
4338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Relaxed Locally Correctable Codes in
Computationally Bounded Channels

Jeremiah Blocki , Venkata Gandikota , Elena Grigorescu , and Samson Zhou

Abstract— Error-correcting codes that admit local decoding
and correcting algorithms have been the focus of much recent
research due to their numerous applications. An important goal
is to obtain the best possible tradeoffs between the number of
symbols of the codeword that the local decoding algorithm must
examine (the locality), and the amount of redundancy in the
encoding (the information rate). In Hamming’s classical adver-
sarial channel model, the current tradeoffs are dramatic, allowing
either small locality but superpolynomial blocklength, or small
blocklength but high locality. However, in the computationally
bounded adversarial channel model, proposed by Lipton (STACS
1994), constructions of locally decodable codes suddenly exhibit
small locality and small blocklength, but these constructions
require strong trusted setup assumptions. We study variants of
locally decodable and locally correctable codes in computationally
bounded, adversarial channels, in a setting with no trusted
setup. The only assumption we require is the selection of the
public parameters (seed) for a collision-resistant hash function.
Specifically, we provide constructions of relaxed locally correctable
and relaxed locally decodable codes over the binary alphabet,
with constant information rate, and poly-logarithmic locality.
Our constructions, which compare favorably with their classical
analogs, crucially employ collision-resistant hash functions and
local expander graphs, extending ideas from recent cryptographic
constructions of memory-hard functions.

Index Terms— Local codes, depth-robust graphs.

Manuscript received July 24, 2019; revised December 31, 2020; accepted
April 13, 2021. Date of publication April 28, 2021; date of current version
June 16, 2021. The work of Jeremiah Blocki was supported in part by the
National Science Foundation (NSF) under Grant CNS-1755708 and Grant
CCF-1910659. The work of Elena Grigorescu was supported in part by
the National Science Foundation (NSF) under Grant CCF-1649515, Grant
CCF-1910659, and Grant CCF-1910411; and in part by the Purdue Research
Foundation. The work of Samson Zhou was supported in part by the National
Science Foundation (NSF) under Grant CCF-1649515 and in part by the
Simons Investigator Award of David P. Woodruff. This article was presented
in part at the Proceedings of the 45th International Colloquium on Automata,
Languages, and Programming (ICALP) and in part at the Proceedings of
the 2019 IEEE International Symposium on Information Theory (ISIT).
(Corresponding author: Venkata Gandikota.)

Jeremiah Blocki and Elena Grigorescu are with the Department of Com-
puter Science, Purdue University, West Lafayette, IN 47907 USA (e-mail:
jblocki@purdue.edu; elena-g@purdue.edu).

Venkata Gandikota was with the College of Information and Com-
puter Sciences, University of Massachusetts, Amherst, MA 01003 USA.
He is now with the Department of Electrical Engineering and Com-
puter Science, Syracuse University, Syracuse, NY 13244 USA (e-mail:
gandikota.venkata@gmail.com).

Samson Zhou was with Department of Computer Science, Purdue Univer-
sity, West Lafayette, IN 47907 USA. He is now with the School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
samsonzhou@gmail.com).

Communicated by S. Lovett, Associate Editor for Complexity.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2021.3076396.
Digital Object Identifier 10.1109/TIT.2021.3076396

I. INTRODUCTION

CLASSICALLY, an error-correcting code is a tuple
(Enc, Dec) of encoding and decoding algorithms

employed by a sender to encode messages, and by a receiver to
decode them, after potential corruption by a noisy channel dur-
ing transmission. Specifically, the sender encodes a message
m of k symbols from an alphabet Σ into a codeword c of
block-length n consisting of symbols over the same alphabet,
via Enc : Σk → Σn. The receiver uses Dec : Σn → Σk to
recover the message from a received word w ∈ Σn, a corrupted
version of some Enc(m). Codes over the binary alphabet
Σ = {0, 1} are preferred in practice. The quantities of interest
in designing classical codes are the information rate, defined
as k/n, and the error rate, which is the tolerable fraction of
errors in the received word. Codes with both large information
rate and large error rate are most desirable.

In modern uses of error-correcting codes, one may only
need to recover small portions of the message, such as a
single bit. In such settings, the decoder may not need to
read the entire received word w ∈ Σn, but only read a few
bits of it. Given an index i ∈ [n] and oracle access to w,
a local decoder must make only q = o(n) queries into w,
and output the bit mi. Codes that admit such fast decoders
are called locally decodable codes (LDCs) [41], [53]. The
parameter q is called the locality of the decoder. A related
notion is that of locally correctable codes (LCCs). LCCs are
codes for which the local decoder with oracle access to w
must output bits of the codeword c, instead of bits of the
message m. LDCs and LCCs have widespread applications in
many areas of theoretical computer science, including private
information retrieval, probabilistically checkable proofs, self-
correction, fault-tolerant circuits, hardness amplification, and
data structures (e.g., [6], [10], [12], [14], [18], [20], [42]
and surveys [28], [54]). However, constructions of such codes
suffer from apparently irreconcilable tension between locality
and rate: existing codes with constant locality have slightly
subexponential blocklength [24], [26], [55], and codes of linear
blocklength have slightly subpolynomial query complexity
[39]. For example, see surveys by Yekhanin [56] and by
Kopparty and Saraf [40].

Ben-Sasson et al. [11] propose the notion of relaxed locally
decodable codes (RLDCs) that remedies the dramatic trade-
offs of classical LDCs. In this notion the decoding algorithm is
allowed to output ⊥ sometimes, to signal that it does not know
the correct value; however, it should not output an incorrect

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5542-4674
https://orcid.org/0000-0003-2381-7788
https://orcid.org/0000-0001-9673-4313
https://orcid.org/0000-0001-8288-5698

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4339

value too often. More formally, given i ∈ [k] and oracle access
to the received word w assumed to be relatively close to some
codeword c = Enc(m) ∈ Σn, the local decoder (1) outputs mi

if w = c; (2) otherwise, with probability 2/3 outputs either
mi or ⊥; and (3) the set of indices i such that the decoder
outputs mi (the correct value) with probability 2/3 is of size
> ρ ·k for some constant ρ > 0. The relaxed definition allows
them to achieve RLDCs with constant query complexity and
blocklength n = k1+�.

Recently, Gur et al. [30] introduce the analogous notion
of relaxed locally correctable codes (RLCCs). In particular,
upon receiving a word w ∈ Σn assumed to be close to some
codeword c, the decoder: (1) outputs ci if w = c; (2) outputs
either ci or ⊥ with probability 2/3, otherwise; and (3) the set
of indices i such that the decoder outputs ci with probability
2/3 is of size ρ·n, for some ρ > 0. In fact, [30] omits condition
(3) in their definition, since the first two conditions imply
the 3rd, for codes with constant locality that can withstand
a constant fraction of error [11]. The reduction from [11],
however, does not maintain the asymptotic error rate, and
in particular, in the non-constant query complexity regime,
the error rate becomes subconstant. Since our results work in
the ω(1)-query regime, we will build codes that achieve the
3rd condition as well (for constant error rate). The results in
[30] obtain significantly better parameters for RLCCs than for
classical LCCs; namely, they construct RLCCs with constant
query complexity, polynomial block length, and constant error
rate, and RLCCs with quasipolylogarithmic query complexity,
linear blocklength (constant rate), with the caveat that the
error rate is subconstant. These results immediately extend
to RLDCs, since their codes are systematic, meaning that the
initial part of the encoding consists of the message itself.

In this work we study RLDCs and RLCCs in the more
restricted, yet natural, computationally bounded adversarial
channel, introduced by Lipton [44]. All the above construc-
tions of local codes assume a channel that may introduce a
bounded number of adversarial errors, and the channel has as
much time as it needs to decide what positions to corrupt.
Lipton argued that one can always reasonably assume that an
adversarial channel is computationally bounded and can be
modeled as polynomial time probabilistic (PPT) algorithms.
Variants of this model have been initially studied for classical
error-correcting codes [23], [31], [44], [47], [52] to show
better error rate capabilities than in the Hamming model. See
Section III for further details on related work.

Other work has focused on the construction of locally
decodable codes when the sender and receiver have already
exchanged cryptographic keys. Ostrovsky et al. [49] construct
“private key” locally decodable codes with constant rate
and a small (superconstant) locality against computationally
bounded channels. Similarly, Hemenway and Ostrovky [32]
and Hemenway et al. [33] construct public-key LDCs i.e., the
encoding algorithm uses a secret key, but the decoder only
needs to know the sender’s public key. A crucial difference is
that in our constructions of RLDCs and RLCCs, the encoding
algorithm is completely public and does not require the sender
to use any secret key. Instead our constructions only rely on
the existence of a collision-resistant hash function H , which

will be used in both the encoding and decoding algorithms.
In practice, one could instantiate H with SHA3 and no further
setup assumptions are needed.

II. OUR CONTRIBUTIONS

We introduce the notion of computationally relaxed locally
correctable codes (CRLCCs) which are analogous to RLCCs
when the channel is computationally bounded. We construct
CRLCCs with constant information and error rates as well
as polylogarithmic locality, improving on [30] for bounded
channels. Our codes are systematic, and therefore give com-
putationally relaxed locally decodable codes (CRLDCs).

Since these codes interact with an adversarial channel, their
strength is not only measured in their error correction and
locality capabilities (as is the case for RLCCs/RLDCs in
the Hamming channel), but also in the security they provide
against the channel. We present these codes while describing
how they interact with the channel, in order to make the
analogy with the classical setting. We use Enc and Dec to
denote encoding and decoding algorithms, respectively.

Definition 2.1: A local code is a tuple (Gen, Enc, Dec) of
probabilistic algorithms such that

• Gen(1λ) takes as input security parameter λ and generates
a public seed s ∈ {0, 1}∗. This public seed s is fixed once
and for all.

• Enc takes as input the public seed s and a message x ∈
Σk and outputs a codeword c = Enc(s, x) with c ∈ Σn.

• Dec takes as input the public seed s, an index i ∈ [n],
and is given oracle access to a word w ∈ Σn. Decw(s, i)
outputs a symbol b ∈ Σ (which is supposed to be the
value at position i of the closest codeword to w).

We say that the code is efficient if Gen, Enc, Dec are all
probabilistic polynomial time (PPT) algorithms, and we say
that the (information) rate of the code is k/n.

Definition 2.2: A computational adversarial channel A
with error rate τ is an algorithm that interacts with a local
code (Gen, Enc, Dec) in rounds, as follows. In each round of
the execution, given a security parameter λ,

(1) Generate s← Gen(1λ); s is public, so Enc, Dec, and A
have access to s. This public seed s is fixed once and
for all.

(2) The channel A on input s hands a message x to the
sender.

(3) The sender computes c = Enc(s, x) and hands it back to
the channel (in fact the channel can compute c without
this interaction).

(4) The channelA corrupts at most τn entries of c to obtain
a word w ∈ Σn and selects a challenge index i ∈ [n]; w
is given to the receiver’s Dec with query access along
with the challenge index i.

(5) The receiver outputs b← Decw(s, i).
We define A(s)’s probability of fooling Dec on this round to
be pA,s = Pr[b �∈ {⊥, ci}], where the probability is taken
only over the randomness of Decw(s, i). We say that A(s) is
γ-fooling Dec if pA,s > γ. We say that A(s) is ρ-limiting Dec
if |GoodA,s| < ρ ·n, where GoodA,s ⊆ [n] is the set of indices
j such that Pr[Decw(s, j) = cj] > 2

3 . We use FoolA,s(γ, τ, λ)

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4340 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

(resp. LimitA,s(ρ, τ, λ)) to denote the event that the channel
was γ-fooling Dec (resp. ρ-limiting Dec) on this round.

We now define our secure RLCC codes against computa-
tional adversarial channels.

Definition 2.3 ((Computational) Relaxed Locally
Correctable Codes (CRLCC)): A local code (Gen, Enc, Dec)
is a (q, τ, ρ(·), γ(·), μ(·))-CRLCC against a class A of
adversaries if Decw makes at most q queries to w and
satisfies the following:

(1) For all public seeds s if w← Enc(s, x) then Decw(s, i)
outputs b = (Enc(s, x))i.

(2) For all A ∈ A we have Pr[FoolA,s(γ(λ), τ, λ)] ≤ μ(λ),
where the randomness is taken over the selection of s←
Gen(1λ) as well as A’s random coins.

(3) For all A ∈ A we have Pr[LimitA,s(ρ(τ), τ, λ)] ≤ μ(λ),
where the randomness is taken over the selection of s←
Gen(1λ) as well as A’s random coins.

When μ(λ) = 0, γ(λ) = 1
3 is a constant and A is the set

of all (computationally unbounded) channels, we say that the
code is a (q, τ, ρ, γ)-RLCC. When μ(·) is a negligible function
and A is restricted to the set of all probabilistic polynomial
time (PPT) attackers, we say that the code is a (q, τ, ρ, γ)-
CRLCC (computational relaxed locally correctable code).

We say that a code that satisfies conditions 1 and 2 is a Weak
CRLCC, while a code that satisfies conditions 1, 2 and 3 is
a Strong CRLCC code.

Remark 2.4: We further explain the connections between
our definition and the classical notion of RLDCs/RLCCs, and
emphasize that the computational analogues are generaliza-
tions of the classical notions. We view the task of building
a relaxed local decoder as a game in which the channel acts
adversarially and tries to limit the ability of the decoder to
correctly decode. We say that the channel “fools” the decoder
if the decoder is unable to output the correct bit or ⊥ except
with some small probability γ. In our results we allow some
negligible probability that the decoder is fooled for each i,
while in the classical version the decoder is never fooled in
outputing the correct answer with error at most γ = 1/3.
Hence, this notion corresponds to the classical notion of
success rate.

Also, note that just as in the classical notion, the set Good
corresponds to the bits that should be decoded correctly w.h.p.,
and hence it relates to the notion of “relaxed decoding”;
specifically, not all bits are decoded correctly w.h.p, but the
set of those that are should be a constant fraction of all. In our
results, we allow some negligible probability that the set Good
is not large, and we refer to this case as in the channel “limits”
the size of the correctly decoded bits.

Moreover, like in the case of the classical notion of RLCC,
the notion of CRLCC requires decoding every index i ∈ [n]
w.h.p., and not just a random one. Also the construction should
work for worst-case adversaries in a given class of adversaries.
In the classical notion there is no limit to how much time or
space the adversary can spend figuring out what entries of
the received codeword to corrupt. In this paper we consider
adversaries limited by polynomial time computations.

Again, as mentioned in the definitions above, by taking γ =
1/3, μ = 0 and A to be the class of all possible adversaries,
our definition exactly recovers the classical notion of RLCCs.

We construct Weak and Strong CRLCCs against probabilis-
tic polynomial time (PPT) adversaries, under the assumption
that Collision-Resistant Hash Functions (CRHF) exist. Briefly,
a CRHF function is a pair (GenH, H) of algorithms, where
GenH is a probabilistic polynomial time (PPT) algorithm that
takes as input a security parameter λ and outputs a public
seed s ∈ {0, 1}∗; the algorithm H : {0, 1}∗ × Σ∗ → ΣL(λ),
takes as input the seed s and a string x ∈ Σ∗ and outputs a
hashed string H(s, x) of length L(λ). We require that H is
a deterministic algorithm running in polynomial time — the
only randomness is the selection of the seed s by the generator
GenH. The value L(λ) is the length of the hash function.
(GenH, H) is said to be collision-resistant if for all PPT
adversaries that take as input the seed s generated by Gen(1λ),
the probability that a collision pair (x, x′) is produced, i.e.
H(s, x) = H(s, x′) and x �= x′, is negligible in λ.

Theorem 2.5, our main result, states that it is possible
to construct a constant information rate Strong CRLCC
with polylog locality that withstands a constant error rate
τ . Furthermore, the information rate r(τ) approaches 1 as
τ approaches 0. By contrast, the classical RLCCs of [30]
achieve constant information rate, but subconstant error rate
and (log n)O(log log n) query complexity in the Hamming chan-
nel.

Theorem 2.5: Assuming the existence of a
collision-resistant hash function (GenH, H) with length
L(λ), there exist a constant 0 < τ ′ < 1 and negligible
functions μ(·), γ(·) such that the following holds: for all
τ ≤ τ ′, there are constants 0 < r(τ), ρ(τ) < 1 and a
(L(λ) · polylog n, τ, ρ(τ), γ(·), μ(·))-Strong CRLCC of
blocklength n over the binary alphabet with rate r(τ).

Moreover, limτ→0 r(τ) = limτ→0 ρ(τ) = 1. In particular,
if L(λ) = polylogλ and λ = Θ(n), then the code is a
(polylog n, τ, ρ(τ), γ(·), μ(·))-Strong CRLCC.

Our constructions are systematic and imply the existence of
a Strong CRLDC with the same parameters.

Remark 2.6: We remark that any Weak CRLCC can be
trivially converted into a Strong CRLCC e.g., by repeating
the last bit of the codeword. Such trivial constructions either
have low rate or are unable to recover a large fraction of
original codeword bits. By sufficient replication, we can ensure
that a majority of these repeated bits in the codeword are not
corrupted and can be corrected with a simply majority vote.
Though for such codes, the rate falls below 1

3 if we need to
recover more than 2

3 of the original codeword symbols. By
contrast, our Strong CRLCC has rate approaching 1. Further-
more, we have the property that almost all bits of the original
codeword can be locally recovered. We also remark that our
constructions are systematic and can be tweaked to yield the
existence of a Strong CRLDC with the same parameters.

A. Technical Ingredients

At a technical level our construction uses two main building
blocks: local expander graphs and collision resistant hash
functions.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4341

1) Local Expander Graphs: Intuitively, given a graph
G = (V, E) and distinguished subsets A, B ⊆ V of nodes
such that A and B are disjoint and |A| ≤ |B| we say that
the pair (A, B) contains a δ-expander if for all X ⊆ A and
Y ⊆ B with |X | > δ|B| and |Y | > δ|B| there is an edge
connecting X and Y i.e., (X × Y) ∩ E �= ∅. We say that a
directed acyclic graph (DAG) G = (V, E), with vertex set
V (G) = {1, . . . , n}, is a δ-local expander around a node
v if for any radius r > 0 and any node v ≥ 2r the pair
A = {v − 2r + 1, . . . , v − r} and B = {v − r + 1, . . . , v}
contain a δ-expander and the pair C = {v, . . . , v + r − 1}
and D = {v + r, . . . , v + 2r− 1} contain a δ-expander. When
this property holds for every node v ∈ V (G) = {1, . . . , n}
we simply say that the DAG G is a δ-local expander. For any
constant δ > 0 it is possible to (explicitly) construct a δ-local
expander with the property that indeg(G) ∈ O (log n) and
outdeg(G) ∈ O (log n) i.e. no node has more than O (log n)
incoming or outgoing edges [4], [27].

Local expanders have several nice properties that have
been recently exploited in the design and analysis of
secure data-independent memory hard functions (iMHFs)
[2]–[4], [17]. For example, these graphs are maximally depth-
robust [4]. Even if we delete a large number of nodes S ⊆ V
the graph still contains a directed path of length n−(1+�) |S|
for some small constant � dependent on δ — the constant �
can approach 0 as δ approaches 0 [4]. More specifically, if we
delete a large number of nodes S ⊆ V at least n− (1 + �) |S|
of the nodes have the property that they are α-good (with
� =

(
2−α

α

)
) with respect to the deleted set S and any pair

of α-good nodes u and v are connected by a directed path
(provided that δ is sufficiently small) — a node v is α-good
with respect to S if for any radius r < v we have at most αr
nodes in S∩ [v−r+1, v] and for any radius r ≤ n−v+1 we
have at most αr nodes in S ∩ [v, v + r− 1]. For more formal
statements we point the reader to Section IV. In the context
of memory hard functions each node in the graph corresponds
to an intermediate data value generated during computation of
the iMHFs and edges represent data-dependencies. It is known
that an iMHF has high cumulative memory complexity [7] if
and only if the underlying DAG G is depth-robust [1], [3].1

Suppose that each node is colored red or green and that
we are only allowed to query each node to obtain its color. If
we let S denote the set of red nodes then we can develop an
efficient randomized testing algorithm to check if a node v is
α-good or not. The tester will make O (polylog n) queries and,
with high probability, will accept any node v that is α1-good
and will reject any node w that is not α2-good for any con-
stants α2 > 4 ·α1. Intuitively, for each r ∈ {21, 22, . . . , 2log n}
the tester will sample O (polylog n) nodes in the intervals
[v, r−1] and [v−r+1, v] to make sure that the fraction of red
nodes is at most 2α1. Setting α2 = α, if the tester determines
that a node v is at least α2-good for an appropriately small
constant α2 then we can be (almost) certain that the long
green path which contains all n − (1 + �)|S| of the α2-good

1Oversimplifying a bit, if an attacker attempts to reduce memory usage
during computation then the attacker’s running time will increase dramatically
since, by depth-robustness, there will be a long chain of dependent data-values
that that the attacker needs to recompute in the near future.

nodes also includes v. Furthermore, if v < 3n/4 then v has
at least n/4 − (1 + �)|S| descendants in this directed green
path. Intuitively, in our construction any such node v must
correspond to an uncorrupted portion of the codeword.

2) Collision Resistant Hash Functions: Our constructions
employ collision resistant hash functions as a building block.
While most of the recent progress on memory hard functions in
cryptography combines local expanders (depth-robust graphs)
with random oracles (e.g., see [4], [7], [9]), we stress that we
do not need to work in the random oracle model.2 Indeed, our
constructions only assume the existence of collision resistant
hash functions along with a public seed s that is known to the
encoder/decoder.

B. Technical Overview

Our construction of Strong CRLCC proceeds in two steps.
First, we construct a (polylog n, τ, ρ, γ, μ(·))-Weak CRLCC
(Theorem 5.9). Then we use a degree reduction technique to
obtain a Strong CRLCC from it.

1) Weak CRLCCs : We first explain our construction of
Weak CRLCCs, which involves labeling a δ-local expander
with k nodes. In particular, given an input word x = (x1 ◦
. . . ◦ xk) (broken up into bit strings of length L(λ)) and
a k node local expander graph G, the label of node v is
computed as
v,s = H (s, xv ◦
v1,s ◦ . . . ◦
vd,s) ∈ {0, 1}L(λ),
where
v1,s, . . . ,
vd,s are the labels of the parents v1, . . . , vd

of node v, and ◦ denotes string concatenation. When L(λ) ∈
O (polylog λ) we will select λ ∈ O (n) to ensure that
L(λ) ∈ O (polylogn). We use the notation Enc and Dec
for the encoding and decoding algorithms of our CRLCC
construction, while we use EncJ and DecJ to denote the
efficient encoding and decoding algorithms for a good binary
code with constant rate and relative distance (e.g., [34], [51])
which can decode efficiently from some constant fractions of
errors.

We first apply EncJ to x1, . . . , xk to obtain codewords
c1, . . . , ck ∈ {0, 1}O(L(λ)) where ci = EncJ(xi). Also, for
v ∈ [k] we let cv+k = EncJ(
v,s) which is the encoding
of the label corresponding to the node v in G. The final
output is c = (c1 ◦ . . . ◦ c2k−1 ◦ c2k ◦ c2k+1 ◦ . . . ◦ c3k) where
c2k+1 = . . . = c3k = c2k consists of k copies of the
last codeword c2k. The final word is an n bit message with
n = O (kL (λ)). By repeating this last codeword k times we
ensure that it is not possible for the attacker to irreparably
corrupt the final label
k,s.

Given a (possibly corrupted) codeword c′ produced by a
PPT attacker A we let x′ = (x′

1◦. . .◦x′
k) with x′

i = DecJ(c′i)
(possibly ⊥) and we let
′v,s = DecJ(c′v+k) for v ∈ [k] and

′k,s,j = DecJ(c′2k+j) for each j ∈ [k]. We say that a node v
is green if it is locally consistent i.e.,

′v,s = H
(
s, x′

v ◦
′v1,s ◦ . . . ◦
′vd,s

)
,

otherwise, we say that the node is red. We first show that if
a green node has the correct label
′v,s =
v,s then it must be

2The random oracle model is a source of some controversy among cryp-
tographers [29], [37], [38], [45] with some arguing that the framework can
be used to develop cryptographic protocols that are efficient and secure [15],
while others argue that the methodology is flawed e.g. [13], [38].

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4342 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

the case that x′
v = xv and
′vi,s =
vi,s for each i ≤ d —

otherwise A would have found a hash collision! If a graph
contains too many red nodes then this is easily detectable by
random sampling and our weak local decoder is allowed to
output ⊥ if it detects any red nodes. Our local decoder will
first obtain the final label
k,s by random sampling some labels
from
′k,s,1, . . . ,

′
k,s,k and checking to make sure each of these

labels is equal to
′k,s. If this check passes then with high
probability we must have
′k,s =
k,s since the attacker cannot
corrupt too many of these labels. Second, our local decoder
will test to make sure that the last node k is at least α2-
good. If this node is not α2-good then we must have found
a red node and our weak decoder may output ⊥; otherwise
the last node serves as an anchor point. In particular, since
label
k,s =
′k,s in this case collision resistance now implies
that for any α2-good node v then we must have x′

v = xv and

v,s =
′v,s since v must be connected to the node k by a green
path.

2) Strong CRLCCs : The reason that the previous con-
struction fails to yield a high rate Strong CRLCCs is that it is
possible for an attacker to change every node to a red-node by
tampering with at most O (k · L(λ)/ log k) bits. In particular,
since the δ-local expander G has outdegree O (log k) an
attacker who tampers with just O (L(λ)) bits could tamper
with one of the labels so that x′

v �= xv . Now for every w ∈ [k]
s.t. G contains the directed edge (v, w) the node w will be
red and there are up to O (log k) = O (log n) such nodes w.

We address this issue by first applying a degree reduction
gadget to our family {Gt}∞t=1 of δ-local expanders on t nodes,

where t = O
(

k
L(λ)·log k

)
, to obtain a new family of DAGs

as follows: First, we replace every node u ∈ [t] from Gt

with a chain u1, . . . , um of m = O (log t) nodes — we will
refer to node u ∈ [t] as the meta-node for this group. The
result is a new graph G with k = m · t nodes. Each of the
nodes u1, . . . , um−1 will have constant indegree and constant
outdegree. For i < m we include the directed edges (ui, ui+1)
and (ui, um) — the node um will have indeg(um) ∈ Θ(m).
Furthermore, if we have an edge (u, v) in Gt then we will add
an edge of the (um, vj) for some j < m — this will be done
in such a way that maintains indeg(vj) ≤ 2 for each j < m.
Therefore, the node um will have outdeg(um) ∈ Θ(log t). We
now note that if the label
′um,s =
um,s and the node um is
green then, by collision resistance, it must be the case that

′ui,s =
ui,s and x′

ui
= xui for every ui with i ≤ m.

With this observation in mind we tweak our last construction
by grouping the values
vi,s and xvi into groups of size
m ∈ O (log t) before applying the error correcting code.
In particular, given our input word x divided into k =
m · t distinct L(λ)-bit strings xvi for i ≤ m and v ≤ t,
our final output will consist of c = (c1, . . . , c3t) where
ci = EncJ(x(i−1)m+1, . . . , xim) for i ≤ t and cv+t =
EncJ (
v1,s ◦ . . . ◦
vm,s) and c2t+1 = . . . = c3t = c2t

consists of t copies of c2t. The final codeword c will have
length n ∈ O (tm · L(λ)) = O (k · L(λ)) bits. By grouping
blocks together we get the property that an attacker that wants
to alter an individual label
vi,s must pay to flip at least
Ω (L(λ) ·m) bits of cv+t. Thus, the attacker is significantly

restricted in the way he can tamper with the labels e.g.,
the attacker cannot tamper with one label in every group.

We say that the meta-node u ∈ [t] = V (Gt) containing
nodes u1, . . . , um ∈ V (G) is green if (1) node um is green,
and (2) at least 2m/3 of the nodes u1, . . . , um are green. We
say that an edge (u, v) ∈ E(Gt) in the meta-graph is red
if the corresponding edge (um, vj) ∈ E(G) is incident to
a red node; otherwise we say that the edge (u, v) is green.
We can then define the green meta-graph Gg by dropping
all red edges from Gt. We remark that, even if we flip a
(sufficiently small) constant fraction of the bits in c we can
show that most of the meta-nodes must be green — in fact,
most of these meta-nodes must also be α-good with respect
to the set R of red meta-nodes. In particular, there are only
two ways to turn a meta-node u red: (1) by paying to flip
O (L(λ) ·m) bits in cu or cu+t, or (2) by corrupting at least
m/3 other meta-nodes w such that the directed edge (w, u) is
in Gt.

Furthermore, we can introduce the (unknown) set T of
tampered meta-nodes where for i ≤ 3t we say that c̃i is
tampered if EncJ (DecJ(c̃i)) �= ci. In this case the hamming
distance between ci and c̃i must be at least O (L(λ) ·m) so
the number |T | of tampered meta-nodes cannot be too large.
While the set T is potentially unknown we can still show that
most meta-nodes are α-good with respect to the set R ∪ T .
In particular, there must exist some meta-node 3t

4 ≤ v ≤ t
s.t. v is α-good with respect to the set R ∪ T . By collision
resistance, it follows that for any meta-node u < v which is
connected to v via a green path in Gg we have u /∈ T i.e., u
is correct; otherwise we would have found a hash collision.

While Gt is a δ-local expander the DAG Gg may not be.
However, we can show that, for suitable constants α and δ,
if a node u is α-good with respect to the set R ∪ T then Gg

has 2δ-local expansion around u. Furthermore, if u < v has
4δ-local expansion in Gg then we can prove that Gg contains
a path to the meta-node u. Our local decoder will test whether
or not Gg has local expansion by strategically sampling edges
to see if they are green or red. Our decoder will output ⊥ with
high probability if u does not have 4δ-local expansion in Gg

which is the desired behavior since we are not sure if there
is a green path connecting u to v in this case. Whenever u
does have 2δ-local expansion in Gg the decoder will output ⊥
with negligible probability which is again the desired behavior
since there is a green path from u to v in this case (and, hence,
u /∈ T has not been tampered).

Remark 2.7: Recall that in Theorem 2.5 we construct a
(polylog n, τ, ρ(τ), γ(λ), μ(λ))-Strong CRLCC where μ(λ)
represents the probability that the adversarial channel outputs
a corrupted codeword c̃ and challenge index i ∈ [k] that
γ(λ)-fools the local decoder. Intuitively, we can think of
μ(λ) as the probability that the corrupted word generated
by the channel yields a hash collision and we can think
of γ(λ) as the probability that we mis-identify a node (or
meta-node) as being α-good. If there are no hash collisions
then the only way that the local decoding algorithm can be
fooled is when it mis-identifies a node (or meta-node) as
being α-good. We show that both μ(·) and γ(·) are negligible
functions.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4343

III. RELATED WORK

A. Classical LDCs/LCCs and Relaxed Variants in the
Hamming Channel

The current best constructions for LDCs/LCCs can achieve
any constant rate R < 1, any constant relative distance (i.e.,
minimum Hamming distance between codewords) δ < 1−R,
and query complexityO

(
2
√

log n log log n
)

[39]. In the constant
query complexity regime, for q ≥ 3, the best codes achieve
blocklength subexponential in the message length, k [24],
[26], [55]. For q = 2, Kerenidis and deWolf [35] show a
lower bound exponential in k for the blocklength of any LDC.
Subsequent works of [8], [19] improve the information rate
and query complexity tradeoffs. In particular, [19] construct
RLCCs with O(q) query complexity and almost linear block-
length, n = k1+α, for an arbitrarily small constant α > 0. This
closes the gap to the lower bound of super-linear blocklength
[43] for any constant query RLCC.

A notion similar to RLDCs, called Locally Decode/Reject
code, was studied by Moshkovitz and Raz [48] in the context
of building better PCPs. The codes allow decoding batches
of coordinates jointly, and it allows as output a list of possible
messages. In the effort of simplifying the proofs in [48],
a related notion of decodable PCPs was studied in [25].

B. Non-Local Codes in Computationally Bounded Channels

In their initial works in the computationally bounded chan-
nel, Lipton [44] and Ding et al. [23] obtain error-correcting
codes uniquely decodable (in the classical, global setting)
with error rates beyond what is possible in the adversarial
Hamming channel. Their model requires that the sender and
receiver share a secret random string, unknown to the channel.
This strong requirement makes the model unsuitable in many
realistic settings where the sender and receiver do not share a
secret key e.g., message broadcast. Micali et al. [47] address
this drawback by proposing public-key error-correcting codes
against computationally bounded channels. Their model is
based on the observation that if one starts with a code that
is list-decodable, by encoding messages using a secret key
and digitally signing them, one can prevent a PPT channel
from producing valid signatures, while allowing the receiver
to pick the unique message from the list with a valid signature.
In follow-up work, Guruswami and Smith [31] remove the
public-key setup, and obtain optimal rate error-correcting
codes for channels that can be described by simple circuits.
Their channels are either “oblivious”, namely the error is
independent of the actual message being sent, or they are
describable by polynomial size circuits. Their results are based
on the idea that the sender can choose a permutation and a
“blinding factor” that are then embedded into the codeword
together with the message. The channel cannot distinguish
the hidden information since it operates with low complexity,
while the receiver can.

C. LDCs in Computationally Bounded Channels

The notion of LDCs over computationally bounded chan-
nels was introduced in [49], where the authors define private

LDCs. In these constructions the sender and the receiver
share a private key. They obtain codes of constant rate
and O (polylogλ) query complexity, where λ is the security
parameter. Hemenway and Ostrovsky [32] build LDCs in
the public-key model, and obtain codes of constant rate, and
O (

λ2
)

locality. Hemenway et al. [33] improve on these
results and obtain public-key LDCs with constant rate, con-
stant error rate and O (λ) locality, which work under a weaker
cryptographic assumption than that of [32].

D. Other Applications of Depth-Robust Graphs

Depth-robust
graphs have found many applications in cryptography. These

applications include the construction of memory hard func-
tions with provably high cumulative memory complexity [1]–
[3], [7], [17], sustained space complexity [4] and bandwidth
hardness [16], [50]. Depth robust graphs have also been used
to construct proofs of space [22] and they were also used in the
first construction of a proof of sequential work [46] although
Cohen and Pietrzak [21] found an alternate construction of a
protocol for proofs of sequential work that does not involve
depth-robust graphs. Finally, depth-robust graphs have also
been used to derive cumulative space in the black-white
pebble game [4], [5] which is of interest in the study of
proof complexity. To the best of our knowledge we are the
first to apply depth-robust graphs (more specifically δ-local
expanders) in the area of coding theory to construct (relaxed)
locally correctable codes.

IV. PRELIMINARIES: JUSTESEN CODES, CRHFS AND

LOCAL EXPANDERS

We use the notation [n] to represent the set {1, 2, . . . , n}.
For any x, y ∈ Σn, let dist(x) denote the Hamming weight
of x, i.e. the number of non-zero coordinates of x. Let
dist(x, y) = dist(x−y) denote the Hamming distance between
the vectors x and y. For any vector x ∈ Σn, let x[i] be the ith

coordinate of x. We also let x ◦ y denote the concatenation of
x with y.

We denote a directed acyclic graph G with n vertices
G = (V = [n], E). We will assume that u < v for all directed
edges (u, v) ∈ E so that 1, . . . , n is a valid topological
ordering. A node v ∈ V has indegree δ = indeg(v) if there
exist δ incoming edges δ = |(V ×{v})∩E|. Thus, we say that
graph G has indegree δ = indeg(G) if the maximum indegree
of any node of G is δ. A node with indegree 0 is called a source
node and a node with no outgoing edges is called a sink. A
node v ∈ V has outdegree δ = outdeg(v) if there exist δ
outgoing edges δ = |({v}×V) ∩E|. Thus, we say that graph
G has outdegree δ = outdeg(G) if the maximum outdegree of
any node of G is δ. Finally, we say that graph G has degree
δ = deg(G) if the maximum degree of any node of G is δ,
or equivalently maxv∈V outdeg(v) + indeg(v) = δ. We use
parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the parents
of a node v ∈ V . We will often consider graphs obtained
from other graphs by removing subsets of nodes. Therefore if
S ⊂ V , then we denote by G− S the DAG obtained from G
by removing nodes S and incident edges.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4344 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Let C be a (n, k) code that maps any k-length message over
alphabet Σ to a unique n-length codeword over alphabet Σ.
We say n is the block length of the code, and k/n is the
information rate. Let Enc : Σk → Σn denote the encoding
map of C. We define the minimum distance of C to be
the quantity minc1,c2∈C dist(c1, c2) and the relative minimum
distance of C to be the quantity minc1,c2∈C

dist(c1,c2)
n .

We shall use Enc and Dec to refer to the encoding and
decoding algorithms of our construction, and EncJR and
DecJR to refer to the encoding and decoding algorithms for
a binary code CJ,R which will be used as subroutines in our
CRLCC/CRLDC constructions. When the rate R is clear from
context we will drop the subscript and simply write EncJ and
DecJ. We instantiate EncJR and DecJR with Justesen codes
[34] though we remark that any binary code with constant rate
and relative distance would work.

Theorem 4.1: [34] For any 0 < R < 1, there exist binary
linear codes of rate R, that are efficiently decodable from
ΔJ (R) fraction of errors, where ΔJ (R) is a function that
only depends on R.

Collision Resistant Hash Functions (CRHF)

Our code constructions involve the use of collision-resistant
hash functions. We use the following definitions from Katz and
Lindell [36].

Definition 4.2: [36, Definition 4.11] A hash function with
alphabet Σ and blocklength L(·) is a pair Π = (GenH, H) of
probabilistic polynomial time algorithms satisfying:

• GenH is a probabilistic algorithm which takes as input
a security parameter λ and outputs a public seed s ∈
{0, 1}∗, where the security parameter λ is implicit in the
string s.

• H is a deterministic algorithm that takes as input a seed
s and a string Σ∗ and outputs a string H(s, x) ∈ ΣL(λ).

A collision resistant hash function can be defined using the
following experiment for a hash function Π = (GenH, H),
an adversary A, and a security parameter λ:

The collision-finding experiment Hash− collA,Π(λ):

(1) s← GenH(1λ)
(2) (x, x′)← A(s)
(3) The output of the experiment is 1 if and only if A

successfully finds a collision, i.e.

x �= x′ and H(s, x) = H(s, x′).

Then this experiment implicitly defines a collision resistant
hash function.

Definition 4.3: [36, Definition 4.12] A hash function
Π = (GenH, H) is collision resistant if for all probabilistic
polynomial time adversaries A there exists a negligible func-
tion negl such that

Pr [Hash− collA,Π(λ) = 1] ≤ negl(λ).

Background on δ-Local Expander Graphs

We now begin to describe the underlying DAGs in our code
construction. We first define the class of graphs δ-bipartite
expanders and δ-local expanders.

Definition 4.4: Let δ > 0. A bipartite graph G = (U, V, E)
is called a δ-expander if for all M1 ⊆ U , M2 ⊆ V such
that |M1| ≥ δ|U | and |M2| ≥ δ|V |, there exists an edge e ∈
M1 ×M2.

The notion of a δ-bipartite expander we use is a bit
different from the standard notions of vertex expansion e.g.,
we only require that M1 ⊆ U has a large neighborhood if
|M1| ≥ δ|U | itself is sufficiently large. However, the notion
of a δ-bipartite expander is commonly used to construct and
analyze depth-robust graphs [2], [4], [27].

Definition 4.5: We say that a DAG G = ([n], E) has
δ-local expansion around a node x ∈ [n] if for all r ≤
min{x

2 , n−x+1
2 }

(1) the bipartite graph induced by U = [x, . . . , x + r − 1]
and V = [x+r, . . . , x+2r−1] is a δ-bipartite expander.

(2) the bipartite graph induced by A = [x − r + 1, . . . , x]
and B = [x−2r+1, . . . , x−r] is a δ-bipartite expander.

If this property holds for every node x ∈ [n] we simply say
that G is a δ-local expander.

Theorem 4.6, due to Alwen et al. [4, Lemma 4], states
that δ-local expanders exist with indegree O (log n). The
construction of Alwen et al. [4] is probabilistic. In particular,
they show that there is a random distribution over DAGs
such that any sample from this distribution is a δ-local
expander with high probability. The randomized construction
of Alwen et al. [4] closely follows an earlier construction of
Erdos et al. [27].

While Alwen et al. [4] only analyze the indegree of this
construction it is easy to verify that the outdegree is also
O (log n) since the construction of Erdos et al. [27] overlays
multiple bipartite expander graphs on top of the nodes V =
[n]. Each bipartite expander graph has indeg, outdeg ∈ O (1)
and each node is associated with O (log n) bipartite expanders.

Theorem 4.6 [4]: For any n > 0, δ > 0, there exists a
δ-local expander G = ([n], E) with indegree O (log n) and
outdegree O (log n).

We now list some properties of the δ-local expander graphs
shown in [4]. We will use these properties to construct the
Dec algorithm for the CRLCC scheme.

Definition 4.7 (α-good node): Let G = ([n], E) be a DAG
and let S ⊆ [n] be a subset of vertices. Let 0 < α < 1. We
say v ∈ [n] − S is α-good under S if for all 1 ≤ u < v and
n ≥ w > v we have:

|[u, v] ∩ S| ≤ α(v − u + 1), |[v, w] ∩ S| ≤ α(w − v − 1).

Intuitively, we can view the subset S to be a set of “deleted”
vertices. A vertex in the remaining graph is called α-good if
at most α fraction of vertices in any of its neighborhood are
contained in the deleted set. In our case, we will ultimately
define S to be the nodes with the inconsistent labels.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4345

The following result of [4] shows that in any DAG G, even
if we deleted a constant fraction of vertices, there still remain
a constant fraction of vertices that are α-good.3

Lemma 4.8 (Lemma 6 in [4]): Let G = ([n], E) be a
directed acyclic graph. For any S ⊂ [n] and any 0 < α < 1,
at least n− |S| (2−α

α

)
nodes in G− S are α-good under S.

Claim 4.9 rephrases a claim from [4, Claim 2]. Technically, [4,
Claim 2] assumes that the entire graph G is a δ-local expander,
but the proof only uses local expansion around x.

Claim 4.9 (Claim 2 in [4]): Let G = (V = [n], E) be a
δ-local expander around x and suppose that x ∈ [n] is an
α-good node under S ⊆ [n]. Let r > 0 be given. If 2δ <
(1− α) then all but 2δr of the nodes in [x, x + r− 1] \ S are
reachable from x in G− S. Similarly, x can be reached from
all but 2δr of the nodes in [x − r + 1, x] \ S. In particular,
if δ < 1/4 then more than half of the nodes in [x, x+r−1]\S
(resp. in [x − r + 1, x] \ S) are reachable from x (resp. x is
reachable from) in G− S.

Alwen et al. [4] also show that in a δ-local expander
graph G any two α-good vertices in G − S are connected.
Technically, the statement of [4, Lemma 5] assumes that G is
a δ-local expander, but their proof only requires that G is a
δ-local expander around nodes u and v.

Lemma 4.10 (Lemma 5 in [4]): Let G = ([n], E) be a
δ-local expander around nodes u and v, S ⊆ [n] and 0 ≤
α ≤ 1. If δ < min((1 − α)/2, 1/4), and nodes u and v are
both α-good with respect to S then u and v are connected in
G− S.

V. CONSTRUCTION OF WEAK-CRLCC

In this section we overview the construction of a constant
rate weak-CRLCC scheme. In order to show the existence of
a CRLCC scheme, we need to construct the PPT algorithms
Gen, Enc and Dec. Our construction will use a CRHF Π =
(GenH, H). In particular, Gen

(
1λ

)
simply runs GenH

(
1λ

)
to

output the public seed s.
The Enc algorithm uses the CRHF to create labels for the

vertices of a δ-local expander. We now define the recursive
labeling process for the vertices of any given DAG G using H .

Definition 5.1 (Labeling): Let Σ = {0, 1}L(λ). Given a
directed acyclic graph G = ([k], E), a seed s ← GenH

(
1λ

)
for a collision resistant hash function H : {0, 1}∗ →
{0, 1}L(λ), and a message x = (x1, x2, . . . , xk) ∈ Σk we
define the labeling of graph G with x, labG,s : Σk → Σk

as labG,s(x) = (
1,s,
2,s, . . . ,
k,s), where

v,s =

{
H(s, xv), indeg(v) = 0
H(s, xv ◦
v1,s ◦ . . . ◦
vd,s), 0 < indeg(v) = d,

where v1, . . . , vd are the parents of vertex v in G, according to
some predetermined topological order. We omit the subscripts
G, s when the dependency on the graph G and public hash
seed H is clear from context.

We remark that similar labeling rules have been used in
the construction of memory hard functions and proofs of
space e.g., see [7], [22]. We stress two key differences. First,

3In [4] a node u �∈ S is called γ-good if for all u < v (resp. w > v) at
least γ fraction of the nodes in [u, v] (resp. [v, w]) are not deleted. In our
notation such a node would be α-good with α = 1 − γ.

in our setting there is a message x that must be integrated
into the labeling function. Second, we only assume that H
is collision-resistant while formal security proofs for memory
hard functions and proofs of space utilize the random oracle
model.

A. Enc Algorithm

In this section we describe the Enc algorithm which takes
as input a seed s← Gen

(
1λ

)
and a message x ∈ {0, 1}k, and

returns a codeword c ∈ {0, 1}n. For a security parameter λ,
let H : {0, 1}∗ → {0, 1}L(λ) be a CRHF (see Definition 4.3).
We will assume that Enc has access to H . In this section
we also fix the rate R = 1/4 in Theorem 4.1 to obtain an
efficient binary code EncJ : {0, 1}L(λ) → {0, 1}4·L(λ) with
message length L(λ) and block length 4 · L(λ) along with
the corresponding decoding algorithm DecJ : {0, 1}4·L(λ) →
{0, 1}L(λ) that efficiently decodes from ΔJ = ΔJ (0.25)
fraction of errors.

Let s← Gen(1λ). Let k′ = k/L(λ) and for δ = 1/100,
let G = ([k′], E) be a δ-local expander graph with
indegree O (log k′).
Enc (s, x):
Input: x = (x1 ◦ . . . ◦ xk′) ∈ {0, 1}k where each
xi ∈ {0, 1}L(λ) and k = k′ · L(λ).
Output: c = (c1 ◦ . . . ◦ c3k′) ∈ {0, 1}n where each
ci ∈ {0, 1}4·L(λ) and n = 4 · 3k′ · L(λ).

• Let labG,s(x) = (
1,s, . . . ,
k′,s) be the labeling of
the graph G with input x and seed s.

• The codeword c consists of the block encoding of
message x, followed by the encoded labeling of
the graph using EncJ, followed by k′ copies of
encoded
k′ . In particular, for each 1 ≤ i ≤ k′

we have ci = EncJ(xi), ci+k′ = EncJ(
i,s) and
ci+2k′ = EncJ(
k′,s) = c2k′ .

The parameter δ = 1/100 is arbitrary and is simply chosen
to satisfy Lemma 4.10. Also, note that the codeword length
is n = 4 · 3k′ · L(λ) = 12k over the binary alphabet {0, 1},
where L(λ) is the length of the output of the CRHF H and
the original message had length k = k′ · L(λ). Therefore,
the information rate k

n of CRLCC scheme obtained from Enc
is Θ(1).

B. Dec Algorithm

In this section, we detail a randomized algorithm Dec :
{0, 1}n × [n] → {⊥} ∪ {0, 1} for Enc : {0, 1}k → {0, 1}n
described in Section V-A. We assume Dec has access to the
same public seed s used by Enc as well as the δ-local expander
used by Enc. We focus on the key ideas first and then provide
the formal description of Dec. The notion of a green node is
central to Dec.

Definition 5.2 (Green/red node): Given a (possibly cor-
rupted) codeword w = (w1 ◦ . . . ◦ w3k′) ∈ ({0, 1}4·L(λ))3k′

we define x′
i = DecJ(wi) ∈ {0, 1}L(λ) for i ≤ k′ and

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4346 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

′v,s = DecJ(wk′+v) for v ≤ k′ and
′k′,s,i = DecJ(w2k′+i)
for i ≤ k′. We say that a node v ∈ [k′] with parents v1, . . . , vd

is green if the label
′v,s is consistent with the hash of its parent
labels i.e.,
′v,s = H(s, x′

v ◦
′v1,s ◦
′v2,s ◦ . . . ◦
′vd,s). A node
that is not green is a red node.

We say that a node v is correct if
′v,s =
v,s.
Lemma 5.3 highlights one of the key reasons why green

nodes are significant in our construction.
Lemma 5.3: Suppose that node v is green and correct (i.e.,

′v,s =
v,s) and suppose that there is a directed path from
node u to node v consisting entirely of green nodes. Then
either the node u is also correct (i.e.,
′u,s =
u,s) or the PPT
adversary has produced a hash collision.

Proof: If node v is green, then by definition
′v,s =
H(s, x′

v ◦
′v1,s ◦ . . . ◦
′vd,s) where v1, . . . , vd are the parents
of node v. Moreover, if
′v,s is correct, then
′v,s =
v,s, i.e.,

H(s, xv ◦
v1,s◦
v2,s◦. . .◦
vd,s) = H(s, x′
v ◦
′v1,s◦. . .◦
′vd,s).

So, either the adversary has successfully found a hash colli-
sion, or xv = x′

v and
vj ,s =
′vj ,s for each j ∈ [d]. Let vj

be the parent node of v that lies on the green path from u
to v. Assuming we have no hash collision, we can conclude
that the node vj is both correct and green. Extending the same
argument iteratively along the green path from u to vj , we get
that either node u must be correct, or the adversary would
have found a hash collision.

Our local decoder will output ⊥ if it ever detects any red
nodes (Note that when the codeword is not corrupted we will
have 0 red nodes).

We now consider two cases depending on what index i ∈ [n]
of the received word w we are asked to decode. Recall that
the codeword is n = 12k bits long.

Case 1: The input index is i > 8k − 4L(λ). This corre-
sponds to a bit query within the last k′ + 1 blocks. From
the construction of the code, we know that the last k′ + 1
blocks of the encoding are the same, i.e. c2k′+j = c2k′ for
all 1 ≤ j ≤ k′. In this case, Decw simply queries some
random blocks wj1 , wj2 , . . . with j1, j2, . . . ∈ [2k′, 3k′] , and
computes yjs = DecJ(wjs) and w′′

js
= EncJ(yjs). Since the

adversary cannot corrupt too many blocks beyond the decoding
radius we expect that most of the recovered blocks are correct
i.e., w′′

js
= cjs = c2k′ . Thus, a simple majority vote will return

the correct codeword c2k′ with high probability and return the
corresponding bit i′ = 1+(i mod 4L(λ)). See Section V-B.1
for the formal proof.

Case 2: If the input index is i ≤ 8k−4L(λ), we let i′ denote
the index of the node in G associated with the queried bit i i.e.,
i′ = 1 +

(⌊
i

4·L(λ)

⌋
mod k′

)
. We then check to make sure

that (1) both nodes i′ and k′ are α-good w.r.t. the (unknown)
set S of red nodes induced by the corrupted codeword c′,
and (2) node k′ is correct. If either check fails then we will
output ⊥. Assuming that both nodes i′ and k′ are both α-good
and k′ is correct (and excluding negligible outcomes where a
hash collision is produced) Lemma 5.3 implies that the node
i′ must be correct since there is a green path connecting any
two α-good nodes in a δ-local expander.

Testing that node k′ is correct follows case 1 i.e., sample +
majority vote. The core part of the Decw is the probabilistic
procedure to verify that a node v is α-good. First, it is
clear that there is a deterministic procedure IsGreenw(v) that
checks whether a given node v ∈ [k′] is green or not using
O (log n) coordinate queries to w (see Lemma 5.5 for the
formal statement). Now in order to verify if a node v is α-
good, we need to estimate the fraction of green nodes in any
neighborhood of it. This is achieved by designing a tester
IsGood that accepts v (whp) if it is α/4-good with respect
to the set S of red nodes and rejects (whp) if v is not α-good.
The procedure IsGood is formalized in Lemma 5.6.

The key observation behind Lemma 5.6 is that it suffices to
check that

∣∣[v, v + 2j − 1] ∩ S
∣∣ ≤ α ·2j/4 for each j ≤ log k′

and that
∣∣[v − 2j + 1, v] ∩ S

∣∣ ≤ α · 2j/4 for each j ≤ log k′.
For each j we can sample r = O (polylog k′) random nodes
(with replacement) in each of the intervals [v − 2j + 1, v]
and [v, v+2j−1] and use the subroutine IsGreen to count the
number of red (resp. green) nodes in each interval. If for every
j ≤ log k′ the number of red nodes in both intervals is at most
α · 2j/2 we accept; otherwise, we reject. See Section V-B.2
for a formal proof.

1) Query Procedure for i > 8k − 4L(λ): In this section,
we describe the procedure for recovering a coordinate for input
i > 8k − 4L(λ). We show that regardless of the underlying
graph, any adversary that can change at most ΔJk

4 coordinates
of a codeword obtained from Enc, cannot prevent outputting
⊥ or the correct bit for a query on the last k′ + 1 blocks.

Consider the following algorithm Decw
1 (s, i) for any i >

8k − 4L(λ):

Decw
1 : Input: Index i ∈ [n] such that i > 8k − 4L(λ).

(1) Sample Θ
(

log3 k
L(λ)

)
blocks {wt} of w for t ∈

[2k′, 3k′] uniformly at random.
(2) Decode each of the queried blocks wt to the cor-

rected codeword, ct := EncJ(DecJ(wt)). (could
possibly be a ⊥ if DecJ fails to decode).

(3) Let cmaj = majority{ct} be the codeword of EncJ
which occurs majority of the times in Step (2)
above.

(4) Output symbol 1 + (i mod 4L(λ)) of cmaj .

We show in Lemma 5.4 that Pr [Decw
1 (s, i) = c[i]] ≥ 1 −

negl(n) and uses at most O (
log3 n

)
queries.

Lemma 5.4: Let Enc be as described in Section V-A. For
any 8k − 4L(λ) < i ≤ n, Decw

1 does the following:

(1) For any x ∈ {0, 1}k and c = Enc(s, x), it holds that
Decc

1(s, i) = c[i].
(2) For any x ∈ {0, 1}k, c = Enc(s, x) and w ∈ {0, 1}n

generated by any PPT adversary such that dist(c, w) ≤
ΔJk

4 , it holds that

Pr [Decw
1 (s, i) = c[i]] ≥ 1− 1

nlog2 n
.

Moreover, Decw
1 makes at most O (

log3 n
)

queries to w.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4347

Fig. 1. An example of an encoding with an underlying graph with k′ = k/L(λ) nodes.

Proof: First, note that for any codeword obtained from
Enc, Dec1 will always output the correct symbol. Let w
be the received word which is obtained by altering at most
ΔJk

4 coordinates of some codeword c obtained from Enc,
i.e., 0 < dist(c, w) ≤ ΔJk

4 . From Enc, we know that the
last k′ + 1 blocks of any codeword are exactly the same.
Since dist(c, w) ≤ ΔJk

4 , at most 1
4 fraction of these blocks

are modified in more than ΔJ fraction of their coordinates.
Therefore, at least 3

4 fraction of the last k′ + 1 blocks can
be corrected to a unique codeword closest to them. Thus,
each query finds an correct codeword block with probability
at least 3

4 . Then by standard Chernoff bounds, the probability

that the majority of the Θ
(

log3 k
L(λ)

)
queries are correct is at

least 1 − e−Ω(ns), where ns = Θ
(

log3 k
L(λ)

)
is the number of

sampled blocks.
Since Dec1 queriesO

(
log3 k

L(λ)

)
blocks each of length 4L(λ)

bits, the query complexity of Dec1 is at most O (
log3 k

)
=

O (
log3 n

)
.

2) Query Procedure for i ≤ 8k − 4L(λ): In this section,
we describe the algorithm for recovering a coordinate for input
i ≤ 8k− 4L(λ). Before we describe the algorithm, we need a
few definitions and properties of the code we constructed in
Section V-A.

Recall that for a codeword obtained from Enc, the first k′

blocks of length 4L(λ) each, corresponds to the encoding of
the message symbols, and the next k′ blocks correspond to
the encoding of labels of the nodes of a fixed δ-local expander
graph G = ([k′], E) generated using the k′ message blocks.

Recall that we say that a node v is green if it is locally
consistent with the hash of its parents. In the next lemma,
we describe an algorithm which verifies whether a given
node of G is green with respect to the labels obtained from
the received vector w ∈ {0, 1}n. From the definition of
a green node it follows that we need to query only the
labels of the parents of a given vertex v to verify if it is
green. Since the indegree of G is O (log k′), we can check
if a particular node is green by making at most O (log k′)
block queries to w. We now formalize the verification
procedure.

Lemma 5.5: Let G = ([k′], E) be δ-local expander with
indegreeO (log k′) used by Enc and let w = (w1, . . . , w3k′) ∈
{0, 1}n be the corrupted codeword obtained from the PPT
adversary. There exists an algorithm IsGreen that uses
O (L(λ) log (n/L(λ))) coordinate queries to w and outputs
whether a given node v ∈ [k′] of G is green or not.

Proof: We claim the following algorithm achieves the
desired properties:

IsGreen: Input: Node v ∈ [k′] of G with indegree d =
O (log k′).

(1) Query and decode the blocks wk′+vj for all vj ∈
parentsG(v). Let
′k′+vj

:= DecJ(wk′+vj). Return
‘Red’ if DecJ fails on any input.

(2) Query and decode the block wv . Let x′
v :=

DecJ(wv). Return ‘Red’ if DecJ fails.
(3) If DecJ(wk′+v) = H(s, x′

v ◦wk′+v1 ◦wk′+v2 ◦ · · ·◦
wk′+vd

), where vj ∈ parentsG(v) for j ∈ [d], then
output ‘Green’

(4) Else output ‘Red’.

IsGreen outputs whether or not the label of node v, i.e.
DecJ(wk′+v), is green by querying at most O (log k′) blocks
of w. Since each block is 4L(λ) bits long, and k′ =
k/L(λ) = O (n/L(λ)), the number of bits queried is equiva-
lently O (L(λ) log (n/L(λ))).

Let w ∈ {0, 1}n be the received word obtained from the
PPT adversary. Let S ⊆ [k′] be the set of red nodes of G
with respect to its labeling obtained from w. Let 0 < α < 1.
Recall from Definition 4.7 that we call a node i ∈ [k′] of G to
be α-good under the set S ⊆ [k′] if for all r > 0, the number
of nodes of S in any r-sized neighborhood of i is at most α·r.
We now give an algorithm to locally verify if a given node of
G is α-good with high probability.

Lemma 5.6: Let � > 0. For any α < 3
4 , there exists

a procedure that makes O
(

L(λ) log3+�
(

n
L(λ)

))
coordinate

queries to w and for any node i ∈ [k′] of G does the following:

• Accepts if i is α
4 -good under S with probability 1 −

negl(n).
• Rejects if i is not α-good under S with probability 1 −

negl(n).

Proof: Consider the following algorithm IsGood, where
S is defined to be the set of red nodes:

IsGood: Input: Node i ∈ [k′] of G, α < 3
4 , space

parameter � > 0.

(1) If i is not green, then Reject.
(2) For every p ∈ {1, . . . , log k′} do:

• Sample log1+� k′ nodes U1p ⊆ [i − 2p + 1, i]
and U2p ⊆ [i, i + 2p − 1] with replacement.

• If the fraction of red nodes in U1p or U2p is
larger than 3α

8 , then Reject.

(3) Accept otherwise.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4348 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Note that IsGood samples at most O (
log2+� k′) nodes of

G and for each of those nodes, we check if it is green. Using
Algorithm IsGreen described in Lemma 5.5, we can verify
if a node is green using only O (log k′) block queries to w.
Therefore the number of coordinates of w queried by IsGood
is at most O (

L(λ) log3+� (n/L(λ))
)
.

To prove the correctness, first observe that if the node i is
red, then i ∈ S and therefore by definition it is not α-good
for any α. IsGood always rejects such nodes.

Suppose node i is α/4-good. Then any r-sized neighbor-
hoods of i, i.e. [i−r+1, i] and [i, i+r−1] have at most α·r/4
red nodes. In particular, for all p ∈ [log k′], the neighborhoods
U1p = [i − 2p + 1, i] and U2p = [i, i + 2p − 1] contain at
most α/4 fraction of red nodes. So, on sampling uniformly
random log1+� k′ vertices from these intervals, the probability
that we see more than 3α/8 fraction of red nodes is at most
e−

α
12 log1+ε k′

which follows from Chernoff bounds. Taking
a union bound over all log k′ intervals, IsGood accepts any
α/4-good node with probability at least 1 − e−

α
24 log1+ε(k′).

Therefore IsGood accepts any α/4-good node with probability
at least 1− negl(k′) = 1− negl(n) for L(λ) = polylog n.

In order to show that the algorithm rejects any node which is
not α-good with high probability, we first show that any node
which is not α-good under S is not α/2-good for some interval
of size 2p, p > 0. The rejection probability then follows from
Chernoff bounds. If node i is not α-good under S, then there
exists a neighborhood I of i such that the number of red nodes
in I is at least α|I|. Let R(X) denote the number of red nodes
for some subset X ⊆ V . Let U1 ⊆ I ⊆ U2 where |U1| = 2p∗

and |U2| = 2p∗+1 for some integer p∗ > 0. Then

R(U2) ≥ R(I)
∗≥ α|I| ≥ α|U1| = α · 2p∗

=
α

2
· 2p∗+1.

where the inequality (*) results from i not being α-good. So,
the probability that this interval goes undetected by IsGood
is at most e−

α
32 log1+ε k′

. Therefore, IsGood rejects any node
which is not α-good with probability at least 1− negl(k′).

Now, we describe the decoding procedure for any index
i ≤ 8k − 4L(λ) using the IsGood procedure. Let (w, i, x)
be the challenge provided by any PPT adversary such that
dist(c, w) ≤ τ , where c = Enc(x).

Recall from the encoding procedure in Section V-A, the first
8k − 4L(λ) bits correspond to either the encoding of the
message bits using EncJ (the first 4k bits) or the encoding
of the labels of the nodes the δ-local expander (the next 4k
bits). For any index query corresponding to the encoding of
the label bits (i > 4k), we check if the label is tampered
with or not. If it is not tampered, then the decoder returns the
received bit, else it returns a ⊥. For any i ≤ 4k, the decoder
first tests if its corresponding label is tampered. If it is not
tampered, then the decoder returns the corresponding received
bit, else it returns a ⊥.

Recall that using Algorithm Dec1 we can successfully
correct any index i > 8k − 4L(λ). Therefore, to design
Dec2, we assume the correctness of node k′ using Dec1. The
procedure Dec2 first checks whether nodes i and node k′ are
α-good for some α < 3/4. If they are both α-good, then by
Lemma 4.10 there is a path of green nodes connecting i and

node k′. Node k′ now serves as an anchor point by being
both α-good and correct due to the repetition code, so then
Lemma 5.3 implies node i is also correct. We now formalize
this and describe Dec2 in Lemma 5.7.

Lemma 5.7: Let Enc be as described in Section V-A. For
any 1 ≤ i ≤ 8k − 4L(λ), there exists a procedure Dec2 with
the following properties:

(1) For any x ∈ {0, 1}k and c = Enc(s, x), Decc
2(s, i) =

c[i].
(2) For any x ∈ {0, 1}k, c = Enc(s, x) and w ∈ {0, 1}n

generated by any PPT adversary such that dist(c, w) ≤
ΔJk

4 ,

Pr [Decw
2 (s, i) ∈ {c[i],⊥}] ≥ 1− negl(n).

Moreover, Dec2 makes at most O (
L(λ) log3+� (n/L(λ))

)
queries to input w for any constant � > 0.

Proof: We claim the following procedure has the desired
properties.

Decw
2 : Input: Index i ≤ 8k − 4L(λ).

(1) Let S be the set of red nodes of G with respect to
the labels obtained from w.

(2) Let α < 3
4 .

(3) Reconstruct the label of k′-th node,
k′,s using a
call to Dec1.

(4) If node k′ of G with label
k′,s and node 1 +(
� i

4·L(λ) � mod k′
)

are α-good under S, then
return wi,

(5) Else return ⊥.

First we show that the query complexity of Dec2 is at
most O (

L(λ) log3+� (n/L(λ))
)
. Observe that Dec1 described

in Lemma 5.4 uses majority decoding to reconstruct the entire
block w2k′+j , for any 0 ≤ j ≤ k′−1. Moreover, it uses at most
O (

log3 n
)

coordinate queries to w in order to reconstruct
any of the last k′ blocks with 1 − negl(n). Therefore we can
assume that after Step (3), the label
k′,s of G is correct with
very high probability. Also, using the procedure described
in Lemma 5.6, we can check if both the nodes k′ and i
are α-good using at most O (

L(λ) log3+� (n/L(λ))
)

queries
for any � > 0. Therefore the query complexity of Dec2 is
O (

L(λ) log3+� (n/L(λ))
)
.

To show (1), observe that if w is a codeword produced
by Enc, then the label
k′,s is reconstructed correctly with
probability 1 by Dec1 in the first step. Also since S = ∅, all
the nodes of G are α-good. Therefore, Dec2 always returns
the correct codeword symbol.

Now, if w is any string produced by a PPT adversary such
that 0 < dist(c, w) ≤ ΔJk

4 , then from the analysis of Dec1 in
Lemma 5.4, we know that
k′,s is reconstructed correctly with
probability at least 1 − negl(n). If both nodes i and k′ of G
are α-good under S, then by Lemma 4.10, we know that there
exists a path in G from node i to node k′ in G which consists
of only green nodes. So, node i is a green ancestor of node
k′. The correctness of wi then follows from Lemma 5.3.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4349

We now combine the two correctors described above to
obtain our local corrector Dec as follows:

Decw: Input : Index i.

(1) If i > 8k − 4L(λ), return Decw
1 (s, i)

(2) Else return Decw
2 (s, i).

Lemma 5.8: Let Enc be as described in Section V-A. For
any i ∈ [n], Dec does the following:

(1) For any x ∈ {0, 1}k and c = Enc(s, x), Decc(s, i) =
c[i].

(2) For any x ∈ {0, 1}k, c = Enc(s, x) and w ∈ {0, 1}n
generated by any PPT adversary such that dist(c, w) ≤
ΔJk

4 ,

Pr [Decw(s, i) ∈ {c[i],⊥}] ≥ 1− negl(n).

Moreover, Dec makes at most O (
L(λ) log3+� (n/L(λ))

)
queries to input w for any constant � > 0.

Proof: The proof follows from Lemma 5.7 and
Lemma 5.4. Since n = 3k′ · 4L(λ), any query on an index
i ≤ 8k − 4L(λ) is handled by Lemma 5.7 while a query on
an index i > 8k − 4L(λ) is handled by Lemma 5.4. Since
each scenario uses at most O (

L(λ) log3+� (n/L(λ))
)

queries,
the algorithm also uses O (

L(λ) log3+� (n/L(λ))
)

queries.
Note that for L(λ) = polylog n, the query complexity of the
decoder is polylog n.

We now show that our construction Π = (Gen, Enc, Dec) is
a Weak CRLCC scheme.

Theorem 5.9: Assuming the existence of a
collision-resistant hash function (GenH, H) with length
L(λ), there exist a constant 0 < τ ′ < 1 and negligible
functions μ(·), γ(·) such that the following holds: for
all τ ≤ τ ′, there exists a constant 0 < ρ(τ) < 1 and
a (L(λ) · polylog n, τ, ρ(τ), γ(·), μ(·))-Weak CRLCC of
blocklength n over the binary alphabet.

In particular, if L(λ) = polylog λ and λ = Θ(n), then the
code is a (polylog n, τ, ρ(τ), γ(·), μ(·))-Weak CRLCC.

Proof: Gen on input a security parameter λ simulates the
generator algorithm GenH of the CRHF to output a random
seed s.

Consider s ← Gen(1λ), Enc described in Section V-
A and the decoder Dec described in Section V-B above.
We claim that the triple Π = (Gen, Enc, Dec) is a CRLCC
scheme.

From the construction of Enc, we know that the block
length of a codeword produced by Enc is n = 3k′ ·
4 · L(λ) = 12k. Therefore, the information rate of the
CRLCC is O (1).

From Lemma 5.8 we know that on input (w, i, x) generated
by any PPT adversary such that dist(Enc(x), w) ≤ ΔJk

4 ,
Decw queries at most O (

L(λ) log3+� (n/L(λ))
)

coordinates
of w and returns b ∈ {Enc(x)[i],⊥} with probability at
least 1 − negl(n). Also, Dec on input any valid encoding
(Enc(x), i, x) returns Enc(x)[i] with probability 1.

We refer the reader to Appendix VIII-A and
Appendix IX-A for the list of parameters and the proof
flowchart for the construction of Weak-CRLCC.

VI. STRONG-CRLCC

In this section, we give an improved construction that locally
corrects a majority of input coordinates.

The Barrier: The challenge in correcting a constant fraction
of the nodes in the previous construction is that an adversary
that is permitted to change just O

(
n

log n

)
symbols can turn

all nodes red in a graph that has outdegree O (log n). In
particular, for any node v ∈ [k′] an adversary can corrupt
the corresponding block cv with just O (L(λ)) corruptions.
In addition to node v any node w with a directed edge
(v, w) ∈ E will also be red. For a weak-CRLCC it is not
a problem if all nodes are red as the decoder is allowed
to output ⊥, but this is not allowed for a strong-CRLCC
decoder.

Key Idea: We overcome the above mentioned barrier
using three ideas. First, we run the original δ-local expander
Gt with t nodes through a degreereduction gadget to obtain
a new graph G with k = t · m nodes in which each node
each node u in Gt (called the meta-node) corresponds to
m nodes u1, . . . , um in G. Furthermore, each of the nodes
u1, . . . , um−1 will have at most 2 incoming edges and at most
2 outgoing edges. The final node um has indeg(um) ∈ Θ(m),
and outdeg(um) ∈ Θ(log t). Second, during the encoding
process we group the values associated with each meta-node
so that the attacker who corrupts any of these nodes must
pay to corrupt the entire meta-node. Third, we define and
analyze the green subgraph Gg of the meta-graph Gt which
is obtained by discarding red edges. While the graph Gg is
not given explicitly we can locally test whether or not specific
nodes/edges are red. To analyze the green subgraph we call
a meta-node u green if um is green and at least 2m/3 of
the corresponding nodes u1, . . . , um are green. This ensures
that most meta-nodes are green. We elaborate on these ideas
below:

We group the labels
u,s = (
u1,s, . . . ,
um,s) and data
values xu = (xu1 , . . . , xum) and include the encodings cu =
EncJ(xu) and cu+t = EncJ(
u,s) in our final codeword.
Notice that if we receive a codeword c′ �= c we can first
preprocess each block c′i to obtain c̃i = EncJ (DecJ(c′i)).
Thus, if EncJ (DecJ(c′i)) = ci we will say that the block i
is correct (untampered) — even if c′i �= ci. We say that a
meta-node u is tampered if either of the blocks cu or cu+t

were tampered and we use T to denote the set of tampered
meta-nodes (Note: the set T is not given to the decoder, but
is useful to define T for analysis). We can show that most
meta-nodes are not contained in the set T since the attacker
must alter a constant fraction of the bits in cu or cu+t. In
particular, the attacker has to flip at least Ω (m · L(λ)) bits to
tamper any of the meta-nodes. In this way we can ensure that
an attacker must tamper with at least Ω (t ·m · L(λ)) bits to
make Ω(t) meta-nodes red.

We introduce the notion of the green subgraph Gg of
the meta-graph Gt (see Definition 6.6). In particular, Gg

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4350 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

is obtained from Gt by discarding all red-edges (an edge
(u, v) ∈ E(Gt) is red if the corresponding edge (um, vj) ∈
E(G) in G is incident to a red-node). As before a node
vi in G is green if its hash value is locally consistent e.g.,

′vi,s = H(s, x′

vi
◦
′

v1
i
◦ . . . ◦
′

vd
i
) where v1

i , . . . , vd
i are

the parents of node vi in G and for each meta-node u
in Gt we define
′u =

(

′u1,s, . . . ,

′
um,s

)
= DecJ(c′u+t)

and x′
u =

(
x′

u1
, . . . , x′

um

)
= DecJ(c′u). We say that a

meta-node u in Gt is green if at least 2
3 of the corresponding

nodes {u1, . . . , um} in G are green and the last node um

is also green (Definition 6.2). We show that the same key
properties we used for the construction of Weak-CRLCC
still hold with respect to the meta-nodes i.e., if there is a
green path connecting meta-node u to meta-node v and the
meta-node v is untampered (i.e., cv = EncJ (DecJ(c′v))
and cv+t = EncJ

(
DecJ(c′v+t)

)
) then the meta-node u is

also untampered (i.e., cu = EncJ (DecJ(c′u)) and cu+t =
EncJ

(
DecJ(c′u+t)

)
); otherwise we would have found a hash

collision (Lemma 6.14). If we let R denote the subset of red
meta-nodes and if we let T denote the subset of (unknown)
tampered meta-nodes we have Gg contains the graph Gt −
(R ∪ T). One can prove that most meta-nodes are α-good
with respect to the set R ∪ T and that if a meta-node u
is α-good with respect to the set R ∪ T then the green
graph Gg also has 2δ-local expansion around the meta-node
u (Lemma 6.10). Finally, if Gg has δ′-local expansion around
both of the meta-nodes u and v with δ′ ≤ 4δ then there is a
green path connecting u and v (Lemma 6.12).

The remaining challenge is that the set T is unknown to
the local decoder.4 Thus, we cannot directly test if a node is
α-good with respect to R ∪ T . What we can do is develop a
test that accepts all meta-nodes that are α-good with respect
to R ∪ T with high probability and rejects all meta-nodes u
that do not have 4δ-local expansion in Gg by sampling the
number of red/green edges in between Ai = [u, u+2i−1] and
Bi = [u+2i, u+2i+1−1] for i ≥ 1. In particular, we restrict
our attention to edges in the δ-expander graph Hi,δ connecting
Ai and Bi in Gt, where Hi,δ has maximum indegree dδ for
some constant dδ which depends on δ. If Gg is not a 4δ-local
expander around u then for some interval i a large number of
red edges between Ai and Bi must have been removed — at
least c2δ2i red edges out of at most 2i×dδ edges in Hi,δ . By
contrast, if u is α-good with respect to R ∪ T then we can
show that at most c1α2idδ edges are deleted. For a suitably
small value of α < δ

dδ
we can ensure that c1α2idδ <4 c2δ2i.

Thus, our tester can simply sample random edges in Hi,δ and
accept if and only the observed fraction fr,i of red edges is at
most, say, 2 c1α2idδ (Lemma 6.9).

Graph Degree Reduction: We now describe our procedure
ReduceDegree that takes as input a t node δ-local expander
DAG G0 with degree m = O(log t) and outputs a new graph
G with mt nodes. G has the property that most nodes have
indegree two.

4By contrast, it is easy to check if a node (resp. meta-node) is red/green by
checking if the hash value(s) are locally consistent.

ReduceDegree : (Let G0 be a δ-local expander.)
Input: Graph G0 with t vertices and m =
max{indeg(G0), outdeg(G0)}+ 1
Output: Graph G with m · t vertices.

• For each node u in G0 we add m nodes u1, . . . , um

to G. Along with each of the directed edges
(ui, ui+1) and (ui, um) for i < m.

• For each directed edge (u, v) in G0 we connect the
final node um to the first node vj that currently has
indegree at most 1.

We call G0 the meta-graph of G and we refer to nodes in
G0 as meta-nodes. In particular, the meta-node u ∈ V (G0)
corresponds to the simple nodes u1, . . . , um ∈ V (G). Notice
that for two meta-nodes u < v ∈ V (G0) there is an edge
(u, v) ∈ E(G0) in the meta-graph if and only if G has an
edge of the form (um, vi) for some i ≤ m. While our encoding
algorithm will use the graph G to generate the labeling, it will
be helpful to reason about meta-nodes in our analysis since
the meta-graph G0 is a δ-local expander.

Note: The degree reduction technique used in our work
slightly deviates from that used in [4]. In particular, similar
to the gadget in [4], we replace each meta node u with a
path graph u1 → u2 → . . . → um. In our construction,
we additionally connect all nodes ui, i < m in the path to
the final node um.

A. Enc Algorithm

In this section we describe the Enc algorithm which takes
as input a seed s← Gen

(
1λ

)
and a message x ∈ {0, 1}k and

returns a codeword c ∈ {0, 1}n. For a security parameter λ,
let H : {0, 1}∗ → {0, 1}L(λ) be a CRHF (see Definition 4.3).
Recall that EncJ and DecJ denote the encoding and decoding
algorithms of a good code (for instance the Justesen code) of
rate R = R(τ) that can decode efficiently from some constant
ΔJ = ΔJ (τ) fraction of errors (Note: as τ → 0 we have
ΔJ(τ)→ 0 and R(τ)→ 1).

Let β = β(τ) > 0 be a parameter which can be tuned. For

t = O
(

k
βL(λ)·log k

)
, let G0 = ([t], E) be a δ-local expander

graph on t vertices and degree (indegree and outdegree) m =
O (log t) where δ = δ(τ) < 1

4 is a parameter than can be tuned
as needed.5 Let G := ReduceDegree(G0) be the graph with
k′ := k

βL(λ) nodes output by the degree reducing procedure
applied to G0. From ReduceDegree it then follows that k′ =
mt = O (t log t). Crucially, the graph has the property that for
α = α(τ) < 1−2δ(τ) and any red/green coloring of the nodes
of the graph, any pair of α-good meta-nodes with respect to
the set T of tampered nodes are connected by a green path.

5As δ decreases the degree of G0 increases. In particular, we have
indeg(G0) = dδ log n where dδ is some constant which depends on δ —
as δ decreases dδ increases. We will also have m = dδ log n nodes in each
metanode of G so m increases as δ decreases. This will increase the locality
of our decoding algorithm, but only by a constant factor.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4351

Fig. 2. An example of a degree reduction graph.

Let s← Gen(1λ)
Enc (s, x):
Input: x = (x1 ◦ . . . ◦ xk′) ∈ ({0, 1}βL(λ)

)k′
, where k =

k′ · βL(λ)
Output: c = (c1 ◦ . . . ◦ c3t) ∈ {0, 1}n, where t = k′/m

and n = tmL(λ)
R · (β + 2).

• Let (
11,s, . . . ,
1m,s, . . . ,
t1,s . . . ,
tm,s) =
labG,s(x) be the labeling of the graph G with
input x using the CRHF, H (see Definition 5.1).

• Let U1 := (
11,s ◦
12,s ◦ . . . ◦
1m,s), . . . , Ut :=
(
t1,s ◦
t2,s ◦ . . . ◦
tm,s).

• Let T1 := (x1◦x2◦. . .◦xm), . . . , Tt := (x(t−1)m+1◦
x(t−1)m+2 ◦ . . . ◦ xtm).

• The codeword c consists of the encoding of groups
of message bits, followed by encoding using EncJ
of groups of labels, followed by t = k′

m copies of the
last encoding.

c = (EncJ(T1) ◦ EncJ(T2) ◦ . . . ◦ EncJ(Tt)◦
EncJ(U1) ◦ EncJ(U2) ◦ . . . ◦ EncJ(Ut)◦
EncJ(Ut) ◦ . . . ◦ EncJ(Ut)︸ ︷︷ ︸

t times

), where

EncJ(Ui) = EncJ(
i1,s ◦ . . . ◦
im,s) ∀i ∈ [t].

The codeword c = Enc(x) consists of 3 parts. The first k/R
bits correspond to the message symbols x passed m · βL(λ)
bits at a time through EncJ of rate R. The next k/(βR)
bits correspond to t codewords EncJ(Uj), and finally the last
k/(βR) bits correspond to the repetitions of the final EncJ
codeword, EncJ(Ut). Therefore the length of any codeword
produced by Enc is n = k

R · β+2
β . The information rate

of the constructed code is therefore R ·
(

β
β+2

)
. Therefore

appropriately choosing the parameters β and R, we get the
rate of the CRLCC approaching 1.

B. Dec Algorithm

Let κ be an error parameter to be fixed later. We can show
that for any w ∈ {0, 1}n with dist(w, c) ≤ ΔJ ·Rn

γ = ΔJ ·k
γ

the number of tampered meta-nodes T ⊂ V (G0) is very
small. Let corrupted(τ) denote the maximum number of

meta-nodes v that the attacker can either corrupt or ensure
that v is not α-good with respect to T then it can be shown
that corrupted(τ)/t → 0 as τ → 0 i.e., almost all of the
meta-nodes u are α-good with respect to the set T of tampered
meta-nodes and that any such node u has 2δ-local expansion
in the green subgraph Gg. We also show that any meta-node
v < t − corrupted(τ) − 1 that has δ′-local expansion with
δ′ ≤ 4δ must also be correct because at least one of the last
corrupted(τ)+1 nodes must be α-good and correct and v will
be connected to this node via an all green path since we have
4δ-local expansion around both nodes in the green subgraph
Gg . While the set T is potentially unknown it is possible to
design a test which (with high probability) accepts all α-good
meta-nodes and rejects (with high probability) any meta-node
u with the property that the green subgraph Gg does not
have 4δ-local expansion around u. We can distinguish between
the two cases by strategically sampling edges in each of the
intervals Ai = [u, u+2i− 1] and Bi = [u+2i, u+2i+1− 1].
The original meta-graph G0 contains a δ-bipartite expander Hi

connecting Ai and Bi. If u does not have 4δ-local expansion
in Gg then for some i a large fraction of the edges in Hi

must be red. By contrast, if u is α-good with respect to T
then we can show that the number of red edges in Hi will
be much smaller. Thus, we can ensure that we can decode at
least ρ(τ) ≥ (1− 2× corrupted(τ)/t) fraction of the bits in
the original codeword so that ρ(τ) → 1 as τ → 0. With this
observation it is relatively straightforward to extend the ideas
from the previous section to build a strong Dec with locality
O (polylog n). We now formalize this notion.

Recall that the codeword c = Enc(x) consists of 3 parts of
t blocks each. The first k/R bits (first t blocks) correspond
to the message symbols x passed m · βL(λ) bits at a time
through EncJ of rate R. The next k/(βR) bits (second set of
t blocks) correspond to t codewords EncJ(Uj), j ∈ [t], and
finally the last k/(βR) bits (third set of t blocks) correspond
to the repetitions of the final block, EncJ(Ut).

Note: For simplicity of presentation, we let β = 1 and
R = 1/4 for the discussion of the decoder in this section. The
proof extends similarly for other values of the parameters β
and R.

Observe that at the end of the construction, each meta-node
contains exactly one simple node (i.e. the final node) with
indegree more than 2 (it has indegree m) and outdegree more
than 2 (it has outdegree O (log t) = O (m)).

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4352 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Similar to the decoder Dec of Section V-B, the current
decoding procedure has separate subroutine to handle indices
corresponding to the first 2t − 1 blocks and a separate
decoding procedure for the remaining indices. In the following,
we define map(i) to be the meta-node corresponding to index
i. That is,

map(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌈
i

4mL(λ)

⌉
, i ≤ 4k⌈

i−4k
4mL(λ)

⌉
, 4k < i ≤ 8k,

t, i > 8k

Before we describe the decoder for the Strong CRLCC,
we need a few definitions and supporting lemmas.

The following claim follows from the construction of the
metagraph G0 which was shown in [4]. While [4] was only
concerned with bounding the indegree a symmetric argument
shows that the outdegree of G0 is also Θ(log k). In particular,
[4] constructs the graph G0 by overlaying Θ(log k) constant
degree graphs. Thus, the indegree and outdegree of every
node is Θ(log k). The bounded outdegree allows us to test
meta-nodes with a bounded (in this case logarithmic) number
of queries.

Claim 6.1: outdeg(G0) = Θ(log k).
Let c = (c1 ◦ . . . ◦ c3t) = Enc(s, x). Recall that for a

meta-node u ∈ [t] = V (G0) we have cu = EncJ(x(u−1)m+1 ◦
. . .◦xum) and cu+t = EncJ(
u1,s ◦ . . .◦
um,s). Given a (pos-
sibly) corrupted c′ codeword we let c̃i = EncJ(DecJ(c′i)).
We note that if c′i and ci are sufficiently close then we will
always have c̃i = ci. If c̃i �= ci we say that the block i was
tampered and if c̃i = ci we say that the block is correct. We let
T ⊆ [t−1] denote the set of all nodes u < t (excluding the last
node t) with the property that either blocks u or u + t were
tampered. We also let

(

′u1,s ◦ . . . ◦
′um,s

)
= DecJ(cu+t) and(

x(u−1)m+1 ◦ . . . ◦ xum

)
= DecJ(cu). We say that a node

ui ∈ V (G) with parents(ui) = u1
i , . . . u

d
i ∈ V (G) is green if

′ui,s = H
(
s, x(u−1)m+i ◦
′

u1
i ,s
◦ . . . ◦
′

ud
i ,s

)
i.e., the given

label of node ui is consistent with the labeling rule given the
data value x(u−1)m+i and the labels of ui’s parents. We say
that an edge (um, vi) ∈ E(G) is green if both um and vi are
green.

Definition 6.2: We call a meta-node u ∈ V (G0) green if
both:

• At least 2
3 fraction of the corresponding nodes

u1, . . . , um ∈ V (G) are green.
• The final node um in the meta-node is also green.

We call a meta-node red if the meta-node is not green.
Similarly, we call a meta-node u correct if we are able to
correctly decode the blocks cu and cu+t.
We stress that a red meta-node is not necessarily tampered
nor is a green meta-node necessarily correct.

1) Query Procedure for map(i) = t: Let κ > 1 be an error
parameter. In the case that map(i) = t, we run a procedure
Decw

=t(s, i) that takes advantage of the fact that any adversary
that can change at most ΔJk

γ coordinates of any codeword
obtained from Enc, cannot prevent local correction for a query
on the last t blocks corresponding to the repetition of EncJ
codeword. Similar to Decw

1 in Section V-B, the algorithm

Decw
=t(s, i) randomly samples a number of blocks, performs

decoding using DecJ and takes the majority of the samples.
Lemma 6.3: Let Enc be as described in Section VI-A, and

κ > 1. For any i ∈ [n] such that map(i) = t, there exists an
algorithm Decw

=t that does the following:
(1) For any x ∈ {0, 1}k and c = Enc(s, x), Decc

=t(s, i) =
c[i].

(2) For any x ∈ {0, 1}k, c = Enc(s, x) and w ∈ {0, 1}n
generated by any PPT adversary such that dist(c, w) ≤
ΔJk

γ ,

Pr [Decw
=t(s, i) = c[i]] ≥ 1− n

nlog n
.

Moreover, Decw
=t makes at most O (

L(λ) · log2+� n
)

coordi-
nate queries to input w.

Proof: Consider the following algorithm Decw
=t(s, i) for

any i ∈ [n] with map(i) = t:

Decw
=t(s, i): Input : Index i ∈ [n] with map(i) = t.

(1) Sample (with replacement) r := O (
log1+� n

)
blocks {ỹ1, . . . , ỹr} each of length 4mL(λ) from
the last t blocks.

(2) Let yj = EncJ(DecJ(ỹj)) for every j ∈ [r] to
correct each of the sampled blocks.

(3) Output majority of {yj [̂i] | j ∈ [r]}, where î = i
(mod 4mL(λ)) and yj [̂i] is the î-th coordinate in
yj .

First, note that for any codeword obtained from Enc, Dec=t

will always output the correct symbol.
Let w be received word which is obtained by altering at

most ΔJk
γ coordinates of some codeword i.e, 0 < dist(c, w) ≤

ΔJk
γ for some codeword c obtained from Enc.
We know that the last t blocks of any codeword are exactly

the same, i.e., c2t = c2t+1 = · · · = c3t.
Since dist(c, w) ≤ ΔJk

γ , at most t
4γ blocks are corrupted

in more than ΔJ fraction of coordinates. One can therefore
decode all blocks among the last t blocks correctly except for
those t

4γ blocks with large corruption.
Since we query blocks uniformly at random, each query

finds a block with large corruption with probability at most 1
4γ .

Therefore, the probability that majority of the queried blocks
are corrupted beyond repair is at most

(
1
4γ

)r/2 = negl(n), for
r = O (

log1+� n
)
.

Since Dec=t queries O (
log1+� n

)
blocks each of length

4m·L(λ) and m = O (log n), then at mostO (
L(λ) · log2+� n

)
queries are made in total.

2) Query Procedure for map(i) < t: Recall from the
construction that G0 is the metagraph of G. We define the
green subgraph of G0 to be the subgraph consisting of exactly
the edges whose corresponding endpoints in G are both green
nodes. We show there exists an efficient procedure to check
whether an edge is in the green subgraph, which we shall
use to determine if nodes in G have δ-local expansion in the
green subgraph. If there is local expansion around nodes u
and v in the green subgraph, then without loss of generality,
there exists a path from u to v that only consists of green

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4353

nodes by Lemma 6.12. Hence if v is correct, then we show in
Lemma 6.14 that either u is also correct, or a hash collision has
been found. Nevertheless, this procedure is vacuous if there is
a low number of nodes u, v with local expansion in the green
subgraph. To address this concern, we show in Lemma 6.10
that for a specific range of α, if a node u is α-good with
respect to a tampered set, then there must also be 2δ-local
expansion around u in the green subgraph.

In this section, we design the corrector for indices i ∈ [n]
such that map(i) < t.

Recall that we call a meta-node green if most of its nodes
including the final node are green. First, we claim the existence
of a procedure to test whether a meta-node is green.

Lemma 6.4: Let G0 be the meta-graph with t vertices
used by Enc and let w = (w1, · · · , w3t) ∈ {0, 1}n be
the corrupted word obtained from the PPT adversary. There
exists a procedure IsGreenMeta that uses O (

L(λ) · log2 n
)

coordinate queries to w and checks whether a meta-node u of
G0 with labels corresponding to w is green.

Proof: We claim the following procedure satisfies the
desired properties:

IsGreenMeta(u, w): Input : Meta-node index u ∈ [t],
corrupted codeword w ∈ {0, 1}n

(1) Check if the final node in meta-node u is green:
• Query coordinates of wt+u and retrieve

(
′u1
, . . . ,
′um

) := DecJ(wt+u).
• Query the coordinates of wu and retrieve

(x′
u1

, . . . , x′
um

) := DecJ(wu).
• Check whether
′um

= H(s, x′
um
◦
′u1

◦ · · · ◦

′um−1

) for the final node um in meta-node
u, where u1, . . . , um−1 are the parents of um,
which are all in meta-node u.

• If
′um
is not consistent, then output ‘Red’.

(2) For each node uj in meta-node u, check whether
uj is green:

• Let uj−1 (in meta-node u) and pr (r-th node
in some meta-node p) be the parents of uj .

• Query wt+p and retrieve
′pr
using

DecJ(wt+p).
• Check whether
′uj

= H(s, x′
uj
◦
′uj−1

◦
′pr
).

(3) If at least 2
3 fraction of the nodes in meta-node u

are green, then output ‘Green’.
(4) Else, output ‘Red’.

Recall from Definition 6.2 that a green meta-node first
requires that at least 2

3 of the underlying nodes in meta-node
u are green. Since a node is green if its label is con-
sistent with the labels of its parents, then the procedure
IsGreenMeta properly recognizes whether at least 2

3 of the
underlying nodes in u are green after decoding using DecJ.
Secondly, a green meta-node requires that the final node
in u is green. In this case, the final node um has m − 1
parents, and again the procedure recognizes whether
′um

=
H(s, x′

um
◦
′u1

◦ · · · ◦
′um−1
) after obtaining the labels

using DecJ.

Observe that in Step (1), we query two blocks of w each of
length 4mL(λ) bits. Also, in Step (2), for each of the m− 1
nodes uj in the meta-node u we query one additional block
of w corresponding to the parent meta-node of uj . Since each
block is of length 4mL(λ) bits long, the total query complexity
is O (

m2L(λ)
)

= O (
L(λ) · log2 n

)
for m = O (log n).

We now define the notion of a green edge in the meta-graph
G0.

Let u and v be meta-nodes which are connected in G0. From
the construction of the degree reduced graph G, we know that
there exists an edge from the m-th node of the meta-node u to
some node vu of the meta-node v. We say that an edge from
meta-node u to meta-node v is green if the corresponding end
points in G are green, i.e., the node um of meta-node u and
the node vu in meta-node v are green. We say an edge is red
if it is not green. Note that it is possible for the end node vu

to be red even if the meta-node v is green.
Given any w ∈ {0, 1}n, we now describe a procedure

IsGreenEdge(u, v, w) which locally verifies whether a given
edge (u, v) of G0 is green or not.

Lemma 6.5: Let G0 be the meta-graph with t vertices
used by Enc and let w = (w1, · · · , w3t) ∈ {0, 1}n be
the corrupted word obtained from the PPT adversary. There
exists a procedure IsGreenEdge that makes O (L(λ) log(n))
coordinate queries to w and checks whether an edge (u, v) of
G0 with labels corresponding to w is green.

Proof:

IsGreenEdge(u, v, w): Input : Meta graph edge (u, v),
corrupted codeword w ∈ {0, 1}n

(1) Check if the final node in meta-node u is green:
• Query coordinates of wt+u and retrieve

(
′u1
, . . . ,
′um

) := DecJ(wt+u).
• Query the coordinates of wu and retrieve

(x′
u1

, . . . , x′
um

) := DecJ(wu).
• Check whether
′um

= H(s, x′
um
◦
′u1

◦ · · · ◦

′um−1

) for the final node um in meta-node
u, where u1, . . . , um−1 are the parents of um,
which are all in meta-node u.

• If
′um
is not consistent, then output ‘Red’ edge.

(2) Check if the node vu in meta-node v is green:
• Query coordinates of wt+v and retrieve

(
′v1
, . . . ,
′vm

) := DecJ(wt+v).
• Query the coordinates of wv and retrieve

(x′
v1

, . . . , x′
vm

) := DecJ(wv).
• Check whether
′vu

= H(s, x′
vu
◦
′vu−1

◦
′um
)

• If
′vu
is not consistent, then output ‘Red’ edge.

(3) Output ‘Green’ edge.

The procedure IsGreenEdge first checks if the node um of
meta-node u is green, and then checks if the connecting node
vu of meta-node v is green. The correctness of IsGreenEdge
then follows from the definition. Note that checks (1) and (2)
both query 2 blocks of w, each of length 4 mL(λ). Hence
the query complexity of the IsGreenEdge is O (mL(λ)) =
O (L(λ) log(n)), for m = O (log(n)).

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4354 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Using the definition of a green edge, we now define a green
subgraph of G0.

Definition 6.6: The green subgraph of G0, denoted by Gg ,
is the subgraph of G0 that contains all green edges of G0.

A key step in designing the decoder is to verify whether
Gg has local expansion property around some given meta-
node. Before we describe the verification procedure and
why it is necessary, we introduce notations and list some
important properties of the meta-graph G0 and its green
subgraph Gg .

Let u be any meta-node of G0. Let Au,r := [u, u + r −
1] and Bu,r := [u + r, u + 2r − 1] and r < 1

2 (t−u), then
from the definition of a δ-local expander, we know that G0

contains δ-expander between Au,r and Bu,r . Let us denote
this subgraph by Hu,r , i.e., Hu,r = (Au,r ∪Bu,r, Eu,r) with
Eu,r ⊆ (Au,r×Bu,r)∩E. We assume the following property
of G0: each node v ∈ Au,r ∪ Bu,r is indicent to at most dδ

edges in Hu,r for some constant dδ ∈ O (1).
Note: Prior constructions of δ-local expanders such as [4]

can be used to satisfy this requirement though [4] does not
explicity make use of this particular property. In particular,
our δ-local expander G0 can be constructed using a family δ′-
bipartite graphs with constant indegree [4], [27]. The subgraph
Hu,r can be obtained by taking the edges from O(1) of these
δ′-bipartite graphs — we may need to use more than one if the
nodes in Hu,r are not perfectly aligned with the δ′-bipartite
expanders used to construct G0.

Define Hu,r
g to be the green subgraph of Hu,r, i.e., the sub-

graph of Hu,r restricted to Gg .
Lemma 6.7: Let nr be the number of red edges in Hu,r.

If Hu,r
g is not a 4δ-expander, then nr ≥ 3δr.

Proof: If Hu,r
g is not a 4δ-expander, then there exist

subsets X ⊆ Au,r , Y ⊆ Bu,r with |X |, |Y | ≥ 4δr such that
there are no edges between X and Y in Hu,r

g . Let Y ′ denote
the nodes that are not connected to X in Hu,r . Since Hu,r is
a δ-expander we have |Y ′| ≤ δr. , at most δr nodes Y ′ ⊂ Y
are not connected to any node in X .Thus, Hu,r contains at
least |Y − Y ′| ≥ 3δr red edges connecting nodes in Y − Y ′

to X . So the number of edges in Hu,r are at least 3δr all of
which are red.

Remark 6.8: Though the observation states the property for
descendants of a meta-node u, i.e., Au,r = [u, u + r − 1] and
Bu,r = [u + r, u + 2r − 1], we note that it also holds for
ancestors as well, i.e., Au,r = [u − r + 1, u] and Bu,r =
[u− 2r − 1, u− r].

Using the key observation described above, we now give
an efficient procedure to verify if the green meta-graph Gg

has 4δ-local expansion around a given meta-node u. The idea
is to estimate the number of red edges in increasing intervals
around the given meta-node and reject if this estimate is large
for any interval.

Lemma 6.9: Let G0 be the meta-graph with t vertices
used by Enc and let w = (w1, · · · , w3t) ∈ {0, 1}n be the
corrupted word obtained from the PPT adversary. There exists
a procedure IsLocalExpander that makes O (

mL(λ) log2+� t
)

coordinate queries to w and rejects any meta-node u around
which Gg does not have 4δ-local expansion with probability
1− negl(n).

Proof: Consider the following algorithm IsLocalExpander:

IsLocalExpander(u, w, δ): Input : meta node u, cor-
rupted codeword w ∈ {0, 1}n

(1) Use IsGreenMeta to verify if meta-node u is Green.
Reject if it is Red.

(2) For every p ∈ {1, . . . , log t}:
• Consider a bipartite expander Hu,2p

, with node
sets Ap = [u, u+2p−1] and Bp = [u+2p, u+
2p+1 − 1].

• Randomly sample s := log1+� t edges from the
subgraph with replacement.

• Count the number of red edges in the sample.
• If the number of red edges in the sample is

larger than 5
2δs, then ‘Reject’.

• Consider a bipartite expander H
′u,2p

with node
sets A′

p = [u−2p +1, u] and B′
p = [u−2p+1+

1, u− 2p].
• Randomly sample s := log1+� t edges from the

subgraph with replacement.
• Count the number of red edges in the sample.
• If the number of red edges in the sample is

larger than 5
2δs, then ‘Reject’.

(3) Accept otherwise.

First, the procedure IsLocalExpander checks if the
input node is green using IsGreenMeta procedure,
that takes O (

L(λ) log2 n
)

queries to the input work
w (Lemma 6.4).

Note that IsLocalExpander calls the procedure IsGreenEdge
for every sampled edge to check whether it is red or
green. From Lemma 6.5, we know that each call to
IsGreenEdge requires O (mL(λ)) coordinate queries to w.
The total number of calls to IsGreenEdge is at most
2 log2+� t since we sample at most log1+� t distinct edges
from each of the log t subgraph Hu,2p

. Therefore, the total
query complexity of IsLocalExpander is upper bounded
by O (

mL(λ) log2+� t
)
.

Suppose u is a meta-node around which Gg does not
have 4δ-local expansion. Then there exists a fixed node set
[u, u+2p−1] and [u+2p, u+2p+1−1] whose corresponding
subgraph has at least 3δ2p red edges, by Lemma 6.7. Therefore
on sampling uniformly at random with replacement, we expect
to see at least 3δs red edges. So the probability that we see
at most 5

2δs red edges is at most exp(−O (
log1+� t

)
), from

standard Chernoff bounds.
Note that we accept u if we see at most 5

2δs red edges in
all the 2 log t intervals. By taking union bound the probability
that we accept a meta-node around which Gg does not have
4δ-expansion is at most 2 log t

exp(−O(log1+ε t)) .

Now, we list some key properties of the meta-nodes around
which Gg has local expansion. These properties are important
to understand why we needed the local expansion verification
procedure. Essentially we show that if any meta-node is
α-good under the set of tampered meta-nodes, then Gg has
2δ-local expansion about it (for appropriately chosen value of

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4355

α). Then we show that any two meta-nodes around which
Gg has local expansion are connected by a path of green
nodes in G. Now similar to the weak CRLCC decoder,
we can argue about the correctness of any ancestor of a
correct node in a green path (unless the adversary finds a hash
collision).

Recall that we call a meta-node u to be α-good under T
if every interval for every interval |[u, u + r − 1] ∩ T | ≤ αr.
We now show that if a meta-node u is α-good under T , then
Gg has 2δ-local expansion around u.

Lemma 6.10: Let u be a meta-node that is α-good with
respect to T . Then there is 2δ-local expansion around u in Gg

for any α < δ
2 .

Proof: Given any r > 0, consider the intervals A = [u, u+
r] and B = [u + r + 1, u + 2r]. Recall that G0 is a δ-local
expander. Let X ⊆ A and Y ⊆ B be given sets with size 2δr
each. Since u is α-good with respect to T , then |T ∩X | ≤ 2αr
and |T ∩Y | ≤ 2αr. Thus, |X−T | ≥ (2δ−2α)r and similarly,
|Y −T | ≥ (2δ− 2α)r. Setting α < δ

2 shows that both X −T
and Y − T contains at least δr nodes, and so there exists an
edge between X − T and Y − T . Therefore, there is local
expansion around u.

Moreover, we see that the number of red edges in the 2δ-
expander is at most 3αrdδ .

Lemma 6.11: If u is a meta-node that is α-good under T ,
then for any r > 0 the number of red edges in between
the intervals [u, u + r − 1] and [u + r, u + 2r − 1] is at
most 3αrdδ .

Proof: Since u is α-good under T , the intervals A :=
[u, u + r − 1] and B := [u + r, u + 2r − 1] contain at
most αr and 2αr tampered nodes respectively. Since we
assumed that the δ-expander contained in A and B has
constant degree dδ, the number of red edges is upper bounded
by 3αrdδ .

So in order to ensure that this number is not too
large (for IsLocalExpander to succeed), we choose α such
that 3αrdδ � 3δr. This guarantees that the procedure
IsLocalExpander definitely accepts nodes that are α-good
under T .

We now show that any two meta-nodes with local expansion
property are connected by a path of green edges in Gg . This
also ensures that the corresponding nodes are connected by a
path of green nodes in the underlying graph G.

Lemma 6.12: If Gg has 4δ-local expansion around the
meta nodes u and v, then there exists a path from
u to v in Gg .

Proof: Let r be such that v = u+2r−1. Consider the 4δ
expander between A := [u, u+r−1] and B := [u+r, u+2r−
1]. We show using Claim 6.13 that u is connected to at least
4δr meta-nodes in A, and similarly v is reachable from at least
4δr meta-nodes in B. Now since Gg has 4δ expansion around
u, there exists an edge between any two large enough subset
of nodes of A and B. Hence, the set of nodes reachable to u
in A are connected to the set of nodes which are reachable
from v in B.

It now remains to show that u and v are connected to at least
4δr meta-nodes in A and B respectively. Let i be such that
2i ≤ r < 2i+1. From Claim 6.13, we get that u is connected

to at least 3
4 · 2i = 3

8 · 2i+1 ≥ 4δr (for δ < 1
16) meta-nodes

in the interval [u, u + r − 1]. Using a similar argument we
conclude that v is also connected to at least 4δr nodes in
[v − r + 1, v] = [u + r, u + 2r − 1].

We now prove Claim 6.13.
Claim 6.13: For any i > 0, the number of meta-nodes in

the interval [u, u + 2i − 1] reachable from u is at least 3
4 · 2i.

Similarly, the number of meta-nodes in the interval [u− 2i +
1, u] reachable from u is at least 3

4 · 2i

Proof: We prove this claim by induction on i. Let Ri(u)
denote the set of meta-nodes in [u, u+2i− 1] reachable from
u. We have to show that |Ri(u)| ≥ 3

4 · 2i.
In the base case, for i = 0, we know from 4δ-expansion of

[u, u + 1] around u that there is at least one edge between u
and u + 1 in Gg . Hence, |R0(u)| ≥ 1.

Let us assume the induction hypothesis for all i ≤ i0.
To prove the induction step for i = i0+1, consider the intervals
A := [u, u+2i0−1] and B := [u+2i0 , u+2i0+1−1]. Let NR
denote the set of non-reachable meta-nodes in B not reachable
from A. We know that |NR| < 4δ · 2i0 . This follows from
the fact that Gg has 4δ-local expansion around u, and hence
if |NR| ≥ 4δ · 2i0 , then there would be a an edge between
Ri0(u) and NR which would contradict the definition of NR.
Therefore,

Ri0+1(u) ≥ Ri0(u) + 2i0 − |NR|
≥ 3

4
· 2i0 + 2i0 − 4δ · 2i0 (from IH)

≥ 3
4
· 2i0+1 (for δ < 1

16).

Lemma 6.14: Suppose there exists a path from meta-node
u to v in the green subgraph Gg . If v is untampered (correct),
then either u is also untampered or the adversary has found a
hash collision.

Proof: The proof of this lemma follows from the proof of
Lemma 5.3 once we show that there exists a path in G with
all green nodes from any node in the meta-node u to some
node in the meta-node v.

Consider the path from meta-nodes u to v in Gg . Any
two adjacent edges (p, q) and (q, r) in (u, v) path in Gg

corresponds to the edge from the last node pm of p to some
node qi (i < m) of meta-node q, and an edge from the last
node qm of q to some node rj (j < m) of meta-node r.
Since these edges are green, we know that the nodes pi, pm

and qj are green. Now, from the construction of the graph G,
we conclude that there is an edge from pi to pm. Therefore,
there is a path in G from any node in the meta-node u to some
node in the meta-node v with all green nodes.

Equipped with all the necessary procedures, we now present
the decoder for the Strong CRLCC for any coordinate query
i ∈ [n] such that map(i) < t.

Decw
<t: Input : Index i ∈ [n] with u := map(i) < t,

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4356 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

δ
20dδ
≤ α ≤ δ

10dδ
, δ < 1

16 space parameter � > 0.

(1) Use IsLocalExpander to verify if Gg has 4δ-local
expansion around u.

(2) If IsLocalExpander accepts u, then

• If u < 3t
4 then return wi.

• Else if 3t
4 ≤ u < t:

◦ Use Decw
=t(w, j) for all 8tmL(λ) −

4mL(λ) ≤ j < 8tmL(λ) to reconstruct
the last block w2t.

◦ If Gg has 4δ-local expansion around meta-
node t using the constructed labeling, then
return wi, else return ⊥.

(3) If IsLocalExpander rejects u, then return ⊥.

Lemma 6.15: Let Enc be as described in Section VI-A, and
κ > 1600 dδ. For any i ∈ [n] such that map(i) < t, Dec<t

does the following:

(1) For any x ∈ {0, 1}k and c = Enc(s, x), Decc
<t(s, i) =

c[i].
(2) For any x ∈ {0, 1}k, c = Enc(s, x) and w ∈ {0, 1}n

generated by any PPT adversary such that dist(c, w) ≤
ΔJk

γ ,

Pr [Decw
<t(s, i) ∈ {c[i],⊥}] ≥ 1− negl(n).

Moreover, Decw
<t makes at most O (

L(λ) log3+� n
)

queries to
input w.

Before we prove the correctness of Lemma 6.15, we show
that any PPT adversary that generates a corrupted codeword
w such that dist(w, c) ≤ Δjk

γ , cannot manage to corrupt many
meta-nodes. Let T denote the set of tampered meta-nodes of
G0.

Lemma 6.16: Let w ∈ {0, 1}n be a corrupted codeword
generated by any PPT adversary such that dist(w, C) ≤ Δjk

γ ,
then at most t

4γ meta-nodes are tampered.
Proof: We first observe that a meta-node can only be

altered beyond repair by changing at least 4m ·L(λ) ·ΔJ bits.
Therefore, by changing at most ΔJk

γ bits of the codeword
we have |T | ≤ k

4γmL(λ) = k′
4γm = t

4γ meta-nodes in G are
tampered.

Using these key lemmas and properties, we now prove the
correctness of the decoder.

Proof of Lemma 6.15:
Query Complexity: The query complexity of the decoder

is dominated by the query complexity of IsLocalExpander.
From Lemma 6.9, it then follows that the query complexity of
Decw

<t is at most O (
mL(λ) log2+� t

)
= O (

mL(λ) log2+� n
)

for m = O (log n).
Correctness (1): If w ∈ C, then the green graph Gg = G0

and hence, Gg has δ expansion around all meta-nodes u. Also,
since T = ∅, all meta-nodes are α-good in G0 with respect to
T . Therefore, Dec<t accepts a codeword with probability 1.

Correctness (2): Now, let w be a corrupted codeword such
that dist(d, c) ≤ ΔJk

γ . Let u = map(i) be the meta-node
corresponding to the queried index i ∈ [n].

Case (i): Let u < 3t
4 , and let Gg have 4δ-local expansion

around u. We show that there exists a descendent v of u in
Gg such that (1) Gg is 4δ-local expander around v and, (2) v
is untampered (correct).

Recall that T denotes the set of tampered meta-nodes.
From Lemma 6.16, we know that at most t

4γ meta-nodes
can be tampered by the adversary. Since G0 is a δ-local
expander, from Lemma 4.8 we know that the number of α-
good meta-nodes in G0 with respect to the set of tampered
meta-nodes T is at least t − |T | (2−α

α

)
. Therefore, for any

α > 1
200 dδ

and κ ≥ 1600 dδ, there are at least 15t
16 α-

good meta-nodes in G0 w.r.t T . Lemma 6.10 then implies
that Gg has 4δ-local expansion around all these α good meta-
nodes. So at most t

16 + t
16 = t

8 meta-nodes which do not
satisfy conditions (1) or (2). Therefore, there exists at least one
among the last t

4meta-nodes which satisfy both the conditions.
Case (ii): Let u ≥ 3t

4 , and let t be the corrected meta-node
using Decw

=t (see Lemma 6.3). If Gg has 4δ-local expansion
around u and t, then assuming that the adversary has not found
a hash collision, we can conclude from Lemma 6.14, that u
is untampered. So Decw

<t returns the correct value for all such
coordinate queries.

The probability that the decoder returns a wrong value
is upper bounded by the probability that the procedure
IsLocalExpander wrongly accepts a meta-node about which
Gg does not have 4δ local expansion or if the adversary
successfully finds a hash collision. This happens with negl(n)
probability as shown in Lemma 6.9. �

Equipped with the decoder for the Strong-CRLCC con-
structed in Section VI-A, we now prove Theorem 2.5.

Proof of Theorem 2.5: Gen on input a security parameter
λ simulates the generator algorithm GenH of the CRHF to
output a random seed s.

Consider s← Gen(1λ), Enc described in Section VI-A and
the decoder Dec described in Section VI-B above. We claim
that the triple Π = (Gen, Enc, Dec) is a Strong-CRLCC.

From the construction of Enc, we know that the block length
of a codeword produced by Enc is n = k

R

(
β+2

β

)
. Therefore,

for appropriate choice of β = β(τ) such that 1/β → 0 as
τ → 0, the information rate of the CRLCC approaches 1
since R = R(τ)→ 1 as τ → 0.

From Lemma 6.3 we know that on input (w, i, x) generated
by any PPT adversary such that dist(Enc(x), w) ≤ ΔJk

γ

and map(i) = t, Decw
=t queries at most O (

L(λ) log2+� n
)

coordinates of w and returns b = Enc(x)[i] with probability
at least 1 − negl(n). If map(i) < t, then from Lemma 6.15,
we know that Decw

<t queries O (
L(λ) log3+� n

)
coordinates

of w and returns b ∈ {Enc(x)[i],⊥} with probability at least
1 − negl(n). Also, both the decoders, Dec=t, and Dec<t on
input any valid encoding (Enc(x), i, x) return Enc(x)[i] with
probability 1.

To conclude, we need to show that for any received word
generated by a PPT adversary most meta-nodes are corrected
by the decoder (i.e Decw(s, i) �= ⊥). In particular, we show
that most meta-nodes of G0 are untampered, and Gg had 4δ
local expansion around each of these untampered meta-nodes.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4357

This follows from the fact that there are at most t
16

meta-nodes are not α-good under the set of tampered nodes.
Note that for any query to a meta-node u < 3t

4 the decoder
Decw(s, i) returns the correct codeword symbol, i.e., c[i]
unless u itself is not α-good under the set of tampered nodes.
So, for at least 3t

4 − t
16 = 11t

16 meta-node queries, Decw(s, i)
does not return a ⊥.

We refer the reader to Appendix VIII-B and Appendix IX-B
for the list of parameters and the proof flowchart for the
construction of Strong-CRLCC. �

VII. COMPUTATIONALLY RELAXED LOCALLY

DECODABLE CODES (CRLDC)

In this section we present the formal definition of Com-
putationally Relaxed Locally Decodable Codes (CRLDC) —
defined informally in the main body of the paper. We first
tweak the definition of a local code so that local decoding
algorithm takes as input an index from the range i ∈ [k]
instead of i ∈ [n] i.e., the goal is to decode a bit of the original
message as opposed to a bit of the original codeword.

Definition 7.1: A local code is a tuple (Gen, Enc, Dec) of
probabilistic algorithms such that

• Gen(1λ) takes as input security parameter λ and generates
a public seed s ∈ {0, 1}∗. This public seed s is fixed once
and for all.

• Enc takes as input the public seed s and a message x ∈
Σk and outputs a codeword c = Enc(s, x) with c ∈ Σn.

• Dec takes as input the public seed s, an index i ∈ [k],
and is given oracle access to a word w ∈ Σn. Decw(s, i)
outputs a symbol b ∈ Σ (which is supposed to be the
value at position i of the original message x i.e., the
string x s.t. Enc(s, x) is closest codeword to w).

We say that the (information) rate of the code (Gen, Enc, Dec)
is k/n. We say that the code is efficient if Gen, Enc, Dec are
all probabilistic polynomial time (PPT) algorithms.

Similarly, the notional of a computational adversarial chan-
nel is almost identical except that the channel challenges
the Dec with an index i ∈ [k] (as opposed to i ∈ [n])
and the decoder is supposed to output the ith bit of the
original message. Apart from this change Definition 7.2 and
Definition 2.2 are identical.

Definition 7.2: A computational adversarial channel A
with error rate τ is an algorithm that interacts with a local
code (Gen, Enc, Dec) in rounds, as follows. In each round of
the execution, given a security parameter λ,

(1) Generate s← Gen(1λ); s is public, so Enc, Dec, and A
have access to s

(2) The channel A on input s hands a message x to the
sender.

(3) The sender computes c = Enc(s, x) and hands it back to
the channel (in fact the channel can compute c without
this interaction).

(4) The channel A corrupts at most τn entries of c to obtain
a word w ∈ Σn and selects a challenge index i ∈ [k]; w
is given to the receiver’s Dec with query access along
with the challenge index i.

(5) The receiver outputs b← Decw(s, i).

We define A(s)’s probability of fooling Dec on this round
to be pA,s = Pr[b �∈ {⊥, xi}], where the probability is taken
only over the randomness of the Decw(s, i). We say that A(s)
is γ-successful at fooling Dec if pA,s > γ. We say that
A(s) is ρ-successful at limiting Dec if |GoodA,s| < ρ · k,
where GoodA,s ⊆ [k] is the set of indices j such that
Pr[Decw(s, j) = xj] > 2

3 . We use FoolA,s(γ, τ, λ) (resp.
LimitA,s(ρ, τ, λ)) to denote the event that the attacker was γ-
successful at fooling Dec (resp. ρ-successful at limiting Dec)
on this round.

Definition 7.3 ((Computational) Relaxed Locally Decod-
able Codes (CRLDC)): A local code (Gen, Enc, Dec) is a
(q, τ, ρ, γ(·), μ(·))-CRLCC against a class A of adversaries if
Decw makes at most q queries to w and satisfies the following:

(1) For all public seeds s if w ← Enc(s, x) then Decw(s, i)
outputs xi.

(2) For all A ∈ A we have Pr[FoolA,s(γ(λ), τ, λ)] ≤ μ(λ),
where the randomness is taken over the selection of s←
Gen(1λ) as well as A’s random coins.

(3) For all A ∈ A we have Pr[LimitA,s(ρ, τ, λ)] ≤ μ(λ),
where the randomness is taken over the selection of s←
Gen(1λ) as well as A’s random coins.

When μ(λ) = 0, γ(λ) = 1
3 is a constant and A is the set of

all (computationally unbounded) channels we say that the code
is a (q, τ, ρ, γ)-RLDC. When μ(·) is a negligible function and
A is restricted to the set of all probabilistic polynomial time
(PPT) attackers we say that the code is a (q, τ, ρ, γ)-CRLDC
(computational relaxed locally correctable code).

We say that a code that satisfies conditions 1 and 2 is a
Weak CRLDC, while a code satisfying conditions 1, 2 and 3
is a Strong CRLDC code.

As we remarked in the main body of the paper our
construction of a Strong CRLCC is also a strong CRLDC.
In particular, Theorem 7.4 is identical to Theorem 2.5 except
that we replaced the word CRLCC with CRLDC.

Theorem 7.4: Assuming the existence of a
collision-resistant hash function (GenH, H) with length
L(λ), there exist a constant 0 < τ ′ < 1 and negligible
functions μ(·), γ(·) such that the following holds: for all
τ ≤ τ ′, there are constants 0 < r(τ), ρ(τ) < 1 and a
(L(λ) · polylog n, τ, ρ(τ), γ(·), μ(·))-Strong CRLDC of
blocklength n over the binary alphabet with rate r(τ).

Moreover, limτ→0 r(τ) = limτ→0 ρ(τ) = 1. In particular,
if L(λ) = polylogλ and λ = Θ(n), then the code is a
(polylog n, τ, ρ(τ), γ(·), μ(·))-Strong CRLDC.

Proof: (sketch) The encoding algorithm in our strong
CRLDC and strong CRLCC constructions are identical. The
only change that we need to make is to tweak the local
decoding algorithm to output bits of the original message
instead of bits of the codeword. This task turns out to be
trivial. In particular, the first part of the codeword in our
construction is formed by partitioning the original message x
into mt blocks x = x1◦. . .◦xtm, partitioning these blocks into
t groups T1 = (x1 ◦ . . . xm) , . . . , Tt =

(
x(t−1)m+1 ◦ . . . xtm

)
and outputting cj = EncJ(Tj) for each j ≤ t. Because our
rate r(τ) approaches 1 these bits account for almost all of the
codeword.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4358 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Fig. 3. The following figure depicts the dependency graph for the proof of Theorem 5.9.

Fig. 4. Dependency graph for the proof of Theorem 2.5.

The CRLCC decoding algorithm is given (possibly tam-
pered) codeword c̃ = c̃1 ◦ c̃2 When the decoding algorithm
is challenged for one of the original bits of cj it works as
follows: (1) use our randomized algorithm to verify that the
corresponding metanode vj in our graph is α-good (if not we
output ⊥), (2) if vj is α-good then run DecJ (c̃j) to recover
the original Tj =

(
x(j−1)m+1, . . . , xjm

)
, (3) run EncJ(Tj)

to recover the original cj and then find the appropriate bit of
the codeword to output. The CRLDC decoding algorithm can
simply omit step (3). Once we have recovered the original
Tj we can find the appropriate bit of the original message to
output.

APPENDIX

VIII. PARAMETERS

A. Parameters for Weak-CRLCC

• λ: Security parameter. We set λ = O (n).
• L(λ): Length of the hash function. We consider L(λ) =

polylog (λ).
• Σ: Code alphabet. We consider Σ = {0, 1} for our

constructions.
• k: length of message.
• n: length of codeword. We construct codes with n = 12k.
• k′ = k/L(λ): number of nodes in the δ- local expander

graph G.

• degree(G) = O (log k′).
• δ < min((1− α)/2, 1/4).
• α ∈ (0, 3/4).
• � > 0, � = Θ(1).

B. Parameters for Strong-CRLCC

• t: number of meta-nodes in δ-local expander G0

• m = max{indeg(G0), outdeg(G0)}+ 1, m = O (log t).
• k: length of message.
• k′ = mt = k/βL(λ) = O (t log t): number of nodes in

the degree-reduced graph
• R(τ), ΔJ(τ): Information rate and relative distance of

DecJ. As τ → 0, R(τ) → 1, ΔJ(τ) → 0. We set R =
1/4 in the decoder for the ease of presentation.

• β = β(τ) > 0. We require 1/β(τ)→ 0, as τ → 0.
We set β = 1 in the decoder for the ease of presentation.

• n: length of codeword. We construct codes with n =
k
R · β+2

β .
• δ = δ(τ) < 1/16. and, δ < min((1 − α)/2, 1/4).
• α = α(τ) < 1− 2δ(τ). We choose δ

20 dδ
≤ α ≤ δ

10 dδ
.

Therefore, for δ < 1/16, we have α > 1/200 dδ.
• dδ = m/ logn = Θ(1) that depends on δ. As δ decreases,

dδ increases.
• κ > 1600 dδ: error parameter.
• � > 0, � = Θ(1).

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

BLOCKI et al.: RELAXED LOCALLY CORRECTABLE CODES IN COMPUTATIONALLY BOUNDED CHANNELS 4359

Fig. 5. Dependency graph for Lemma 6.15.

IX. PROOF FLOWCHARTS

A. Proof Flow for Weak-CRLCC

See Fig. 3.

B. Proof Flow for Strong-CRLCC

See Figs. 4 and 5.

ACKNOWLEDGMENT

The authors are indebted to the anonymous reviewers,
whose suggestions and comments greatly helped improve the
quality of the presentation.

REFERENCES

[1] J. Alwen and J. Blocki, “Efficiently computing data-independent
memory-hard functions,” in Advances in Cryptology—CRYPTO 2016
(Lecture Notes in Computer Science), vol. 9815, M. Robshaw and
J. Katz, Eds. Heidelberg, Germany: Springer, Aug. 2016, pp. 241–271.

[2] J. Alwen, J. Blocki, and B. Harsha, “Practical graphs for optimal side-
channel resistant memory-hard functions,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, Eds. New York, NY, USA: ACM, 2017, pp. 1001–1017.

[3] J. Alwen, J. Blocki, and K. Pietrzak, “Depth-robust graphs and
their cumulative memory complexity,” in Advances in Cryptology—
EUROCRYPT 2017 (Lecture Notes in Computer Science), vol. 10212,
J.-S. Coron and J. B. Nielsen, Eds. Heidelberg, Germany: Springer, 2017,
pp. 3–32.

[4] J. Alwen, J. Blocki, and K. Pietrzak, “Sustained space complexity,”
in Advances in Cryptology—EUROCRYPT 2018 (Lecture Notes in
Computer Science), vol. 10821, J. B. Nielsen and V. Rijmen, Eds.
Heidelberg, Germany: Springer, 2018, pp. 99–130.

[5] J. Alwen, S. F. de Rezende, J. Nordström, and M. Vinyals, “Cumulative
space in black-white pebbling and resolution,” in Proc. 8th Innov.
Theor. Comput. Sci. Conf. (ITCS), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[6] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten, “Optimal
hashing-based time-space trade-offs for approximate near neighbors,”
in Proc. 28th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2017,
pp. 47–66.

[7] J. Alwen and V. Serbinenko, “High parallel complexity graphs and
memory-hard functions,” in Proc. 47th ACM STOC, R. A. Servedio and
R. Rubinfeld, Eds. New York, NY, USA: ACM, 2015, pp. 595–603.

[8] V. R. Asadi and I. Shinkar, “Relaxed locally correctable codes with
improved parameters,” 2020, arXiv:2009.07311. [Online]. Available:
http://arxiv.org/abs/2009.07311

[9] J. Alwen and B. Tackmann, “Moderately hard functions: Definition,
instantiations, and applications,” in Theory of Cryptography (Lecture
Notes in Computer Science), vol. 10677, Y. Kalai and L. Reyzin, Eds.
Heidelberg, Germany: Springer, 2017, pp. 493–526.

[10] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, “Checking computa-
tions in polylogarithmic time,” in Proc. 23rd Annu. ACM Symp. Theory
Comput. (STOC), 1991, pp. 21–31.

[11] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan,
“Robust PCPs of proximity, shorter PCPs, and applications to coding,”
SIAM J. Comput., vol. 36, no. 4, pp. 889–974, Jan. 2006.

[12] M. Blum and S. Kannan, “Designing programs that check their work,”
J. ACM, vol. 42, no. 1, pp. 269–291, Jan. 1995.

[13] D. J. Bernstein and T. Lange, “Non-uniform cracks in the concrete:
The power of free precomputation,” in Advances in Cryptology—
ASIACRYPT 2013 (Lecture Notes in Computer Science), vol. 8270,
K. Sako and P. Sarkar, Eds. Heidelberg, Germany: Springer, 2013,
pp. 321–340.

[14] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting with
applications to numerical problems,” J. Comput. Syst. Sci., vol. 47, no. 3,
pp. 549–595, Dec. 1993.

[15] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. ACM CCS, V. Ashby, Ed.
New York, NY, USA: ACM, 1993, pp. 62–73.

[16] J. Blocki, L. Ren, and S. Zhou, “Bandwidth-hard functions: Reductions
and lower bounds,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 1820–1836.

[17] J. Blocki and S. Zhou, “On the depth-robustness and cumulative peb-
bling cost of Argon2i,” in Theory of Cryptography (Lecture Notes in
Computer Science), vol. 10677, Y. Kalai and L. Reyzin, Eds. Heidelberg,
Germany: Springer, 2017, pp. 445–465.

[18] V. Chen, E. Grigorescu, and R. D. Wolf, “Error-correcting data struc-
tures,” SIAM J. Comput., vol. 42, no. 1, pp. 84–111, Jan. 2013.

[19] A. Chiesa, T. Gur, and I. Shinkar, “Relaxed locally correctable codes
with nearly-linear block length and constant query complexity,” in Proc.
14th Annu. ACM-SIAM Symp. Discrete Algorithms. Philadelphia, PA,
USA: SIAM, 2020, pp. 1395–1411.

[20] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[21] B. Cohen and K. Pietrzak, “Simple proofs of sequential work,” in
Advances in Cryptology—EUROCRYPT 2018 (Lecture Notes in Com-
puter Science), vol. 10821, J. B. Nielsen and V. Rijmen, Eds. Heidelberg,
Germany: Springer, 2018, pp. 451–467.

[22] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” in Advances in Cryptology—CRYPTO 2015 (Lecture Notes in
Computer Science), vol. 9216, R. Gennaro and M. J. B. Robshaw, Eds.
Heidelberg, Germany: Springer, 2015, pp. 585–605.

[23] Y. Ding, P. Gopalan, and R. Lipton, “Error correction against computa-
tionally bounded adversaries,” Tech. Rep., 2004.

[24] Z. Dvir, P. Gopalan, and S. Yekhanin, “Matching vector codes,” SIAM
J. Comput., vol. 40, no. 4, pp. 1154–1178, Jan. 2011.

[25] I. Dinur and P. Harsha, “Composition of low-error 2-query PCPs using
decodable PCPs,” in Proc. 50th Annu. IEEE Symp. Found. Comput. Sci.,
Oct. 2009, pp. 472–481.

[26] K. Efremenko, “3-query locally decodable codes of subexponential
length,” SIAM J. Comput., vol. 41, no. 6, pp. 1694–1703, Jan. 2012.

[27] P. Erdös, R. L. Graham, and E. Szemerédi, “On sparse graphs with dense
long paths,” Comput. Math. Appl., vol. 1, nos. 3–4, pp. 365–369, 1975.

[28] I. W. Gasarch, “A survey on private information retrieval (column:
Computational complexity),” Bull. EATCS, vol. 82, nos. 72–107, p. 113,
2004.

[29] O. Goldreich, “On post-modern cryptography,” Cryptol. ePrint Arch.,
Tech. Rep. 2006/461, 2006. [Online]. Available: https://eprint.iacr.org/

[30] T. Gur, G. Ramnarayan, and D. R. Rothblum, “Relaxed locally cor-
rectable codes,” in Proc. ITCS, 2018, pp. 27:1–27:11.

[31] V. Guruswami and A. Smith, “Optimal rate code constructions for
computationally simple channels,” J. ACM, vol. 63, no. 4, pp. 1–37,
Nov. 2016.

[32] B. Hemenway and R. Ostrovsky, “Public-key locally-decodable codes,”
in Proc. Annu. Int. Cryptol. Conf. Berlin, Germany: Springer, 2008,
pp. 126–143.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

4360 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

[33] B. Hemenway, R. Ostrovsky, M. J. Strauss, and M. Wootters, “Public key
locally decodable codes with short keys,” in Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques.
Berlin, Germany: Springer, 2011, pp. 605–615.

[34] J. Justesen, “Class of constructive asymptotically good algebraic codes,”
IEEE Trans. Inf. Theory, vol. IT-18, no. 5, pp. 652–656, Sep. 1972.

[35] I. Kerenidis and R. D. Wolf, “Exponential lower bound for 2-query
locally decodable codes via a quantum argument,” J. Comput. Syst. Sci.,
vol. 69, no. 3, pp. 395–420, Nov. 2004.

[36] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2014.

[37] N. Koblitz and A. J. Menezes, “Another look at ‘provable security,”’
J. Cryptol., vol. 20, no. 1, pp. 3–37, Jan. 2007.

[38] N. Koblitz and A. Menezes, “The random oracle model: A twenty-
year retrospective,” Cryptol. ePrint Arch., Tech. Rep. 2015/140, 2015.
[Online]. Available: https://eprint.iacr.org/

[39] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf, “High-rate locally
correctable and locally testable codes with sub-polynomial query com-
plexity,” J. ACM, vol. 64, no. 2, pp. 1–42, Jun. 2017.

[40] S. Kopparty and S. Saraf, “Guest column: Local testing and decoding
of high-rate error-correcting codes,” ACM SIGACT News, vol. 47, no. 3,
pp. 46–66, Aug. 2016.

[41] J. Katz and L. Trevisan, “On the efficiency of local decoding procedures
for error-correcting codes,” in Proc. 32nd Annu. ACM Symp. Theory
Comput. (STOC), 2000, pp. 80–86.

[42] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Algebraic methods
for interactive proof systems,” J. ACM, vol. 39, no. 4, pp. 859–868,
Oct. 1992.

[43] T. Gur and O. Lachish, “On the power of relaxed local decoding
algorithms,” SIAM J. Comput., vol. 50, no. 2, pp. 788–813, 2021.

[44] R. J. Lipton, “A new approach to information theory,” in Proc. STACS,
1994, pp. 699–708.

[45] A. Menezes, “Another look at provable security (invited talk),” in
Advances in Cryptology—EUROCRYPT 2012 (Lecture Notes in Com-
puter Science), vol. 7237, D. Pointcheval and T. Johansson, Eds.
Heidelberg, Germany: Springer, 2012, p. 8.

[46] M. Mahmoody, T. Moran, and S. P. Vadhan, “Publicly verifiable proofs
of sequential work,” in Proc. ITCS, R. D. Kleinberg, Ed. New York, NY,
USA: ACM, 2013, pp. 373–388.

[47] S. Micali, C. Peikert, M. Sudan, and D. A. Wilson, “Optimal error
correction against computationally bounded noise,” in Proc. Theory
Cryptogr. Conf. Berlin, Germany: Springer, 2005, pp. 1–16.

[48] D. Moshkovitz and R. Raz, “Two-query PCP with subconstant error,”
J. ACM, vol. 57, no. 5, pp. 1–29, Jun. 2010.

[49] R. Ostrovsky, O. Pandey, and A. Sahai, “Private locally decodable
codes,” in Proc. Int. Colloq. Automata, Lang., Program. (ICALP), 2007,
pp. 387–398.

[50] L. Ren and S. Devadas, “Bandwidth hard functions for ASIC resistance,”
in Theory of Cryptography (Lecture Notes in Computer Science),
vol. 10677, Y. Kalai and L. Reyzin, Eds. Heidelberg, Germany: Springer,
2017, pp. 466–492.

[51] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[52] R. Shaltiel and J. Silbak, “Explicit list-decodable codes with optimal rate
for computationally bounded channels,” in Proc. Approximation, Ran-
domization, Combinat. Optim. Algorithms Techn. (APPROX/RANDOM),
2016, pp. 45:1–45:38.

[53] M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom generators
without the XOR lemma (extended abstract),” in Proc. 31st Annu. ACM
Symp. Theory Comput. (STOC), 1999, p. 4.

[54] L. Trevisan, “Some applications of coding theory in computational
complexity,” CoRR, vol. cs.CC/0409044, 2004. [Online]. Available:
http://arxiv.org/abs/cs.CC/0409044

[55] S. Yekhanin, “Towards 3-query locally decodable codes of subexponen-
tial length,” J. ACM, vol. 55, no. 1, pp. 1–16, Feb. 2008.

[56] S. Yekhanin, “Locally decodable codes,” Found. Trends Theor. Comput.
Sci., vol. 6, no. 3, pp. 139–255, 2011.

Jeremiah Blocki is currently an Assistant Professor with the Department
of Computer Science, Purdue University. His primary research areas include
cryptography, data-privacy, and security with a special focus on password
authentication and memory hard functions. He was a recipient of the NSF
CAREER Award in 2021.

Venkata Gandikota is currently an Assistant Professor with the Department
of Electrical Engineering and Computer Science, Syracuse University. Previ-
ously, he was a Post-Doctoral Researcher with the University of Massachusetts
at Amherst and Johns Hopkins University. His research focuses on coding
theory and foundational problems in machine learning.

Elena Grigorescu is currently an Associate Professor with the Department
of Computer Science, Purdue University. She is also interested in sublinear
models of computations, recovering data affected by noise, and limits of
computation in a variety of models.

Samson Zhou received the B.S. and M.Eng. degrees from MIT in 2010 and
2011, respectively, and the Ph.D. degree from Purdue University. He spent one
year as a Post-Doctoral Researcher with Indiana University. He is currently
a Post-Doctoral Researcher with Carnegie Mellon University. His research
focuses on the theoretical foundations of data science, including sublinear
algorithms with an emphasis on streaming algorithms, machine learning, and
numerical linear algebra.

Authorized licensed use limited to: Purdue University. Downloaded on July 12,2022 at 11:03:08 UTC from IEEE Xplore. Restrictions apply.

