

1 **Revised manuscript: AEM01841-21**

2 **Mbn C is not required for the formation of the N-terminal oxazolone in the methanobactin**

3 **from *Methylosinus trichosporium* OB3b.**

4 Philip Dersholtz^{1,Ψ}, Wenyu Gu^{2Ψ‡}, Julien Roche¹, Christina S. Kang-Yun^{2†}, Jeremy D. Semrau²,

5 Thomas A. Bobik¹, Bruce Fulton¹, Hans Zischka³, and Alan A. DiSpirito^{1*}

6 ¹Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology. Iowa State

7 University, Ames, IA 50011-3260, USA

8 ²Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI,

9 48109-2125, USA

10 ³Institute of Molecular Toxicology and Pharmacology, Helmholtz Center München, German

11 Research Center and Environmental Health, Ingolsteader Landstrasse, Germany and Technical

12 University München, School of Medicine, Institute of Toxicology and Environmental Hygiene,

13 Biedersteiner Strasse 29, D-80802 Munich, Germany.

14 ^ΨCo-first authors

15 [‡]Current address: Department of Civil & Environmental Engineering, Stanford University,

16 Stanford, CA, 94305, USA

17 [†]Current address: Biosciences and Biotechnology Division, Lawrence Livermore National

18 Laboratory, Livermore, CA, 94550-9698, USA

19 *To whom correspondence should be addressed: Email: aland@iastate.edu; Phone: 1-515-294-

20 2944; Fax: 1-515-294-0453

21 Running title: Role of MbnC in Methanobactin Biosynthesis

22

23 **ABSTRACT** Methanobactins (MBs) are ribosomally synthesized and post-translationally
24 modified peptides (RiPPs) produced by methanotrophs for copper uptake. The post-
25 translational modification that define MBs is the formation of two heterocyclic groups with
26 associated thioamines from X-Cys dipeptide sequences. Both heterocyclic groups in the MB
27 from *Methylosinus trichosporium* OB3b (MB-OB3b) are oxazolone groups. The precursor gene
28 for MB-OB3b, *mbnA*, which is part of a gene cluster that contains both annotated and
29 unannotated genes. One of those unannotated genes, *mbnC*, is found in all MB operons, and in
30 conjunction with *mbnB*, is reported to be involved in the formation of both heterocyclic groups
31 in all MBs. To determine the function of *mbnC*, a deletion mutation was constructed in *M.*
32 *trichosporium* OB3b, and the MB produced from the Δ *mbnC* mutant was purified and
33 structurally characterized by UV-visible absorption spectroscopy, mass spectrometry and
34 solution NMR spectroscopy. MB-OB3b from Δ *mbnC* was missing the C-terminal Met and also
35 found to contain a Pro and a Cys in place of the pyrrolidiny-oxazolone-thioamide group. These
36 results demonstrate MbnC is required for the formation of the C-terminal pyrrolidinyl-
37 oxazolone-thioamide group from the Pro-Cys dipeptide, but not for the formation of the N-
38 terminal 3-methylbutanol-oxazolone-thioamide group from the N-terminal dipeptide Leu-Cys.
39

40 **IMPORTANCE** A number of environmental and medical applications have been proposed for
41 MBs, including bioremediation of toxic metals, nanoparticle formation, as well as for the
42 treatment of copper- and iron-related diseases. However, before MBs can be modified and
43 optimized for any specific application, the biosynthetic pathway for MB production must be
44 defined. The discovery that *mbnC* is involved in the formation of the C-terminal oxazolone

45 group with associated thioamide but not for the formation of the N-terminal oxazolone group

46 with associated thioamide in *M. trichosporium* OB3b suggests the enzymes responsible for

47 post-translational modification(s) of the two oxazolone groups are not identical.

48

49 **KEYWORDS** methanobactin • chalkophore• methanotroph • aerobic methane oxidation •

50 ribosomally synthesized and posttranslational modified peptide

51 Methanobactins (MBs) are low molecular mass (<1,300 Da), post-translationally modified
52 copper binding peptides excreted by some methanotrophs as the extracellular component of a
53 copper acquisition system (1-7). Structurally MBs are characterized by the presence of a C-
54 terminal oxazolone group with a C2-associated thioamide and by the presence of an N-terminal
55 oxazolone, imidazolone or pyrazinedione group with an associated thioamide. Some MBs also
56 contain a sulfate group in-place of the hydroxyl group on a Tyr adjacent to the C-terminal
57 oxazolone group. The best characterized MB is from *Methylosinus trichosporium* OB3b and the
58 post-translational modifications for this MB involves: (1) deamination of the N-terminal Leu, (2)
59 conversion of the N-terminal Leu-Cys dipeptide to 1-(N-(mercapto-(5-oxo-2- (3-
60 methylbutanoyl)oxazol-(Z)-4-ylidene)methyl), (3) conversion of the C-terminal Pro-Cys
61 dipeptide into pyrrolidin-2-yl-(mercapto-(5-oxo-oxazol-(Z)-4- ylidene)methyl); and (4) cleavage
62 of the leader sequence (2, 4, 5, 8-11).

63 The gene encoding the MB precursor peptide, *mbnA*, (5, 10) is found in a gene cluster
64 that contains both genes of known function such as *mbnB* (5, 11), *mbnN* (9), *mbnT* (12) as well
65 as unannotated genes such as *mbnC* (5, 10, 11, 13, 14). MbnB is a member of TIM barrel family
66 as well as the DUF692 family of diiron enzymes (11, 14). In heterologous expression studies in
67 *Escherichia coli*, MbnBC was shown to catalyze a dioxygen-dependent four electron oxidation of
68 Pro-Cys in MbnA (11, 14, 15). The role(s) of MbnB and MbnC could not be separately
69 determined as attempts to separately purify these gene products in *E. coli* failed (11). From
70 these data, it has been argued that MbnBC must act in concert and by doing so create both
71 heterocyclic groups in MBs (11). Such conclusions, however, appear to be premature for several
72 reasons. First, the reported spectra (11) only shows the presence of the C-terminal oxazolone

73 group, not the N-terminal oxazolone group as the 394 nm absorption maximum is missing.
74 Second, the absorption maximum at 302 nm, diagnostic for the presence of N-terminal
75 oxazolone group was absent (5, 8, 16). Third, no structural data was provided to support the
76 presence of both oxazolone groups. To examine if MbnBC act in concert and are involved in the
77 formation of both oxazolone groups in *M. trichosporium* OB3b, a deletion mutation for MnbC
78 was constructed ($\Delta mbnC$). The results show MbnC is required for the formation of the C-
79 terminal oxazolone group, but not for the formation of the N-terminal oxazolone group.
80

81 **RESULTS**

82 **Generation of $\Delta mbnC$**

83 The $\Delta mbnAN$ strain previously constructed whereby *mbnABCMN* were deleted using a sucrose
84 counter selected technique (9), was back complemented with *mbnABMN* through selective
85 amplification and ligation of *mbnAB* with *mbnMN*, deleting *mbnC*, and inserting this ligation
86 product into pTJS140, creating pWG104 (Table 1). Successful removal of *mbnC* from this
87 product was confirmed via sequencing (data not shown). The native σ^{70} -dependent promoter
88 upstream of *mbnA* was also incorporated into pWG104, and expression of *mbnABMN* but not
89 *mbnC* (from pWG104), as well as *mbnPH* (from the chromosome) was confirmed via RT-PCR
90 (Figs. S1 and S2).

91 **UV-visible absorption and mass spectrometry of metal-free MB from *M. trichosporium***
92 **OB3b $\Delta mbnC$** Comparison of the UV-visible absorption spectra of MB from *M. trichosporium*
93 OB3b $\Delta mbnC$ to wildtype MB-OB3b suggested the presence of the N-terminal oxazolone
94 group, but the absence of C-terminal oxazolone (Figs. 1 and S3). The molecular mass of native,

95 full length MB-OB3b is 1154 Da, and MB-OB3b lacking the C-terminal Met is 1023 Da. It should
96 be noted that both forms of MB-OB3b are present in most MB-OB3b preparations (2, 5, 17).
97 The molecular mass of Δ MbnC was 1,018Da as determined by electrospray ionization (ESI)
98 MS/MS (Fig. 2), which was within 1Da of the predicted molecular mass of MB-OB3b in which
99 only one oxazolone group was formed. Taken together, the UV-visible absorption spectra and
100 molecular mass data suggest Δ mbnC lacked the C-terminal Met as well as the N-terminal
101 oxazolone group with a 1-(*N*-[mercapto-(5-oxo-2-(3-methylbutanoyl)oxazol-(*Z*)-4-
102 ylidene)methyl]-GSCYPCSC predicted structure (Fig. 3B). In contrast to wild-type MB-OB3b, the
103 C-terminal Met was never observed in MbnC.

104 **Chemical Structure of metal free Δ mbnC as determined by NMR spectroscopy.** Metal-
105 free MB has multiple conformations, making structural studies of MBs via solution NMR or
106 crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu^{2+} (which is
107 bound and reduced to Cu^{1+} by native MB-OB3b) stabilizes MB-OB3b into one conformation,
108 allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts
109 to investigate the structure of the MB intermediate produced by the Δ mbnC strain via NMR
110 were unsuccessful. In contrast to native MB, the MB intermediate from the Δ mbnC strain
111 bound, but did not reduce Cu^{2+} to Cu^{+} , resulting in peak broadening from paramagnetic Cu^{2+} .
112 This necessitated a different strategy. Substituting other metals with similar binding behavior
113 for copper, Au^{3+} , Zn^{2+} , Co^{2+} and Ni^{2+} also failed to produce well-behaved complexes. Therefore,
114 it was necessary to examine metal-free Δ mbnC.

115 At standard temperature and pressure, $\Delta m_{bn}C$ undergoes exchange between multiple
116 conformations on an intermediate time scale, leading to excessive line broadening (Fig. S5). In
117 order to slow down the rate of exchange and reduce line broadening, we sampled various
118 temperature and hydrostatic pressure conditions. We found that 2D 1H - ^{15}N NMR spectra of
119 $\Delta m_{bn}C$ recorded at high pressure (3000 bar) and low temperature (265 K) (18,19) show
120 significantly reduced line broadening and gave excellent spectra in the absence of copper (Fig.
121 4).

122 A series of NMR experiments were conducted on $\Delta m_{bn}C$, including homonuclear
123 correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), rotating-frame nuclear
124 Overhauser effect spectroscopy (ROESY), 1H - ^{15}N and 1H - ^{13}C heteronuclear single-quantum
125 correlation spectroscopy (HSQC), and heteronuclear multiple-bond correlation spectroscopy
126 (HMBC). These experiments enabled assigning all non-hydroxyl 1H , non-conjugated ^{13}C , and all
127 ^{15}N resonances (Table 2 and Figs.4 and S6). The assigned chemical shifts show that the MB from
128 $\Delta m_{bn}C$ contains 8 amino acids - 3Cys, 2Ser, 1Gly, 1Tyr and 1Pro and 1 oxazolone group (Fig. 4).
129 The 1D ^{15}N experiment showed a peak at 109ppm that was absent from the $[^1H, ^{15}N]$ -HSQC
130 spectra and was assigned to proline. However, the glycine nitrogen peak was especially broad,
131 and could only be assigned with the 1H - ^{15}N -HSQC. Finally, while the 1D ^{15}N experiment had
132 several resonances around 180ppm - likely due to hydrolysis and deprotonation - only one of
133 them had a correlation with 1H in the 1H - ^{15}N -HSQC indicating a single oxazolone group. The
134 NMR results are consistent with the UV-visible absorption spectra, and the ESI-MS results and
135 with the structure shown in Fig. 3B.

136 **DISCUSSION**

137 Due to the variability in the core sequences of structurally characterized MBs, it is
138 difficult to use *mbnA* to screen the potential ability of microbes to produce MB. Instead, *mbnB*
139 and *mbnC* sequences are commonly used as they are found in all known *mbn* gene clusters (5,
140 13). All known MBs contain two heterocyclic rings, with the N-terminal ring found to be either
141 an oxazolone, pyrazinedione or imidazolone ring, while the C-terminal ring always found to be
142 an oxazolone. Given these data, it could be presumed that MbnBC is involved in the formation
143 of the C-terminal oxazolone group along with an associated thioamide, while the N-terminal
144 oxazolone groups is formed via a different process such as the involvement of an
145 aminotransferase as concluded earlier (5, 9, 10, 13).

146 Other researchers have attempted to elucidate the role of MbnB and MbnC in
147 methanobactin maturation (11). These individuals were unable to separately heterologously
148 express soluble protein from either MbnB or MbnC, but were able to co-heterologously
149 expressed MbnBC as a heterodimeric complex. In studies where the MbnA precursor
150 polypeptide was incubated with this MbnBC complex, the authors conclude that MbnBC was
151 involved in the formation of both oxazolone groups and the associated thioamides of MB-OB3b.
152 It should be noted, however, that in this study, no structural evidence (i.e., solution NMR data)
153 was provided to definitively show the presence of either ring, rather such conclusions were
154 largely based on mass spectral analyses of MbnA after incubation with the MbnBC complex.
155 Further, the authors assumed that since their construct did not contain the N-terminal
156 aminotransferase, MbnN, the extended conjugation resulting from this reaction would result in
157 both oxazolone groups having identical absorption maxima. The idea that the extended

158 conjugation of the N-terminal oxazolone could be responsible for the bathochromic shift was
159 first proposed as a possible reason for the 50nm shift in the absorption maxima by Krentz *et al.*
160 (5). Kenny *et al.* used this theory to bolster their claim that both oxazolone groups were
161 present in the product from their heterologous system, with both oxazolone groups showing
162 the identical absorption spectra (11). The evidence to support this claim came from their
163 $\Delta mbnN$ strain in *M. trichosporium* OB3b. MbnN is responsible for the deamination of the N-
164 terminal Leu in *M. trichosporium* OB3b extending the conjugation one additional double bond.
165 In this study the authors claim they can stabilize the MB produced by the $\Delta mbnN$ strain by the
166 addition of copper before purification. UV-visible absorption spectra of copper containing-
167 $\Delta MbnN$ suggest the possible presence of two-oxazolone groups but additional evidence no
168 additional evidence was provided supporting this claim.

169 This observation was surprising as the MB produced by $\Delta mbnN$ strain in our laboratory
170 showed similar UV-visible absorption spectra throughout the growth cycle suggesting the
171 absence of the N-terminal oxazolone group (Fig. S7). In addition, the UV-visible absorption
172 spectra, LC-MS/MS, FT-ICR-MS, amino acid analysis, number of thiol groups, copper binding
173 properties, and pattern of acid hydrolysis demonstrate the absence of the N-terminal
174 oxazolone group in $\Delta MbnN$ (9).

175 Additional evidence that the bathochromic shift in MBs with two oxazolone groups is
176 unlikely to solely arise from the addition of one double bond following deamination of the N-
177 terminal amine comes from examination of the group I MB from *Methylocystis parvus* OBBP.
178 Acid hydrolysis of the MB from *M. parvus* OBBP shows a similar hydrolysis pattern to that
179 observed with the MB from *M. trichosporium* OB3b, demonstrating the presence of two

180 oxazolone groups, with absorption maxima at 340 and 390nm (Fig. S8). However, both MB
181 operons from *M. parvus* OBBP lack *mbnN* and without deamination of the N-terminal Phe, the
182 conjugation around the N-terminal oxazolone group would not be extended. It is possible that
183 another aminotransferase in the *M. parvus* OBBP genome may catalyze deamination of the N-
184 terminal Phe. However, this appears unlikely as deamination of the N-terminal amino acid has
185 never been observed in structurally characterized MBs from operons lacking *mbnN* (3, 5). The
186 results suggest deamination of the N-terminal amino acid is not solely responsible for the 40 –
187 50nm absorption maxima difference between oxazolone groups in MBs. The absence of either
188 the N-terminal or C-terminal oxazolone group in a small (0.5-2%) fraction of most MB-OB3b
189 preparations (Fig. S3) also questions the suggestion that the absorption maxima difference
190 between the N-terminal and C-terminal oxazolone groups is due solely to extending the
191 conjugation of an additional double bond introduced following the deamination reaction.

192 The results presented here confirms MbnC is required for the formation of the C-
193 terminal oxazolone group (Fig. 5). However, the results presented here also demonstrates
194 MbnC is not required for the formation of the N-terminal oxazolone group in *M. trichosporium*
195 OB3b suggesting the formation of the two heterocyclic groups with associated thioamides from
196 XC dipeptides do not utilize the same enzyme(s). Future studies will determine if MbnB is
197 involved in the formation of the N-terminal oxazolone, pyranzinedione or imidazolone groups.
198 Resolution of the pathway and enzymes responsible for the post-translational modifications
199 required for the synthesis of MB in methanotrophic bacteria will aid in the production of MBs
200 derivatives with pharmacological properties specific for different metal-related diseases (19-24)
201 as well as for environmental applications(10, 25).

202

203 **MATERIALS AND METHODS**

204 **Bacterial strains, growth media, and culture conditions.**

205 Plasmid construction was accomplished using *Escherichia coli* strain TOP10 (Invitrogen, Carlsbad,

206 CA) as described previously (9). Plasmids used and constructed during this study are shown in

207 Table 1. The donor strain for conjugation of plasmids into *Methylosinus trichosporium* OB3b

208 was *E. coli* S17-1 (26). *E. coli* strains were cultivated at 37°C in Luria broth medium (Dot

209 scientific, Burton, MI). Methanotrophic strains (i.e., *M. trichosporium* OB3b wildtype, *M.*

210 *trichosporium* OB3b Δ mbnAN, *M. trichosporium* OB3b Δ mbnC, *Methylocystis* sp. strain SB2,

211 and *Methylocystis parvus* OBBP) were cultivated at 30°C on nitrate mineral salts (NMS) medium

212 (27), either in 250 ml flasks with side-arms at 200 rpm or in a 15-liter New Brunswick Bioflow

213 310 fermenter (Eppendorf, Hauppauge, NY, USA) using methane as the sole carbon and energy

214 source. Where necessary, filter-sterilized solutions of copper (as CuCl₂) and spectinomycin were

215 added to culture media aseptically. A working concentration of 20 μ g•ml⁻¹ spectinomycin was

216 used for maintaining pWG104 in the *M. trichosporium* OB3b Δ mbnAN deletion mutant (i.e., *M.*

217 *trichosporium* OB3b Δ mbnC). Chemicals were purchased from Fisher Scientific (Waltham, MA)

218 or Sigma Aldrich (St. Louis, MO) with American Chemical Society reagent grade or better.

219 For ¹⁵N NMR, K¹⁴NO₃ in NMS media was replaced with K¹⁵NO₃ (Cambridge Isotope

220 Laboratories, Cambridge, MA, USA).

221

222 **General DNA Methods, transformation and conjugation.**

223 DNA purification and plasmid extraction were performed using QIAquick and QIAprep kits from
224 Qiagen following the manufacturer's instruction. DNA cloning, preparation of chemically
225 competent cells, and plasmid transformation with *E. coli* were performed according to (28) .
226 Enzymes used for restriction digestion and ligation were purchased from New England Biolabs
227 (Ipswich, MA). PCR of DNA for cloning purposes was accomplished using iProof-High Fidelity
228 polymerase (Bio-Rad, Hercules, CA, USA). PCR for general purposes was accomplished using
229 GoTaq DNA polymerase (Promega, Fitchburg, WI, USA). PCR programs were set according to
230 manufacturers' suggestion. Plasmid pWG104 was conjugated into *M. trichosporium* OB3b
231 Δ mbnAN with *E. coli* S17.1 as the donor strain as described by Martin and Murrell (29).
232

233 **Construction of *M. trichosporium* OB3b Δ mbnC strain**

234 Previously a mutant of *M. trichosporium* was constructed where *mbnABCMN* was deleted using
235 a counter-selection technique (9). To characterize the function of *mbnC*, a Δ mbnC mutant was
236 constructed by introducing pWG104 expression vector into the Δ mbnAN mutant. pWG104 was
237 constructed by cloning two separate DNA fragments, one being a 1.9-kb DNA fragment of
238 *mbnAB* (created via use of primers mbnANf and mbn66) and the other being a 2.5 DNA
239 fragment of *mbnMN* (create via use of primers mbn70 and mbnANr), leaving out *mbnC*. These
240 two fragments were amplified with BamHI restriction sites as indicated in Fig S2. These were
241 then ligated together and cloned into the broad host range vector pTJS140 at the KpnI site.
242

243 **Extraction of RNA and reverse transcription-PCR (RT-PCR)**

244 To check the expression of genes restored to the *M. trichosporium* OB3b Δ mbnC mutant (e.g.
245 *mbnA*, *B*, *M* and *N*), genes associated with MB remaining in the chromosome (*mbnPH*), as well
246 as the absence of *mbnC*, RNA from the Δ mbnC mutant was collected, purified, and reverse
247 transcribed to cDNA to perform RT-PCR. Total RNA was isolated as described earlier (9). Briefly,
248 the Δ mbnC mutant was grown to the exponential phase, and RNA extracted using a phenol-
249 chloroform method modified from Griffiths *et al.* (30). Collected RNA was purified and removal
250 of DNA confirmed by the absence of 16S rRNA PCR product from PCR reactions. The same
251 amount of RNA (500ng) was used for reverse transcription by SuperScript III reverse
252 transcriptase (Invitrogen, Carlsbad, CA) for all reactions. RT-PCR analyses were performed to
253 confirm the expression of *mbnABMNPH* as well as the absence of *mbnC* using primers listed in
254 Table 1.

255

256 **Isolation of MB from *M. trichosporium* OB3b, *Methylocystis* strain SB2, *Methylocystis*
257 *parvus* OBBP and Δ mbnC.** MBs from all three methanotrophs were purified as previously
258 described (31).

259 **UV-visible absorption spectra.** UV-visible absorption spectra of MbnC⁻, HPLC fractions
260 from MB preparations from *M. trichosporium* OB3b and *Methylocystis* strain SB2 and from the
261 MB from *M. parvus* OBBP were determined as previously described (32, 33). Acid hydrolysis of
262 the oxazolone groups in the MB from *M. parvus* OBBP was carried out in 85 μ M acetic acid as
263 previously described (32)

264 **Structural Characterization of Δ MbnC.** UV-visible spectroscopy was recorded on a Cary
265 50 (Agilent, Santa Clara, CA, USA). Electrospray ionization (ESI)MS/MS was performed on an

266 Agilent LC using a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer
267 (Waltham, MA, USA) with an HCD fragmentation cell and an Agilent 1260 Infinity Capillary
268 Pump with an Agilent Zorbax SB-C18, 0.5mm x 150mm, 5 micron, using 0.1% formic acid/water
269 and 0.1% formic acid/acetonitrile as buffers A and B, respectively. NMR experiments were
270 performed on a Bruker Advance 700 (Bruker Allentown PA, USA) with a Bruker 5 mm TCI 700
271 H/C/N cryoprobe or on a Bruker Advance 800 with a Bruker 5 mm TCI 800 H/C/N cryoprobe.
272 NMR solutions were made using 15-40mg uniformly ^{15}N -MB-OB3b in a 90:10 $\text{H}_2\text{O:D}_2\text{O}$ mixture
273 at pH 6.5. Unless otherwise specified, all experiments were run at 265 K and 3 kbar. Samples
274 were placed in 3 kbar-rated sapphire NMR tubes (Daedalus Innovations LLC, Beverdam, VA, USA)
275 and high pressure was generated by an Xtreme 60 (Daedalus Innovations). Analysis was
276 performed in Mnova (Mestrelab Research, Escondido, CA, USA).

277

278 **ACKNOWLEDGEMENTS**

279 **Funding:** This research was supported by the U.S. Department of Energy Office of Science
280 (Grants #DE-SC0018059 and DE-SC0020174; JDS and AAD), the National Science Foundation
281 (Grant #1912482; JDS), the Roy J. Carver Charitable Trust (Muscatine, IA, USA) (JR)
282 and the ISU Bailey Research and Career Development (TAB). Use of the Bruker Advance 800 was
283 made possible through a generous gift from the Roy J. Carver Charitable Trust.

284 **Competing interests:** Authors declare they have no competing interests.

285

286 **REFERENCES**

287 1. DiSpirito AA, Semaru JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. 2016.
288 Methanobactin and the link between copper and bacterial methane oxidation. *Microbiol*
289 *Mol Biol Rev* 80:387-409.

290 2. El Ghazouani A, Basle A, Firbank SJ, Knapp CW, Gray J, Graham DW, Dennison C.
291 2011. Copper-binding properties and structures of methanobactins from *Methylosinus*
292 *trichosporium* OB3b. *Inorg Chem* 50:1378-91.

293 3. El Ghazouani A, Basle A, Gray J, Graham DW, Firbank SJ, Dennison C. 2012.
294 Variations in methanobactin structure influences copper utilization by methane-oxidizing
295 bacteria. *Proc Natl Acad Sci U S A* 109:8400-4.

296 4. Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunkis D,
297 Sherwood PM. 2004. Methanobactin, a copper-acquisition compound from methane-
298 oxidizing bacteria. *Science* 305:1612-5.

299 5. Krentz BD, Mulheron HJ, Semrau JD, DiSpirito AA, Bandow NL, Haft DH, Vuilleumier
300 S, Murrell JC, McEllistrem MT, Hartsel SC, Gallagher WH. 2010. A comparison of
301 methanobactins from *Methylosinus trichosporium* OB3b and *Methylocystis* strain SB2
302 predicts methanobactins are synthesized from diverse peptide precursors modified to
303 create a common core for binding and reducing copper ions. *Biochemistry* 49:10117-
304 10130.

305 6. Semau JD, DiSpirito AA, Obulisanmy PK, Kang CS. 2020. Methanobactin from
306 methanotrophs: genetics, structure, function and potential applications. *FEMS Microbiol*
307 Lett

308 7. Semrau JD, DiSpirito AA, Gu W, Yoon S. 2018. Metals and Methanotrophy. *Appl*
309 *Environ Microbiol* 84:e02289-17.

310 8. Behling LA, Hartsel SC, Lewis DE, DiSpirito AA, Choi DW, Masterson LR, Veglia G,
311 Gallagher WH. 2008. NMR, mass spectrometry and chemical evidence reveal a different
312 chemical structure for methanobactin that contains oxazolone rings. *J Am Chem Soc*
313 130:12604-5.

314 9. Gu W, Baral BS, DiSpirito AA, Semrau JD. 2017. An aminotransferase is responsible for
315 the deamination of the N-terminal leucine and required for formation of oxazolone ring A
316 in Methanobactin of *Methylosinus trichosporium* OB3b. *Appl Environ Microbiol*
317 82:e01619-16.

318 10. Semrau JD, DiSpirito AA, Obulisanmy PK, Kang-Yun CS. 2020. Methanobactin from
319 methanotrophs: genetics, structure, function and potential applications. *FEMS Microbiol*
320 *Lett* 367:fnaa045.

321 11. Kenney GE, Dassama LMK, Pandelia M-E, Gizzi AS, Martinie RJ, Gao P, DeHart CJ,
322 Schachner LF, Skinner OS, Ro SY, Zhu X, Sadek M, Thomas PM, Almo SC, Bollinger
323 MJ, Krebs C, Kelleher NL, Rosenzweig AC. 2018. The biosynthesis of methanobactin.
324 *Science* 359:1411-1616.

325 12. Gu W, Farhan U-HM, Baral BS, Turpin EA, Bandow NL, DiSpirito AA, Lichtmannegger
326 J, Kremmer E, Zischka H, Semrau JD. 2016. A TonB dependent transporter is
327 responsible for methanobactin uptake by *Methylosinus trichosporium* OB3b. *Appl*
328 *Environ Microbiol* 82:1917-1923.

329 13. Kenney GE, Rosenzweig AC. 2013. *BMC Biol* 11:17.

330 14. Chou JC-C, Strafford VE, Kenny GE, Dassama LMK. 2021. The enzymology of
331 oxazolone and thioamide synthesis in Methanobactin. *Meth Enzymol* 656:341-373.

332 15. Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW, Semrau JD, Pohl NL, Kisting CJ,
333 Scardino LL, Hartsel SC, Boyd ES, Geesey GG, Riedel TP, Shafe PH, Kranski KA,
334 Tritsch JR, Antholine WE, DiSpirito AA. 2006. Spectral and thermodynamic properties
335 of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II)
336 binding by methanobactin from *Methylosinus trichosporium* OB3b. J Inorg Biochem
337 100:2150-61.

338 16. Eckert P, Jobs A, Semaru JD, DiSpirito AA, Richards J, Sarangi R, Herndon E, Gi B,
339 Pierce EM. 2021. Spectroscopic and computational investigations of organometallic
340 complexation of group 12 transition metals by methanobactins from *Methylocystis* sp.
341 SB2. J Inorgan Biochem <https://doi.org/10.1016/j.jinorgbio.2021.111496>.

342 17. Bandow NL, Gallagher WH, Behling L, Choi DW, Semrau JD, Hartsel SC, Gilles VS,
343 Dispirito AA. 2011. Isolation of methanobactin from the spent media of methane-
344 oxidizing bacteria. Meth Enzymol 495:259-69.

345 18. Kenney GE, Goering AW, Ross MO, DeHart CJ, Thomas PM, Hoffman BM, Kelleher
346 NL, Rosenzweig AC. 2016. Characterization of methanobactin from *Methylosinus* sp.
347 SW4. J Am Chem Soc 138:11124 - 11127.

348 19. Zischka H, Lichmannnegger J, DiSpirito AA, Semrau JD. 2020. Methods and Means of
349 Treating Copper Related Diseases. International.

350 20. Zischka H, Lichtmannegger J, Schmitt S, Jagemann N, Schulz S, Wartini D, Jennen L,
351 Rust C, Larochette N, Galluzzi L, Chajes V, Bandow N, Gilles VS, DiSpirito AA,
352 Esposito I, Goettlicher M, Summer KH, Kroemer G. 2011. Liver mitochondrial
353 membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest
354 121:1508-18.

355 21. Lichmannegger J, Leitinger C, Winner R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C,
356 Rieder T, Janik D, Neff F, Aichler M, DiSpirito AA, Bandow NL, Baral BS, Flatler A,
357 Kremmer E, Denk G, Hohenester S, Eckardt-Schupp F, Dencher N, Adamski J, Merle U,
358 Gotthardt DN, Kroemer G, Weiss KH, Zischka H. 2016. Methanobactin: a new effective
359 treatment strategy against acute liver failure in a Wilson disease rat model. *J Clin Inves*
360 126:2721-2735.

361 22. Choi DW, Semrau JD, Antholine WE, Hartsel SC, Anderson RC, Carey JN, Dreis AM,
362 Kenseth EM, Renstrom JM, Scardino LL, Van Gorden GS, Volkert AA, Wingad AD,
363 Yanzer PJ, McEllistrem MT, de la Mora AM, DiSpirito AA. 2008. Oxidase, superoxide
364 dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and
365 II methanotrophs. *J Inorg Biochem* 102:1571-80.

366 23. Summer KH, Lichmannegger J, Bandow N, Choi DW, DiSpirito AA, Michalke B. 2011.
367 The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson
368 disease. *J Trace Elem Med Biol* 25:36-41.

369 24. Mullert J-C, Lichmannegger J, Zischka H, Sperling M, Karst U. 2018. High spatial
370 resolution of LA-ICP-MS demonstrates massive liver copper depletion in Wilson disease
371 rats upon methanobactin treatment. *J Trace Elem Med Biol* 49:119-127.

372 25. Lu X, Gu W, Zhao L, Fagan UHM, DiSpirito AA, Semrau JD, Gu B. 2017.
373 Methylmercury uptake and degradation by methanotrophs. *Science Adv* 3:e1700041.

374 26. Simon R. 1984. High frequency mobilization of gram-negative bacterial replicons by the
375 in vitro constructed Tn5-Mob transposon. *Mol Gen Genet* 196:413-420.

376 27. Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some
377 properties of methane-utilizing bacteria. *J Gen Microbiol* 61:205-18.

378 28. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual 3rd edition.
379 Coldspring-Harbor Laboratory Press, UK.

380 29. Martin H, Murrell JC. 1995. Methane monooxygenase mutants of *Methylosinus*
381 *trichosporium* constructed by marker-exchange mutagenesis. FEMS Lett 127:243 - 248.

382 30. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. 2000. Rapid method for
383 coextraction of DNA and RNA from natural environments for analysis of ribosomal
384 DNA-and rRNA-based microbial community composition. Appl Environ Microbiol
385 66:5488-5491.

386 31. Dershwiz P, Bandow NL, Yang J, Semrau JD, McEllistrem MT, Heinze RA, Fonseca M,
387 Ledesma JC, Jennett JR, D'iSpirito AM, Athwal NS, Hargrove MS, Bobik TA, Zischka
388 H, DiSpirito AA. 2021. Oxygen generation via water splitting by a novel biogenic metal
389 ion binding compound. Appl Environ Microbiol 87:e00286-21.

390 32. Bandow N, Gilles VS, Freesmeier B, Semrau JD, Krentz B, Gallaghe W, McEllistrem
391 MT, Hartse SC, Cho DW, Hargrove MS, Heard TM, Chesner LM, Braunreiter KM, Cao
392 BV, Gavitt MM, Hoopes JZ, Johnson JM, Polster EM, Schoenick BD, A.M. U, DiSpirito
393 AA. 2012. Spectral and copper binding properties of methanobactin from the facultative
394 methanotroph *Methylocystis* strain SB2. J Inorgan Biochem 110:72 - 82.

395 33. Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE, Hargrove MS, Pohl NL, Boyd ES,
396 Geesey GG, Hartsel SC, Shafe PH, McEllistrem MT, Kisting CJ, Campbell D, Rao V, de
397 la Mora AM, Dispirito AA. 2006. Spectral, kinetic, and thermodynamic properties of
398 Cu(I) and Cu(II) binding by methanobactin from *Methylosinus trichosporium* OB3b.
399 Biochemistry 45:1442-53.

400 34. Smith TJ, Slade SE, Burton NP, Murrell JC, Dalton H. 2002. Improved system for
401 protein engineering of the hydroxylase component of soluble methane monooxygenase.
402 Applied and environmental microbiology 68:5265-5273.

403 35. Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman B, Freemeir BC,
404 Baral BS, Bandow NL, Vorobev A, Haft DH, Vuilleumier S, Murrell JC. 2013.
405 Methanobactin and MmoD work in concert to act as the “copper switch” in
406 methanotrophs. Environ Microbiol 15:3077 - 3086.

407

408

409 **Figure Legends**

410 Fig. 1. UV-visible absorption spectra of MB-OB3b (blue) and Δ MbnC (red). Abbreviations; OxaA,
411 oxazolone A or the N-terminal oxazolone group; OxaB, oxazolone B or the C-terminal
412 oxazolone group.

413 Fig. 2. LC-ESI-MS of methanobactin from Δ *mbnC*.

414

415 Fig 3 (A) Structure of wild-type MB-OB3b, with the labile terminal methionine in gray. (B)

416 Proposed structure of Δ MbnC based on UV-visible absorption spectra, LC-MS and NMR
417 analysis, the differences between MB-OB3b-Met and Δ MbnC are highlighted in red. C.

418 Amino acid sequence of (a) wild-type MB-OB3b minus the C-terminal Met and (b) Δ MbnC.

419

420 Fig. 4. 800 MHz (1 H, 15 N)-HSQC spectrum of uniformly 15 N-labeled Δ MbnC in 90% 9 mM
421 phosphate buffer, pH 6.5, and 10% D₂O at 265K and 3000 bar. The horizontal and vertical
422 1D spectra are 1 H and 15 N spectra, respectively.

423

424 Fig. 5. A. MB-OB3b gene cluster. Genes with known involvement in MB-OB3b synthesis and
425 transport are shown in blue. B. Proposed genes involved in the biosynthesis of the
426 oxazolones rings with associated thioamides from MbnA. Additional, yet to be identified
427 genes may also be involved in the formation of oxazolone groups.

428

Table 1. Strains, plasmids, and primers used in this study.

Strains/Plasmids	Description	Restriction site	Reference/Source
<i>Escherichia coli</i>			
TOP10	F- <i>mcrA</i> Δ(<i>mrr-hsdRMS-mcrBC</i>) Φ80lacZΔM15 Δ <i>lacX74 recA1 araD139</i> Δ(<i>ara leu</i>) 7697 <i>galU galK rpsL</i> (StrR) <i>endA1 nupG</i>		Invitrogen
S17.1 λ _{pir}	<i>recA1 thi pro hsdR- RP4-2Tc::Mu Km::Tn7 λpir</i>		(26)
<i>Methylosinus trichosporium</i>			
OB3b	Wild-type strain		
Δ <i>mbnAN</i>	<i>mbnABMN</i> deleted		(9)
Δ <i>mbnC</i>	Δ <i>mbnAN</i> carrying pWG104		this study
Plasmids			
pTJS140	Broad-host-range cloning vector; Mob Ap ^r Sp ^r Sm ^r <i>lacZ</i>		(34)
pWG104	pTJS140 carrying <i>mbnABMN</i> with its native promoter		this study
Primers			
mbnANf	<u>ATTTTTggtacc</u> GACGTTCGGGTCTTCTTCGC	KpnI	(9)
mbnANr	<u>ATTTTTggtacc</u> CGCCTCTAGATCATTCCGAC	KpnI	(9)
mbn66	<u>ATTTTTggatcc</u> CGAACAAATGTGTGCCAGTAG	BamHI	this study
mbn70	<u>ATTTTTggatcc</u> GTTCGGCTATTCCCTGACGC	BamHI	this study
qmbnA_FO	TGGAAACTCCCTTAGGAGGAA		(35)
qmbnA_RO	CTGCACGGATAGCACGAAC		(35)
qmbnB_F1	TGGTCCAGCAGATGATCAAAG		this study
qmbnB_R2	TTCCCGAGCTTCTCCAATTC		this study
dmbnC_F	GGGAGAACAAACCTCGCTTT		this study

dmrnC_R	CTTCCCAGCACGATCTGAC	this study
qmrnM_F	GCTAGGCTGGCTCCTTATC	this study
qmrnM_R	GATGTTGACCACAAACCGAAAG	this study
qmrnN_F	CGATTCCATCCTTCCGATGT	this study
qmrnN_R	CACTTCGAAGACAAGGAGAGA	this study
qmrnP_F	AAAGGGAAGCACACACCCAT	this study
qmrnP_R	GTCGTGTTCTTGGCCGGATT	this study
qmrnH_F	ACTTACCGAAATACATCCCGC	this study
qmrnH_R	CGGAGAGGCGCTTATCGTAG	this study
431		
432		
433		

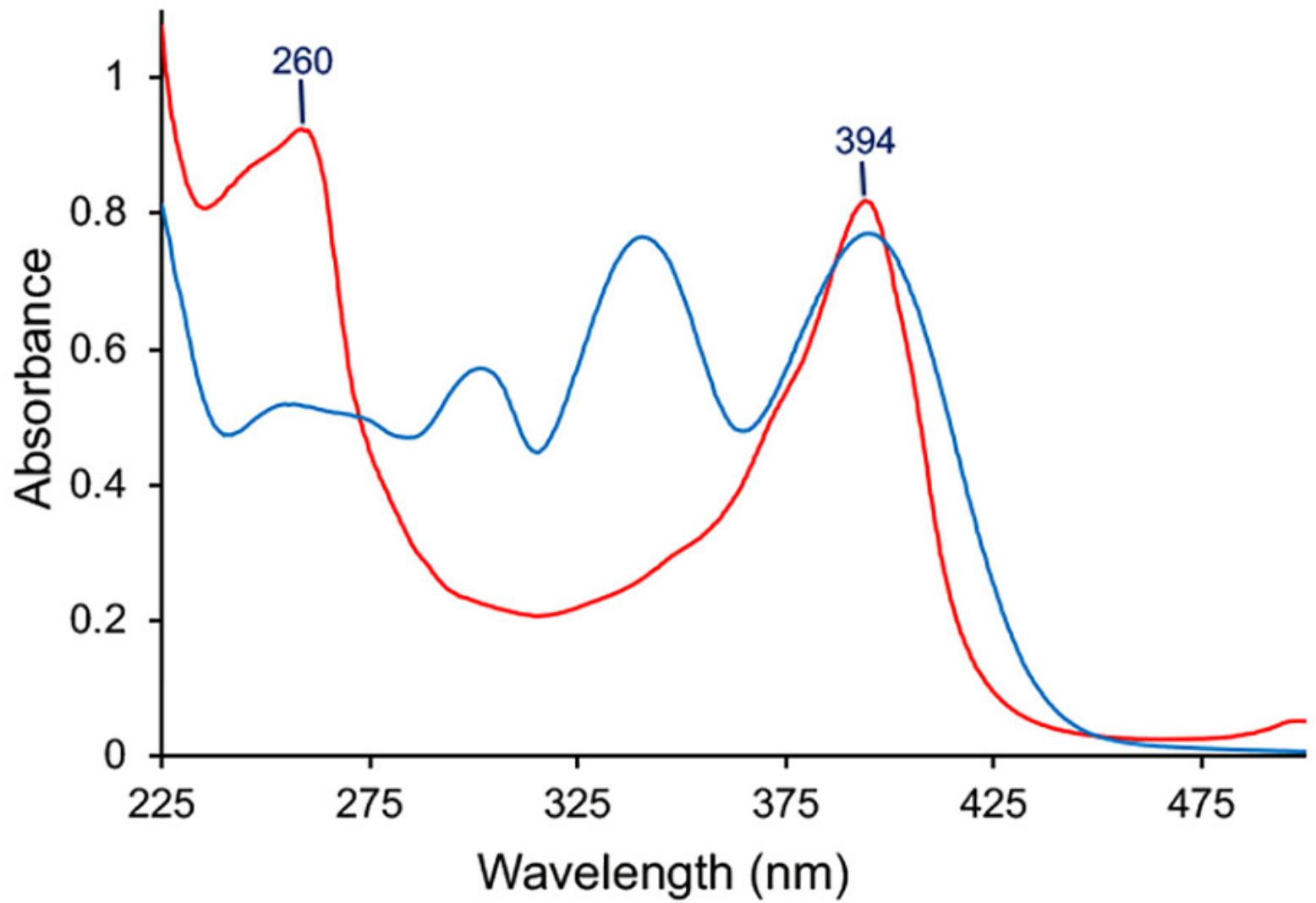
435 **Table 2.** ^1H , ^{13}C , and ^{15}N resonances for metal free ΔMbnC .

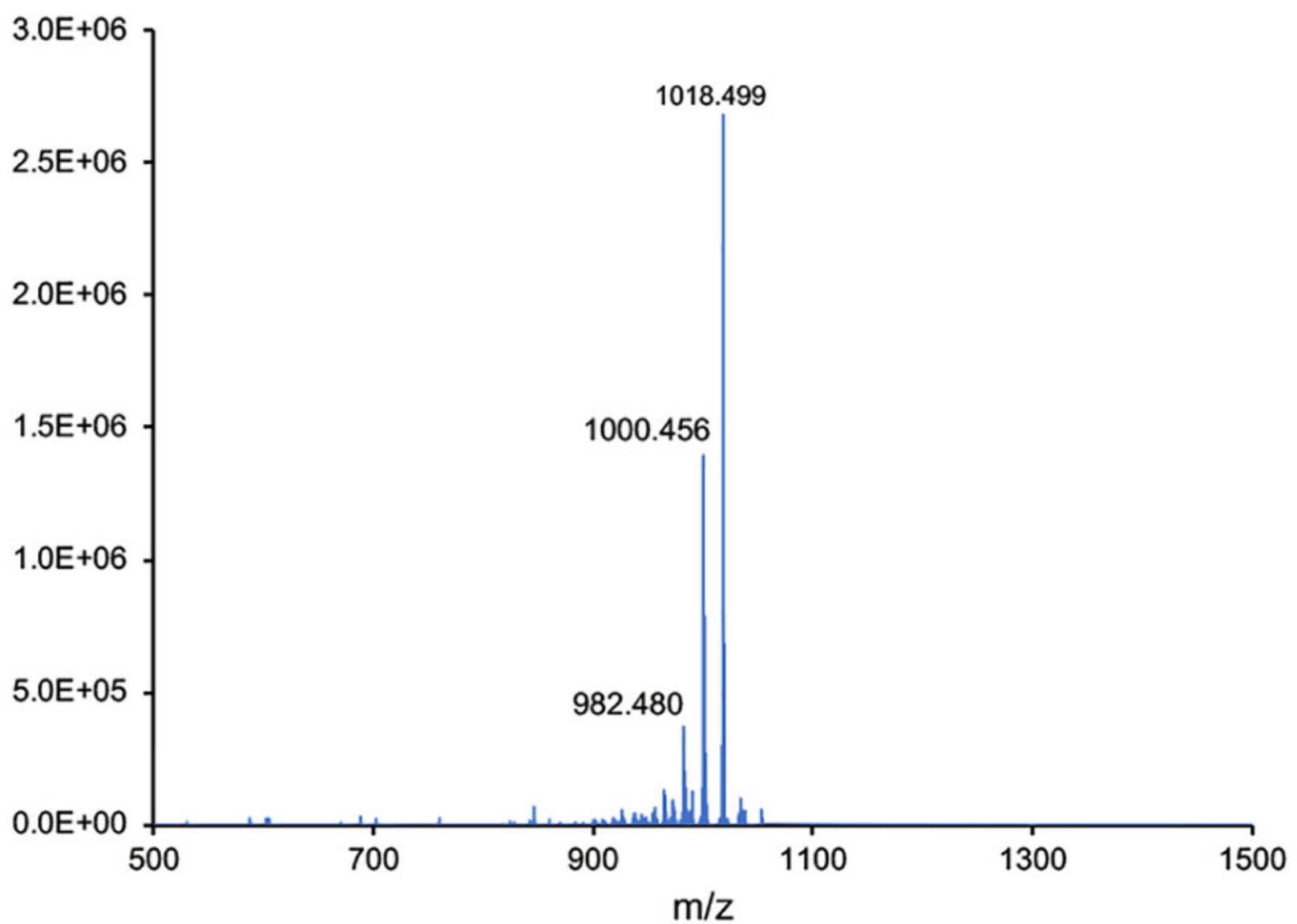
Residue	Atom	Chemical Shifts (ppm)			Residue	Atom	Chemical Shifts (ppm)		
		^1H	^{13}C	^{15}N			^1H	^{13}C	^{15}N
3-Methyl- butanoyl	C^1		174.6		Tyr ⁴	H^{N}	7.44		
	C^2		50.5			H^{α}	2.96		
	C^3		38.0			H^{β}	2.79		
	C^4		19.6			H^{β}	1.20		
	C^5		19.6			$\text{H}^{2,6}$	6.11		
	H^2	4.15				$\text{H}^{3,5}$	6.45		
	H^3	2.17				N^1		109.6	
	H^3	2.72				C^2		67.3	
	H^4	1.88				C^3		21.1	
	H^5	1.80				C^4		39.5	
Oxazolone	N			180.1		C^5		55.2	
	H^{N}	7.61				H^2		3.67	
Gly ¹	N			125.1		H^3		1.06	
	C					H^3		2.13	
	C^{α}		26.6			H^4		1.28	
	H^{N}	9.57				H^4		2.29	
	H^{α}	1.46				H^5		2.79	
	N			114.3		H^5		2.96	
Ser ²	C		181.6		Cys ⁶	N		127.9	
	C^{α}		72			C		136.3	
	C^{β}					C^{α}		53.3	
	H^{N}	8.19				C^{β}		49.3	
	H^{α}	4.14				H^{N}		8.43	
	H^{β}	3.98				H^{α}		3.96	
	H^{β}	1.41				H^{β}		3.23	
Cys ³	N			118.1		H^{β}		1.38	
	C		173.0		Ser ⁷	N		117.5	
	C^{α}		71.2			C			
	C^{β}		35.6			C^{α}		51.6	
	H^{N}	7.93				C^{β}		45.0	
	H^{α}	3.96				H^{N}		8.90	

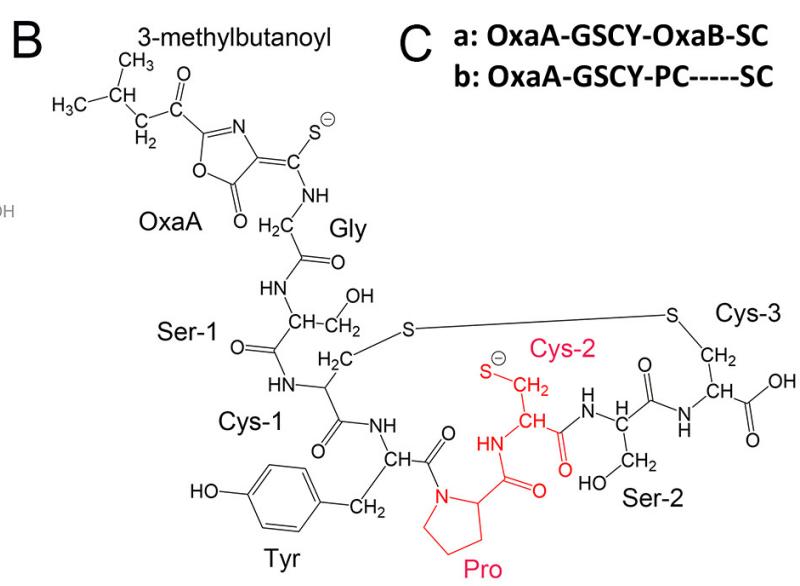
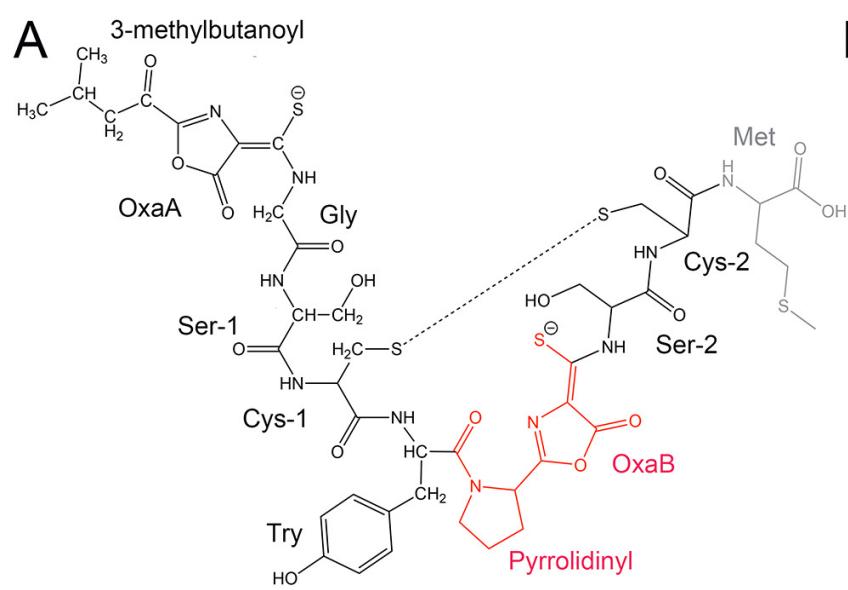
	H^β	3.23		H^α	4.19
	H^β	1.37		H^β	3.25
Tyr ⁴	N	121.5	Cys ⁸	H^β	1.48
	C			N	112.4
	C^α	48.9		C	172.6
	C^β	35.6		C^α	42.3
	C^1			C^β	21.1
	$C^{2,6}$			H^N	8.47
	$C^{3,5}$	135.4		H^α	3.69
	C^4			H^β	3.55
				H^β	0.97

436

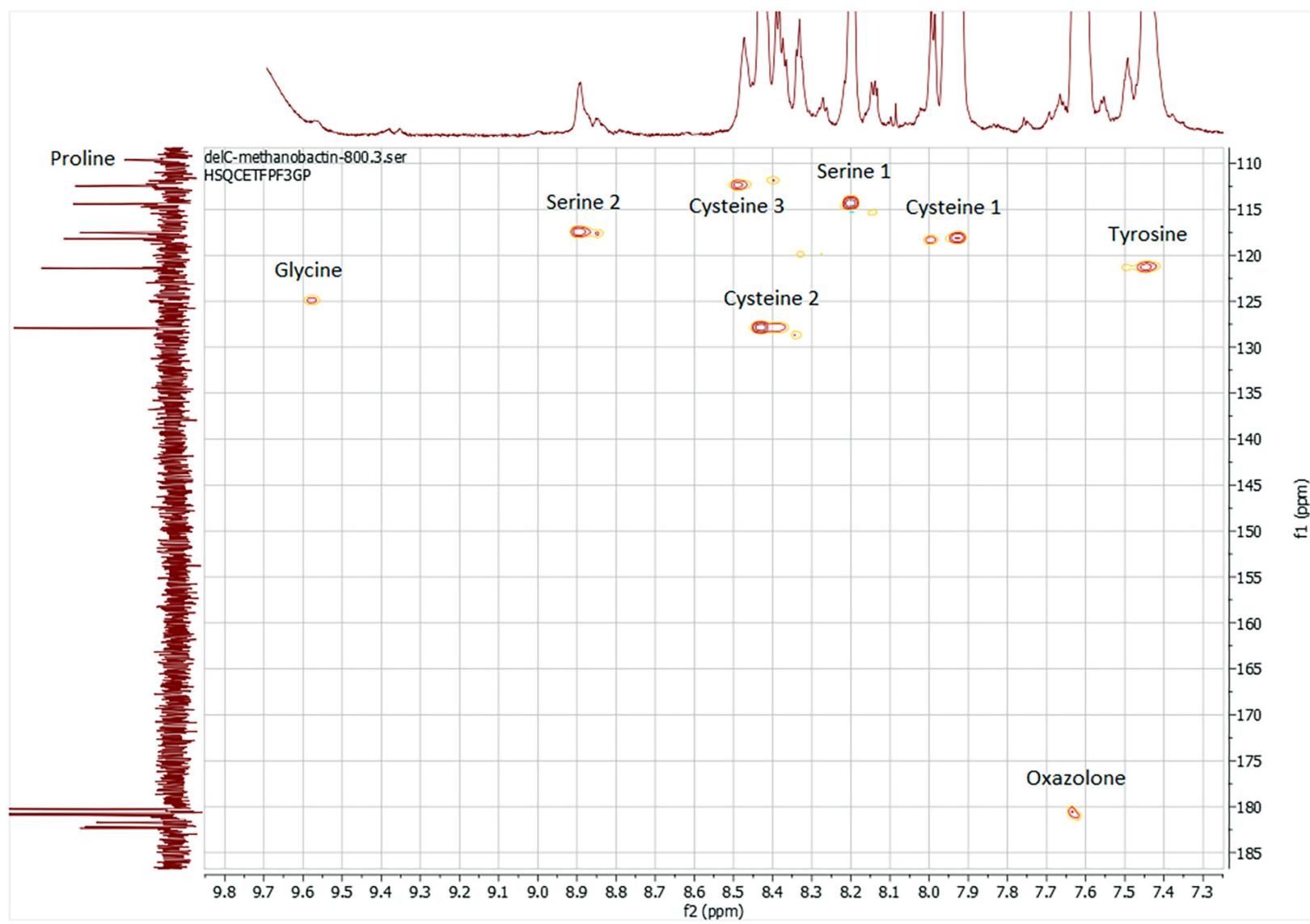
437

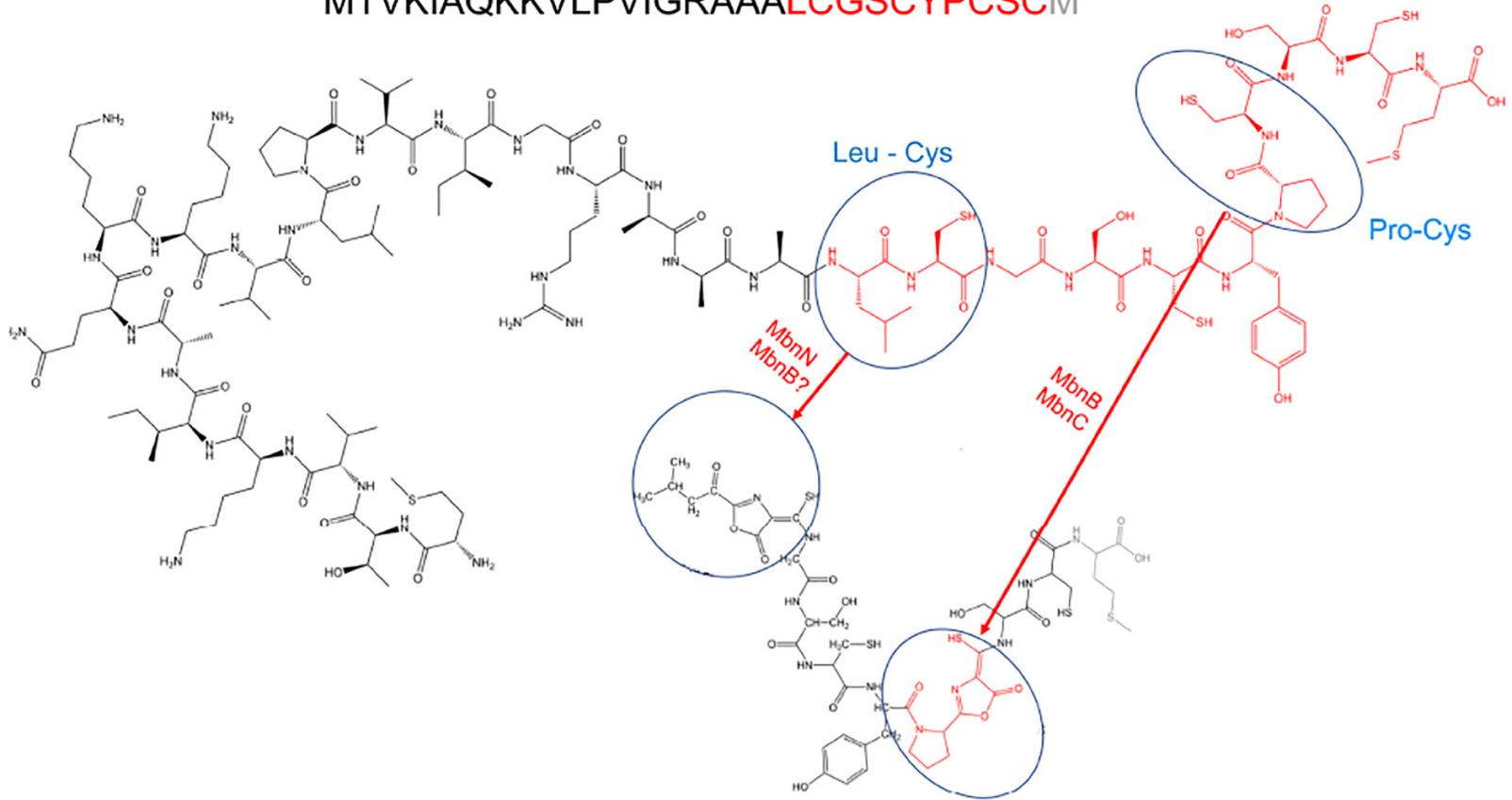
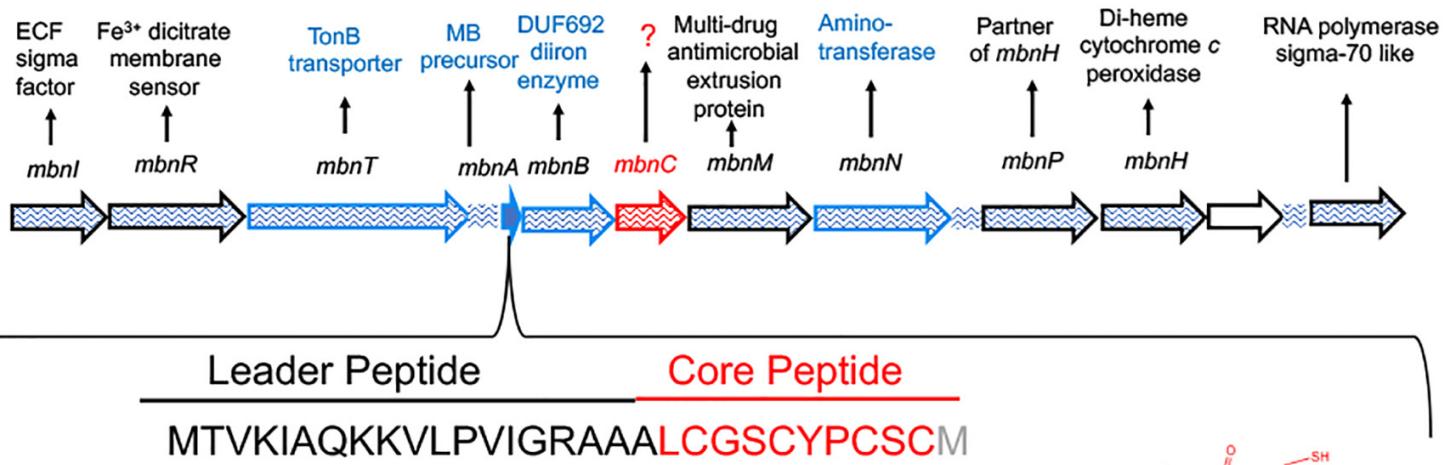



Table 2. ^1H , ^{13}C , and ^{15}N resonances for metal free ΔMbnC .



Residue	Atom	Chemical Shifts (ppm)			Residue	Atom	Chemical Shifts (ppm)		
		^1H	^{13}C	^{15}N			^1H	^{13}C	^{15}N
3-Methyl- butanoyl	C^1		174.6		Tyr ⁴	H^{N}	7.44		
	C^2		50.5			H^{α}	2.96		
	C^3		38.0			H^{β}	2.79		
	C^4		19.6			H^{β}	1.20		
	C^5		19.6			$\text{H}^{2,6}$	6.11		
	H^2	4.15				$\text{H}^{3,5}$	6.45		
	H^3	2.17				N^1		109.6	
	H^3	2.72				C^2		67.3	
	H^4	1.88				C^3		21.1	
	H^5	1.80				C^4		39.5	
Oxazolone	N			180.1	Pro ⁵	C^5		55.2	
	H^{N}		7.61			H^2		3.67	
Gly ¹	N			125.1	Cys ⁶	H^3		1.06	
	C					H^3		2.13	
	C^{α}		26.6			H^4		1.28	
	H^{N}	9.57				H^4		2.29	
	H^{α}	1.46				H^5		2.79	
	N			114.3		H^5		2.96	
Ser ²	C		181.6		Cys ⁶	N		127.9	
	C^{α}		72			C		136.3	
	C^{β}					C^{α}		53.3	
	H^{N}	8.19				C^{β}		49.3	
	H^{α}	4.14				H^{N}		8.43	
	H^{β}	3.98				H^{α}		3.96	
	H^{β}	1.41				H^{β}		3.23	
Cys ³	N			118.1	Ser ⁷	H^{β}		1.38	
	C		173.0			N			117.5
	C^{α}		71.2			C			
	C^{β}		35.6			C^{α}		51.6	
	H^{N}	7.93				C^{β}		45.0	
	H^{α}	3.96				H^{N}		8.90	
	H^{β}	3.23				H^{α}		4.19	
	H^{β}	1.37				H^{β}		3.25	

Tyr ⁴	N	121.5	H ^β	1.48
	C	Cys ⁸	N	112.4
C ^α	48.9		C	172.6
C ^β	35.6		C ^α	42.3
C ¹			C ^β	21.1
C ^{2,6}			H ^N	8.47
C ^{3,5}	135.4		H ^α	3.69
C ⁴			H ^β	3.55
			H ^β	0.97



C

a: OxaA-GSCY-OxaB-SC

b: OxaA-GSCY-PC-----SC

