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Brain networks have attracted increasing attention due to the potential to better

characterize brain dynamics and abnormalities in neurological and psychiatric conditions.

Recent years have witnessed enormous successes in deep learning. Many AI algorithms,

especially graph learning methods, have been proposed to analyze brain networks. An

important issue for existing graph learning methods is that those models are not typically

easy to interpret. In this study, we proposed an interpretable graph learning model

for brain network regression analysis. We applied this new framework on the subjects

from Human Connectome Project (HCP) for predicting multiple Adult Self-Report (ASR)

scores. We also use one of the ASR scores as the example to demonstrate how to

identify sex differences in the regression process using our model. In comparison with

other state-of-the-art methods, our results clearly demonstrate the superiority of our new

model in effectiveness, fairness, and transparency.

Keywords: multimodal brain networks, human connectome project, graph learning, interpretable AI, adult self-

report score

1. INTRODUCTION

Understanding brain structural and functional changes and its relationship to other phenotypes
(e.g., behavior and demographical variables or clinical outcomes) are of prime importance in the
neuroscience field. One of the key research directions is to use neuroimaging data for predictive
or regression analyses and identify phenotype-related imaging biomarkers. Many previous studies
(Rusinek et al., 2003; Sabuncu et al., 2015; Seo et al., 2015; Duffy et al., 2018; Kim et al.,
2019) focus on predicting phenotypes using imaging features from voxels or region-of-interests
(ROIs). However, increasing evidences show that most of the phenotypes are the outcomes of the
interactions among many brain regions (Lehrer, 2009; Van Den Heuvel et al., 2012; Sporns, 2013;
Mattar and Bassett, 2019), therefore, using brain network for this prediction task attracts more and
more attentions. Brain network (Sporns et al., 2004; Power et al., 2010; Sporns, 2011) represents a
3D brain graph model, comprising the nodes and the edges connecting to the nodes. The nodes are
brain ROIs and the edges can be defined using diffusion-MRI derived fiber tracking or functional-
MRI-derived correlation. Brain network has the potential to gain system-level insights into the
brain dynamics related to those phenotypes.
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Many studies have been conducted to relate brain networks
to behavioral, clinical measures or demographical variables and
identify the most predictive network features (Eichele et al.,
2008; Uddin et al., 2013; Brown et al., 2017; Beaty et al., 2018;
Tang et al., 2019, 2022; Li C. et al., 2020). However, most
of these studies (Chennu et al., 2017; Li et al., 2017; Warren
et al., 2017; Du et al., 2019; Díaz-Arteche and Rakesh, 2020;
Kuo et al., 2020) focus on exploring correlations between the
pre-defined network features (e.g., clustering coefficient, small-
worldness, characteristic path length, etc.) and the measures to
be predicted (such as cognitive impairment, biological variables,
behavior profile, psychopathological scores, etc.). This may be
sub-optimal since those derived brain network features contain
less information than the original networks and may ignore
important brain network attributes. Although using the entire
brain network for the task can solve this issue, it will introduce
another challenge in how to handle the high dimensional network
data during the task. Obviously, the traditional linear regression
method may not be a good choice and more advanced methods
(Székely et al., 2007; Székely and Rizzo, 2009; Simpson et al., 2011,
2012; Varoquaux and Craddock, 2013; Craddock et al., 2015; Dai
et al., 2017; Wang et al., 2017; Zhang et al., 2019b; Xia et al., 2020;
Lehmann et al., 2021; Tomlinson et al., 2021) have been proposed
for this purpose. Additionally, recently years have witnessed a
great success in the deep learning tools which have been widely
used to discover the biological characteristics of brain network-
phenotype associations (Hu et al., 2016; Ju et al., 2017; Mirakhorli
et al., 2020).

To analyze the complex network data (e.g., brain networks),
deep graph learning techniques (Kipf and Welling, 2016;
Hamilton et al., 2017; Veličković et al., 2017; Gao et al.,
2018; Zhang and Huang, 2019; Zhang et al., 2019a) have
gained significant attention. A typical category of deep graph
learning techniques are the graph neural networks (GNNs),
which are proposed based on the message passing mechanism.
In general, GNNs can be summarized as (1) message aggregation
across nodes and (2) message transformation (e.g., non-linear
transformation) as updated node features. A graph convolution
operation in GNNs enables each graph node to aggregate
information from its neighbor nodes. Generally, one graph
convolution layer can enable the graph node to aggregate local
information from one-hop neighbors (i.e., directly connected
nodes), while stacked graph convolution layers may enable the
graph node to aggregate higher-level information from multi-
hops neighbors (Dehmamy et al., 2019), where richer semantic
information can be found. However, when stacking too many
graph convolution layers, not only the effective information will
be captured but also much noise will be introduced, which
will break the network representation (Li et al., 2018; Chen
et al., 2020). Therefore, an important issue for current graph
learning methods is how to effectively capture the higher-level
brain network features. Another issue for current graph learning
techniques is that the models are not easy to interpret. Although
many existing graph learning methods may well achieve good
predictive performances for certain tasks (e.g., classification of
diseases or prediction of clinical scores), they might be difficult to
provide meaningful biological explanations or heuristic insights

into the results (Wee et al., 2019; Xuan et al., 2019; Li Y. et al.,
2020; Wang et al., 2021). This should be attributed to the black-
box nature of the neural networks. Although it is easy to know
what the neural network predicts (i.e., the output of the black-
box model), it is difficult to understand how the neural networks
make the decision (i.e., heuristic intermediate results inside the
black box). To address these, a few recent studies (Cui et al.,
2021; Li et al., 2021) have been conducted to explore interpretable
discoveries from deep graphmodels on brain networks. However,
Cui et al. (2021) focuses on explaining the message passing
mechanism across the brain ROIs while ignoring the high-level
network patterns within the brain networks. Li et al. (2021) tries
to explain how the model generates high-level network patterns
based on the graph communities. However, they only preserve
the center node and discard all other nodes in the communities
during the designed pooling operation.

In this work, we propose a new explainable graph
representation learning framework and illustrate our method on
a task predicting behavioral measures from multi-model brain
connectomes in young healthy adults. We hypothesize that the
intrinsic higher-level graph patterns can be preserved from the
graph communities in brain networks in a hierarchical manner.
Based on this assumption, we design a graph community
pooling module to summarize the higher-order graph patterns.
This hierarchical patterns from brain networks can be used to
guide the information flow during the AI model training and
increase the transparency and interpretability of the model. We
demonstrate this new framework by predicting several behavioral
measures using the entire brain network for each gender and
investigate whether there is any significant sex difference in the
results. The main contributions are summarized as follows:

• We propose a new interpretable hierarchical graph
representation learning framework for brain network
regression analysis.

• Comparing to state-of-the-arts methods, the regression results
on Human Connectome Project (HCP) dataset demonstrate
the superiority of our proposed framework.

• In order to explore the interpretability of our framework, we
adopt graph saliency maps to highlight brain regions selected
by the model and provide biological explanations.

2. DATA DESCRIPTION

The brain network data used in this study was obtained
from Zhang et al. (2020), which we summarize below. The
original data was from the Human Connectome Project (HCP)
1200 Subjects Data Release (Van Essen et al., 2013). 246 region-
of-interests (ROIs) from the Brainnetome atlas (Fan et al., 2016)
was adopted to define the resting-state functional network and
diffusion-MRI-derived structural network. Functional network
was computed using CONN toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012) and structural network was processed
using FSL bedpostx (Behrens et al., 2003) and probtrackx
(Behrens et al., 2007). The reconstructing pipelines for these
two brain networks (Ajilore et al., 2013; Zhan et al., 2015)
have been described in our previous publications. In order to
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evaluate our framework, we selected 10 Achenbach Adult Self-
Report (ASR) (Achenbach and Rescorla, 2003) measures from
each subject as our prediction objectives. These 10 measures
include: Anxious/Depressed Score (ANXD), Withdrawn Score
(WITD), Somatic Complaints Score (SOMA), Thought Problems
Score (THOT), Attention Problems Score (ATTN), Aggressive
Behavior Score (AGGR), Rule Breaking Behavior Score (RULE),
Intrusive Score (INTR), Internalizing Score (INTN), and
Externalizing Score (EXTN). After quality control assessment
of head motion and global signal changes for both scan types
(diffusionMRI and resting-state fMRI) and removal of those with
missing data, we included 738 young healthy subjects (mean age
= 28.62± 3.67, 337 males) in our study.

In sum, each subject has a 246×246 structural network from
diffusion MRI, a 246×246 functional network from resting-state
fMRI, and 10 ASR scores. Table 1 summarizes the ASR statistics
for each gender and details of the HCP dataset can be found in
footnote 1.1

3. METHODS

In this section, we first provide some preliminaries for graph
learning. Then, we will explain our new framework, in which we
will delve into the proposed graph pooling layer which down-
scales the brain network and generates the coarse representation
of brain network based on the network communities. Finally,
we will briefly describe the training procedure to show that our
proposed framework can be trained in an end-to-end manner.

3.1. Preliminaries of Graph Learning
3.1.1. Graph Notation
We denote any attributed graph (i.e., brain network) with N
nodes as G = (A,X). A ∈ RN×N is the graph adjacency matrix
saving the node connections in the graph which can be defined as:

Aij =

{

edge weight if node i connects to node j

0 otherwise.
(1)

Particularly, in the functional brain networks, the edge weights
measures the relationships between the BOLD signals of different
brain regions (e.g., Aij is the Pearson Correlation of BOLD
signals between brain node i and j) (Bathelt et al., 2013; Fischer
et al., 2014). By contrast, in the diffusion MRI-derived structural
networks, the edge weights describe the connectivity of white
matter tracts between brain regions. X ∈ RN×d is the node
feature matrix, where the dimension of the feature is d. We also
denote Z = [Z1 :,Z2 :, . . . ,ZN :] ∈ RN×c as the latent feature
matrix embedded by the graph convolution layers, where c is the
dimension of the node latent features. Zi : ∈ R1×c is the i-th row
of matrix Z representing the latent feature of the i-th node. Given
a set of labeled data D = {(G1, y1), (G2, y2), (G3, y3), . . . } where
yi ∈ Y is the regression value to the corresponding graph Gi ∈ G,
the graph regression task is learning a mapping, f :G → Y .

1https://wiki.humanconnectome.org

TABLE 1 | Subjects’ statistics for 10 ASR scores.

ASR score Male Female P

ANXD 54.58± 6.76 53.91± 6.09 1.60−1

WITD 54.77± 6.34 53.02± 5.32 5.38−5

SOMA 54.13± 6.05 53.97± 6.04 7.30−1

THOT 54.47± 5.86 53.57± 5.75 3.60−2

ATTN 55.89± 5.54 54.31± 5.68 1.55−4

AGGR 53.32± 4.83 52.47± 3.71 6.76−3

RULE 54.90± 6.17 53.49± 4.73 5.09−4

INTR 54.33± 5.95 53.27± 4.79 7.65−3

INTN 49.59± 11.34 48.44± 10.29 1.50−1

EXTN 50.78± 8.90 47.59± 9.04 1.85−6

The two columns, corresponding to Male and Female groups, are reported as the mean±

standard deviation values. The last column is the student t-test P-value to show whether

there is any significant sex difference for each ASR score.

3.1.2. Graph Neural Network
Graph Neural Network (GNN) is an effective message-passing
architecture to embed the graph nodes as well as their local
structures. In general, GNN layer can be formulated as:

Z = F(A,Z; θ), (2)

where θ is the trainable parameters.
F(·) is the forward function of GNN layer to combine

and transform the messages across the graph nodes. Different
expressions of F(·) are proposed in the previous work such as
Graph Convolution Network (GCN) (Kipf and Welling, 2016)
and Graph Attention Network (GAT) (Veličković et al., 2017).
In this work, we adopt GCN to generate the node latent features.
Following Kipf and Welling (2016), the layer of the graph neural
network (i.e., Equation 2) can be instantiated as:

Z = σ (D̃− 1
2 ÃD̃− 1

2Xθ), (3)

where Ã = A + I, D̃ii =
∑

:,j Ãi,j is the degree matrix, σ (·) is a

non-linear activation function (e.g., ReLU).

3.2. Brain Network Representation
Learning Framework
The goal of this new brain network representation learning
framework is to capture community structures of brain networks
in a hierarchical manner, and to generate a representation of
the whole brain network based on the preserved community
information. Moreover, the proposed framework should be able
to utilize derived brain network representations to achieve
graph-level learning tasks (e.g., graph regression). The proposed
brain network representation learning framework, as shown in
Figure 1, consists of three components which are (1) nodes
and local structures embedding modules, (2) community-
based brain network pooling modules and (3) a task-specific
prediction module. In the nodes and local structures embedding
module, graph convolution layers are deployed to embed the
brain network nodes and the corresponding local structures
into the latent feature space. In stead of using single graph
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FIGURE 1 | Diagram of the proposed hierarchical brain network learning framework, including stacked graph convolution layers, community pooling modules, and an

Multilayer perceptron (MLP) block for the regression task. The workflow details of the proposed community pooling module are presented in the red box, including: (A)

Compute the center node probability (P ) and select the nodes with top-M P scores as center nodes. (B) Assign each node into the closest community. (C)

Aggregate features of community member nodes to the corresponding center node and down scale the graph based on the captured communities.

convolution layer (i.e., 1 GCN layer), we here deploy stacked
graph convolution layers (i.e., stacked GCN layers, Dehmamy
et al., 2019) which can promote each graph node to aggregate
higher order information from a broader receptive field (i.e.,
to capture the information beyond one-hop neighborhoods to
several-hops neighborhoods).

Given a brain network (i.e., G = (A,X)), the nodes and
local structures embedding module can embed the network node
features X ∈ RN×d with its local structures A ∈ RN×N in to
the latent space as node latent features Z ∈ RN×c. The next
question is that how to use these node latent features to generate
the high-level graph representations? The graph convolution
layers focus on the node-level representation learning and only
propagate information across edges of the graph in a “flat” way
(Ying et al., 2018; Tang et al., 2021). Some previous studies (Lin
et al., 2013; Li et al., 2015; Vinyals et al., 2015; Zhang et al., 2018)
adopted global pooling which sums, averages or concatenates all
the node features as the graph-level representation and use it
for graph-level tasks (e.g., graph classification, graph similarity
learning). However, these methods may ignore the hierarchical
structures during the global pooling process, which leads to the
models ineffective in graph-level tasks. To address this issue,
our proposed brain network pooling module down scales the
network from N nodes to M(< N) nodes based on the network
community which is an important graph hierarchical structures.
Specifically, the proposed brain network pooling can down scale

the network latent features Z ∈ RN×c to Ẑ ∈ RM×c. Details of
the proposed brain network pooling module are discussed in the
next subsection.

After the network pooling, a readout operation is adopted
to summary the whole graph representation at the current scale
of the graph. Assume that we obtain the network latent feature

matrix Ẑ ∈ RM×c from the network pooling module, the readout
operation generates the whole graph representation ZG ∈ R1×c

by a linear layer with an activation function:

ZG = σ (WẐ), (4)

where W ∈ R1×M is the trainable parameters within the linear
layer and σ (·) is an activation function (i.e., ReLu).

In the task-specific prediction module, we first fuse (e.g.,
concatenate, sum, average, etc.) all the graph representation ZG
obtained in different scales of graphs as the hierarchical graph
representation for the further graph-level prediction (i.e., graph
regression in this work). Then, an Multilayers Perception (MLP)
is deployed to utilize the hierarchical graph representation for the
graph regression task.

3.3. Brain Network Pooling
As mentioned before, the brain network pooling module down

scales the node latent features Z ∈ RN×c to the Ẑ ∈ RM×c based
on the network community structures. To achieve this, two basic
steps are involved in the brain network pooling module including
network community partition and community representation.
We will discuss these two steps in sequence.

3.3.1. Network Community Partition
To partition the network nodes and generate the network
community, the pooling module will first identify the community
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center nodes and then assign other nodes to the nearest
community. Inspired by the density-based partition methods
(Ester et al., 1996; Heuvel van den and Sporns, 2013) that
community center nodes are always densely encircled by a
group of nodes with a high probability, we compute the feature
distance (i.e., Euclidean distance of feature vector) as a metric
to approximate the probability that measures the possibility
for a node to be a center node. Specifically, a node with a
smaller feature distances to all other nodes is more likely to be
a community center. Based on node feature vectors, we construct
the probability vector, P ∈ RN×1 to measure the possibility
that each node to be a community center node where P is
formulated as:

P = softmax(1− normalize[

N
∑

j=1

Si,j]), (5)

where S (i.e., Si,j = ‖Zi − Zj‖L1 ) is the feature distance
matrix. Finally, we select M nodes with Top-M P-values as M
community center nodes.

3.3.2. Community Representation
When we identify M community center nodes, we assign other
graph nodes to the nearest the community. We denote � =
{�1,�2, . . . ,�M} as the set of all M communities. Then the
representation of i-th community (i.e., Ẑi) can be computed by:

Ẑi = Zci +
∑

vj∈�i

Zvj ·
1

Si,j
, (6)

where Zci is the latent feature of the center node of i-
th community. vj are the community member nodes in the
corresponding community.

3.4. Supervision Manner for Regression
Task
As aforementioned, we fuse all graph representations ZG
obtained from different graph scales as the final hierarchical
graph representation Z̄G. Then, an MLP takes Z̄G as input to
generate the regression prediction value ŷ. We optimize the
Mean squared error (MSE) loss (i.e., ℓMSE) to minimize the
difference between the ground-truth y and the prediction ŷ.
Meanwhile, to make the feature of community members closer
to the corresponding community center node, we minimize:

ℓcommunity =
∑

�i∈�

∑

vj∈�i

ℓMSE(Zvj ,Zci ). (7)

The total loss function can be formulated as follows:

Lreg = η1ℓMSE(ŷ, y)+ η2ℓcommunity, (8)

where the η1 and η2 are the loss weights. We train the proposed
brain network learning framework by minimizing this regression
loss and the whole training procedure is therefore in an end-to-
end manner.

4. RESULTS AND DISCUSSIONS

4.1. Experiment Design and Evaluation
We will apply the proposed framework to predict ASR scores.
The prediction performance will be evaluated using Mean
Absolute Error (MAE). Since the community pooling module in
our framework will select a group of nodes or brain regions, we
can identify which brain regions (or brain network nodes) are
directly linked to the prediction objects (i.e., ASR score in our
study) from the last pooling module. Please be noted that this
“link” doesn’t mean the direct correlation since the relationship
captured by our framework is non-linear by nature. We name
these nodes as effecting nodes. And the last community pooling
layer in our framework will generate a group of “effecting”
nodes. Due to the individual difference, the effecting nodes for
each subject are not exact the same. Then we count how many
times each node is selected as the effecting node during the
testing and normalize this number by the total number of testing
subject in each group. The resulted number will be treated as the
frequency of this node to be the effecting node. As a result, we
can get the nodal frequency distribution for each group (male or
female). Then the normalized mutual information (NMI) is used
to quantify the group difference between male and female and we
adopt permutation approach to evaluate the significance of the
group difference.

4.2. Experiment Setting
For each prediction task, we randomly split the entire dataset into
five disjoint sets for 5-fold cross-validations. All the prediction
accuracy are calculated as the mean ± standard deviation
values obtained from these 5 folders. We utilize the diffusion
MRI-derived brain structural networks as the adjacency matrix
input of our framework. We treat each row in the resting-
state functional network as the feature for each node, so the
initial nodal feature dimension is 246. We also consider using
Principal Component Analysis (PCA) to reduce the nodal feature
dimension. During the training stage, we optimize the parameters
in the framework using the Adam optimizer (Kingma and Ba,
2015) with a batch size of 256. The initial learning rate is set to

0.001 and decayed by (1−
current_epoch
max_epoch

)0.9. We also regularize the

framework training with an L2 weight decay of 1e−5. Following
the previous studies (Shchur et al., 2018; Lee et al., 2019), we
adopt an early stopping criterion if the validation loss did not
improve for 20 epochs in an epoch termination condition with
a maximum of 500 epochs. We implement all experiments based
on PyTorch (Paszke et al., 2019) and the torch-geometric graph
learning library (Fey and Lenssen, 2019). All the experiments are
deployed on 1 NVIDIA TITAN RTX GPUs.

4.3. Prediction Performance
In this section, we put all subjects (male and female) into
one group and apply our method to predict ASR scores. We
compare the prediction performance of our framework with 7
baseline methods to show the superiority of our framework. Two
dimension reduction methods [i.e., PCA and Spectral Clustering
(Ng et al., 2002) with linear regression] and five graph neural
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network (GNN) based models [i.e., Stacked GCN with Global-
POOL, SAG-POOL (Lee et al., 2019), DIFFPOOL (Ying et al.,
2018), HGP-SL (Zhang et al., 2019c) and StructPOOL (Yuan
and Ji, 2020)] with different pooling layers are set as our
compared baselines. The GNN based models can co-embed the
brain structural networks (i.e., as adjacency matrices) and brain
functional networks (i.e., as node feature matrices) into the latent
space, however, two dimension reduction methods can only
analyze one type of brain networks. To make a fair comparison,
we only utilize brain structural networks to present the regression
performance here in Table 2. Particularly, we conduct two
dimension reduction methods on the brain structural networks
to reduce the network dimension. Then, the linear regression is
adopted on the dimension reduced networks for the regression
task. Meanwhile, for the 5 GNN-based baseline models as well as
ours, we initialize the node featurematrix by using all-ones vector
(i.e., E1 ∈ RN×1) and only utilize the brain structural networks
as the adjacency matrices. For the 5 hierarchical graph pooling
models (i.e., SAG-POOL, DIFFPOOL, HGP-SL, StructPOOL
and ours), we deployed 3 hierarchical graph pooling modules.
Table 2 shows that our proposed framework achieves the best
performance with a lowest regression Mean Absolute Error
(MAE) comparing to all other methods. Meanwhile, the GNN-
based methods are generally superior to the dimension reduction
ones. This may result from that GNN-based methods can better
extract the network local and global topological structures which
are important to represent the brain networks. Moreover, the
group of hierarchical graph pooling models perform better than
the global pooling method, which may be explained by that our
hierarchical pooling method can not only extract the graph local
structures as the low-level features but also preserve these low-
level features into the high level space in an hierarchical manner,
while the global pooling method can only extract the graph low-
level features and combine these features in a naive way (e.g., by
concatenating, averaging, etc.).

4.4. Loss Weights Analysis
We search the loss weights of η1 and η2 in range of [0.1, 0.5, 1]
and [0.01, 0.05, 0.1], respectively, (see Figure 2) for the Overall
ASR regression. The best loss weights are determined as η1 =

0.5 and η2 = 0.01. Figure 2 indicates that the performance
of our framework is relatively consistent under different loss
weights. We use the same loss weights setting for each single
ASR prediction, although the optimal loss weights may slightly
different for different prediction.

4.5. Impact of Community Pooling Modules
on the Prediction Performance
In this section, we evaluate how the number of Community
Pooling modules affect the prediction performance on 10 ASR
scores. We deployed different number of pooling modules
(i.e., from 1 to 5) and set the pooling ratio in each pooling
module as 0.5 (i.e., only 50% nodes will be preserved after
each pooling module). The MAE of ASR scores obtained by the
proposed framework with different number of pooling modules
are shown in the Figure 3A. Figure 3A shows that the regression
performance obtained by our proposed framework are consistent

FIGURE 2 | Loss weights analysis for the Overall ASR regression task. The

optimal values of η1 and η2 are 0.5 and 0.01, respectively, where the MAE of

overall regression achieves as 2.93.

TABLE 2 | Regression Mean Absolute Error (MAE) with corresponding standard deviations under five-fold cross-validation on 10 ASR scores.

PCA+LR SC+LR GCN-GlobalPOOL SAG-POOL DIFFPOOL HGP-SL StructPOOL Ours

ANXD 3.66± 0.0083 3.52± 0.0004 3.01± 0.0013 2.26± 0.0071 2.01± 0.0021 1.78± 0.0062 2.11± 0.0012 1.49± 0.0033

WITD 3.07± 0.0005 3.19± 0.0083 2.81± 0.0055 1.87± 0.0052 1.91± 0.0008 1.69± 0.0049 1.94± 0.0036 1.18± 0.0011

SOMA 2.96± 0.0091 3.03± 0.0019 3.11± 0.0075 1.71± 0.0008 1.83± 0.0041 1.88± 0.0027 1.63± 0.0007 1.16± 0.0021

THOT 3.51± 0.0010 3.24± 0.0022 3.09± 0.0004 2.19± 0.0037 2.07± 0.0027 2.04± 0.0079 2.13± 0.0020 1.31± 0.0006

ATTN 3.87± 0.0056 3.60± 0.0008 2.94± 0.0016 2.78± 0.0024 2.44± 0.0053 2.33± 0.0062 2.04± 0.0014 1.84± 0.0041

AGGR 2.41± 0.0065 2.21± 0.0072 2.37± 0.0022 1.94± 0.0080 1.61± 0.0034 1.59± 0.0050 1.61± 0.0033 1.16± 0.0091

RULE 2.99± 0.0044 2.87± 0.0084 2.80± 0.0009 1.85± 0.0059 2.00± 0.0020 1.74± 0.0040 1.89± 0.0019 1.49± 0.0008

INTR 3.04± 0.0009 3.20± 0.0031 2.76± 0.0053 2.06± 0.0064 1.98± 0.0037 1.69± 0.0009 1.59± 0.0020 1.21± 0.0037

INTN 2.87± 0.0062 3.01± 0.0039 2.61± 0.0046 2.17± 0.0077 2.14± 0.0040 2.15± 0.0025 2.04± 0.0054 1.27± 0.0020

EXTN 3.70± 0.0017 3.54± 0.0055 3.45± 0.0071 1.98± 0.0034 2.22± 0.0005 2.07± 0.0037 1.98± 0.0018 1.58± 0.0012

Overall 4.62± 0.0038 4.37± 0.0018 4.02± 0.0045 3.62± 0.0029 3.39± 0.0088 3.05± 0.0011 3.24± 0.0013 2.93± 0.0084

Overall denotes the task of jointly predicting all the 10 ASR scores. LR and SC represent linear regression and spectral clustering respectively. The values in red show the best results.
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FIGURE 3 | Ablation study. (A) Regression MAE under different number of pooling modules. The x-axis is 1 to 5, representing the number of community pooling

modules and y-axis is the corresponding MAE. (B) Regression MAE obtained by the proposed framework when using different number of node features. The x-axis

ranges from 0 to 246, representing different number of nodal features and y-axis is the corresponding MAE.
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among different ASR scores. In general, with the increasing
number of pooling modules, the MAE values first decline and
then incline with the minimum MAE value is achieved when
3 pooling modules are deployed. The possible explanation is as
follows: when the number of pooling modules is insufficient (e.g.,
1 or 2), the high-level features related to the prediction object
haven’t been extracted enough; while when too many pooling
modules (e.g., 4 or 5) are deployed, the extracted features may
be too “coarse”, where the key discriminative information have
been mosaicked.

4.6. Impact of Nodal Features on the
Prediction Performance
Firstly, the number of the pooling modules is fixed as 3 for all
experiments in this section. Then, we predict the ASR scores
without using any nodal features and treat the feature dimension
as zero. This is implemented by setting the node feature matrix as
E1). After that, we use PCA algorithm to extract different number
of features (from 1 to 240) and use them as the nodal features
for the predictions. Lastly, we directly apply the functional
network as the nodal feature matrix for the same tasks and
in this situation, feature dimension is 246. Therefore, we can
compare how the number of nodal features affect the prediction
performance, and our results are summarized in the Figure 3B.

There are two main findings in Figure 3B. Firstly, the
proposed framework can generally achieve better prediction
performance by using the functional network as the node
feature matrix. Secondly, we expected that using the principle
components of the functional networks as the nodal features
could further improve the regression or prediction performance.
Among the feature dimension range from 1 to 240, the best
result (i.e., the lowest MAE) is achieved at 10, in other words,
using the top 10 PCs to form the feature matrix can achieve
the best performance when compared with other dimension
options. Moreover, although the performance obtained with 10
PCs is close to that obtained by using full functional networks
(dimension = 246), using full functional network as the feature
matrix (dimension = 246) generally has a better prediction
performance than using PCs as the feature input, which
indicate there the topological structures in the full functional
networks may not be well preserved in the PCA processing.
There may have some better choices for the nodal features or
dimension reduction techniques, which will be considered in our
future research.

4.7. Biological Application and Algorithm
Fairness
In this section, we will demonstrate how to apply this new
framework to identify sex differences. Here, sex is referred as the
biological sex, as available data does not permit us to disentangle
the influence of social culturally defined gender influences from
biological sex effect.

We firstly apply our framework to predict each of the ASR
scores for each sex. Table 3 summarizes the estimation errors
(mean ± standard deviation) for each gender (column 1 and 2
for male and female respectively). Column 3 in Table 3 shows
the student t-test P-values for evaluating whether there is any

TABLE 3 | Estimation errors for predicting each ASR score for each gender.

ASR score Male Female P

ANXD 1.74± 0.03 1.73± 0.02 0.66

WITD 1.24± 0.02 1.24± 0.03 0.82

SOMA 1.25± 0.02 1.27± 0.06 0.44

THOT 1.45± 0.05 1.40± 0.04 0.10

ATTN 1.96± 0.06 1.95± 0.03 0.78

AGGR 1.26± 0.04 1.24± 0.03 0.31

RULE 1.62± 0.07 1.55± 0.08 0.16

INTR 1.37± 0.05 1.35± 0.05 0.47

INTN 1.37± 0.08 1.32± 0.08 0.38

EXTN 1.64± 0.09 1.71± 0.18 0.43

The results are reported in the format of mean± standard deviation. The last column is the

Student t-test P-value to show whether there is any significant difference in the estimation

errors between male and female. These results indicate that our new framework is fair for

the variable “sex”.

significant difference in the estimation errors between sexes.
None of these are significant, in other words, these results
demonstrates the fairness of our framework in terms of the
variable “sex”.

Next, we adopt the permutation approach to evaluate whether
there are significant sex differences in the “effecting” node
distributions for each ASR score (Please refer to Section 4.1 for
technique details). We randomly shuffle the subjects between
male and female groups and conduct 100 permutations. All
permutation tests are conducted using the computation resource
in the Pittsburgh Supercomputing Center (PSC) (Towns et al.,
2014; Nystrom et al., 2015). Our permutation results show that
there are significant sex differences (p < 0.01) in the effecting
node distributions for 7 ASR variables except ANXD, SOMA and
INTN, which is consistent with the conclusions from Table 1.
Here we choose ATTN as an example to show the sex differences
in the effecting nodal distribution. Attention problem score
(ATTN) (Achenbach and Rescorla, 2003) indicates the tendency
to be easily distracted and unable to concentrate more than
momentarily. Figure 4 shows the effecting node distributions
for male and female, and the hot color indicates the stronger
involvements of that ROI in this psychiatric process (or ATTN)
and the cool color indicate the opposite. Our results show there
are multiple brain regions (including Left Paracentral lobule,
Right Posterior cingulate and Left dorsomedial prefrontal cortex,
Right Precuneus, and Left Premotor, highlighted using black
circle in Figure 4) showing significantly different involvements
in this psychiatric process between sexes.

Previous studies reported that paracentral lobule is activated
in covert shifts of attention (Grosbras et al., 2005) and auditory
attention shifting (Huang et al., 2012). Moreover, Dickstein
et al. (2006) reported that right paracentral lobule had a
greater probability of activation in patients with Attention-
deficit/hyperactivity disorder (ADHD) than in controls while our
results show that part of sex differences for healthy controls is in
the left paracentral lobule, which deserves further investigations
in the future. The posterior cingulate cortex (PCC) is a central
node of the default mode network (DMN) and many evidence
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FIGURE 4 | Sex difference identified for ATTN. The color indicates the region

involved in the ATTN process and the hotter color indicate the stronger

involvement and the cooler color indicate the inverse. Permutation tests have

been adopted to confirm the significance of this sex difference (p < 0.01).The

main sex differences are in several regions, which are highlighted using a black

circle. These regions include Left Paracentral lobule, Right Posterior cingulate

and Left dorso-medial prefrontal cortex, Right Precuneus, and Left Premotor.

suggests that the PCC plays a direct role in attentionally
demanding tasks (Gusnard and Raichle, 2001; Vogt and Laureys,
2005; Hampson et al., 2006; Hahn et al., 2007; Leech et al.,
2011; Leech and Sharp, 2014). The dorsomedial prefrontal cortex
(dmPFC) receives afferent input from sensory and parietal
regions of the cortex, which presumably enable the dmPFC
to respond to situations that require immediate attention and
respond with appropriate actions (Narayanan and Laubach,
2006; Venkatraman et al., 2009; Park et al., 2016). Additionally,
Precuneus has been reported to highly involve in attention
shift (Cavanna and Trimble, 2006) while Premotor is involved
in Reorienting attention (Rizzolatti et al., 1987) and attention-
deficit/hyperactivity disorder (Mostofsky et al., 2002). All these
clearly indicate that our newAI framework can discover potential
biologically-meaningful results for regression studies.

5. CONCLUSION

In this study, we proposed a novel interpretable graph
learning framework for brain network regression analysis. We
demonstrated that our new framework has better prediction
performances than state-of-the-arts graph learning methods in
predicting young health subjects’ psychiatric scores. Additionally,
we chose one of the psychiatric scores to demonstrate how this
new framework can be used to study sex differences. Future
work will focus on how to modify our framework for the signed
graph data.
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