Transport of Spin and Mass at Normal-Superfluid Interfaces in the Unitary Fermi Gas
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Transport in strongly interacting Fermi gases provides a window into the non-equilibrium behavior of strongly
correlated fermions. In particular, the interface between a strongly polarized normal gas and a weakly polarized
superfluid at finite temperature presents a model for understanding transport at normal-superfluid and normal-
superconductor interfaces. An excess of polarization in the normal phase or a deficit of polarization in the
superfluid brings the system out of equilibrium, leading to transport currents across the interface. We implement
a phenomenological mean-field model of the unitary Fermi gas, and investigate the transport of spin and mass
under non-equilibrium conditions. We consider independently prepared normal and superfluid regions brought
into contact, and calculate the instantaneous spin and mass currents across the normal-superfluid (NS) interface.
For an unpolarized superfluid, we find that spin current is suppressed below a threshold value in the driving
chemical potential differences, while the threshold nearly vanishes for a critically polarized superfluid. The
mass current can exhibit a threshold in cases where Andreev reflection vanishes, while in general Andreev
reflection prevents the occurrence of a threshold in the mass current. Our results provide guidance to future
experiments aiming to characterize spin and mass transport across NS interfaces.

I. INTRODUCTION

Experiments on quantum gases of atoms enable strong tests
of many-body theories. Studies of ultracold Fermi gases have
provided insight into the thermodynamics, excitation spectra,
and bulk transport properties of strongly interacting fermions,
e.g. [1H16]. Measurements of fermion transport through quan-
tum point contacts [[17-23]] and Josephson junctions [24H28]]
have extended atomic Fermi gas experiments into the do-
main of structured devices. Meanwhile, strongly correlated
electron materials such as high-temperature superconduc-
tors have gained growing interest for application in devices,
such as Josephson junctions [29, [30]], spin valves [31} 32],
and semiconductor-superconductor junction devices [33]], that
feature normal-superconductor interfaces. Experiments on
cold atom-based systems that emulate normal-superconductor
junctions can therefore provide valuable insight into the ef-
fects of strong correlations on transport in such devices. More
fundamentally, atomic gas experiments provide a platform for
controlled studies of strongly interacting systems out of equi-
librium, and can therefore aid in the development of theoreti-
cal techniques for understanding the dynamics of many-body
systems.

Spin-imbalanced unitary Fermi gases provide a natural
model system in which to study strongly correlated normal-
superfluid junctions. At low temperatures, when the dif-
ference in chemical potential between the two spin com-
ponents exceeds the Chandrasekhar-Clogston limit, the sys-
tem phase separates into a weakly polarized superfluid and
a strongly polarized normal fluid that coexist at equilib-
rium [1} 3L 34H39]]. Spin-imbalanced Fermi gases there-
fore naturally form a normal-superfluid (NS) interface akin
to the ferromagnet-superconductor interfaces employed in su-
perconducting spin valves [40-43]]. Transport across NS
interfaces results from non-equilibrium conditions, making
strongly interacting Fermi gases an interesting model of non-
equilibrium behavior in strongly correlated systems.

Several previous works have considered aspects of trans-
port across NS interfaces in strongly interacting Fermi gases.

Calculations of thermal conductivity across the NS inter-
face predicted a suppression of thermal conduction across
the interface in chemical equilibrium [44] 45]. Analysis of
evaporation dynamics in trapped spin-imbalanced gases pre-
dicted a modification of the apparent critical polarization due
to non-equilibrium spin distribution [46]]. Experiments on
spin-imbalanced Fermi gases observed metastability of non-
equilibrium NS interfaces, which the authors attributed partly
to inhibition of spin transport at the interface [47]. Mea-
surements of spin transport coefficients found strong damp-
ing of the spin dipole mode in spin-balanced [[10] and spin-
imbalanced gases with and without a superfluid core [L1],
and experiments on fermionic quantum point contacts ob-
served suppressed spin conductance with decreasing tem-
perature [19]. Numerical simulations have recently pre-
dicted metastable spin-polarized droplets in superfluid Fermi
gases [48]].

In this paper, we investigate theoretically the transport of
spin and mass across the NS interface in the spin-imbalanced
unitary Fermi gas. We address three main questions: how
much spin and mass current flows across the interface un-
der a given set of conditions? Under what conditions does
the superfluid excitation gap significantly inhibit spin or mass
transport? And to what extent does Andreev reflection cause
the mass current to behave differently from the spin current?
To address these questions, we consider the interface between
normal and superfluid regions out of chemical equilibrium and
calculate the instantaneous spin and mass currents by employ-
ing a phenomenological mean-field model. We consider two
situations: first, the case of normal and superfluid regions sep-
arated by a tunneling barrier potential; and second, the case
without a barrier, where the normal and superfluid regions are
in mechanical equilibrium. Our calculations provide guidance
to future experiments on non-equilibrium NS interfaces by es-
tablishing the expected magnitude and behavior of the trans-
port currents.

Our results show that the spin current flowing into a super-
fluid is suppressed below a threshold in the driving chemi-
cal potential difference. The predicted threshold is analogous



to the threshold in the current-voltage (I-V) curve of normal-
superconductor junctions at large barrier strength [49], em-
ployed in scanning tunneling spectroscopy to measure super-
conducting gaps [S0]. In analogy with scanning tunneling
spectroscopy, the threshold is related to the minimum in the
superfluid excitation spectrum. We find that, for an unpolar-
ized superfluid in contact with a highly polarized normal re-
gion, the threshold in chemical potential differences between
normal and superfluid regions matches the superfluid gap pa-
rameter (Section V), up to a temperature-dependent correc-
tion that we identify in Section IV B. For a critically polar-
ized superfluid (at finite temperature), the minimum in the su-
perfluid excitation spectrum is significantly reduced, leading
to a significant reduction in the threshold for transport cur-
rent. The existence of a threshold supports the notion that
non-equilibrium NS interfaces can persist in a metastable con-
figuration. The transport threshold applies specifically to the
non-Andreev portion of the current and therefore always af-
fects the spin current. On the other hand, the net (mass) cur-
rent can have a significant Andreev component, and therefore
does not always exhibit a threshold.

The remainder of the paper is structured as follows. In Sec-
tion II we introduce our phenomenological mean-field model,
and in Section III we outline the calculation of the transport
currents. In Section IV we present and discuss our results, and
we conclude in Section V.
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FIG. 1. Schematic of non-equilibrium and equilibrium states of
a phase-separated spin-imbalanced Fermi gas at finite temperature.
Blue: majority (spin up), yellow: minority (spin down); lines repre-
sent Cooper pairing.

II. THEORETICAL MODEL
A. Description of the Problem

We consider a unitary Fermi gas confined in a three-
dimensional box potential [S1] at low temperature, divided
into left and right regions. The confining potential has a uni-
form cross section perpendicular to the z axis. In the left re-
gion (z < 0), the gas has a large spin polarization and is in the
normal phase. In the right region (z > 0), the gas has a smaller
spin polarization and is in the superfluid phase. The densities
of spin-up and spin-down fermions are uniform within a given
region. The temperatures of the two regions can in general
differ, but we will consider the case of equal temperatures for
the two regions. Due to phase separation below the tricriti-

cal point [1} I52]], the system can be in equilibrium or out of
equilibrium, depending on the degree of polarization in each
region. Figure |l|illustrates qualitatively the equilibrium and
non-equilibrium configurations of the system under consider-
ation. We will focus on calculating the instantaneous currents
of spin-up and spin-down fermions across the interface be-
tween the two regions.

Figure[2] shows the approximate phase diagram of the spin-
imbalanced homogeneous unitary Fermi gas. The polarization
p = (ny —ny)/(ny +ny) characterizes the degree of spin imbal-
ance, where n,, gives the number density of fermions with spin
projection o-. The phase diagram of Fig. 2]focuses on the case
of a spin-up majority (p > 0) and normalizes the temperature
by the majority Fermi temperature Try = Epy/kg. Here kg is
the Boltzmann constant and Ery = 7i*(6n%nq)*3 /(2m), where
m is the mass of the fermions. As in Ref. [1], we approxi-
mate the phase boundaries as straight lines in the p — T plane.
In the non-equilibrium two-region configuration that we con-
sider, each region is internally described by a point (p;, T) on
the equilibrium phase diagram, with the same absolute tem-
perature T. The two regions have differing polarization, with
the left (normal) side having polarization py and the right (su-
perfluid) side having polarization py.

For a given T/TF7, the superfluid phase has a maximum
(critical) polarization of pg., while the normal phase has a
minimum (critical) polarization of py.. Below the tricrit-
ical temperature 7,3, the normal-to-superfluid phase transi-
tion is first-order, and the polarization is discontinuous, with
Psc < Dne- At equilibrium, a system with global polariza-
tion (Ny — N|)/(Ny + N|) between ps. and py. will exhibit
phase separation into a superfluid region and a normal region
(here Ny and N are the total number of spin up and spin down
fermions in a homogeneous box potential). At equilibrium,
the phase-separated regions attain their critical polarizations,
Ps = Psc and py = pn., respectively.

Our analysis will focus on the temperature regime below
the tricritical point. For context, we will briefly review a few
other features of the phase diagram. Above the tricritical tem-
perature, the phase transition is second order and the polariza-
tion is continuous (ps. = pnc)- The superfluid region of the
phase diagram above the tricritical point is predicted to fea-
ture further subdivision into a gapped superfluid and a gapless
Sarma superfluid [52}153]. For our analysis, we focus on tem-
peratures below the tricritical temperature, and therefore do
not consider the Sarma phase. We do not consider the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase [54H59]], which is
predicted to occur away from unitarity in the regime of neg-
ative scattering length [54, 156} 157, because we focus on the
case of unitary (resonant) interactions. An interesting p-wave
superfluid phase has been predicted in highly spin-imbalanced
Fermi gases [60} 61]. Theoretical calculations predict that the
p-wave phase should occur at low temperatures over a range of
polarizations above a polarization of about 0.8 in the unitary
Fermi gas [62]]. For simplicity, we do not include the p-wave
phase in our analysis, as it covers a relatively small portion of
the phase diagram. However, it would be interesting to con-
sider transport in the p-wave phase in future work.

In addition to the confining potential, we allow for a thin



barrier potential in the z = 0 plane separating the two regions.
‘We model the barrier as a Dirac delta function, V(z) = Ad(z).
For convenience, we parameterize the barrier strength as

kn = 2mA /K (1)

Experimentally, such a barrier would assist in the preparation
of the non-equilibrium condition that we consider here, by al-
lowing the two regions to equilibrate separately before initiat-
ing transport, similar to Refs. [14] [19]. The barrier strength
can then be reduced, or turned to zero, to allow currents to
flow as the system begins to evolve toward global equilibrium.
The temperatures of two independently prepared regions will
not in general be equal, but nearly equal temperatures can be
achieved through fine tuning of the cooling process applied
to each region during preparation. During transport measure-
ments, maintaining a non-zero barrier may be helpful in con-
trolling the magnitudes of the currents. We will consider par-
ticular cases of both zero and non-zero barrier strengths.

Our analysis will focus on the instantaneous currents under
a given set of conditions. Over a finite time, one would need to
consider additional dynamics. For example, the flow of par-
ticles across the interface will generate entropy and heat the
system [63]]. The final temperature could exceed the tricriti-
cal temperature, in which case phase separation would not be
present in the final state. The final equilibrium state will de-
pend on the volumes of the two initial regions, whereas the
instantaneous currents that we calculate here depend only on
the local properties of the two regions. Furthermore, as par-
ticles flow across the interface, the interface itself can move
and will therefore not always be located at z = 0. Under con-
ditions in which the system heats above the tricritical temper-
ature, the interface would not be thermodynamically stable,
and could evolve away from a planar geometry, in analogy
with the snake instability of solitons [64H69]]. While these
finite-time effects will be important in understanding the full
time-evolution of the system, we focus here on the instanta-
neous response of the system and do not consider its finite-
time evolution. However, our results give insight into the ini-
tial time-evolution of the system at short times.

B. Phenomenological mean-field model

To carry out the calculations, we employ the Blonder-
Tinkham-Klapwijk (BTK) framework originally introduced
to describe normal-superconductor interfaces [49]. The BTK
framework describes the superconducting state using a mean-
field theory, and calculates the transport of quasiparticles
across a step function in the superconducting or superfluid
gap, with a delta-function potential at the interface. De-
spite being based on mean-field theory, the BTK frame-
work has been successfully used to model interfaces with
high-T, superconductors [33| 50, [70]], and has been extended
to spin-imbalanced unitary Fermi gases [44-46]. Similar
to Refs. [44-46], we employ a phenomenological mean-
field model to describe excitations of the strongly interact-
ing fermion system, and obtain transport properties by study-
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FIG. 2. Phase diagram of the two-component Fermi mixture in the
unitarity limit, consisting of the superfluid phase (SF), the forbidden
region (FR), and the normal phase (N) in the coordinates of p and
T/Try. The dashed line denotes the approximate phase boundary
beyond the tricritical temperature T.3. Square (red): quantum crit-
ical point from Ref. [S52] at polarization p., = 0.39. Circle (blue):
the tricritical point from Ref. [52], at polarization p; = 0.24 and
temperature 7.3 = 0.06TF;. Triangle (green): critical temperature
T. = 0.167TF at zero polarization from Ref. [S]].

ing the scattering of quasiparticles by the NS interface. To
provide the most accurate predictions possible within a phe-
nomenological model, we choose the model parameters to fit
state-of-the-art experimental [[1}[3H5} (7,9} (71, [72]] and theoret-
ical [52} [73H75] determinations of thermodynamic and spec-
troscopic quantities in the unitary Fermi gas. A variety of
other approaches have recently been pursued to study non-
equilibrium dynamics of strongly interacting fermions, in-
cluding the time-dependent superfluid local density approx-
imation (SLDA) [48] 69, [76H81]], Keldysh Green’s func-
tion methods [82H84]], time-dependent Ginzburg-Landau the-
ory [66], Boltzmann equation simulations [85}86], and linear
response theory [[13|[87H89].

We apply a model Hamiltonian of the form [45]]:
n=y, [¢ri 2, @
v [[@r[a@d] o)
Here HY is the single-particle grand canonical Hamiltonian

for spin o

2v2

HY(2) = - d

) Ho(2) + Us(z) + Ad(2) 3)

The chemical potentials y,, effective masses m,, gap A, and
Hartree energies U, are modeled as step functions that are
discontinuous across the normal-superfluid interface:

forz <0

1o (2) = {“N”’ )

Uso, Tforz>0



and

Uno, forz<0

Us(z) = { ®)

US()', forz>0

Here o =T, | denotes the spin. In a given region (N or S), we
also express the chemical potentials of spin up and down in
terms of their mean value ¢ and deviation £ (also called the
Zeeman field):

hn = (uny — uny)/2 (6)
hs = (ust — usy)/2 @)

Un = (uny + uny)/2
Hs = (ust + usy)/2

In the superfluid region, a similar parametrization proves use-
ful for the Hartree energies:

Us = (Ust + Us))/2 Up=Usr-Us/2  (8)

Theoretical [90-92] and experimental [7, 93] studies show
that the peak of the spectral function in the unitary Fermi gas
is well-described by an effective mass, Hartree energy, and
gap parameter. We therefore choose the masses, Hartree en-
ergies, and gap to reproduce known properties of the unitary
Fermi gas. Without loss of generality, we consider the case
where the majority is spin up. Minority-spin quasiparticles in
the spin-imbalanced normal region acquire an effective mass
my(z < 0) = m*, where m* is the polaron mass [73]. We
set the effective mass my(z < 0) of the majority spin equal to
the bare mass m in the spin-imbalanced normal region [3}[75].
Likewise, we set the effective masses of both spin states equal
to the bare mass in the superfluid phase, in accordance with
quantum Monte Carlo calculations at low temperature [91].
For simplicity, we do not account for the modified effective
mass of quasiholes in the superfluid [92, 93]. While a general
mean-field Hamiltonian contains Hartree energy terms [94],
the Hartree terms vanish at the mean-field level for the unitary
Fermi gas, and generally for contact interactions in the con-
tinuum limit [95]. In that sense, the Hartree energies in our
model Hamiltonian represent effects beyond the mean-field
level.

As mentioned above, we treat A and the U, as parameters in
the Hamiltonian, and choose their values to match existing ex-
perimental data and first-principles calculations, similar to the
treatment of the unitary Fermi gas in Refs. [45]/46]. Our pro-
cedure therefore differs from weak-coupling self-consistent
mean-field theory, where A and U, would be defined in terms
of expectation values of the field operators, and determined
using gap and number equations. The gap A in our calcu-
lation is therefore the spectral gap parameter rather than the
superfluid order parameter [96]. We let A = 0 in the spin-
imbalanced normal phase [97]. For the superfluid phase, we
set A/us = 1.25 based on experimentally measured values for
the unitary Fermi gas [5, (7, 19, [71]. The latter quantity has an
experimental uncertainty on the order of 5-10% due to uncer-
tainty on the gap. For simplicity, we apply the same value in
the presence of spin imbalance in the superfluid.

To diagonalize the model Hamiltonian (Z)), we apply a Bo-

goliubov transformation to the field operators:

D10 = > g () Faa = Vi () 755 ©)

n

DL = D (1) g + 5, (0 7, (10)

n

The Bogoliubov operators satisfy fermionic anti-commutation
relations,

{Vnors 5/2/(,-/} = Oun O (1T)

The Hamiltonian (2) is diagonalized when the Bogoli-
ubov modes satisfy the Bogoliubov-de Gennes (BdG) equa-
tions [44) 45]]:

HY  AQ@) ) (u u
1 nt| _ nt
[A*(Z) _Hio)] (vlll) - Enﬂ! (an) (12)
H” AQ@) ) (u u
l nl| _ nl
[A*(Z) —H;O)] (VnT) = Enﬁ (VnT) (13)

In terms of the Bogoliubov operators, the Hamiltonian be-
comes:

H = Egs+ ) (EnoThona + Eng?is9ms) (14)
n

Here E,; is the ground-state energy and E,, and E,g are the
single-particle excitation energies

For clarity, and to introduce our notation, below we review
the solutions to the BAG equations in the presence of spin im-
balance [44, 45]]. We will refer to the solutions of @]) and
(T3) as the @ and B branch, respectively. We denote momen-
tum in the normal-phase by k and in the superfluid by q.

In the normal phase (A = 0), the volume-normalized eigen-
functions on both branches have the form:

(Mk(l')) __L (1) o RS (0) Qe (15)
vk (T) Vo \o VAL

where Q is the quantization volume. The first solution re-
quires 7*k*/(2my) > pno — Uno to give a positive excitation
energy, and corresponds to a particle excitation. Likewise, the
second solution requires 2k*/(2my) < pne — Une to give a
positive excitation energy, and corresponds to a hole excita-
tion. In the a branch (12), the particle solution excites purely
Y1 (i.e. a spin-up atom in an atomic system), and the hole
solution excites ¢, while the reverse holds in the 8 branch

(13).

The BdG equations for a translationally invariant superfluid
admit plane wave solutions of the form:

U@\ 1 (0@ qr
(MJ‘@@J” (16)



The positive eigenvalues of (I2)) and (T3) give the energies:

Ey=E;—hs +Uy,>0 (17)
EBZEX-F]’ZS —Uh>0 (18)

where

L s+ Us| (19)

2m

h2 2
Es = \[632 + |A|2 and &=

At a given energy E, ), equations and (T8)) admit up to
two solutions for the magnitude g of the wavevector. The
smaller value g; corresponds to quasihole excitations while
the larger value g, corresponds to quasiparticle excitations.
We give explicit expressions for the wavevectors as functions
of energy in Appendix [B] The eigenmodes in both the @ and 8
branches can then be written:

u(r) _ L (u iq,T L (v iqr
(o) Ta ) gl e

corresponding to quasiparticles and quasiholes, respectively.
Here the quantities u, and v, are:

and v0=,/% (1—%) @1

which are functions of energy Ey) on branch a(f3). Because
uy > vy, particle-like excitations on the @ branch involve
mostly 7 (i.e. spin-up atoms) while hole-like excitations in-
volve mostly |, while the reverse holds on the 8 branch.

To find the Hartree energies U,, we equate the expression
for the densities n, = (lf/Z.(Z/(,) from our phenomenological
mean-field model to the expected densities based on studies
of the equation of state of the unitary Fermi gas. In particular,
we consider the normal phase [13,[75], balanced superfluid [3,
5l , and critically polarized superfluid [52]. Details of our
procedure for determining the Hartree energies are given in

Appendix [A]

C. Degrees of freedom

At a given temperature 7', the two-region system in lo-
cal equilibrium has four degrees of freedom, namely the
four chemical potentials: py1, uny, tst, and us;. We non-
dimensionalize all energies by dividing by us. The three
resulting dimensionless parameters are uy/us, hy/us, and
hs /us. In principle, the instantaneous transport currents can
be calculated for arbitrary values of those parameters. We
consider a few specific cases.

We consider two cases for py/us. In the first case, we con-
sider uy = ps. The pressure in the normal and superfluid
regions will be different in this case. Experimentally, the pres-
sure differential can be supported by maintaining a non-zero
barrier height between the regions. Therefore, in this case we
carry out the calculation in the presence of a non-zero tunnel-
ing barrier. Experimentally, arbitrary ratios of py/us can be

achieved by tuning the densities in the two regions, for exam-
ple by moving one of the outer walls of the trap.

In the second case, we choose uy/ug for a given T/ug to
achieve mechanical equilibrium. Experimentally, this would
describe a situation where the barrier between the regions
has been removed and the system has had sufficient time to
reach mechanical equilibrium, while still being out of chemi-
cal equilibrium [10].

After fixing uy/us, we choose the two remaining degrees
of freedom, hy/us and hs /us. We consider two specific cases
for hs /us: a spin-balanced superfluid (hg = 0) or a critically
polarized superfluid (h; = h.). In each case, we consider the
full range of &y, and calculate the transport currents as func-
tions of hy.

Chemical potential differences drive particle transport. We
therefore define du, as the chemical potential differences
across the interface:

Spy = puny — Mgy and  Gpy = pgy — iy (22)

The choice of signs in (22)) ensures that 6y, > 0. In the special
case of uy = pus, we have duy = oyy. The relation between
the Sy, and hy and hg depends on the equation of state and
is plotted for our model in Appendix [} Experimentally, one
typically measures density rather than chemical potential, so
we also plot the polarization py of the normal region versus
hy in Appendix [

III. SCATTERING FORMULATION AND CURRENT
DENSITIES

A. Scattering states and coefficients

Transport across the normal-superfluid interface can be de-
scribed in terms of quasiparticle reflection and transmission
coefficients [49]. Scattering of quasiparticles at the normal-
superfluid interface of a spin-imbalanced Fermi gas has been
discussed previously in Refs. [44146]. We extend previous
results by including the Hartree energies and polaron effec-
tive mass in the scattering problem, and by using the resulting
scattering coefficients to calculate the currents of spin up and
spin down fermions across the interface.

To describe scattering at the normal-superfluid interface,
we employ energy normalization with respect to the z-
component of the momentum, rather than the volume normal-
ization of Section [[TB] Energy normalization is helpful when
dealing with multiple scattering channels having potentially
different group velocities. Moving from the single-region so-
lutions of Section[[TBto an interface problem also changes the
Bogoliubov modes into scattering solutions that obey bound-
ary conditions at the interface. We parameterize the scattering
states in terms of their total energy and transverse momentum,
which are both conserved, as well as the incident (in) channel
of the scattering process. The « and 8 branches each have four
channels, corresponding to a particle or hole incident on the
interface from the left or right. Note that the @ and 8 branches
have no cross-coupling due to conservation of spin [40].



We express the total current densities of spin up and spin
down in terms of the contributions of each Bogoliubov mode:

Jo :% Z de (jo'na + jo’n/i’) (23)

nKky

Here n € {Lp, Lh, Rp, Rh} runs over the four scattering chan-
nels (particle incident from the left, hole incident from the
left, particle incident from the right, and hole incident from
the right, respectively), k, is the transverse momentum, and
E is the energy. The cross-sectional area A cancels upon con-
verting the sum on k, to an integral. In terms of the energy-
normalized mode functions, the spin-up current per unit en-
ergy from each mode is given by:

17} 6u,ﬂ~ auZT
j no =45, - — n na 24
n 21m( oz M oy M 5 &4
B (Ovn Wy
i B = . - — n 1- n 25
Jnp 21m( 0z Yt 0z vat | (= o) (23)

Similarly, the contributions to the spin-down current are:

. _ h aunl * 8u;l f (26)
TP =i \ "oz kT Ty ] e

h 6v,,l avzl
lne = — =3 - — n 1- na 27
Ji sz*( 5z T gy U (1 = fua) (27

Here f,, and f,3 are the occupation probabilities of the Bo-
goliubov modes in the o and 8 branches, respectively. Note
that the occupation probabilities depend on E, and the mode
functions depend on E and k; .

Under non-equilibrium conditions, the left and right re-
gions will have different chemical potentials for a given spin.
When solving the scattering problem, we employ the tech-
nique introduced in Ref. [49] of referencing all energies to
the superfluid-side chemical potentials, and accounting for the
non-equilibrium conditions through the quasiparticle distribu-
tion functions f,,. We give explicit expressions for the distri-
bution functions in Appendix [C|

We now express the Bogoliubov modes in terms of reflec-
tion and transmission coeflicients. We write the mode func-
tions for the @ and B branches as

Unar = (”T) and 5= (”l) (28)

vnl V"T

for the four channels n € {Lp, Lh, Rp, Rh}. For each branch,
we construct scattering states in terms of in and out states,
which we formally assemble into vectors (dropping the @ and
3 subscripts):

in(out)

lpr

in(oury _ | WLk
v =\ vry (29)

YRn

The scattering states in each of the four channels are expressed

in terms of the in and out states and the S matrix:
l//n = ‘/’in -e, t+ lllgm . Sen (30)

where 7 is the channel index, e, is the n-th unit vector in R?,
and the S matrix for either branch consists of 16 scattering
coeflicients:

B . D
rgp Ton Top Ton
oo Thn Tip Tin
= 31)
$ A B rcp rP (
pp %h [C{P ph
tﬁp Giw Thp Vi

The labels A, B, C, and D refer to the four incident scattering
channels Lp, Lh, Rp, and Rh, respectively.

For the a branch, the in and out states of a particle in the
left (normal) region are:

in(out) _ m 1\ sz ke
Uipa = T (O)e ™+ "0(-2) (32)

For a hole in the left region, they are:

in(ou. m 0 Fi ik, r
V" =\ ity (1) e To(=2) (33)
And for the right region:

in(out) _ mE/E (ug Figpaz ik, T

Urpa = A /—27Th2qu v e 70(z) (34)
in(out) _ ’mEs/é:s VO +tigpez ik,

tha - 27Th2qha U e e 0(2) (35)

Here the upper and lower signs in the exponentials correspond
to the in and out states, respectively, and 6(z) is the Heaviside
step function. The wavevectors k1, ki, gpe, and gp, are the
magnitudes of the z components of the wavevectors of par-
ticle and hole excitations on the @ branch in the normal and
superfluid phases; their dependence on the energy and trans-
verse momentum is given in Appendix [B] Expressions for the
B branch in and out states can be obtained by replacing @ — S3,

Tl in G2)-@G3) and m & m* in and (33).

The scattering coeflicients are obtained by imposing bound-
ary conditions on the scattering states at the interface.
The mode functions must be continuous across the interface:
Yn(z = 07) = y¥,(z = 0%). For the a branch, the derivatives

satisfy:
_ 1 O al!/il(l/
o \0 m/m*] gz

where kp is defined in Eqn . For the g branch, the deriva-
tives satisfy:

OWrna
0z

= kathna(0)  (36)

z—0~

awnﬁ
0z

= karnp(0) 37
20"

_ (m/m* 0 O
z—07* 0 1 32




Note that we obtain the boundary conditions (36) and us-
ing the Hermitian kinetic energy operator ordering spm 1(z) p
from effective mass theory [98H100].

Full expressions for the resulting scattering coefficients are
given in Appendix [E| We find that the S matrix is unitary,
STS =1, as required by conservation of probability. We also
find that the transpose satisfies S(A)T = S(A*), as required
by time-reversal symmetry. As S has the property S(A)* =
S (A¥), it follows that S is Hermitian: ™ = S. The unitarity
and Hermiticity of § will assist in simplifying the expressions
for the currents. In particular, the coefficients for channels
C and D (excitation incident from the right) can be written
in terms of the coeflicients for channels A and B (excitation
incident from the left), allowing us to express the currents in
terms of the coefficients for channels A and B.

The coefficient rz‘p for the a branch (which we will de-

note as r‘,;‘p”) represents an Andreev reflection process, where
a spin-up particle from the normal region is reflected as a
spin-down hole. Likewise, rghu describes the reversed pro-
cess, or reverse Andreev reflection, where a spin-down hole
is reflected as a spin-up particle. Meanwhile, the coefficients
r,fp and r]l))h describe Andreev-type reflection of excitations in-
cident from the superfluid region. Physically, a Cooper pair is
created or annihilated in the superfluid during Andreev reflec-
tion to conserve particle number. Andreev reflections there-
fore transport mass across the interface. In the forward An-
dreev reflection rﬁp, a spin-up particle and a spin-down par-

J

ticle leave the normal region and a Cooper pair appears in
the superfluid. In reverse Andreev reflection rfh, a Cooper
pair disappears and the normal region gains a spin up and
a spin down particle. Andreev reflection does not transport
spin, however, as the total spin in each region remains un-
changed. Moreover, unlike a quasiparticle transmission pro-
cess, Andreev reflection does not create or annihilate a single-
particle excitation in the superfluid, and therefore can occur at
energies within the superfluid excitation gap.

B. Current densities

Employing the scattering states in the expressions for the
current contributions (24)-(27) gives general expressions for
the currents in terms of the S matrix elements. In particular,
we are interested in the net (mass) current and the spin current:

J=Jr+J; and JP" =], —J, (38)
Depending on the values of E and k,, some scattering chan-
nels can become closed, leading to different scattering regimes
as described in Refs. [44, |45]. Within intervals of E and &
where all the channels are open (denoted Regime I in Ap-
pendix [D)), the contributions to the net and spin currents from
the @ branch are given by:

1
ot = E (=1, P +1r, IS (Ea = 6) = FED] = (L= Irfy, P+ 115, PIf(Ea = 011) = F(Ea)]) (39)
= {(1 1 2 = 11 V(B = S0) = FE) + (1= Irfy, 1P = 1B, P (Ea = 611) = f(Ea)]) (40)

The B branch contributions are:

1
jzel {( ol + 1y I (B + Sp11) = f(ER)] = (1

I, I* = I

27

Fla-

In regimes where a scattering channel is closed, the corre-
sponding scattering coefficients drop out of the expressions
for the currents. Appendix [D] describes the regimes in more
detail.

The current density integrands (39)-(#2) show that the con-
tributions from the S branch are small compared to the «
branch. Since E,, Eg, 6uy and du, are positive, all the Fermi
functions in the S currents have positive arguments, while
some in the o currents can have negative arguments. With
positive arguments, the Fermi function quickly drops to zero,
leading to vanishing results for the 8 currents. The S branch
was also found to have a small contribution to heat current at
the interface in Ref. [44] 45]]

The dominance of the @ branch results from the polarization

s DU (Eg) = f(Eg +6u)] = (1 = Irfy P —

= Iy P2+ 1B, PILF(Eg + o) = F(Ep) @1)

I L (B + Sp0) = f(Ep)1) (42)

(

of the normal phase. Creating a large normal (non-Andreev)
current of spin o in the @ branch requires 6y, > Eqmin, Where
E 4min 18 the minimum of E,. As discussed in the next section,
this can be achieved sufficiently far from equilibrium. On the
other hand, because the 8 branch consists of spin up holes and
spin down particles, a large normal current in the 8 branch re-
quires 0y < —Eamin, Which is impossible since oy, > 0. In
addition, as mentioned earlier, we apply the superfluid chem-
ical potentials ug, to the normal side when solving the scat-
tering problem, and implement non-equilibrium through the
quasiparticle distribution functions. Consequently, on the nor-
mal side, the density of spin-up particles formally exceeds the
density of spin-up holes, and vice versa for spin down, so that
the @ branch accounts for the majority of excitations on the



normal side. In our final calculations, we confirm that for
temperatures below 0.3ug, the a branch accounts for at least
99% of the current.

IV. RESULTS AND DISCUSSION

A. Interface away from mechanical equilibrium
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FIG. 3. Thermodynamic states considered, for the case uy = us. For
the sub-case i; = 0 (unpolarized superfluid), the red dot indicates the
state of the superfluid region while the red line indicates the allowed
states of the normal region, given the temperature 7 = 0.05us and
the condition puy = pg. For the other sub-case, h, = h, (critically
polarized superfluid), the blue dot indicates the state of the super-
fluid region while the blue dashed line indicates the allowed states
of the normal region. The solid black and black dashed curves show
the normal-superfluid phase boundary above and below the tricritical
point, respectively. The maximum value of hy/uy on the red solid
and blue dotted lines correspond to py = 0.99, while the minimum
hy/pn corresponds to the critical polarization in the normal phase of
prne =034 at T/uy = T/u, = 0.05.

In this section, we consider the case where the system is out
of mechanical equilibrium and a Dirac delta potential barrier
is applied. We analyze the particular case of uy = us, and
barrier strength ky = 20k,, where k, = 2mug /h>. We consider
two different conditions for the superfluid, (1) kg = 0 for a
spin-balanced superfluid, and (2) s = A, for a maximally po-
larized superfluid. In both cases, we consider a normal region
with chemical potential imbalance Ay (equivalently, polariza-
tion py) greater than the equilibrium value, so that the system
is out of global equilibrium. Figure3|plots the thermodynamic
states under consideration on the phase diagram in terms of
T/u and h/u. In both cases, h; is held at a fixed value, while
hy is varied from the critical value up to a large value corre-
sponding to a normal-region polarization of py = 0.99.

In Fig. ] we show the instantaneous net and spin currents
versus hy. The currents are normalized by a factor Jy, given
by:

muc
42 3

Jo = (43)

The currents for the unpolarized superfluid exhibit a thresh-
old at a critical value of Ay, as shown in Fig. E‘[a). To in-
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FIG. 4. Net, spin, spin-up and spin-down current densities for the
case uy = us as functions of Ay /us, under the conditions: (a) hg = 0,
and (b) hs = h.. For both plots, the temperature is 7 = 0.05us. The
vertical dashed line in (a) denotes the iy value at which ouy = oy =
E,.in, corresponding to normal-region polarization py = 0.44. The
horizontal dashed line in both plots is the J; = 0 line. The horizontal
axes start at iy = h(T = 0.05us) = 0.91y,.

terpret the threshold, we first note that, in the present case
where uy = ug, the chemical potential differences satisfy
Spp = 6y, as illustrated in Fig. [5] The threshold occurs at the
value of hy where oup and oy equal the superfluid minimum
excitation energy E,;,,. With E,.;, = Ay — hs + Uy, we have
Ein(hs = 0) = Ag = 1.25u; for the unpolarized superfluid,
while E,;;,(hs = h.) = 0.02ug for the critically polarized su-
perfluid. Accordingly, the threshold in the critically polarized
superfluid, Fig. @(b), is too small to easily discern. The pres-
ence of a threshold implies that the system is metastable when
hgy = 0: the system is out of equilibrium, but mass and spin
transport are strongly suppressed. Figure [5] shows an exam-
ple of a situation where the threshold is exceeded, allowing
currents to flow.

As mentioned earlier, the spin current results entirely from
normal (non-Andreev) transmission processes. Normal cur-
rent involves the creation or annihilation of an excitation in the
superfluid. Efficient creation of excitations in the superfluid at
low temperatures requires ouy > Emin for spin up excitations,
and oy > Emin for spin down (holes). The energy required to
excite the superfluid therefore explains the observed threshold
in the spin current.

The net current consists, in general, of both normal and An-
dreev processes. Andreev reflection does not excite the super-
fluid, and therefore should exhibit no threshold effects. The
presence of a threshold in the net current in Fig. f[a) suggests
that the net Andreev current vanishes in this case. To confirm
that the Andreev current vanishes, we separate the net cur-
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FIG. 5. Chemical potentials and current densities across the inter-
face, away from mechanical equilibrium, for parameters py = 99%,
and hg = h., uy = pus, T = 0.05us. The left (right) side of the figure
corresponds to the normal (superfluid) region. The horizontal axis
is qualitative, showing the directions and relative magnitudes of the
currents. The vertical axis shows the chemical potentials quantita-
tively.

rent into Andreev and normal components. We identify the
Andreev current in the @ branch as the sum of the terms in
Eq. (39) that are proportional to the Andreev reflection coef-
ficients:

-Andreev

2
Ja = 2 P f(Eo = 6u7) = f(Ea —Su)]  (44)

A
We have used Ir‘,"?hdl2 = Ir;jpﬂl2 from the hermiticity of the S-
matrix to simplify the expression. We verify Eq. (#4) by con-
sidering the net current in the scattering regime where normal
transmission is energetically forbidden, denoted Regime II in
Appendix [D] We find that the net @ branch current is given by
(@) in Regime II, confirming that it captures the current due
to Andreev reflection. In the present case of yy = us, where
our = ouy, Eqn. @) shows that the Andreev contribution to
the net current is indeed zero, explaining the sharp threshold
observed in the net current.

We now discuss a final point of interest regarding the re-
sults in Fig. El Although 6uy = opy for uy = ug, the spin-up
current in Fig. [ is much larger than the spin-down current.
We attribute this asymmetry to the asymmetry in the disper-
sion relations between particle-like and hole-like excitations,
in both the normal and superfluid phases. While the energy of
a particle-like excitation is unbounded, the energy of a hole-
like excitation is bounded from above. As a result, when inte-
grating over the total energy E, and transverse kinetic energy
&, to obtain the currents, there are regimes in which hole-
like excitations are forbidden in the normal and/or superfluid
phase (Appendix D). As a result, the current of hole-like exci-
tations is smaller than the current of particle-like excitations.
On the a branch, particle-like excitations result predominantly
from excitations of 4 (i.e. spin-up atoms), while hole-like
excitations result predominantly from ;. Consequently, the
spin-up current is larger than the spin-down current in this
case, despite the equality of the driving chemical potential dif-
ferences.
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FIG. 6. Thermodynamic states considered, for the case of mechani-
cal equilibrium at temperature 7 = 0.05us. The maximum value of
hy/pn on the red solid (blue dotted) line corresponds to py = 0.96.
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FIG. 7. Chemical potentials and schematic current densities across
the interface, at mechanical equilibrium, with py = 0.96, and hs =
he, T =0.05u5.

B. Interface at mechanical equilibrium

In this section, we apply our model to the case where the in-
terface is at mechanical equilibrium and no potential barriers
are applied. We consider two conditions for the superfluid re-
gion, as in the previous section, (1) g = 0 for a spin-balanced
superfluid, and (2) hg = h, for a maximally polarized super-
fluid. We calculate the instantaneous currents as a function of
normal-region chemical potential imbalance sy and point out
interesting features of the results.

Figure [6] shows the thermodynamic states considered for
the normal and superfluid regions on the phase diagram in the
case of mechanical equilibrium at temperature 7 = 0.05us .
The condition of mechanical equilibrium causes uy/us to de-
pend on hy/us, unlike in the previous section where py /g
had a fixed value. As a result, the dimensionless temperature
coordinate T /uy of the normal region varies with hy /ug. The
values of T'/uy in Fig.[6|for an unpolarized superfluid (hs = 0;
solid red curve) differ slightly from the case of a critically po-
larized superfluid (hg = h.; dotted blue curve), due to the
dependence of the superfluid pressure on polarization.

Figure [7] shows an example of the chemical potentials and
current densities at large normal-region polarization, where
Hs > HN-

In Fig. [8] we show the instantaneous spin and net currents
versus hy at T = 0.05ug. As in the previous section, we ob-
serve a threshold behavior in the spin current for the unpo-
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FIG. 8. Net, spin, spin-up and spin-down current densities as func-
tions of &y, under the conditions: (a) kg = 0, and (b) hg = h,.. For
both plots, temperature is 7 = 0.05u5. The dashed vertical line de-
notes the hy value at which oy = E, ;.
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FIG. 9. The normal and Andreev contributions to the net current as
functions of &y, under the conditions: (a) s = 0, and (b) hs = h..
For both plots, temperature is 7 = 0.05u; .

larized superfluid (ks = 0) and no significant threshold for
the critically polarized superfluid (kg = h.). As before, the
threshold occurs when the chemical potential difference for
one of the spin states exceeds the minimum excitation energy
in the superfluid, which is nearly zero for the critically polar-
ized superfluid. The vertical line in Fig. [8[(a) shows the thresh-
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old for the spin current in the case of an unpolarized super-
fluid. The threshold is given by the point at which oy = E,in,
which occurs at a lower polarization than 6y = Epy.

Unlike in Fig. 4] where we considered uy = g, here the
net current does not exhibit a threshold. The absence of a
threshold results from a non-zero Andreev current when uy #
us. Interestingly, for h; = 0, the sign of uy — g changes as
hy is increased, crossing zero before the threshold, where the
sign of the net current also changes.

In Fig. [8] the spin-up current is small compared to spin-
down current at large normal-region polarization, contrary to
what we found in the g = uy case. This is because, at large
hy, where pg > uy, the Andreev current flows from the super-
fluid into the normal region through reverse Andreev reflec-
tion. On the other hand, the normal component of the spin-up
current flows in the opposite direction, because uyr > usi.
As a result, the normal and Andreev components of the spin-
up current nearly cancel. Meanwhile, the normal spin-down
current flows in the same direction as the Andreev current,
resulting in a larger spin-down current.

To confirm the interpretations described above we decom-
pose the net current into Andreev and normal components.
Figure 0] shows that the normal component exhibits a thresh-
old in the hg = 0 case, while the Andreev component does not.
The net current in Fig. Eka), which is the sum of the normal
and Andreev currents in Fig. Eka), therefore does not have a
threshold effect. We further decompose the a-branch normal
current into spin-up and spin-down components in Fig. [I0}
The total contributions to these currents entering Eqns. (24)
and (27) can be expressed as:

1
jnormal _ (|l’A |2 + |t2pa|2)[f(Ea - 5ﬂT) - f(Ey)] (45)

ta T pWppa

1
S = =3, I+ g, I (Ea = 1) = f(Ea)]
(46)

Figure[I0]and equations (@3] and (6] confirm that the normal
spin-up current is positive while the normal spin-down current
is negative, as mentioned in the discussion of the relative sizes
of the total spin-up and spin-down currents above. Figure[I0|
also shows that the normal spin-up and spin-down currents
each exhibit a threshold in the hg = O case.

Interestingly, the normal spin-up current in Fig. [[0]exhibits
a threshold at a lower value of Ay than expected based on
the condition duy = E,;,. This behavior reveals the tem-
perature dependence of the threshold. At finite temperature,
the normal current for spin o~ should become significant when
Mo 2 Emin — kT . The threshold will therefore shift to lower
polarization. The size of the shift in 4y depends on the sen-
sitivity of Gy, to hy. As shown in Fig. [T4] (Appendix [, 6u7
has a much weaker dependence on hy than does 6y . There-
fore, the threshold value of &y changes by a larger amount for
spin up than for spin down. At low temperatures, a first-order
Taylor expansion gives the shift of the threshold for spin o as
ART, = —kpT [(dops/dhy). Using this formula, we confirm
that the shift in the spin-up threshold should be significantly
larger than the shift in the spin-down threshold. The estimated
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FIG. 10. Normal (non-Andreev) contributions to the spin up and spin
down currents on the @ branch versus hy. (a) hg = 0 (b) hy = h..
For both plots, temperature is 7 = 0.05us. The dashed vertical line
denotes the hy value at which dy; = E,;,, while the dotted vertical
line indicates opy = Eyip.

shift in the spin-down threshold (= —0.06uy) is too small to
observe on the scale of Fig.|10} The shift in the spin-up thresh-
old (= —0.3uy) coincidentally brings the spin-up threshold to
about the same hy value as the spin-down threshold, in agree-
ment with the observed behavior of the normal currents in
Fig. [I0[a).

Finally, we note that in both Fig.[4(b) and Fig.[8|b), the spin
current is positive when kg = h., and, therefore, increases the
polarization in the already maximally polarized superfluid re-
gion. The z > 0 region would have to accommodate the influx
of spin through phase separation, implying that the NS inter-
face should advance to z > 0 and the volume of the critically
polarized superfluid should shrink as a function of time.

V.  CONCLUSIONS

In conclusion, we investigated the transport of spin and
mass across non-equilibrium normal-superfluid interfaces in
the unitary Fermi gas. We found that, when the superfluid re-
gion is unpolarized, the spin current is strongly suppressed be-
low a threshold value of the normal-region polarization. The
threshold nearly vanishes in the limit of a critically polarized
superfluid. Based on these results, we expect that, for in-
termediate superfluid polarization, the threshold should vary
smoothly between the two limiting cases, following the vari-
ation of the minimum excitation energy of the partially po-
larized superfluid. Our results imply that non-equilibrium NS
interfaces below threshold can exhibit suppressed spin trans-
port, contributing to the metastability observed experimen-
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tally [47]. However, we find that Andreev reflection should
allow mass current to flow even below the threshold for spin
transport, except when the average chemical potentials of the
normal and superfluid regions are equal. Meanwhile, the
quantitative values of the transport currents calculated here
provide guidance to future experiments on NS interfaces by
indicating the magnitudes of the expected currents.

An interesting question for future work will be the long-
time evolution of the NS interface. In particular, dissipation
will heat the system, and finite spin conductivity will limit the
rate of global equilibration. An interesting direction for future
work would be to include these effects to predict the finite-
time evolution of the non-equilibrium normal-superfluid mix-
ture. Another important challenge for future work will be to
incorporate additional beyond-mean-field effects in the trans-
port dynamics. In particular, finite quasiparticle lifetime may
soften the threshold for spin transport [50, [101]], potentially
weakening the metastability of the non-equilibrium system.
Experimentally, future work can utilize non-equilibrium NS
interfaces as a source of current to study bulk spin transport
more precisely, and to explore the properties of Fermi gases
under non-equilibrium conditions.
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Appendix A: Hartree energies from thermodynamics
1. Polarized normal phase equation of state

We solve for the Hartree energies in the normal phase by
equating the atomic densities in the phenomenological mean-
field model to the densities given by the known equation of
state at the same temperature and chemical potentials. The
equation of state for the polarized normal phase is well-
described by the following expression for the pressure [3}[75]:

*

32
Py = Po(uny) + (%) Po (uny — Apar) (Al

Here Py (u) = kBT/lt‘h3F 32 (Bu) is the pressure in an ideal
Fermi gas at chemical potential u, with A, = +/2x%?/(mkgT),
F35(x) the complete Fermi-Dirac integral, and 8 = 1/(kgT).
While we use kg = 1 for most of the paper, we include kp
here for clarity. The polaron parameters are A = —0.615 and
m*/m = 1.20 [3 137, 72174} [102].

We obtain the majority and minority atomic densities using



ng = 6P/6ﬂ0's
32
nyt = no(uny) — A (Z) no (uny — Aunt) (A2)
32
nyy = (;) no (Uny — Apny) (A3)

Where ng (1) = 4,2 Fy2 (Bu). Meanwhile, the phenomeno-
logical mean-field model gives the densities in terms of the
Hartree energies as:

nyt = noluny + Uny) (A4)
ny; = noluny + Upny) (AS)

We non-dimensionalize Eqns. (A2)-(A3)), through multiplica-
tion by 3

fiNe = /l?/,l nNo (A6)

We then solve for Uyt/uy and Uy, /uy at a given T'/uy and

hy/uy by equating (AZ)) to (Ad) and (A3) to (AJ).

2. Spin-balanced superfluid equation of state

The equation of state is known accurately in the balanced
case up = py = pus [S]. At low temperatures (T < 0.25us),
the balanced equation of state is well-described by the zero-
temperature expression for the pressure,

2 (2m\"?
Pe = ~m -3/2. 5/2 A7
S 15”2 ( hz ) é‘: :uS ( )

where ¢ is the Bertsch parameter [5, [71]]. The total density ng
and dimensionless density 7ig are then:

Py 1 (2m\"? (us\?
= w) (%) o
8 3/2
st = 5= (%) (A9)

The total density for the balanced superfluid in the phe-
nomenological mean-field model is:

dg 4? s
nMF =2 f L {(1+§—) FUE)
(1= &) - s}

where f(E) = 1/(1 + ePF). Equating (A9) to the non-
dimensionalized mean-field density 7ig’" = 4 ng!*" then gives
Us /us for each T /us.

(A10)
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3. Critically polarized superfluid equation of state

We obtain an equation of state for the critically polarized
superfluid below the tricritical point by exploiting the fact
that it is at thermodynamic equilibrium with the critically po-
larized normal fluid. To model the phase diagram, we take
as input the temperature 7./Tp; at the tricritical point, and
the normal and superfluid critical polarizations, ps. and pxc,
at the tricritical temperature and at zero temperature from
Ref. [52} 53]]. As in Ref. [1l], we linearly approximate pg.
and py. as functions of T/Tr;. The resulting model phase
diagram is shown in Fig.[2]

We proceed in two stages to obtain the Hartree ener-
gies of the critically polarized superfluid. First, we con-
vert the boundary of the normal phase from the variables
(pne.T/TFy) in the polarization-temperature plane to the
variables (h./u,T/u) in the chemical potential difference-
temperature plane using the normal phase equation of state.
Note that, along the phase boundary, uy = pus = p and
hy = hs = h.. Second, for each value of (h./u, T/u) along
the phase boundary, we solve for the non-dimensionalized
Hartree energies Ug /us and Uj/ug that give the correct value
of (ps¢, T/Trp) in the critically polarized superfluid. For this
last step, we take advantage of the observation that the density
of majority-spin atoms is continuous across the phase bound-
ary [

In the first stage, we employ the system of equations:

_ By, By) — iy (Bptys By

Nc — < ~
finy (Bus, By ) + iy (B, Buy)
T A

Trr 677Ny (Burs Buy))™"

Here the left-hand sides are known from the model phase dia-
gram and the right-hand sides from the normal-phase equation
of state (AZ) and (A3). We solve for Suy and Bu,, which gives
he/pu = By — Buy)/(Buy + Buy), and T/p = 2/(Buy + Buy).
In the second stage, at a given value of (h./u,T/u), we
solve for Us /u and Uy, /u using the system of equations:

(Al1)

(A12)

fig (Us [us, Unlps) = g (Us Jus, Un/lps)

PSc = 7 =
nﬁF(Us s, Unlus) + nQﬂF(Us lus, Unlus)
(A13)
T 4
" (A14)

—-— = y 23
Try (67r2n§’ITF WUs /us, Uh/,US))

The left-hand sides are again known from the phase dia-
gram. The right-hand sides contain the densities from the
phenomenological mean-field model, which depend on the
Hartree energies:

dgq’ &
MF  _
nsp) = f 102 {(HE_S f(Eap)

+ (1 - %) [1 _f(Eﬁ(a))]}

s

(A15)



We note that has been proposed to also apply at zero
temperature in the presence of imbalanced chemical poten-
tials [103l]. However, it does not account for the non-zero
polarization of the superfluid at finite temperatures. By con-
trast, the procedure described above does account for finite
polarization.

Appendix B: Alpha branch dispersion relationships

10

FIG. 11. Dispersion curve of superfluid excitation energy for both
branches at 7 = 0.05us and maximal superfluid polarization hg = h,.
The solid line represents E,, and the dashed line represents Eg. The
energy and the wavevector are normalized by us and k;, respectively,
with k; = 2myug /h* and pg the average chemical potential .

Figure shows the superfluid dispersion relations for E, )
VETSUS ¢4 (g), Normalized by ps and k; respectively. At a given
energy E, there are up to two solutions for the magnitude of
the wavevector of an « branch excitation, obtained from in-
verting Eqn. (I7). Likewise, the wavevectors for the 8 branch
are obtained from inverting Eqn. (T8).

In the normal phase, the wavevector solutions in the «
branch are:

2m

kpr = ) (ust = Unt + Eo —&1) (B1)
2m* 2m

kpy = \/ n (usy — Uny — Eo) — 725t (B2)

In the superfluid phase, the wavevectors are:

2m
dpa = \/ (ﬂs—Us+ \/(Ea_Uh+hS)2_A2_§L)

n”
(B3)
2
Gha = \/h_l? (/»ls - Us - \/(Ea — Uy +hs)* - A? —-fi)
(B4)

For sufficiently large E,, the quantities inside the square roots
of Eqns. (B2) and (B4) become negative, causing the hole
wavevectors to become imaginary and give a vanishing cur-
rent.
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Appendix C: Non-equilibrium distribution functions

Here we give the quasiparticle distribution functions f,,
and f,s for each channel. Using f(E) = 1/(1 + €°F), ouy =
Unt — Mst, and 6y = pg) — pny, the a branch occupation
numbers are:

Jrpa(Ee) = f(Eq — 6p1) (CD
Jina(Eo) = f(Eq — Op1y) (C2)
pra(Ea) = th(V(Ea/) = f(Ea) (C3)

The subtraction of du, in Eqns. and results from
defining E, relative to the superfluid chemical potentials g,
for the purpose of the scattering calculation [49]. For the 8
branch:

Jrpp(Ep) = f(Eg + 0u) (C4)
Sung(Ep) = f(Ep + Ou1) (C5)
Srpp(Ep) = frip(Ep) = f(Ep) (C6)

Appendix D: Scattering regimes

4
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FIG. 12. Alpha branch scattering regimes on the excitation energy E,
vs transverse kinetic energy &, plane. The case shown has uy = ug
and py = 0.8. The other parameters, normalized by ug, are T = 0.05,
hs =0,Us =1.13, U, =0, Uy; = 0.16, Uy = 2.10.

For a given excitation energy E, and transverse momentum
k., each of the four types of @-branch excitations can be either
allowed (real wavevector) or forbidden (imaginary wavevec-
tor), leading to different scattering regimes. Table [[| lists the
conditions on each type of excitation. An example of the scat-
tering regimes is shown in Fig.[I2] on the plane of excitation
energy vs &, = h?k%/(2m). In Regime I, all four excitation
types are allowed. Regime II supports only normal particle
and hole modes and therefore only allows transmission by An-
dreev reflection. Regime III allows the particle, quasiparticle
and quasihole modes, and prohibits any transmission requir-
ing the hole mode. Regime IV allows only the particle and
quasiparticle modes and supports only the transmission be-
tween a particle and a quasiparticle. Regime V allows only the
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Excitation (wavevector) Accessible E, Accessible &, (given E,)
Particle (ka) [0, o) [O,/JST - UNT + E,]
Hole (kxy) [0, usy — Uny] [0, " (us), — Uny — Eo)]
Quasiparticle (¢,q) [Uj, — hg + A, o) [0,us — Us + (Eq + hs — Up)? — A?]
Quasihole (gq) [Up = hs + A, Uy, = hs + (Us = ps)* + A2]|[0, s — Us — \/(Eq + hs — Up)? — A?]
Equation requires E, > U, — hg

TABLE I. Conditions on E, and &, that determine the scattering regimes for the a branch.

particle mode and, therefore, causes total reflection. Regime
V1 is the energetically forbidden regime, where the transverse
kinetic energy exceeds the total kinetic energy. Since the An-
dreev current is important for the net current contribution, we
present the formula for the Regime II:

-Net 2 I’A

e = =V P (B = o) = f(Ey = 0u)] - (DD)

The prefactor of 2 is typical for Andreev current and indicates
the transport of two fermions per scattering event.

Appendix E: Scattering coefficients

The scattering coeflicients necessary for the determination
of the currents are:

1 ) m )
r‘;pa :C—O [u% (ka —qpa — lkA) (%k/w + Ghe — lkA)

m . .
+ V% (qp(, — %khl + lkA)(ka + Gha — lkA)]
(E1)

(E2)

1 [ m >
r:m :c—ozuol}o %khlkﬂ (Qha + Qpa) e X

1 m ) .
rfha T [“(2) (%khl ~Ghe lk/\) (q,m +kp + 1kA)
. m )
+VS (Qha —Kpt — lkA) (qlm + %khl + lkA)] (E3)
where

. m .
co =u(2) (ka + Gpo + zkA) (%ku + Ghe — lkA)
m . .
+ V% (qg - %khl + lkA) (kPT —Gha t+ lkA) (E4)

and X, denotes the phase of the gap A = |Ale™0. We set Xy = 0
without loss of generality. The transmission coefficients for

channel A are:

! m ; & _ix /2
t?pa = C_Ozuo \ @pakpr (Qha + %khi - zkA) ‘/E_se 0

(ES)
_ m : & _ixo2
lﬁpn = aZvo \/ka‘Iha (LIpa - %khl + lkA) w/E—se 0
(E6)
And for channel B:
1 m & .
B — - _ o S5 iX/2
Lohy = co 2vg o kniGea (Gha ket ika) Se 0
(E7)
1 m . a
tghry = —2up _*khl‘Iha (Gea + key + ikp) §—€X0/2
Co m P
(E8)

With the 7 coefficients given above, the other 9 coefficients for
the @ branch can be inferred from the symmetries of § -matrix.

Appendix F: Additional Plots

We show an example of the dependence of the spin current
on temperature in Fig.

In Fig. [14] we show the chemical potential differences be-
tween the normal and superfluid regions versus the normal-
region Zeeman field 4y under mechanical equilibrium.

Figure [I3] shows the conversion between polarization and

0.8
(=}
=
’;C; 0.75
h
0.7 : -
0 0.05 0.1 0.15

T/ ps

FIG. 13. Spin current J*"/J; plotted vs temperature T/us under
mechanical equilibrium with py = 99%, hg = 0.



FIG. 14. Normalized chemical potential differences oy}, plotted vs
hy under mechanical equilibrium, at 7 = 0.05us, for (a) A, = 0 and
(b) hy = h.. The dashed line shows the minimum of the superfluid
excitation spectrum at the given value of k.
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FIG. 15. Zeeman field hy versus normal region polarization py under
the conditions (a) uy = s, and (b) mechanical equilibrium. In case
(a), hy/us is independent of kg because py/us is constant.

Zeeman field for the normal phase. In Fig. [I3]b), the su-
perfluid polarization leads to a slightly different conversion
because the normal phase reacts to the increase in superfluid
pressure at higher polarization.
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