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Abstract. Genome-wide association studies (GWAS) have been exten-
sively used to estimate the signed effects of trait-associated alleles. Recent
independent studies failed to replicate the strong evidence of selection
for height across Europe implying the shortcomings of standard popu-
lation stratification correction approaches. Here, we present CluStrat, a
stratification correction algorithm for complex population structure that
leverages the linkage disequilibrium (LD)-induced distances between in-
dividuals. CluStrat performs agglomerative hierarchical clustering using
the Mahalanobis distance and then applies sketching-based randomized
ridge regression on the genotype data to obtain the association statis-
tics. With the growing size of data, computing and storing the genome
wide covariance matrix is a non-trivial task. We get around this overhead
by computing the GRM directly using a connection between statistical
leverage scores and the Mahalanobis distance. We test CluStrat on a
large simulation study of discrete and admixed, arbitrarily-structured
sub-populations identifying two to three-fold more true causal variants
when compared to Principal Component (PC) based stratification cor-
rection methods while trading off for a slightly higher spurious associa-
tions. Applying CluStrat on WTCCC2 Parkinson’s disease (PD) data,
we identified loci mapped to a host of genes associated with PD such as
BACH2, MAP2, NR4A2, SLC11A1, UNC5C to name a few.
Availability and Implementation: CluStrat source code and user
manual is available at: https://github.com/aritra90/CluStrat

Keywords: Population Structure · Association Studies · Clustering ·
Ridge Regression.

1 Introduction

The basic principle underlying Genome Wide Association Studies (GWAS) is a
test for association between genotyped variants for each individual and the trait
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of interest. GWAS have been extensively used to estimate the signed effects of
trait-associated alleles, mapping genes to disorders and over the past decade
about 10,000 strong associations between genetic variants and one (or more)
complex traits have been reported [48,51,45,17]. One unambiguous conclusion
from GWAS is that for almost any complex trait that has been studied so far,
genetic variation is linked with many loci contributing to the polygenic nature of
the traits. Hence, on average, the proportion of variance explained at the single
marker is very small [45].

One of the key challenges in GWAS are confounding factors, such as popula-
tion stratification, which can lead to spurious genotype-trait associations [37,39,33].
If a dataset consists of individuals from different ethnic groups, then the genotype
data will be characterized by genome-wide linkage disequilibrium (LD) between
variants. LD models the fact that alleles at different loci are correlated in indi-
viduals from the same ethnic group. Population structure causes genuine genetic
signals in causal variants for a particular trait of interest to be mirrored in nu-
merous non-causal loci because of LD [23], resulting in spurious associations.
A related phenomenon, the so-called cryptic relatedness, is caused by individu-
als who are closely related and often grouped together by standard population
structure correction strategies, and also poses a serious confounding problem [18].
Two popular approaches for stratification correction while building the Genetic
Relationship Matrix (GRM) [2,41] involve (i) including the principal compo-
nents of the genotypes as adjustment variables [37,38], and (ii) fitting a Linear
Mixed Model (LMM) with an estimated kinship or GRM from the individual’s
genotypes [51]. Recently, three independent studies [40,5,43] failed to replicate
the previously reported signals of directional selection on height in European
populations, as seen in the GIANT consortium (253,288 individuals [49]) in the
independent and more recently UK Biobank cohort (500,000 individuals [8]).
They further showed that the GIANT GWAS is confounded due to stratification
along the north to south axis, where strong signals of selection were previously
reported. These recent studies highlight the need for more sophisticated tools
for correcting for population stratification.

Our work proposes a simple clustering-based approach to correct for stratifi-
cation better than existing methods. This method takes into account the linkage
disequilibrium while computing the distance between the individuals in a sample.
Our approach, called CluStrat, performs Agglomerative Hierarchical Clustering
(AHC) using a regularized Mahalanobis distance-based GRM, which captures
the population-level covariance (LD) matrix for the available genotype data.
We test CluStrat on large simulation studies of discrete and admixed, complex-
structured populations of over 1,000 individuals genotyped on over one million
genetics markers (Single Nucleotide Polymorphisms or SNPs for short) and we
observe that our approach has the lowest number of spurious associations in our
simulations. Our approach also identifies two to three-fold more rare variants
at causal loci when compared to standard stratification correction strategies.
Of independent interest is a simple, but not necessarily well-known, connection
between the regularized Mahalanobis distance-based GRM that is used in our
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approach and the leverage and cross-leverage scores of the genotype matrix (see
Methods and Appendix A for details).

2 Materials and Methods

Notation In the remainder of the paper we let matrix X ∈ Rm×n denote the
genotype matrix (e.g., the minor allele frequency (MAF) matrix on m samples
genotyped on n SNPs). The matrix is appropriately normalized as is common in
population genetics analyses to have zero mean and variance one (columnwise).
The vector y ∈ Rm represents the trait of interest and its i-th entry is set to
one for cases and to zero for controls (for binary traits). We let Xi∗ denote the
i-th row of the matrix X as a row vector and X∗i denote the i-th column of the
matrix X as a column vector. We represent the top k left singular vectors of
the matrix X by the matrix Uk ∈ Rm×k and we will use the notation (Uk)i∗ to
denote the i-th row of Uk as a row vector.

2.1 CluStrat

CluStrat provides an LD based clustering framework to capture the population
structure and tests for association within each cluster, as described in Algo-
rithm 1.

Algorithm 1 Structure informed clustering to correct for population stratifica-
tion

Input: Genotype matrix X ∈ Rm×n, trait vector y ∈ Rm, p-value threshold p,
number of clusters k

Output: Set of significantly associated SNPs M
1: D = MahDist(X)
2: C : Cluster membership vector (output of agglomerative hierarchical clus-

tering on D, k clusters)
3: for i = 1 . . . k
4: Yi = yCi

and X(Ci) = XCi∗

5: Find β̂ridgei =
(
X(Ci)

>
X(Ci) + λI

)−1
X(Ci)

>
Yi.

6: Obtain set of significant p-value indices Pi from β̂ridgei .
7: end for
8: P =

⋃
i∈C

Pi and get X(P1) = X∗P

9: Find β̂ridge =
(
X(P1)

>
X(P1) + λI

)−1
X(P1)

>
y.

10: Obtain set of p-values P2 for β̂ridge.
11: Return M , set of markers corresponding to significant p-values from P2.

It computes the distance matrix D from the normalized genotype matrix X
and performs AHC for a number of clusters k, selected by a cross validation.
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For each cluster, it runs an association test using ridge regression and obtains
p-values for each marker. Thereafter, it computes P1 the union of intersections of
significant associations across all clusters and select the corresponding markers
from X to form X(P1). We can interpret this step as a scheme for variable
selection. We run another association test with ridge regression on X(P1) to
obtain M , the final set of significant associations for all meta-analysis p-values
below p.

We now briefly discuss the use of the Mahalanobis distance at the first step
of the proposed algorithm. In an arbitrarily structured breeding population,
correlation between loci due to LD often results in block-diagonal structures
in the genetic relationship matrix. Thus, it is important to account for this LD
structure in the computation of the distance matrix [34]. One way to account for
the LD structure is to use the squared Mahalanobis distance [32,36] (denoted as
D in eqn. 1). Given a matrix G ∈ Rn×n which contains the covariance structure
of LD (covariance due to LD between genetic markers), the LD-corrected GRM
implementing the Mahalanobis distance is defined as

D = XG−1X> (1)

The Mahalanobis distance is useful in high-dimensional settings where the Eu-
clidean distances fail to capture the true distances between observations (see
Appendix A for relationships between Mahalanobis and Euclidean distances). It
achieves this by taking the correlation structure between the features into ac-
count. We perform the association test in CluStrat by running ridge regression

(a) Mahalanobis Distance (b) Euclidean Distance

Fig. 1: Dendrograms obtained after running AHC with Ward’s linkage on
Pritchard-Stephens-Donnelly (PSD) model (α = {0.1, 0.1, 0.1}) shows Maha-
lanobis distance with fine grained interactions between the individuals inside
a cluster recovering population substructure and cryptic relatedness which Eu-
clidean distance based GRM fails to recover.

on each cluster. The regularizer, λ, is chosen by 5-fold cross validation. It is
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worth noting that we use ridge regression for each cluster as the number of sam-
ples is significantly smaller than the number of SNPs, thus making the overall
system under-determined. We find the ridge-estimates as follows:

β̂ridge = (X>X + λIn)−1X>y = X>(XX> + λIm)−1y (2)

We emphasize that the above operation is run for each cluster. We simply
dropped the superscripts from X in the above equation for simplicity. Then,
we find the standard error of the estimates in order to calculate the p-values
associated with each marker to compute the significance of its association with
the trait. The standard error for each marker i in ridge regression is given by

SE(β̂ridgei ) =
σ

ν

∥∥(XX> + λIm)−1X∗i
∥∥
2
. (3)

Recall that X∗i is the i-th column of X and ν is known as the residual degrees
of freedom. We set ν as shown in previous work [26] to the following,

ν = m− cX(X>X + λI)−1X> (4)

for a small scalar constant c > 0.
For biobank-scale datasets requiring terabytes of memory, computing the

standard error can be a challenge. However, we can use random projection based
approaches to sketch the input matrix X in order to approximate the standard
error for each marker. This is indeed a novel contribution of our approach. We
delegate details to Appendix A. We do note that our work is heavily based
on previous work on Randomized Linear Algebra (RLA) [19,22,20,50]). To the
best of our knowledge, this is the first approximation of the standard error in
penalized regression using a sketching based framework and is of independent
interest; see also [11] for related work.

2.2 Computing Mahalanobis Distance

Mahalanobis distance is known to be connected to statistical leverage [47]. We
discuss the connection between a regularized version of the Mahalanobis distance
and a regularized notion of statisical leverage scores below. We first note that the
Mahalanobis distance is invariant to linear transformations, which means that
the standard normalizations of the genotype matrix X do not affect the Maha-
lanobis distance between two vectors. Recall the definition of the Mahalanobis
distance between samples i and j:

D(Xi∗,Xj∗) = (Xi∗ −Xj∗)G
−1(Xi∗ −Xj∗)

>. (5)

Now, recall that the rank-k leverage scores of the genotype matrix X ∈ Rm×n
with n� m are defined by the row norms of the matrix of its top k left singular
vectors Uk ∈ Rm×k. Let (Uk)i∗ denote the i-th row of the matrix Uk. Then the
rank-k statistical leverage scores of the rows of A, for i ∈ 1, · · · , n are given by

Hi = ‖(Uk)i∗‖22.
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Similarly, the rank-k (i, j)-th cross-leverage score, Hij , is equal to the dot prod-
uct of the i-th and j-th rows of Uk, namely

Hij = 〈(Uk)i∗, (Uk)j∗〉. (6)

Here, H ∈ Rm×m is the matrix of all leverage and cross-leverage scores. We note

that Hi = Hii = ‖(Uk)i∗‖22 =
(
UkU

>
k

)
ii

is a special case of the dot product in

eqn. 6 for the diagonal leverage scores. We show that the Mahalanobis distance
can be written in terms of the rank-k leverage and cross-leverage scores (see
Appendix A for details on the relationship between Mahalanobis distance and
leverage scores). Indeed, the final formulas are:

Di = D(Xi∗, 0) = (m− 1)

(
Hi −

1

m

)
, and (7)

Dij = D(Xi∗,Xj∗) = (m− 1)(Hi + Hj − 2Hij). (8)

Thus, we show that Mahalanobis distance between two vectors can be computed
efficiently without storing or inverting G, by the corresponding rank-k leverage
and cross-leverage scores. By computing the rank-k Mahalanobis distance with
respect to the top k-left singular vectors of the genotype matrix X, we make
this computation feasible for UK Biobank-scale datasets using methods such as
TeraPCA [7] to approximate the matrix Uk accurately and efficiently.

Algorithm 2 MahDist : Compute Mahalanobis distance based GRM

Input: X ∈ Rm×n where n > m, k number of PCs to retain
Output: Mahalanobis GRM D
1: Compute Uk, the matrix of the top k left singular vectors of the genotype

matrix X
2: H = UkU

>
k

3: D(Xi∗,Xj∗) = (m− 1) (Hii + Hjj + 2Hij)
4: Return D

2.3 Agglomerative Hierarchical Clustering

We performed AHC using the LD induced Mahalanobis distance with a varying
number of clusters. We set the expected number of clusters to d+q where d is the
number of populations in the data and q is a user-defined range. We performed a
five-fold crossvalidation to choose the optimal number of clusters and retain the
cluster which maximizes the intersection of associations across all the clusters.
The observed number of clusters is obtained by the inconsistency method of
pruning according to the depth of the dendrogram. We note that for the simple
case where q is set to zero, the clustering essentially attempts to recover the
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populations. In practice, we observed that the number of qualitative clusters
obtained by running PCA on the genotype data serves as a good heuristic for
the number of user defined clusters using the AHC procedure.

2.4 Datasets

We generated an extensive set of simulations with challenging scenarios to demon-
strate the robustness to different real-world scenarios and power to detect few
spurious associations.

We simulated and analyzed 100 GWAS datasets from a quantitative trait
model (and it’s equivalent binary trait model using the Odds Ratio (OR) as the
classifier for disease status from the continuous variable y) based on previous
work [41].

yj = α+
m∑
i=1

βiXij + λj + εj (9)

where βi is the genetic effect of SNP i on the trait, λj is the random non-
genetic effect and εj is the random noise variation for individual j. Xij is the ith

marker for the jth individual and y ∈ Rm is the trait response variable (binary
or continuous). For the genotype data, we simulated allele frequencies using (i)
Balding-Nichols (BN) model [4] based on allele-frequency and FST estimates cal-
culated on the HapMap data set, (ii) three different levels of admixture by vary-
ing the parameter α from {0.01,0.1,0.5} in Pritchard-Stephens-Donnelly model
(PSD) [39] and (iii) structure estimated from 1000 Genomes Project (TGP) [3]
(see Appendix A for details). To capture real world population structure, we

Fig. 2: Projection of the samples from three populations simulated from (i) BN
(ii) PSD (α = {0.1, 0.1, 0.1}) and (iii) TGP model on the top two axes of varia-
tion.

applied CluStrat on the Parkinson’s Disease (PD) data available from the The
Wellcome Trust Case Control Consortium (WTCCC2) study containing 4706 in-
dividuals (2837 controls and 1869 cases) across 517,672 SNPs. After performing
quality control (details in Appendix) and pruning for LD between variants, we
obtained 99,631 markers.
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3 Results

We applied CluStrat to 30 simulation scenarios, modelling variable proportions
of true genetic effect and admixture and compared its performance to stan-
dard population structure correction approaches such as EIGENSTRAT [38],
GEMMA [52], and EMMAX [28]. We compared all the methods on all of the
above scenarios with the p-value threshold set to p = 25

ni
= 0.0025; here ni is

the number of SNPs, which was set to 10,000. The expected number of spurious
association as mentioned in [41] is n0 × p where n0 is equal to n minus number
of causal SNPs (10 in our case). In all of the above scenarios, CluStrat out-
performed the standard approaches in detecting the true causal variants while
reporting slightly more spurious associations in the simulation scenarios.

(a) Spurious associations (b) Causal associations

Fig. 3: Box plots for spurious and causal associations on the TGP model shows
Armitage trend χ2 has the maximum number of spurious associations (Appendix
figure 4 and 6). CluStrat outperforms both the methods in this scenario by de-
tecting two fold more causal loci while allowing slightly more spurious associa-
tions.

The BN and PSD model simulates scenarios with unrelated isolated popu-
lations (Figure 2 (i) and (ii)). The samples when projected on the top two PCs
clearly resemble three isolated clusters with no connections between them in
BN and with admixed populations between the clusters in PSD, respectively.
This serves as a “base case” for arbitrarily structured population with and with-
out admixture. Armitage trend χ2 test with no population structure correction
renders almost half of the SNPs in the simulation study as true associations,
resulting in a vast number of spurious associations, clearly highlighting the need
for population structure correction. PCA or LMM based approaches on the other
hand return roughly the expected number of spurious associations as also shown
in prior work [38]. Yet, PCA and LMM approaches are very stringent and de-
tect zero causal SNPs in almost our experiments (Appendix figure 4, 6 and 7).
CluStrat, however, strikes a balance between the two: it generates more spurious
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associations than the expected value, though far less than the Armitage trend
χ2 test, and recovers almost similar number of causal SNPs. This shows that in
an ideal case of population stratification correction, CluStrat can identify more
causal SNPs mainly due to the use of the Mahalanobis distance and the simple
clustering algorithm that we propose.

The TGP model is a more realistic model, drawing genotypes from allele fre-
quency distributions from the 1000 Genomes Phase 3 dataset [3]. Projection of
genotypes drawn from the 1000 Genomes (TGP) dataset on the top two axes of
variations shows the distribution of samples across the world (see Figure 2 (iii).
CluStrat (Figure 3) captures two-to-three fold increase in detection of causal
variants while allowing for slightly more number of spurious associations. This
shows that structure informed clustering of the genotype data followed by regu-
larized association tests outperforms genotype and phenotype adjustments with
the top k PCs, which is what EIGENSTRAT and LMMs often do.

Applying CluStrat on WTCCC2’s with a p-value threshold set to 10−7 we
found a host of associated regions mapped to genes previously known to be asso-
ciated with PD in literature. Our strongest associated loci rs10177996 (p-value
= 2.2 × 10−16) maps to WNT10 in the Wignless-type MMTV integration site
(Wnt) signalling cascade which has emerged as a very important pathway in
major neurodegenerative pathologies including PD [29]. Another significant loci
appeared to be in Chromosome 6 at rs176713 associated to the transcriptional
inhibitor BACH2 which is known to interfere with Nrf2 function which when ac-
tivated is a promising protective mechanism for progressive neurodegeneration in
PD [27]. Other significant associated markers which are mapped to genes shown
to be associated in previous work are SLC11A1 [6], UNC5C [30], MAP2 [16],
EFNA5 [46], NR4A2, GRM7 [24], CNTN2, etc. (see Table 1 in Appendix B for
details). We conclude that CluStrat not only works better in simulation scenar-
ios but can also replicate previously recorded associations in real data sets such
as PD.

4 Discussion

CluStrat provides a structure informed clustering approach to correct for pop-
ulation stratification in GWAS. In our experiments, we verified the power of
our approach in a variety of simulated data and observed that CluStrat outper-
forms the widely used EIGENSTRAT, GEMMA, and EMMAX methods in all
settings, by detecting two to four times more causal SNPs. Adversely, our ap-
proach detects more spurious associations than standard approaches; however, it
still performs much better than the uncorrected Armitage trend χ2 tests. Princi-
pal component based methods have been under scrutiny recently as independent
studies [5,40] on the UK Biobank [8] failed to replicate the genetic associations
of heritable height in Europeans, where a positive selection signal was observed
in a north to south gradient [15,42,35] in the GIANT [49] cohort. These studies
attributed the failure to replicate the results to cryptic relatedness among indi-
viduals, which PCA-based approaches for population stratification correction do
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not always capture. CluStrat provides a fine structure-based clustering approach
to tackle cryptic relatedness and ancestral differences among the individuals be-
tween and within populations.

We chose to use the low-rank Mahalanobis distance metric in CluStrat be-
cause it captures the LD-induced structure information in the GRM. We es-
tablished a link between the low-rank Mahalanobis distance and the low-rank
leverage/cross-leverage scores, which allows us to get around the storage and
computational bottlenecks of Mahalanobis distance. Prior work [34] computed
the Mahalanobis distance by randomly subsampling a small number of SNPs to
estimate the covariance matrix and circumvent to computational time and space
requirements. Mahalanobis distance is also shown to remove bias in heritability
estimates in presence of LD, therefore finding true causal variants [31]. An in-
teresting topic for future work is to make CluStrat even faster by approximating
the leverage and cross-leverage scores as shown in [19]. We also want to explore
meta-analysis strategies to combine p-values from each cluster and obtain a cu-
mulative significance across clusters as done in GWA studies. We showed that
the Mahalanobis distance performs better (Figure 1) in capturing cryptic relat-
edness than the Euclidean distance based GRM. In upcoming work, we intend
to evaluate CluStrat on the UK Biobank data to explore whether it succeeds
or fails to replicate the north to south gradient of positive selection of height in
Europeans [5,40]. CluStrat being a clustering based strategy is computationally
slower than the PCA based approaches, we intend to explore Mahalanobis dis-
tance based GRM in other statistical models for association tests. Another future
direction for CluStrat is to extend it to compute Polygenic Risk Scores (PRS) on
a discovery or validation dataset and compare it with widely used packages such
as PRSice2 [10] and LDPred [44], which compute PRS from GWAS summary
statistics as well as raw genotypes.

In summary, CluStrat highlights the advantages of biologically relevant dis-
tance metrics, such as the Mahalanobis distance, which seems to capture the
cryptic interactions within populations in the presence of LD better than the
Euclidean distance. We evaluated CluStrat on a host of simulation scenarios for
arbitrarily structured populations with and without admixture. The choice of
the number of clusters does not change the results drastically and one can use
the number of broad clusters that are visually apparent when plotting the data
on the top two or three principal components as a initial choice of clusters. We
implemented a five-fold cross validation approach to obtain the optimal choice
for the number of clusters and the regularization parameters. We concluded that
CluStrat outperforms PCA or LMM based population stratification correction
techniques in a variety of simulated datasets.

5 Acknowledgements

AB carried out this work as a part of his PhD dissertation in the Computer
Science Department, Purdue University, West Lafayette, IN, USA.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908228doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.908228
http://creativecommons.org/licenses/by-nc-nd/4.0/


CluStrat 11

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003)

2. Astle, W., Balding, D.J., et al.: Population structure and cryptic relatedness in
genetic association studies. Statistical Science 24(4), 451–471 (2009)

3. Auton, A., Abecasis, G.R., Altshuler, D.M., et al.: A global refer-
ence for human genetic variation. Nature 526(7571), 68–74 (2015).
https://doi.org/10.1038/nature15393, http://www.nature.com/doifinder/

10.1038/nature15393

4. Balding, D.J., Nichols, R.A.: A method for quantifying differentiation between
populations at multi-allelic loci and its implications for investigating identity and
paternity. Genetica 96(1-2), 3–12 (1995)

5. Berg, J.J., Harpak, A., Sinnott-Armstrong, N., et al.: Reduced signal for polygenic
adaptation of height in uk biobank. eLife 8, e39725 (2019)

6. Blackwell, J.M., Goswami, T., Evans, C.A., et al.: Slc11a1 (formerly nramp1) and
disease resistance: Microreview. Cellular microbiology 3(12), 773–784 (2001)

7. Bose, A., Kalantzis, V., Kontopoulou, E.M., et al.: Terapca: a fast and scalable
software package to study genetic variation in tera-scale genotypes. Bioinformatics
(2019)

8. Bycroft, C., Freeman, C., Petkova, D., et al.: The uk biobank resource with deep
phenotyping and genomic data. Nature 562(7726), 203 (2018)

9. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: International Colloquium on Automata, Languages, and Programming. pp.
693–703. Springer (2002)

10. Choi, S.W., O’Reilly, P.F.: Prsice-2: Polygenic risk score software for biobank-scale
data. GigaScience 8(7), giz082 (2019)

11. Chowdhury, A., Yang, J., Drineas, P.: An iterative, sketching-based framework for
ridge regression. In: International Conference on Machine Learning. pp. 988–997
(2018)

12. Clarkson, K.L., Woodruff, D.P.: Low-rank approximation and regression in input
sparsity time. Journal of the ACM (JACM) 63(6), 54 (2017)

13. Cohen, M.B., Nelson, J., Woodruff, D.P.: Optimal approximate matrix product in
terms of stable rank. arXiv preprint arXiv:1507.02268 (2015)

14. Consortium, I.H.., et al.: Integrating common and rare genetic variation in diverse
human populations. Nature 467(7311), 52 (2010)

15. Coop, G., Pickrell, J.K., Novembre, J., et al.: The role of geog-
raphy in human adaptation. PLOS Genetics 5(6), 1–16 (06 2009).
https://doi.org/10.1371/journal.pgen.1000500, https://doi.org/10.1371/

journal.pgen.1000500

16. D’Andrea, M.R., Ilyin, S., Plata-Salaman, C.R.: Abnormal patterns of
microtubule-associated protein-2 (map-2) immunolabeling in neuronal nuclei and
lewy bodies in parkinson’s disease substantia nigra brain tissues. Neuroscience let-
ters 306(3), 137–140 (2001)

17. Demontis, D., Walters, R.K., Martin, J., et al.: Discovery of the first genome-wide
significant risk loci for attention deficit/hyperactivity disorder. Nature genetics
51(1), 63 (2019)

18. Devlin, B., Roeder, K.: Genomic control for association studies. Biometrics 55(4),
997–1004 (1999)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908228doi: bioRxiv preprint 

https://doi.org/10.1038/nature15393
http://www.nature.com/doifinder/10.1038/nature15393
http://www.nature.com/doifinder/10.1038/nature15393
https://doi.org/10.1371/journal.pgen.1000500
https://doi.org/10.1371/journal.pgen.1000500
https://doi.org/10.1371/journal.pgen.1000500
https://doi.org/10.1101/2020.01.15.908228
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 Bose et al.

19. Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P.: Fast approxi-
mation of matrix coherence and statistical leverage. Journal of Machine Learning
Research 13(Dec), 3475–3506 (2012)

20. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for l 2 re-
gression and applications. In: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm. pp. 1127–1136. Society for Industrial and Ap-
plied Mathematics (2006)

21. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error cur matrix de-
compositions. SIAM Journal on Matrix Analysis and Applications 30(2), 844–881
(2008)

22. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T.: Faster least squares
approximation. Numerische mathematik 117(2), 219–249 (2011)

23. Ewens, W.J., Spielman, R.S.: The transmission/disequilibrium test: history, sub-
division, and admixture. American journal of human genetics 57(2), 455 (1995)

24. Fisher, N.M., Seto, M., Lindsley, C.W., Niswender, C.M.: Metabotropic glutamate
receptor 7: A new therapeutic target in neurodevelopmental disorders. Frontiers in
molecular neuroscience 11, 387 (2018)

25. Hao, W., Song, M., Storey, J.D.: Probabilistic models of genetic variation in struc-
tured populations applied to global human studies. Bioinformatics 32(5), 713–721
(2015)

26. Hastie, T.J.: Generalized additive models. In: Statistical models in S, pp. 249–307.
Routledge (2017)

27. Johnson, D.A., Johnson, J.A.: Nrf2—a therapeutic target for the treatment of
neurodegenerative diseases. Free Radical Biology and Medicine 88, 253–267 (2015)

28. Kang, H.M., Sul, J.H., Service, S.K., et al.: Variance component model to account
for sample structure in genome-wide association studies. Nature genetics 42(4),
348 (2010)

29. L’Episcopo, F., Tirolo, C., Caniglia, S., et al.: Targeting wnt signaling at the neu-
roimmune interface for dopaminergic neuroprotection/repair in parkinson’s disease.
Journal of molecular cell biology 6(1), 13–26 (2014)

30. Li, Q., Wang, B.L., Sun, F.R., et al.: The role of unc5c in alzheimer’s disease.
Annals of translational medicine 6(10) (2018)

31. Ma, R., Dicker, L.H.: The mahalanobis kernel for heritability estimation in genome-
wide association studies: fixed-effects and random-effects methods. arXiv preprint
arXiv:1901.02936 (2019)

32. Mahalanobis, P.C.: On the generalized distance in statistics. National Institute of
Science of India (1936)

33. Marchini, J., Cardon, L.R., Phillips, M.S., Donnelly, P.: The effects of human pop-
ulation structure on large genetic association studies. Nature Genetics 36(5), 512–
517 (2004). https://doi.org/10.1038/ng1337, https://doi.org/10.1038/ng1337
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Appendix A

Data simulator

The complete simulation study on quantitative traits with population struc-
ture latent variable is constructed in 5 different ways for 3 different proportions
of variance among genetic effects, non-genetic effects and random noise, all of
which contributing to the trait. We simulated 100 independent datasets con-
taining m = 1, 000 individuals and n = 100, 000 markers from a quantitative
trait model 9. Let Z be a latent variable which captures environmental fac-
tors contributed by population structure. Equation 9 allows interdependence
of structure, lifestyle and environment. We assume E [εj |zj ] ∼ N (0, σ2(zj))
allowing for heteroskedasticity of the random noise variation [41]. Therefore,

xj = (x1j , x2j , · · · , xmj)>, λj and σ2 can be thought of as functions of zj where
Z = (z1, z2, · · · , zm). λj is unspecified but along with zj , they are assumed to be
dependent, random variables. Thus, the population genetic model is dependent
on the structure variable zj for each individual. We define the corresponding
binary trait model as

log

(
Pr (yj = 1)

Pr (yj = 0)

)
= α+

m∑
i=1

βixij + λj (10)

using the Odds Ratio (OR) as the classifier for disease status from the continuous
variable y.

The complete simulation study on quantitative traits with population struc-
ture latent variable is constructed in 5 different ways for 3 different proportions
of variance among genetic effects, non-genetic environmental effects and ran-
dom noise, all of which contributing to the trait. Therefore Var [

∑n
i=1 βixij ],

Var
[∑n

j=1 λj

]
and Var [εj ] are assigned in proportions of (5%,5%,90%), (10%,0%,90%)

and (10%,20%,70%), respectively. Thus, we varied the amount of genetic contri-
bution to the trait for each simulation scenarios and capture variable amounts
of population structure confounding. We simulated ten truly associated SNPs
whose effect sizes were distributed according to a Normal distribution and we
set βi = 0 for all other non-causal SNPs.

The genotype matrix X ∈ Rm×n consisting of the simulated allele frequencies
was simulated using the algorithm from a previous study [25,41]. Specifically, we
set F = TS where T ∈ Rm×d and S ∈ Rd×n where d ≤ n is the number of pop-
ulation groups. S is the matrix containing the population groups encompassing
the structure for the individuals shared across all SNPs. On the other hand, T
characterizes how the structure is manifested in the allele frequencies of each
SNP [25]. Finally, projecting S onto the column space of T we obtain the allele
frequency matrix F. We sample X as a special case of F for Balding-Nichols
(BN), Pritchard-Stephens-Donelly (PSD) and TGP (1000 Genomes Project),
respectively. We formed T and S for the above 5 simulations with 3 scenarios
each and continuous traits, resulting in, 15 different evaluation scenarios each for
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continuous and binary traits. The algorithm for constructing T and S is detailed
in reference [25,41].

For BN, the allele frequency matrix is simulated from the HapMap phase 3
dataset [14] using three unrelated populations. The final genotype matrix, X, is
drawn independently at random from the Binomial distribution with parame-
ters n set to 2, denoting the allele status (0,1 or 2) corresponding to homozygous
major/minor or heterozygous with probability p set to the simulated allele fre-
quency for each individual-SNP pair. For PSD, the allele frequency matrix was
drawn from the BN frequency distribution. However, it differs from BN in simu-
lating S by i.i.d draws from Dirichlet distribution with varying α which denotes
the parameter influencing the relatedness between the individuals. We show re-
sults for α = {0.01, 0.1, 0.5} here and conducted simulations on a wide range of
α values from 0.01 to 0.5.

Real dataset

To capture real world population structure, we applied CluStrat on the Parkin-
son’s Disease (PD) data available from the The Wellcome Trust Case Control
Consortium (WTCCC2) study containing 4706 individuals (2837 controls and
1869 cases) across 517,672 SNPs. After performing quality control by filtering
for genotyping rate lower than 99%, MAF less than 0.01 and Hardy-Weinberg
equilibrium less than 0.001 and pruning for LD between variants higher than 0.2
squared correlation we obtained 99,631 markers.

Distance metrics for Hierarchical clustering

CluStrat computes the distance matrix D from X to perform the AHC. The
choice of distance metric is user defined. However, we choose the distance metric
based on LD induced distances to capture the cryptic relatedness between indi-
viduals in a population which is not otherwise captured by other stratification
methods. We use the normalized genotype matrix X following the standard nor-
malization procedure by minor allele frequency of each marker. Let us consider
the unscaled GRM which captures the Euclidean distances as D = XX> and let
I ∈ Rn×n (in the order of the number of markers n). Thus D can be rewritten
as

D = XIX> (11)

Thus we can see the unscaled GRM as the same weighting on the diagonal for
all markers. In an arbitrarily structured breeding population, there exists corre-
lation between loci due to linkage resulting in varying values along the diagonal
or a block-diagonal structure in the GRM. Thus, it is important to account for
this LD covariance structure in the computation of the GRM [34]. One way to
account for the LD structure in GRM is to use the squared Mahalanobis dis-
tance [32,36] (denoted as D for simplification). Given a matrix G ∈ Rn×n which
contains the covariance structure of LD (covariance due to markers), then the
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LD-corrected GRM with Mahalanobis distance is defined as

D = XG−1X> (12)

The RHS of equation 1 represents the squared multivariate Mahalanobis dis-
tance between individuals. Mahalanobis distance is useful in a high-dimensional
setting where the Euclidean distances fail to capture the true distances between
observations. It achieves this by taking correlation between the features captured
in the SNP covariance matrix into account. The Cholesky factorization of the
covariance matrix G = LL> where L is the lower diagonal matrix known as the
Cholesky factor of G [34]. We can represent equation 1 as

XG−1X> = X
(
LL>

)−1
X>

= X(L>)−1(L)−1X>

=
(
X(L−1)>

) (
L−1X

)>
=
(
L−1X>

)> (
L−1X>

)
= Q>Q

Q = L−1X> represents the transformed variables and Q>Q is the squared
Euclidean distance between the transformed variables. Thus, Mahalanobis dis-
tance accounts for covariance between variables by transforming the data into
an uncorrelated form and computing the euclidean distances between them.

Mahalanobis Distance and Leverage Scores Mahalanobis distance is known
to be connected to statistical leverage [47], which is extended in the RandNLA
framework as leverage scores. We show this relationship by first noting that
Mahalanobis distance is invariant to linear transformations, which means the
Mahalanobis distance between two vectors,

D(Xi∗,Xj∗) = (Xi∗ −Xj∗)G
−1(Xi∗ −Xj∗)

> (13)

can have zero means for each vector. In our genotype matrix, X ∈ Rm×n, we
have n markers and m observations. The design matrix X on which we intend
to fit the model, however, must contain an intercept and thus we refer to X here
as the design matrix containing the intercept column followed by one column
for each SNP for all the individuals in rows. Furthermore, as we compute the
Mahalanobis distance with respect to the low-rank genotype matrix Xk, we
only consider the low-rank leverage scores (rather than the leverage scores of the
original matrix X) which are essentially the diagonal elements of the following
projection-matrix:

H = Xk

(
X>k Xk

)−1
X>k (14)
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and similarly, the off-diagonal elements of H are called cross-leverage scores of
Xk . Now, we will give a clean connection between Mahalanobis distance and
these leverage and cross-leverage scores.

First, consider the diagonal elements of H i.e. when i = j, we have

Hii = (1; Xki∗)
(
X>k Xk

)−1
(1; Xki∗)

> . (15)

Exploiting the structure of
(
X>k Xk

)−1
, we can reformulate it in terms of a block

matrix as follows

X>k Xk = m

(
1 0>

0 C

)
where Cij = 1

m

∑m
`=1 Xk`iXk`j = m−1

m Cov(Xk∗i ,Xk∗j ) = m−1
m Σij . Σ here is

the corresponding sample covariance matrix. Thus,(
X>k Xk

)−1
=

1

n

(
1 0>

0 C−1

)
=

(
1
n 0>

0 1
n−1Σ−1

)
From Equation 15 we obtain

Hi = (1; Xki∗)

(
1
m 0>

0 1
m−1Σ−1

)
(1; Xki∗)

> (16)

=
1

m
+

1

m− 1
Xki∗Σ

−1X>ki∗ (17)

=
1

m
+

1

m− 1
D (Xki∗ , 0) (18)

Solving for
Di = D(Xki∗ , 0)

yields,

Di = (m− 1)

(
Hi −

1

m

)
Similarly, we can prove the cross-leverage scores

Hij =
1

m
+

1

m− 1
Xki∗Σ

−1Xkj∗ (19)

To prove the relationship of Hij with Dij we see,

D(Xki∗ ,Xkj∗) = (Xki∗ −X>kj∗)Σ
−1(Xki∗ −Xkj∗)

= D(Xki∗ , 0) + D(Xkj∗ , 0)− 2Xki∗Σ
−1Xkj∗

= (m− 1)(Hi −
1

m
) + (m− 1)(Hj −

1

m
)− 2(m− 1)(Hij −

1

m
)

= (m− 1)(Hi + Hj − 2Hij)
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If we take Xki∗ = Xkj∗ then we find D(Xki∗ ,Xkj∗) = 0. Thus, we show that
Mahalanobis distance between two vectors can be computed by the correspond-
ing vector’s leverage scores.

One of the key computational bottlenecks of Mahalanobis distance is comput-
ing the inverse of the SNP covariance matrix G as required in Equation 1. In real
datasets, with the improvements in genotyping and sequencing technologies, the
number of SNPs can be in the millions, thereby making G in the order of million
times million and infeasible to store in secondary memory. Here, we propose the
first approximation of Mahalanobis distance by computing leverage and cross-
leverage scores in a faster and efficient way. As we have shown in Equation 19
and 16 following up from previous work [47], Mahalanobis distance can be writ-
ten in terms of leverage scores. Advances in RandNLA community have brought
about faster computations for leverage scores as well as cross-leverage scores;
hence, we can compute approximations to these scores using random sampling
algorithms with theoretical guarantees [19]. For our purposes of demonstrating
the proof-of-concept, we work with simulated data as described above for 1,000
individuals and 500,000 SNPs which could be feasibly processed in a personal
workstation to compute the deterministic leverage and cross-leverage scores.

Computing leverage and cross-leverage scores. In fact, we do not need
to compute the rank-k leverage and cross-leverage scores exactly. Using the
idea of [19,12], they can be well-approximated in a much faster way with high-
probability. In particular, computing m row-leverage scores takes time

O
(
nnz(Xk) log n+ k3 log2 k + k2 log n

)
,

where nnz means the non-zero entries of the matrix, and computation of the
high-valued cross-leverage scores can be done in time

O(nnz(Xk) log3 n) .

Fast Computation of Standard errors

For biobank-scale data-sets requiring terabytes of memory, computing the stan-
dard error can be a challenge. However, we can use random projection based
sketching matrices to find an approximate standard error for each marker by
projecting the genotype matrix X on a sketching matrix S ∈ Rn×r to form a
sketch XS. We can rewrite the standard error in Equation 3 to find it’s approx-
imate as,

˜̂
SE(β̂i) = σ2‖

(
XSS>X> + λIm

)−1
X(i)‖22 (20)

The sketched matrix XS generically has the same rank but much fewer columns
than X, satisfying 1 ≤ r ≤ min{m,n}. Sketching, in general, is used to speed up
solving systems of linear equations [20,22,12]. The sketching dimension, r, is di-
rectly proportional to the accuracy obtained by the approximate standard errors.
Some prior knowledge of the design matrix, X, helps determine the target rank, r,
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that will result in satisfactory error guarantees. The sketching matrix, S, can be
chosen simply as i.i.d normal random variables with mean equal to zero and vari-
ance equal to 1

r . There exists other ways to choose S based on random projections
as shown in previous work involving Fast Johnson-Lindenstrauss Transform [1],
Subsampled Randomized Hadamard Transform [20,21] and Count-Sketch matri-
ces [9] from streaming setting involving faster computation with sparse matrices.

Time to compute eqn. (20). Following the discussion as in [11], let the time
to compute the sketch XS ∈ Rm×s be T (X,S) which depends on the particular
construction of S. In order to invert the matrix Q = XSS>X>, it suffices to
compute the SVD of the matrix XS. Notice that given the singular values of
XS, we can compute the singular values of Q and also notice that the left
and right singular vectors of Q are the same as the left singular vectors of XS.
Interestingly, we do not need to compute Q−1. Instead, we can store it implicitly
by storing the left (and right) singular vectors of Q along with its singular
values, ΣQ. Then, we can compute all necessary matrix-vector products using
this implicit representation of Q−1. Thus, inverting Q takes O

(
sm2

)
time and

this will eventually dominate the computation of all other matrix-vector products
and the Euclidean-norm. Therefore, total running time to compute eqn. (20) is
given by

T = O(sm2) + T (X,S)

Clearly, specific constructions of the sketching matrix S will determine both s
and T (X,S), and therefore T . For example, if S is a subsampled randomized
Hadamard transform (SRHT) matrix, then we have, T (X,S) = O(mn log n) and
s = Ω((m log(m/δ))/ε2); therefore T = O((m3 log(m/δ))/ε2) + O(mn log n).
Similarly, if S has sub-Gaussian entries, then s = O(m/ε2) and T (X,S) =
O(m2n); therefore T = O(m2n). Furthermore, if S is a count-sketch matrix of

[12], then, in this case, s = Ω(m
2

ε2δ ) and T (X,S) = nnz(X). So, total running

time T = O(nnz(X) + m4

ε2δ ). Here, ε is the accuracy parameter and δ is the
corresponding failure probability.

Note that sketching-dimension, s, for sub-Gaussian is optimal, but T (X,S)
takes much time. On the other hand, for count-sketch, T (X,S) is much faster
(only nnz(X)), but sketching-dimension is huge O(m2/ε2). In a recent work
[13], the authors showed that we can actually use all the sketches discussed
here in conjunction with each other to get the best performance both in terms
of sketching-dimension as well as computation time. More precisely, if one set
S = S1S2S3 with S1 being the count-sketch, S2 being the SRHT and S3 be-
ing the sub-Gaussian , then XS will have O(m/ε2) columns with running time
T (X,S) = O(nnz(A)) + Õ

(
ε−O(1)

(
m3 +m2d

))
.
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Appendix B

Comparing Stratification Methods

BN model The BN model simulates scenarios with unrelated isolated pop-
ulations (Figure 2 (i)) and serves as the basic case for arbitrarily structured
population with no admixture.

(a) Spurious associations (b) Causal associations

Fig. 4: Box plots for spurious and causal associations on the BN model shows that
Armitage trend χ2 has the maximum number of spurious associations containing
about 4-5 causal SNPs whereas EIGENSTRAT has minimum number of spurious
associations while detecting almost zero causal SNPs. CluStrat has more spurious
associations than EIGENSTRAT and considerably less than Armitage trend χ2

recovering slightly more number of causal SNPs than the latter.

The samples when projected on the top two PCs clearly resembles three iso-
lated clusters with no connections between them. This is an ideal case when
the populations are not mixing due to environmental factors acting as barri-
ers of gene flow between populations. GWAS has shown to be robust in these
settings [45]; however, the cryptic relatedness for each cluster remains a plagu-
ing issue [5]. We ran CluStrat on this scenario with p-value threshold set to
p = 25

mi
= 0.0025 (mi is the number of SNPs in each iteration, set to 10,000

for 100 iterations). The expected number of spurious association as mentioned
in [41] is m0 × p where m0 = m− number of causal SNPs. In our case, as we
set the number of causal SNPs to 10 as per [41], m0 = 9990 and therefore, the
number of spurious associations to be approximately 25 with degree of freedom
set to 1 for genotypes.

Armitage trend χ2 with no population structure correction renders almost
half of the SNPs in the simulation study as true associations resulting in a con-
siderable amount of spurious associations highlighting the need for population
structure correction. EIGENSTRAT on the other hand results in the expected
number of spurious associations as also shown in previous work [38]. However,
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it behaves stringently and detects zero causal SNPs almost all of the time (Fig-
ure 4). CluStrat, however, strikes a balance between the two and generates far
more spurious associations than the expected value but about 5 folds less than
Armitage trend χ2 recovering a slightly higher number of causal SNPs. This
shows that in the ideal case of population structure correction, CluStrat can
identify more causal SNPs due to the structure informed clustering setup which
widely used stratification correction methods lack.

(a) α = {0.01, 0.01, 0.01} (b) α = {0.5, 0.5, 0.5}

Fig. 5: Projection of the samples from PSD model with varying sets of values of
α. We observe that increasing α increases the density between individuals leading
to admixture and creates a uniform gradient as all values of αi are equal.

PSD model The PSD model emulates real world datasets more closely than BN
model. It allows for admixing individuals and gradients across the populations.
It is sampled from the Dirichlet distribution parameterized by a concentration
parameter α ∈ Rd where d = 3 (the number of populations for all simulations
conducted). A higher value of αi corresponds to greater weight of ith population.
We ran CluStrat on the PSD model with varying number of α from 0.01 to

0.5 and kept equal αi for a symmetric distribution. We report the boxplots
of spurious and causal associations (Figure 6 and 7) for α = 0.1, 0.5 and and
observe that for the first case of variance, (5%, 5%, 90%), Armitage trend χ2 and
CluStrat performs almost similarly in terms of spurious associations. This is due
to the fact that only 5% of the trait is explained by true genetic associations
in presence of LD and the rest is noise and environmental factors. However,
CluStrat outnumbers EIGENSTRAT, GEMMA and EMMAX in terms of causal
associations and detects four to six fold more true causal SNPs. For the other
two variance proportions, CluStrat performed better than the other methods
in detecting the causal associations and strikes a balance in terms of spurious
associations.
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(a) Spurious associations (b) Causal associations

Fig. 6: Box plots for spurious and causal associations on the PSD model (α =
{0.1, 0.1, 0.1}) shows Armitage trend χ2 has maximum number of spurious as-
sociations containing less causal SNPs than the BN model (Figure 4) owing to
the admixed nature of the individuals in PSD. EIGENSTRAT, GEMMA and
EMMAX has least number of spurious associations while detecting almost zero
causal SNPs. CluStrat has more spurious associations than the standard ap-
proaches and less than Armitage trend χ2 while recovering two to three fold
more causal SNPs.

(a) Spurious associations (b) Causal associations

Fig. 7: Box plots for spurious and causal associations on the PSD model (α =
{0.5, 0.5, 0.5}) shows Armitage trend χ2 has maximum number of spurious as-
sociations containing less causal SNPs than the BN model (Figure 4) owing to
the overtly admixed nature of the individuals in PSD. EIGENSTRAT, GEMMA
and EMMAX has least number of spurious associations while detecting almost
zero causal SNPs. CluStrat has more spurious associations than the standard
approaches and slightly more than α = 0.1 owing to more admixed nature of
the data. It has considerably less spurious associations than Armitage trend χ2

while recovering two to three fold more causal SNPs.
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Comparing Distance metrics

CluStrat with Euclidean distance metric based GRM (sample covariance ma-
trix) also contains structure information as part of the relationships between the
individuals within and between population groups. The GRM with Euclidean
distance is straightforward to compute as shown below

D = X>X

where X ∈ Rn×m, with number of markers, n and number of samples, m
(n >> m). We show that although Euclidean distances between individuals is
straightforward to compute, it fails to distinguish fine-grained distances between
individuals in the same cluster owing to cryptic relatedness. This is highlighted
after performing AHC using Ward’s linkage method which minimizes the in-
crease in sum of squares between two cluster centroids in order to decide when
to merge them. (Figure 1).

(a) Spurious associations (b) Causal associations

Fig. 8: Box plots for spurious and causal associations obtained by running
AHC with Mahalanobis and Euclidean distances on the PSD model (α =
{0.1, 0.1, 0.1}). We observe similar performance on both the distance metrics
in terms of identifying true causal variants. Mahalanobis distance discovers less
spurious associations than Euclidean distance.

When Mahalanobis distance based GRM is used instead of Euclidean distance
in AHC on PSD model with 1,000 individuals and 10,000 SNPs across 3 admixed
arbitrarily structured ethnic groups, it reveals four broad clusters with various
fine-grained sub-clusters revealing how Mahalanobis distance help recover cryptic
relatedness and substructure within a population.

Due to admixture in the PSD model (α = {0.1, 0.1, 0.1}) as shown in Figure 5
the dendrogram finds three broad clusters owing to the three populations in the
simulation. It subsequently finds different sub-clusters at different depth on the
horizontal axis. Thus, identifying interaction between individuals inside a cluster.
This is a significant advantage of using Mahalanobis distance over it’s Euclidean
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counterpart as the latter only reveals three broad clusters with indistinguishable
interactions in each cluster (Figure 1).

When we ran AHC with both the distances, we observe similar performance
on the PSD model with Mahalanobis distance based GRM performing slightly
better with respect to it’s Euclidean counterpart (Figure 8). We note that as
we increase the scale of admixed genotype data with more complex structure,
Mahalanobis distance is better suited as it is known to project correlated high
dimensional data to an uncorrelated lower dimensional space where it recovers
the hidden Euclidean distances [32].

Table 1: Table showing strongest associations after running CluStrat on
WTCCC2 PD data

Chrom# SNPID GeneID p-value

2 rs10177996 WNT10A 2.22× 10−16

2 rs1059823 SLC11A1 2.4× 10−16

4 rs11936554 UNC5C 4× 10−16

2 rs13013415 WDR33 4.5× 10−16

2 rs1509467 MAP2 5× 10−15

3 rs1516570 GRM7 5.7× 10−14

6 rs176713 BACH2 6× 10−12

6 rs176713 BACH2 6× 10−12

4 rs2322559 SLIT2 6.1× 10−12

4 rs2328457 AIG1 6.13× 10−12

3 rs3816969 NMNAT3 6.15× 10−12

3 rs4677964 PARP15 7.15× 10−10
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