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Digital biomarker of mental fatigue
Vincent Wen-Sheng Tseng 1,3, Nachiappan Valliappan 2,3, Venky Ramachandran2,3, Tanzeem Choudhury1 and
Vidhya Navalpakkam 2✉

Mental fatigue is an important aspect of alertness and wellbeing. Existing fatigue tests are subjective and/or time-consuming. Here,
we show that smartphone-based gaze is significantly impaired with mental fatigue, and tracks the onset and progression of fatigue.
A simple model predicts mental fatigue reliably using just a few minutes of gaze data. These results suggest that smartphone-based
gaze could provide a scalable, digital biomarker of mental fatigue.
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INTRODUCTION
Mental fatigue is a key aspect of wellbeing1–4. Medical condi-
tions1,2,5, sleep deprivation6 and prolonged task performance7 are
some factors known to cause mental fatigue. It has been widely
studied across medicine1,2,5, sleep research6, and mission-critical
settings such as medical surgeries8 and aviation safety9. It is also
important for digital wellbeing, where there is increasing societal
concern over excessive time spent on screen and its potential
negative impact on wellbeing10,11.
However, existing tests are subjective and/or time-consuming.

Fatigue questionnaires such as the NASA Task Load Index (NASA-
TLX)12 and Brief Fatigue Inventory (BFI)13,14 are subjective and
susceptible to noise from self-reports. Gold-standard tests such
as Psychomotor Vigilance Task (PVT)15,16 for alertness and N-back
tests17 for working memory are time-consuming (e.g., standard
PVT takes 10 min, though there exist less-validated shorter
versions). Recent research also explored the use of facial
features18,19 (such as eye blinks, head rotation, yawns) and text
entry performance metrics20 for building smartphone-based
driver and workplace fatigue detection systems. However, these
studies did not use validated fatigue measures.
In this paper, using well-validated fatigue measures such as

BFI and NASA-TLX, we leverage recent advances in accurate
smartphone-based eye-tracking21 to test whether smartphone-
based gaze can help detect mental fatigue. Given the
pervasiveness of phones, a smartphone-based digital biomar-
ker could provide a scalable and quick alternative for detecting
mental fatigue.
Participants performed a series of tasks over a prolonged

duration of time (~1 h). As shown in Fig. 1a, at the beginning and
end of the study, participants performed time-consuming gold-
standard tests to measure the level of alertness, focused attention
and mental fatigue. We call these pre- and post-test, respectively.
Each block of tasks was followed by a short fatigue questionnaire
(from the BFI, see Methods section) to measure the progression of
mental fatigue during the study.
Two different types of fatigue-inducing tasks were used. Study 1

consisted of a language-independent, object-tracking task. 17
participants tracked an object that changed its shape randomly as
it moved smoothly in a circular trajectory, and were asked to tap
anywhere on the screen whenever they detected a particular
shape. We call this the object-tracking task. Study 2 consisted of a
language-dependent, reading task. 15 participants were asked to

proofread English passages and detect/tap on words that had
spelling or semantic errors. We call this the proofreading task.
As seen in Fig. 1b, c, repeated task performance leads to

increased mental fatigue across both studies. Details on the fatigue
scores, task and gaze features are shown in Table 1. The BFI score
increases significantly from the beginning to the end of the study.
NASA-TLX for mental demand also increases, though less sensitive
than BFI, hence the remaining analysis in the paper focuses on BFI
as the key fatigue measure. Consistent with previous work, we find
that mental fatigue hurts task performance (drop in task accuracy,
precision, recall and slower responses), though not all changes are
significant. Analysis of gaze behavior shows significant gaze
impairments with mental fatigue. Gaze features such as entropy,
mean and standard deviation in gaze error (computed as the
difference between gaze vs. actual target position) increase
significantly with mental fatigue.
Figure 2a, b shows an example gaze scanpath for one of the

participants when they are fatigued vs. not. As seen here and
the corresponding population-level gaze heatmaps (Fig. 2c, d),
while participants’ gaze initially follows the circular trajectory of
the object, under fatigue, gaze shows high errors or deviations
from the circular trajectory. In addition to gaze differences
between the fatigue vs. no-fatigue conditions, as shown in
Fig. 2g, h, gaze features appear to track the onset and progression
of fatigue during the course of the study.
To test whether fatigue can be predicted from objective task and

gaze features, we built a simple binary classification model to
classify each 75 seconds unit of a block (we call this “chunk”) for a
given participant as fatigued or not. The Methods section describes
the individual task and gaze features used in the model and the
leave-one-out evaluation methodology. Gaze was found to be a
strong predictor of mental fatigue—using just 75 seconds worth of
gaze data on a new participant, the model achieved 80% accuracy
(AUC 0.818) in detecting fatigue vs. no-fatigue, after collecting
baseline normalization data. The model performance improved
further upon using 150 sec of gaze data (AUC 0.839).
Gaze was found to be a better predictor of fatigue than (non-

gaze) task performance based features (AUC of 0.818 ± 0.062 vs.
0.676 ± 0.078; t(14)=−1.586, p= 0.135; two-tailed paired t-test).
Interestingly, the above gaze-based classification model is able
to predict the probability of the user experiencing fatigue over
the course of the study (Fig. 2i). Similar results were obtained for
the proofreading task (study 2). A predictive model (similar to
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the model in study 1) shows that gaze can predict fatigue
significantly better than task-based features (AUC of 0.833 ±
0.040 for gaze vs. 0.630 ± 0.038 for task; t(14)=−3.891, p=
0.002; two-tailed paired t-test).
We demonstrate that smartphone-based gaze is a strong

predictor of mental fatigue; as well as tracks the onset and
progression of mental fatigue. We validate these findings in two

different experiments—using a language-independent object-
tracking task, and a language-dependent proofreading task.
These findings suggest that smartphone gaze could be a digital
biomarker of mental fatigue with the potential for orders-of-
magnitude scaling.
All the data in this study was collected in lab settings for

research purposes with the participants’ explicit and fully
informed consent. In addition, participants were allowed to opt
out of the study at any point and request their data to be deleted,
without affecting their compensation for participating in the
study. This study has some limitations. While it is a proof-of-
concept to demonstrate the potential of smartphone-gaze based
fatigue detection, additional work including field trials and larger
studies (across more diverse demographics) are required to
explore other sources of fatigue such as sleep deprivation, stress,
lack of motivation, longer duration of repeated tasks (over several
hours), and extensive screen time.
Prior eye-tracking research22,23 used specialized and expen-

sive hardware to show that sleep deprivation can lead to
significant gaze impairments. Our study shows that fatigue-
induced gaze impairments can be measured using just the
smartphone’s selfie camera and without any additional hard-
ware. This suggests the potential to scale sleep studies. Given
the growing societal concern over large amount of time spent
on screen (over 11 h/day24), smartphone-based measurements
of mental fatigue could also offer smarter and timely interven-
tions to improve digital wellbeing. Thus, smartphone-based
digital biomarker of mental fatigue could unlock applications
across improved sleep and wellness.

Fig. 1 Study overview. a Experiment design. Participants performed a series of fatigue-inducing tasks over a prolonged duration. Gold-
standard tasks were performed at the beginning (pre-test) and end of the study (post-test). Two types of fatigue-inducing tasks were used: an
object-tracking task (study 1), and a proofreading task (study 2). b, c show the progression of fatigue scores across the 5 task blocks (in study
1) and 4 task blocks (in study 2), respectively. Error bands denote the Mean ± SEM (n= 17 and 15 participants for studies 1 and 2, respectively).

Table 1. Change in mental fatigue scores, task and gaze features for
study 1.

Measures No Fatigue Fatigue Statistical test p value

(Mean ± SEM) (Mean ± SEM)

BFI 0.47 ± 0.19 3.94 ± 0.54 t(16)= 6.39 <10−5

NASA-TLX 20.06 ± 5.74 28.41 ± 7.13 t(16)= 2.31 0.03

Task accuracy (%) 98.5 ± 0.3 97.4 ± 0.5 w(16)= 34 0.04

Task precision (%) 96.2 ± 0.7 93.8 ± 1.1 w(16)= 41 0.09

Task recall (%) 97.9 ± 0.6 96.1 ± 1.0 w(16)= 51 0.24

Task RT (ms) 484.66 ± 13.73 497.96 ± 0.65 w(16)= 50 0.21

Mean gaze error 0.38 ± 0.03 0.54 ± 0.05 w(16)= 10 0.002

Stddev gaze error 0.27 ± 0.02 0.40 ± 0.04 w(16)= 12 0.002

Gaze entropy 14.50 ± 0.14 15.20 ± 0.20 w(16)= 20 0.007

The first half of block 1 was considered as “No Fatigue”, and the last half of
the final blocks (4,5) were considered as “Fatigue” condition. Statistical
comparisons were performed with n= 17 participants using the two-tailed
paired t-test or the Wilcoxon signed-rank test as denoted by t(.) and w(.)
respectively.

V.W.-S. Tseng et al.

2

npj Digital Medicine (2021) 47 Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;



METHODS
BFI
BFI questions were prompted during the pre-test, post-test, and after each
block of fatigue-inducing tasks. Participants had to indicate the level of their
fatigue by selecting a score on a 11-point Likert scale. Some questions in BFI
ask about the level of an individual’s fatigue during the past 24 h. To avoid
repetition, participants were prompted to answer these questions only once
during the pre-test. For the remaining BFIs, participants were only required
to answer the question regarding their fatigue level at the moment.

NASA-TLX
The NASA-TLX questionnaire was prompted during the pre-test, post-test,
and after each block of fatigue-inducing tasks. Questions for six different
sub-scales, including Mental Demand, Physical Demand, Temporal
Demand, Overall Performance, Effort, and Frustration Level, were
presented in order. Participants were instructed to move the slider to
indicate their response to each question on a range of 0 to 100.

Eye-tracking
We used the smartphone-based eye-tracking model described in recent
research21. The model was calibrated by asking participants to fixate on a
green circular stimulus that appeared on a black screen. The stimulus
appeared at random locations on the screen (dot calibration), or in a zigzag
pattern from the upper left to lower right corner of the screen (zigzag
smooth pursuit) for 30–60 s. Eye-tracking accuracy was computed as the
Euclidean error between the true stimulus location and the estimated gaze
locations on the phone screen, using a separate test set. The average
model error (Mean ± SEM) across all participants is 0.420 ± 0.088 cm (with
range [0.13, 0.74] cm) and 0.491 ± 0.065 cm (with range [0.17, 1.0] cm), for
study 1 and 2 respectively. At a viewing distance of 25–40 cm, this
translates to 0.6–1.1∘ angular accuracy.

Participants
Participants aged 18 and above were recruited from a pool of user study
volunteers who signed up through the Google User Experience Research
portal25. Approximately 60% of participants identified themselves as male,
all others as female across both the studies. Prior to the recruitment of

participants, this study was reviewed by the Advarra Institutional Review
Board (IRB) (Columbia, MD) and determined to be exempt from IRB
oversight. Each participant provided their explicit and informed consent to
data collection by reading and signing a study-specific participant
agreement that informed them about collecting the front-facing camera
feed for research analyses purposes, and the potential risks involved in
performing gaze tasks for several minutes (e.g., eye strain, fatigue).
Participants received monetary compensation for their time even if they
did not complete the tasks, and retained the option to have their data
deleted at any time. Studies were designed to be <1 h long and were
conducted in lab settings (in groups of 5–6 people).

Android app
Data were collected with a custom Android app. The app served two main
purposes: (1) to display the stimulus along with task instructions on screen;
(2) capture and store the front-facing camera feed, as well as user touch
interactions on the screen.

Fatigue model
We used a simple soft-margin kernel support vector machine (SVM) binary
classifier to build the fatigue estimation model. The task and/or gaze
features were normalized per participant and used as input features.
Specifically, we found that best results were obtained by normalizing/
scaling each feature x as (x− μ)/μ where μ is the mean value of the feature
across blocks per participant. The model outputs a probability estimate
that the user is in a fatigued state. We then used the same model to
predict and track the onset of fatigue for a new user. The fatigue model
performance (reported as the average AUC) was evaluated in a leave-one-
out setting. In this setting, the model gets repeatedly evaluated for each
participant by leaving their data out of the training set and the reported
metrics are the average across all participants.

Fatigue labels
For descriptive analyses, the fatigue labels were fixed across participants
for both studies. Since the user’s fatigue level may change within a block,
the first half of the first block was labeled as "No Fatigue”, and the last half
of the final two blocks as "Fatigue”. For the fatigue model in Fig. 2, we
refined/personalized the fatigue labels based on BFI scores for each

Fig. 2 Progression of fatigue, gaze, and task performance features over time. a, b Sample gaze patterns from a single participant for the
"No Fatigue'' vs. "Fatigue'' condition. c, d Corresponding population-level gaze heatmaps. e–h. Progression of task and gaze features over
time. Error bands denote the Mean ± SEM (n= 17 participants). i Model prediction of the probability of fatigue over time, along with the
self-reported BFI score.
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participant. In particular, the blocks with lowest self-reported BFI scores
were labeled as “No Fatigue” (similarly, highest BFI scores were labeled as
“Fatigue”). This resulted in ~60% of the dataset in study 1 labeled as
“Fatigue” (~70% of the dataset in study 2).

Task and gaze features
Study 1 used the following task-based features: object detection task
accuracy, precision, recall, F1 score and the mean time to detect the target
object. The gaze-based features were: gaze entropy (calculated as the
Shannon entropy of the gaze heatmap), mean and standard deviation of
the gaze error, and standard deviation of the gaze X and Y predictions.
Similarly, for study 2, the task-based features were: typo detection accuracy,
precision, recall and F1 score; while the gaze features were: saccade length,
fixation duration, fixation frequency, X and Y view speed (total distance
normalized by time) and reading speed (avg words read per minute). The
divergence of these task and gaze features from normality was confirmed
via the Shapiro–Wilk test. We used the two-tailed Wilcoxon signed-rank test
to determine the statistical significance of the difference in these features
between the "No Fatigue” and "Fatigue” blocks (Table 1).

Model training
We use the scikit-learn SVC library (see sklearn.svm.SVC) for implementing
this binary classification model. The precise mathematical formulation for
the SVC we used can be found here: https://scikit-learn.org/stable/modules/
svm.html#svc. Since we used a leave-one-user-out evaluation setting, a
separate SVM model was trained per participant using the data instances
from the remaining participants. We performed a randomized hyperpara-
meter search (see sklearn.model_selection.RandomizedSearchCV) with n=
500 iterations for each user using the following as the parameter search
space: kernel = [“linear”, “poly”, “rbf”, “sigmoid”], kernel coefficient γ=
[10−9, 102]∪ [“scale”], regularization parameter C= [10−3, 102] with the rest
of the classifier parameters set to the implementation library (scikit-learn
version 0.22) defaults. The best model hyperparameters were determined
based on the average score after a three-fold cross-validation run on the
training set.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
To protect study participants’ privacy and consent, captured full face image data will
not be publicly available. The de-identified gaze/task performance features, and
corresponding fatigue labels for the studies are available upon reasonable request
from the corresponding author V.N.

CODE AVAILABILITY
We made use of the open source machine learning frameworks TensorFlow (https://
github.com/tensorflow) and scikit-learn (https://scikit-learn.org) to conduct our
experiments. Due to the large number of dependencies on internal tooling,
infrastructure and hardware, we are unable to publicly release this code. However,
all the experiments and implementation details are available in the Methods section,
to allow for independent replication.
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