2
—255 +2 (p,¢)=(p,p+2)forallp=4,..., m—3
2 (p,g¢)=(p,p+3)forallp=4,..., m—3
0 for all other (p, q)
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For v = (0,252,0,—55,0,...,0) define
X = V2FT %) —ovo',

which removes the s% contributions from the entries (2, 2), (2, 4), (4,2), and (4, 4).
Let Y € RO"=Dx0m=1) pe the minor of X excluding the third row and column,
indexed by {1,2,4,...,m}, and set

Ap = Ypp — Z | Ypql-
q:q#p

Then the above expressions yield

A = 2s%s2 —(Q2m —25%)s1, Ay = —s%sz + (2m — 12)s,,
Ag = —651 — 250 +2m — 10, Az = —8s1 — 280 +2m — 13,
Ag =—8s1 +2m—12, Ap=-8s1+2m—15 forp=7....m.

We now choose s1, 52 to ensure that each A, above is strictly positive: This is true
if and only if

2m—12> 52, 2515y >2m—5, 2m—13 > 851 4+ 2s3, 2m — 15> 8sy.

Setting 51 = 1 ./m and s, = 231;15 + & for some small ¢ > 0, we may verify that

these expressions hold for m > 26. Then Y is strictly diagonally dominant, and
hence positive definite.

This implies that all eigenvalues of V2 F T (¢%7) are strictly positive except for
a single eigenvalue of 0 corresponding to the eigenvector ez. We now increase s3
from 0 a small constant § to remove this 0 eigenvalue: Fixing 51,52 and s4 = --- =
sm = 1 as above, denote by A(s3) the value of 333 F T (t%7) at (s1, 52, 53, ..., Sm).
Then

h(s3) = —2s15253 — 25153 + 25253 + 453 + s3(2m — 9).

Since e3 is the eigenvector of V2 F T (1%7) corresponding to 0, the derivative of
this 0 eigenvalue with respect to s3 is (see [|38, eq. (67)])

h,(s3)‘53=0 = 285152 — 281 + 250 + 2m — 9.

For m > 26 and the above choices of s, 57, this derivative is positive. Then
for some sufficiently small s3 = 8§, V2F T (t%7) is strictly positive definite. We
conclude that for this choice of (si,...,Ss), each t*~ is a local minimum of
FT(t). By continuity, this holds also for all (sy,...,S») € Us and some open
set Uy, € R™. Then Theorem a) implies that for each 6, € RY where
(r%’*, cee, r,%,’*) € Uy, R(0) has d local minima (for sufficiently large ¢’), and these
do not belong to the orbit Oy, . The condition m > 26 corresponds to d > 53, and
this shows part (c).

The analogous statements for the empirical landscape of R;,(6) follow from Corol-

lary .29} m
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Appendix: Auxiliary Lemmas and Proofs

A.1 Cumulants and cumulant bounds

The order-£ cumulant «y(X) of a random variable X is defined recursively by
the moment-cumulant relations

Exq= > [ ] «s1).
partitions 7w of [{] S€m

More generally, for random variables X1, ..., Xy, the mixed cumulants k| g(Xj :
k € S) for S C [€] are defined recursively by the moment-cumulant relations

IE|:1_[ X,-i| = > [ «isiXe -k €9).

ieT partitions r of T Sem

These relations may be Mobius-inverted to obtain the explicit definition

(A ke(X1,....X0) = > (|| = D= T E|:1_[ X,~i|

partitions 7 of [£] Sen ieS

where || is the number of sets in 7 (see [33, sec. 2.34]). If X1 =--- = X; = X,
then kp(X1,...,Xy) = ky(X). The mixed cumulant «¢(X1,..., Xy) is multi-
linear and permutation-invariant in its £ arguments. We have «1(X) = E[X],
k2(X) = Var[X], and x2(X1, X2) = Cov[X1, X3].

The cumulant generating function of a random variable X is the formal power
series

o0 L
(A2) Kx(s) = Y ke(X) 7.
=1 )

If log E[e’X] exists on a neighborhood of 0, then its £ derivative at 0 is k¢(X).
Similarly, the cumulant generating function of a random vector ¥ € R is the
formal power series

X (1 Zd
0.0

Ku(H) = Z WK&_,...._,.(‘I(ML...,M],...,Md,...,ud),
1l 84!
£i,lg=1
where in kg, y..qg, (U1, ... U1, ... Ug, ... ug), each u; appears {; times. If

log E[e{?*)] exists in a neighborhood of § = 0, its £ derivative at 0 is

Ke(u) € (RS,

where k(1) denotes the order-£ cumulant tensor of u. This has entries, foriy,...,is €
[d],

Ke(Wiy,.ip = Ke(Ut, .o UL, o Ug, .., Ug)
where each coordinate u; appears £; times if £; of the indices i1, ... 7y equal j.

The first two cumulant tensors are 1 (1) = E[u] and k2 (1) = Cov]u].
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More generally, if log E[e{?*)] exists in a neighborhood of 6, a reweighted ex-

ponential family law p(u|0) may be defined by the expectation
E[f (u)e'®)]
E[e(6:1)]

Then the £% derivative of log E[e{?*)] at @ is k¢ (u | ), the order-£ cumulant tensor
of this reweighted law (see [31} theorem 1.5.10]).

The following result provides an upper bound for these cumulants when X, X1,
..., Xg are bounded random variables. This bound is tight up to an exponential fac-
tor in £, as may be seen for X ~ Unif([0, 1]) where k;(X) = B/ and By is the £
Bernoulli number (see (11, example 2.7), satisfying | By¢| ~ 4v/7L(L/ (we))?E.

E[f(u) | 6] = E[f ()" —Ku®)] =

LEMMA A.1.

() If| X | < m almost surely, then |kg(X)| < (mb)*.
(b) If | Xi| < m; almost surely for eachi = 1,...,¢, then |kg(X1,..., Xy)| <

my .. omy.
(©) If | X| < m almost surely, then the series (A.2)) is absolutely convergent for
|s| < 1/(me).

PROOF. We apply (A.T). Enumerating over v = ||, we have

L
(v—1)! ¢
Z (|”|_1):Z v! Z (51,.--,51))

partitions 7 of [£] v=1 ’ by +tly=L
_ il‘vz _ iveq <
v=1 v v=1
so (b) follows from (A.I). Specializing to X; = --- = X yields (a), and (c)
follows from (a) and the bound £! > £¢ / et O

A.2 Reparametrization by invariant polynomials

We prove Lemmas [4.3|and[4.5] Parts of these are well-known, but we provide a
brief proof here for convenience.

We recall the more usual definition of transcendence degree for two fields £ C
F, where trdeg(F/E) is the maximum number of elements in F that are alge-
braically independent over E. We verify also in the proof of Lemma [4.3] that our
definition of trdeg(A) for any subset A € RS coincides with trdeg(R(A4)/R),
where R(A) is the field of rational functions generated by A.

PROOF OF LEMMA B3l Consider any subsets A’ € A € RY, where A’ is alge-
braically independent. Call A’ maximal in A if A’ U {a} is algebraically dependent
foreverya € A\ A’. Let A’ be maximal in A4, and suppose |A’| = k. Let R(A)
and R(A’) be the fields of G-invariant rational functions generated by A and A’.
Algebraic independence of A’ implies that trdeg(R(A4’)/R) = k. Maximality of
A" implies that each a € A is algebraic over R(A’). Then R(A) is an algebraic
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extension of R(A’), so trdeg(R(A)/R(A")) = 0, hence trdeg(R(A4)/R) = k. This
verifies that every such maximal algebraically independent set A’ of A has the same
cardinality, which coincides with trdeg(R(A4)/R).

Letting R(61,...,60;) and R(RY) be the fields of all rational functions and
all G-invariant rational functions in 8, respectively, R(f1, ..., 6;) is an algebraic
extension of R(RG) (see [17, lemma 11]), so trdeg(R (61, ..., Hd)/R(RG)) = 0.
Since trdeg(R(61, ..., 0;)/R) = d, this shows trdeg(R®) = trdeg(R(R%)/R) =
d. Thus trdeg(RgL) = d for some L > 1, and there exists a smallest such
L. To construct ¢, let ¢! be any maximal algebraically independent subset of
RlG The above implies that the cardinality of ¢! is d; = trdeg(R?). These
polynomials have degree exactly 1. Now extend this to any maximal algebraically
independent subset (¢!, ¢?) of RzG . The above implies that the cardinality of ¢2
isdr, = trdeg(RZG ) — trdeg(R?). If dy > 0, then the polynomials of ¢ must have
degree exactly 2, by maximality of ¢!. We may iterate this procedure to obtain

(@' ... 0"). 0

PROOF OF LEMMA 4.3] For parts (a) and (b), recall by [20, theorem 2.3] that
®1,. .., are algebraically independent if and only if Vg, ..., Vg are linearly
independent over the field of rational functions C(6y,...,6;). For part (a), this
linear independence means that some maximal £ x k minor of the kK x d deriva-
tive dg¢ does not vanish in C(6y,...,60;). Then that same maximal minor does
not vanish in C for generic 8 € R4, showing linear independence for generic 6.
For part (b), linear independence at any point 8 implies that some maximal mi-
nor of dg¢ does not vanish and hence Vg1, ..., Vg are linearly independent over
C(#1,...,0;), implying algebraic independence.

For part (¢), let us arbitrarily extend (g1, ..., ¢z) to a system of coordinates ¢ =
(@1, .. .,94), where dg is nonsingular in a neighborhood of 6. (Here ¢ 41,--., 904
are general analytic functions and need not belong to RS .) By the inverse function
theorem, there is a neighborhood U of 6 and corresponding neighborhood ¢(U)
of (p(g) for which 6 is an analytic function of ¢ € @(U). Then any polynomial
(/S sz is such that 17 () is also an analytic function of ¢ € ¢(U). Let us write
this function as ¥ = f(¢). Then ¥ (8) = f(p(8)) forall @ € U, so by the chain
rule,

(A3) dy () = dy f (@) - dg(6).

By part (b), since the polynomials {¢1,..., @, %) are algebraically dependent,
the gradients Vi, ..., V@i, Vi must be linearly dependent at every § € U. So
Vi = dy | belongs to the span of Vi, ..., Vo at every § € U. Since dg(6)
is a nonsingular matrix, this and (A.3) imply that V,, f = dy, f | has coordinates
k +1,...,d equal to O for every ¢ € ¢(U). So f is in fact an analytic function
of only the first k variables ¢, ..., ¢g over ¢(U), which is the statement of part
©). O
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A.3 Concentration inequality for ) ; |l&; I3

We prove the inequality (2.23)). We use the following concentration result, which
specializes [4] theorem 1.2] to Gaussian random variables.

THEOREM A.2 ([4]). Suppose f : R™ — R is D times continuously differen-
tiable, and VP f(x) is uniformly bounded over x € R™. Let ¢ € R™ have i.i.d.
N (0, 1) coordinates. Then for a constant ¢ = ¢(D) > 0,

Pl f(e) —~Ef(e)] > 1] < 27 1),
Here

{ 2/171
nf(t) = min min ( ) )
f partitions 7 of [D] \ SUPy cpm ”VDf(x)”J

, 2/17]
min min _
1<d <D—1 partitions Jof[d]( ||E[Vd f(s)] ||j)

where |J| = K is the number of sets in the partition J = {J1,...,J g} of [d],
and

m K
k
Al = Sup( > il [] x((iz):é’eJk) x®us < 1foratik =1, K)

i1yenig=1 k=1

(k)

In this expression, x*) denotes an order-|Ji| tensor in (R™)®Vxl and Xty

is its entry at the indices (iy : £ € Ji).

To show (2.23)), let us write the coordinates of ¢; as ¢;;. We consider

fler....en) =Y il

i=1
as a function of the m = nd standard Gaussian variables ¢;;, and apply the above
result with D = 3 and this function f : R*¢ — R. We analyze 7 7(2): Applying
de;; llei | = €ij/ll&ill, a direct computation yields

asij S = 3eilleij
eijOess [ = 3lleil1j =k} + 3eijein/llei .
Oeij Oesp Oeie = 3(eiel{j =k} + e 1{j = ) + 551k = £})/||e: |
— 3eijeieid/ llsill’,

and all other partial derivatives up to order three are 0. Taking expectations above

and applying sign invariance of &;;, we have E[V f] = 0 and E[V? f] = ¢ Id (in
dimension nd xnd) for aconstant ¢ > 0. Then [|[E[V f]||;;; = 0, ||E[V2.f]||{1,2} =
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IEIV? fllus = ¢/, and [[E[V? f1ll¢13,123 = IIEIV? f1I| = ¢. Thus

p 2/|71
) > ¢/ min(t?/n,1).
Il

(A4)  _min s 7 of [d](W

1<d <D—1 partitions

The third derivative A = V3 f has n nonzero blocks of size d x d x d, with
entries uniformly bounded in the range [—12,12]. We observe that for J =

{{1,2,33},
IAll¢1,2,33 = [ Allus < CV/n.
For 7 = {{l1,2},{3}}, denote by By, ..., B, the n blocks of d consecutive coor-

dinates in [nd], and by |zg |3 = Y ;cp z?. Then, since a;jx = O unless i, j. k
belong to the same such block,

nd
A2y =sup| Y agryijze 1Y us < Lllzll2 < 1
iajak=1
1/2
/ nd nd 2

= sup Z Zaijkzk Hlzll =1
k=1

\i,j:l =
5 1/2

[ n
= sup Z Z Z aijrze |t llzllz <1

{=11i,j€By \keBy

n 1/2
<C sup(z g I? : zll2 < 1) =C.

{=1

Similarly || All{1,31,423, 1 4g2,33.403]1 < C, and [|All{1y, 023,033 < 1 4ll{1,23,03 < C.
Combining with (A4), ¢ (¢) > ¢’ min(t?>/3,1,12/n) for a constant ¢’ > 0. Then
applying Theorem [A.2|with ¢ = n,

2/3

Pln=" (f(er,....en) —Elf(er, ... e0)]) = 1] < 27"

Asn 'E[f(e1.....en)] = C; for a constant C; > 0, this shows (2.23)) for Cy =
1+ C;.
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