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Abstract—Trace reconstruction considers the task of
recovering an unknown string x ∈ {0, 1}n given a number
of independent “traces”, i.e., subsequences of x obtained
by randomly and independently deleting every symbol of x
with some probability p. The information-theoretic limit of
the number of traces needed to recover a string of length n
are still unknown. This limit is essentially the same as the
number of traces needed to determine, given strings x and
y and traces of one of them, which string is the source.

The most studied class of algorithms for the worst-case
version of the problem are “mean-based” algorithms. These
are a restricted class of distinguishers that only use the
mean value of each coordinate on the given samples. In
this work we study limitations of mean-based algorithms
on strings at small Hamming or edit distance.

We show on the one hand that distinguishing strings
that are nearby in Hamming distance is “easy” for such
distinguishers. On the other hand, we show that distin-
guishing strings that are nearby in edit distance is “hard”
for mean-based algorithms. Along the way we also describe
a connection to the famous Prouhet-Tarry-Escott (PTE)
problem, which shows a barrier to finding explicit hard-
to-distinguish strings: namely such strings would imply
explicit short solutions to the PTE problem, a well-known
difficult problem in number theory.

Our techniques rely on complex analysis arguments
that involve careful trigonometric estimates, and algebraic
techniques that include applications of Descartes’ rule of
signs for polynomials over the reals.

A full version of this paper is accessible at: https:
//arxiv.org/abs/2011.13737

I. INTRODUCTION

In the trace reconstruction problem, a string x ∈
{0, 1}n is sent over a deletion channel which deletes
each entry independently with probability p ∈ [0, 1),
resulting in a trace x̃ ∈ {0, 1}` of smaller length.
The goal is to reconstruct x exactly from a small set
of independent traces. The trace reconstruction problem
was introduced by Batu et al. [1] motivated by a natural
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problem in computational biology in which a common
ancestor DNA sequence is sought from a set of simi-
lar DNA sequences that might have resulted from the
process of random deletions in the ancestor DNA. The
information-theoretic limits and tight complexity of this
problem have proven elusive so far, despite significant
followup interest in a variety of relevant settings [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19]. The current upper bound
in the worst-case formulation was recently improved by
Chase [18] who showed that exp(Õ(n1/5)) traces are
sufficient for reconstruction, thus beating the previous
record of exp(O(n1/3)) traces due to [7], [8]. However,
the most general lower bound is only Ω̃(n3/2) [11], [20],
hence leaving the status of the problem widely open.

To gain more insight into the trace reconstruction
problem we study the trace distinguishing variant, in
which given two string x, y ∈ {0, 1}n the algorithm
receives traces from one of the two trace distributions
and is tasked to output the correct one. The trace distin-
guishing problem is information theoretically equivalent
to the classical trace reconstruction problem [4]. From
a computational standpoint, the same upper and lower
bounds as for the general problem hold for the trace
distinguishing variant.

In this work we aim to get more insight into the worst-
case trace distinguishing problem from understanding the
role of distance in the complexity of the problem. We ask
the following questions: Are all pairs of strings that are
close in Hamming distance easily distinguishable? Are
all pairs of strings that are close in edit distance easily
distinguishable? Note that the strings used for showing
the lower bounds in [11], [20] only differ in two locations
and are indeed efficiently distinguishable (these were the
strings x = (01)k101(01)k and y = (01)k011(01)k).
On the other hand, it is also reasonable to believe that
trace distributions of strings that are very different from
each other are also easily distinguishable. In fact, there
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exist “codes”, namely sets of strings that are very far
from each other, whose elements (codewords) lead to
trace distributions that are very easily distinguishable
from each other [14], [16]. However, these are existential
results, revealing little explicit structure that may help in
further analysis.

Here we approach the above questions by analyzing
a restricted class of algorithms, namely mean-based.
Mean-based algorithms only use the empirical mean of
individual bits, and hence they operate by disregarding
the actual samples, and computing only with the infor-
mation given by the averages of each bit x̃i over the
sample set S of independent traces, namely ES(x̃i).
While they appear restrictive, mean-based algorithms
are in fact a very powerful class of algorithms – the
upper bounds of [8], [7] are obtained via mean-based
algorithms.

However, there exist strings x, y ∈ {0, 1}n [8], [7] that
mean-based algorithms cannot distinguish with fewer
than exp(Ω(n1/3)) traces. This lower bounds is based
on a result in complex analysis [21], which only implies
the existence of such strings x and y, and not what such
strings would look like structurally.

Our main results here prove that there exist explicit
strings x, y ∈ {0, 1}n at edit distance only 4 for which
every mean-based algorithm requires a super-polynomial
in n number of samples. On the other hand, we identify
some structural properties of strings at low edit distance
that yield polynomial-time mean-based trace reconstruc-
tion. In [22], [15] the authors show that strings at small
Hamming distance are efficiently distinguishable. We
complement these results by observing that they are effi-
ciently distinguishable even by mean-based algorithms.
We believe that understanding structural properties of
explicit hard-to-distinguish strings will eventually lead
to a better understanding of the complexity of the trace
reconstruction problem.

A. Our results

We start with an observation about strings at small
Hamming distance.

Theorem 1. Let x,y ∈ {0, 1}n be two distinct strings
within Hamming distance d from each other. There is
a mean-based algorithm which distinguishes between x
and y with high probability using nO(d) traces.

The result is a slight strengthening of a recent result
of [15] who proved exactly the same bounds for general
algorithms. Our contribution here is essentially to notice
that the techniques of [22], [23] imply that mean-based
algorithms can in fact distinguish such trace distributions

(see the full paper [24] for a more detailed discussion
and the complete proof).

Our main results concern the negative results at small
edit distance.

Theorem 2. Assume the deletion probability p = 1/2.
There exist (explicit) strings x,y ∈ {0, 1}n within edit
distance 4 of each other such that any mean-based
algorithm requires exp

(
Ω(log2 n)

)
traces to distinguish

between x and y with high probability.

Along the way, we also formalize a connection to the
famous Prouhet-Tarry-Escott (PTE) [25], [26] problem
from number theory. In the PTE problem, given an
integer k ≥ 0 one would like to find integer solutions
{x1, x2, . . . , xs}, and {y1, y2, . . . , ys} to the system∑
i∈[s] x

j
i =

∑
i∈[s] y

j
i , for all j ∈ [k], with xi 6= yj

for all i, j ∈ [s]. The goal is to find such solutions with
s as small as possible compared to k. We note that
connections between the trace reconstruction problem
and the PTE problem have been previously made. In
particular, Krasikov and Roditty [22] noticed that pairs
of strings that have the same k decks yield solutions to
PTE systems.

As a consequence of our results we show that explicit
strings that are exponentially hard to distinguish by
mean-based algorithms imply explicit solutions of small
size to a PTE system, which is the main open problem
in the study of the PTE problem.

Theorem 3. Fix any ε ∈ (0, 1/3]. Given distinct strings
x,y ∈ {0, 1}n such that any mean-based algorithm
requires exp (Ω(nε)) traces to distinguish between x
and y, the following two sets constitute a solution to
the degree-k PTE system

D(x) = {i : xi = 1} , D(y) = {i : yi = 1} ,

with size n = (k log k)
2/ε.

We also note that weak versions of our results follow
from simple applications of the Descartes rule of signs.
As an application of this rule to larger edit distances we
also obtain the following theorem.

Theorem 4. (Informal) Strings x, y ∈ {0, 1}n with
dE(x, y) = d ≥ 1 with some special block structures
are distinguishable by mean-based algorithms running
in time nO(d2). In particular, the statement holds for
every pair of strings at edit distance 2.

We defer all missing proofs, discussions, and further
related work to the full version of this paper [24].



B. Our techniques

a) The [8], [7] reduction to complex analysis: Our
techniques focus on analyzing the modulus of Littlewood
polynomials with {−1, 0, 1} coefficients over a shifted
unit circle. The reduction to complex analysis was es-
tablished in [8], [7]. In particular, since a mean-based
algorithm only works with E(x̃i) for each i, they define
the associated polynomials Px(z) =

∑n−1
j=0 Ej(x) · zj

and the related polynomial Qx(p + qz) = q−1Px(z) =∑n−1
k=0 xk ·(p+ qz)

k (and hence Qx(z) =
∑n−1
k=0 xk ·zk),

which is obtained from writing the Ej’s explicitly as

Ej(x) = E
x̃∼Dx

[x̃j ] =

n−1∑
k=0

Pr [x̃j comes from xk] · xk

=

n−1∑
k=0

(
k

j

)
pk−jqj+1 · xk.

Here p is the deletion probability and q = 1 − p. Then
[8], [7] show that the sample complexity upper bound
for mean-based algorithms is roughly (up to squaring)
the inverse of sup {|Qx(w)−Qy(w)| : w ∈ ∂B (p; q)},
where ∂B (p; q) is the complex unit circle shifted to
the complex circle of radius q centered at p. Hence,
the problem reduces to understanding the maximum
modulus of a polynomial on a shifted circle. Note that
all coefficients of Qx(w)−Qy(w) belong to {−1, 0, 1}.

b) Applications of Descartes’ Rule of Signs: Here
we relate the supremum of |Q(w)| over the shifted
complex circle to the multiplicity of the root w = 1
of the polynomial Q(w). Specifically, we show that as
long as w = 1 is a root with multiplicity no more than
k, the supremum over the shifted complex circle is at
least n−O(k2).

Theorem 5. Let f(z) be a polynomial of degree n with
coefficients in {−1, 0, 1}. Suppose z = 1 is a root of
f(z) with multiplicity at most k. Let 0 < p < 1 and
q = 1− p. Then

sup {|f(z)| : z ∈ ∂B (p; q)} ≥ 1

2
(4nk+2)−k = n−O(k2).

It is then desirable to upper bound the multiplicity of
zero at 1 for various polynomials. Descartes’ rule of sign
changes provides a convenient tool to achieve this.

Lemma 1 (Descartes’ Theorem). [27] Let Z(p) be the
number of real positive roots of the real polynomial
p(x) (counting with multiplicity) and C(p) the number
of changes of sign of the sequence of its coefficients. We
then have C(p) ≥ Z(p).

Remark: If p(x) = a0+a1x+a2x
2+. . .+anx

n is a
polynomial, we say a pair (i, j) (0 ≤ i < j ≤ n) is a sign
change if aiaj < 0 and ai+1 = ai+2 = . . . = aj−1 = 0.
C(p) exactly counts the number of such pairs (i, j).

We note that prior work that we are aware of on
understanding the structure of polynomials with many
roots at 1 (e.g., [28], [29]) do not appear to imply our
bounds on the complex unit circle.

We use this rule to prove the formal version of
Theorem 4, and a weaker version of Theorem 1. See
the full version.

c) Complex analysis over shifted circles: the strong
version of our results: A main stepping stone in our
derivation of Theorem 1 and Theorem 4 is that low
multiplicity of the root w = 1 implies large supremum
over the shifted complex circle (i.e. Theorem 5). The
idea is to find a point on the shifted circle that has a
very small (but carefully chosen) distance to 1, and argue
that the polynomial has large modulus at that point. The
analysis is mostly elementary, including manipulations
and estimations of trigonometric functions, and deriving
bounds on the coefficients and derivatives of certain
polynomials.

For the negative result (i.e. Theorem 2), the difficulty
comes from the fact that the converse of Theorem 5
is not true. In fact, the strongest barrier is the fact
that constructing small-size solutions to high-degree PTE
systems is a well-known difficult problem in number
theory. Previous non-constructive methods do not appear
to be the correct tools either, because of the edit dis-
tance constraint, which cannot be accounted for in their
arguments. Our construction is inspired by properties of
product of cyclotomic polynomials and their relation to
PTE solutions with special structures.

II. PRELIMINARIES

Given z ∈ C and r ∈ R≥0, we write

B(z; r) := {w ∈ C : |w − z| ≤ r}

for the disk centered at z with radius r, and write
∂B(z; r) for its boundary.

Let p(w) = a0 + a1w + . . .+ anw
n be a polynomial

where the coefficients are real. Let A ⊆ C be a set. We
define the following norms.

‖p‖1 =

n∑
j=0

|aj |, ‖p‖2 =

 n∑
j=0

a2j

1/2

, ‖p‖A = sup
w∈A
|p(w)|.

When A = ∂B(0; 1) is the complex unit circle, we also
write ‖p‖A = ‖p‖∞. These norms are connected by the
following inequalities.



Lemma 2. Let p be a degree-n polynomial with real
coefficients. Then

1√
n+ 1

· ‖p‖1 ≤ ‖p‖2 ≤ ‖p‖∞ ≤ ‖p‖1 .

Proof. The first and third inequalities are applications
of Cauchy-Schwartz and the triangle inequality, respec-
tively. The second inequality comes from the following
identity

‖p‖22 =
1

2π

∫ 2π

0

∣∣p (eiθ)∣∣2 dθ,
where the right-hand-side is clearly upper bounded by
‖p‖2∞.

We will use p for the deletion probability and q =
1 − p. In this paper p and q will be constants. Given a
string a ∈ {0, 1}n, a trace ã ∈ {0, 1}≤n is a subsequence
of a obtained by deleting each bit of a independently
with probability p. The length of ã is denoted by |ã|.
For 0 ≤ j ≤ n−1, the j-th bit of a and ã are written as
aj and ãj , respectively. The distribution of ã is denoted
by Da. We also associate to a the following polynomial

Qa(w) := a0 + a1w + a2w
2 + . . .+ an−1w

n−1.

The degree of Qa is at most n− 1.
For strings x,y ∈ {0, 1}n, we will write dH(x, y)

for the Hamming distance between x and y, where
dH(x,y) = |{i ∈ [n] : xi 6= yi}|; and write dE(x,y) for
the edit distance between x and y, namely the minimum
number of insertions and deletions that transform x into
y.

III. LARGE SUPREMUM FROM LOW MULTIPLICITY OF
ROOT 1

Fix two strings x,y ∈ {0, 1}n and denote f(w) =
Qx(w)−Qy(w). We are interested in sup |f(w)| where
w is on the circle ∂B (p; q). It turns out that we can lower
bound this supremum by upper bounding the multiplicity
of zero of f(w) at 1.

Lemma 3 (Lemma 5.4 of [30]). Suppose

p(x) =

n∑
j=0

ajx
j , |aj | ≤ 1, aj ∈ C

p(x) = (x− 1)kq(x), q(x) =

n−k∑
j=0

bjx
j , bj ∈ C.

Then
∑n−k
j=0 |bj | ≤ (n+ 1)

(
en
k

)k
.

Lemma 4. Let f(z) =
∑n
k=0 akz

k be a polynomial.
Let u(t) = Re f(z(t)) be a real-valued function, where
z(t) = p+ qeit. Then

|u′(t)| ≤ q ·
n∑
k=0

k |ak| ≤ qn ·
n∑
k=0

|ak| .

We can now prove Theorem 5, which will be useful
to obtain several of our results in their weaker form.
The proof also works for the more general class of
polynomials with bounded integer coefficients.

Proof of Theorem 5. We can write f(z) = (z−1)k ·g(z)
where g(z) is a polynomial and g(1) 6= 0. It is not hard
to see that g(z) is a polynomial with integer coefficients,
hence g(1) is an integer and |g(1)| ≥ 1.

Since the coefficients of f are absolutely bounded by
1, by Lemma 3 the absolute values of the coefficients of
g(z) sum up to at most nk+1.

Define a real-valued function u(t) = Re g
(
p+ qeit

)
.

We have |u(0)| = |Re g(1)| = |g(1)| ≥ 1. Lemma 3 and
Lemma 4 together give the bound |u′(t)| ≤ q·nk+2. Now
we take θ = 1/2qnk+2 and z = p+ qeiθ so that

|z − 1| = q
∣∣eiθ − 1

∣∣ = 2q sin
θ

2
>
qθ

2
=

1

4nk+2
.

Here we uses the fact sinx > x/2 for small x. The Mean
Value Theorem implies that for some t̃ ∈ (0, θ) we have

|g(z)| ≥ |Re g(z)| = |u(θ)| ≥ |u(0)| − θ
∣∣u′ (t̃)∣∣

≥ 1− 1

2qnk+2
· qnk+2 =

1

2
.

Overall we have

|f(z)| = |z − 1|k · |g(z)| ≥
(

1

4nk+2

)k
· 1

2
= n−O(k2).

Since z ∈ ∂B (p; q), sup {|f(z′)| : z′ ∈ ∂B (p; q)} ≥
|f(z)| ≥ n−O(k2).

A. Connection to the Prouhet-Tarry-Escott problem

The following is a classical statement about the PTE
problem.

Theorem 6. (e.g. [31]) The following are equivalent:
•
∑s
i=1 α

j
i =

∑s
i=1 β

j
i , for 1 ≤ j ≤ k, and∑s

i=1 α
k+1
i 6=

∑s
i=1 β

k+1
i .

•
∑s
i=1 x

αi−
∑s
i=1 x

βi = (x−1)k+1q(x) where q ∈
Z[x] and q(1) 6= 0.

This connection allows us to prove Theorem 3.

Theorem 3. Fix any ε ∈ (0, 1/3]. Given distinct strings
x,y ∈ {0, 1}n such that any mean-based algorithm
requires exp (Ω(nε)) traces to distinguish between x



and y, the following two sets constitute a solution to
the degree-k PTE system

D(x) = {i : xi = 1} , D(y) = {i : yi = 1} ,

with size n = (k log k)
2/ε.

IV. HARD STRINGS AT EDIT DISTANCE 4
The goal of this section is to prove Theorem 2, and

thus exhibit two strings at edit distance 4 such that every
mean-based algorithm requires super-polynomially many
traces.

Before proving Theorem 2, we need the following
lemma about estimation of trigonometric functions.

Lemma 5. The following bounds hold:
1) For integer d ≥ 1 and ϕ such that |dϕ| ≤ π

3 , we
have cos (dϕ) ≤ (cosϕ)

d.
2) Let integer d ≥ 1 and θ be such that

∣∣d · θ2 ∣∣ <
π
3 . Let w =

(
1 + eiθ

)
/2. Then

∣∣wd − 1
∣∣ <

2
∣∣sin (dθ4 )∣∣.

We will prove the following theorem, which is a more
concrete version of Theorem 2.

Theorem 7. Assume the deletion probability p = 1/2.
Let k be an odd integer and n =

∑k
j=0 3j be an even

integer, and R(w) =
∏k
j=0

(
1− w3j

)
be a polynomial

of degree n. Let En(w) =
∑n/2
j=0 w

2j . Then Qe(w) :=
R(w) + En(w) is a 0/1-coefficient polynomial which
corresponds to a string e ∈ {0, 1}n. Moreover, any two
strings x, y of the form x = a10e and y = ae01 satisfy

sup {|Qx(w)−Qy(w)| : w ∈ ∂B(p; q)}
≤ exp

(
−Ω(log2 n)

)
,

where a is an arbitrary string of length n.

Proof. R(w) has the following properties: (1) The coef-
ficients of R belong to {−1, 0, 1} since each monomial
occurs only once in the expansion. (2) Odd-degree terms
have negative signs, and even-degree terms have positive
signs. It follows that R(w)+En(w) is a polynomial with
0/1 coefficients.

We can write

P (w) = Qx(w)−Qy(w)

= wn
(
(w2 − 1)Qe(w)−

(
wn+2 − 1

))
= wn(w2 − 1) (Qe(w)− En(w))

= wn(w2 − 1)R(w).

Consider a point w =
(
1 + eiθ

)
/2 on the circle

∂B(1/2; 1/2), where θ ∈ [−π, π]. We consider two
cases.

1) |θ/2| ≥ 3−k/4π. Using the bound | cosx| ≤ 1 −
(2x/π)2 for |x| ≤ π/2, we have in this case |w| =∣∣cos θ2

∣∣ ≤ 1− 4 · 3−k/2, and

|P (w)| ≤ |w|n · 2(n+ 1) ≤
(

1− 4 · 3−k/2
)n
· 2(n+ 1)

≤ exp
(
−Ω

(√
n
))
.

The last inequality is because 1 − x < e−x and
n =

∑k
j=0 3j < 3k+1.

2) |θ/2| < 3−k/4π. Note that when j ≤ k/4 − 1,
|3j · θ2 | <

π
3 . Therefore by item (2) of Lemma 5,

we have |w3j − 1| ≤ 2
∣∣sin (3jθ/4)∣∣. Using the

fact that | sinx| ≤ |x|, we have

|R(w)| ≤
k/4−1∏
j=0

∣∣∣w3j − 1
∣∣∣ · k∏
j=k/4

∣∣∣w3j − 1
∣∣∣

≤
k/4−1∏
j=0

∣∣∣∣3jθ2
∣∣∣∣ · 23k/4 ≤ k/4∏

j=1

(
3−jπ

)
· 23k/4

≤ exp
(
−Ω(k2)

)
· exp (O(k)) = exp

(
−Ω(k2)

)
= exp

(
−Ω

(
log2 n

))
.

Hence |P (w)| ≤ 2|R(w)| ≤ exp
(
−Ω

(
log2 n

))
.

V. CONCLUSIONS AND OPEN PROBLEMS

In this work we showed several results about the
power and limitation of mean-based algorithms in distin-
guishing trace distributions of strings at small Hamming
or edit distance.

Many open questions remain, besides whether the
worst-case reconstruction problem is solvable in poly-
nomial time. We state below a few questions stemming
from our work here.

Problem 1 Can the connection between the multi-
plicity of zero at 1 and the supremum over the circle
∂B(p; q) be tightened? Specifically, is the bound in
Theorem 5 tight?

Problem 2 Is the converse of Theorem 5 true?
Namely, does high multiplicity of zero at 1 necessarily
imply a small supremum over ∂B(p; q)? An affirmative
answer to this question would establish an equivalence
between PTE solutions and hard instances against mean-
based trace reconstruction.
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