
Online Directed Spanners and Steiner Forests∗

Elena Grigorescu† Young-San Lin† Kent Quanrud†‡

July 12, 2022

Abstract

We present online algorithms for directed spanners and directed Steiner forests. These are
well-studied network connectivity problems that fall under the unifying framework of online
covering and packing linear programming formulations. This framework was developed in the
seminal work of Buchbinder and Naor (Mathematics of Operations Research, 34, 2009) and is
based on primal-dual techniques. Specifically, our results include the following:

• For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive
online, we present an efficient randomized algorithm with competitive ratio Õ(n4/5) for
graphs with general edge lengths, where n is the number of vertices of the given graph.
For graphs with uniform edge lengths, we give an efficient randomized algorithm with
competitive ratio Õ(n2/3+ε), and an efficient deterministic algorithm with competitive
ratio Õ(k1/2+ε), where k is the number of terminal pairs. To the best of our knowledge,
these are the first online algorithms for directed spanners. In the offline version, the current
best approximation ratio for uniform edge lengths is Õ(n3/5+ε), due to Chlamtáč, Dinitz,
Kortsarz, and Laekhanukit (SODA 2017, TALG 2020).

• For the directed Steiner forest problem with uniform costs, in which the pairs of vertices
to be connected arrive online, we present an efficient randomized algorithm with com-
petitive ratio Õ(n2/3+ε). The state-of-the-art online algorithm for general costs is due
to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is Õ(k1/2+ε)-
competitive. In the offline version, the current best approximation ratio with uniform
costs is Õ(n26/45+ε), due to Abboud and Bodwin (SODA 2018).

To obtain efficient and competitive online algorithms, we observe that a small modification
of the online covering and packing framework by Buchbinder and Naor implies a polynomial-
time implementation of the primal-dual approach with separation oracles, which a priori might
perform exponentially many calls to the oracle. We convert the online spanner problem into an
online covering problem and complete the rounding-step analysis in a problem-specific fashion.

∗A preliminary version of this work appeared in the Proceedings of APPROX 2021
†Purdue University, Email: {elena-g, lin532, krq}@purdue.edu
‡E.G and Y.L. were supported in part by NSF CCF-1910659 and NSF CCF-1910411.

1 Introduction

We study online variants of directed network optimization problems. In an online problem, the
input is presented sequentially, one item at a time, and the algorithm is forced to make irrevocable
decisions in each step, without knowledge of the remaining part of the input. The performance
of the algorithm is measured by its competitive ratio, which is the ratio between the value of the
online solution and that of an optimal offline solution.

Our main results focus on directed spanners, which are sparse subgraphs that approximately
preserve pairwise distances between vertices. Spanners are fundamental combinatorial objects with
a wide range of applications, such as distributed computation [9,68], data structures [5,74], routing
schemes [35, 66, 69, 71], approximate shorthest paths [18, 41, 42], distance oracles [18, 31, 67], and
property testing [8, 22]. For a comprehensive account of the literature, we refer the reader to the
excellent survey [2].

We also study related network connectivity problems, and in particular on directed Steiner
forests, which are sparse subgraphs that maintain connectivity between target terminal vertex pairs.
Steiner forests are ubiquitously used in a heterogeneous collection of areas, such as multicommodity
network design [49,52], mechanism design and games [30,62,63,72], computational biology [61,70],
and computational geometry [19,24].

Our approaches are based on covering and packing linear programming (LP) formulations that
fall into the unifying framework developed by Buchbinder and Naor [26], using the powerful primal-
dual technique [51]. This unifying framework extends across widely different domains, and hence
provides a general abstraction that captures the algorithmic essence of all online covering and
packing formulations. In our case, to obtain efficient competitive algorithms for solving the LPs
online, we observe that the algorithms in [26] can be slightly modified to significantly speed up
the setting of our applications, in which the algorithm might otherwise make exponentially many
calls to a separation oracle. This component is not tailored to the applications studied here and
may be of independent interest. In particular, previous approaches solving online covering and
packing problems either focus on the competitiveness of the algorithm [4, 12, 16], or manage to
leverage the specific structure of the problem for better time efficiency in a somewhat ad-hoc
manner [3, 11, 15, 21, 25, 58], while here the solution may be viewed as a more unified framework
that is also efficient.

1.1 Our contributions

1.1.1 Directed spanners

Let G = (V,E) be a directed simple graph with n vertices. Each edge is associated with its length
` : E → R≥0. The edge lengths are uniform if `(e) = 1 for all e ∈ E. In spanner problems, the goal
is to compute a minimum cardinality (number of edges) subgraph in which the distance between
terminals is preserved up to some prescribed factor. In the most well-studied setting, called the
directed s-spanner problem, there is a fixed value s ≥ 1 called the stretch, and the goal is to find a
minimum cardinality subgraph in which every pair of vertices has distance within a factor of s in
the original graph. For low stretch spanners, when s = 2, there is a tight Θ(log n)-approximation
algorithm [44,64]; when s = 3, 4 both with uniform edge lengths, there are Õ(n1/3)-approximation
algorithms [20,40]. When s > 4, the best known approximation factor is Õ(n1/2) [20]. The problem

is hard to approximate within an O(2log
1−ε n) factor for 3 ≤ s = O(n1−δ) and any ε, δ ∈ (0, 1), unless

NP ⊆ DTIME(npolylogn) [45].
A more general setting, called the pairwise spanner problem [34], and the client-server model

[22,44], considers an arbitrary set of terminals D = {(si, ti) | i ∈ [k]} ⊆ V × V . Each terminal pair

2

(si, ti) has its own target distance di. The goal is to compute a minimum cardinality subgraph in
which for each i, the distance from si to ti is at most di. For the pairwise spanner problem with
uniform edge lengths, [34] obtains an Õ(n3/5+ε)-approximation.

In the online version, the graph is known ahead of time, and the terminal pairs and the corre-
sponding target distances are received one by one in an online fashion. The distance requirement of
the arriving terminal pair is satisfied by irrevocably including edges. There are no online algorithms
for the pairwise spanner problem that we are aware of, even in the simpler and long-studied case
of stretch s or graphs with uniform edge lengths.

For graphs with uniform edge lengths, we prove the following theorem in Section 2.

Theorem 1.1. For the online pairwise spanner problem with uniform edge lengths, there exists a
deterministic polynomial time algorithm with competitive ratio Õ(k1/2+δ) for any constant δ > 0.

Next, we turn to graphs with general edge lengths and derive online algorithms with competitive
ratios in terms of n. We present a generic algorithm (Algorithm 4) used for Theorems 1.2, 1.3, 1.4,
1.5, 1.6, and 1.7. For graphs with general edge lengths, we show the following in Section 3.1.

Theorem 1.2. For the online pairwise spanner problem, there is a randomized polynomial time
algorithm with competitive ratio Õ(n4/5).

In one special case, the given graph might have uniform edge lengths, and the diameter is
bounded or it is guaranteed that the distances between the terminal pairs are bounded. Let
d = maxi∈[k]{di} be the maximum allowed distance of any pair of terminals in the input. This
setting is equivalent to the d-diameter spanning subgraph problem introduced in [22]. We assume
that d is known offline and show the following in section 3.2.

Theorem 1.3. For the online pairwise spanner problem with uniform edge lengths and maxi-
mum allowed distance d, there is a randomized polynomial time algorithm with competitive ratio
Õ(d1/3n2/3).

Another special case is where the edge lengths are quasimetric. That is, they satisfy the following
directed form of the triangle inequality. For any two edges u→ v and v → w, there is also an edge
u → w such that `(u,w) ≤ `(u, v) + `(v, w). This setting includes the class of transitive-closure
graphs with uniform edge lengths, in which each pair or vertices connected by a directed path is
also connected by a directed edge. The offline version of the transitive-closure spanner problem
was formally defined in [22].

Theorem 1.4. For the online pairwise spanner problem where edge lengths are quasimetric, there
is a randomized polynomial time algorithm with competitive ratio Õ(n2/3).

In the special case on graphs with uniform edge lengths, for each terminal pair (si, ti), there is
also an edge si → ti in the given graph. This setting is equivalent to the all-server spanner problem
introduced in [44].

Theorem 1.5. For the online all-server spanner problem with uniform edge lengths, there is a
randomized polynomial time algorithm with competitive ratio Õ(n2/3).

The proofs of Theorems 1.4 and 1.5 appear in Section 3.3.
For graphs with uniform edge lengths without further assumptions, we use Theorem 1.1 and

the generic algorithm to prove the following theorem in Section 3.4.

Theorem 1.6. For the online pairwise spanner problem with uniform edge lengths, there is a ran-
domized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant ε ∈ (0, 1/3).

3

1.1.2 Directed Steiner forests

In the directed Steiner forest problem, we are given a directed graph G = (V,E) with edge costs
w : E → R≥0, and a set of terminals D = {(si, ti) | i ∈ [k]} ⊆ V × V . The goal is to find a
subgraph H = (V,E′) which includes an si ; ti path for each terminal pair (si, ti), and the total
cost

∑
e∈E′ w(e) is minimized. The costs are uniform when w(e) = 1 for all e ∈ E.

In the online version, the graph is known ahead of time, and the terminal pairs arrive one by
one in an online fashion. The connectivity requirement of the arriving terminal pair is satisfied by
irrevocably including edges.

In the offline setting with general costs, the best known approximations are O(k1/2+ε) by
Chekuri et al. [32] and O(n2/3+ε) by Berman et al. [20]. For the special case of uniform costs,
there is an improved approximation factor of Õ(n26/45+ε) by Abboud and Bodwin [1]. In the online
setting, Chakrabarty et al. [28] give an Õ(k1/2+ε) approximation for general costs. Their algorithm
also extends to the more general buy-at-bulk version. We prove the following in Section 3.5.

Theorem 1.7. For the online directed Steiner forest problem with uniform costs, there is a ran-
domized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant ε ∈ (0, 1/3).

We essentially improve the competitive ratio when the number of terminal pairs is ω(n4/3).

1.1.3 Summary

We summarize our main results for online pairwise spanners and directed Steiner forests in Table 1
by listing the competitive ratios and contrast them with the corresponding known competitive and
approximation ratios. We note that offline Õ(n4/5)-approximate pairwise spanners for graphs with
general edge lengths and offline Õ(k1/2+ε)-approximate pairwise spanners for graphs with uniform
edge lengths can be obtained by our online algorithms.

Setting Offline Online

Pairwise Õ(n4/5) (implied by Thm 1.2) Õ(n4/5) (Thm 1.2)

Spanners Õ(n3/5+ε) (uniform lengths) [34] Õ(n2/3+ε) (uniform lengths, Thm 1.6)

Õ(k1/2+ε) (uniform lengths, implied by Thm 1.1) Õ(k1/2+ε) (uniform lengths, Thm 1.1)

Directed Õ(n26/45+ε) (uniform costs) [1] Õ(k1/2+ε) [28]

Steiner O(n2/3+ε) [20] Õ(n2/3+ε) (uniform costs, Thm 1.7)

Forests O(k1/2+ε) [32]

Table 1: Summary of the competitive and approximation ratios. Here, n refers to the number of
vertices and k refers to the number of terminal pairs. We include the known results for comparison.
The text in gray refers to known results while the text in black refers to our contributions.

1.2 An efficient online covering and packing framework

Before presenting our modification to the unified framework in [26] to obtain efficient online cov-
ering and packing LP solvers, we give an overview of the well-known primal-dual framework for
approximating covering and packing LP’s online. This framework is the main engine of our applica-
tions and it is important to establish some context before getting into the application for spanners
and Steiner forests. We also introduce a discussion of certain technical nuances that arise for our

4

application, and the small modification we propose to address it. A more formal description, includ-
ing proofs and fully parameterized theorem statements, is fairly technical and therefore deferred to
Section 4 after we have used these tools in the context of spanners and Steiner forests.

The primal-dual framework was first developed for the online set cover problem in the seminal
work of [4]. The approach was extended to network optimization problems in undirected graphs
in [3], then abstracted and generalized to a broad LP-based primal-dual framework in [26]. Our
discussion primarily centers around the abstract framework in [26]. A number of previous results
in online algorithms, such as ski rental [60] and paging [16], can be recovered from this approach
and many new important applications have since been developed, such as the k-server problem [75].
We refer the reader to the excellent survey by Buchbinder and Naor [27].

These works develop a clean two-step approach to online algorithms based on 1) solving the
LP online, and 2) rounding the LP online. Solving the LP online can be done in a generic fashion,
while rounding tends to be problem-specific. The setting for the covering LP is the following.

minimize 〈c, x〉 over x ∈ Rn≥0 s.t. Ax ≥ b. (1)

Here, A ∈ Rm×n≥0 consists of m covering constraints, b ∈ Rn>0 is a positive lower bound of the
covering constraints, and c ∈ Rm>0 denotes the positive coefficients of the linear cost function. Each
constraint can be normalized, so we focus on covering LP’s in the following form.

minimize 〈c, x〉 over x ∈ Rn≥0 s.t. Ax ≥ 1 (2)

where 1 is a vector of all ones.
In the online covering problem, the cost vector c is given offline, and each of these covering

constraints is presented one by one in an online fashion, that is, m can be unknown. The goal
is to update x in a non-decreasing manner such that all the covering constraints are satisfied and
the objective value 〈c, x〉 is approximately optimal. An important idea in this line of work is to
simultaneously consider the dual packing problem:

maximize 〈1, y〉 over y ∈ Rm≥0 s.t. AT y ≤ c (3)

where AT consists of n packing constraints with an upper bound c given offline.
In the online packing problem, the columns of AT and the corresponding variables are presented

online taking initial value zero; one can either let the arriving variable remain zero, or irrevocably
assign a positive value to the arriving variable. The goal is to approximately maximize the objective
value 〈1, y〉 with each constraint approximately satisfied.

Separation oracles in the online setting. The primal-dual framework in [26] simultaneously
solves both LP (2) and LP (3), and crucially uses LP-duality and strong connections between the
two solutions to argue that they are both nearly optimal. Here we give a sketch of the LP solving
framework for reference in the subsequent discussion. We maintain solutions x and y for LP (2)
and LP (3), respectively, in an online fashion. The covering solution x is a function of the packing
solution y. In particular, each coordinate xj is exponential in the load of the corresponding packing
constraint in LP (3). Both x and y are monotonically increasing. The algorithm runs in phases,
where each phase corresponds to an estimate for OPT revised over time. Within a phase we have the
following. If the new covering constraint i ∈ [m], presented online, is already satisfied, then there
is nothing to be done. Otherwise, increase the corresponding coordinate yi, which simultaneously
increases the xj ’s based on the magnitude of the coordinate aij , where aij is the i-th row j-th
column entry of A. The framework in [26] increases yi until the increased xj ’s satisfy the new

5

constraint. This naturally extends to the setting when the problem relies on a separation oracle to
retrieve an unsatisfied covering constraint where the number of constraints can be unbounded [26].
However, while this approach will fix all violating constraints, each individual fix may require a
diminishingly small adjustment that cannot be charged off from a global perspective. Consequently
the algorithm may have to address exponentially many constraints.

A primal-dual bound on separation oracles. Our goal is to adjust the framework to ensure
that we only address a polynomial number of constraints (per phase). For many concrete problems
in the literature, this issue can be addressed directly based on the problem at hand (discussed in
greater detail in Section 1.4). In our setting, we start with a combinatorially defined LP that is not
a pure covering problem, and convert it to a covering LP. While having a covering LP is conducive
to the online LP framework, the machinery generates a large number of covering constraints that
are very unstructured. For example, we have little control over the coefficients of these constraints.
This motivates us to develop a more generic argument to bound the number of queries to the
separation oracle, based on the online LP framework, more so than the exact problem at hand.
Here, when addressing a violated constraint i, we instead increase the dual variable yi until the
increased primal variables x (over-)satisfy the new constraint by a factor of 2. This forces at
least one xj to be doubled – and in the dual, this means we used up a substantial amount of the
corresponding packing constraint. Since the packing solution is already guaranteed to be feasible
in each phase by the overall framework, this leads us to conclude that we only ever encounter
polynomially many violating constraints.

For our modified online covering and packing framework, we show that 1) the approximation
guarantees are identical to those in [26], 2) the framework only encounters polynomially many
violating constraints for the online covering problem, and 3) only polynomially many updates are
needed for the online packing problem.

Theorem 1.8. (Informal) There exists an O(log n)-competitive online algorithm for the covering
LP (2) which encounters polynomially many violating constraints.

Theorem 1.9. (Informal) Given any parameter B > 0, there exists a 1/B-competitive online
algorithm for the packing LP (3) which updates y polynomially many times, and each constraint is
violated within an O(f(A)/B) factor (f(A) is a logarithmic function that depends on the entries in
A).

We note that the competitive ratios given in [26] are tight, which also implies the tightness of
the modified framework. The number of violating constraints depends not only on the number of
covering variables and packing constraints n, but also on the number of bits used to present the
entries in A and c. The formal proof for Theorem 1.8 is provided in Section 4, while the formal
proof for Theorem 1.9 provided in Appendix D is not directly relevant to this work, but may be of
independent interest.

1.3 High-level technical overview for online network optimization problems

Online pairwise spanners. For this problem, a natural starting point is the flow-based LP
approach for offline s-stretch directed spanners, introduced in [38]. The results of [34] adopt a
slight tweak for this approach to achieve an Õ(n/

√
OPT)-approximation, where OPT is the size of

the optimal solution. With additional ideas, the Õ(n/
√
OPT)-approximation is converted into an

Õ(n3/5+ε)-approximation for pairwise spanners. One technical obstacle in the online setting is the
lack of a useful lower bound for OPT. Another challenge is solving the LP for the spanner problem

6

and rounding the solution in an online fashion, particularly as the natural LP is not a covering
LP. We address these technical obstacles as discussed below in Section 3. Ultimately we obtain
an Õ(n4/5) competitive ratio for the online setting. The strategy here is to convert the LP for
spanners into a covering LP, where the constraints are generated by an internal LP. The covering
LP previously appeared in [38] implicitly, and in [39] explicitly.

Online pairwise spanners with uniform edge lengths. For the special case of uniform edge
lengths, [34] obtains an improved bound of Õ(n3/5+ε). It is natural to ask if the online bound
of Õ(n4/5) mentioned above can be improved as well. Indeed, we obtain an improved bound of
Õ(n2/3+ε) by replacing the greedy approach in the small OPT regime by using the Õ(k1/2+ε)-
competitive online algorithm discussed in Section 2. This algorithm leverages ideas from [34] in
reducing to label cover problems with ideas from the online network design algorithms of [28]. Some
additional ideas are required to combine the existing tools and among others we had to formulate
a new pure covering LP that can be solved online, to facilitate the transition.

Online Steiner forests with uniform costs. This problem is a special case of the online
pairwise spanner problem where the distance requirement for each terminal pair is infinity and the
edge lengths are uniform. The online algorithm for this problem has a similar structure to the one
for pairwise spanners and similar obstacles to overcome.

1.4 Additional background and related work

Streaming, dynamic, and distributed algorithms for spanners. A model related to online
algorithms is that of streaming algorithms. In the streaming model an input is also revealed
sequentially, but the algorithm is only allowed to use some small amount of space, which is sublinear
in the length of the stream, and is supposed to maintain an approximate solution. For this model,
several papers consider spanner variants, such as undirected or weighted graphs, and additive or
multiplicative stretch approximations, and the aim is to build spanners with small size or distortion
[17, 48, 59]. In a related direction, spanners have also been studied in the setting of dynamic data
structures, where the edges of a graph are inserted or removed one at a time and the goal is to
maintain an approximate solution with small update time and space [23, 43]. A relevant model
is that of distributed computation where nodes in the network communicate efficiently to build a
solution [36, 37, 47]. As mentioned earlier, the survey by Ahmed et al. [2] gives a comprehensive
account of the vast literature on spanners, and we refer the reader to the references within.

Connections to buy-at-bulk formulations. In the buy-at-bulk network design problem [10],
each edge is associated with a sub-additive cost function of its load. Given a set of terminal demands,
the goal is to route integral flows from each source to each sink concurrently to minimize the total
cost of the routing. This problem is a generalization of various single-source or multicommodity
network connectivity problems, including Steiner trees and Steiner forests, in which the cost of
each edge is fixed once allocated. While most problems admit polylogarithmic approximations
in either the online or offline setting for undirected networks [11, 21, 32, 54], the problems are
much harder for directed networks. In the offline setting, the current best approximation ratio is
O(kε) for the directed Steiner tree problem [29,76], O(min{k1/2+ε, n2/3+ε}) for the directed Steiner
forest problem [20, 32], and O(min{k1/2+ε, n4/5+ε}) for the directed buy-at-bulk problem [6]. In
the online setting for directed networks, [28] showed that compared to offline, it suffices to pay
an extra polylogarithmic factor, where the polylogarithmic term was later improved by [73]. The
main contribution of [28] is essentially bringing the junction-tree-based approach into the online

7

setting for connectivity problems. This is the main ingredient that improves the competitive ratio
of our online algorithm from Õ(n4/5+ε) for pairwise spanners to Õ(n2/3+ε) for Steiner forests. Our
approach for online pairwise spanners with uniform edge lengths combines this ingredient and the
ideas of the offline pairwise spanner framework [34] which tackles hard distance requirements.

Online LP’s and separation oracles. As previously mentioned, generating separating con-
straints with an oracle in the online setting is not new. For example, this arises implicitly in
early work on network optimization [3] and the oracle is discussed explicitly in [26]. As a recent
example, [55] develops online algorithms for the multistage matroid maintenance problem, which
requires solving a covering LP with box constraints online. [55] adjusts the separation oracle to only
identify constraints that are violated by at least some constant. Because of the {0, 1}-incidence
structure of their LP, the sum of primal variables has to increase by a constant to satisfy such a
constraint. Meanwhile the box constraints limit the total sum of primal variables to O(n). This
leads to an O(n) bound on the number of separating constraints. While there are strong similarities
to our approach, one difference is the use of the {0, 1}-structure and box constraints to obtain their
bound. Our comparably unstructured setting required us to develop an argument independent of
concrete features such as these.

Other variants of online covering and packing problems. Beyond linear objectives, there
are other variants of online covering and packing problems, which focus on different objectives
with linear constraints. This includes optimizing convex objectives [14] and `q-norm objectives
[73]. Other online problem-dependent variants include for instance mixed covering and packing
programs [13], and sparse integer programs [53]. All these frameworks utilize the primal-dual
technique, which updates the covering and packing solutions simultaneously with some judiciously
selected growth rate, to guarantee nice competitive ratio. Instead, our modified framework focuses
on the efficiency of online algorithms for fundamental covering and packing problems, which is
amenable to applications with exponential or unbounded number of constraints, where a violating
one can be searched by an efficient separation oracle.

1.5 Organization

Since the proof of Theorem 1.1 is the most involved contribution of this work, we start by presenting
it in Section 2. In Section 3, we prove Theorems 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7 by designing and
analyzing specific variants of a generic online algorithm. We show the modified online covering
framework in Section 4, while the modified online packing framework is presented in Appendix D.

2 Online Pairwise Spanners with Uniform Edge Lengths

In this section, we prove Theorem 1.1, namely we design an online algorithm for the pairwise
spanner problem with uniform edge lengths with competitive ratio Õ(k1/2+δ) for any constant
δ > 0. We recall that in the pairwise spanner problem, we are given a directed graph G = (V,E)
with edge length ` : E → R≥0, a general set of k terminals D = {(si, ti) | i ∈ [k]} ⊆ V × V , and a
target distance di for each terminal pair (si, ti), the goal is to output a subgraph H = (V,E′) of G
such that for every pair (si, ti) ∈ D it is the case that dH(si, ti) ≤ di, i.e. the length of a shortest
si ; ti path is at most di in the subgraph H, and we want to minimize the number of edges in E′.
The edge lengths are uniform if `(e) = 1 for all e ∈ E. In the online setting, the directed graph G
is given offline, while the vertex pairs in D ⊆ V × V arrive online one at a time. In the beginning,

8

E′ = ∅. Suppose (si, ti) and its target distance di arrive in round i, we select some edges from E
and irrevocably add them to E′, such that in the subgraph H = (V,E′), dH(si, ti) ≤ di.

2.1 Outline of the proof of Theorem 1.1

We start by describing the high-level approach of our proof of Theorem 1.1. While the proof
combines ideas of the online buy-at-bulk framework in [28] and of the reduction from the pairwise
spanner problem to a connectivity problem in [34], implementing the details require several new
ideas. Specifically, we introduce a useful extension of the Steiner problem, called the Steiner label
cover problem, and our main contribution is an online covering LP formulation for this problem.
This approach allows us to not only capture the global approximation property in an online setting,
as in [28], but also to handle distance constraints, as in [34]. The entire proof consists of three main
ingredients:

1. We first show that there exists an O(
√
k)-approximate solution consisting of junction trees.

A junction tree is a subgraph consisting of an in-arborescence and out-arborescence rooted
at the same vertex (see also Definition 2.1).

2. We then show a reduction from the online pairwise spanner problem to the online Steiner
label cover problem on a forest with a loss of an O(k1/2+δ) factor. More precisely, an O(

√
k)

factor comes from the junction tree approximation and an extra O(kδ) factor comes from the
height reduction technique introduced in [32, 57]. The height reduction technique allows us
to focus on low-cost trees of height O(1/δ) in order to recover a junction tree approximation.

3. Finally, we show a reduction from the online Steiner label cover problem to the online undi-
rected Steiner forest problem, with a loss of a polylog(n) factor. More precisely, we first
formulate an online covering LP for the online Steiner label cover instance, then construct
an online undirected Steiner forest instance from the LP solution, with a loss of a factor of
2. By [21], the online undirected Steiner forest problem can then be solved deterministically
with competitive ratio polylog(n).

Combining these three ingredients results in an Õ(k1/2+δ)-competitive algorithm. We provide
further intuition below. The detailed description of the first, second, and third ingredients are in
Sections 2.2, 2.3, and 2.4, respectively.

Junction tree approximation. Many connectivity problems, including Steiner forests, buy-at-
bulk, and spanner problems, are usually solved using junction trees introduced in [33].

Definition 2.1. A junction tree rooted at r ∈ V is a directed graph G = (V,E), by taking the
union of an in-arborescence rooted at r and an out-arborescence rooted at r.1 A junction tree
solution is a collection of junction trees rooted at different vertices, that satisfies all the terminal
distance constraints.

Lemma 2.2. There exists an O(
√
k)-approximate junction tree solution for pairwise spanners.

1A junction tree does not necessarily have a tree structure in directed graphs, i.e. edges in the in-arborescence and
edges in the out-arborescence may overlap. Nevertheless, we continue using this term because of historical reasons.
A similar notion can also be used for undirected graphs, where a junction tree is indeed a tree.

9

In Section 2.2, we present the proof of Lemma 2.2. At a high level, the proof follows by a
standard density argument. A partial solution is a subgraph that connects a subset of the terminal
pairs within the required distances. The density of a partial solution is the ratio between the
number of edges used and the number of terminal pairs connected within the required distances.
This argument is used for solving offline problems including the Steiner forest problem [20,32,46],
the buy-at-bulk problem [6], the Client-Server s-spanner [22] problem, and the pairwise spanner
problem [34], by greedily removing low density partial solutions in an iterative manner. Fortunately,
this iterative approach also guarantees a nice global approximation that consists of junction trees
rooted at different vertices, which is amenable in the online setting.

Reduction to Steiner label cover. In Section 2.3, we reduce the pairwise spanner problem to
the following extension of Steiner problem termed Steiner label cover.

Definition 2.3. In the Steiner label cover problem, we are given a (directed or undirected) graph
G = (V,E), non-negative edge costs w : E → R≥0, and a collection of k disjoint vertex subset pairs
(Si, Ti) for i ∈ [k] where Si, Ti ⊆ V and Si ∩ Ti = ∅. Each pair is associated with a relation (set
of permissible pairs) Ri ⊆ Si × Ti. The goal is to find a subgraph F = (V,E′) of G, such that 1)
for each i ∈ [k], there exists (s, t) ∈ Ri such that there is an s ; t path in F , and 2) the cost∑

e∈E′ w(e) is minimized.

For the online Steiner label cover problem, (Si, Ti) and Ri arrive online, and the goal is to
irrevocably select edges to satisfy the first requirement and also approximately minimize the cost.

To reduce to the online Steiner label cover problem, we construct a directed graph G′ that
consists of disjoint layered graphs from the given graph G = (V,E). Each vertex in G′ is labelled
by the distance to (from) the root of a junction tree. This allows us to capture distance constraints
by a Steiner label cover instance with distance-based relations. From G′, we further construct an
undirected graph H which is a forest by the height reduction technique [32, 57]. In H, we define
the corresponding Steiner label cover instance, where the terminal vertex sets consist of the leaves,
and the solution is guaranteed to be a forest. The Steiner label cover instance on the forest H has
a nice property. For each tree in H, the terminal vertices can be ordered in a way such that if an
interval belongs to the relation, then any subinterval also belongs to the relation.

Definition 2.4. The ordered Steiner label cover problem on a forest is defined as a special case of
the Steiner label cover problem (see Definition 2.3) with the following properties.

1. G is an undirected graph consisting of disjoint union of trees H1, H2, . . . ,Hn each of which
has a distinguished root vertex rj where j ∈ [n].

2. For each (Si, Ti) and Ri, and each tree Hj , the input also includes the orderings ≺i,j such
that:

(a) For Sji := Si ∩Hj and T ji := Ti ∩Hj , the ordering ≺i,j is defined on Sji ∪ T
j
i .

(b) The root rj separates Sji from T ji .

(c) If s ∈ Sji and t ∈ T ji are such that (s, t) ∈ Ri, then for any s′ ∈ Sji and t′ ∈ T ji such that
s �i,j s′ ≺i,j t′ �i,j t, we have that (s′, t′) ∈ Ri.

We note that for the online ordered Steiner label cover problem on a forest, besides (Si, Ti) and
Ri, the orderings {�i,j}j∈[n] also arrive online.

We employ a well-defined mapping between junction trees in G and forests in H by paying an
Õ(k1/2+δ) factor for competitive online solutions. A crucial step for showing Theorem 1.1 is the
following theorem.

10

Theorem 2.5. For any constant δ > 0, an α-competitive polynomial time algorithm for online
ordered Steiner label cover on a forest implies an O(αk1/2+δ)-competitive polynomial time algorithm
for the online pairwise spanner problem on a directed graph with uniform edge lengths.

At a high level, the online pairwise spanner problem on a directed graph G = (V,E) with
uniform edge lengths reduces to an instance of online Steiner label cover on the forest H with the
following properties.

1. H consists of disjoint trees Hr rooted at r′ for each vertex r ∈ V .

2. |V (H)| = nO(1/δ), E(H) = nO(1/δ), and each tree Hr has depth O(1/δ) with respect to r′.

3. For each arriving terminal pair (si, ti) with distance requirement di, there is a corresponding
pair of terminal sets (Ŝi, T̂i) and relation R̂i with |R̂i| = nO(1/δ), where Ŝi and T̂i are disjoint
subsets of leaves in H. Furthermore, we can generate orderings ≺i,r based on the distance-
based relations R̂i such that the Steiner label cover instance is an ordered instance on the
forest H.

This technique closely follows the one for solving offline pairwise spanners in [34]. The inter-
mediary problem considered in [34] is the minimum density Steiner label cover problem. In this
framework, the solution is obtained by selecting the partial solution with the lowest density among
the junction trees rooted at different vertices and repeat. In the online setting, to capture the
global approximation for pairwise spanners, we construct a forest H and consider all the possible
roots simultaneously.

The constructions of G′, H, Ŝi, T̂i, R̂i, and the orderings ≺i,r, the proofs of Theorem 2.5 and
Theorem 1.1, and the reduction from the online pairwise spanner problem on the directed graph G
to the online ordered Steiner label cover problem on the forest H, are presented in Section 2.3.

An online algorithm for Steiner label cover on H. In Section 2.4, the goal is to prove the
following lemma.

Lemma 2.6. For the online ordered Steiner label cover problem on a forest (see definition 2.4),
there is a deterministic polynomial time algorithm with competitive ratio polylog(n).

We derive an LP formulation for the Steiner label cover instance on H. At a high level, the
LP minimizes the total edge weight by selecting edges that cover paths with endpoint pairs which
belong to the distance-based relation. We show that the LP for Steiner label cover can be converted
into an online covering problem, which is efficiently solvable by Theorem 1.8.

The online rounding is based on the online LP solution for Steiner label cover. We extract the
representative vertex sets S̃i and T̃i from the terminal sets Ŝi and T̂i, respectively, according to
orderings ≺i,r and the contribution of the terminal vertex to the objective of the Steiner label cover
LP. We show that the union of cross-products over partitions of S̃i and T̃i (based on the trees in H)
is a subset of the distance-based relation R̂i. This allows us to reduce the online ordered Steiner
label cover problem to the online undirected Steiner forest problem by connecting a super source
to S̃i and a super sink to T̃i.

This technique closely follows the one for solving offline pairwise spanners in [34]. The main
difference is that in the offline pairwise spanner framework, the LP formulation is density-based and
considers only one (fractional) junction tree. To globally approximate the online pairwise spanner
solution, our LP formulation is based on the forest H and its objective is the total weight of a
(fractional) forest.

11

The LP for the undirected Steiner forest problem is roughly in the following form.

min
x

∑
e∈E(H)

w′(e)xe

subject to x supports an S̃i-T̃i flow of value 1 ∀i ∈ [k],

xe ≥ 0 ∀e ∈ E(H).

(4)

Here w′ denotes the edge weights in H. We show that a solution of the undirected Steiner forest
LP (4) recovers a solution for the Steiner label cover LP by a factor of 2. The integrality gap of the
undirected Steiner forest LP is polylog(n) because the instance can be decomposed into single source
Steiner forest instances by the structure of H [28, 50]. This implies that the online rounding for
the Steiner label cover LP can be naturally done via solving the undirected Steiner forest instance
online, by using the polylog(n)-competitive framework [21].

Putting it all together. In Section 2.5, we summarize the overall Õ(k1/2+δ)-competitive algo-
rithm for online pairwise spanners when the given graph has uniform edge lengths. The reduction
strategy is as follows:

1. Reduce the online pairwise spanner problem of the original graph G to the online Steiner
label cover problem of the directed graph G′ which consists of disjoint layered graphs.

2. Reduce the online Steiner label cover problem on G′ to an online ordered Steiner label cover
problem on H, where H is a forest.

3. In the forest H, reduce the online ordered Steiner label cover problem to the online undirected
Steiner forest problem.

We note that G′ and H are constructed offline, while the graph for the final undirected Steiner
forest instance is partially constructed online, by adding super sources and sinks and connecting
incident edges to the representative leaf vertices online in H. The pairwise spanner in G is O(

√
k)-

approximated by junction trees according to Lemma 2.2. The graph G′ preserves the same cost
of the pairwise spanner (junction tree solution) in G. The solution of the ordered Steiner label
cover problem in graph H is a forest. One can map a forest in H to junction trees in G′, via
the height reduction technique by losing an O(kδ) factor. Finally, in the forest H, we solve the
undirected Steiner forest instance online and recover an ordered Steiner label cover solution by
losing a polylog(n) factor. The overall competitive ratio is therefore Õ(k1/2+δ).

2.2 The junction-tree approximation

We can now proceed to the proof of Lemma 2.2. Our goal is to approximate a pairwise spanner
solution by a collection of junction trees rooted at different vertices. We show that there exists an
O(
√
k)-approximate junction tree solution.

Proof of Lemma 2.2. We use a density argument to show a greedy procedure that implies a O(
√
k)-

approximate junction tree solution. The density of a partial solution is defined as follows.

Definition 2.7. Let J denote a junction tree in G and D(J) denote the set of source-sink pairs
(si, ti) connected by J such that dJ(si, ti) ≤ di, then the density of J is ρ(J) := |E(J)|/|D(J)|,
i.e. the number of edges used in J divided by the number of terminal pairs connected by J within
required distances.

12

Intuitively, we are interested in finding low density junction trees. Let OPT be the number of
edges in an optimal pairwise spanner solution. We show that there always exists a junction tree
with density at most a

√
k factor of the optimal density. The proof of Lemma 2.8 closely follows

the one for the directed Stiener network problem in [32] by considering whether there is a heavy
vertex that lies in si ; ti paths for distinct i or there is a simple path with low density. The case
analysis also holds when there is a distance constraint di for each (si, ti). We provide the proof in
Appendix A.1 for the sake of completeness.

Lemma 2.8. There exists a junction tree J such that ρ(J) ≤ OPT/
√
k.

Now we are ready to prove Lemma 2.2. Consider the procedure that finds a minimum density
junction tree in each iteration, and continues on the remaining disconnected terminal pairs. Suppose
there are t iterations, and after iteration j ∈ [t], there are nj disconnected terminal pairs. Let n0 = k
and nt = 0. After each iteration, the minimum number of edges used for connecting the remaining
terminal pairs in the remaining graph is at most OPT, so the number of edges used by this procedure
is upper-bounded by

t∑
j=1

(nj − nj−1)OPT√
nj−1

≤
k∑
i=1

OPT√
i
≤
∫ k+1

1

OPT√
x
dx = 2OPT(

√
k + 1− 1) = O(

√
k)OPT

where the first inequality uses the upper bound by considering the worst case when only one
terminal pair is removed in each iteration of the procedure.

By the proof of Lemma 2.8, Lemma 2.2 also accounts for duplicate edges from junction trees
rooted at different vertices.

2.3 The Steiner label cover problem and height reduction

In this section, we give the construction of the graph G′ that consists of disjoint layered graphs,
the undirected graph H which is a forest, the terminal set pairs (Ŝi, T̂i), and the relations R̂i.

We reduce the pairwise spanner problem to the Steiner label cover problem. A similar technique
is introduced in [34] by a density argument which is amenable for the offline setting. For our purpose,
we instead focus on the global problem that is tractable in the online setting. In what follows we
construct a relevant Steiner label cover instance (recall Definition 2.3).

Constructing the layered graph G′. We reduce the pairwise spanner problem to the Steiner
label cover problem as follows. Given G = (V,E), for each vertex r ∈ V , we construct Gr = (Vr, Er).
Let

Vr := ((V \ {r})×
⋃

j∈[n−1]

{−j, j}) ∪ {(r, 0)}

and
Er := {(u, j)→ (v, j + 1) | (u, j), (v, j + 1) ∈ Vr, (u, v) ∈ E}.

For each edge e ∈ Er, let the edge weight be 1. For each vertex (u,−j) (respectively (u, j))
in Vr where j ∈ [n − 1] ∪ {0}, add a vertex (u−,−j) (respectively (u+, j)), and create an edge
(u−,−j) → (u,−j) (respectively (u, j) → (u+, j)) with weight 0. This concludes the construction
of Gr (see Figure 1 for an illustration).

Let G′ be the disjoint union of Gr for r ∈ V . Given a pairwise spanner instance on G, we can
construct a Steiner label cover instance on G′. For explicitness, we denote the vertex (u, j) in Vr

13

by (u, j)r. For each (si, ti), let Si = {(s−i ,−j)r | j > 0, r ∈ V \ {si}} ∪ (s−i , 0)si , Ti = {(t+i , j)r |
j > 0, r ∈ V \ {ti}} ∪ (t+i , 0)ti , and Ri = {((s−i ,−js)r, (t

+
i , jt)r) | r ∈ V, js + jt ≤ di} where we

recall that di is the distance requirement for pair (si, ti). Intuitively, a copy of si and a copy of ti
belongs to the relation Ri if 1) they are connected by a junction tree with the same root r, and 2)
the distance between them is at most di in this junction tree.

a

c

b

d

r

(a) G

a

b

c

d
(r, 0)

(b) Gr

Figure 1: Construction of Gr given G = (V,E) and r ∈ V

We can recover a pairwise spanner solution in G from the Steiner label cover solution in G′

with the same cost. Suppose we have the Steiner label cover solution in G′, for each selected edge
(u, j)→ (v, j + 1) in Gr, we select u→ v for the pairwise spanner solution in G.

Claim 2.9. A Steiner label cover solution in G′ corresponds to a pairwise spanner approximated
by a junction tree solution in G with the same cost.

We observe that any junction tree solution as a pairwise spanner in G corresponds to a Steiner
label cover solution in G′ and vice versa. Let OPTjunc be the optimal value of a junction tree
solution that counts duplicate edges from junction trees rooted at different vertices for the pairwise
spanner problem in G. Then the optimum of the Steiner label cover solution in G′ is OPTjunc.

Claim 2.10. The optimal value of the Steiner label cover problem in G′ is OPTjunc.

Constructing the Steiner label cover instance on the forest H. To find an approximate
solution for the Steiner label cover instance, we further process the graph G′ by the height reduction
technique [32,57]. The height reduction technique allows us to generate the forest H. The structure
of H is later useful in Section 2.4 for deriving an LP formulation for the Steiner label cover problem.

Lemma 2.11. ([34]) Let G = (V,E) be a directed graph where each edge is associated with a
non-negative weight w : E → R≥0. Let r ∈ V be a root and σ > 0 be some parameter. Then we
can efficiently construct an undirected tree Tr rooted at r′ of height σ and size |V |O(σ) together with
edge weights w′ : E(Tr)→ R≥0 and a vertex mapping Ψ : V (Tr)→ V , such that

1. For any in-arborescence (out-arborescence) T in G rooted at r, there exists a subtree T ′ in Tr
rooted at r′ such that letting L(T) and L(T ′) be the set of leaves of T and T ′, respectively, we
have Ψ(L(T ′)) = L(T). Moreover,∑

e∈T
w(e) ≤ O(σ|L(T)|1/σ)

∑
e∈T ′

w′(e).

14

2. Given any subtree T ′ in Tr rooted at r′, we can efficiently find an in-arborescence (out-
arborescence) T in G rooted at r, such that Ψ(L(T ′)) = L(T) and

∑
e∈T ′ w

′(e) ≤
∑

e∈T w(e).

For our purpose, for each r ∈ V , we construct a tree Hr from Gr by the height reduction
technique. We recall that Gr is a layered graph with a center vertex (r, 0). Let G−r denote the
subgraph of Gr induced by the vertex set ⋃

v∈V \{r}

{v, v−} × {−j | j ∈ [n− 1]}

 ∪ {(r, 0), (r−, 0)},

and similarly, let G+
r denote the subgraph of Gr induced by the vertex set ⋃

v∈V \{r}

{v, v+} × [n− 1]

 ∪ {(r, 0), (r+, 0)}.

By Lemma 2.11, with (r, 0) being the root, we can construct a tree T−r rooted at r− for G−r which
approximately preserves the cost of any in-arborescence rooted at (r, 0) in G−r by a subtree in T−r ,
and similarly a tree T+

r rooted at r+ for G+
r which approximately preserves the cost of any out-

arborescence rooted at (r, 0) in G+
r by a subtree in T+

r . We further add a super root r′ and edges
{r′, r−} and {r′, r+} both with weight 0. This concludes the construction of the weighted tree Hr

(see Figure 2 for an illustration).

T−r T+
r

r− r+
r′

Figure 2: Construction of Hr

Let H be the disjoint union of Hr for r ∈ V . To prove Theorem 1.1, we show that we can achieve
an Õ(kδ)-approximation for the Steiner label cover problem on graph H in an online manner. We
set σ = d1/δe and apply Lemma 2.11 to obtain the weight w′ : E(H) → R≥0 and the mapping
Ψr : V (Hr) → V (Gr) for all r ∈ V . Let Ψ be the union of the mappings for all r ∈ V . For each
pair (si, ti) in the original graph G, we recall that we focus on the vertex subset pair (Si, Ti) of G′

and its relation Ri which captures the distance requirement.
To establish the correspondence between the Steiner label cover instances, we clarify the map-

ping between the leaves in G′ and H. Given a vertex (s−i ,−j)r in V (G′) with a non-negative j,
let Ψ−1((s−i ,−j)r) denote the set of leaves in T−r that maps to (s−i ,−j)r by Ψ. Similarly, given
a vertex (t+i , j)r in V (G′) with a non-negative j, let Ψ−1((t+i , j)r) denote the set of leaves in T+

r

that maps to (t+i , j)r by Ψ. The mapping Ψ−1 naturally defines the terminal sets of interest

Ŝi := Ψ−1(Si) = {ŝ ∈ V (H) | Ψ(ŝ) ∈ Si} and T̂i := Ψ−1(Ti) = {t̂ ∈ V (H) | Ψ(t̂) ∈ Ti}. The
relation is also naturally defined: R̂i := {(ŝ, t̂) ∈ Ŝi × T̂i | (Ψ(ŝ),Ψ(t̂)) ∈ Ri}. We note that for
ŝ ∈ Ŝi and t̂ ∈ T̂i, (ŝ, t̂) belongs to R̂i only when ŝ and t̂ belong to the same tree Hr.

15

Proving Theorem 2.5 and Theorem 1.1. We first show that the online Steiner label cover
problem on H is indeed an ordered one. If we can obtain an α-competitive solution, then we can
recover an O(αk1/2+δ)-competitive solution for the online pairwise spanner problem on G.

Having H, (Ŝi, T̂i), and R̂i as aforementioned, we show how the orderings �i,r are generated
so that we have the complete input for the ordered Steiner label cover problem. The ordering
construction technique closely follows the one in [34]. The difference is that we generate an ordering
for each tree for global approximation purpose while [34] focuses on one tree for greedy purpose.

In round i, let Ŝri := Ŝi∩Hr be the source leaves in V (T−r) and T̂ ri := T̂i∩Hr be the sink leaves
in V (T+

r). We have that Ŝi =
⋃
r∈V Ŝ

r
i and T̂i =

⋃
r∈V T̂

r
i because Hr are disjoint for different

r ∈ V so {Ŝri | r ∈ V } forms a partition of Ŝi and a similar argument holds for T̂i. For the definition
of the relation, let R̂ri := R̂i ∩ (Ŝri × T̂ ri). Intuitively, we partition Ŝi, T̂i, and R̂i into Ŝri , T̂ ri , and
R̂ri based on the vertex r ∈ V , respectively.

We define the ordering ≺i,r on Ŝri ∪ T̂ ri as follows.

• For any ŝ ∈ Ŝri and any t̂ ∈ T̂ ri , we have that ŝ ≺i,r t̂.

• For any ŝ, ŝ′ ∈ Ŝri where Ψ(ŝ) = (s−i ,−j)r and Ψ(ŝ′) = (s−i ,−j′)r, we have that ŝ ≺i,r ŝ′ if
and only if j > j′, i.e. under the mapping Ψ, the one that is farther from (r, 0) in G′ has a
lower rank according to ≺i,r. Ties are broken arbitrarily.

• For any t̂′, t̂ ∈ T̂ ri where Ψ(t̂′) = (t+i , j
′)r and Ψ(t̂) = (t+i , j)r, we have that t̂′ ≺i,r t̂ if and

only if j′ < j, i.e. under the mapping Ψ, the one that is farther from (r, 0) in G′ has a higher
rank according to ≺i,r. Ties are broken arbitrarily.

For ease of notion, we use �i,r to denote inclusive lower order, i.e. when ŝ �i,r ŝ′, it is either
ŝ = ŝ′ or ŝ ≺i,r ŝ′. If the pair (ŝ, t̂) ∈ R̂ri corresponds to an interval, then any subinterval pair

(ŝ′, t̂′) where ŝ �i,r ŝ′ and t̂′ �i,r t̂ also belongs to the relation R̂ri . This is by the construction of the
distance-based relations Ri and R̂i which implies that the Steiner label cover problem is ordered
by ≺i,r.

Claim 2.12. If (ŝ, t̂) ∈ R̂ri , then for any ŝ′ ∈ Ŝri and t̂′ ∈ T̂ ri such that ŝ �i,r ŝ′ ≺i,r t̂′ �i,r t̂, we
have that (ŝ′, t̂′) ∈ R̂ri .

Now we are ready to show Theorem 2.5.

Theorem 2.5. For any constant δ > 0, an α-competitive polynomial time algorithm for online
ordered Steiner label cover on a forest implies an O(αk1/2+δ)-competitive polynomial time algorithm
for the online pairwise spanner problem on a directed graph with uniform edge lengths.

Proof. Suppose we have an ordered Steiner label cover instance on H, (Ŝi, T̂i), R̂i, and �i,r as
aforementioned and we have an α-competitive solution. From the structure of H, the online solution
is guaranteed to be a forest. By Lemma 2.11, we can recover an online Steiner label cover solution
in G′ from that in H, by losing a factor of O(kδ). These imply that we have an O(αkδ)-competitive
solution for the online Steiner label cover problem in G′.

We recall that by Claim 2.10, the optimal junction tree solution for pairwise spanners in G
with value OPTjunc (which also counts the duplicate edges of junction trees rooted at different
vertices) is also optimal for the Steiner label cover solution. By Lemma 2.2, we have that OPTjunc
is O(

√
k)OPT where OPT is the optimal value of the pairwise spanner in G.

By Claim 2.9, we can recover a pairwise spanner solution in G from an online Steiner label cover
solution in G′ with the same cost. Putting the results together, we obtain an online Steiner label
cover solution in G′ with cost at most O(αkδ)OPTjunc which recovers an online pairwise spanner
solution with cost at most O(αk1/2+δ)OPT.

16

The remaining is to show that there exists a deterministic polylogarithmic competitive online
algorithm for the Steiner label cover problem on the forest H, with (Ŝi, T̂i) and R̂i arriving online.
We show the following lemma in Section 2.4.

Lemma 2.6. For the online ordered Steiner label cover problem on a forest (see definition 2.4),
there is a deterministic polynomial time algorithm with competitive ratio polylog(n).

Combining Lemma 2.6 and Theorem 2.5 implies Theorem 1.1.

2.4 Online ordered Steiner label cover on a forest

This section is devoted to proving Lemma 2.6.
We start with the high level sketch of the proof. In the original work for the offline setting [34],

an LP-based approach is used for searching a minimum density junction tree, which picks the best
solution among the roots r ∈ V and repeats. For the online setting, we use an LP that captures the
global approximate solution. The constraints of the LP involve the terminal pairs (Ŝi, T̂i), which
is a non-cross-product relation that requires a more meticulous rounding scheme. Fortunately, we
are able to use a similar technique to [34] that generates the terminal vertex orderings, extracts
representatives of the sets of terminals according to the orderings, and reduces the ordered Steiner
label cover problem to the Steiner forest problem. The final undirected Steiner forest instance has
a similar structure to the one constructed in the online directed buy-at-bulk framework [28], and
we employ the framework [21] to solve the undirected Steiner forest problem.

2.4.1 An LP-based approach for Steiner label cover

We recall that (Ŝi, T̂i) is the terminal pair that consists of leaves in the forest H, where H is the
disjoint union of trees Hr for r ∈ V . Given (ŝ, t̂) ∈ R̂i, let r ∈ V be such that ŝ and t̂ are leaves
of Hr. Let r(ŝ) = r(t̂) denote the root r′ of this tree Hr. The goal is to formulate an LP that
fractionally picks the edges to pack the ŝ-t̂ paths where (ŝ, t̂) belongs to relation R̂i. We recall that
H has σ = d1/δe layers, so E(H) = nO(1/δ) and |R̂i| = nO(1/δ). We use a natural LP relaxation for
the problem described in Lemma 2.6:

min
x,y,z

∑
e∈E(H)

w′(e)xe

subject to
∑

(ŝ,t̂)∈R̂i

yŝ,t̂ ≥ 1 ∀i ∈ [k],

∑
t̂|(ŝ,t̂)∈R̂i

yŝ,t̂ ≤ zŝ ∀i ∈ [k], ŝ ∈ Ŝi,

∑
ŝ|(ŝ,t̂)∈R̂i

yŝ,t̂ ≤ zt̂ ∀i ∈ [k], t̂ ∈ T̂i,

x supports an ŝ-r(ŝ) flow of value zŝ ∀i ∈ [k], ŝ ∈ Ŝi,
x supports an t̂-r(t̂) flow of value zt̂ ∀i ∈ [k], t̂ ∈ T̂i,
xe ≥ 0 ∀e ∈ E(H),

yŝ,t̂ ≥ 0 ∀i ∈ [k], (ŝ, t̂) ∈ R̂i.

(5)

This LP is a relaxation by considering an integral solution x, y, z where xe, yŝ,t̂, zŝ, zt̂ ∈ {0, 1}. xe
is an indicator of edge e, yŝ,t̂ is an indicator of the ŝ-t̂ path, while zŝ and zt̂ denote the ŝ-r(ŝ) and

17

t̂-r(t̂) flow value, respectively. Suppose we have an integral solution for Steiner label cover, then for
each (Ŝi, T̂i), there must exists a yŝ,t̂ = 1 where (ŝ, t̂) ∈ R̂i, which also indicates that all edges e of

the ŝ-t̂ path must satisfy xe = 1 and there is an ŝ-t̂ flow with value 1. The first constraint ensures
that for each pair (Ŝi, T̂i), there must be an ŝ-t̂ path that belongs to the relation R̂i, i.e. ŝ ∈ Ŝi,
t̂ ∈ T̂i, and (ŝ, t̂) ∈ R̂i. In the second constraint, for each i ∈ [k], zŝ denotes an upper bound for the
total number of paths that have ŝ as the source, where each such ŝ-t̂ path satisfies (ŝ, t̂) ∈ R̂i. In
the fourth constraint, the path upper bound zŝ is subject to the capacity x, i.e. the edge indicator
x is naturally an upper bound that packs the ŝ-t̂ paths which belong to the relation. The third and
the fifth constraints are defined similarly.

In round i, (Ŝi, T̂i) and R̂i arrive. The goal is to update x in a non-decreasing manner so that
the constraints are satisfied with some underlying variables yŝ,t̂ (which is initially set to 0), and zŝ

and zt̂ where (ŝ, t̂) ∈ R̂i, such that the objective is approximately optimal.
We convert LP (5) into a covering LP. Suppose in round i, we are given the edge capacity x.

Let P (ŝ) denote the set of edges in the ŝ-r(ŝ) path and P (t̂) denote the set of edges in the t̂-r(t̂)
path. By setting the first constraint as the objective, merging the second and fourth constraint,
and merging the third and fifth constraint, we derive the following internal offline LP,

max
y

∑
(ŝ,t̂)∈R̂i

yŝ,t̂

subject to
∑

t̂|(ŝ,t̂)∈R̂i

yŝ,t̂ ≤ xe ∀ŝ ∈ Ŝi, ∀e ∈ P (ŝ),

∑
ŝ|(ŝ,t̂)∈R̂i

yŝ,t̂ ≤ xe ∀t̂ ∈ T̂i, ∀e ∈ P (t̂),

yŝ,t̂ ≥ 0 ∀(ŝ, t̂) ∈ R̂i,

(6)

and its dual

min
α

∑
e∈E(H)

xe

 ∑
ŝ|e∈P (ŝ)

αŝ,e +
∑

t̂|e∈P (t̂)

αt̂,e


subject to

∑
e∈P (ŝ)

αŝ,e +
∑
e∈P (t̂)

αt̂,e ≥ 1 ∀(ŝ, t̂) ∈ Ri,

αŝ,e ≥ 0 ∀ŝ ∈ Ŝi,∀e ∈ P (ŝ),

αt̂,e ≥ 0 ∀t̂ ∈ T̂i, ∀e ∈ P (t̂).

(7)

We can solve LP (6) and LP (7) directly because there are only polynomially many constraints. If
the objective value is at least 1, then x is good, i.e. there exists an ŝ; t̂ path. Otherwise, x is bad.

To solve LP (5), we check if x is good or bad by solving LP (7). If x is good, then there exists
y and z such that all the constraints of LP (5) are satisfied, so we move on to the next round.
Otherwise, x is bad, so we increment x until it becomes good, which implies that

∑
e∈E(H)

xe

 ∑
ŝ|e∈P (ŝ)

αŝ,e +
∑

t̂|e∈P (t̂)

αt̂,e

 ≥ 1

for all feasible α in LP (7). Let Ai be the feasible polyhedron of LP (7) in round i. We derive the
following LP which is equivalent to LP (5), by considering all the constraints of LP (7) from round

18

1 to round k.

min
x

∑
e∈E(H)

w′(e)xe

subject to
∑

e∈E(H)

xe

 ∑
ŝ|e∈P (ŝ)

αŝ,e +
∑

t̂|e∈P (t̂)

αt̂,e

 ≥ 1 ∀i ∈ [k], α ∈ Ai,

xe ≥ 0 ∀e ∈ E(H).

(8)

In round i ∈ [k], the subroutine that solves LP (7) and checks if the optimum is good or not,
is the separation oracle used for solving LP (8) online. Here we use Theorem 4.1 (the formal
version of Theorem 1.8) to show that LP (8) can be solved online in polynomial time by paying an
O(log n) factor. This requires that log(1/αŝ,e), log(1/αt̂,e), and log LP∗ where LP∗ is the optimum
of LP (8), can be represented by polynomial number of bits used for the edge weights w′. log LP∗

can be represented by polynomial number of bits. For log(1/αŝ,e) and log(1/αt̂,e), the subroutine
that solves LP (7) returns a solution α which is represented by polynomial number of bits. By
Theorem 4.1, we have the following lemma.

Lemma 2.13. There exists a polynomial time O(log n)-competitive online algorithm for LP (5).

2.4.2 Online rounding

Now we are ready to show how to round the solution of LP (5) online. The rounding scheme
consists of two main steps. First we extract the representative sets according to the orderings �i,r
and the online solution of LP (5), then reduce the online ordered Steiner label cover instance to an
online undirected Steiner forest instance, which is solved by a deterministic algorithm in [21].

We recall that in round i, we have terminal sets Ŝri := Ŝi ∩ Hr and T̂ ri := T̂i ∩ Hr, and the
relations R̂ri := R̂i ∩ (Ŝri × T̂ ri). The terminal sets and relations are partitioned based on the trees
Hr where r ∈ V . We also have orderings �i,r on Ŝri ∪ T̂ ri .

Extracting representative sets. Let OPT be the optimum of the Steiner label cover instance
on H. Our goal is to find an integral solution of LP (5) online with an objective value at most
polylog(n)OPT. We first use the online LP solution to find the representative vertex sets, then use
the representatives to reduce to an online undirected Steiner forest instance.

For each i ∈ [k] and r ∈ V , we need to find the representative sets S̃ri ⊆ Ŝri and T̃ ri ⊆ T̂ ri
such that S̃ri × T̃ ri ⊆ R̂ri . Suppose in round i, we have a fractional solution x, y, z of LP (5).
The set pruning is accomplished by focusing on each r ∈ V and its ordering ≺i,r, and taking all
terminal vertices according to their contribution to the objective value until we reach the one that
cumulatively contributes half of the objective. Formally, for each r ∈ V :

• Let γri :=
∑

(ŝ,t̂)∈R̂ri
yŝ,t̂.

• Choose the median sets, i.e. define the boundary vertices

ŝi,r := max
≺i,r

{
ŝ ∈ Ŝri

∣∣∣∣ ∑
ŝ′�i,r ŝ

∑
t̂|(ŝ′,t̂)∈R̂ri

yŝ′,t̂ ≥ γ
r
i /2

}

and

t̂i,r := min
≺i,r

{
t̂ ∈ T̂ ri

∣∣∣∣ ∑
t̂′�i,r t̂

∑
ŝ|(ŝ,t̂′)∈R̂ri

yŝ,t̂′ ≥ γ
r
i /2

}
,

19

and S̃ri := {ŝ | ŝ �i,r ŝi,r} and T̃ ri := {t̂ | t̂ �i,r t̂i,r}.

The choice of the median sets guarantees that at least half of the LP value is preserved. We
have to verify that the union of cross-products of these sets does not contain any pairs that are
disallowed by the relation R̂i. The following lemma closely follows the pairwise spanner framework
in [34]. The main difference is that the framework focuses on one tree for greedy purposes, while
we focus on all trees for global approximation purpose.

Lemma 2.14. The union of the cross-products of the representative sets S̃ri and T̃ ri is a subset of
R̂i, i.e. ⋃

r∈V
(S̃ri × T̃ ri) ⊆ R̂i.

Proof. The special case of a single tree (i.e., a single r) was proven in [34]. That is, for fixed
r ∈ V , [34] implies that S̃ri × T̃ ri ⊆ R̂ri . Taking the union gives the desired claim. For the sake of
completeness, the proof of a single tree case is provided in Appendix A.2.

From ordered Steiner label cover to Steiner forest. Given the representative sets, we reduce
the online ordered Steiner label cover problem to the online undirected Steiner forest problem
as follows. For round i, let the representative sets be S̃i :=

⋃
r∈V S̃

r
i and T̃i :=

⋃
r∈V T̃

r
i . Let

R̃i :=
⋃
r∈V (S̃ri × T̃ ri). We construct the graph H ′ on the fly in each round i (see Figure 3 for an

illustration).

• Initially, let H ′ = H.

• In round i, upon the arrival of (si, ti), create two new vertices s′i and t′i (even if si or ti has
appeared in previous rounds), and the 0 weight edges: {s′i, ŝ} for each ŝ ∈ S̃i and {t′i, t̂} for
each t̂ ∈ T̃i.

T−r1 T+
r1

r−1 r+1

r′1

T−r2 T+
r2

r−2 r+2
r′2

...t′1 t′2 t′k...s′1 s′2 s′k

Figure 3: Construction of H ′

20

The goal is to select edges from E(H ′), such that there is an s′i-t
′
i path and the total edge weight

is approximately optimal. The following theorem shows that there exists an online algorithm for
the undirected Steiner forest instance.

Theorem 2.15. ([21, 28]) Given the graph H ′ and the terminal pairs (s′i, t
′
i) for i ∈ [k] as

the undirected Steiner forest instance. There is a deterministic polynomial time algorithm with
competitive ratio polylog(n).2

We recall that OPT is the optimum of the Steiner label cover instance on H with terminal set
pairs (Ŝi, T̂i) and relations R̂i. Using Theorem 2.15, we show the following which completes the
proof for Lemma 2.6.

Lemma 2.16. There exists a deterministic polynomial time online algorithm for LP (5) which
returns an integral solution such that the objective value is at most polylog(n)OPT.

Proof. Let x, y, and z be a feasible solution for LP (5) with objective value LP. By Claim 2.12
and Lemma 2.14, we can obtain a feasible solution x′, y′, and z′ for LP (5) with objective value at
most 2LP as follows. For any r ∈ V and (ŝ, t̂) ∈ R̂ri , there is a corresponding variable yŝ,t̂ for the

ŝ-r′-t̂ path. If ŝ /∈ S̃ri , then we replace the ŝ-r′ path by an ŝ′-r′ path where ŝ′ ∈ S̃ri ; if t̂ /∈ T̃ ri , then
we replace the r′-t̂ path by an r′-t̂′ path where t̂′ ∈ T̃ ri . This shifts the path selection y towards
the paths with representative endpoints ŝ ∈ S̃ri and t̂ ∈ T̃ ri and addresses the new path assignment
y′ (see Figure 4 for an illustration). We obtain x′ by adjusting the capacity. For each edge e that
belongs to an ŝ-t̂ path where (ŝ, t̂) ∈ S̃ri × T̃ ri , we have that x′e ≤ 2xe because the representatives
contribute at least half of the original LP path selection. If e does not belong the these paths, then
x′e = 0. We also adjust the flow value and obtain z′ accordingly.

Now we consider the following LP for undirected Steiner forest on H ′. Here we use w′(e) as the
edge weights for e ∈ H ′ by adding the new 0 weight edges.

min
x,γ

∑
e∈E(H′)

w′(e)xe

subject to
∑
r∈V

γri ≥ 1 ∀i ∈ [k],

x supports an s′i-r
′ flow of value γri ∀i ∈ [k],∀r ∈ V,

x supports an t′i-r
′ flow of value γri ∀i ∈ [k],∀r ∈ V,

xe ≥ 0 ∀e ∈ E(H ′),

γri ≥ 0 ∀i ∈ [k], r ∈ V.

(9)

Let x̃e = x′e for each e ∈ E(H), x̃e = 1 for each e ∈ E(H ′) \ E(H), and γ̃ri =
∑

(ŝ,t̂)∈R̃ri
y′
ŝ,t̂

.

We observe that x̃ and γ̃ is a feasible solution for LP (9) with objective value at most 2LP. This
implies that for any solution of LP (5), there exists a corresponding solution of LP (9) with at most
twice of the objective value.

Given a solution x̃ and γ̃ for LP (9), we can obtain a solution x′, y′, and z′ for LP (5) as follows.
We note that the objective values of these two solutions are the same.

2We reduce to the online undirected Steiner forest problem which is polylog(n)-competitive for general undirected
graphs. One can also reduce to the online directed Steiner forest problem by taking advantage of the structure of H ′

which also pays a polylog(n) factor, while for general directed graphs the competitive ratio is Õ(k1/2+ε). We note
that H ′ is the same graph used in Lemma 21 in [28]. The framework in [21] is deterministic while the one in [28] is
randomized.

21

ŝ1 ŝ2 ŝ3 ŝ4 t̂1 t̂2 t̂3 t̂4≺ ≺ ≺ ≺ ≺ ≺ ≺

Ŝri T̂ ri

(a) The original path selection by LP (5)

ŝ1 ŝ2 ŝ3 ŝ4 t̂1 t̂2 t̂3 t̂4≺ ≺ ≺ ≺ ≺ ≺ ≺

Ŝri T̂ ri

(b) The adjusted path selection with representative endpoints for LP (5)

Figure 4: Shifting paths towards paths with representative endpoints

• Let x′e = x̃e for each e ∈ E(H).

• Let z′ŝ = mine∈P (ŝ){x′e}, i.e. z′ŝ is the minimum capacity among the edges that belong to the
path from ŝ to its tree root r(ŝ).

• Let z′
t̂

= mine∈P (t̂){x′e}, i.e. z′
t̂

is the minimum capacity among the edges that belong to the

path from the tree root r(t̂) to t̂.

• Let f rs′i
be an s′i-r

′ flow of value γri and f rt′i
be an t′i-r

′ flow of value γri , both supported by

edge capacity x.

• For each i ∈ [k] and (ŝ, t̂) ∈ R̃i, let y′
ŝ,t̂

be the flow value along the ŝ-t̂ path according to the

flow f .

Now we use Theorem 2.15 to obtain an integral solution for LP (9), then transform this solution
to the one for LP (5) as described above. Suppose we have a polylog(n)-competitive solution for the
undirected Steiner forest instance. For each edge e ∈ E(H ′) that is selected, set x̃e = 1, otherwise
let x̃e = 0. Let γri = 1 whenever there is an s′i-r

′-t′i path in H ′, otherwise let γri = 0. We observe
that every integral solution of LP (9) corresponds to an undirected Steiner forest solution for H ′

and (si, ti). By the structure of H ′, the integrality gap of LP (9) is polylog(n) [28,50]. This implies
that the objective values obtained from the online undirected Steiner forest solution for both LP (5)
and LP (9) are upper-bounded by polylog(n)OPT.

2.5 Summary

We summarize in Algorithm 1 the overall Õ(k1/2+δ)-competitive deterministic polynomial time
algorithm described in Sections 2.3 and 2.4 for pairwise spanners on graphs with uniform edge
lengths.

22

Algorithm 1 Õ(k1/2+δ)-competitive pairwise spanner

1: Given a directed graph G, construct the directed graph G′, which is a union of disjoint layered
graphs. From G′, construct the undirected graph H, which is a forest.

2: for an arriving pair (si, ti) do
3: Generate Ŝi, T̂i, and R̂i, and solve the Steiner label cover LP (5) online.3

4: Generate the orderings ≺i,r. From the online solution of LP (5), extract the representative
sets S̃i and T̃i, and the corresponding relation R̃i. Then construct the graph H ′.

5: Solve the online Steiner forest instance for graph H ′ and the terminal pair (s′i, t
′
i). Recover

an integral solution of LP (5), obtain a solution which is a forest for the ordered Steiner label
cover problem in H, and map it back to the collection of junction trees in G.

We conclude that Algorithm 1 is Õ(k1/2+δ)-competitive. We pay O(
√
k) for the junction tree

approximation, O(kδ) for constructing the forest H by height reduction, and finally polylog(n)
for solving LP (5) and the undirected Steiner forest instance H ′ and (s′i, t

′
i) online. Each step is

deterministic and the overall competitive ratio is Õ(k1/2+δ).

3 Online Pairwise Spanners

We recall that in the general pairwise spanner problem, we are given a directed graph G = (V,E)
with edge length ` : E → R≥0, a general set of k terminals D = {(si, ti) | i ∈ [k]} ⊆ V × V , and a
target distance di for each terminal pair (si, ti), the goal is to output a subgraph H = (V,E′) of G
such that for every pair (si, ti) ∈ D it is the case that dH(si, ti) ≤ di, i.e. the length of a shortest
si ; ti path is at most di in the subgraph H, and we want to minimize the number of edges in E′.

3.1 An Õ(n4/5)-competitive online algorithm for pairwise spanners

In this section, we prove Theorem 1.2. Recall that in the online setting of the problem, the directed
graph G is given offline, while the vertex pairs in D ⊆ V × V arrive online one at a time. In the
beginning, E′ = ∅. Suppose (si, ti) and its target distance di arrive in round i, we select some edges
from E and irrevocably add them to E′, such that in the subgraph H = (V,E′), dH(si, ti) ≤ di.
The goal is to approximately minimize the total number of edges added to E′.

We start with a high-level sketch of an offline algorithm, which we will build on for the online
setting. The randomized rounding framework in [20, 34] has two main steps. One step is to solve
and round an LP for the spanner problem. The second is to uniformly sample vertices and add
the shortest path in-arboresences and out-arboresences rooted at each of the sampled vertices.
Terminal pairs are classified as either thin or thick and are addressed by one of the two steps above
accordingly.

In the first step, the rounding scheme based on an LP solution for spanners ensures with high
probability that for all thin terminal pairs the distance requirements are met. The second step
ensures with high probability that for all thick terminal pairs the distance requirements are met.
By selecting an appropriate threshold for classifying the thin and thick pairs, this leads to an
O(n/

√
OPT)-approximation, where OPT is the number of edges in the optimal solution.

The main challenges in adapting this approach to the online setting are as follows: 1) OPT
can be very small, and 2) the LP for spanners is not naturally a pure covering LP, which makes it
difficult to solve online. In the previous work in the offline setting, the small-OPT case is addressed

3One may derive an LP for the graph G′ instead of H. However, the integrality gap might be large.

23

by sophisticated strategies that appear difficult to emulate online. Instead, we show that the
optimal value (however small) is at least the square root of the number of terminal pairs that have
arrived. Thus, if OPT is small and not many pairs have arrived, we can greedily add a path with the
fewest edges subject to the distance requirement for each pair. To overcome the second challenge,
we convert the LP for spanners into an equivalent covering LP as in [39], where violating covering
constraints are generated by an auxiliary LP. Having transformed the LP into a purely covering
one, we can solve the LP online, treating the auxiliary LP as a separation oracle.

3.1.1 A simple Õ(n4/5)-approximate offline algorithm based on [34]

For ease of exposition, we first design a simpler offline algorithm (slightly weaker than the state-
of-the-art) that is more amenable to the online setting. This allows us to establish the main
ingredients governing the approximation factor in a simpler setting, and then address the online
aspects separately. The algorithm leverages the framework developed in [20,34].

Let Pi denote the collection of si ; ti paths of length at most di consisting of edges in E.
Let the local graph Gi = (V i, Ei) be the union of all vertices and edges in Pi. A pair (si, ti) ∈ D
is t-thick if |V i| ≥ t, otherwise (si, ti) is t-thin. Consider the following standard LP relaxation
(essentially the one in [38]).

min
x,y

∑
e∈E

xe

subject to
∑
P∈Pi

yP ≥ 1 ∀i ∈ [k],

∑
P |e∈P∈Pi

yP ≤ xe ∀e ∈ E,∀i ∈ [k],

xe ≥ 0 ∀e ∈ E,
yP ≥ 0 ∀P ∈ Pi ∀i ∈ [k].

(10)

Herein, xe is an indicator of edge e and yP is an indicator of path P . Suppose we have an integral
feasible solution. Then the first set of constraints ensures that there is at least one si ; ti path of
length at most di selected, and the second set of constraints ensures that if a path P is selected,
then all its edges are selected.

We say that a pair (si, ti) ∈ D is settled if the selection of edges is such that there exists an
si ; ti path of length at most di. Applying a simple rounding scheme based on a solution of
LP (10) settles the thin pairs with high probability, while sampling enough vertices and adding
shortest path in-arborescences and out-arborescences rooted at each sampled vertex ensures with
high probability that thick pairs are settled. Let OPT be the optimum value of the given pairwise
spanner instance. Without loss of generality, we may assume that we know OPT since we can guess
every value of OPT in [|E|] in the offline setting. Now we are ready to describe Algorithm 2 in [34].
For the sake of completeness, the proof of Lemma 3.1 is provided in Appendix B.

Lemma 3.1. ([34]) Algorithm 2 is Õ(n/
√
OPT)-approximate.

24

Algorithm 2 Offline pairwise spanner

1: E′ ← ∅ and t← n/
√
OPT.

2: Solve LP (10) and add each edge e ∈ E to E′ with probability min{1, xet lnn} independently.
3: Obtain a vertex setW ⊆ V by sampling (3n lnn)/t vertices from V independently and uniformly

at random. Add the edges of shortest path in-arborescences and out-arborescences rooted at
w for each w ∈W .

In the all-pairs spanner problem where OPT is Ω(n), Algorithm 2 is Õ(
√
n)-approximate which

matches the state-of-the-art approximation ratio given in [20]. For the pairwise spanner problem,
the main challenge is the lack of a nice lower bound for OPT. In the offline setting, [34] achieves an
Õ(n3/5+ε)-approximate solution by a careful case analysis when edges have uniform lengths. We
give an alternative approach that is amenable to the online setting by considering two cases, where
one resolves the issue when OPT does not have a nice lower bound, and the other uses a variant
of Algorithm 2 given that OPT has a nice lower bound. This approach relies on the following
observation.

Lemma 3.2. OPT ≥
√
k.

Proof. We observe that when the spanner has ` edges, there are at most ` source vertices and `
sink vertices, so there are at most `2 terminal pairs. Therefore, when the spanner has OPT edges,
there are at most OPT2 terminal pairs, so OPT ≥

√
k.

Now we specify the simple offline algorithm given in Algorithm 3. In the beginning, we set two
parameters T and t (which we will describe later), and set E′ = ∅. An si ; ti path is cheapest
feasible if it meets the distance requirement di by using the minimum number of edges from E. We
note that cheapest feasible paths can be found by Bellman-Ford algorithm.

Algorithm 3 Simple offline pairwise spanner

1: if k < T then
2: Add the edges of a cheapest feasible si ; ti path to E′ for each i ∈ [k].
3: else
4: Solve LP (10) and add each edge e ∈ E to E′ with probability min{1, xet lnn} independently.
5: Obtain a vertex set W ⊆ V by sampling (3n lnn)/t vertices from V independently and

uniformly at random. Add the edges of shortest path in-arborescences and out-arborescences
rooted at each vertex w ∈W to E′.

Lemma 3.3. Algorithm 3 is Õ(n4/5)-approximate when T = t = n4/5.

Proof. If k < n4/5, we add the edges of a cheapest feasible si ; ti path for each (si, ti) ∈ D. Each
cheapest feasible si ; ti path contains at most OPT edges, so the ratio between this solution and
OPT is n4/5. The remaining case is k ≥ n4/5, which implies OPT ≥ n2/5 by Lemma 3.2. Let LP∗

be the optimal objective value of LP (10). The approximation guarantee is

Õ(tLP∗) + Õ(n2/t)

OPT
≤ Õ(n4/5OPT) + Õ(n6/5)

OPT
= Õ(n4/5)

since the number of edges retained from the rounding scheme is at most Õ(t)LP∗ and the number
of edges retained by adding arborescences is at most 2n · 3n lnn/t since each arborescence has at
most n edges. This summarizes the simple offline Õ(n4/5)-approximation algorithm.

25

3.1.2 An Õ(n4/5)-competitive online algorithm

It remains to convert the simple offline algorithm to an online algorithm. We address the two main
modifications.

1. We have to (approximately) solve LP (10) online, which is not presented as a covering LP.

2. We have to round the solution of LP (10) online.

For the first modification, LP (10) is converted to an equivalent covering LP (13) (which we
will show later) and approximately solved in an online fashion. For the second modification, we use
an online version of the rounding scheme in Algorithm 3, such that the overall probability (from
round 1 to the current round) for the edge selection is consistent with the probability based on the
online solution of LP (10), by properly scaling the probability based on a conditional argument.

Algorithm 4 Online pairwise spanner

1: for an arriving pair (si, ti) do
2: Convert the spanner LP (10) to the covering LP (13) and solve LP (13) online.
3: if i < T then
4: Add the edges of a cheapest feasible si ; ti path to E′.
5: else if i = T then
6: Obtain a vertex set W ⊆ V by sampling (3n lnn)/t vertices from V independently and

uniformly at random. Add the edges of shortest path in-arborescences and out-arborescences
rooted at each vertex w ∈W to E′.

7: Add each edge e to E′ independently with probability pie for each edge e ∈ E \ E′.
8: else . i > T
9: Add each edge e to E′ independently with probability (pie − pi−1e)/(1 − pi−1e) for each

edge e ∈ E \ E′.

The online algorithm in round i is given in Algorithm 4. The same structure will be used later
for other variants of the online pairwise spanner problem. In the beginning, we pick a threshold
parameter T and a thickness parameter t (which we will show later), and set E′ = ∅. Let xie
denote the value of xe in the approximate solution of LP (13) obtained in round i. Let pie :=
min{1, xiet lnn}. Algorithm 4 is the online version of Algorithm 3. A key insight is that when
we add the arborescences in round T , it also settles the future thick terminal pairs with high
probability. With the outline structure of the online algorithm, we are ready to prove Theorem 1.2.

Theorem 1.2. For the online pairwise spanner problem, there is a randomized polynomial time
algorithm with competitive ratio Õ(n4/5).

Proof. Suppose in the online setting, there are k rounds where k may be unknown. In round i ∈ [k],
the pair (si, ti) and the distance requirement di arrive and we select some new edges from E to
settle (si, ti). We run Algorithm 4 by setting T = t = bn4/5c. It suffices to show that 1) LP (10) can
be solved online by losing a polylogarithmic factor, and 2) the overall probability of edge selection
is consistent with the probability based on the online solution of LP (10).

Converting and solving LP (10) online. The goal is to update x in a non-decreasing manner
upon the arrival of the pair (si, ti) to satisfy all its corresponding constraints, so that the objective
value is still approximately optimal. We convert LP (10) into a covering LP as follows.

26

First, we check in round i, given the edge capacity x, if there is a (fractional) si ; ti path of
length at most di. This can be captured by checking the optimum of the following LPs,

max
y

∑
P∈Pi

yP

subject to
∑

P |e∈P∈Pi

yP ≤ xe ∀e ∈ E,

yP ≥ 0 ∀P ∈ Pi,

(11)

and its dual
min
z

∑
e∈E

xeze

subject to
∑
e∈P

ze ≥ 1 ∀P ∈ Pi,

ze ≥ 0 ∀e ∈ E.

(12)

We say that x is good if the optimum of LP (11) and LP (12) is at least 1, and it is bad otherwise.
Namely, x is good if there is at least one (fractional) si ; ti path of length at most di. In LP (12),
the feasibility problem is equivalent to the following problem. Given the local graph Gi and edge
weight z, is there an si ; ti path of length at most di and weight less than 1? We note that with
uniform lengths, this problem can be solved by Bellman-Ford algorithm with di iterations, which
computes the smallest weight among all si ; ti paths of length at most di in the local graph Gi.

Although this bicriteria path problem in general is NP-hard [7], an FPTAS is known to exist
[56, 65], which gives an approximate separation oracle. We can verify in polynomial time that if
there is a path of length at most di and weight less than 1− ε. We obtain a solution z′ for LP (12)
where each constraint is satisfied by a factor of 1− ε and set z := z′/(1− ε) as the solution.

To solve LP (10), suppose in round i, we are given x. First, we check if x is good or bad by
approximately solving LP (12). If x is good, then there exists y such that

∑
P∈Pj yP ≥ 1, i.e.

the solution is feasible for LP (10), so we move on to the next round. Otherwise, x is bad, so we
increment x until it becomes good, which implies

∑
e∈E xeze ≥ 1 for all feasible z in LP (12). Let

Zi be the feasible polyhedron of LP (12) in round i. We derive the following LP (essentially the
one in [38, 39]) which is equivalent to LP (10), by considering all the constraints of LP (12) from
round 1 to round k.

min
x

∑
e∈E

xe

subject to
∑
e∈E

zexe ≥ 1 ∀z ∈ Zi ∀i ∈ [k],

xe ≥ 0 ∀e ∈ E.

(13)

In round i ∈ [k], the subroutine that approximately solves LP (12) and checks if the optimum
is good or not, is the separation oracle used for solving LP (13) online. Here we use Theorem 4.1
(the formal version of Theorem 1.8) to show that LP (13) can be solved online in polynomial
time by paying an O(log n) factor. This requires that both log(1/ze) and log LP∗ are polynomial
in the number of bits used for the edge lengths, where LP∗ is the optimum of LP (13). Clearly,
log LP∗ ≤ log |E| is in poly(n). For log(1/ze), the subroutine that approximately solves LP (12)
returns an approximate solution z which is represented by polynomial number of bits used for the
edge lengths [56,65]. By Theorem 4.1, we have the following Lemma.

Lemma 3.4. There exists a polynomial time O(log n)-competitive online algorithm for LP (10).

27

Conditional edge selection. After having a fractional solution of LP (10) in round i where
i ≥ T = bn4/5c, we independently pick e ∈ E \ E′ with some scaled probability so that the
edge selection is consistent with the probability based on the online solution of LP (10). More
specifically, let pe := min{1, xet lnn} and let pie be the value of pe in round i. Let Ẽ be the set of
edges where each edge is neither selected while adding cheapest feasible paths prior to round T nor
selected while adding in-arborescences and out-arborescences in round T . We show that each edge
e ∈ Ẽ has already been selected with probability pie in round i. This can be proved by induction.
According to Algorithm 4, the base case is round T , where e ∈ Ẽ is selected with probability pTe .
Now suppose i > T , if e ∈ Ẽ has been selected, it is either selected prior to round i or in round
i. For the former case, e must had already been selected in round i − 1, with probability pi−1e by
inductive hypothesis. For the later case, conditioned on e has not been selected in round i − 1, e
is selected with probability (pie − pi−1e)/(1− pi−1e). Therefore, in round i, e has been selected with

probability pi−1e + (1 − pi−1e) · p
i
e−p

i−1
e

1−pi−1
e

= pie, which completes the proof. Intuitively, when i > T ,

conditioned on e ∈ Ẽ was not picked from round 1 to round i − 1, we pick e with probability
(pie − pi−1e)/(1 − pi−1e) at round i, so that the overall probability that e is picked from round 1 to
round i is pie.

Summary. We conclude the proof as follows. The overall algorithm is given in Algorithm 4.
For the initialization, x is a zero vector, E′ is an empty set, and T = t = bn4/5c. The set E′ is
the solution. We pay an extra logarithmic factor for solving LP (10) online by Lemma 3.4. The
competitive ratio remains Õ(n4/5).

3.2 Online pairwise spanners with maximum allowed distance d

We recall that in a special setting with uniform edge lengths, an upper bound d for the required
distance for each arriving terminal pair is given offline. We show the following theorem.

Theorem 1.3. For the online pairwise spanner problem with uniform edge lengths and maxi-
mum allowed distance d, there is a randomized polynomial time algorithm with competitive ratio
Õ(d1/3n2/3).

Proof. When the maximum allowed distance is d for the terminal pairs, we employ Algorithm 4
with T = bd−4/3n4/3c and t = d1/3n2/3. If k < T , then for each (si, ti) ∈ D, we add the edges
of a shortest si ; ti path. Each shortest si ; ti path contains at most d edges. By Lemma 3.2,
OPT ≥

√
k, so the ratio between this solution and OPT is dk

OPT ≤ d
√
k ≤ d

√
T = O(d1/3n2/3). If

k ≥ T , then OPT ≥ d−2/3n2/3. Let LP be the value of the online integral O(log n)-competitive
solution of LP (10) obtained by Algorithm 4. The approximation guarantee is

Õ(tLP) + Õ(n2/t)

OPT
≤ Õ(d1/3n2/3OPT) + Õ(d−1/3n4/3)

OPT
= Õ(d1/3n2/3).

3.3 Online quasimetric spanners and all-server spanners

Consider the case where the edge lengths form a quasimetric, i.e., for any two edges u → v and
v → w, there is also an edge u → w such that `(u,w) ≤ `(u, v) + `(v, w). We obtain the following
result.

28

Theorem 1.4. For the online pairwise spanner problem where edge lengths are quasimetric, there
is a randomized polynomial time algorithm with competitive ratio Õ(n2/3).

In the setting of all-server spanners, the given graph has uniform edge lengths. For each terminal
pair (si, ti), there is also an edge si → ti in E. We show the following theorem for this case.

Theorem 1.5. For the online all-server spanner problem with uniform edge lengths, there is a
randomized polynomial time algorithm with competitive ratio Õ(n2/3).

We use the same proof for the two theorems above.

Proof. We employ Algorithm 4 with T = bn4/3c and t = n2/3. If k < T , then for each (si, ti) ∈ D,
we add the edge si → ti. By Lemma 3.2, OPT ≥

√
k, so the ratio between this solution and OPT is

k

OPT
≤
√
k ≤
√
T = O(n2/3).

If k ≥ T , then OPT ≥ n2/3. Let LP be the value of the online integral O(log n)-competitive solution
of LP (10) obtained by Algorithm 4. The approximation guarantee is

Õ(tLP) + Õ(n2/t)

OPT
≤ Õ(n2/3OPT) + Õ(n4/3)

OPT
= Õ(n2/3).

3.4 Online pairwise spanners with uniform edge lengths

In this section, we prove Theorem 1.6.

Theorem 1.6. For the online pairwise spanner problem with uniform edge lengths, there is a ran-
domized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant ε ∈ (0, 1/3).

Proof. We employ Algorithm 4 with a slight tweak and set T = bn4/3−4εc and t = n2/3+ε.
If k < T , instead of adding edges of a shortest si ; ti path, we use Theorem 1.1 to find an

Õ(n2/3+ε) competitive solution.

Theorem 1.1. For the online pairwise spanner problem with uniform edge lengths, there exists a
deterministic polynomial time algorithm with competitive ratio Õ(k1/2+δ) for any constant δ > 0.

For any ε ∈ (0, 1/3), there exists δ such that 4δ/(9 + 12δ) = ε. By picking this δ, we have that

(
4

3
− 4ε)(

1

2
+ δ) = (

4

3
− 16δ

9 + 12δ
)(

1

2
+ δ) =

2

3
+

4δ

3
− 8δ + 16δ2

9 + 12δ

=
2

3
+

12δ + 16δ2 − 8δ − 16δ2

9 + 12δ
=

2

3
+

4δ

9 + 12δ
=

2

3
+ ε.

Hence, the ratio between the solution obtained by Theorem 1.1 and OPT is

k1/2+δ ≤ n(4/3−4ε)(1/2+δ) = n2/3+ε = Õ(n2/3+ε).

If k ≥ T , then OPT > n2/3−2ε. Let LP be the online integral solution of LP (10) obtained by
Algorithm 4. The approximation guarantee is

Õ(tLP) + Õ(n2/t)

OPT
≤ Õ(n2/3+εOPT) + Õ(n4/3−ε)

OPT
= Õ(n2/3+ε). (14)

29

3.5 Online directed Steiner forests with uniform costs

This problem is a special case of pairwise spanners with uniform edge lengths and infinite target
distances. We show the following theorem.

Theorem 1.7. For the online directed Steiner forest problem with uniform costs, there is a ran-
domized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant ε ∈ (0, 1/3).

Proof. The structure of the online algorithm is the same as that for online pairwise spanners with
uniform edge lengths. We employ Algorithm 4 and set T = bn4/3−4εc and t = n2/3+ε. If k < T ,
instead of adding edges of a shortest si ; ti path, we use Theorem 1.1 to find an Õ(n2/3+ε)
competitive solution.4 If k ≥ T , then the algorithm is Õ(n2/3+ε)-competitive by (14).

4 Online Covering in Polynomial Time

This section is devoted to proving the formal version of Theorem 1.8. We recall that the problem
of interest is to solve the covering LP (2) online:

minimize 〈c, x〉 over x ∈ Rn≥0 s.t. Ax ≥ 1

where A ∈ Rm×n≥0 consists of m covering constraints, 1 ∈ Rm>0 is a vector of all ones treated as the
lower bound of the covering constraints, and c ∈ Rn>0 denotes the positive coefficients of the linear
cost function.

In the online covering problem, the cost vector c is given offline, and each of these covering
constraints is presented one by one in an online fashion, that is, m can be unknown. In round
i ∈ [m], {aij}j∈[n] (where aij denotes the i-th row j-th column entry of A) is revealed, and we
have to monotonically update x so that the constraint

∑
j∈[n] aijxj ≥ 1 is satisfied. We always

assume that there is at least one positive entry aij in each round i, otherwise constraint i cannot
be satisfied since all the row entries are zeros. The goal is to update x in a non-decreasing manner
and approximately minimize the objective value 〈c, x〉.

We recall that an important idea in this line of work is to simultaneously consider the dual
packing problem LP (3):

maximize 〈1, y〉 over y ∈ Rm≥0 s.t. AT y ≤ c

where AT consists of n packing constraints with an upper bound c given offline.
The primal-dual framework in [26] simultaneously solves both LP (2) and LP (3), and crucially

uses LP-duality and strong connections between the two solutions to argue that they are both nearly
optimal. The modified framework closely follows the guess-and-double scheme in [26]. Specifically,
the scheme runs in phases where each phase estimates a lower bound for the optimum. When the
first constraint arrives, the scheme generates the first lower bound

α(1)← min
j∈[n]
{ cj
a1j
| a1j > 0} ≤ OPT

where cj is the j-th entry of c and OPT is the optimal value of LP (2).
During phase r, we always assume that the lower bound of the optimum is α(r) until the online

objective 〈c, x〉 exceeds α(r). Once the online objective exceeds α(r), we start the new phase r+ 1
from the current violating constraint (let us call it constraint ir+1, in particular, i1 = 1), and

4One can also use the Õ(k1/2+δ)-competitive online algorithm in [28].

30

double the estimated lower bound, i.e. α(r + 1)← 2α(r).5 We recall that x must be updated in a
non-decreasing manner, so the algorithm maintains {xrj}, which denotes the value of each variable
xj in each phase r, and the value of each variable xj is actually set to maxr{xrj}.

In Algorithm 5, we describe one round of the modified scheme in phase r. When a covering
constraint i arrives, we introduce a packing variable yi = 0. If the constraint is violated, we
increment each xj according to an exponential function of yi until the constraint is satisfied by a
factor of 2. This is the main difference between the modified framework and [26], which increments
the variables until the constraint is satisfied.

Algorithm 5 Online Covering

1: for arriving covering constraint i do
2: yi ← 0. . the packing variable yi is used for the analysis
3: if

∑n
j=1 aijx

r
j < 1 then . if constraint i is not satisfied

4: while
∑n

j=1 aijx
r
j < 2 do . update until constraint i is satisfied by a factor of 2

5: Increase yi continuously.
6: Increase each variable xrj by the following increment function:

xrj ←
α(r)

2ncj
exp

 ln(2n)

cj

i∑
k=ir

akjyk

 .

Although the augmentation is in a continuous fashion, it is not hard to implement it in a discrete
way for any desired precision by binary search. Therefore, to show that the modified framework is
efficient, it suffices to bound the number of violating constraints it will encounter. The performance
of the modified scheme is analyzed in Theorem 4.1 (the formal version of Theorem 1.8).

Theorem 4.1. There exists an O(log n)-competitive online algorithm for the covering LP (2) which
encounters poly(n, logOPT, log(1/α(1))) violating constraints.

Proof. The proof for the O(log n)-competitiveness closely follows the one in [26]. Let X(r) and Y (r)
be the covering and packing objective values, respectively, generated during phase r. The following
claims are used to show that Algorithm 5 is O(log n)-competitive. For the sake of completeness,
we provide the proof in Appendix C.

(i) x is feasible.

(ii) For each finished phase r, α(r) ≤ 4 ln(2n) · Y (r).

(iii) y generated during phase r is feasible.

(iv) The sum of the covering objective generated from phase 1 to r is at most 2α(r).

(v) Let r′ be the last phase, then the covering objective 〈c, x〉 ≤ 2α(r′).

From these five claims together with weak duality, we conclude that

〈c, x〉 ≤ 2α(r′) = 4α(r′ − 1) ≤ 16 ln(2n) · Y (r′ − 1) ≤ 16 ln(2n) · OPT.
5In [26], the scheme starts all over again from the first constraint. We start from the current violating constraint

because it is more amenable when violating constraints are generated by a separation oracle. There is no guarantee
for the order of arriving violating constraints in such settings.

31

Now we show that Algorithm 5 encounters poly(n, logOPT, log(1/α(1))) violating constraints.
We first show that there are O(log log n+logOPT+log(1/α(1))) phases. The estimated lower bound
α doubles when we start a new phase. Suppose there are r′ phases, then α(1) ·2r′−1 = O(log n)OPT
because Algorithm 5 is O(log n)-competitive. This implies that r′ = O(log log n + logOPT +
log(1/α(1))).

In each phase, when a violating constraint arrives, we increment x so that the constraint is
satisfied by a factor of 2. This implies that at least one variable xj is doubled. xj = O(log n)OPT/cj
because cjxj ≤ 〈c, x〉 = O(log n)OPT. At the start of phase r, xj = α(r)/(2ncj) ≥ α(1)/(2ncj).
Suppose xj has been doubled t times in phase r, then

α(1)

2ncj
· 2t ≤ α(r)

2ncj
· 2t ≤ xj = O(log n)

OPT

cj

which indicates that t = O(log n+ logOPT + log(1/α(1))).
There are n variables and r′ phases, and in each phase, each variable is doubled at most t times.

Therefore, Algorithm 5 encounters poly(n, logOPT, log(1/α(1))) violating constraints.

As stated in [26], the online scheme naturally extends to the setting with unbounded number
of constraints where covering constraints do not appear explicitly, but are detected by a separation
oracle. However, in the previous work, there was no guarantee about the efficiency, i.e. how fast
the algorithm reaches an approximately optimal solution. In the worst case scenario, it is possible
that a detected constraint is slightly violated, thus hindering the growth of the covering variables
since they are incremented until the constraint is just satisfied. The modified framework, on the
other hand, increments the variables until the constraint is satisfied by a factor of 2. The sufficient
growth of the covering variables ensures a polynomial upper bound for the number of violating
constraints that the framework will encounter.

5 Conclusions and Open Problems

In this work, we present the first online algorithm for pairwise spanners with competitive ratio
Õ(n4/5) for general lengths and Õ(n2/3+ε) for uniform lengths. We also improve the competitive
ratio for the online directed Steiner forest problem with uniform costs to Õ(n2/3+ε) when k =
ω(n4/3). We also show an efficient modified framework for online covering and packing. Our work
raises several open questions that we state below.

Online pairwise spanners. An intriguing open problem is improving the competitive ratio for
online pairwise spanners. For graphs with uniform edge lengths, there is a small polynomial gap
between the state-of-the-art offline approximation ratio Õ(n3/5+ε) and the online competitive ratio
Õ(n2/3+ε). For graphs with general edge lengths, we are not aware of any studies about the pairwise
spanner problem. Our Õ(n4/5)-competitive online algorithm intrinsically suggests an Õ(n4/5)-
approximate offline algorithm. As the approach in [34] achieves an Õ(n/

√
OPT)-approximation,

we believe that the approximation ratio can be improved for the offline pairwise spanner problem,
by judicious case analysis according to the cardinality of OPT.

Approximating Steiner forests online in terms of n. The state-of-the-art online algorithm
for Steiner forests with general costs is Õ(k1/2+ε)-competitive [28]. A natural open question is
designing an o(n)-competitive online algorithm when k is large, and potentially extend this result

32

to the more general buy-at-bulk network design problem. The currently best known offline approxi-
mation for Steiner forests with general costs is O(n2/3+ε) [20], by case analysis that settles thick and
thin terminal pairs separately. However, the approach in [20] for settling thin pairs is essentially a
greedy procedure which is inherently offline. Our approach utilizes the uniform cost assumption to
obtain a useful lower bound for the optimal solution, which is incompatible with general costs. It
would be interesting to resolve the aforementioned obstacles and have an o(n)-competitive online
algorithm for directed Steiner forests with general edge costs. One open problem for uniform costs
is to improve the competitive ratio, as there is a polynomial gap between the state-of-the-art offline
approximation ratio Õ(n26/45+ε) and the online competitive ratio Õ(n2/3+ε).

6 Acknowledgements

We thank the anonymous reviewers for comments and suggestions that helped improve the presen-
tation. We thank Anupam Gupta and Greg Bodwin for bringing to our attention references that
we missed in previous versions of the writeup.

References

[1] Abboud, A., and Bodwin, G. Reachability preservers: New extremal bounds and approx-
imation algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (2018), SIAM, pp. 1865–1883.

[2] Ahmed, R., Bodwin, G., Sahneh, F. D., Hamm, K., Jebelli, M. J. L., Kobourov, S.,
and Spence, R. Graph spanners: A tutorial review, 2019.

[3] Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. A general approach
to online network optimization problems. ACM Transactions on Algorithms (TALG) 2, 4
(2006), 640–660.

[4] Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. The online set
cover problem. SIAM J. Comput. 39, 2 (2009), 361–370.

[5] Alon, N., and Schieber, B. Optimal preprocessing for answering on-line product queries.
Tech. rep., 1987.

[6] Antonakopoulos, S. Approximating directed buy-at-bulk network design. In International
Workshop on Approximation and Online Algorithms (2010), Springer, pp. 13–24.

[7] Arkin, E. M., Mitchell, J. S., and Piatko, C. D. Bicriteria shortest path problems in
the plane. In Proc. 3rd Canad. Conf. Comput. Geom (1991), Citeseer, pp. 153–156.

[8] Awasthi, P., Jha, M., Molinaro, M., and Raskhodnikova, S. Testing lipschitz functions
on hypergrid domains. Algorithmica 74, 3 (2016), 1055–1081.

[9] Awerbuch, B. Communication-time trade-offs in network synchronization. In Proceedings of
the Fourth Annual ACM Symposium on Principles of Distributed Computing (New York, NY,
USA, 1985), PODC ’85, Association for Computing Machinery, p. 272–276.

[10] Awerbuch, B., and Azar, Y. Buy-at-bulk network design. In Proceedings 38th Annual
Symposium on Foundations of Computer Science (1997), IEEE, pp. 542–547.

33

[11] Awerbuch, B., Azar, Y., and Bartal, Y. On-line generalized steiner problem. Theoretical
Computer Science 324, 2-3 (2004), 313–324.

[12] Awerbuch, B., Azar, Y., and Plotkin, S. Throughput-competitive on-line routing.
In Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science (1993), IEEE,
pp. 32–40.

[13] Azar, Y., Bhaskar, U., Fleischer, L., and Panigrahi, D. Online mixed packing and
covering. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete al-
gorithms (2013), SIAM, pp. 85–100.

[14] Azar, Y., Buchbinder, N., Chan, T. H., Chen, S., Cohen, I. R., Gupta, A., Huang,
Z., Kang, N., Nagarajan, V., Naor, J., et al. Online algorithms for covering and packing
problems with convex objectives. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS) (2016), IEEE, pp. 148–157.

[15] Bansal, N., Buchbinder, N., and Naor, J. Randomized competitive algorithms for
generalized caching. In Proceedings of the fortieth annual ACM symposium on Theory of
computing (2008), pp. 235–244.

[16] Bansal, N., Buchbinder, N., and Naor, J. A primal-dual randomized algorithm for
weighted paging. Journal of the ACM (JACM) 59, 4 (2012), 1–24.

[17] Baswana, S. Streaming algorithm for graph spanners - single pass and constant processing
time per edge. Inf. Process. Lett (2008).

[18] Baswana, S., and Kavitha, T. Faster algorithms for all-pairs approximate shortest paths
in undirected graphs. SIAM J. Comput. 39, 7 (2010), 2865–2896.

[19] Bateni, M., and Hajiaghayi, M. Euclidean prize-collecting steiner forest. Algorithmica 62,
3-4 (2012), 906–929.

[20] Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., and
Yaroslavtsev, G. Approximation algorithms for spanner problems and directed steiner
forest. Information and Computation 222 (2013), 93–107.

[21] Berman, P., and Coulston, C. On-line algorithms for steiner tree problems. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing (1997), pp. 344–353.

[22] Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., and Woodruff,
D. P. Transitive-closure spanners. SIAM Journal on Computing 41, 6 (2012), 1380–1425.

[23] Bodwin, G., and Williams, V. V. Better distance preservers and additive spanners. In
SODA (2016), R. Krauthgamer, Ed., SIAM, pp. 855–872.

[24] Borradaile, G., Klein, P. N., and Mathieu, C. A polynomial-time approximation
scheme for euclidean steiner forest. ACM Transactions on Algorithms (TALG) 11, 3 (2015),
1–20.

[25] Buchbinder, N., and Naor, J. Improved bounds for online routing and packing via a
primal-dual approach. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06) (2006), IEEE, pp. 293–304.

34

[26] Buchbinder, N., and Naor, J. Online primal-dual algorithms for covering and packing.
Mathematics of Operations Research 34, 2 (2009), 270–286.

[27] Buchbinder, N., and Naor, J. S. The design of competitive online algorithms via a
primal–dual approach. Foundations and Trends® in Theoretical Computer Science 3, 2–3
(2009), 93–263.

[28] Chakrabarty, D., Ene, A., Krishnaswamy, R., and Panigrahi, D. Online buy-at-bulk
network design. SIAM J. Comput. 47, 4 (2018), 1505–1528.

[29] Charikar, M., Chekuri, C., Cheung, T.-y., Dai, Z., Goel, A., Guha, S., and Li, M.
Approximation algorithms for directed steiner problems. Journal of Algorithms 33, 1 (1999),
73–91.

[30] Chawla, S., Roughgarden, T., and Sundararajan, M. Optimal cost-sharing mecha-
nisms for steiner forest problems. In International Workshop on Internet and Network Eco-
nomics (2006), Springer, pp. 112–123.

[31] Chechik, S. Approximate distance oracles with improved bounds. In STOC (2015), R. A.
Servedio and R. Rubinfeld, Eds., ACM, pp. 1–10.

[32] Chekuri, C., Even, G., Gupta, A., and Segev, D. Set connectivity problems in undi-
rected graphs and the directed steiner network problem. ACM Transactions on Algorithms
(TALG) 7, 2 (2011), 1–17.

[33] Chekuri, C., Hajiaghayi, M. T., Kortsarz, G., and Salavatipour, M. R. Approxi-
mation algorithms for nonuniform buy-at-bulk network design. SIAM Journal on Computing
39, 5 (2010), 1772–1798.

[34] Chlamtáč, E., Dinitz, M., Kortsarz, G., and Laekhanukit, B. Approximating span-
ners and directed steiner forest: Upper and lower bounds. ACM Transactions on Algorithms
(TALG) 16, 3 (2020), 1–31.

[35] Cowen, L., and Wagner, C. G. Compact roundtrip routing in directed networks. J.
Algorithms 50, 1 (2004), 79–95.

[36] Derbel, B., Gavoille, C., and Peleg, D. Deterministic distributed construction of linear
stretch spanners in polylogarithmic time. In DISC (2007), A. Pelc, Ed., vol. 4731 of Lecture
Notes in Computer Science, Springer, pp. 179–192.

[37] Derbel, B., Gavoille, C., Peleg, D., and Viennot, L. On the locality of distributed
sparse spanner construction. In PODC (2008), R. A. Bazzi and B. Patt-Shamir, Eds., ACM,
pp. 273–282.

[38] Dinitz, M., and Krauthgamer, R. Directed spanners via flow-based linear programs. In
STOC (2011), pp. 323–332.

[39] Dinitz, M., Nazari, Y., and Zhang, Z. Lasserre integrality gaps for graph spanners and
related problems. arXiv preprint arXiv:1905.07468 (2019).

[40] Dinitz, M., and Zhang, Z. Approximating low-stretch spanners. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (2016), SIAM, pp. 821–
840.

35

[41] Dor, D., Halperin, S., and Zwick, U. All-pairs almost shortest paths. SIAM J. Comput.
29, 5 (2000), 1740–1759.

[42] Elkin, M. Computing almost shortest paths. ACM Trans. Algorithms 1, 2 (2005), 283–323.

[43] Elkin, M. Streaming and fully dynamic centralized algorithms for constructing and main-
taining sparse spanners. ACM Trans. Algorithms 7, 2 (2011), 20:1–20:17.

[44] Elkin, M., and Peleg, D. The client-server 2-spanner problem with applications to net-
work design. In SIROCCO 8, Proceedings of the 8th International Colloquium on Structural
Information and Communication Complexity, Vall de Núria, Girona-Barcelona, Catalonia,
Spain, 27-29 June, 2001 (2001), F. Comellas, J. Fàbrega, and P. Fraigniaud, Eds., vol. 8 of
Proceedings in Informatics, Carleton Scientific, pp. 117–132.

[45] Elkin, M., and Peleg, D. The hardness of approximating spanner problems. Theory
Comput. Syst. 41, 4 (2007), 691–729.

[46] Feldman, M., Kortsarz, G., and Nutov, Z. Improved approximation algorithms for
directed steiner forest. Journal of Computer and System Sciences 78, 1 (2012), 279–292.

[47] Fernandez, M., Woodruff, D. P., and Yasuda, T. Graph spanners in the message-
passing model. In ITCS (2020), T. Vidick, Ed., vol. 151 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 77:1–77:18.

[48] Filtser, A., Kapralov, M., and Nouri, N. Graph spanners by sketching in dynamic
streams and the simultaneous communication model. arXiv preprint arXiv:2007.14204 (2020).

[49] Fleischer, L., Könemann, J., Leonardi, S., and Schäfer, G. Simple cost sharing
schemes for multicommodity rent-or-buy and stochastic steiner tree. In Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing (2006), pp. 663–670.

[50] Garg, N., Konjevod, G., and Ravi, R. A polylogarithmic approximation algorithm for
the group steiner tree problem. Journal of Algorithms 37, 1 (2000), 66–84.

[51] Goemans, M. X., and Williamson, D. P. A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24, 2 (1995), 296–317.

[52] Gupta, A., Kumar, A., Pál, M., and Roughgarden, T. Approximation via cost-sharing:
a simple approximation algorithm for the multicommodity rent-or-buy problem. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. (2003), IEEE,
pp. 606–615.

[53] Gupta, A., and Nagarajan, V. Approximating sparse covering integer programs online.
Mathematics of Operations Research 39, 4 (2014), 998–1011.

[54] Gupta, A., Ravi, R., Talwar, K., and Umboh, S. W. Last but not least: Online spanners
for buy-at-bulk. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (2017), SIAM, pp. 589–599.

[55] Gupta, A., Talwar, K., and Wieder, U. Changing bases: Multistage optimization for
matroids and matchings. In International Colloquium on Automata, Languages, and Program-
ming (2014), Springer, pp. 563–575.

36

[56] Hassin, R. Approximation schemes for the restricted shortest path problem. Mathematics of
Operations research 17, 1 (1992), 36–42.

[57] Helvig, C. S., Robins, G., and Zelikovsky, A. An improved approximation scheme for
the group steiner problem. Networks: An International Journal 37, 1 (2001), 8–20.

[58] Imase, M., and Waxman, B. M. Dynamic steiner tree problem. SIAM Journal on Discrete
Mathematics 4, 3 (1991), 369–384.

[59] Kapralov, M., and Woodruff, D. P. Spanners and sparsifiers in dynamic streams. In
PODC (2014), M. M. Halldórsson and S. Dolev, Eds., ACM, pp. 272–281.

[60] Karlin, A. R., Manasse, M. S., McGeoch, L. A., and Owicki, S. S. Competitive
randomized algorithms for non-uniform problems. Algorithmica 11, 6 (1994), 542–571.

[61] Khurana, V., Peng, J., Chung, C. Y., Auluck, P. K., Fanning, S., Tardiff, D. F.,
Bartels, T., Koeva, M., Eichhorn, S. W., Benyamini, H., et al. Genome-scale net-
works link neurodegenerative disease genes to α-synuclein through specific molecular pathways.
Cell systems 4, 2 (2017), 157–170.

[62] Könemann, J., Leonardi, S., Schäfer, G., and van Zwam, S. From primal-dual to
cost shares and back: a stronger lp relaxation for the steiner forest problem. In International
Colloquium on Automata, Languages, and Programming (2005), Springer, pp. 930–942.

[63] Könemann, J., Leonardi, S., Schäfer, G., and van Zwam, S. H. A group-strategyproof
cost sharing mechanism for the steiner forest game. SIAM Journal on Computing 37, 5 (2008),
1319–1341.

[64] Kortsarz, G. On the hardness of approximating spanners. Algorithmica 30 (2001), 432–450.

[65] Lorenz, D. H., and Raz, D. A simple efficient approximation scheme for the restricted
shortest path problem. Operations Research Letters 28, 5 (2001), 213–219.

[66] Pachocki, J., Roditty, L., Sidford, A., Tov, R., and Williams, V. V. Approximating
cycles in directed graphs: Fast algorithms for girth and roundtrip spanners. In SODA (2018),
A. Czumaj, Ed., SIAM, pp. 1374–1392.

[67] Patrascu, M., and Roditty, L. Distance oracles beyond the Thorup-Zwick bound. SIAM
J. Comput. 43, 1 (2014), 300–311.

[68] Peleg, D., and Schäffer, A. A. Graph spanners. Journal of Graph Theory 13, 1 (1989),
99–116.

[69] Peleg, D., and Ullman, J. D. An optimal synchronizer for the hypercube. SIAM J.
Comput. 18, 4 (1989), 740–747.

[70] Pirhaji, L., Milani, P., Leidl, M., Curran, T., Avila-Pacheco, J., Clish, C. B.,
White, F. M., Saghatelian, A., and Fraenkel, E. Revealing disease-associated path-
ways by network integration of untargeted metabolomics. Nature methods 13, 9 (2016), 770–
776.

[71] Roditty, L., Thorup, M., and Zwick, U. Roundtrip spanners and roundtrip routing in
directed graphs. ACM Trans. Algorithms 4, 3 (2008), 29:1–29:17.

37

[72] Roughgarden, T., and Sundararajan, M. Optimal efficiency guarantees for network
design mechanisms. In International Conference on Integer Programming and Combinatorial
Optimization (2007), Springer, pp. 469–483.

[73] Shen, X., and Nagarajan, V. Online covering with lq-norm objectives and applications to
network design. Mathematical Programming 184 (2020).

[74] Yao, A. C.-C. Space-time tradeoff for answering range queries (extended abstract). In STOC
’82 (1982).

[75] Young, N. The k-server dual and loose competitiveness for paging. Algorithmica 11, 6 (1994),
525–541.

[76] Zelikovsky, A. A series of approximation algorithms for the acyclic directed steiner tree
problem. Algorithmica 18, 1 (1997), 99–110.

A Missing Proofs in Section 2

A.1 Missing proof for Lemma 2.8

Lemma 2.8. There exists a junction tree J such that ρ(J) ≤ OPT/
√
k.

Proof. The proof proceeds by considering the following two cases: 1) there exists a vertex r ∈ V
that belongs to at least

√
k si ; ti paths of length at most di for distinct i, and 2) there is no such

vertex r ∈ V .
For the first case, we can find a subgraph of G by taking the union of the si ; ti paths, each

of length at most di, that pass through r. This subgraph contains an in-arborescence and an out-
arborescence both rooted at r, whose union forms a junction tree. This junction tree has at most
OPT edges and connects at least

√
k terminal pairs, so its density is at most OPT/

√
k.

For the second case, each vertex r ∈ V appears in at most
√
k si ; ti paths. More specifically,

each edge e ∈ E also appears in at most
√
k si ; ti paths. By creating

√
k copies of each edge,

all terminal pairs can be connected by edge-disjoint paths. Since the overall duplicate cost is at
most

√
k · OPT, at least one of these paths has cost at most

√
k · OPT/k. This path constitutes a

junction tree whose density is at most OPT/
√
k.

A.2 Missing proof in Lemma 2.14

Lemma A.1. The cross-product of the representative sets S̃ri and T̃ ri is a subset of R̂ri , i.e.

S̃ri × T̃ ri ⊆ R̂ri .

Proof. Let U ri := {ŝ | ŝ �i,r ŝi,r} be the prefix set according to ≺i,r. By the choice of ŝi,r and the
definition of γri , we have that∑

ŝ∈Uri

∑
t̂|(ŝ,t̂)∈R̂ri

yŝ,t̂ = γri −
∑

ŝ�i,r ŝi,r

∑
t̂|(ŝ,t̂)∈R̂ri

yŝ,t̂ > γri −
γri
2

=
γri
2
.

Let t̂max := max≺i,r{t̂ | (ŝi,r, t̂) ∈ R̂ri }. We have that for any ŝ ∈ U ri , if t̂ is such that (ŝ, t̂) ∈ R̂ri ,
then t̂ �i,r t̂max. Otherwise, suppose t̂ �i,r t̂max, then by Claim 2.12, (ŝ, t̂) ∈ R̂ri implies that

38

(ŝi,r, t̂) ∈ R̂ri , this contradicts to the definition of t̂max. We have that∑
t̂�i,r t̂max

∑
ŝ|(ŝ,t̂)∈R̂ri

yŝ,t̂ ≥
∑

t̂�i,r t̂max

∑
ŝ∈Uri

(ŝ,t̂)∈R̂ri

yŝ,t̂ =
∑
ŝ∈Uri

∑
t̂|(ŝ,t̂)∈R̂ri

yŝ,t̂ >
γri
2

which implies that t̂max �i,r t̂i,r and T̃ ri ⊆ {t̂ | t̂ ≺i,r t̂max}. By Claim 2.12, (ŝi,r, t̂max) ∈ R̂ri implies
that S̃ri × T̃ ri ⊆ R̃ri .

B Proof of Lemma 3.1

We recall Algorithm 2.

Algorithm 2 Offline pairwise spanner

1: E′ ← ∅ and t← n/
√
OPT.

2: Solve LP (10) and add each edge e ∈ E to E′ with probability min{1, xet lnn} independently.
3: Obtain a vertex setW ⊆ V by sampling (3n lnn)/t vertices from V independently and uniformly

at random. Add the edges of shortest path in-arborescences and out-arborescences rooted at
w for each w ∈W .

Lemma 3.1. ([34]) Algorithm 2 is Õ(n/
√
OPT)-approximate.

Proof. The following claim that settles thin pairs is due to [20]. Essentially, when n is large, for
any t > 2, with high probability, all the t-thin pairs are settled by the rounding scheme suggested
below.

Lemma B.1. ([20]) Let x, y be a feasible solution of LP (10) with objective value LP. By retaining
every edge e ∈ E independently with probability min{1, xe · t lnn}, all t-thin pairs are settled with
probability at least 1− exp(−t ln(n/t)+2 lnn), and the number of edges retained is at most Õ(t)LP.

To settle t-thick pairs, we obtain a vertex set W ⊆ V by sampling (3n lnn)/t vertices from V
independently and uniformly at random, then add edges of the shortest path in-arborescences and
out-arborescences rooted at w for each w ∈ W . For each t-thick pair (si, ti), the probability that
W ∪ V i = ∅ is (1− t/n)−(3n lnn)/t ≤ exp(−3 lnn) = 1/n3. There are at most n2 t-thick pairs, so by
a union bound, with probability at least 1− 1/n, all t-thick pairs in D are settled.

We note that there is a polynomial time constant factor approximate algorithm for solving LP
(10) according to [38] even though there are an exponential number of variables and constraints.
Let LP∗ denote the optimal objective value of LP (10). By Lemma B.1, the t-thin pairs are settled
in the second step and the number of edges retained is at most Õ(t)LP∗. The t-thick pairs are
settled by adding shortest path arborescences in the third step, and the number of edges retained is
at most 2n ·3n lnn/t since each arborescence has at most n edges. It follows that the approximation
guarantee is

Õ(tLP∗) + Õ(n2/t)

OPT
≤ Õ(tOPT) + Õ(n2/t)

OPT
=
Õ(n
√
OPT)

OPT
= Õ(

n√
OPT

)

where the first inequality follows by LP∗ ≤ OPT, namely the optimal fractional solution is upper-
bounded by the optimal integral solution of LP (10), and the second equality follows by the defi-
nition t = n/

√
OPT.

39

C Missing Proofs in Theorem 4.1

We recall Algorithm 5.

Algorithm 5 Online covering

1: for arriving covering constraint i do
2: yi ← 0. . the packing variable yi is used for the analysis
3: if

∑n
j=1 aijx

r
j < 1 then . if constraint i is not satisfied

4: while
∑n

j=1 aijx
r
j < 2 do . update until constraint i is satisfied by a factor of 2

5: Increase yi continuously.
6: Increase each variable xrj by the following increment function:

xrj ←
α(r)

2ncj
exp

 ln(2n)

cj

i∑
k=ir

akjyk

 .

We recall that the following claims are used to show that Algorithm 5 is O(log n)-competitive.

(i) x is feasible.

(ii) For each finished phase r, α(r) ≤ 4 ln(2n) · Y (r).

(iii) y generated during phase r is feasible.

(iv) The sum of the covering objective generated from phase 1 to r is at most 2α(r).

(v) Let r′ be the last phase, then the covering objective 〈c, x〉 ≤ 2α(r′).

Proof of (i). In phase r, suppose constraint i arrives, then either it is already satisfied by xr, or it
is violated and we update xr until constraint i is satisfied by a factor of 2 (or start another phase
until we reach a phase that satisfies constraint i by a factor of 2 without exceeding the estimated
lower bound α). x satisfies all the covering constraints from 1 to i because it is the coordinate-wise
maximum of {xk}k∈[r].

Proof of (ii). In the beginning of phase r, xrj = α(r)/(2ncj) so X(r) is initially at most α(r)/2.
The total increase of X(r) is at most α(r)/2 because X(r) ≥ α(r) when phase r ends. Therefore,
it suffices to show that

∂X(r)

∂yi
≤ 2 ln(2n) · ∂Y (r)

∂yi
.

This follows because

∂X(r)

∂yi
=

n∑
j=1

cj
∂xrj
∂yi

=
n∑
j=1

cj ln(2n)aij
cj

α(r)

2ncj
· exp

 ln(2n)

cj

i∑
k=ir

akjyk


= ln(2n)

n∑
j=1

aijx
r
j ≤ 2 ln(2n) = 2 ln(2n) · ∂Y (r)

∂yi
(15)

where (15) holds because
∑n

j=1 aijx
r
j ≤ 2 and Y (r) = 〈1, y〉 implies that ∂Y (r)/∂yi = 1.

40

Proof of (iii). We observe that during phase r of Algorithm 5, xrj ≤ α(r)/cj , since otherwise phase
r is finished. Therefore,

xrj =
α(r)

2ncj
exp

 ln(2n)

cj

i∑
k=ir

akjyk

 ≤ α(r)

cj

which implies that
∑i

k=ir
akjyk ≤ cj .

Proof of (iv). The sum of the covering objective generated from phase 1 to r is at most

r∑
k=1

α(k) =

r∑
k=1

α(r)

2k−r
≤ 2α(r).

Proof of (v). In the last phase r′, x is feasible because it is the coordinate-wise maximum of
{xr}r∈[r′]. We have that

〈c, x〉 =

n∑
j=1

cjxj ≤
n∑
j=1

r′∑
r=1

cjx
r
j =

r′∑
r=1

 n∑
j=1

cjx
r
j

 ≤ r′∑
r=1

α(r) ≤ 2α(r′)

where the first inequality holds because xj = maxr∈[r′]{xrj} ≤
∑r′

r=1 x
r
j , the second inequality is

by the fact that the covering objective
∑n

j=1 cjx
r
j cannot exceed the estimated lower bound α(r),

while the last inequality is by (iv).

D Online Packing in Polynomial Time

In this section, we prove the formal version of Theorem 1.9. The problem of interest is to solve the
packing LP (3) online:

maximize 〈1, y〉 over y ∈ Rm≥0 s.t. AT y ≤ c

where AT ∈ Rn×m≥0 consists of n packing constraints with an upper bound c given offline.

In the online packing problem, the columns i ∈ [m] of AT and the corresponding variables yi’s
are presented online as zeros, one at a time, where m can be unknown. Let aij be the i-th row
j-th column entry of the matrix A and cj be the j-th entry of c. In round i, {aij}j∈[n], i.e. the

i-th column of AT is revealed, and the goal is to either let the arriving variable yi remain zero, or
irrevocably assign a positive value to it, such that 1) the objective value 〈1, y〉 is approximately
optimal, and 2) each constraint

∑i
k=1 akjyk ≤ cj for each j ∈ [n] is approximately satisfied.

An important idea for solving the online packing problem is to simultaneously consider the dual
online covering problem LP (2):

minimize 〈c, x〉 over x ∈ Rn≥0 s.t. Ax ≥ 1.

In this problem, the cost vector c is given offline, and each of these covering constraints is presented
one by one in an online fashion. More specifically, in round i, {aij}j∈[n] is revealed. The goal is to
monotonically update x so that the arriving constraint

∑n
j=1 aijxj ≥ 1 is satisfied and the objective

value 〈c, x〉 remains approximately optimal.

41

Similar to Section 4, we employ the primal-dual framework that simultaneously solves both LP
(2) and LP (3), and crucially uses LP-duality and strong connections between the two solutions,
to argue that they are both nearly optimal.

In the beginning of Algorithm 6, a parameter B > 0 is given as an input, and x is initialized to
a zero vector. In round i, yi is introduced with the i-th column of AT , i.e. {aij}j∈[n] is revealed.
In the corresponding online covering problem, constraint i arrives and is presented in the form∑n

j=1 aijxj ≥ 1. Without loss of generality, we always assume that there is at least one positive
entry aij in round i, otherwise the packing objective 〈1, y〉 is unbounded. If the arriving constraint
is violated, we increase the value of the new packing variable yi and each covering variable xj
simultaneously until the new covering constraint is satisfied by a factor of 2. We use an augmenting
method in a continuous fashion, which can be implemented in a discrete way with any desired
accuracy by binary search. The xj ’s are incremented according to an exponential function of yi.
We note that yi is only increased in round i and fixed after then, and the xj ’s never decrease. The
performance of the modified scheme is analyzed in Theorem D.1 (the formal version of Theorem 1.9).

Algorithm 6 Online packing

1: for an arriving covering constraint i do
2: yi ← 0 and amax

j ← maxk∈[i]{akj} for each j ∈ [n].
3: if

∑n
j=1 aijxj < 1 then . if constraint i is not satisfied

4: while
∑n

j=1 aijxj < 2 do . update until constraint i is satisfied by a factor of 2
5: Increase yi continuously.
6: Increase each variable xj where amax

j > 0 by the following increment function:

xj ← max

{
xj ,

1

namax
j

(
exp

(
B

3cj

i∑
k=1

akjyk

)
− 1

)}
.

Theorem D.1. For any B > 0, there exists a 1/B-competitive online algorithm for the packing
LP (3) which updates y poly(n, logB′, logOPT, logα) times. Moreover, for each constraint j ∈ [n],
the following holds

m∑
i=1

aijyi = cj ·O

(
log n+ log(amax

j /amin
j)

B

)
.

Here, amax
j := maxi∈[m]{aij} and amin

j := mini∈[m]{aij | aij > 0} for each j ∈ [n], α := maxj∈[n]{amax
j /cj},

and B′ := 3 maxj∈[n]{ln(2namax
j /amin

j + 1)}.

Proof. The proof for the 1/B-competitiveness closely follows the one in [26]. We provide the proof
for completeness. Let X(i) and Y (i) be the covering and packing objective values, respectively, in
round i ∈ [m]. The following claims are used to show that Algorithm 6 is 1/B-competitive.

(i) x is feasible.

(ii) In each round i ∈ [m], X(i)/B ≤ Y (i).

(iii) For any packing constraint j ∈ [n],

m∑
i=1

aijyi ≤ cj
3 ln(2namax

j /amin
j + 1)

B
.

42

From the first two claims together with weak duality, we conclude that Algorithm 6 isB-competitive,
while the third claim directly proves that each packing constraint is approximately satisfied.

Proof of (i). This clearly holds because if constraint i is already satisfied, we do nothing, otherwise
update variables xj ’s until constraint i is satisfied by a factor of 2.

Proof of (ii). We observe that in the beginning of each round, when amax
j increases, xj and X(i)

do not change. X(i) increases only when Y (i) increases. Initially, both X(i) and Y (i) are zero.
Consider round i in which yi is increased continuously. We show that ∂X(i)/∂yi ≤ B · ∂Y (i)/∂yi
and conclude that X(i)/B ≤ Y (i).

∂X(i)

∂yi
=

n∑
j=1

cj
∂xj
∂yi

≤
n∑
j=1

cj
namax

j

Baij
3cj

exp

(
B

3cj

i∑
k=1

akjyk

)
(16)

=
B

3

n∑
j=1

aij

(
1

namax
j

(
exp

(
B

3cj

i∑
k=1

akjyk

)
− 1

)
+

1

namax
j

)

≤ B

3

n∑
j=1

aij

(
xj +

1

namax
j

)
≤ B

3
(2 + 1) = B = B

∂Y (i)

∂yi
(17)

where (16) follows by taking the partial derivative, and (17) follows because

1.
∑n

j=1 aijxj ≤ 2 while incrementing xj in round i.

2. xj ≥ 1/(namax
j)(exp(B/(3cj)

∑i
k=1 akjyk)− 1).

3.
∑n

j=1 aij/(na
max
j) ≤ 1.

Proof of (iii). We recall that amax
j := maxi∈[m]{aij} and amin

j := mini∈[m]{aij | aij > 0} for each

j ∈ [n]. During the run of Algorithm 6, xj ≤ 2/amin
j , since otherwise each covering constraint

i ∈ [m] with aij > 0 is already satisfied by a factor of 2. Consider the packing constraint j, we have

1

namax
j

(
exp

(
B

3cj

m∑
i=1

aijyi

)
− 1

)
≤ xj ≤

2

amin
j

which implies that
m∑
i=1

aijyi ≤ cj
3 ln(2namax

j /amin
j + 1)

B
.

Now we show that Algorithm 6 updates y poly(n, logB′, logOPT, logα) times where OPT is the
objective value of LP (3). It suffices to show that Algorithm 6 encounters poly(n, logB′, logOPT, logα)
violating covering constraints. We recall that B′ := 3 maxj∈[n]{log(2namax

j /amin
j + 1)} and α :=

43

maxj∈[n]{amax
j /cj}. Suppose we scale the packing solution y by B/B′ such that all the packing

constraints j ∈ [n] are satisfied. Then by weak duality, since By/B′ is feasible, we have that

cjxj
B′
≤ X(i)

B′
≤ BY (i)

B′
≤ OPT

for every j ∈ [n]. Therefore, xj = O(B′OPT/cj).
We show that for each arriving covering constraint i that is violated, one of the following cases

must hold when the constraint is satisfied by a factor of 2 after the variable update: 1) there exist a
large variable xj ≥ 1/(2namax

j) that is updated to at least 3xj/2, or 2) there exists a small variable
xj < 1/(2namax

j) that becomes large, i.e. xj is updated to at least 1/(2namax
j). Let L and S be the

set of large and small variable subscript labels before the update, respectively, and x′j be the value
of xj after the update. If none of these two cases holds, then

n∑
j=1

aijx
′
j <

3

2

∑
j∈L

aijxj +
∑
j∈S

aij
2namax

j

<
3

2
+

1

2
= 2

where the second inequality is by the fact that constraint i is violated and aij ≤ amax
j . This implies

that constraint i is not satisfied by a factor of 2, a contradiction.
Suppose xj has been updated t times by a factor of 3/2 since it was large, then

1

2namax
j

(
3

2
)t = O(

B′OPT

cj
)

which implies t = O(log n+ logOPT + logB′ + log(amax
j /cj)).

There are n variables, each variable can be updated from small to large once and updated t times
by a factor of 3/2 since it was large. Hence, Algorithm 6 encounters poly(n, logB′, logOPT, logα)
violating covering constraints.

44

	Introduction
	Our contributions
	Directed spanners
	Directed Steiner forests
	Summary

	An efficient online covering and packing framework
	High-level technical overview for online network optimization problems
	Additional background and related work
	Organization

	Online Pairwise Spanners with Uniform Edge Lengths
	Outline of the proof of Theorem 1.1
	The junction-tree approximation
	The Steiner label cover problem and height reduction
	Online ordered Steiner label cover on a forest
	An LP-based approach for Steiner label cover
	Online rounding

	Summary

	Online Pairwise Spanners
	An (n4/5)-competitive online algorithm for pairwise spanners
	A simple (n4/5)-approximate offline algorithm based on chlamtavc2020approximating
	An (n4/5)-competitive online algorithm

	Online pairwise spanners with maximum allowed distance d
	Online quasimetric spanners and all-server spanners
	Online pairwise spanners with uniform edge lengths
	Online directed Steiner forests with uniform costs

	Online Covering in Polynomial Time
	Conclusions and Open Problems
	Acknowledgements
	Missing Proofs in Section 2
	Missing proof for Lemma 2.8
	Missing proof in Lemma 2.14

	Proof of Lemma 3.1
	Missing Proofs in Theorem 4.1
	Online Packing in Polynomial Time

