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Abstract. Let M be a geometrically finite acylindrical hyperbolic 3-
manifold and let M∗ denote the interior of the convex core of M . We
show that any geodesic plane in M∗ is either closed or dense, and that
there are only countably many closed geodesic planes in M∗. These
results were obtained in [27] and [28] when M is convex cocompact.

As a corollary, we obtain that when M covers an arithmetic hyper-
bolic 3-manifold M0, the topological behavior of a geodesic plane in M∗

is governed by that of the corresponding plane in M0. We construct a
counterexample of this phenomenon when M0 is non-arithmetic.
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1. Introduction

1.1. Geometrically finite acylindrical manifolds. Let M = Γ\H3 be a
complete, oriented hyperbolic 3-manifold presented as a quotient of hyper-
bolic space by a discrete subgroup

Γ ⊂ G = Isom+(H3).

We denote by Λ = Λ(Γ) the limit set of Γ in the sphere at infinity S2 and
by Ω the domain of discontinuity; Ω = S2 − Λ. The convex core of M is
the smallest closed convex subset containing all periodic geodesics in M , or
equivalently

core(M) := Γ\hull(Λ) ⊂M
is the quotient of the convex hull of the limit set Λ by Γ. We denote by M∗

the interior of the convex core of M . Note that M∗ is non-empty if and only
if Γ is Zariski dense in G.

A geodesic plane P in M is the image f(H2) ⊂ M of a totally geodesic
immersion f : H2 →M of the hyperbolic plane into M . By a geodesic plane
P ∗ in M∗, we mean the non-trivial intersection

P ∗ = P ∩M∗ 6= ∅

of a geodesic plane in M with the interior of the convex core. Note that a
plane P ∗ in M∗ is always connected and that P ∗ is closed in M∗ if and only
if P ∗ is properly immersed in M∗ [28, §2].

We say M is geometrically finite if the unit neighborhood of core(M) has
finite volume. When core(M) is compact, M is called convex cocompact.

The closures of geodesic planes in M∗ have been classified for convex
cocompact acylindrical hyperbolic 3-manifolds by McMullen, Mohammadi
and the second named author in [27] and [28] (see also [18] for a discussion
on the higher dimensional case as well as [29] for survey). The main aim
of this paper is to extend those classification results to geometrically finite
acylindrical manifolds. In concrete terms, the new feature of this paper
compared to [27] and [28] is that we allow the existence of cusps in M∗. We
mention that [16] also discusses the influence of cusps on those classification
results.

For a geometrically finite manifoldM , the condition thatM is acylindrical
is a topological one, it means that its compact core N (called the Scott
core) is acylindrical, i.e., N has incompressible boundary, and every essential
cylinder in N is boundary parallel [35].

In the case when the boundary of the convex core of M is totally geo-
desic, we call M rigid acylindrical. The class of rigid acylindrical hyperbolic
3-manifolds M includes those for which M∗ is obtained by “cutting” a finite
volume complete hyperbolic 3-manifold M0 along a properly embedded com-
pact geodesic surface S ⊂M0 (see §12.3 for explicit examples). We remark
that a geometrically finite acylindrical manifold is quasiconformal conjugate
to a unique geometrically finite rigid acylindrical manifold ([34], [26]).
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1.2. Closures of geodesic planes. Our main theorem is the following:

Theorem 1.1. Let M be a geometrically finite acylindrical hyperbolic 3-
manifold. Then any geodesic plane P ∗ is either closed or dense in M∗.
Moreover, there are only countably many closed geodesic planes P ∗ in M∗.

In the rigid case, each geodesic boundary component has a fundamental
group which is a cocompact lattice in PSL2(R), up to conjugation. This
rigid structure forces any closed plane P ∗ in M∗ to be a part of a closed
plane P in M :

Theorem 1.2. If M is rigid in addition, then any geodesic plane P in M
intersecting M∗ non-trivially is either closed or dense in M .

We do not know whether Theorem 1.2 can be extended to a non-rigid M
or not. This is unknown even when M is convex compact, as remarked in
[28].

Added in proof: A recent work of Y. Zhang [38] shows that Theorem 1.2 does
not extend to a non-rigid case: there exists a convex cocompact acylindrical
3-manifold M which contains a plane P intersecting M∗ such that P ∗ is
closed in M∗, but P is not closed in M .

When M is a cover of an arithmetic hyperbolic 3-manifold M0, the topolo-
gical behavior of a geodesic plane in M∗ is governed by that of the corres-
ponding plane in M0:

Theorem 1.3. Let M = Γ\H3 be a geometrically finite acylindrical mani-
fold which covers an arithmetic manifold M0 = Γ0\H3 of finite volume. Let
p : M → M0 be the covering map. Let P ⊂ M be a geodesic plane with
P ∗ = P ∩M∗ 6= ∅. Then

(1) P ∗ is closed in M∗ if and only if p(P ) is closed in M0;
(2) P ∗ is dense in M∗ if and only if p(P ) is dense in M0.

When M is rigid, we can replace M∗ by M in the above two statements.

Theorem 1.3 is not true in general without the arithmeticity assumption
on M0:

Theorem 1.4. There exists a non-arithmetic closed hyperbolic 3-manifold
M0, covered by a geometrically finite rigid acylindrical manifold M such that
there exists a properly immersed geodesic plane P in M with P ∩M∗ 6= ∅
whose image p(P ) is dense in M0, where p : M →M0 is the covering map.

The following theorem for a general geometrically finite manifold of infi-
nite volume, describes those geodesic planes for which P = P ∗:

Theorem 1.5. Let M be a geometrically finite hyperbolic 3-manifold of
infinite volume. Then there are only finitely many geodesic planes in M
that are contained in core(M). All these planes are closed with finite area.
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Theorem 1.5 is generally false for a finite volume manifold. For instance,
an arithmetic hyperbolic 3-manifold with one closed geodesic plane contains
infinitely many closed geodesic planes (see [19, Theorem 9.5.6]).

1.3. Orbit closures in the space of circles. We now formulate a stronger
version of Theorems 1.1 and 1.2. Let C denote the space of all oriented circles
in S2. We identify G := Isom+(H3) with PSL2(C), considered as a simple
real Lie group, and H := Isom+(H2) with PSL2(R), so that we have a
natural isomorphism

C ' G/H.

The following subsets of C play important roles in our discussion and we will
keep the notation throughout the paper:

CΛ = {C ∈ C : C ∩ Λ 6= ∅};
C∗ = {C ∈ C : C separates Λ}.

The condition C separates Λ means that both connected components of
S2 −C meet Λ. Note that CΛ is closed in C and that C∗ is open in C. If the
limit set Λ is connected, then C∗ is a dense subset of CΛ [27, Corollary 4.5]
but C∗ is not contained in CΛ in general.

The classification of closures of geodesic planes follows from the classifi-
cation of Γ-orbit closures of circles (cf. [27]). In fact, the following theorem
strengthens both Theorems 1.1 and 1.2 in two aspects: it describes possible
orbit closures of single Γ-orbits as well as of any Γ-invariant subsets of C∗.

Theorem 1.6. Let M = Γ\H3 be a geometrically finite acylindrical mani-
fold. Then

(1) Any Γ-invariant subset of C∗ is either dense or a union of finitely
many closed Γ-orbits in C∗;

(2) There are at most countably many closed Γ-orbits in C∗; and
(3) For M rigid, any Γ-invariant subset of C∗ is either dense or a union

of finitely many closed Γ-orbits in CΛ.

We also present a reformulation of Theorem 1.5 in terms of circles:

Theorem 1.7. Let M = Γ\H3 be a geometrically finite manifold of infinite
volume. Then there are only finitely many Γ-orbits of circles contained in
Λ. Moreover each of these orbits is closed in CΛ.

1.4. Strategy and organization. Our approach follows the same lines as
the approaches of [27] and [28], and we tried to keep the same notation from
those papers as much as possible.
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Below is the list of subgroups of G = PSL2(C) which will be used through-
out the paper:

H = PSL2(R)

A =

{
at =

(
et/2 0

0 e−t/2

)
: t ∈ R

}
K = PSU(2)

N =

{
ut =

(
1 t
0 1

)
: t ∈ C

}
U = {ut : t ∈ R} and

V = {ut : t ∈ iR}.

We can identify M = Γ\H3 with the double coset space Γ\G/K and its
oriented frame bundle FM with the homogeneous space Γ\G. By the duality
between Γ-orbits in C and H-orbits in FM , Theorem 1.6 follows from the
classification of H-invariant closed subsets in F ∗ where F ∗ is the H-invariant
subset of FM such that Γ\C∗ = F ∗/H (cf. [27], [28]). Working in the frame
bundle FM enables us to use the geodesic flow, the horocyclic flow as well
as the “imaginary horocyclic flow” given by the right-translation actions of
A, U , and V in the space Γ\G respectively.

The results in §§2-6 hold for a general Zariski dense discrete subgroup Γ.
In §2, we review some basic definitions and notations to be used through-

out the paper. The notation RFM denotes the renormalized frame bundle
of M , which is the closure of the union of all periodic A-orbits in FM (see
also (2.2)). We consider the H-invariant subset FΛ of FM which corresponds
to CΛ:

Γ\CΛ = FΛ/H.

We set F ∗Λ = FΛ ∩ F ∗. When Λ is connected, F ∗Λ = F ∗, but not in general.
In §3, we study the closure of an orbit xH in FΛ which accumulates on

an orbit yH with non-elementary stabilizer. We prove that xH is dense in
FΛ if y ∈ F ∗ (Proposition 3.5), and also present a condition for the density
of xH in FΛ when y 6∈ F ∗ (Proposition 3.8).

In §4, we prove that if the closure xH contains a periodic U -orbit in F ∗Λ,
then xH is either locally closed or dense in FΛ (Proposition 4.2).

In §5, we recall a closed A-invariant subset RFkM ⊂ RFM , k > 1, with
k-thick recurrence properties for the horocycle flow, which was introduced in
[28]. This set may be empty in general. We show that the thick recurrence
property remains preserved even after we remove a neighborhood of finitely
many cusps from RFkM . That is, setting

(1.1) Wk,R := RFkM − HR

where HR is a neighborhood of finitely many cusps in FM of depth R� 1,
we show that for any x ∈ Wk,R, the set Tx := {t ∈ R : xut ∈ Wk,R} is
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4k-thick at ∞, in the sense that for all sufficiently large r > 1 (depending
on x),

Tx ∩ ([−4kr,−4r] ∪ [r, 4kr]) 6= ∅
(Proposition 5.4).

In §6, we present a technical proposition (Proposition 6.2) which ensures
the density of xH in FΛ when xH intersects a compact subset W ⊂ F ∗Λ
with the property that the return times {t : xut ∈ W} is k-thick at ∞ for
every x ∈ W . The proof of this proposition uses the notion of U -minimal
sets with respect to W , together with the polynomial divergence property
of unipotent flows of two nearby points, which goes back to Margulis’ proof
of the Oppenheim conjecture [21]. In the context when the return times of
the horocyclic flow is only k-thick (at ∞), this argument was used in [27]
and [28] in order to construct a piece of V -orbit inside the closure of xH,
which can then be pushed to the density of xH in FΛ using Corollary 4.1.

In §§7-10, we make an additional assumption that Γ is geometrically finite,
which implies that RFM is a union of a compact set and finitely many
cusps. Therefore the set Wk,R in (1.1) is compact when HR is taken to be a
neighborhood of all cusps in FM .

In §7, we apply the result in §6 to an orbit xH ⊂ F ∗Λ intersecting Wk,R

when xH does not contain a periodic U -orbit. Combined with the results in
§4, we conclude that any H-orbit intersecting RFkM ∩ F ∗ is either locally
closed or dense in FΛ (Theorem 7.1).

In §8, we prove that any locally closed orbit xH intersecting RFkM ∩F ∗
has a non-elementary stabilizer and intersects RFkM ∩F ∗ as a closed subset
(Theorem 8.1).

In §9, we give an interpretation of the results obtained so far in terms of
Γ-orbits of circles for a general geometrically finite Zariski dense subgroup.
(Theorem 9.2).

In §10, we prove that any orbit xH included in RFM is closed of finite
volume, and that only finitely many such orbits exist, proving Theorem 1.5
(Theorem 10.1).

In §11, we specialize to the case where M = Γ\H3 is a geometrically
finite acylindrical manifold. We show that in this case, every H-orbit in F ∗

intersects a compact subset Wk,R for k sufficiently large (Corollary 11.7).
We prove Theorem 1.6 in terms of H-orbits on FM (Theorem 11.8).

In §12, we prove Theorem 1.3 and give a counterexample when M0 is not
arithmetic (Proposition 12.1), proving Theorem 1.4. We also give various
examples of geometrically finite rigid acylindrical 3-manifolds.

1.5. Comparison of the proof of Theorem 1.1 with the convex co-
compact case. For readers who are familiar with the work [28], we finish
the introduction with a brief account on some of essential differences in the
proofs between the present work and [28] for the case when M is a geomet-
rically finite acylindrical manifold.
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For M convex cocompact acylindrical, that RFMH = RFkMH for all
sufficiently large k was known in [28]. An important ingredient of our paper
will be to extend this result to the geometrically finite acylindrical setting
(§11). The proof of this property requires new arguments. When M is a
convex cocompact acylindrical manifold, the proof in [28] relies on the fact
that Λ is a Sierpinski curve of positive modulus, that is, there exists ε > 0
such that the modulus of the annulus between any two components B1, B2

of Ω := S2 − Λ satisfy

mod(S2 − (B1 ∪B2)) ≥ ε
[28, Theorem 3.1].

When M has cusps, the closures of some components of Ω meet each
other, and hence Λ is not even a Sierpinski curve. Nevertheless, under the
assumption that M is a geometrically finite acylindrical manifold, Λ is still
a quotient of a Sierpinski curve of positive modulus, in the sense that we
can present Ω as the disjoint union

⋃
` T` where T`’s are maximal trees of

components of Ω so that

inf
6̀=k

mod(S2 − (T ` ∪ T k)) > 0

(Theorem 11.5). See [37, Figures 7-8] for some visual images of these limit
sets. This analysis enables us to show that every separating circle C inter-
sects Λ as a Cantor set of positive modulus (Theorem 11.6), which immedi-
ately implies RFMH = RFkMH for all sufficiently large k.

We now discuss new features of dynamical aspects of this paper. Consider
an orbit xH in F ∗ and set X := xH. When M is convex cocompact, the
main strategy of [28] is to analyze U -minimal subsets of X with respect
to RFkM . That is, unless xH is locally closed, it was shown, using the
thickness of the return times and the polynomial divergence property of
the horocyclic flow, that any such U -minimal subset is invariant under a
connected semigroup L transversal to U . Then pushing further, one could
find an N -orbit inside X, which implies X = FΛ. In the present setting,
if X ∩ F ∗ happens to contain a periodic U -orbit, which is a generic case a
posteriori, then any U -minimal subset of X relative to RFkM is a periodic
U -orbit and hence is not invariant by any other subgroup but U . Hence the
aforementioned strategy does not work. However it turns out that this case
is simpler to handle, and that’s what §4 is about. See Proposition 4.2.

Another important ingredient of [28] is that a closed H-orbit in F ∗ has
a non-elementary stabilizer; this was used to conclude X = FΛ whenever
X contains a closed H-orbit in F ∗ properly, as well as to establish the
countability of such orbits, and its proof relied on the absence of parabolic
elements. In the present setting, we show that any locally closed H-orbit in
F ∗ has a non-elementary stabilizer, regardless of the existence of parabolic
elements of Γ. Geometrically, this means that every locally closed geodesic
plane P that meets M∗ has a non-elementary fundamental group. This is
Theorem 8.1.
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When M is not convex cocompact, RFM is not compact and neither is
RFkM , which presents an issue in the polynomial divergence argument. In
Proposition 5.4, we show that the remaining compact set after removing
horoballs from RFkM has the desired thickness property for U -orbits and
hence can be used as a replacement of RFkM . We remark that the global
thickness of the return times of U -orbits to RFkM was crucial in establishing
this step.

The proof of Theorem 1.1 combines these new ingredients with the tech-
niques developed in [28].

We would also like to point out that we made efforts in trying to write
this paper in a greater general setting. For instance, we establish (Theorem
9.2):

Theorem 1.8. Let Γ be a geometrically finite Zariski dense subgroup of G.
Then for any C ∈ C∗ such that C ∩ Λ contains a uniformly perfect Cantor
set, the orbit Γ(C) is either discrete or dense in CΛ.

With an exception of §11, we have taken a more homogeneous dynamics
viewpoint overall in this paper, hoping that this perspective will also be
useful in some context.

Acknowledgement: The present paper heavily depends on the previous
works [27] and [28] by McMullen, Mohammadi, and the second named au-
thor. We are grateful to Curt McMullen for clarifying the notion of the
acylindricality of a geometrically finite manifold. We would like to thank
Curt McMullen and Yair Minsky for their help in writing §11, especially the
the proof of Theorem 11.5. We would also like to thank the referee for a
careful reading and many useful comments.

2. Preliminaries

In this section, we set up some notation which will be used throughout
the paper and review some definitions.

Recall that we keep the notation introduced in §1.4 throughout the pa-
per. In particular, G is the simple connected real Lie group PSL2(C) =
Isom+(H3). The action of G on H3 = G/K extends continuously to a con-

formal action of G on the Riemann sphere S2 = Ĉ ∪ {∞} and the union
H3 ∪ S2 is compact. We denote by T1 H3 and FH3 the unit tangent bundle
and the oriented frame bundle of H3 respectively. Fix o ∈ H3 whose stabi-
lizer is K and fix a vector vo ∈ T1(H3) based at o whose stabilizer is the
centralizer of A in K. Choose a unit vector wo ∈ To(H3) orthogonal to vo.

The orbit map g 7→ (gvo, gwo) induces the identification G = FH3. For
g ∈ G, we define g+, g− ∈ S2 the forward and backward end points of
the geodesic determined by g(vo) respectively. Denote by π the projection
G = FH3 → H3 given by π(g) = g(o). The right translation action of A on
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G = FH3 defines the frame flow, and we have

(2.1) g± = lim
t→±∞

π(gat)

where the limit is taken in the compactification H3 ∪ S2.
For g ∈ G, the set π(gH) is a geodesic plane in H3 to which g(vo) and

g(wo) are tangent and

(gH)+ := {(gh)+ : h ∈ H} ⊂ S2

is an oriented circle which bounds the plane π(gH).
The correspondences

gH → (gH)+ and gH → π(gH)

give rise to bijections of G/H with the space C of all oriented circles in S2,
as well as with the space of all oriented geodesic planes of H3.

A horosphere (resp. horoball) in H3 is a Euclidean sphere (resp. open
Euclidean ball) tangent to S2 and a horocycle in H3 is a Euclidean circle
tangent to S2. A horosphere is the image of an N -orbit under π while a
horocycle is the image of a U -orbit under π.

2.1. Renormalized frame bundle. Let Γ be a non-elementary discrete
subgroup of G and M = Γ\H3. We denote by Λ = Λ(Γ) ⊂ S2 the limit set
of Γ. We can identify the oriented frame bundle FM with Γ\G. With abuse
of notation, we also denote by π for the canonical projection FM → M .
Note that, for x = [g] ∈ FM , the condition g± ∈ Λ does not depend on the
choice of a representative. The renormalized frame bundle RFM ⊂ FM is
defined as

(2.2) RFM = {[g] ∈ Γ\G : g± ∈ Λ},

in other words, it is the closed subset of FM consisting of frames (e1, e2, e3)
such that e1 is tangent to a complete geodesic contained in the convex core
of M .

We define the following H-invariant subsets of FM :

FΛ = {[g] ∈ Γ\G : (gH)+ ∩ Λ 6= ∅} = (RFM)NH,

F ∗ = {[g] ∈ Γ\G : (gH)+separates Λ},
F ∗Λ = FΛ ∩ F ∗.

Note that F ∗ = {x ∈ FM : π(xH) ∩M∗ 6= ∅} is an open subset of FM and
that F ∗ ⊂ FΛ when Λ is connected. In particular, when Λ is connected, FΛ

has non-empty interior equal to F ∗.
We recall that a circle C ∈ C is separating or separates Λ if both connected

components of S2−C intersect Λ. By analogy, a frame x ∈ F ∗ will be called
a separating frame.

In the identification C = G/H, the sets FΛ, F ∗ and F ∗Λ satisfy

Γ\CΛ = FΛ/H, Γ\C∗ = F ∗/H and Γ\C∗Λ = F ∗Λ/H,
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where

C∗Λ := CΛ ∩ C∗.

Since Γ acts properly on the domain of discontinuity Ω, ΓC is closed in C
for any circle C with C ∩ Λ = ∅. For this reason, we only consider Γ-orbits
in CΛ or, equivalently, H-orbits in FΛ.

2.2. Geometrically finite groups. We give a characterization of geome-
trically finite groups in terms of their limit sets (cf. [7], [20], [25]). A limit
point ξ ∈ Λ is called radial if any geodesic ray toward ξ has an accumulation
point in M and parabolic if ξ is fixed by a parabolic element of Γ. In the
group G = PSL2(C), parabolic elements are precisely unipotent elements of

G; any parabolic element in G is conjugate to the matrix

(
1 1
0 1

)
. When

ξ is parabolic, its stabilizer StabΓ ξ in Γ is virtually abelian, and its rank,
which is called the rank of ξ, is either 1 or 2. A parabolic fixed point ξ is
called bounded parabolic if StabΓ ξ acts co-compactly on Λ− {ξ}.

We denote by Λr the set of radial limit points, by Λp the set of parabolic
fixed points and by Λbp the subset of bounded parabolic points. Note that
Λr and Λp are always disjoint. The fixed points of hyperbolic elements of
Γ are contained in Λr and form a dense subset of Λ. More strongly, the set
of pairs of attracting and repelling fixed points of hyperbolic elements is a
dense subset of Λ× Λ [10].

A Zariski dense discrete subgroup Γ of G is called geometrically finite if
it satisfies one of the following equivalent conditions (see [20, Sections 3.6
and 3.11] or [25, Theorem 3.7]):

(1) the convex core of M has finite volume;
(2) Λ = Λr ∪ Λbp (Beardon-Maskit condition);
(3) Λ = Λr ∪ Λp (Bishop condition [5]).

If Λ = Λr, or equivalently, if the convex core of M is compact, then Γ is
called convex cocompact.

We say that a horoball h is based at ξ ∈ S2 if it is tangent to S2 at ξ. If
ξ ∈ Λp, then for any fixed horoball h ⊂ H3 based at ξ ∈ S2, its Γ-orbit Γh
is closed in the space of horoballs in H3. Given a horoball h and R > 0, we
will write hR for the horoball contained in h whose distance to the boundary
of h is R.

Suppose that Γ is geometrically finite. Then Γ has finitely many orbits in
Λp called cusps, and hence there exist finitely many horoballs h1, · · · , hm in
H3 corresponding to these cusps such that the horoballs γh i, for γ ∈ Γ and
1 ≤ i ≤ m, form a disjoint collection of open horoballs, i.e. γh i intersects hj

if and only if i = j and γh i = hj (cf. [25, Theorem 3.7] and its proof).
We fix

(2.3) H := {[g] ∈ FM : π(g) ∈
⋃
γ,i γh i}.
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For R ≥ 0, we set

(2.4) HR = {[g] ∈ FM : π(g) ∈
⋃
γ,i γh iR}.

Then each HR provides a union of disjoint neighborhood of the cusps in
RFM and hence the subset

RFM − HR

is compact for any R ≥ 0. See [20, Theorem 3.6.1].

3. Limit circle with non-elementary stabilizer

As noted before, the study of geodesic planes in M = Γ\H3 can be ap-
proached in two ways: either via the study of H-orbits in FM or via the
study of Γ-orbits in C. In this section we analyze a Γ-orbit ΓC in C∗ which
accumulates on a circle D with a non-elementary stabilizer in Γ. We show
that ΓC is dense in CΛ in the following two cases:

(1) when D separates Λ (Proposition 3.5);
(2) when there exists a sequence of distinct circles Cn ∈ ΓC such that

Cn ∩ Λ does not collapse to a countable set (Proposition 3.8).

3.1. Sweeping the limit set. The following proposition is a useful tool,
which says that, in order to prove the density of ΓC in CΛ, we only have to
find a “sweeping family” of circles in the closure of ΓC.

Proposition 3.1. [27, Corollary 4.2] Let Γ ⊂ G be a Zariski dense discrete
subgroup. If D ⊂ C is a collection of circles such that

⋃
C∈D C contains a

non-empty open subset of Λ, then there exists C ∈ D such that ΓC = CΛ.

In subsection 3.2, we will construct such a sweeping family D using a
result of Dal’bo in [9] (see Proposition 3.2).

In the subsequent sections, we will use other sweeping families D as in
Corollary 4.1 that are constructed via a more delicate polynomial divergence
argument.

3.2. Influence of Fuchsian groups. Let B ⊂ S2 be a round open disk
with a hyperbolic metric ρB. We set

GB = Isom+(B, ρB) ' PSL2(R).

A discrete subgroup of GB is a Fuchsian group, and its limit set lies in the
boundary ∂B. For a non-empty subset E ⊂ ∂B, we denote by hull(E,B) ⊂
B the convex hull of E in B. We emphasise that in our definition the convex
hull hull(E,B) is included in the sphere at infinity S2.

We denote by H(B,E) ⊂ C the closure of the set of horocycles in B
resting on E. The only circle in H(B,E) which is not a horocycle is ∂B
itself.

We first recall the following result of Dal’bo [9, Proposition B]:
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Proposition 3.2. Let Γ ⊂ GB be a non-elementary discrete subgroup with
limit set Λ. If C ∈ H(B,Λ) is a horocycle in B such that C ∩ Λ is a radial
limit point, then ΓC is dense in H(B,Λ).

The following proposition is a generalization of [27, Corollary 3.2] from Γ
convex cocompact to a general finitely generated group. Note that a finitely
generated Fuchsian group is geometrically finite.

Lemma 3.3. Let Γ ⊂ GB be a non-elementary finitely generated discrete
subgroup. Suppose Cn → ∂B in C and Cn ∩ hull(Λ, B) 6= ∅ for all n. Then
the closure of

⋃
ΓCn contains H(B,Λ).

Proof. In view of Proposition 3.2, it suffices to show that the closure of⋃
ΓCn contains a circle C ⊂ B resting at a radial limit point of Γ. Passing

to a subsequence, we will consider two separate cases.

Case 1: Cn ∩ ∂B = {an, bn} with an 6= bn. Note that the angle between
Cn and ∂B converges to 0. Note also that since Cn meets the convex hull
of Λ in B, the geodesic joining an and bn in B also meets hull(Λ, B).

Since Γ is a finitely generated Fuchsian group, it is geometrically finite. It
follows that there exists a compact set W ⊂ Γ\B such that every geodesic on
the surface Γ\B that intersects its convex core also intersects W . Applying
this to each geodesic joining an and bn, we may assume that the sequences
an and bn converge to two distinct points a0 6= b0, after replacing Cn by
δnCn for a suitable δn ∈ Γ if necessary. The open arcs (an, bn) := Cn ∩ B
converge to an open arc (a0, b0) of ∂B. We consider two separate subcases.

Case 1.A: (a0, b0) ∩ Λ 6= ∅. Choose a hyperbolic element δ ∈ Γ whose
repelling and attracting fixed points ξr and ξa lie inside the open arc (a0, b0).
Denote by L the axis of translation of δ and choose a compact arc L0 ⊂ L
which is a fundamental set for the action of δ on L. For n large, Cn∩L 6= ∅.
Pick cn ∈ Cn ∩L. Then there exist kn ∈ Z such that δkncn ∈ L0. Note that
kn → ±∞ since cn converges to a point in ∂B. Hence δknCn converges to a
circle contained in B resting at ξr or at ξa.

Case 1.B: (a0, b0) ∩ Λ = ∅. In this case, one of these two points, say
a0, is in the limit set and (a0, b0) is included in a maximal arc (a0, b

′
0) of

∂B −Λ. Let L be the geodesic of B that connects a0 and b′0. Its projection
to Γ\B is included in the boundary of the surface S := core(Γ\B). Since Γ
is geometrically finite, this projection is compact, and hence L is the axis of
translation of a hyperbolic element δ ∈ Γ. For n large, Cn ∩L is non-empty,
and we proceed as in Case 1.A.

Case 2: Cn ∩ ∂B = ∅ or {an}. Choose any hyperbolic element δ ∈ Γ and
let L be the axis of translation of δ. Then Cn ∩ L 6= ∅ for all n, by passing
to a subsequence. Hence we conclude as in Case 1.A. �

Corollary 3.4. Let Γ ⊂ G be a Zariski dense discrete subgroup. Let B ⊂ S2

be a round open disk that meets Λ and whose stabilizer ΓB is non-elementary
and finitely generated. If Cn → ∂B in C and

(3.1) Cn ∩ hull(B,Λ(ΓB)) 6= ∅,
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then the closure of
⋃

ΓCn contains CΛ.

Note that Condition (3.1) is always satisfied when ΓB is a lattice in GB,
as soon as Cn meets B.

Proof. This follows from Proposition 3.1 and Lemma 3.3. �

The following is a useful consequence of the previous discussion.

Proposition 3.5. Let Γ ⊂ G be a Zariski dense discrete subgroup. Let
C ∈ C∗Λ. Suppose that there exists a sequence of distinct circles Cn ∈ ΓC
converging to a circle D ∈ C∗Λ whose stabilizer ΓD is non-elementary. Then
ΓC is dense in CΛ.

Proof. Observe that every circle Cn sufficiently near D intersects the set
hull(B,Λ(ΓB)) for at least one of the two disks B bounded by D. Moreover
such a disk B always meets Λ as D separates Λ and ΓB = ΓD as D is an
oriented circle. Hence the claim follows from Corollary 3.4. �

Corollary 3.6. Let Γ ⊂ G be a Zariski dense discrete subgroup. If C ∈ C∗Λ
has a non-elementary stabilizer ΓC , then ΓC is either discrete or dense in
CΛ.

Proof. If the orbit ΓC is not locally closed, there exists a sequence of distinct
circles Cn ∈ ΓC converging to C, and hence the claim follows from Propo-
sition 3.5. �

We recall that a subset is locally closed when it is open in its closure and
that a subset is discrete when it is countable and locally closed. Hence the
conclusion of Corollary 3.6 can also be stated as the dichotomy that ΓC is
either locally closed or dense in CΛ.

3.3. Planes near the boundary of the convex core. We now explain
an analog of Proposition 3.5 when the limit circle D does not separate Λ.
The following lemma says that its stabilizer ΓD is non-elementary as soon
as D ∩ Λ is uncountable.

Lemma 3.7. Let M = Γ\H3 be a geometrically finite manifold with limit
set Λ and D ∈ CΛ be a circle that does not separate Λ.

Then

(1) ΓD is a finitely generated Fuchsian group;
(2) There is a finite set Λ0 such that D ∩ Λ = Λ(ΓD) ∪ ΓDΛ0.

Proof. This lemma is stated for Γ convex cocompact in [28, Theorem 5.1].
But its proof works for Γ geometrically finite as well with no change. �

Proposition 3.8. Let M = Γ\H3 be a geometrically finite manifold. Consi-
der a sequence of circles Cn → D with Cn ∈ C∗Λ and D /∈ C∗Λ. Suppose that
lim inf
n→∞

(Cn ∩ Λ) is uncountable. Then
⋃

ΓCn is dense in CΛ.

Recall that lim inf
n→∞

(Cn∩Λ) := {a0 ∈ S2 | ∃ an ∈ Cn∩Λ with lim
n→∞

an = a0}.
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Proof. This proposition is stated for M convex cocompact with incompres-
sible boundary [28, Theorem 6.1]. With Lemmas 3.3 and 3.7 in place, the
proof extends verbatim to the case claimed. �

4. H-orbit closures containing a periodic U-orbit

In the rest of the paper, we will use the point of view of H-orbits in the
frame bundle FM in our study of geodesic planes in M . This viewpoint
enables us to utilize the dynamics of the actions of the subgroups A, U , and
V of G on the space FM = Γ\G.

In this section we focus on an orbit xH in FΛ whose closure contains a
periodic U -orbit yU contained in F ∗ and prove that such xH is either locally
closed or dense in FΛ (Proposition 4.2).

4.1. One-parameter family of circles. In proving the density of an orbit
xH in FΛ, our main strategy is to find a point y ∈ F ∗Λ and a one-parameter

semigroup V + ⊂ V such that yV + is included in xH and to apply the
following corollary of Proposition 3.1.

Corollary 4.1. Let Γ ⊂ G be a Zariski dense discrete subgroup and V +

a one-parameter subsemigroup of V . For any y ∈ F ∗, the closure yV +H
contains FΛ.

Proof. We choose a representative g ∈ G of y = [g] and consider the corre-
sponding circle C = (gH)+. The union of circles (gvH)+ for v ∈ V + contains
a disk B bounded by C. Since C separates Λ, B contains a non-empty open
subset of Λ. Therefore, by Proposition 3.1, the set yV +H contains FΛ. �

When the closure of xH contains a periodic U -orbit Y , we will apply
Corollary 4.1 to a point y ∈ Y .

4.2. Periodic U-orbits.

Proposition 4.2. Let Γ ⊂ G be a Zariski dense discrete subgroup and
x ∈ F ∗Λ. Suppose that xH ∩F ∗ contains a periodic U -orbit yU . Then either

(1) xH is locally closed and yH = xH; or
(2) xH is dense in FΛ.

Before beginning the proof, let us recall how one can detect that an orbit
yS of a subgroup S < G is not locally closed:

yS is not locally closed ⇐⇒ ∃ wn → e in G− S with ywn ∈ yS.(4.1)

The rest of this section is devoted to a proof of Proposition 4.2. We fix
x, y and Y := yU as in Proposition 4.2 and set X = xH.

Setting

Sy := {g ∈ G : yg ∈ X},
we split the proof into the following three cases:

♠1. Sy ∩O 6⊂ V H for any neighborhood O of e;
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♠2. Sy ∩ O ⊂ V H for some neighborhood O of e and Sy ∩ O 6⊂ H for
any neighborhood O of e;

♠3. Sy ∩O ⊂ H for some neighborhood O of e.

Case ♠1. In this case, we will need the following algebraic lemma:

Lemma 4.3. Let S be a subset of G−V H such that e ∈ S. Then the closure
of USH contains a one-parameter semigroup V + of V .

Proof. Let sl(2,R) denote the set of real 2 by 2 traceless matrices, and

consider the Lie algebra V =

(
0 iR
0 0

)
of V . As e ∈ S̄, there exists sn in S

converging to e.
Since sl(2,C) = sl(2,R) ⊕ isl(2,R), for all large n, sn is of the form

(expMn)hn for Mn ∈ i sl(2,R) and hn ∈ H. Moreover Mn ∈ i sl(2,R) − V
as S∩V H = ∅. Since Mn tends to 0 as n→∞, the closure of

⋃
n{uMnu

−1 :
u ∈ U} contains a half-line in V. Since USH contains

⋃
n{u(expMn)u−1 :

u ∈ U}, our claim follows. �

Lemma 4.4. In case ♠1, xH is dense in FΛ.

Proof. The assumption implies that Sy contains a subset S such that S ∩
V H = ∅ and e ∈ S. Therefore, by Lemma 4.3, the closure of USyH contains
a one-parameter semigroup V +. Hence for any v ∈ V +, one can write

v = lim
n→∞

ungnhn

for some un ∈ U , gn ∈ Sy and hn ∈ H. By passing to a subsequence, we
may assume that yu−1

n → y0 ∈ Y . So

ygnhn = (yu−1
n )(ungnhn)→ y0v.

Hence y0v belongs to X, and yv ∈ y0Uv = y0vU belongs to X too. This
proves the inclusion yV + ⊂ X. Therefore, by Corollary 4.1, since y ∈ F ∗,
the orbit xH is dense in FΛ. �

Case ♠2. In this case, we will use the following algebraic fact:

Lemma 4.5. If w ∈ V H satisfies wv ∈ V H for some v ∈ V −{e}, then
w ∈ AN .

Proof. Without loss of generality, we can assume that w =

(
a b
c d

)
∈ H and

write v =

(
1 is
0 1

)
∈ V with s real and non-zero. If the product wv belongs

to V H, the lower row of the matrix wv must be real and this implies c = 0
as required. �

Lemma 4.6. Case ♠2 does not happen.
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Proof. Suppose it happens.
First step: We claim that xH contains a periodic U -orbit.
Indeed if y /∈ xH, Condition ♠2 says that there exists a non-trivial v ∈ V

such that y′ := yv belongs to xH. Since v commutes with U , the orbit
y′U ⊂ xH is periodic.

Therefore, by renaming y′ to y, xH contains a periodic orbit yU .
Second step: We now claim that yAU is locally closed.
Assume that this is not the case. By (4.1), for any open neighborhood O

of e in G, we can find p ∈ AU and w ∈ O − AU such that yp = yw. By
Condition ♠2, we know that w ∈ V H and we also know that there exists a
sequence vnhn → e in V H −H such that yvn ∈ X. Since hn is the real part
of the 2 by 2 matrix vnhn, the sequence vn ∈ V − {e} also converges to e.
Therefore, we get

yw(p−1vnp) = yvnp ∈ X.
If O is small enough, Condition ♠2 implies that for n large,

w(p−1vnp) ∈ V H.
Therefore, Lemma 4.5 implies that

w ∈ AN.
Hence the element s := wp−1 belongs to the stabilizer S := StabAN (y).

Let ϕ : AN → AN/AU = N/U be the natural projection. Since the
discrete group S intersects U cocompactly, it is included in N and its image
ϕ(S) is discrete. Since w can be taken arbitrarily close to e, its image ϕ(s) =
ϕ(w) can be made arbitrarily close to e as well, yielding a contradiction.
Third step: We finally claim that xH is locally closed.

Since yAU is locally closed and since the group KH := SO(2) is compact,
the set yAUKH = yH is also locally closed. Since y ∈ xH, the H-orbit
xH = yH is locally closed. By (4.1), this contradicts Condition ♠2. �

Case ♠3. By assumption, yO ∩X ⊂ yH for some neighborhood O of e in
G. Hence yH is open in X, in other words, xH − yH is closed. Hence if y
didn’t belong to xH, then xH − yH, being a closed subset containing xH,
should be equal to xH. Therefore yH = xH. Since xH is open in X, xH is
locally closed. This finishes the proof of Proposition 4.2.

5. Return times of U-orbits

In Section 4, we have described the possible closures xH that contain a
periodic U -orbit. In this section we recall, for each k > 1, a closed A-inva-
riant subset RFkM ⊂ RFM consisting of points which have a “thick” set
of return times to RFkM itself under the U -action; this set was introduced
in [28].

The main result of this section (Proposition 5.4) is that for the set Wk,R :=
RFkM −HR where HR is a sufficiently deep cusp neighborhood, every point
x ∈Wk,R has a thick set of return times to Wk,R under the U -action.
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This information will be useful for the following reasons that will be ex-
plained in the next sections:
∗ When M is geometrically finite, these sets Wk,R are compact.
∗When M is a geometrically finite acylindrical manifold, every H-orbit xH
in F ∗ intersects Wk,R for all sufficiently large k > 1 (Corollary 11.7).
∗ For any compact set W with a thick set of return times to W , one can
develop a polynomial divergence argument for U -orbits yU when y ∈ W ,
(Proposition 6.2).
∗ This argument can be applied to a U -minimal subset Y = yU ⊂ xH with
respect to Wk,R (Proposition 7.3).

In this section we do not yet assume M to be geometrically finite even
though this is the main case we have in mind. We will make this assumption
only starting from Section 7.

5.1. Points with k-thick return times.

Definition 5.1. Let k ≥ 1. Let T be a subset of R and S be a subset of a
circle C ⊂ S2.

(1) T is k-thick at ∞ if there exists sT ≥ 0 such that, for s > sT ,

(5.1) T ∩ ([−ks,−s] ∪ [s, ks]) 6= ∅

(2) T is k-thick if the condition (5.1) is satisfied for all s > 0.
(3) T is globally k-thick if T 6= ∅ and T − t is k-thick for every t ∈ T .
(4) S is k-uniformly perfect if for any homography ϕ : C → R ∪ {∞}

such that ϕ−1(∞) ∈ S the set ϕ(S) ∩ R is globally k-thick.
(5) S is uniformly perfect if it is k-uniformly perfect for some k ≥ 1.

Let Γ ⊂ G be a Zariski dense discrete subgroup and M = Γ\H3. For
x ∈ FM , let

Tx = {t ∈ R : xut ∈ RFM}

be the set of return times of x to the renormalized frame bundle RFM under
the horocycle flow. Note that Txut = Tx − t for all t ∈ R.

Define

RFkM := {x ∈ RFM : Tx contains a globally(5.2)

k-thick subset containing 0 }.

It is easy to check as in [28, Proposition 4.2] that RFkM is a closed A-
invariant subset such that for any x ∈ RFkM , the set

Tx,k := {t ∈ R : xut ∈ RFkM}

is globally k-thick.
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5.2. Disjoint Horoballs. When h is a horoball in H3 and R is positive, we
denote by hR the horoball contained in h whose distance to the boundary of
h is R. Hence the bigger R is, the deeper the horoball hR is.

For an interval J ⊂ R, we denote by `J the length of J . The following
basic lemma says that “the time spent by a horocycle in a deep horoball hR
is a small fraction of the time spent in the fixed horoball h”.

Lemma 5.2. For any α > 0, there exists R = R(α) > 0 such that for any
horoball h in H3 and any g ∈ G, we have

(5.3) Jg ± α · `Jg ⊂ Ig
where Ig = {t ∈ R : π(gut) ∈ h} and Jg = {t ∈ R : π(gut) ∈ hR}.

Proof. We use the upper half-space model of H3. Since

(gh)R = ghR for any g ∈ G,

we may assume without loss of generality that the horoball h is defined by
x2 + y2 + (z − h)2 ≤ h2 and that π(gU) is the horizontal line

L = {π(gut) = (t, y0, 1) : t ∈ R} ⊂ H3

of height one. As Ig and Jg are symmetric intervals, it suffices to show that
`Ig ≥ (α + 1)`Jg assuming that Jg 6= ∅. The boundaries of h and hR are

defined by x2 + y2 = 2zh − z2 and x2 + y2 = 2zhe−R − z2 respectively.
Hence the intersections L ∩ h and L ∩ hR are respectively given by

t21 = 2h− 1− y2
0 and t22 = 2he−R − 1− y2

0.

Note that `Ig = 2|t1| and `Jg = 2|t2|. We compute

t22 ≤ e−Rt21.
Therefore if we take R so that eR > (α + 1)2, then we gets `Ig ≥ (α +
1)`Jg . �

We will now use notation H and HR as in (2.3) and (2.4), even though we
have not yet assumed Γ to be geometrically finite: we just fix a collection
of open horoballs h i, i ∈ I, in H3 such that γh i for γ ∈ Γ and i ∈ I form a
disjoint family of horoballs. We set

H := {[g] ∈ F : π(g) ∈
⋃
γ,i γh i},

HR := {[g] ∈ F : π(g) ∈
⋃
γ,i γh iR}.

Corollary 5.3. Given any α ≥ 0, there exists R > 0 satisfying the following:
for all x ∈ FM , we write the set of return times of xU in H and HR as
disjoint unions of open intervals

(5.4) {t ∈ R : xut ∈ H } =
⋃
In and {t ∈ R : xut ∈ HR} =

⋃
Jn

so that Jn ⊂ In for all n (Jn may be empty). Then

(5.5) Jn ± α`Jn ⊂ In.
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5.3. Thickness of the set of return times. The following proposition
roughly says that for a point x for which the horocyclic flow returns often
to RFkM , its U -flow also returns often to the set

Wk,R := RFkM − HR.

Proposition 5.4. Let Γ ⊂ G be a Zariski dense discrete subgroup. Then,
there exists R ≥ 0 such that for any x ∈Wk,R, the set

{t ∈ R : xut ∈Wk,R}
is 4k-thick at ∞.

Proof. Writing x = [g] ∈ RFkM , we may assume g+ = ∞ and g− = 0
without loss of generality. This means that gU is a horizontal line. It
follows from the definition of RFkM that the set

Tx,k := {t ∈ R : xut ∈ RFkM}.
is globally k-thick. Let R = R(2k) be as given by Lemma 5.2. We again
use the decomposition (5.4) of the sets of return times as a union of disjoint
open intervals: {t ∈ R : xut ∈ H } =

⋃
In and {t ∈ R : xut ∈ HR} =

⋃
Jn

with Jn ⊂ In. Since xU is not contained in HR, the intervals Jn have finite
length. Write `n = `Jn . It follows from Corollary 5.3 that for each n,

(5.6) Jn ± 2k`n ⊂ In.
If x 6∈ H , set sx = 0. If x ∈ H , let nx be the integer such that 0 ∈ Inx and
set sx = sup{|t| | t ∈ Inx

}.
We claim that for all s > sx,

(5.7) (Tx,k −
⋃
Jn) ∩ ([−4ks,−s] ∪ [s, 4ks]) 6= ∅.

This means that {u ∈ U : xu ∈ RFkM − HR} is 4k-thick at ∞.
Since Tx,k is k-thick, there exists

t ∈ Tx,k ∩ ([−2ks,−2s] ∪ [2s, 2ks]).

If t belongs to none of these intervals Jn, then claim (5.7) holds. Hence
suppose that t ∈ Jn0

for some n0. By the choice of sx, we have

0 /∈ In0
.

By (5.6) and by the fact that In0
does not contain 0, we have

2k`n0
≤ |t|.

By the global k-thickness of Tx,k, there exists

t′ ∈ Tx,k ∩ (t± [`n0
, k`n0

]).

By (5.6), we have t′ ∈ In0
. Clearly, t′ is not in Jn0

. And t′ belongs
to none of these intervals Jn. In order to prove (5.7), it remains to prove
s ≤ |t′| ≤ 4ks. For this, note that |t| − k`n0

≤ |t′| ≤ |t|+ k`n0
. Hence

|t′| ≤ 2|t| ≤ 4ks and |t′| ≥ |t|/2 ≥ s,
proving the claim. �
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Note that in the above proof, we set sx = 0 if x /∈ H . Therefore we have
the following corollary of the proof:

Corollary 5.5. For any x ∈ RFkM − H , the set

{t ∈ R : xut ∈ RFkM − HR}

is 4k-thick.

6. Homogeneous dynamics

In this section we explain the polynomial divergence argument for Zariski
dense subgroups Γ. The main assumption requires that the set of return
times of the horocyclic flow in a suitable compact set is k-thick at ∞.

We begin by the following lemma which is analogous to Lemmas 4.3 and
4.5 and that we will apply to a set T of return times in the proof of Propo-
sition 6.2.

Lemma 6.1. Let T ⊂ U be a subset which is k-thick at ∞.

(1) If gn → e in G−V H, then lim sup
n→∞

TgnH contains a sequence vn → e

in V − {e}.
(2) If gn → e in G−AN , then lim sup

n→∞
TgnU contains a sequence `n → e

in AV − {e}.

Proof. Lemma 6.1 is a slight modification of [27, Thm 8.1 and 8.2] where it
was stated for a sequence Tn of k-thick subsets instead of a single set T . If
all Tn are equal to a fixed T , the k-thickness at∞ is sufficient for the proof.
Indeed the same proof works, provided sTn as defined in (5.1) can be taken
uniformly bounded for all Tn. �

For a compact subset W of FM = Γ\G, a U -invariant closed subset
Y ⊂ Γ\G is said to be U -minimal with respect to W if Y ∩ W 6= ∅ and
yU = Y for any y ∈ Y ∩W . Such a minimal set Y always exists.

Proposition 6.2. Let Γ ⊂ G be a Zariski dense discrete subgroup with limit
set Λ. Let W ⊂ F ∗Λ be a compact subset, and X ⊂ FM a closed H-invariant
subset intersecting W . Let Y ⊂ X be a U -minimal subset with respect to
W . Assume that

(1) there exists k ≥ 1 such that for any y ∈ Y ∩W , Ty = {t ∈ R : yut ∈
W} is k-thick at ∞;

(2) there exists y ∈ Y ∩W such that X − yH is not closed;
(3) there exists y ∈ Y ∩W such that yU is not periodic;
(4) there exist y ∈ Y ∩W and tn → +∞ such that ya−tn belongs to W .

Then

X = FΛ.
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For clarification, we comment that the points y in (2), (3) and (4) need
not be the same element.

The proof of this proposition is based on the polynomial divergence argu-
ment, which allows us to find an orbit yV + sitting inside X. Combined with
Corollary 4.1, this implies that X is dense.

Proof. First step: We claim that there exist vn → e in V −{e} such that
Y vn ⊂ X.

We follow the proof of [27, Lem. 9.7]. Let y ∈ Y ∩W be as in (2). Since
yH is not open in X, there exists a sequence gn → e in G − H such that
ygn ∈ X.

If gn ∈ V H, the claim follows easily.
If gn /∈ V H, then, by Lemma 6.1, there exist tn ∈ Ty, hn ∈ H such that

u−tngnhn → v for some arbitrarily small v ∈ V − {e}. Since yutn ∈ Y ∩W
and Y ∩W is compact, the sequence yutn converges to some y0 ∈ Y ∩W ,
by passing to a subsequence. It follows that the element y0v = lim

n→∞
ygnhn

is contained in X. Then the orbit closure y0vU = y0Uv is included in X
and hence Y v ⊂ X since Y is U -minimal with respect to W . Since v can be
taken arbitrarily close to e, this proves our first claim.

Second step: We claim that there exists a one-parameter semigroup
L ⊂ AV such that Y L ⊂ Y . Let y ∈ Y ∩ W be as in (3). We follow
the proof of [27, Theorem 9.4, Lemma 9.5]. By (1), there exists a sequence
tn ∈ Ty tending to ∞ such that yutn → y0 ∈ Y ∩W . Write yutn = y0gn
where gn → e. Since yU is not periodic, gn ∈ G− U .

If gn ∈ AN , then write gn = qnun where qn ∈ AV and un ∈ U . Since qn /∈
U , qn 6= e. As y0qn ∈ Y and Y is U -invariant, y0qn ∈ Y . Then the closed
subgroup generated these qn’s contains a one-parameter semigroup L as
desired. If gn /∈ AN , then, by Lemma 6.1, there exist sn ∈ Ty0 , u′n ∈ U such
that u−sngnu

′
n → ` for some non-trivial ` ∈ AV . Since y0usn ∈ Y ∩W and

Y ∩W is compact, passing to a subsequence, the sequence y0usn converges
to some y1 ∈ Y ∩W . It follows that the point

y1` = lim
n→∞

y0gnu
′
n = lim

n→∞
yutnu

′
n

belongs to Y . Since Y is U -minimal with respect to W , one has the inclusion
Y ` = y1U` = y1`U ⊂ Y .

As ` can be taken arbitrarily close to e, this yields the desired one-
parameter semigroup L and proves our second claim.

Third step: We claim that there exists an interval VI of V containing e
such that Y VI ⊂ X.

By an interval VI of V we mean an infinite connected subset of V .
We follow the proof of [28, Theorem 7.1]. We use the second step. A one-

parameter semigroup L ⊂ AV is either a semigroup V + ⊂ V , a semigroup
A+ ⊂ A or v−1A+v for some non-trivial v ∈ V .

If L = V +, our third claim is clear.



22

If L = v−1A+v, we have Y v−1A+vA ⊂ X. Now the set v−1A+vA contains
an interval VI of V containing e. This proves our third claim.

If L = A+, this semigroup is not transversal to H and we need to also
use the first step. Indeed we have

Y (
⋃
A+vnA) ⊂ X.

Now the closure of
⋃
A+vnA contains an interval VI of V containing e. This

proves our third claim.

Fourth step: We claim that there exist w ∈ W and a one-parameter
semigroup V + ⊂ V such that wV + ⊂ X.

Here V + is a one-parameter semigroup of V intersecting VI as a non-
trivial interval. Let y, tn be as in (4). By compactness of W , the sequence
ya−tn converges to a point w ∈ X ∩W , by passing to a subsequence. For
every v ∈ V +, there exists a sequence vn ∈ VI such that atnvna−tn = v for
n large. It follows that

wv = lim
n→∞

yvna−tn ∈ X

and hence wV + ⊂ X. This proves the fourth claim.
Now, since W ⊂ F ∗Λ, Corollary 4.1 implies that X = FΛ. �

7. H-orbits are locally closed or dense

In this section, we explain how the polynomial divergence argument can
be applied to the orbit closure of xH for x ∈ RFkM ∩F ∗, when Γ is geome-
trically finite. The main advantage of the assumption that Γ is geometrically
finite is that RFkM − HR is compact.

The key result of this section is the following theorem:

Theorem 7.1. Let Γ ⊂ G be a geometrically finite Zariski dense subgroup.
If x ∈ RFkM ∩F ∗ for some k ≥ 1, then xH is either locally closed or dense
in FΛ.

In Theorem 7.1 the assumptions on Γ are very general, but we point
out that the conclusion concerns only those H-orbits intersecting the set
RFkM ∩ F ∗.

Fix R ≥ 1 as given by Proposition 5.4 and set

W ∗k,R := (RFkM − HR) ∩ F ∗.

Proposition 7.2. Let Γ ⊂ G be a geometrically finite Zariski dense sub-
group. Let x ∈ RFkM ∩F ∗. If xH ∩W ∗k,R is not compact, then xH is dense
in FΛ.

Proof. This follows from Proposition 3.8; see the proof of [28, Coro. 6.2]. �

Proposition 7.3. Let Γ ⊂ G be a geometrically finite Zariski dense sub-
group. Let x ∈ RFkM ∩ F ∗. If xH ∩ F ∗ contains no periodic U -orbit and
(xH − xH) ∩W ∗k,R is non-empty, then xH is dense in FΛ.
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Proof. Using Proposition 7.2, we may assume that the set xH ∩ W ∗k,R is

compact. By assumption, the set (xH − xH) ∩W ∗k,R is non-empty.
We introduce the compact set

(7.1) W =

{
(xH − xH) ∩W ∗k,R if xH is locally closed

xH ∩W ∗k,R if xH is not locally closed.

Let Y ⊂ xH be a U -minimal subset with respect to W . We want to apply
Proposition 6.2. We check that its four assumptions are satisfied:
1. By Proposition 5.4, for any y ∈ Y ∩W , the set Ty := {t ∈ R : yut ∈ Y ∩W}
is 4k-thick at ∞.
2. We can find y ∈ Y ∩W such that xH − yH is not closed. To see this, if
Y ∩W 6⊂ xH, we choose y ∈ Y ∩W −xH. If xH−yH were closed, it would
be a proper closed subset of xH containing xH, yielding a contradiction.

If Y ∩W ⊂ xH, by (7.1), the orbit xH is not locally closed and we choose
any y ∈ Y ∩W .
3. The U -orbit of any point y ∈ Y ∩W ⊂ xH ∩ F ∗ is never periodic.
4. Since Ty is uncountable while Λp is countable, there exists y0 := [g0] ∈
yU ∩W such that g−0 defined in (2.1) is a radial limit point. Since g−0 is a
radial limit point, there exists a sequence tn → +∞ such that y0a−tn 6∈ HR.
Since both RFkM ∩ F ∗ and xH are A-invariant, we have y0a−tn ∈W .

Hence Proposition 6.2 implies that xH is dense in FΛ. �

Proof of Theorem 7.1. When xH∩F ∗ contains a periodic U -orbit, the claim
follows from Proposition 4.2.

We now assume that xH ∩F ∗ contains no periodic U -orbit. Suppose that
xH is not dense in FΛ. Then, by Proposition 7.3, xH ∩W ∗k,R = xH ∩W ∗k,R;
in particular, the set

(7.2) W := xH ∩W ∗k,R
is compact. We now repeat almost verbatim the same proof of Proposition
7.3, with this compact set W . Let Y ⊂ xH be a U -minimal subset relative
to W . We assume that the orbit xH is not locally closed. The four assump-
tions of Proposition 6.2 are still valid:
1. For any y ∈ Y ∩W , {t : yut ∈W} is 4k-thick at ∞.
2. For any y ∈ Y ∩W , the set xH − yH is not closed.
3. For any y ∈ Y ∩W , yU is not periodic.
4. Choose any y = [g] ∈ Y ∩W such that g− is a radial limit point. Then
ya−tn ∈W for some tn →∞.
Hence, by Proposition 6.2, the orbit xH is dense in FΛ, yielding a contra-
diction. �

8. Locally closed H-orbits have non-elementary stabilizer

In this section we give more information on locally closed H-orbits inter-
secting the set RFkM ∩ F∗. In particular we show that they have non-
elementary stabilizer.
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As in the previous section, let k ≥ 1 and fix R ≥ 0 as given by Proposition
5.4 and set W ∗k,R := (RFkM −HR)∩ F ∗. The main aim of this section is to
prove the following:

Theorem 8.1. Let Γ ⊂ G be a geometrically finite Zariski dense subgroup.
Suppose that xH ⊂ FM is a locally closed subset intersecting RFkM ∩ F ∗.
Then

(1) xH ∩ (RFkM)H ∩ F ∗ ⊂ xH, i.e., xH is closed in (RFkM)H ∩ F ∗;
(2) The stabilizer Hx of x in H is non-elementary.

In particular, there are only countably many locally closed H-orbits inter-
secting RFkM ∩ F ∗.

We remark that the condition that xH intersects RFkM∩F ∗ is necessary
in Theorem 8.1. For instance, in the Apollonian gasket P, any circle C
whose intersection with P consists of 3 tangent points of 3 mutually tangent
circles inside P is a separating circle such that ΓC is closed but StabΓ(C) is
elementary, where Γ = {g ∈ G : g(P) = P} is the Apollonian group.

We will apply the following lemma with L = U .

Lemma 8.2. Let L be a non-compact one-parameter subgroup of G, and
Y ⊂ FM be an L-minimal subset with respect to a compact subset W ⊂ FM .
Fix y ∈ Y ∩W and suppose that {` ∈ L : y` ∈ Y ∩W} is unbounded. Then
there exists a sequence `n →∞ in L such that y`n → y.

Proof. The set Z := {z ∈ Y : ∃`n → ∞ in L such that y`n → z} of ω-limit
points of the orbit yL is a closed L-invariant subset of Y that intersects W .
Therefore, by minimality, it is equal to Y and hence contains y. �

We will also need the following lemma:

Lemma 8.3. For any R ≥ 0, the set HR never contains an A-orbit.
In particular, if xH intersects RFkM , it also intersects Wk,R.

Proof. The claim follows because no horoball in H3 contains a complete
geodesic and the set RFkM is A-invariant. �

Fix R ≥ 1 as given by Proposition 5.4. The condition that xH is locally
closed implies that the orbit map

(8.1) Hx\H → xH

given by [h] 7→ xh is a proper map when xH is endowed with the induced
topology from FM (cf. [39, Lemma 2.1.15]).

Proof of Theorem 8.1. Let xH be a locally closed set with x ∈ RFkM ∩F ∗.
First case : xH ∩ F ∗ contains no periodic U -orbit.
(1) In this case, since xH is locally closed, Propositions 7.2 and 7.3 imply

that the intersection W := xH ∩W ∗k,R is compact and is contained in xH.

Since this is true for any R large enough, the intersection xH ∩RFkM ∩F ∗
is also contained in xH.
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(2) As in the proof of Theorem 7.1, we will use the following compact set

W = xH ∩W ∗k,R.

By Lemma 8.3, W is non-empty.
We first construct a sequence of elements δn in the stabilizer Hx. Let

Y ⊂ xH be a U -minimal subset with respect to W . Fix y ∈ Y ∩ W .
Since W ⊂ xH, by replacing x by y, we may assume x = y without loss of
generality.

By Proposition 5.4, {t ∈ R : xut ∈ Y ∩ W} is unbounded. Hence by
Lemma 8.2, one can find a sequence un → ∞ in U such that yun → y. By
the properness of the map in (8.1), there exists a sequence δn → ∞ in Hx

such that

(8.2) δnun → e in H.

Let J ⊂ H denote the Zariski closure of Hx. We want to prove J = H.
We first claim that U ⊂ J . Since the homogeneous space J\H is real

algebraic, any U -orbit in J\H is locally closed [8, 3.18]. Therefore, since
the sequence [e]un converges to [e] in J\H, the stabilizer of [e] in U is non
trivial and hence U ⊂ J .

We now claim that J 6⊂ AU . Indeed, if the elements δn were in AU one
would write δn = anu

′
n with an ∈ A and u′n ∈ U . Since xH contains no

periodic U -orbit, the stabilizer Hx does not contain any unipotent element,
and hence an 6= e. Since the sequence anu

′
nun converges to e, the sequence

an also converges to e. Therefore, δn is a sequence of hyperbolic elements of
a discrete subgroup of AU whose eigenvalues go to 1. Contradiction.

Since any algebraic subgroup of H containing U but not contained in AU
is only H itself, we obtain J = H. Therefore Hx is Zariski dense in H.

Second case : xH ∩ F ∗ contains a periodic U -orbit yU .
(1) By Proposition 7.2, the set W := xH ∩Wk,R is compact. We claim

that W is contained in xH. If not, the set (xH−xH)∩W ∗k,R would contain

an element x′. Since xH is locally closed, it is not included in x′H. By
Proposition 4.2, any periodic U -orbit of xH is contained in xH. Hence

x′H contains no periodic U -orbit.

Since x′H cannot be dense in FΛ, Theorem 7.1 implies that x′H is locally
closed. By the first case considered above, the stabilizer Hx′ is non-elemen-
tary. Therefore, since x′ ∈ F ∗Λ, Proposition 3.5 implies that xH is dense in
FΛ. Since xH is locally closed, this is a contradiction. Therefore we obtain:

(8.3) W = xH ∩W ∗k,R.

Since this is true for any R large enough, the intersection xH∩(RFkM∩F ∗)
is contained in xH.

(2) Since xH is locally closed, by Proposition 4.2, yU is contained in xH.
This proves that the stabilizer Hx contains a non-trivial unipotent element.
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We now construct a non-trivial hyperbolic element δ ∈ Hx. We write
x = [g] and denote by C = (gH)+ the corresponding circle. We again use
the compact set W given by (8.3). Since x is in RFkM , the set

{(gh)+ ∈ C : h ∈ H with xh ∈W}
is uncountable and hence contains at least two radial limit points. By con-
sidering an A-orbit which connects these two limit points, we get z ∈ xH
such that zA ⊂ xH ∩ (RFkM ∩ F ∗). Since the set {t ∈ R : zat ∈ HR} is
a disjoint union of bounded open intervals, we can find a sequence an ∈ A
such that zan ∈W and a′n := a−1

n an+1 →∞.
Since xH ∩ W is compact, by passing to a subsequence the sequence

zn := zan converges to a point z′ ∈ xH ∩W .
Therefore we have

zn → z′ and zna
′
n = zn+1 → z′.

By the properness of the map in (8.1), we can write zn = z′εn with εn → e
in H. Therefore the following product belongs to the stabilizer of z′ :

(8.4) δn := εna
′
nε
−1
n+1 ∈ Hz′ .

Since a′n →∞, the elements δn are non-trivial hyperbolic elements of Hz′ for
all n large enough. Since z′ ∈ xH, the stabilizer Hx also contains non-trivial
hyperbolic elements.

Since a discrete subgroup of H containing simultaneously non-trivial uni-
potent elements and non-trivial hyperbolic elements is non-elementary, the
group Hx is non-elementary.

If x = [g], then gHg−1∩Γ is non-elementary, and hence contains a Zariski
dense finitely generated subgroup of gHg−1. Now the last claim on the
countability follows because there are only countably many finitely generated
subgroups of Γ and H has index two in its normalizer. �

9. A uniformly perfect subset of a circle

In this section we give an interpretation of Theorems 7.1 and 8.1 in terms
of Γ-orbits of circles.

According to Section 5.1, the union RF∞M := ∪k≥1 RFkM can be de-
scribed as

RF∞M = {[g] ∈ RFM : (gH)+ ∩ Λ ⊃ S ⊃ {g±}
for a uniformly perfect set S }.

Hence an H-orbit [g]H intersects RF∞M if and only if the intersection C∩Λ
contains a uniformly perfect subset S where C is the circle given by (gH)+.

Putting together Theorems 7.1 and 8.1, we obtain:

Corollary 9.1. Let Γ ⊂ G be a geometrically finite Zariski dense sub-
group. If x ∈ RF∞M ∩ F ∗, then xH is either locally closed or dense in
FΛ. When xH is locally closed, it is closed in (RF∞M)H ∩ F ∗ and Hx is
non-elementary.
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Let Cperf denote the set of all circles C ∈ C such that C ∩ Λ contains a
uniformly perfect subset of C, and let

C∗perf := Cperf ∩ C∗.
This is a Γ-invariant set and in general, this set is neither open nor closed
in C. The following theorem is equivalent to Corollary 9.1.

Theorem 9.2. Let Γ ⊂ G be a geometrically finite Zariski dense subgroup.
For any C ∈ C∗perf , the orbit ΓC is either discrete or dense in CΛ. Moreover,

a discrete orbit ΓC is closed in C∗perf and its stabilizer ΓC is non-elementary.

10. H-orbits contained in RFM

In this section, we prove Theorem 1.5. We assume that Γ ⊂ G is geo-
metrically finite and of infinite co-volume. We describe the H-orbits xH
which are contained in the renormalized frame bundle RFM . Equivalently
we describe the Γ-orbits ΓC contained in the limit set Λ.

Theorem 10.1. Let Γ ⊂ G be a geometrically finite subgroup of infinite
co-volume and let x ∈ FM .

(1) If xH is contained in RFM , then xH is closed and has finite volume.
(2) If xH ⊂ FM has finite volume then xH is closed and contained in

RFM .
(3) There are only finitely many H-orbits contained in RFM .

This theorem implies that the closed subset

F0 := {x ∈ F : xH ⊂ RFM}
is a union of finitely many closed H-orbits. Equivalently, the closed subset

C0 := {C ∈ C : C ⊂ Λ}
is a union of finitely many closed Γ-orbits.

We will deduce Theorem 10.1 from the following three lemmas. We write
x = [g] and denote by C the corresponding circle C := (gH)+.

Lemma 10.2. Let Γ ⊂ G be a geometrically finite subgroup of infinite co-
volume. Any xH included in RFM is closed.

Proof. Remember that, by assumption, the circle C is contained in the limit
set Λ. Let F ∗0 := F0 ∩ F ∗.

Case 1: x 6∈ F ∗0 . In this case the circle C is a boundary circle. This
means that C is included in Λ and bounds a disk B in Ω = S2 − Λ. The
surface ΓC\hull(C) is then a connected component of the boundary of the
convex core of M . Hence the orbit xH is closed.

Case 2: x ∈ F ∗0 . By Definition 5.2, we have

F0 ⊂ RFkM

for all k ≥ 1. Since x belongs to RFkM ∩ F ∗, Theorems 7.1 and 8.1 imply
that either the orbit xH is dense in FΛ or this orbit is closed in F ∗0 .
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Since Γ is geometrically finite of infinite covolume, the limit set Λ is
not the whole sphere S2 and therefore RFM is strictly smaller than FΛ.
Therefore the orbit xH cannot be dense in FΛ.

Hence xH is closed in F ∗0 . If xH were not closed in F0, there would exist
an H-orbit yH ⊂ xH ⊂ F0 which does not lie in F ∗0 . By Case 1, the orbit
yH corresponds to a boundary circle and hence it is of finite volume. Then
by Corollary 3.4, the orbit xH has to be dense in FΛ. Contradiction. �

Lemma 10.3. Let Γ ⊂ G be a geometrically finite subgroup. Any closed
xH contained in RFM has finite volume.

Proof. Since xH is closed, the inclusion map xH → RFM is proper, and the
the corresponding map ΓC\C → coreM , say, f , is also proper. The properly
immersed geodesic plane S, which is the image of f , is geometrically finite
by [30, Theorem 4.7]; so its convex core coreS has finite area.

We now claim that Λ(ΓC) = C ∩Λ. As xH ⊂ RFM , we have C = C ∩Λ.
Therefore the claim implies S = coreS, finishing the proof. As Λr(Γ

C) =
C∩Λr by [30, Lemma 4.5], it suffices to show that C∩Λp ⊂ Λ(ΓC). Suppose
that there exists ξ ∈ (C ∩ Λp) − Λ(ΓC). Using the upper-half space model
of H3 = {(x, y, z) : z > 0}, we may assume ξ =∞, and hence C is a vertical
plane. As ξ /∈ Λ(ΓC), there exists r > 1 such that the restriction of the
canonical projection p : C → ΓC\C to the half-plane C ∩ {(x, y, z) : z ≥ r}
is a proper map. On the other hand, as ∞ is a bounded parabolic fixed
point for Γ, the image of the line C ∩ (R2×{r}) is bounded in coreM under
f ◦ p. This is a contradiction to the properness of f . �

Lemma 10.4. Let Γ ⊂ G be a discrete group with limit set Λ 6= S2. Then
the following set Ca is discrete in C :

Ca := {C ∈ C : ΓC\ hull(C) is of finite area}.

Proof. Suppose C ∈ Ca is not isolated. Then there exists a sequence of
distinct circles Cn ∈ Ca converging to C. Since Λ(ΓC) = C, by Corollary
3.4, the closure of

⋃
ΓCn contains CΛ. Since Cn ⊂ Λ, CΛ is contained in Λ.

On the other hand, the closure of the set of all circles in CΛ is equal to S2.
Therefore S2 = Λ, contradicting hypothesis. �

Proof of Theorem 10.1. (1) follows from Lemmas 10.2 and 10.3.
(2) Since the quotient ΓC\ hull(C) has finite area, the limit set Λ(ΓC) is

equal to C and the orbit xH is contained in RFM . By (1), xH is closed.
(3) By (1) and (2) we have the equality C0 = Ca. Therefore by Lemma

10.4, the set C0 is closed and discrete.
Now since Γ is geometrically finite, by Lemma 8.3, any H-orbit contained

in RFM intersects the compact set W := RFM − H , where H is equal to
HR with R = 0. Hence there exists a compact set K ⊂ C such that, for any
circle C ∈ C0, there exists γ in Γ such that γC is in K. Since the intersection
C0∩K is discrete and compact, it is finite. Therefore Γ has only finitely many
orbits in C0, and there are only finitely many H-orbits in F0. �
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11. Planes in geometrically finite acylindrical manifolds

In this section, we assume that M = Γ\H3 is a geometrically finite acylin-
drical manifold, and we prove Theorems 1.1 and 1.2. Under this assumption,
every separating H-orbit xH intersects RFkM ∩ F ∗ and hence W ∗k,R for k

large enough (Corollary 11.7) which enables us to apply Theorems 7.1 and
8.1.

11.1. Geometrically finite acylindrical manifolds. We first want to
define the acylindrical geometrically finite hyperbolic 3-manifolds.

We begin with the definition of an acylindrical compact manifold. Let
D2 denote a closed 2-disk and let C2 = S1× [0, 1] be a cylinder. A compact
3-manifold N with boundary ∂N is called acylindrical

(1) if the boundary of N is incompressible, i.e., any continuous map
f : (D2, ∂D2) → (N, ∂N) can be deformed into ∂N or equivalently
if the inclusion π1(R) → π1(N) is injective for any component R of
∂N ; and

(2) if any essential cylinder of N is boundary parallel, i.e., any continu-
ous map f : (C2, ∂C2)→ (N, ∂N), injective on π1, can be deformed
into ∂N .

Now let M = Γ\H3 be a geometrically finite manifold, and consider the
associated Kleinian manifold

M = Γ\(H3 ∪ Ω).

Recall that a compact connected submanifold N of codimension 0 in M
is called a compact core of M if the inclusion π1(N)→ π1(M) is an isomor-
phism and each component of the boundary ∂N is equal to the full boundary
of a non-compact component of M −N [20, 3.12]. This is sometimes called
the Scott core of M and is unique up to a homeomorphism.

It is convenient to choose an explicit model of the compact core of M .
As M is geometrically finite, M is compact except for a finite number of
bounded rank one cusps and of rank two cusps. The bounded rank one cusps
correspond to pairs of punctures on ∂M which are arranged so that each
pair determines a solid pairing tube in M , and the rank two cusps determine
solid cusp tori in M (see [20, §3.6]). We can choose them to be disjoint. A
choice N0 ⊂ M of the compact core N of M can be obtained by removing
from the convex core of M the interiors of these solid pairing tubes and solid
cusp tori. This compact core N0 can also be seen as the thick part of the
convex core of M .

The boundary ∂N0 is then a closed surface whose components have genus
at least 1. The pairing cylinders, which are the boundary of the solid pairing
tubes, give rise to “marked” cylinder Pk that sit on the union S of compo-
nents of ∂N0 of genus at least 2. The cusp tori, which are the boundary of
the solid cusp tori, are the components of ∂N0 of genus 1. Note that

(11.1) the surface S − ∪Pk is homeomorphic to Γ\Ω = ∂M .
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We say that a geometrically finite manifoldM is acylindrical if its compact
core N0 is acylindrical ([35], [20, §4.7])

Remark 11.1. The Apollonian manifold A\H3 is not acylindrical, because
its compact core is a handle body of genus 2, and hence it is not boundary
incompressible.

For the rest of this section, we let

M = Γ\H3 be a geometrically finite

acylindrical manifold of infinite volume.

Write the domain of discontinuity Ω = S2 − Λ as a union of components:

Ω = ∪iBi,

and let ∆i denote the stabilizer of Bi in Γ.
Recall that a quasi-fuchsian group is a Kleinian group which leaves a

Jordan curve invariant. A finitely generated quasi-fuchsian group whose
limit set is a Jordan curve is a quasi-conformal deformation of a lattice of
PSL2(R) and hence its limit set is a quasi-circle.

Lemma 11.2. Let M be a geometrically finite acylindrical manifold of in-
finite volume.

(1) For each i, ∆i is a finitely generated quasi-fuchsian group and Bi is
an open Jordan disk with ∂Bi = Λ(∆i).

(2) There are countably infinitely many Bi’s with finitely many Γ-orbits

and Λ =
⋃
i ∂Bi.

(3) For each i 6= j, Bi ∩Bj is either empty or a parabolic fixed point of
rank one; and any rank one parabolic fixed point of Γ arises in this
way.

(4) No subset of {Bi} forms a loop of tangent disks, i.e., if Bi1 , · · · , Bi`,
` ≥ 3 is a sequence of distinct disks such that Bij ∩Bij+1 6= ∅ for all

j, then Bi` ∩Bi1 = ∅.

When all Bi are round open disks, M is called rigid acylindrical.

Proof. For (1), we first claim that the limit set Λ is connected or, equiva-
lently, that each Bi is simply connected. Indeed the quotient ∆i\Bi is
homeomorphic to a component Si of S−∪Pk. Since N0 is boundary incom-
pressible, ∆i is the fundamental group of Si and Bi is simply connected.

By Ahlfors [3, Lemma 2], the group ∆i is finitely generated and Bi is a
component of Ω(∆i). Since ∆i has two invariant components, it is quasi-
fuchsian and ∂Bi = Λ(∆i) (cf. [23, Theorem 3]).

For (2), since Γ is not quasi-fuchsian by the acylindricality assumption,
there are countably infinitely many Bi’s. There are only finitely many Γ-
orbits of Bi’s by Ahlfors’ finiteness theorem. Since

⋃
i ∂Bi is a Γ-invariant

subset of Λ, the last claim in (2) is clear.
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For (3), note that as ∆i is a component subgroup of Γ, we have by [24,
Theorem 3],

(11.2) Λ(∆i ∩∆j) = Λ(∆i) ∩ Λ(∆j).

On the other hand, as N0 is acylindrical, a loxodromic element can pre-
serve at most one of the Bi’s. As no rank two parabolic fixed point lies in⋃
i ∂Bi, it follows that for all i 6= j, ∆i ∩∆j is either trivial or the stabilizer

of a parabolic limit point of Γ of rank one. Therefore the first claim in (3)
follows from (1) and (11.2). The second claim in (3) follows from a standard
fact about geometrically finite groups [20, §3].

For (4), suppose not. Then, using the identifications (11.1), one gets
a non-trivial loop on ∂N0 which bounds a disk in N0, contradicting the
boundary-incompressible condition on N0. �

11.2. Lower bounds for moduli of annuli and Cantor sets. We have
seen that the closures of the components of Ω may intersect with each other.
The aim of this section is to regroup the components of Ω into maximal trees
of disks and to show that the closures of these maximal trees of disks are
not only disjoint but are uniformly apart in the language of moduli.

For a closed surface S′ of ∂N0 of genus at least 2, its fundamental group
π1(S′) injects to Γ as S′ is an incompressible surface. We have already seen
that S′ comes with finitely many marked cylinders Pk’s and each connected
component of S′ − ∪Pk corresponds to a component of ∂M .

For two connected components of Ω, we write Bi ∼ Bj if their closures
intersect each other. This spans an equivalence relation on the collection
{Bi}. We write

Ω =
⋃
T`

where T` is the union of all disks in the same equivalence class, i.e., T` is a
maximal tree of disks.

The T`’s fall into finitely many Γ-orbits corresponding to the components
S′ of genus at least 2 of the surface ∂N0. Moreover, the stabilizer Γ` of T`
in Γ is conjugate to π1(S`) ⊂ Γ for the corresponding component S`. We
refer to [1], [14], [36] for various aspects on these manifolds.

The following lemma is a crucial ingredient of Theorem 11.5.

Lemma 11.3. Let M be a geometrically finite acylindrical manifold of in-
finite volume. We have:

(1) For each `, ∂T` = Λ(Γ`).
(2) For each `, T ` is connected, locally contractible and simply connected.
(3) For each k 6= `, T k ∩ T ` = ∅.
(4) For each `, the subgroup Γ` has infinite index in Γ.

Proof. For (1), we set K := T`, and consider the set

R` := {pij = Bi ∩Bj : i 6= j, Bi, Bj ⊂ T`}.
Each pij is fixed by a parabolic element, say, γij ∈ Γ`.
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By the uniformization theorem, π1(S`) can be realized as a cocompact
lattice Σ` in PSL2(R) acting on H2 as isometries. Let cij ∈ H2 be the
geodesic stabilized by a hyperbolic element ι(γij) of Σ` for the isomorphism

ι : Γ` ' Σ`. Let K0 be the compact set obtained from H2 by collapsing
geodesic arcs cij to single points, for all the points pij in R`. We denote by
∂K0 the image of S1 in this collapsing process, so that K0 is an ”abstract
tree of disks” while ∂K0 is an ”abstract tree of circles”.

As Γ` is a finitely generated subgroup of a geometrically finite group Γ
whose covolume is infinite, this subgroup Γ` itself is geometrically finite
by a theorem of Thurston (cf. [25, Theorem 3.11]). So we can apply a
theorem of Floyd [14] to Γ` to obtain a continuous equivariant surjective
map ψ` : S1 = ∂H2 → Λ(Γ`) conjugating Σ` to Γ`, which is 2 to 1 onto rank
one parabolic fixed points of Γ` and injective everywhere else. Moreover,
this map ψ` factors through the map S1 → ∂K0 described above, since each
pij is a rank one parabolic fixed point of Γ`. It follows that Λ(Γ`) is equal
to the closure of ∪Bj⊂T`∂Bj , and hence Λ(Γ`) = ∂K follows as claimed in
(1).

For (2), we denote by ψ∗` : ∂K0 → ∂K the continuous surjective map
induced by ψ`. We claim that ψ∗` is injective by the acylindrical condition
on N0. Suppose not. Then there exists a point p ∈ Λ(Γ`) − ∪j∂Bj over
which ψ∗` is not injective. By the aforementioned theorem of Floyd, p is a
fixed point of a parabolic element γ ∈ Γ` and the geodesic in H2 whose two
end points are mapped to p by ψ` is stabilized by a hyperbolic element of
Σ` corresponding to γ. Hence this gives rise to a non-trivial closed curve α
in S` ⊂ ∂N0 which is homotopic to a boundary component β of a pairing
cylinder in ∂N0. Since p /∈ ∪j∂Bj , α and β are not homotopic within S`,
yielding an essential cylinder in N0 which is not boundary parallel. This
contradicts the acylindrical condition on N0. Therefore ψ∗` is injective.

Now the map ψ∗` : ∂K0 7→ ∂K can be extended to a continuous injective

map K0 7→ K inducing homeomorphisms between each B0,j and Bj where
B0,j denotes the connected component of K0 − ∂K0 above Bj . Hence K0

and K are homeomorphic. This implies claim (2).
For (3), note that for all ` 6= k,

Γ` ∩ Γk = {e}

by the acylindrical condition on N0.
By [25, Theorem 3.14], we have

Λ(Γ`) ∩ Λ(Γk) = Λ(Γ` ∩ Γk) ∪ P

where P is the set of ζ ∈ S2 − Λ(Γ` ∩ Γk) such that StabΓ`
ζ and StabΓk

ζ
generates a parabolic subgroup of rank 2 and StabΓ`

ζ ∩ StabΓk
ζ = {e}.

If ζ ∈ P , then ζ, being a parabolic fixed point of Γ`, must arise as the
intersection Bi ∩ Bj for some i 6= j by Floyd’s theorem as discussed above.
But every such point is a rank one parabolic fixed point of Γ by Lemma
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11.2(3); so P = ∅. Hence we deduce that Λ(Γ`) ∩ Λ(Γk) = ∅, which implies
claim (3) by claim (1).

Claim (4) follows from the fact that the group Γ` is a geometrically finite
group which is not acylindrical. Indeed, the compact core of Γ` is homeo-
morphic to a product N` ∼ [0, 1]×S` where S` is a compact surface of genus
at least 2. The boundary ∂N` of this compact core is a union of two copies
of S`. One of them contains pairing cylinders, the other does not. �

An annulus A ⊂ S2 is an open region whose complement consists of two
components.

Corollary 11.4. Let M be a geometrically finite acylindrical manifold of
infinite volume. Then,

(1) for each `, S2 − T` is a disk,
(2) for each ` 6= k, S2 − (T` ∪ Tk) is an annulus.

Proof. We may assume without loss of generality that T` contains ∞ in
Ĉ = S2. Now by (2) of Lemma 11.3, and by Alexander duality (cf. [11,
§3, Theorem 3.44]), U := S2 − T` is a connected open subset of C. By the
Riemann mapping theorem [2, §6.1], a connected open subset of C whose
complement in S2 is connected is a disk. As T` is connected, it follows that
U is a disk, proving (1).

Claim (2) follows from (1) and Lemma 11.3(3). �

When neither component of S2−A is a point, an annulus A is conformally
equivalent to a unique round annulus {z ∈ C : 1 < |z| < R}, and its modulus

mod (A) is defined to be logR
2π [17].

Theorem 11.5. Let M be a geometrically finite acylindrical manifold of
infinite volume. Then there exists δ > 0 such that

(11.3) inf
` 6=k

mod (S2 − (T` ∪ Tk)) ≥ δ.

Proof. Suppose that the claim does not hold. Since there are only finitely
many Γ-orbits of T`’s, and the Γ-action is conformal, without loss of genera-
lity, we may assume that there exists Tk0 and T`0 such that for some infinite
sequence T` ∈ Γ(T`0), mod (S2 − (Tk0 ∪ T`)) → 0 as ` → 0. For ease of
notation, we set k0 = 1.

Consider the disk V1 := S2 − T1. Since Γ1 is the stabilizer of T1 with
Λ(Γ1) = T 1 − T1, Γ1 acts on V1 properly discontinuously. Hence by the
uniformization theorem together with the fact that Γ1 is conjugate to π1(S)
of a non-toroidal closed surface S of ∂N0, V := Γ1\V1 is a closed hyperbolic
surface with π1(V ) = Γ1.

Since T`’s have disjoint closures, each T` maps injectively into V . We
denote its image by T ′`.

We claim that the diameter of T ′`, measured in the hyperbolic metric of
V , goes to 0 as ` → ∞. As T` ∈ Γ(T`0) by assumption, we may write
T` = δ`(T`0) for δ` ∈ Γ. Since Γ1 acts cocompactly on V1, there is a compact
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fundamental domain, say F in V1, such that γ`(∂T`) ∩ F 6= ∅ for some
γ` ∈ Γ1. Suppose that the diameter of T` in the hyperbolic metric of V1

does not tend to 0. Then by the compactness of F , up to passing to a
subsequence, γ`(∂T`) = γ`δ`(∂T`0) converges to a closed set L ⊂ Λ in the
Hausdorff topology where L has positive diameter and intersects F non-
trivially. In particular, hull(L)∩H3 6= ∅. Fixing x0 ∈ hull(L)∩H3, we have
a sequence s` ∈ hull(∂T`0) ∩H3 such that γ`δ`(s`)→ x0. Moreover, we can
find γ′` ∈ Γ`0 so that (γ′`)

−1s` belongs to a fixed compact subset, say, K, of
H3. Indeed, if the injectivity radius of x0 is ε > 0, then all s` should lie in the
ε/2-thick part of the convex hull of Λ(Γ`0) on which Γ`0 acts cocompactly
as it is geometrically finite.

Hence γ`δ`γ
′
`(K) accumulates on a neighborhood of x0. As the group Γ

acts properly discontinuously on H3, this means that {γ`δ`γ′`} is a finite set,
and hence γ`T` = γ`δ`γ

′
`T`0 is a finite set. It follows that, up to passing to

a subsequence, for all `, γ`T` is a constant sequence, containing a point in
F . As T`’s are disjoint, γ` ∈ Γ1 must be an infinite sequence. On the other
hand, if γ` is an infinite sequence, T`∩γ−1

` F 6= ∅ implies that T `∩Λ(Γ1) 6= ∅,
yielding a contradiction. This proves the claim.

Now if the diameter of T ′` is smaller than one quarter of the injectivity
radius of V , then we can find a disk D` in V containing T ′` whose diameter
is 1/2 of the injectivity radius of V ; this gives a uniform lower bound, say, δ0

for the modulus of S2− (T1∪T`) for all ` ≥ `0 for some `0 > 1, contradicting
our assumption. This proves the theorem. �

If K is a Cantor set in a circle C, we say K has modulus ε if

(11.4) inf
i 6=j

mod (S2 − (Ii ∪ Ij)) ≥ ε

where C −K =
⋃
Ij is a disjoint union of intervals with disjoint closures.

Note that a Cantor set K ⊂ C has a positive modulus if and only if K is
a uniformly perfect subset as in Definition 5.1. Indeed the relationship be-
tween “positive modulus” and “global thickness of return time” is explained
in [28, Propositions 3.2 and 4.3].

Theorem 11.6. Let M be a geometrically finite acylindrical manifold of
infinite volume. Then for any C ∈ C∗, C ∩ Λ contains a Cantor set of
modulus δ′ where δ′ > 0 depends only on δ as in (11.3).

Proof. This can be proved by a slight adaptation of the proof of [28, Theorem
3.4], in view of Theorem 11.5. Recalling Ω =

⋃∞
`=1 T`, we write U := C−Λ =

∪U` where U` = C ∩ T`. Note that distinct U` have disjoint closures. We
may assume that U is dense without loss of generality. We will say that an
open interval I = (a, b) ⊂ C with a 6= b is a bridge of type ` if a, b ∈ ∂U`. We
can then construct a sequence of bridges Ij with disjoint closures precisely
in the same way as in proof of [28, Theorem 3.4]. We first assume that
|I1| > |C|/2 by using a conformal map g ∈ GC . We let I2 be a bridge of
maximal length among all those which are disjoint from I1 and of a different
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type from I1. We then enlarge I1 to a maximal bridge of the same type
disjoint from I2. For k ≥ 3, we proceed inductively to define Ik to be a
bridge of maximal length among all bridges disjoint from I1, · · · , Ik−1. We
have |I1| ≥ |I2| ≥ |I3| · · · , |Ik| → 0 and ∪Ik is dense in C. Now K := C−∪Ik
is the desired Cantor set.

Pick two indices i < j. If the intervals Ii and Ij have same type, then

mod (S2 − (Ii ∪ Ij)) ≥ δ′ for some universal constant δ′ > 0, because there
must be a bridge Ik with 1 < k < i such that I1 ∪ Ik separates Ii from
Ij . Now if Ii and Ij have different types, say ` and k, then as the annulus

S2 − (T ` ∪ T k) separates ∂Ii from ∂Ij , we have by [17, Ch II, Thm 1.1],

mod (S2 − (Ii ∪ Ij)) ≥ mod (S2 − (T ` ∪ T k)) ≥ δ

proving the claim. �

11.3. Applications to H-orbits. We now reformulate this information in
terms of H-orbits.

Corollary 11.7. Let M = Γ\H3 be a geometrically finite acylindrical mani-
fold. Then for all sufficiently large k > 1,

F ∗ ⊂ (RFkM)H.

In particular, every H-orbit in F ∗ intersects Wk,R for any R ≥ 0.

Proof. Every H-orbit xH in F ∗ corresponds to a separating circle C. By
Theorem 11.6, there exists δ′ > 0 depending only on M such that C ∩ Λ
contains a Cantor set which has modulus δ′. Therefore, for some k > 1
depending only on δ′, this intersection C ∩ Λ is k-uniformly perfect. This
tells us that xH meets RFkM .

By Lemma 8.3 it also meets Wk,R for any R ≥ 0. �

Theorem 11.8. Let M = Γ\H3 be a geometrically finite acylindrical mani-
fold.

(1) For x ∈ F ∗, xH is either closed in F ∗ or dense in FΛ.
(2) If xH is closed in F ∗, the stabilizer Hx = {h ∈ H : xh = x} is

non-elementary.
(3) There are only countably many closed H-orbits in F ∗.
(4) Any H-invariant subset in F ∗ is either a union of finitely many

closed H-orbits in F ∗, or is dense in FΛ.

Proof. Claim (1) is immediate from Corollary 9.1 and Corollary 11.7.
The statements (2) and (3) follow from Theorem 8.1 combined with Corol-

lary 11.7.
To prove (4), let E ⊂ F ∗ be an H-invariant subset, and let X be the

closure of E. Suppose X is not FΛ. Then every H-orbit in E is closed in
F ∗. We claim that there are only finitely many H-orbits in E. Suppose not.
Then by Theorem 11.8.3, the set E consists of infinitely and countably many
distinct closed H-orbits in F ∗, so E =

⋃
n≥1 xnH. We claim that X = FΛ,
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which would yield a contradiction. Let K > 1 and R ≥ 0 as in Corollary
11.7 so that we may choose the points xn in these H-orbits inside W ∗k,R.

As in Proposition 7.2, the set X ∩ W ∗k,R is compact, and hence, after
extraction, the sequence xn has a limit point, say, x∞ ∈ X ∩W ∗k,R. We may
assume that x∞ does not lie in E by replacing E by E − x∞H if necessary.

When X ∩ F ∗ does not contain periodic U -orbit, since the set (X −E)∩
W ∗k,R is non-empty, we can repeat the proof of Proposition 7.3 to getX = FΛ.

When X ∩F ∗ contains a periodic U -orbit, we apply the following Lemma
11.9 and also get X = FΛ. These contradictions finish the proof of (4). �

We have just used the following variation of Proposition 4.2.

Lemma 11.9. Let Γ ⊂ G be a Zariski dense discrete subgroup and E ⊂ F ∗Λ
be a H-invariant subset. Assume that E ∩ F ∗ contains a periodic U -orbit
yU . Then either

(1) yH is locally closed and yH ⊂ E; or
(2) E is dense in FΛ.

Proof. Same proof as Proposition 4.2. �

Theorem 1.2 is a special case of the following theorem:

Theorem 11.10. Let M = Γ\H3 be a geometrically finite rigid acylindrical
manifold. For any x ∈ F ∗, the orbit xH is either closed or dense in FΛ.

Proof. We suppose xH is not closed in FΛ. By Theorem 11.8, it suffices to
consider the case where xH is closed in F ∗Λ. This means that there exists

an H-orbit yH ⊂ xH which is not contained in F ∗. We write y = [g] and
set C = (gH)+ to be the corresponding circle. Since this circle C is non-
separating, it is contained in the closure of a component B0 of the domain
of discontinuity Ω and is tangent to its boundary ∂B0. Since M is rigid, this
boundary ∂B0 is a circle whose stabilizer ΓB0 acts on B0 with a finite area
fundamental domain. Therefore, by Corollary 3.4, this forces ΓC = CΛ. In
terms of H-orbits, this means that xH = FΛ. �

12. Arithmetic and Non-arithmetic manifolds

In this section, we will prove Theorem 1.3 and present a counterexample
to it when M0 is not arithmetic.

A good background reference for this section is [19].

12.1. Proof of Theorem 1.3. Recall G = PSL2(C) and H = PSL2(R). A

real Lie group G̃ ⊂ GLN (R) is said to be a real algebraic group defined over
Q if there exists a polynomial ideal I ⊂ Q[aij , det(aij)

−1] in N2 +1 variables
such that

G̃ = {(aij) ∈ GLN (R) : p(aij , det(aij)
−1) = 0 for all p ∈ I}.

Let Γ0 ⊂ G be an arithmetic subgroup. This means that there exist a
semisimple real algebraic group G̃ ⊂ GLN (R) defined over Q and a surjective
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real Lie group homomorphism ψ : G̃→ G with compact kernel such that Γ0

is commensurable with ψ(G̃ ∩GLN (Z)) (cf. [6]).
Let Γ ⊂ Γ0 be a geometrically finite acylindrical group, and denote by

p : Γ\G → Γ0\G the canonical projection map. In order to prove Theorem
1.3, we first note that the orbit xH is either closed in F ∗ or dense in FΛ by
Theorem 11.8.

Suppose that xH is closed in F ∗. Write x = [g] and let C := (gH)+ be the
corresponding circle. Then, by Theorem 11.8, the stabilizer ΓC of C in Γ is a
non-elementary subgroup and hence is Zariski dense in GC . Hence the group
ψ−1(GC) is defined over Q and the group ψ−1(ΓC0 ) is commensurable with
ψ−1(GC) ∩GLN (Z). By Borel and Harish-Chandra’s theorem [6, Corollary
13.2], ΓC0 is a lattice in GC . Hence the orbit p(x)H has finite volume and is
closed in Γ0\G.

When xH is dense in FΛ, its image p(x)H is dense in p(FΛ). On the other
hand, FΛ has non-empty interior as Λ is connected. Therefore p(FΛ) ⊂ Γ0\G
is an A-invariant subset with non-empty interior. Since Γ0\G contains a
dense A-orbit, it follows that the set p(FΛ) is dense in Γ0\G. Therefore the
image p(x)H is also dense in Γ0\G. The other implications are easy to see.

12.2. Cutting finite volume hyperbolic manifolds. In the rest of this
section, we will construct an example of a non-arithmetic manifold M0 and a
rigid acylindrical manifold M which covers M0 for which Theorem 1.3 fails,
as described in Proposition 12.1.

We first explain how to construct a geometrically finite rigid acylindrical
manifold M starting from a hyperbolic manifold M0 of finite volume. We
also explain the construction of an arithmetic hyperbolic manifold M0 which
admits a properly immersed geodesic surface. Let Γ0 be a lattice in G such
that ∆ := H ∩ Γ0 is a cocompact lattice in H. This gives rise to a properly
immersed compact geodesic surface S0 = ∆\H2 in the orbifold M0 = Γ0\H3.
According to [19, Theorem 5.3.4], by passing to a subgroup of finite index in
Γ0, we may assume that M0 is a manifold and that S0 is properly embedded
in M0.

We cut M0 along S0. The completion N0 of a connected component, say,
M ′, of the complement M0−S0 is a hyperbolic 3-manifold whose boundary
∂N0 is totally geodesic and is the union of one or two copies of S0.

Note that the fundamental group Γ of N0 can be considered as a subgroup
of Γ0. Indeed, let p0 : H3 → M0 be the natural projection and E0 be the
closure of a connected component of p−1

0 (M ′). Since E0 is convex, Γ can
be identified with the stabilizer of E0 in Γ0. The complete manifold M =
Γ\H3 is a geometrically finite manifold whose convex core has a boundary
which is isometric to ∂N0. Note that M does not have any rank one cusp.
The domain of discontinuity Ω is a dense union of round open disks whose
closures are mutually disjoint, that is, Λ is a Sierpinski curve. It follows that
M is a rigid geometrically finite acylindrical manifold.
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Conversely, any rigid acylindrical geometrically finite manifold M is obtai-
ned that way. Indeed, the double M0 of the convex core N0 of M along its
totally geodesic boundary ∂N0 is a finite volume hyperbolic 3-manifold.

12.3. Comparing closures of geodesic planes. Let

q = q(x1, x2, x3, x4)

be a quadratic form with real coefficients and signature (3, 1). Hyperbolic
space can be seen as

(12.1) H3 ' {[v] : v ∈ R4 , q(v) < 0}

where [v] denotes the real line containing v, and the group G is isomorphic
to the identity component SO(q)◦ of the special orthogonal group. When
v ∈ R4 is such that q(v) > 0, the restriction q|v⊥ is a quadratic form of
signature (2, 1) where v⊥ denotes the orthogonal complement to v with
respect to q. Therefore

Hv := v⊥ ∩H3

is a totally geodesic plane in H3 and the stabilizer Gv = SO(q|v⊥)◦ is iso-
morphic to PSL2(R). Hence the space C of circles C ⊂ S2 or, equivalently,
of geodesic planes in H3, can be seen as

C ' {Hv : v ∈ R4 , q(v) > 0}.

We now assume that the coefficients of the quadratic form q belong to
a totally real number field K of degree d such that for each non-trivial
embedding σ of K in R, the quadratic form qσ has signature (4, 0) or (0, 4),
so that the orthogonal group SO(qσ) is compact.

Now an arithmetic subgroup Γ0 ⊂ G which contains a cocompact Fuchsian
group is commensurable with

G ∩ SL4(O)

where G = SO(q)◦ and O is the ring of integers of K (cf. [19, Section
10.2]). In this case, the corresponding finite volume hyperbolic orbifold
M0 = Γ0\H3 is an arithmetic 3-orbifold with a properly immersed totally
geodesic arithmetic surface. This orbifold is compact if and only if q does
not represent 0 over K.

We introduce the set of rational positive lines:

CK := {[v] : v ∈ K4 , q(v) > 0},

which can also be thought as the set of rational planes {Hv : v ∈ K4 , q(v) >
0}.

For v ∈ CK, the restriction q|v⊥ is defined over K. The group Gv(O) :=
Gv ∩ SL4(O) is an arithmetic subgroup of Gv. We call Pv := Gv(O)\H2 an
arithmetic geodesic surface of M0. We recall that every properly embedded
geodesic plane Q of M0 is arithmetic, i.e. we have Q = Pv for some [v] ∈ CK.
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By passing to a finite cover, we assume Pv is properly embedded in M0,
and let Γ ⊂ Γ0 be the fundamental group of a component M0 − Pv as
discussed in the subsection 12.2.

12.4. Arithmetic examples. We begin by a very explicit example of arith-
metic lattice with K = Q. We consider the following family of quadratic
forms

qa := q0(x1, x2, x3) + ax2
4

where q0(x1, x2, x3) = 7x2
1 + 7x2

2 − x2
3 and a is a positive integer.

One can check, using the Hasse-Minkowski principle [32, Theorem 8 in
Chapter 4], that

(1) q0 does not represent 0 over Q;
(2) qa represents 0 over Q iff a is a square mod 7 and a 6= −1 mod 8;

We choose a positive integer a satisfying condition (2). For instance a = 1 or
a = 2 will do. We denote by Γa,0 := SO(qa,Z)◦ the corresponding arithmetic
lattice and by Ma,0 = Γa,0\H3 the corresponding arithmetic hyperbolic orb-
ifold.

We introduce the geodesic plane Hv0 associated to the vector

v0 = (0, 0, 0, 1).

Note that, seen in the model (12.1) of H3 given by the quadratic form qa,
the geodesic plane Hv0 does not depend on a. We fix the geodesic orbifold
Sa,0 := Pv0 . Passing as above to a finite cover, we may assume that Ma,0 is a
hyperbolic manifold and that Sa,0 is a properly embedded compact geodesic
surface. After cutting along Sa,0, we get a hyperbolic 3-manifold Na,0 whose
geodesic boundary ∂Na,0 is a union of one or two copies of Sa,0. We denote
by Γa the fundamental group of Na,0 and by

Ma := Γa\H3

the corresponding geometrically finite rigid acylindrical hyperbolic manifold
whose convex core has compact boundary. As we have seen, the group Γa
is naturally a subgroup of Γa,0 and there is a natural covering map

pa : Ma →Ma,0

to which Theorem 1.3 applies.

12.5. Non-arithmetic examples. The class of non-arithmetic hyperbolic
3-manifolds that we will now construct are some of those introduced by
Gromov and Piatetski-Shapiro in [15].

Choose two positive integers a, a′ such that a/a′ /∈ Q2, for instance a =
1 and a′ = 2. Since the surfaces Sa,0 and Sa′,0 are isometric, and the
boundaries ∂Na,0 and ∂Na′,0 are union of one or two copies of these surfaces,
we can glue one or two copies of the 3-manifolds Na,0 and Na′,0 along their
boundaries and get a connected finite volume hyperbolic manifold M0 with
no boundary. We write

M0 = Γ0\H3.
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By [15], the lattice Γ0 of G is non-arithmetic. The group Γa is also naturally
a subgroup of Γ0 and there is a natural covering map

p : Ma →M0.

Theorem 1.4 follows from the following:

Proposition 12.1. Let S denote the boundary of the convex core of Ma.
Let P ⊂Ma be a geodesic plane that intersects S but is neither contained in
S nor orthogonal to S. Then the image p(P ) is dense in M0.

In particular, there exists a closed geodesic plane P ⊂Ma that intersects
M∗a and whose image p(P ) is dense in M0.

We first need to compute the angle θa,v between two rational planes in
H3; the following lemma follows from a direct computation.

Lemma 12.2. Let v = (w, x4) with w ∈ R3, x4 ∈ R with qa(v) > 0.
The intersection of the two geodesic planes Hv and Hv0 is a geodesic line

Dw, independent of a and x4.
The angle θa,v := ∠(Hv,Hv0) between these geodesic planes is given by

(12.2) cos2(θa,v) =
〈v0, v〉2qa

qa(v0)qa(v)
=

ax2
4

q0(w) + ax2
4

.

Therefore we have:

Corollary 12.3. Fix w ∈ Q3 − {0} and set

Θa,w := {cos2(θa,(w,x)) : x ∈ Q− {0}}.
If a/a′ is not a square in Q, then

Θa,w ∩Θa′,w = ∅.

Proof. For v = (w, x4) and v′ = (w, x′4) with x4 and x′4 in Q − {0}, by

Formula (12.2), an equality cos2 θa,v = cos2 θa′,v′ would imply ax2
4 = a′x′4

2,
and hence a/a′ ∈ Q2. This proves the claim. �

Proof of Proposition 12.1. By Theorem 1.2, which is due to Shah and Rat-
ner independently ([33], [31]) for a hyperbolic manifold of finite volume, the
geodesic plane Q := p(P ) is either closed or dense in M0. We assume by
contradiction that Q is closed in M0.

Since Q∩Na,0 is closed, as explained in Theorem 1.3, Q must be the image
in M0 of a rational plane Hv with v = (w, x4) ∈ Q4, in the model (12.1) of
H3 given by the quadratic form qa. Similarly, since Q ∩ Na′,0 is closed, Q
must be the image in M0 of a rational plane Hv′ with v′ = (w′, x′4) ∈ Q4, in
the model of H3 given by the quadratic form qa′ .

We can choose these lifts such that the two intersection geodesics Dw =
Hv ∩ Hv0 and Dw′ = Hv′ ∩ Hv0 are equal and the corresponding two angles
between these intersecting planes are equal. This says that w and w′ are
equal up to a multiplicative factor, and that cos2 θa,v = cos2 θa′,v′ . This
contradicts Corollary 12.3. �
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Remark 12.4. After seeing the result proven in the paper of Fisher, Lafont,
Miller and Stover [13], we realized that Proposition 12.1, and the main result
in [33] together can also be used to show that the non-arithmetic manifolds
in section 12.5 can have at most finitely many properly immersed geodesic
planes. To see this using the notation of Proposition 12.1, note that by [33],
all but finitely many closed planes in M0 intersect p(S). By Proposition
12.1, they must intersect p(S) orthogonally. On the other hand, for any
infinite collection of planes in M0, their normal bundles form a dense subset
in the tangent bundle of M by [33]. Therefore it follows that there are at
most finitely many closed planes in M0. For a more general result in this
direction, see more recent preprints ([22], [4]).
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