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Abstract

Let M be a convex cocompact, acylindrical hyperbolic 3-manifold of infinite volume,
and let M* denote the interior of the convex core of M. In this paper we show that
any geodesic plane in M * is either closed or dense. We also show that only countably
many planes are closed. These are the first rigidity theorems for planes in convex
cocompact 3-manifolds of infinite volume that depend only on the topology of M.

1. Introduction
In this paper we establish a new rigidity theorem for geodesic planes in acylindrical
hyperbolic 3-manifolds.

Hyperbolic 3-manifolds. Let M = I'\H? be a complete, oriented hyperbolic 3-
manifold, presented as a quotient of hyperbolic space by the action of a discrete group

I C G =Isom™ (H?).

Let A C S2 = 9H? denote the limit set of T', and let Q = S% — A denote the
domain of discontinuity. The convex core of M 1is the smallest closed, convex subset
of M containing all closed geodesics; equivalently,

core(M) =T\hull(A) C M
is the quotient of the convex hull of the limit set A of I". Let M * denote the interior
of the convex core of M.
Geodesic planes in M *. Let
fH>—>M
be a geodesic plane, i.e., a totally geodesic immersion of the hyperbolic plane into M.
We often identify a geodesic plane with its image, P = f(H?).
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By a geodesic plane P* C M*, we mean the nontrivial intersection
P*=PNM*"#0

of a geodesic plane in M with the interior of the convex core. A plane P* in M* is
always connected, and P* is closed in M * if and only if P* is properly immersed in
M™* (Section 2).

Acylindrical manifolds and rigidity. In this work, we study geodesic planes in
M* under the assumption that M is a convex cocompact, acylindrical hyperbolic 3-
manifold. The acylindrical condition is a topological one; it means that the compact
Kleinian manifold

M=T\(H>UQ)

has incompressible boundary, and every essential cylinder in M is boundary parallel
(Section 2). We will be primarily interested in the case where M is a convex cocom-
pact manifold of infinite volume. Under this assumption, M is acylindrical if and only
if A is a Sierpifiski curve.'

Our main goal is to establish:

THEOREM 1.1
Let M be a convex cocompact, acylindrical, hyperbolic 3-manifold. Then any
geodesic plane P* in M* is either closed or dense.

As a complement, we will show:

THEOREM 1.2
There are only countably many closed geodesic planes P* C M *.

We also establish the following topological equidistribution result:

THEOREM 1.3
If P C M*™ is an infinite sequence of distinct closed geodesic planes, then

lim P*=M*

i>oo !
in the Hausdorff topology on closed subsets of M *.

'A compact set A C S? is a Sierpiriski curve if S — A = | J D; is a dense union of Jordan disks with disjoint
closures, and diam(D;) — 0. Any two Sierpifiski curves are homeomorphic (see [12]).
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Remarks

1. We do not know of any instance of Theorem 1.1 where P* is closed in M *
but P is not closed in M.
Added in proof. An example of such an exotic plane in an acylindrical manifold
has recently been constructed by Zhang. In his example, the closure of P is
not even locally connected near OM * (see [13]).
Thus the rigidity of planes described in Theorem 1.1 does not extend beyond
the convex core of M.

2. In the special case where M is compact (so M = M*), Theorem 1.1 is due
independently to Shah and Ratner (see [8], [9]).

3. For a general convex cocompact manifold M, there can be uncountably many
distinct closed planes in M *; see the end of Section 2.

4. Examples of acylindrical manifolds such that M™* contains infinitely many
closed geodesic planes are given in [6, Corollary 11.5].

5. The study of planes P that do not meet M * can be reduced to the case where

M is a quasifuchsian manifold. This case can be analyzed via the bending
lamination (cf. Section 6).

Comparison to the case of geodesic boundary. A convex cocompact hyperbolic
3-manifold M such that dcore(M) is totally geodesic is automatically acylindrical.
For these rigid acylindrical manifolds, the results above were obtained in our previous
work [6]. While one would ultimately like to analyze planes in a large class of geo-
metrically finite groups, our previous results covered only countably many examples
(by Mostow rigidity).

The present paper makes a major step forward in this program, by developing
a new argument for unipotent recurrence which works without geodesic boundary,
which is robust enough to be invariant under quasi-isometry, and which is powerful
enough to apply to the class of all convex cocompact acylindrical manifolds. The key
insight is that one should work with a proper subset of the renormalized frame bundle,
defined in terms of thickness of Cantor sets, where we show sufficient recurrence takes
place in the acylindrical case.

The cylindrical case. The acylindrical setting is also close to optimal, since Theo-
rem 1.1 is generally false for cylindrical manifolds.

For example, consider a quasi-Fuchsian group I' containing a Fuchsian subgroup
I'” of the second kind with limit set A’ C S!. Given (a,b) € A’ x A’, let C,;, denote
the unique circle orthogonal to S! such that C,, N S! = {a,b}. It is possible to
choose I' such that C,, N A = {a, b} for uncountably many (a,b); and further, to
arrange that the corresponding hyperbolic planes P C M and P* C M* have wild
closures, violating Theorem 1.1 (cf. [6, Appendix A]).
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Figure 1. Limit set of a cylindrical 3-manifold.

G =PSL,(C) = Isom™ (H?)
H =PSL,(R) 2= Isom™ (H?)
K =SUQ2)/(xI)
4={(3,%):a>0)
V=T (b1 ey

U={ns:seR}

V ={ns:s €iR}

FH? = G = {the frame bundle of H3}
H3 = G/K

S§? =G/AN = oH?
€ = G/H = {the space of oriented circles C C S?}

Table 2. Notation for G and some of its subgroups and homogeneous spaces.

The same type of example can be embedded in more complicated 3-manifolds
with nontrivial characteristic submanifold; an example is shown in Figure 1.

Homogeneous dynamics. Next we formulate a result in the language of Lie groups
and homogeneous spaces, Theorem 1.4, that strengthens both Theorems 1.1 and 1.3.

To set the stage, we have summarized our notation for G and its subgroups in
Table 2. We have similarly summarized the spaces attached to an arbitrary hyperbolic
3-manifold M = I'\H? in Table 3. (In the definition of €*, a circle C C S? separates
A if the limit set meets both components of S — C.)
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M = T'\H? = (the quotient hyperbolic 3-manifold)
M=T\(H*UQ)

core(M) = I"\ hull(A)

M* = int(core(M))

FM =T'\G = (the frame bundle of M)

F* ={x e FM : x is tangent to a plane P that meets M *}
€* ={C €€ :C separates A}

Table 3. Spaces associated to M = T\ H?3.

Circles, frames, and planes. Circles, frames, and planes are closely related. In fact,
if # denotes the set of all (oriented) planes in M, then we have the natural identifica-
tions:

P =T\€=FM/H. (1.1)

Indeed, all three spaces can be identified with I'\G/H . We will frequently use these
identifications to go back and forth between circles, frames, and planes.

When M* is nonempty (equivalently, when T" is Zariski-dense in G), the spaces
€* and F* correspond to the set of planes #* that meet M *. In other words, we have

P*=T\€* = F*/H. (1.2)

To go from a circle to a plane, let P be the image of hull(C) C H?> under the covering
map from H?> to M. To go from a frame x € F M to a plane, take the image of x H
under the natural projection FM — M.

When A is connected and consists of more than one point (e.g., when M is
acylindrical), it is easy to see that

€* ={C €€:C meets A}.
Thus the closures of the dense sets arising in Theorem .4 below are quite explicit.

The closed or dense dichotomy. We can now state our main result from the per-
spective of homogeneous dynamics.

THEOREM 1.4

Let M = I'\H? be a convex cocompact, acylindrical 3-manifold. Then any T -
invariant subset of €* is either closed or dense in €*. Equivalently, any H -invariant
subset of F* is either closed or dense in F*.
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(The equivalence is immediate from equation (1.2).)
This result sharpens Theorem 1.1 to give the following dichotomy on the level of
the tangent bundles:

COROLLARY 1.5
The normal bundle to a geodesic plane P* C M™ is either closed or dense in the
tangent bundle T M*.

Beyond the acylindrical case. This paper also establishes several results that apply
outside the acylindrical setting. For example, Theorems 2.1, 4.1, 5.1, and 6.1 only
require the assumption that M has incompressible boundary. In fact, the main argu-
ment pivots on a result relating Cantor sets and Sierpiniski curves, Theorem 3.4, that
involves no groups at all.

Discussion of the proofs. We conclude with a sketch of the proofs of Theorems 1.1
through Theorem 1.4.

Let M = I'\H? be a convex cocompact acylindrical 3-manifold of infinite vol-
ume, with limit set A and domain of discontinuity £2. The horocycle and geodesic
flows on the frame bundle FM = I'\G are given by the right actions of U and A4,
respectively. The renormalized frame bundle of M is the compact set defined by

RFM = {x e FM : x A is bounded}. (1.3)

In Section 2 we prove Theorem 1.2 by showing that the fundamental group of
any closed plane P* C M* contains a free group on two generators. We also show
that Theorems 1.1 and 1.3 follow from Theorem 1.4. The remaining sections develop
the proof of Theorem 1.4.

In Section 3 we show that A is a Sierpifiski curve of positive modulus. This means
there exists a § > 0 such that the modulus of the annulus between any two components
D1, Dy of S% — A satisfies

mod(S? — (D; UD»)) = §>0.

We also show that if A is a Sierpinski curve of positive modulus, then there exists a
8 > 0 such that C N A contains a Cantor set K of modulus §, whenever C separates A.
This means that for any disjoint components /1 and I, of C — K, we have

IIlOd(S2 — (71 U 72)) >§>0.

This result does not involve Kleinian groups and may be of interest in its own right.
In Section 4 we use this uniform bound on the modulus of a Cantor set to con-
struct a compact, A-invariant set
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RFy M CRFM

with good recurrence properties for the horocycle flow on F M. We also show that
when k is sufficiently large, RF;y M meets every H -orbit in F*.

The introduction of RFy M is one of the central innovations of this paper that
allows us to handle acylindrical manifolds with quasi-Fuchsian boundary. When M
is a rigid acylindrical manifold, RF; M = RF M for all k sufficiently large, so in
some sense RF; M is a substitute for the renormalized frame bundle. For a more
detailed discussion, see the end of Section 4.

In Section 5 we shift our focus to the boundary of the convex core. Using the
theory of the bending lamination, we give a precise description of C N A in the case
where C comes from a supporting hyperplane for the limit set.

In Sections 6 and 7, we formulate two density theorems for hyperbolic 3-
manifolds M with incompressible boundary. These results do not require that M is
acylindrical. Each section gives a criterion for a sequence of circles C, € €* to have
the property that | JI'C,, is dense in €*.

In Section 6 we show that density holds if C,, - C ¢ €* and lim(C,, N A) is
uncountable. The proof relies on the analysis of the convex hull given in Section 5.

In Section 7 we show that density holds if C,, — C € €* and C ¢ | JT'C,,, pro-
vided C N A contains a Cantor set of positive modulus. The proof uses recurrence,
minimal sets, and homogeneous dynamics on the frame bundle, and follows a similar
argument in [6]. It also relies on the density result of Section 6.

When M is acylindrical, the Cantor set condition is automatic by Section 3. Thus
Theorem 1.4 follows immediately from the density theorem of Section 7.

Question

We conclude by mentioning an open problem that goes beyond the acylindrical case.
Let P* C M* be a plane in a quasi-Fuchsian manifold, and suppose the correspond-
ing circle satisfies |C N A| > 2. Does it follow that P* is closed or dense in M *?

2. Planes in acylindrical manifolds
In this section we will prove Theorem 1.2, and show that our other main results,
Theorems 1.1 and 1.3, follow from Theorem 1.4 on the homogeneous dynamics of H
acting on F*.

Let M = I'\H? be a convex cocompact hyperbolic 3-manifold. We first describe
how the topology of M influences the shape of planes in M *. Here are the two main
results:
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THEOREM 2.1
If M has incompressible boundary, then the fundamental group of any closed plane
P* C M* is nontrivial.

THEOREM 2.2
If M is acylindrical, then the fundamental group of any closed plane P* C M* con-
tains a free group on two generators.

The second result immediately implies Theorem 1.2, which we restate as follows:

COROLLARY 2.3
If M is acylindrical, then there are at most countably many closed planes P* C M *.

Proof

In this case P* corresponds to a circle C whose stabilizer I'C (as discussed below)
is isomorphic to the fundamental group of P*, and contains a free group on two
generators (a, b). Since C is the unique circle containing the limit set of (a,b) C T,
and there are only countably many possibilities for (a,b), there are only countable
possibilities for P*. O

In the remainder of this section, we first develop general results about planes in
3-manifolds, and prove Theorems 2.1 and 2.2. Then we derive Theorems 1.1 and 1.3
from Theorem [.4. Finally we show by example that a cylindrical manifold can have
uncountably many closed planes P* C M *.

Topology of 3-manifolds. We begin with some topological definitions.

Let D? denote a closed 2-disk, and let C2 = S! x [0, 1] denote a closed cylin-
der. Let N be a compact 3-manifold with boundary. We say N has incompressible
boundary if every continuous map

f:(D?,30D?) — (N,dN)

can be deformed, as a map of pairs, so its image lies in dN . (This property is automatic
if IN =0.)

Similarly, N is acylindrical if it has incompressible boundary and every contin-
uous map

f:(C?,3C?) — (N,0N),

injective on 771, can be deformed into dN . That is, every incompressible disk or cylin-
derin N is boundary parallel.
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When N = M = T'\(H? U Q) is a compact Kleinian manifold, these properties
are visible on the sphere at infinity: the limit set A of I is connected if and only if M
has incompressible boundary, and M is acylindrical if and only if A is a Sierpifiski
curve or A = S2.

For more on the topology of hyperbolic 3-manifolds, see, for example, [7], [11],
and [5].

Topology of planes. Next we discuss the fundamental group of a plane P C M, and
the corresponding plane P* C M *. These definitions apply to an arbitrary hyperbolic
3-manifold.

For precision, it is useful to think of a plane P as being specified by an oriented
circle C C §?2, whose convex hull covers P. More precisely, the plane attached to C
is given by the map

o hull(C) ~H? CH? > M =T'\H?

with image ]7(]1-]12) = P. The stabilizer of the circle C in G is a conjugate x H x~! of
H = PSL,(R); hence its stabilizer in I" is given by

r¢=rnxHx"".
Let
S =T\ hull(C).
Then the map fdescends to give an immersion
f:S—->M

with image P.The immersion f is generically injective if P is orientable; otherwise,
it is generically two-to-one (and there is an element in I" that reverses the orientation
of C).

We refer to

m(S)=T¢
as the fundamental group of P (keeping in mind caveats about orientability).
Planes in the convex core. Now suppose P* = P N M* is nonempty. In this case
S* = fY (M)

is a nonempty convex subsurface of S, with 71 (S*) = 71 (S). The map
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fi8* > P*CcM*

presents S* as the (orientable) normalization of P*, i.e., as the smooth surface
obtained by resolving the self-intersections of P*. Similarly, the frame bundle of P
with its branches separated is given by

FP=xHCFM

for some x € F*. (One should consistently orient C and P to define F P.)
To elucidate the connections between these objects, we formulate:

PROPOSITION 2.4
Let M be an arbitrary hyperbolic 3-manifold. Suppose C € €* and x € F* corre-
spond to the same plane P* C M*. Then the following are equivalent:

1. I'C is closed in €*.

2. The inclusion T'C C €* is proper.

3. xH is closed in F*.

4. P* is closed in M*.

5. The normalization map f : S* — P* is proper.
In (2) above, I'C is given the discrete topology.

Proof

If T'C is not discrete in €*, then by homogeneity it is perfect (it has no isolated
points). But a closed perfect set is uncountable, so I'C is not closed. Thus (1) implies
that TC C €* is closed and discrete, which implies (2); and clearly (2) implies (1).
The remaining equivalences are similar, using equation (1.2) to relate $*, €* and
F*. O

Compact deformations. In the context of proper mappings, the notion of a compact
deformation is also useful.

Let fo : X — Y be a continuous map. We say f1 : X — Y is a compact deforma-
tion of fy if there is a continuous family of maps f; : X — Y interpolating between
them, defined for all # € [0, 1], and a compact set Xo C X such that f;(x) = fo(x)
for all x ¢ Xj.

Let P* C M* be a hyperbolic plane with normalization fy: S* — M™*. We say
0* C M* is a compact deformation of P* if it is the image of S* under a compact
deformation fi of fp.

THEOREM 2.5
Let M = T'\H? be an arbitrary 3-manifold, and let K C M* be a submanifold such
that the induced map
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m1(K) = m1(M)

is surjective. Then K meets every geodesic plane P* C M* and every compact defor-
mation Q* of P*.

COROLLARY 2.6
If w1 (M) is finitely generated, then there is a compact submanifold K C M* that
meets every plane P* C M*.

Proof

Provided M* is nonempty, 71 (M ™) is isomorphic to 71 (M); and since the latter
group is finitely generated, there is a compact submanifold K C M* (say, a neighbor-
hood of a bouquet of circles) whose fundamental group surjects onto 71 (M *). O

Proof of Theorem 2.5
We will use the fact that S® and S can link in S2.

Let P* be a plane in M *, arising from a circle C C S? with an associated map
f S — P asabove. Since P meets M *, there are points in the limit set of I" on both
sides of C. Since the endpoints of closed geodesics are dense in A x A (cf. [1]), we
can find a hyperbolic element g € I" such that its two fixed points

Fix(g) = {a1.a2} C §?

are separated by C, and the convex hull of {1, a,} in H? projects to a closed geodesic
8 C M . Note that Fix(g) = S° and C = S! are linked in S2.

Since 71 (K) maps onto 71 (M), the loop § is freely homotopic to a loop y C K.

Let fo = f|S™*. Suppose fo:S* — M™ has a compact deformation f; with
image Q* disjoint from K, and hence disjoint from y. Extend this deformation triv-
ially to the rest of S, to obtain a compact deformation f; of the geodesic immersion
f S — P.Then f1(S) is disjoint from y. Lifting f; to the universal cover of S, we
obtain a continuous map

f1 :hull(C) — H3

that is a bounded distance from the identity map. In particular, its image is a disk D

spanning C'.
Similarly, a suitable lift of y gives a path 7 C H?, disjoint from D, that joins a;
to a,. This contradicts the fact that C separates a; from a, in S 2, O

We can now proceed to the:



1040 MCMULLEN, MOHAMMADI, and OH

Proof of Theorem 2.1 (The incompressible case)
For the beginning of the argument, we only use the fact that M is compact and M *
is nonempty. Using the nearest point projection, it is straightforward to show that
core(M) is homeomorphic to M. Thus its interior M* deformation retracts onto a
compact submanifold K C M*, homeomorphic to ‘M, such that the inclusion is a
homotopy equivalence; in particular, 71 (K) = 71 (M*).

Consider a closed plane P* C M*, arising as the image of a proper map f :
S* — P* as above. We can also arrange that K is transverse to f, so its preimage

So= fYK)c S*

is a compact, smoothly bounded region in S*. (However, Sp need not be connected.)

We claim that, after changing f by a compact deformation, we can arrange that
the inclusion of each component of Sy into S$* is injective on 7r;. This is a stan-
dard argument in 3-dimensional topology. If the inclusion is not injective on 71, then
there is a compact disk D C S* with D N So = dD. The map f sends (D, dD) into
(M*, K). Since K is a deformation retract of M*, f'| D can be deformed until it maps
D into K, while keeping f|dD fixed. Then D becomes part of Sy. This deformation
is compact because D is compact. Since 9SS has only finitely many components, only
finitely many disks of this type arise, so after finitely many compact deformations of
f, the inclusion S¢ C S* becomes injective on 7.

Now we use the assumption that K = M has incompressible boundary. Suppose
that 71 (S™) is trivial. Then 71 is trivial for each component of Sy, and hence each
component of Sy is a disk. By construction the deformed map f restricts to give a
map of pairs

S :(S0,0S80) — (K, 0K).

Since K has incompressible boundary, we can further deform f'|Sy so it sends the
whole surface Sy into dK. Then the image Q* of f gives a compact deformation of
P* that is disjoint from K* = K — dK. But 71 (K*) maps onto 771 (M), contradicting
Theorem 2.5. Thus 71 (S*) is nontrivial. O

Proof of Theorem 2.2 (The acylindrical case)

The proof follows the same lines as the incompressible case. If 771 (S*) does not con-
tain a free group on two generators, then S* is a disk or an annulus. After a compact
deformation, we can assume that the inclusion So = f~1(K) C S* is injective on ;.
Thus each component of S is also a disk or an annulus. Since K is acylindrical, after
a further compact deformation of f we can arrange that f(S¢) C 9K, leading to a
contradiction. O
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Rigidity of planes from homogeneous dynamics. Now suppose M = I'\H? is a
convex cocompact, acylindrical 3-manifold. Assume we know Theorem 1.4, which
states that under this hypothesis:

Any T'—invariant set E C €* is closed or dense in €*.

We can then prove the other two main results stated in the introduction.

Proof of Theorem 1.1

Let P* be a geodesic plane in M*, and let £ = I'C be the corresponding set of
circles. Then by Theorem 1.4, E is either closed or dense in €*, and hence P* is
either closed or dense in M *. O

Proof of Theorem 1.3

Let P;* be a sequence of distinct closed planes in M *. We wish to show that lim P;* =
M* in the Hausdorff topology on closed subsets of M*. To see this, first pass to a
subsequence so that P;* converges to Q* C M ™. It suffices to show that Q* = M*
for every such subsequence. Since each P;* is nowhere dense, to show that Q* = M*
and complete the proof, it suffices to show that | ) P;* is dense in M*.

Let E; C €* be the T-orbit corresponding to P;, and let E = | J E;. Since the
planes P; are distinct, the sets E; are disjoint. By Corollary 2.6, there exists a compact
set K C M* that meets every P*, so there exists a compact set K’ C €* meeting
every E;. Thus we can choose C; € E; N K’ and pass to a subsequence such that

Ci—>Cm€K/C€*

and Co ¢ E. (If Co, € E; = I'Cj, just drop that term from the sequence.) Since E is
not closed in €*, it is dense in €* by Theorem 1.4. Consequently (_J P;* is dense in
M*, as desired. O

Example: Uncountably many geodesic cylinders. To conclude, we show that The-
orem 2.2 and Corollary 2.3 do not hold for general convex cocompact manifolds with
incompressible boundary.

In fact, in such a manifold one can have uncountably many distinct closed planes
P* C M*, each with cyclic fundamental group. For a concrete example of this phe-
nomenon, consider a closed geodesic y and the corresponding plane P in the quasi-
fuchsian manifold M = My discussed in [6, Corollary A.2]. In this construction, y
is a simple curve in the boundary of the convex core of M, and P~y xR is a
hyperbolic cylinder properly embedded in M. Consequently, P* C M* is a prop-
erly immersed cylinder in M *. By varying the angle that P meets the boundary of
core(My) along y, we obtain a continuous family of properly immersed planes in
M*.
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3. Moduli of Cantor sets and Sierpinski curves
The rest of the paper is devoted to the proof of Theorem 1.4.

In this section we define the modulus of a Cantor set K C S! (or in any circle
C C 5?), as well as the modulus of a Sierpifiski curve K C §2. We then prove:

THEOREM 3.1
Let A be the limit set of T', where M = T'\H? is a convex cocompact acylindrical
3-manifold of infinite volume. Then there exists a § > 0 such that:

1. A is a Sierpiniski curve of modulus 8, and
2. C N A contains a Cantor set of modulus 8, whenever the circle C C S? sepa-
rates A.

The modulus of a Sierpinski curve. For background on conformal invariants and
quasiconformal maps, see [4].

We begin with some definitions. An annulus A C S? is an open region whose
complement consists of two components. Provided neither component is a single
point, A is conformally equivalent to a unique round annulus of the form

AR:{ZE(C:1<|Z|<R},
and its modulus is defined by

log R
mod(A4) = 02g .
b1

(More geometrically, A is conformally equivalent to a Euclidean cylinder of radius 1
and height mod(A).) Since the modulus is a conformal invariant, we have

mod(A4) = mod(g(4)) VgeG. (3.1)
Recall that a compact set A C S? is a Sierpiriski curve if its complement
§?—A =D

is a dense union of Jordan disks D; with disjoint closures, whose diameters tend to
zero. We say A has modulus § if

int mod(S?—(D; UD;)) >8> 0.
i#]

The modulus of an annulus A C S'. Let C C S? be acircle and let A C C be an
annulus on C, meaning an open set such that C — A = I; U I is the union of two dis-
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joint intervals (circular arcs). We extend the notion of modulus to this 1-dimensional
situation by defining

mod(4, C) =mod(S? — (I; U I)).

Clearly mod(gA, gC) = mod(A4, C) for all g € G, and consequently mod(A4, C)
depends only on the cross-ratio of the four endpoints of A. The cross-ratio is con-
trolled by the lengths of the components A, A, of A and the components I, I of
C — A. From this observation and monotonicity of the modulus [4, [.6.6] it is easy to
show:

PROPOSITION 3.2
There are increasing continuous functions §(t), A(t) > 0 such that

8(t) <mod(A4,C) < A(2),

where t is the ratio of lengths

Az))
L))’

’

_ min(|4;

~ min(|];

’

The same result holds with ¢ replaced by d (hull(/;), hull(Z;)).
For later reference we recall the following result due to Teichmiiller [4, Chap-
ter I, Theorem 1.1].

PROPOSITION 3.3
Let I1 and I, be the two components of C — A. Then

mod(B) <mod(A4,C)

for any annulus B C S? separating the endpoints of 1| from those of I.

The modulus of a Cantor set. Let K C C C S? be a compact subset of a circle,
such that its complement

C—K:Uli

is a union of open intervals with disjoint closures. Note that C is uniquely determined
by K (and we allow K = C). We say K has modulus § if we have

inf mod(A4;;,C) >8>0, (3.2)
i#j

where A;; = C — I; U I;. We will be primarily interested in the case where K is a
Cantor set, meaning |_J I; is dense in C.
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Slices. Next we show that circular slices of a Sierpiniski curve inherit positivity of
the modulus. This argument makes no reference to 3-manifolds.

THEOREM 3.4

Let A C S? be a Sierpiriski curve of modulus 8§ > 0. Then there exists a §' > 0 such
that C N A contains a Cantor set K of modulus §' whenever C is a circle separat-
ing A.

Proof

Let S2 — A = | D; express the complement of A as a union of disjoint disks. Each
disk D; meets the circle C in a collection of disjoint open intervals (see Figure 4).
The proof will be based on a study of the interaction of intervals from different com-

ponents.
Let U =C — A = U;, where

Ui =CnD;.

Note that distinct U; have disjoint closures, and diam U; — 0, since these two prop-
erties hold for the disks D;. The open set U; may be empty.

We may assume U is dense in C, since otherwise we can just choose a suitable
Cantor set K C C — U. On the other hand, no U; is dense in C if it were, we would
have C C D;, contrary to our assumption that C separates A. It follows that U; is
nonempty for infinitely many values of i.

Let us say an open interval / = (a,b) C C, with distinct endpoints, is a bridge
of type i if a,b € dU;. Note that an ascending union of bridges of type i is again a
bridge of type i, provided its endpoints are distinct.

Figure 4. A circle C and some components D; of S2 — A.
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Our goal is to construct a sequence of disjoint bridges Iy, I, I3, ... such that
|I1| >|I2| >--- and K = C — | I; is a Cantor set of modulus §’.

To start the construction, choose any bridge /1 C C. After changing coordinates
by a Mdbius transformation g € G€, we can assume that I, fills at least half the
circle; i.e., | 11| > |C|/2. This will ensure that | /1| > |Ij| for all k > 1.

Next, let I, be a bridge of maximal length among all those which are disjoint
from /; and of a different type from /;. Such a bridge exists because diam(U;) — 0,
so only finitely many types of bridges are competing to be /5. To complete the initial
step, enlarge /; to a maximal interval of the same type, disjoint from /5.

Proceeding inductively, let I, C C be a bridge of maximum length among all
bridges disjoint from /1, ..., I. Since I; is a maximal bridge of its type among those
disjoint from /5, and vice-versa, the intervals (I, I, I} ) are of three distinct types,
for all k£ > 3. Consequently, |I3| > || for all k > 2.

Note that the bridges so constructed have disjoint closures. Indeed, if /; and /;
were to have an endpoint @ in common, with i < j, then /; U {a} U I; would be a
longer interval of the same type as [;, contradicting to stage i of the construction.

Since U is dense in C, it follows that at any finite stage there is a bridge disjoint
from all those chosen so far, and thus the inductive construction continues indefinitely.
By construction, we have

[I1| > 12| > [13]---

and by disjointness, |Ix| — 0. Moreover, | J I} is dense in C. Otherwise, by density
of U, we would be able to find a bridge J disjoint from all I, and longer than I for
all k sufficiently large, contradicting the construction of /.
Let K =C — Uix’ Ir. Since the intervals I; have disjoint closures, and their
union is dense in C, K is a Cantor set. We have K C A since dl; C A forall k.
Now consider any two indices i < j. Let

A=C—(7iU7j)=A1UA2,

where the open intervals A; and A, are disjoint. If the bridges /; and I; have types
s # t respectively, then the annulus

B =S2—(Ds;UD;)
separates d/; from 0/, and hence
mod(A4,C)>mod(B)>§>0

by Proposition 3.3.
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On the other hand, if /; and I, have the same type s, then i, j > 2, and there
must be a bridge I, k < i, such that /; U I separates I; from /;. Otherwise, we
could have combined /; and /; to obtain a longer bridge at step i.

It follows that

’ ’

_ min(Au].|As]) _ min((7a]. i) _ Tl

~ min(|L],I;) T min( L] D) ] T

’

since k <i < j. By Proposition 3.2, this implies that
mod(A4,C) > 6y >0

where 8¢ is a universal constant. Thus the Theorem holds with §' = min(8y,8). O
Limit sets. We can now complete the proof of Theorem 3.1.

THEOREM 3.5
Let M = T'\H? be a convex cocompact acylindrical 3-manifold of infinite volume.
Then its limit set A\ is a Sierpiriski curve of modulus 8 for some § > 0.

Proof

First suppose that every component of Q = §2 — A = | J D; is a round disk; i.e.,
suppose that M is a rigid acylindrical manifold. By compactness, there exists an
L > 0 such that the hyperbolic length of any geodesic arc y C core(M) orthog-
onal to the boundary at its endpoints is greater than L. Consequently, d;; =
d(hull(D;),hull(D;)) > L for any i # j. Since the modulus of S — (D; U D) is
given by d;; /(2m), A is a Sierpinski curve of modulus § = L/(27) > 0.

To treat the general case, recall that for any convex cocompact acylindrical
manifold M, there exists a rigid acylindrical manifold M’ = I'"\H?> such that I is
K-quasiconformally conjugate to I". Since a K -quasiconformal map distorts the mod-
ulus of an annulus by at most a factor of K, and the limit set A’ of ' is a Sierpiriski
curve with modulus 8’ > 0, A itself is a Sierpifiski curve of modulus § = &'/

K >0. O

Proof of Theorem 3.1
Combine Theorems 3.4 and 3.5. O

4. Recurrence of horocycles
Let M = I'\H? be an arbitrary 3-manifold. In this section we will define, for each
k > 1, a closed, A-invariant set

RFy M CRFM
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consisting of points with good recurrence properties under the horocycle flow gener-
ated by U (for terminology, see Tables 2 and 3). We will then show the following.

THEOREM 4.1
Let M = T'\H? be a convex cocompact acylindrical 3-manifold. We then have

F* C (RFx M)H

for all k sufficiently large. More precisely, every plane P* C M * is tangent fo a frame
inRF, M.

We conclude by comparing the general result above to results that hold only when
dM* is totally geodesic.

We remark that (RF; M) H is usually not closed, even when M is acylindrical,
because there can be circles C € €* such that |C N A| = 1.

Thick sets. We begin by defining RF; M. Let us say a closed set T C R is k-thick
if

[1,k]-|T|=[0,00).

In other words, given x > 0 there exists a t € T with |¢| € [x, kx]. Note that if T is
k-thick, then so is AT for all A € R*.

If the translate T — x is k-thick for every x € T, then we say T is globally k-
thick. A set K C U is (globally) k-thick if its image under an isomorphism U = R is
(globally) k-thick.

Unipotent recurrence. For x € RFM, the unipotent orbit xU almost never
remains in RF M . Provided, however, there is a thick set K C U such that xK C
RF M, we have sufficient recurrence to carry through many arguments that would
be automatic if xU were bounded. The key point is to combine thickness with the
polynomial behavior of unipotent flows. This theme is developed in detail in [6,
Section 8], and it motivates the definition of RF; M below.

Let

Uz)={ueU:zueRFM} 4.1)

denote the return times of z € F M to the renormalized frame bundle under the horo-
cycle flow. We define RF; M for each k > 1 by

RF, M = {z CREM - there exists a globally k—thlck}

set K with 0 € K C U(z)
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Let

U(z,k)={ueU:zu e RFy M}.

PROPOSITION 4.2

Suppose the convex core of M is compact. Then for any k > 1, the set RF M is
a compact, A-invariant subset of RE M. Moreover, U(z,k) is k-thick for each z €
RF;, M.

Proof
Using compactness of RFM, it is easily verified that if z, — z in FM, then
limsup U(z,) C U(z). One can also check that if K,, C U is a sequence of globally
k-thick sets with 0 € K,,, then limsup K, is also globally k-thick. Consequently
RF; M C RF M is closed, and hence compact.

Since U(za) is a rescaling of U(z) for any a € A, and the notion of thickness
is scale-invariant, RFy M is A-invariant. For the final assertion, observe that U(z, k)
contains the thick set K C U(z) posited in the definition of RF; M. O

Thickness and moduli. To complete the proof Theorem 4.1, we just need to relate
thickness to the results of Section 3. For the next statement, we regard R = R U {oo}
as a circle on S? =~ C.

PROPOSITION 4.3
Let K C R be a Cantor set of modulus § > 0 containing co. Then T = K N R is a
globally k-thick subset of R, where k > 1 depends only on §.

Proof
Use Proposition 3.2 to relate the modulus of K to the relative sizes of gaps in R — K.
O

Proof of Theorem 4.1
Since M is acylindrical, by Theorem 3.1 there exists a § > 0 such that for any C € €*,
there exists a Cantor set K of modulus § with

KcCnAcS?

By Proposition 4.3, there exists a ko such that 7 C R is globally ko-thick whenever
T U oo is a Cantor set of modulus 6.

Let P* be a plane in M *. Choose C € €* such that the image of hull(C) in M*
contains P*.Let K C C N A be the Cantor set of modulus § provided by Theorem 3.1.
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By a change of coordinates, we can arrange that 0,00 € K C R. LetZ € FH3 be
any frame tangent to hull(@) along the geodesic y joining zero to infinity, and let z
denote its projection to F M. Then z is tangent to P*. It is readily verified that there
exists an isomorphism U = R sending U(z) to RN A. Since 0 € K CRN A and K
is globally kq-thick, we have z € RFg, M as well. Thus the Theorem holds for all
k > k. O

Comparison with the rigid case. We conclude by comparing the case of a general
convex cocompact acylindrical 3-manifold M, treated by Theorems 3.1 and 4.1, with
the rigid case, studied in [6].

In the rigid case, every component D; of S? — A is a round disk; hence C N D;
is connected for all C € €*, and one can show:

K = C N A is a compact set of definite modulus ¥C € €*.

See [6, Lemma 9.2]. Similarly, all horocycles passing through RF M are recurrent,
and RFy M = RF M for all k sufficiently large.

On the other hand, when M is not rigid, there are cases where both these proper-
ties fail. For example, suppose the bending measure of hull(A) has an atom of mass 8
along the geodesic y joining p,q € A. Then we can change coordinates on S2 = Cso
that p =0, ¢ = oo, and A is contained in the wedge defined by |arg(z)| < 7 — 6/2.
Then the circle C € €* defined by Re(z) = 1 cannot meet the limit set in a set of
positive modulus, since oo is an isolated point of C N A.

Similarly, the horocycle in H?® = C x R, defined by n(t) = (it, 1) crosses y
when ¢ = 0, and satisfies d(7(z),hull(A)) — oo as |t| — oco. Projecting to M, we
obtain a divergent horocycle orbit xU with x € RFM. In particular, x € RFM —
RF; M for all k.

Nevertheless, C N A can contain a Cantor set of positive modulus, consistent
with Theorem 3.1.

5. The boundary of the convex core

In this short section we analyze the behavior of C N A for circles that meet the limit
set but do not separate it. The result we need does not require that M is acylindrical,
only that its convex core is compact.

THEOREM 5.1

Let M = T'\H? be a convex cocompact 3-manifold with limit set A. Let C be the
boundary of a supporting hyperplane for hull(A). Then:

1. I'C is a convex cocompact Fuchsian group.
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2. There is a finite set Ag such that

CNA=ATC)UTCA,.
Here A(I'C) denotes the limit set of ¢ ={g eT': g(C)=C).

COROLLARY 5.2
If the projection of hull(C) to M gives a plane P disjoint from M* but tangent to a
frame in RFx M, then T'C is nonelementary.

Proof

The hypotheses guarantee that C does not separate A, and C N A contains an
(uncountable) Cantor set of positive modulus. Then by the preceding result, A(I'C)
is uncountable, so I'C is nonelementary. O

Proof of Theorem 5.1
We will use the theory of the bending lamination, developed in [2], [3], [10], and
elsewhere.

If M* is empty, then A is contained in a circle and the result is immediate. The
desired result is also immediate if C N A is finite, because A(I'C) € C N A.

Now assume C N A is infinite and M * is nonempty. Then K = dcore(M) is a
finite union of disjoint compact pleated surfaces with bending lamination . Let

f:8S =T hull(C NA)—> M

be the natural projection. Since |C N A| > 2, S is a metrically complete hyperbolic
surface with geodesic boundary, with nonempty interior So. The map f sends Sy
isometrically to a component of K — §; in particular, Sy has finite area. It follows that
the ends of Sy consist of the regions between finitely many pairs of geodesics which
are tangent at infinity; for an example, see Figure 5. Consequently, we can find a finite
set A9 C A (corresponding to the finitely many ends of Sp) such that

CNA=ATC)UTCA,.

Figure 5. A surface with a crown.
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The group I'C is convex cocompact because S has finite area and ' contains no
parabolic elements. O

6. Planes near the boundary of the convex core
In this section we take a step toward the proof of Theorem 1.4 by establishing two
density results.

THEOREM 6.1

Let M = T'\H? be a convex cocompact 3-manifold with incompressible boundary.
Consider a sequence of circles C, — C with C, € €* but C ¢ €*. Suppose that
L =1liminf(C, N A) is uncountable. Then | JT C,, is dense in €*.

Under the same assumptions on M we obtain:

COROLLARY 6.2
Consider an H -invariant set E C F* and fix k > 1. If the closure of E N RF, M
contains a point outside F*, then E is dense in F*.

Proof
Consider a sequence x, € E N RF; M such that x,, — x € RFy M — F*. We then
have a corresponding sequence of circles C,, € €* such that C,, — C ¢ €*. (The
circles are chosen so that x;, is tangent to the image of hull(C,) in M .)

Pass to a subsequence such that U(x,) (defined using equation (4.1)) converges,
in the Hausdorff topology, to a closed set K C U(x). Then C,, N A also converges, to a
compact set L C C homeomorphic to the 1-point compactification of K. The fact that
X, € RFr M implies that K contains a globally k-thick set; hence K is uncountable,
so L is as well. Then by the result above, | JT'C, is dense in €*, so E is dense
in F*. O

Roughly speaking, these results show that planes P* that are nearly tangent to
dM* are also nearly dense in M ™, subject to a condition on RF; M that is automatic
in the acylindrical case by Theorem 4.1.

Fuchsian dynamics. The proof of Theorem 6.1 exploits the dynamics of the Fuch-
sian group I'C. Given an open round disk D C S? and a closed subset E C 0D, we
let hull(E, D) C D denote the convex hull of E in the hyperbolic metric on D.

The principle we will use is [6, Corollary 3.2], which we restate as follows:

THEOREM 6.3
Let M = T'\H? be a convex cocompact hyperbolic 3-manifold. Let D C S? be a
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round open disk that meets A, and let C = dD. Suppose T'C is a nonelementary,
finitely generated group, and let C,, — C be a sequence of circles such that

C, Nhull(A(TC), D) # .

Then the closure of | JT Cy, in € contains every circle that meets A.

Proof of Theorem 6.1

Let D and D’ denote the two components of S? — C. Since C ¢ €*, at least one of
the components, say D’, is contained in €. Since L C C N A is uncountable, recis
nonelementary and finitely generated by Theorem 5.1. Consider an ideal pentagon

X =hull(V,D) C hull(A(Fc), D) (6.1)
whose five vertices V lie in L. Since L = liminfC,, N A, we can find “vertices”
V,CcC,NA, [Vu| =5,

such that V;, — V. In particular, |C,, N A| > 3 for all n.

Note that C,, is the unique circle passing through any three points of V,. If three
of these points were to lie in 3/, then we would have C,, C 5/, and hence |C, NA| <
1, since C, # C = 9D and D’ C Q. Hence |V, N D| > 3. Since |C, N C| <2,
at least two adjacent components of C, — V}, are contained in D. It follows easily
that C, meets hull(V, D) for all n sufficiently large. Using equation (6.1), we can
then apply Theorem 6.3 to conclude that | JT'C,, is dense in €*, since every C € €*
meets A. O

7. Planes far from the boundary
In this section we finally prove Theorem 1.4, which we restate as Corollary 7.2. The
proof rests on the following more general density theorem.

THEOREM 7.1
Let M = T'\H? be a convex cocompact 3-manifold with incompressible boundary.
Let C; — C be a convergent sequence in €*, with C ¢ | JT C;.

Suppose that C N A contains a Cantor set of positive modulus. Then | JT C; is
dense in €*.

COROLLARY 7.2
If M = T\H? is a convex cocompact acylindrical 3-manifold, then any T -invariant
set E C €* is either closed or dense in €*.
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Proof

Suppose E is not closed in €*. Then we can find a sequence C; € E converging to
C € €*— E. Since M is acylindrical, C meets A in a Cantor set of positive modulus,
by Theorem 3.1. Since E is T'-invariant, the preceding result shows that | JT'C; is
dense in €*, so the same is true for E. O

The proof of Theorem 7.1 follows the same lines as the proof of Theorem 7.3 in
[6, Section 9]. We will freely quote results from [6] in the course of the proof. The
notation from Table 2 for the subgroups U, V', A, N of G and other objects will also
be in play. A generalization of Theorem 7.1 to manifolds with compressible boundary
is stated at the end of this section.

Setup in the frame bundle. To prepare for the proof, we first reformulate it in terms
of the frame bundle.

Let C; — C as in the statement of Theorem 7.1. Since C N A contains a Cantor
set of positive modulus, by Proposition 4.3 we can choose k > 1 and xo, € RF M N
F* such that xo, H corresponds to I'C. Let us also choose x; — Xoo in F* such that
xi H corresponds to I'C;. Since C ¢ | JI'C;, we also have

Xoo & E = U x;H.
To prove Theorem 7.1 we need to show that:
E is dense in F*.
We may also assume that:
The set E NRF, M N F* is compact. (7.1)

Otherwise, E N F* = F* by Corollary 6.2, and hence E is dense in F*.

Dynamics of semigroups. We say that L C G is a 1-parameter semigroup if there
exists a nonzero § € Lie(G) such that

L = {exp(t§):1 > 0}.

To show a set is dense in F*, we will use the following fact.

PROPOSITION 7.3
Let L C V be a 1-parameter semigroup. Then xLH contains F* for all x € F*.

Proof
Let C € €* be a circle corresponding to xH. Then xLH corresponds to a fam-
ily of circles Cg such that | J Cy contains one of the components of S? — C. Since
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C € €*, both components meet the limit set. Hence I'C, D €* for some « by [6,
Corollary 4.2]. O

The staccato horocycle flow. Recall that the compact set RFx M is invariant under
the geodesic flow A. Moreover, Proposition 4.2 states that

U(z,k)={ueU:zu e RFy M}

is a thick subset of U, for all z € RF; M. In other words, RF; M is also invariant
under the staccato horocycle flow, which is interrupted outside of U(z, k).

Recurrence. Next we define a compact set W with

X €EWCENF*

with good recurrence properties for the horocycle flow. Namely, we let

B {(E — E)NRFy M N F* if this set is compact, and 72)

ENRF,M N F* otherwise.

(This definition is motivated by the proof of Lemma 7.6.)
In either case, W is compact by assumption (7.1). Since E N F* is H-invariant,
we have

WA=W and WUNRFMCW.

The second inclusion gives good recurrence; namely, we have

xU(x,kyCcwW (7.3)
for all x € W; and U(x, k) is thick, because W C RF; M.

The horocycle flow. We now exploit the fact that E is invariant under the horocycle
flow. The 1-parameter horocycle subgroup U C H is distinguished by the fact that
its normalizer contains (with finite index) the large subgroup AN C G. If X is U-
invariant, then so is Xg for any g € AN.

Minimal sets. A closed set Y is a U -minimal set for E with respectto Wif Y C E,
Y meets W,YU =Y, and

yU=Y forallyeY NW.

Note that E itself has all these properties except for the last. The existence of a min-
imal set Y follows from the Axiom of Choice and compactness of W. From now on
we will assume that:

Y is a U-minimal set for E with respect to W.
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To show that E is large, our strategy is to show it contains Yg for many g € AN.
To this end, we remark that for g € AN:
If Y N W)g meets E, then Yg C E.
Indeed, in this case by minimality we have:

ED>ygU=yUg=VYg, (7.4)
where yg € (Y NW)g N E.

Translation of Y inside of Y. The fact that horocycles in Y return frequently to W
allows one to deduce additional invariance properties for Y itself. Note that the orbits
of AV are orthogonal to the orbits of U in the Riemannian metric on F M .

LEMMA 7.4
There exists a 1-parameter semigroup L C AV such that

YLCY.

Proof

In the rigid acylindrical case, this is Theorem 9.4 in [6] for W = RF M. The only
property of RF M used in the proof is the k-thickness of {u € U : xu € RFM} for
any x € RF M. Hence the proof works verbatim with W replacing RF M, in view of
equation (7.3). In fact, YL =Y sinceid € L. O

Translation of Y inside of £. Our next goal is to find more elements g € G that
satisfy Yg C E. Consider the closed set S(Y) C G defined by

SY)={geG:(Y NW)gNE #0}.

Since E is H -invariant, we have S(Y)H = S(Y).

LEMMA 7.5
If S(Y) contains a sequence g, — id in G — H, then there exists v, € V — {id}
tending to id such that

Yvncf.

Proof
Let g, € S(Y) be a sequence tending to id in G — H . First suppose that there is a sub-
sequence, which we continue to denote by {g,}, of the form g, = v, h, € VH. Since

gn ¢ H, we have v, # id for all n. The claim then follows from the H -invariance of
S(Y) and the U-minimality of Y (see (7.4)).
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Therefore, assume that g, ¢ VH for all large n. Since g, € S(Y), there exist
yn €Y N'W such that y,g, € E.

Since Y is U-invariant and WU NRFy M C RF; M, we have yU(y,k) C Y for
all y e Y,and U(y, k) is a k-thick subset of U.

Therefore, by [6, Theorem 8.1], for any neighborhood G of the identity in G we
can choose u,, € U(yy,, k) and h, € H such that

u;lgnhn —v eV NnGy—{id}.
After passing to a subsequence, we have y,u, — yo € Y N W. Hence
Yn&nhn = (ynun)(u;lgnhn) €E

converges to yov € E.
Since Y is U-minimal with respectto W and yp € Y N W, we have

yovU = yoUv=Yv CE.

Since G was an arbitrary neighborhood of the identity, the claim follows. O

Choosing Y. In general there are many possibilities for the minimal set Y, and it
may be hard to describe a particular one, since the existence of a minimal set is proved
using the Axiom of Choice. The next result shows that, nevertheless, we can choose
Y so it remains inside E under suitable translations transverse to H but still in AN .

LEMMA 7.6
There exists a U -minimal set Y for E with respect to W, and a sequence v, — id in

V —{id}, such that
Yv, CE

forall n.

Proof

By Lemma 7.5, it suffices to show that ¥ can be chosen so that S(Y) contains a
sequence g, — id in G — H. We break the analysis into two cases, depending on
whether or not E meets the compact set .

First consider the case where E is disjoint from W. Let ¥ be a U-minimal set
for E with respect to W. Choose y € Y N W. Since Y C E, there exist g, — id such
that yg, € E. Then y ¢ E, and hence g, € G — H, so we are done.

Now suppose E meets W. Then W — E is not closed, by equation (7.2). So in
this case there exists a sequence x, € W — E with x, — x € E N W. In particular,
XH N'W # @. Thus there exists a U-minimal set Y for x H with respect to W.
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We now consider two cases. Assume first that Y N W C xH.Pick ye Y N W;
then y = xh for some 4 € H. Since x,, — x we have x,h — y. Now writing yg, =
Xnh, we have g, —id. As y e xH C E and x, ¢ E, we have g, € G — H, and we
are done.

Now suppose that W N'Y ¢ xH. Choose y € (W NY) — xH. Since we have
Y C xH, there exist g, — id with yg, € xH . Moreover, g, € G — H since y ¢ xH,
and the proof is complete in this case as well. O

Semigroups. We are now ready to complete the proof of Theorem 7.1. We will
exploit the 1-parameter semigroup L C AV guaranteed by Lemma 7.4. To discuss
the possibilities for L, let us write the elements of V' and A as

v(s)=((1) ’f) and a(z)z(‘; e(ft).

We then have two semigroups in V', defined by Vi = {v(s) : &s > 0}, and two similar
semigroups in A4 in A. It will also be useful to introduce the interval

Viap) = {v(s) : s € [a, b]}.

In the notation above, if L C AV is a 1-parameter semigroup, then either
O L=V

(i) L=A,;o0r

(ii) L=v'A4pv,forsomev eV, v #id.

Proof of Theorem 7.1
To complete the proof, it only remains to show we have F* C E.

Choose Y and v, € V so that Yv, C E as in Lemma 7.6. Write v, = v(s,); then
sp — 0 and s, # 0. Passing to a subsequence, we can assume s, has a definite sign,
say, s, > 0.

By Lemma 7.4, there is a 1-parameter semigroup L C AV such that

YLCY.

The rest of the argument breaks into three cases, depending on whether L is of type
(i), (ii), or (iii) in the list above.

(i). If L = V4, then we have F* C YLHCEH=E by Proposition 7.3, and
we are done.

(ii). Now suppose L = A+. Let

B ={id}U( ] Azv,A.
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Since YL C Y and Yv,A C EA = E forall n, we have
YBCE.
Note that a(¢)v(s)a(—t) = v(e?'s). Consequently, we have
v(e?'s,) € B

forall n and all ¢t witha(¢) e L = A4.

Suppose L = A4. Since s, — 0 and s, > 0, in this case we have V. C B; hence
YV, H C E and we are done as in case (i).

Now suppose L = A_. In this case at least we obtain an interval

V[O,Sl] C B.

Choose a sequence a, € A such that Vy = | JanVjos,1a, . Consider y € Y N W.
Since ya,;! € W, and W is compact, after passing to a subsequence we can assume
that

ya,' —yoe W C F*.
We then have
yoVi =|Jya, @nViosya,") CE.

which again implies that F* C E, by Proposition 7.3.
(iii). Finally, consider the case L = v 1ALv for some v eV, v # id. We then
have YB C E, where

B=v"14,vA.

By an easy computation, B contains V] +s for some s > 0, and the argument is
completed as in case (ii). O

The compressible case. In conclusion, we remark that Theorems 6.1 and 7.1
remain true without the hypothesis that M has incompressible boundary, provided
we replace €* with

€* = {C € €*: C meets A}

and require that M™* is nonempty. The proofs are simple variants of those just pre-
sented.
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