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Abstract
Let M be a convex cocompact, acylindrical hyperbolic 3-manifold of infinite volume,
and let M � denote the interior of the convex core of M . In this paper we show that
any geodesic plane inM � is either closed or dense. We also show that only countably
many planes are closed. These are the first rigidity theorems for planes in convex
cocompact 3-manifolds of infinite volume that depend only on the topology of M .

1. Introduction
In this paper we establish a new rigidity theorem for geodesic planes in acylindrical
hyperbolic 3-manifolds.

Hyperbolic 3-manifolds. Let M D �nH3 be a complete, oriented hyperbolic 3-
manifold, presented as a quotient of hyperbolic space by the action of a discrete group

� �G D IsomC.H3/:

Let ƒ � S2 D @H3 denote the limit set of � , and let � D S2 � ƒ denote the
domain of discontinuity. The convex core of M is the smallest closed, convex subset
of M containing all closed geodesics; equivalently,

core.M/D �nhull.ƒ/�M

is the quotient of the convex hull of the limit set ƒ of � . Let M � denote the interior
of the convex core of M .

Geodesic planes in M �. Let

f WH2!M

be a geodesic plane, i.e., a totally geodesic immersion of the hyperbolic plane intoM .
We often identify a geodesic plane with its image, P D f .H2/.
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By a geodesic plane P � �M �, we mean the nontrivial intersection

P � D P \M � ¤;

of a geodesic plane in M with the interior of the convex core. A plane P � in M � is
always connected, and P � is closed in M � if and only if P � is properly immersed in
M � (Section 2).

Acylindrical manifolds and rigidity. In this work, we study geodesic planes in
M � under the assumption that M is a convex cocompact, acylindrical hyperbolic 3-
manifold. The acylindrical condition is a topological one; it means that the compact
Kleinian manifold

M D �n.H3 [�/

has incompressible boundary, and every essential cylinder in M is boundary parallel
(Section 2). We will be primarily interested in the case where M is a convex cocom-
pact manifold of infinite volume. Under this assumption,M is acylindrical if and only
if ƒ is a Sierpiński curve.1

Our main goal is to establish:

THEOREM 1.1
Let M be a convex cocompact, acylindrical, hyperbolic 3-manifold. Then any
geodesic plane P � in M � is either closed or dense.

As a complement, we will show:

THEOREM 1.2
There are only countably many closed geodesic planes P � �M �.

We also establish the following topological equidistribution result:

THEOREM 1.3
If P �i �M

� is an infinite sequence of distinct closed geodesic planes, then

lim
i!1

P �i DM
�

in the Hausdorff topology on closed subsets of M �.

1A compact setƒ� S2 is a Sierpiński curve if S2 �ƒD
S
Di is a dense union of Jordan disks with disjoint

closures, and diam.Di /! 0. Any two Sierpiński curves are homeomorphic (see [12]).
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Remarks
1. We do not know of any instance of Theorem 1.1 where P � is closed in M �

but P is not closed in M .
Added in proof. An example of such an exotic plane in an acylindrical manifold
has recently been constructed by Zhang. In his example, the closure of P is
not even locally connected near @M � (see [13]).
Thus the rigidity of planes described in Theorem 1.1 does not extend beyond
the convex core of M .

2. In the special case where M is compact (so M DM �), Theorem 1.1 is due
independently to Shah and Ratner (see [8], [9]).

3. For a general convex cocompact manifold M , there can be uncountably many
distinct closed planes in M �; see the end of Section 2.

4. Examples of acylindrical manifolds such that M � contains infinitely many
closed geodesic planes are given in [6, Corollary 11.5].

5. The study of planes P that do not meet M � can be reduced to the case where
M is a quasifuchsian manifold. This case can be analyzed via the bending
lamination (cf. Section 6).

Comparison to the case of geodesic boundary. A convex cocompact hyperbolic
3-manifold M such that @ core.M/ is totally geodesic is automatically acylindrical.
For these rigid acylindrical manifolds, the results above were obtained in our previous
work [6]. While one would ultimately like to analyze planes in a large class of geo-
metrically finite groups, our previous results covered only countably many examples
(by Mostow rigidity).

The present paper makes a major step forward in this program, by developing
a new argument for unipotent recurrence which works without geodesic boundary,
which is robust enough to be invariant under quasi-isometry, and which is powerful
enough to apply to the class of all convex cocompact acylindrical manifolds. The key
insight is that one should work with a proper subset of the renormalized frame bundle,
defined in terms of thickness of Cantor sets, where we show sufficient recurrence takes
place in the acylindrical case.

The cylindrical case. The acylindrical setting is also close to optimal, since Theo-
rem 1.1 is generally false for cylindrical manifolds.

For example, consider a quasi-Fuchsian group � containing a Fuchsian subgroup
� 0 of the second kind with limit set ƒ0 � S1. Given .a; b/ 2ƒ0 �ƒ0, let Cab denote
the unique circle orthogonal to S1 such that Cab \ S1 D ¹a; bº. It is possible to
choose � such that Cab \ ƒ D ¹a; bº for uncountably many .a; b/; and further, to
arrange that the corresponding hyperbolic planes P �M and P � �M � have wild
closures, violating Theorem 1.1 (cf. [6, Appendix A]).
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Figure 1. Limit set of a cylindrical 3-manifold.

G D PSL2.C/Š IsomC.H3/
H D PSL2.R/Š IsomC.H2/
K D SU.2/=.˙I /
AD

®�
a 0
0 a�1

�
W a > 0

¯
N D

®
ns D

�
1 s
0 1

�
W s 2C

¯
U D ¹ns W s 2Rº

V D ¹ns W s 2 iRº

FH
3 DG D ¹the frame bundle of H3º

H
3 DG=K

S2 DG=AN D @H3

C DG=H D ¹the space of oriented circles C � S2º

Table 2. Notation for G and some of its subgroups and homogeneous spaces.

The same type of example can be embedded in more complicated 3-manifolds
with nontrivial characteristic submanifold; an example is shown in Figure 1.

Homogeneous dynamics. Next we formulate a result in the language of Lie groups
and homogeneous spaces, Theorem 1.4, that strengthens both Theorems 1.1 and 1.3.

To set the stage, we have summarized our notation for G and its subgroups in
Table 2. We have similarly summarized the spaces attached to an arbitrary hyperbolic
3-manifoldM D �nH3 in Table 3. (In the definition of C�, a circle C � S2 separates
ƒ if the limit set meets both components of S2 �C .)
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M D �nH3 D .the quotient hyperbolic 3-manifold/
M D �n.H3 [�/

core.M/D �nhull.ƒ/
M � D int

�
core.M/

�
FM D �nG D .the frame bundle of M/

F � D ¹x 2 FM W x is tangent to a plane P that meets M �º
C� D ¹C 2 C W C separates ƒº

Table 3. Spaces associated to M D �nH3.

Circles, frames, and planes. Circles, frames, and planes are closely related. In fact,
if P denotes the set of all (oriented) planes in M , then we have the natural identifica-
tions:

P D �nC D FM=H: (1.1)

Indeed, all three spaces can be identified with �nG=H . We will frequently use these
identifications to go back and forth between circles, frames, and planes.

When M � is nonempty (equivalently, when � is Zariski-dense in G), the spaces
C� and F � correspond to the set of planes P � that meetM �. In other words, we have

P � D �nC� D F �=H: (1.2)

To go from a circle to a plane, let P be the image of hull.C /�H
3 under the covering

map from H
3 to M . To go from a frame x 2 FM to a plane, take the image of xH

under the natural projection FM !M .
When ƒ is connected and consists of more than one point (e.g., when M is

acylindrical), it is easy to see that

C� D ¹C 2 C W C meets ƒº:

Thus the closures of the dense sets arising in Theorem 1.4 below are quite explicit.

The closed or dense dichotomy. We can now state our main result from the per-
spective of homogeneous dynamics.

THEOREM 1.4
Let M D �nH3 be a convex cocompact, acylindrical 3-manifold. Then any �-
invariant subset of C� is either closed or dense in C�. Equivalently, any H -invariant
subset of F � is either closed or dense in F �.
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(The equivalence is immediate from equation (1.2).)
This result sharpens Theorem 1.1 to give the following dichotomy on the level of

the tangent bundles:

COROLLARY 1.5
The normal bundle to a geodesic plane P � �M � is either closed or dense in the
tangent bundle TM �.

Beyond the acylindrical case. This paper also establishes several results that apply
outside the acylindrical setting. For example, Theorems 2.1, 4.1, 5.1, and 6.1 only
require the assumption that M has incompressible boundary. In fact, the main argu-
ment pivots on a result relating Cantor sets and Sierpiński curves, Theorem 3.4, that
involves no groups at all.

Discussion of the proofs. We conclude with a sketch of the proofs of Theorems 1.1
through Theorem 1.4.

Let M D �nH3 be a convex cocompact acylindrical 3-manifold of infinite vol-
ume, with limit set ƒ and domain of discontinuity �. The horocycle and geodesic
flows on the frame bundle FM D �nG are given by the right actions of U and A,
respectively. The renormalized frame bundle of M is the compact set defined by

RFM D ¹x 2 FM W xA is boundedº: (1.3)

In Section 2 we prove Theorem 1.2 by showing that the fundamental group of
any closed plane P � �M � contains a free group on two generators. We also show
that Theorems 1.1 and 1.3 follow from Theorem 1.4. The remaining sections develop
the proof of Theorem 1.4.

In Section 3 we show thatƒ is a Sierpiński curve of positive modulus. This means
there exists a ı > 0 such that the modulus of the annulus between any two components
D1, D2 of S2 �ƒ satisfies

mod
�
S2 � .D1 [D2/

�
� ı > 0:

We also show that if ƒ is a Sierpiński curve of positive modulus, then there exists a
ı > 0 such that C \ƒ contains a Cantor setK of modulus ı, wheneverC separatesƒ.
This means that for any disjoint components I1 and I2 of C �K , we have

mod
�
S2 � .I 1 [ I 2/

�
� ı > 0:

This result does not involve Kleinian groups and may be of interest in its own right.
In Section 4 we use this uniform bound on the modulus of a Cantor set to con-

struct a compact, A-invariant set
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RFkM � RFM

with good recurrence properties for the horocycle flow on FM . We also show that
when k is sufficiently large, RFkM meets every H -orbit in F �.

The introduction of RFkM is one of the central innovations of this paper that
allows us to handle acylindrical manifolds with quasi-Fuchsian boundary. When M
is a rigid acylindrical manifold, RFkM D RFM for all k sufficiently large, so in
some sense RFkM is a substitute for the renormalized frame bundle. For a more
detailed discussion, see the end of Section 4.

In Section 5 we shift our focus to the boundary of the convex core. Using the
theory of the bending lamination, we give a precise description of C \ƒ in the case
where C comes from a supporting hyperplane for the limit set.

In Sections 6 and 7, we formulate two density theorems for hyperbolic 3-
manifolds M with incompressible boundary. These results do not require that M is
acylindrical. Each section gives a criterion for a sequence of circles Cn 2 C� to have
the property that

S
�Cn is dense in C�.

In Section 6 we show that density holds if Cn! C … C� and lim.Cn \ ƒ/ is
uncountable. The proof relies on the analysis of the convex hull given in Section 5.

In Section 7 we show that density holds if Cn! C 2 C� and C …
S
�Cn, pro-

vided C \ƒ contains a Cantor set of positive modulus. The proof uses recurrence,
minimal sets, and homogeneous dynamics on the frame bundle, and follows a similar
argument in [6]. It also relies on the density result of Section 6.

WhenM is acylindrical, the Cantor set condition is automatic by Section 3. Thus
Theorem 1.4 follows immediately from the density theorem of Section 7.

Question
We conclude by mentioning an open problem that goes beyond the acylindrical case.
Let P � �M � be a plane in a quasi-Fuchsian manifold, and suppose the correspond-
ing circle satisfies jC \ƒj> 2. Does it follow that P � is closed or dense in M �?

2. Planes in acylindrical manifolds
In this section we will prove Theorem 1.2, and show that our other main results,
Theorems 1.1 and 1.3, follow from Theorem 1.4 on the homogeneous dynamics ofH
acting on F �.

Let M D �nH3 be a convex cocompact hyperbolic 3-manifold. We first describe
how the topology of M influences the shape of planes in M �. Here are the two main
results:
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THEOREM 2.1
If M has incompressible boundary, then the fundamental group of any closed plane
P � �M � is nontrivial.

THEOREM 2.2
If M is acylindrical, then the fundamental group of any closed plane P � �M � con-
tains a free group on two generators.

The second result immediately implies Theorem 1.2, which we restate as follows:

COROLLARY 2.3
If M is acylindrical, then there are at most countably many closed planes P � �M �.

Proof
In this case P � corresponds to a circle C whose stabilizer �C (as discussed below)
is isomorphic to the fundamental group of P �, and contains a free group on two
generators ha; bi. Since C is the unique circle containing the limit set of ha; bi � � ,
and there are only countably many possibilities for .a; b/, there are only countable
possibilities for P �.

In the remainder of this section, we first develop general results about planes in
3-manifolds, and prove Theorems 2.1 and 2.2. Then we derive Theorems 1.1 and 1.3
from Theorem 1.4. Finally we show by example that a cylindrical manifold can have
uncountably many closed planes P � �M �.

Topology of 3-manifolds. We begin with some topological definitions.
Let D2 denote a closed 2-disk, and let C 2 Š S1 � Œ0; 1� denote a closed cylin-

der. Let N be a compact 3-manifold with boundary. We say N has incompressible
boundary if every continuous map

f W .D2; @D2/! .N; @N /

can be deformed, as a map of pairs, so its image lies in @N . (This property is automatic
if @N D;.)

Similarly, N is acylindrical if it has incompressible boundary and every contin-
uous map

f W .C 2; @C 2/! .N; @N /;

injective on �1, can be deformed into @N . That is, every incompressible disk or cylin-
der in N is boundary parallel.
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When N DM D �n.H3 [�/ is a compact Kleinian manifold, these properties
are visible on the sphere at infinity: the limit set ƒ of � is connected if and only if M
has incompressible boundary, and M is acylindrical if and only if ƒ is a Sierpiński
curve or ƒD S2.

For more on the topology of hyperbolic 3-manifolds, see, for example, [7], [11],
and [5].

Topology of planes. Next we discuss the fundamental group of a plane P �M , and
the corresponding plane P � �M �. These definitions apply to an arbitrary hyperbolic
3-manifold.

For precision, it is useful to think of a plane P as being specified by an oriented
circle C � S2, whose convex hull covers P . More precisely, the plane attached to C
is given by the map

ef W hull.C /ŠH
2 �H

3!M D �nH3

with image ef .H2/D P . The stabilizer of the circle C in G is a conjugate xHx�1 of
H D PSL2.R/; hence its stabilizer in � is given by

�C D � \ xHx�1:

Let

S D �Cnhull.C /:

Then the map ef descends to give an immersion

f W S!M

with image P . The immersion f is generically injective if P is orientable; otherwise,
it is generically two-to-one (and there is an element in � that reverses the orientation
of C ).

We refer to

�1.S/Š �
C

as the fundamental group of P (keeping in mind caveats about orientability).

Planes in the convex core. Now suppose P � D P \M � is nonempty. In this case

S� D f �1.M �/

is a nonempty convex subsurface of S , with �1.S�/D �1.S/. The map
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f W S�! P � �M �

presents S� as the (orientable) normalization of P �, i.e., as the smooth surface
obtained by resolving the self-intersections of P �. Similarly, the frame bundle of P
with its branches separated is given by

FP D xH � FM

for some x 2 F �. (One should consistently orient C and P to define FP .)
To elucidate the connections between these objects, we formulate:

PROPOSITION 2.4
Let M be an arbitrary hyperbolic 3-manifold. Suppose C 2 C� and x 2 F � corre-
spond to the same plane P � �M �. Then the following are equivalent:
1. �C is closed in C�.
2. The inclusion �C � C� is proper.
3. xH is closed in F �.
4. P � is closed in M �.
5. The normalization map f W S�! P � is proper.

In (2) above, �C is given the discrete topology.

Proof
If �C is not discrete in C�, then by homogeneity it is perfect (it has no isolated
points). But a closed perfect set is uncountable, so �C is not closed. Thus (1) implies
that �C � C� is closed and discrete, which implies (2); and clearly (2) implies (1).
The remaining equivalences are similar, using equation (1.2) to relate P �, C� and
F �.

Compact deformations. In the context of proper mappings, the notion of a compact
deformation is also useful.

Let f0 WX! Y be a continuous map. We say f1 WX! Y is a compact deforma-
tion of f0 if there is a continuous family of maps ft WX ! Y interpolating between
them, defined for all t 2 Œ0; 1�, and a compact set X0 � X such that ft .x/D f0.x/
for all x …X0.

Let P � �M � be a hyperbolic plane with normalization f0 W S�!M �. We say
Q� �M � is a compact deformation of P � if it is the image of S� under a compact
deformation f1 of f0.

THEOREM 2.5
Let M D �nH3 be an arbitrary 3-manifold, and let K �M � be a submanifold such
that the induced map
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�1.K/! �1.M/

is surjective. ThenK meets every geodesic plane P � �M � and every compact defor-
mation Q� of P �.

COROLLARY 2.6
If �1.M/ is finitely generated, then there is a compact submanifold K �M � that
meets every plane P � �M �.

Proof
Provided M � is nonempty, �1.M �/ is isomorphic to �1.M/; and since the latter
group is finitely generated, there is a compact submanifoldK �M � (say, a neighbor-
hood of a bouquet of circles) whose fundamental group surjects onto �1.M �/.

Proof of Theorem 2.5
We will use the fact that S0 and S1 can link in S2.

Let P � be a plane in M �, arising from a circle C � S2 with an associated map
f W S! P as above. Since P meetsM �, there are points in the limit set of � on both
sides of C . Since the endpoints of closed geodesics are dense in ƒ �ƒ (cf. [1]), we
can find a hyperbolic element g 2 � such that its two fixed points

Fix.g/D ¹a1; a2º � S
2

are separated by C , and the convex hull of ¹a1; a2º in H
3 projects to a closed geodesic

ı �M . Note that Fix.g/Š S0 and C Š S1 are linked in S2.
Since �1.K/ maps onto �1.M/, the loop ı is freely homotopic to a loop � �K .
Let f0 D f jS�. Suppose f0 W S� !M � has a compact deformation f1 with

image Q� disjoint from K , and hence disjoint from � . Extend this deformation triv-
ially to the rest of S , to obtain a compact deformation f1 of the geodesic immersion
f W S! P . Then f1.S/ is disjoint from � . Lifting f1 to the universal cover of S , we
obtain a continuous map

ef1 W hull.C /!H
3

that is a bounded distance from the identity map. In particular, its image is a disk D
spanning C .

Similarly, a suitable lift of � gives a path e� �H
3, disjoint from D, that joins a1

to a2. This contradicts the fact that C separates a1 from a2 in S2.

We can now proceed to the:
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Proof of Theorem 2.1 (The incompressible case)
For the beginning of the argument, we only use the fact that M is compact and M �

is nonempty. Using the nearest point projection, it is straightforward to show that
core.M/ is homeomorphic to M . Thus its interior M � deformation retracts onto a
compact submanifold K �M �, homeomorphic to M , such that the inclusion is a
homotopy equivalence; in particular, �1.K/Š �1.M �/.

Consider a closed plane P � �M �, arising as the image of a proper map f W
S�! P � as above. We can also arrange that K is transverse to f , so its preimage

S0 D f
�1.K/� S�

is a compact, smoothly bounded region in S�. (However, S0 need not be connected.)
We claim that, after changing f by a compact deformation, we can arrange that

the inclusion of each component of S0 into S� is injective on �1. This is a stan-
dard argument in 3-dimensional topology. If the inclusion is not injective on �1, then
there is a compact disk D � S� with D \ S0 D @D. The map f sends .D;@D/ into
.M �;K/. SinceK is a deformation retract ofM �, f jD can be deformed until it maps
D into K , while keeping f j@D fixed. Then D becomes part of S0. This deformation
is compact becauseD is compact. Since @S0 has only finitely many components, only
finitely many disks of this type arise, so after finitely many compact deformations of
f , the inclusion S0 � S� becomes injective on �1.

Now we use the assumption that K ŠM has incompressible boundary. Suppose
that �1.S�/ is trivial. Then �1 is trivial for each component of S0, and hence each
component of S0 is a disk. By construction the deformed map f restricts to give a
map of pairs

f W .S0; @S0/! .K;@K/:

Since K has incompressible boundary, we can further deform f jS0 so it sends the
whole surface S0 into @K . Then the image Q� of f gives a compact deformation of
P � that is disjoint fromK� DK�@K . But �1.K�/maps onto �1.M/, contradicting
Theorem 2.5. Thus �1.S�/ is nontrivial.

Proof of Theorem 2.2 (The acylindrical case)
The proof follows the same lines as the incompressible case. If �1.S�/ does not con-
tain a free group on two generators, then S� is a disk or an annulus. After a compact
deformation, we can assume that the inclusion S0 D f �1.K/� S� is injective on �1.
Thus each component of S0 is also a disk or an annulus. SinceK is acylindrical, after
a further compact deformation of f we can arrange that f .S0/ � @K , leading to a
contradiction.
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Rigidity of planes from homogeneous dynamics. Now suppose M D �nH3 is a
convex cocompact, acylindrical 3-manifold. Assume we know Theorem 1.4, which
states that under this hypothesis:

Any �–invariant set E � C� is closed or dense in C�.

We can then prove the other two main results stated in the introduction.

Proof of Theorem 1.1
Let P � be a geodesic plane in M �, and let E D �C be the corresponding set of
circles. Then by Theorem 1.4, E is either closed or dense in C�, and hence P � is
either closed or dense in M �.

Proof of Theorem 1.3
Let P �i be a sequence of distinct closed planes inM �. We wish to show that limP �i D
M � in the Hausdorff topology on closed subsets of M �. To see this, first pass to a
subsequence so that P �i converges to Q� �M �. It suffices to show that Q� DM �

for every such subsequence. Since each P �i is nowhere dense, to show thatQ� DM �

and complete the proof, it suffices to show that
S
P �i is dense in M �.

Let Ei � C� be the �-orbit corresponding to Pi , and let E D
S
Ei . Since the

planes Pi are distinct, the setsEi are disjoint. By Corollary 2.6, there exists a compact
set K �M � that meets every P �i , so there exists a compact set K 0 � C� meeting
every Ei . Thus we can choose Ci 2Ei \K 0 and pass to a subsequence such that

Ci ! C1 2K
0 � C�

and C1 …E . (If C1 2Ei D �Ci , just drop that term from the sequence.) Since E is
not closed in C�, it is dense in C� by Theorem 1.4. Consequently

S
P �i is dense in

M �, as desired.

Example: Uncountably many geodesic cylinders. To conclude, we show that The-
orem 2.2 and Corollary 2.3 do not hold for general convex cocompact manifolds with
incompressible boundary.

In fact, in such a manifold one can have uncountably many distinct closed planes
P � �M �, each with cyclic fundamental group. For a concrete example of this phe-
nomenon, consider a closed geodesic � and the corresponding plane P in the quasi-
fuchsian manifold M DM� discussed in [6, Corollary A.2]. In this construction, �
is a simple curve in the boundary of the convex core of M , and P Š � � R is a
hyperbolic cylinder properly embedded in M . Consequently, P � �M � is a prop-
erly immersed cylinder in M �. By varying the angle that P meets the boundary of
core.M� / along � , we obtain a continuous family of properly immersed planes in
M �.
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3. Moduli of Cantor sets and Sierpiński curves
The rest of the paper is devoted to the proof of Theorem 1.4.

In this section we define the modulus of a Cantor set K � S1 (or in any circle
C � S2), as well as the modulus of a Sierpiński curve K � S2. We then prove:

THEOREM 3.1
Let ƒ be the limit set of � , where M D �nH3 is a convex cocompact acylindrical
3-manifold of infinite volume. Then there exists a ı > 0 such that:
1. ƒ is a Sierpiński curve of modulus ı, and
2. C \ƒ contains a Cantor set of modulus ı, whenever the circle C � S2 sepa-

rates ƒ.

The modulus of a Sierpiński curve. For background on conformal invariants and
quasiconformal maps, see [4].

We begin with some definitions. An annulus A � S2 is an open region whose
complement consists of two components. Provided neither component is a single
point, A is conformally equivalent to a unique round annulus of the form

AR D
®
z 2C W 1 < jzj<R

¯
;

and its modulus is defined by

mod.A/D
logR

2�
:

(More geometrically, A is conformally equivalent to a Euclidean cylinder of radius 1
and height mod.A/.) Since the modulus is a conformal invariant, we have

mod.A/Dmod
�
g.A/

�
8g 2G: (3.1)

Recall that a compact set ƒ� S2 is a Sierpiński curve if its complement

S2 �ƒD
[
Di

is a dense union of Jordan disks Di with disjoint closures, whose diameters tend to
zero. We say ƒ has modulus ı if

inf
i¤j

mod
�
S2 � .Di [Dj /

�
� ı > 0:

The modulus of an annulus A� S1. Let C � S2 be a circle and let A� C be an
annulus on C , meaning an open set such that C �AD I1[I2 is the union of two dis-
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joint intervals (circular arcs). We extend the notion of modulus to this 1-dimensional
situation by defining

mod.A;C /Dmod
�
S2 � .I1 [ I2/

�
:

Clearly mod.gA;gC /Dmod.A;C / for all g 2G, and consequently mod.A;C /
depends only on the cross-ratio of the four endpoints of A. The cross-ratio is con-
trolled by the lengths of the components A1, A2 of A and the components I1, I2 of
C �A. From this observation and monotonicity of the modulus [4, I.6.6] it is easy to
show:

PROPOSITION 3.2
There are increasing continuous functions ı.t/;�.t/ > 0 such that

ı.t/ <mod.A;C / <�.t/;

where t is the ratio of lengths

t D
min.jA1j; jA2j/

min.jI1j; jI2j/
:

The same result holds with t replaced by d.hull.I1/;hull.I2//.
For later reference we recall the following result due to Teichmüller [4, Chap-

ter II, Theorem 1.1].

PROPOSITION 3.3
Let I1 and I2 be the two components of C �A. Then

mod.B/�mod.A;C /

for any annulus B � S2 separating the endpoints of I1 from those of I2.

The modulus of a Cantor set. Let K � C � S2 be a compact subset of a circle,
such that its complement

C �K D
[
Ii

is a union of open intervals with disjoint closures. Note that C is uniquely determined
by K (and we allow K D C ). We say K has modulus ı if we have

inf
i¤j

mod.Aij ;C /� ı > 0; (3.2)

where Aij D C � Ii [ Ij . We will be primarily interested in the case where K is a
Cantor set, meaning

S
Ii is dense in C .
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Slices. Next we show that circular slices of a Sierpiński curve inherit positivity of
the modulus. This argument makes no reference to 3-manifolds.

THEOREM 3.4
Let ƒ � S2 be a Sierpiński curve of modulus ı > 0. Then there exists a ı0 > 0 such
that C \ƒ contains a Cantor set K of modulus ı0 whenever C is a circle separat-
ing ƒ.

Proof
Let S2 �ƒD

S
Di express the complement of ƒ as a union of disjoint disks. Each

disk Di meets the circle C in a collection of disjoint open intervals (see Figure 4).
The proof will be based on a study of the interaction of intervals from different com-
ponents.

Let U D C �ƒD
S
Ui , where

Ui D C \Di :

Note that distinct Ui have disjoint closures, and diamUi ! 0, since these two prop-
erties hold for the disks Di . The open set Ui may be empty.

We may assume U is dense in C , since otherwise we can just choose a suitable
Cantor set K � C �U . On the other hand, no Ui is dense in C ; if it were, we would
have C �Di , contrary to our assumption that C separates ƒ. It follows that Ui is
nonempty for infinitely many values of i .

Let us say an open interval I D .a; b/ � C , with distinct endpoints, is a bridge
of type i if a; b 2 @Ui . Note that an ascending union of bridges of type i is again a
bridge of type i , provided its endpoints are distinct.

Figure 4. A circle C and some components Di of S2 �ƒ.
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Our goal is to construct a sequence of disjoint bridges I1; I2; I3; : : : such that
jI1j � jI2j � � � � and K D C �

S
Ii is a Cantor set of modulus ı0.

To start the construction, choose any bridge I1 � C . After changing coordinates
by a Möbius transformation g 2 GC , we can assume that I1 fills at least half the
circle; i.e., jI1j> jC j=2. This will ensure that jI1j � jIkj for all k > 1.

Next, let I2 be a bridge of maximal length among all those which are disjoint
from I1 and of a different type from I1. Such a bridge exists because diam.Ui /! 0,
so only finitely many types of bridges are competing to be I2. To complete the initial
step, enlarge I1 to a maximal interval of the same type, disjoint from I2.

Proceeding inductively, let IkC1 � C be a bridge of maximum length among all
bridges disjoint from I1; : : : ; Ik . Since I1 is a maximal bridge of its type among those
disjoint from I2, and vice-versa, the intervals .I1; I2; Ik/ are of three distinct types,
for all k � 3. Consequently, jI2j � jIkj for all k > 2.

Note that the bridges so constructed have disjoint closures. Indeed, if Ii and Ij
were to have an endpoint a in common, with i < j , then Ii [ ¹aº [ Ij would be a
longer interval of the same type as Ii , contradicting to stage i of the construction.

Since U is dense in C , it follows that at any finite stage there is a bridge disjoint
from all those chosen so far, and thus the inductive construction continues indefinitely.
By construction, we have

jI1j � jI2j � jI3j � � �

and by disjointness, jIkj ! 0. Moreover,
S
Ik is dense in C . Otherwise, by density

of U , we would be able to find a bridge J disjoint from all Ik , and longer than Ik for
all k sufficiently large, contradicting the construction of Ik .

Let K D C �
S1
1 Ik . Since the intervals Ik have disjoint closures, and their

union is dense in C , K is a Cantor set. We have K �ƒ since @Ik �ƒ for all k.
Now consider any two indices i < j . Let

AD C � .I i [ I j /DA1 [A2;

where the open intervals A1 and A2 are disjoint. If the bridges Ii and Ij have types
s ¤ t respectively, then the annulus

B D S2 � .Ds [Dt /

separates @Ii from @Ij , and hence

mod.A;C /�mod.B/� ı > 0

by Proposition 3.3.
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On the other hand, if Ii and Ij have the same type s, then i; j > 2, and there
must be a bridge Ik , k < i , such that I1 [ Ik separates Ii from Ij . Otherwise, we
could have combined Ii and Ij to obtain a longer bridge at step i .

It follows that

t D
min.jA1j; jA2j/

min.jIi j; jIj j/
�

min.jI1j; jIkj/

min.jIi j; jIj j/
D
jIkj

jIj j
� 1;

since k < i < j . By Proposition 3.2, this implies that

mod.A;C / > ı0 > 0

where ı0 is a universal constant. Thus the Theorem holds with ı0 Dmin.ı0; ı/.

Limit sets. We can now complete the proof of Theorem 3.1.

THEOREM 3.5
Let M D �nH3 be a convex cocompact acylindrical 3-manifold of infinite volume.
Then its limit set ƒ is a Sierpiński curve of modulus ı for some ı > 0.

Proof
First suppose that every component of � D S2 � ƒ D

S
Di is a round disk; i.e.,

suppose that M is a rigid acylindrical manifold. By compactness, there exists an
L > 0 such that the hyperbolic length of any geodesic arc � � core.M/ orthog-
onal to the boundary at its endpoints is greater than L. Consequently, dij D
d.hull.Di /;hull.Dj // � L for any i ¤ j . Since the modulus of S2 � .Di [Dj / is
given by dij =.2�/, ƒ is a Sierpiński curve of modulus ıDL=.2�/ > 0.

To treat the general case, recall that for any convex cocompact acylindrical
manifold M , there exists a rigid acylindrical manifold M 0 D � 0nH3 such that � 0 is
K-quasiconformally conjugate to � . Since aK-quasiconformal map distorts the mod-
ulus of an annulus by at most a factor of K , and the limit set ƒ0 of � 0 is a Sierpiński
curve with modulus ı0 > 0, ƒ itself is a Sierpiński curve of modulus ı D ı0=

K > 0.

Proof of Theorem 3.1
Combine Theorems 3.4 and 3.5.

4. Recurrence of horocycles
Let M D �nH3 be an arbitrary 3-manifold. In this section we will define, for each
k > 1, a closed, A-invariant set

RFkM � RFM
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consisting of points with good recurrence properties under the horocycle flow gener-
ated by U (for terminology, see Tables 2 and 3). We will then show the following.

THEOREM 4.1
Let M D �nH3 be a convex cocompact acylindrical 3-manifold. We then have

F � � .RFkM/H

for all k sufficiently large. More precisely, every plane P � �M � is tangent to a frame
in RFkM .

We conclude by comparing the general result above to results that hold only when
@M � is totally geodesic.

We remark that .RFkM/H is usually not closed, even when M is acylindrical,
because there can be circles C 2 C� such that jC \ƒj D 1.

Thick sets. We begin by defining RFkM . Let us say a closed set T � R is k-thick
if

Œ1; k� � jT j D Œ0;1/:

In other words, given x � 0 there exists a t 2 T with jt j 2 Œx; kx�. Note that if T is
k-thick, then so is �T for all � 2R�.

If the translate T � x is k-thick for every x 2 T , then we say T is globally k-
thick. A set K � U is (globally) k-thick if its image under an isomorphism U ŠR is
(globally) k-thick.

Unipotent recurrence. For x 2 RFM , the unipotent orbit xU almost never
remains in RFM . Provided, however, there is a thick set K � U such that xK �
RFM , we have sufficient recurrence to carry through many arguments that would
be automatic if xU were bounded. The key point is to combine thickness with the
polynomial behavior of unipotent flows. This theme is developed in detail in [6,
Section 8], and it motivates the definition of RFkM below.

Let

U.z/D ¹u 2 U W zu 2 RFM º (4.1)

denote the return times of z 2 FM to the renormalized frame bundle under the horo-
cycle flow. We define RFkM for each k > 1 by

RFkM D

²
z 2 RFM W

there exists a globally k-thick
set K with 0 2K � U.z/

³
:
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Let

U.z; k/D ¹u 2 U W zu 2 RFkM º:

PROPOSITION 4.2
Suppose the convex core of M is compact. Then for any k > 1, the set RFkM is
a compact, A-invariant subset of RFM . Moreover, U.z; k/ is k-thick for each z 2
RFkM .

Proof
Using compactness of RFM , it is easily verified that if zn ! z in FM , then
lim supU.zn/ � U.z/. One can also check that if Kn � U is a sequence of globally
k-thick sets with 0 2 Kn, then lim supKn is also globally k-thick. Consequently
RFkM � RFM is closed, and hence compact.

Since U.za/ is a rescaling of U.z/ for any a 2 A, and the notion of thickness
is scale-invariant, RFkM is A-invariant. For the final assertion, observe that U.z; k/
contains the thick set K � U.z/ posited in the definition of RFkM .

Thickness and moduli. To complete the proof Theorem 4.1, we just need to relate
thickness to the results of Section 3. For the next statement, we regard bRDR[ ¹1º

as a circle on S2 ŠbC.

PROPOSITION 4.3
Let K � bR be a Cantor set of modulus ı > 0 containing 1. Then T D K \ R is a
globally k-thick subset of R, where k > 1 depends only on ı.

Proof
Use Proposition 3.2 to relate the modulus of K to the relative sizes of gaps in R�K .

Proof of Theorem 4.1
SinceM is acylindrical, by Theorem 3.1 there exists a ı > 0 such that for any C 2 C�,
there exists a Cantor set K of modulus ı with

K � C \ƒ� S2:

By Proposition 4.3, there exists a k0 such that T � R is globally k0-thick whenever
T [1 is a Cantor set of modulus ı.

Let P � be a plane in M �. Choose C 2 C� such that the image of hull.C / in M �

containsP �. LetK � C \ƒ be the Cantor set of modulus ı provided by Theorem 3.1.
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By a change of coordinates, we can arrange that 0;12K �bR. Letez 2 FH
3 be

any frame tangent to hull.bR/ along the geodesic � joining zero to infinity, and let z
denote its projection to FM . Then z is tangent to P �. It is readily verified that there
exists an isomorphism U Š R sending U.z/ to R\ƒ. Since 0 2K � R\ƒ and K
is globally k0-thick, we have z 2 RFk0M as well. Thus the Theorem holds for all
k � k0.

Comparison with the rigid case. We conclude by comparing the case of a general
convex cocompact acylindrical 3-manifold M , treated by Theorems 3.1 and 4.1, with
the rigid case, studied in [6].

In the rigid case, every component Di of S2 �ƒ is a round disk; hence C \Di
is connected for all C 2 C�, and one can show:

K D C \ƒ is a compact set of definite modulus 8C 2 C�.

See [6, Lemma 9.2]. Similarly, all horocycles passing through RFM are recurrent,
and RFkM D RFM for all k sufficiently large.

On the other hand, when M is not rigid, there are cases where both these proper-
ties fail. For example, suppose the bending measure of hull.ƒ/ has an atom of mass 	
along the geodesic � joining p;q 2ƒ. Then we can change coordinates on S2 ŠbC so
that p D 0, q D1, and ƒ is contained in the wedge defined by j arg.z/j< � � 	=2.
Then the circle C 2 C� defined by Re.z/ D 1 cannot meet the limit set in a set of
positive modulus, since1 is an isolated point of C \ƒ.

Similarly, the horocycle in H
3 D C � RC defined by 
.t/ D .i t; 1/ crosses �

when t D 0, and satisfies d.
.t/;hull.ƒ//!1 as jt j ! 1. Projecting to M , we
obtain a divergent horocycle orbit xU with x 2 RFM . In particular, x 2 RFM �
RFkM for all k.

Nevertheless, C \ ƒ can contain a Cantor set of positive modulus, consistent
with Theorem 3.1.

5. The boundary of the convex core
In this short section we analyze the behavior of C \ƒ for circles that meet the limit
set but do not separate it. The result we need does not require that M is acylindrical,
only that its convex core is compact.

THEOREM 5.1
Let M D �nH3 be a convex cocompact 3-manifold with limit set ƒ. Let C be the
boundary of a supporting hyperplane for hull.ƒ/. Then:
1. �C is a convex cocompact Fuchsian group.
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2. There is a finite set ƒ0 such that

C \ƒDƒ.�C /[ �Cƒ0:

Here ƒ.�C / denotes the limit set of �C D ¹g 2 � W g.C /D C º.

COROLLARY 5.2
If the projection of hull.C / to M gives a plane P disjoint from M � but tangent to a
frame in RFkM , then �C is nonelementary.

Proof
The hypotheses guarantee that C does not separate ƒ, and C \ ƒ contains an
(uncountable) Cantor set of positive modulus. Then by the preceding result, ƒ.�C /
is uncountable, so �C is nonelementary.

Proof of Theorem 5.1
We will use the theory of the bending lamination, developed in [2], [3], [10], and
elsewhere.

If M � is empty, then ƒ is contained in a circle and the result is immediate. The
desired result is also immediate if C \ƒ is finite, because ƒ.�C /� C \ƒ.

Now assume C \ƒ is infinite and M � is nonempty. Then K D @ core.M/ is a
finite union of disjoint compact pleated surfaces with bending lamination ˇ. Let

f W S D �Cnhull.C \ƒ/!M

be the natural projection. Since jC \ƒj > 2, S is a metrically complete hyperbolic
surface with geodesic boundary, with nonempty interior S0. The map f sends S0
isometrically to a component ofK�ˇ; in particular, S0 has finite area. It follows that
the ends of S0 consist of the regions between finitely many pairs of geodesics which
are tangent at infinity; for an example, see Figure 5. Consequently, we can find a finite
set ƒ0 �ƒ (corresponding to the finitely many ends of S0) such that

C \ƒDƒ.�C /[ �Cƒ0:

Figure 5. A surface with a crown.
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The group �C is convex cocompact because S has finite area and � contains no
parabolic elements.

6. Planes near the boundary of the convex core
In this section we take a step toward the proof of Theorem 1.4 by establishing two
density results.

THEOREM 6.1
Let M D �nH3 be a convex cocompact 3-manifold with incompressible boundary.
Consider a sequence of circles Cn ! C with Cn 2 C� but C … C�. Suppose that
LD lim inf.Cn \ƒ/ is uncountable. Then

S
�Cn is dense in C�.

Under the same assumptions on M we obtain:

COROLLARY 6.2
Consider an H -invariant set E � F � and fix k > 1. If the closure of E \ RFkM
contains a point outside F �, then E is dense in F �.

Proof
Consider a sequence xn 2 E \ RFkM such that xn! x 2 RFkM � F �. We then
have a corresponding sequence of circles Cn 2 C� such that Cn ! C … C�. (The
circles are chosen so that xn is tangent to the image of hull.Cn/ in M .)

Pass to a subsequence such that U.xn/ (defined using equation (4.1)) converges,
in the Hausdorff topology, to a closed setK � U.x/. Then Cn\ƒ also converges, to a
compact set L� C homeomorphic to the 1-point compactification ofK . The fact that
xn 2 RFkM implies that K contains a globally k-thick set; hence K is uncountable,
so L is as well. Then by the result above,

S
�Cn is dense in C�, so E is dense

in F �.

Roughly speaking, these results show that planes P � that are nearly tangent to
@M � are also nearly dense in M �, subject to a condition on RFkM that is automatic
in the acylindrical case by Theorem 4.1.

Fuchsian dynamics. The proof of Theorem 6.1 exploits the dynamics of the Fuch-
sian group �C . Given an open round disk D � S2 and a closed subset E � @D, we
let hull.E;D/�D denote the convex hull of E in the hyperbolic metric on D.

The principle we will use is [6, Corollary 3.2], which we restate as follows:

THEOREM 6.3
Let M D �nH3 be a convex cocompact hyperbolic 3-manifold. Let D � S2 be a
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round open disk that meets ƒ, and let C D @D. Suppose �C is a nonelementary,
finitely generated group, and let Cn! C be a sequence of circles such that

Cn \ hull
�
ƒ.�C /;D

�
¤;:

Then the closure of
S
�Cn in C contains every circle that meets ƒ.

Proof of Theorem 6.1
Let D and D0 denote the two components of S2 � C . Since C … C�, at least one of
the components, say D0, is contained in �. Since L� C \ƒ is uncountable, �C is
nonelementary and finitely generated by Theorem 5.1. Consider an ideal pentagon

X D hull.V;D/� hull
�
ƒ.�C /;D

�
(6.1)

whose five vertices V lie in L. Since LD lim infCn \ƒ, we can find “vertices”

Vn � Cn \ƒ; jVnj D 5;

such that Vn! V . In particular, jCn \ƒj � 3 for all n.
Note that Cn is the unique circle passing through any three points of Vn. If three

of these points were to lie inD
0
, then we would have Cn �D

0
, and hence jCn\ƒj �

1, since Cn ¤ C D @D
0

and D0 � �. Hence jVn \ Dj � 3. Since jCn \ C j � 2,
at least two adjacent components of Cn � Vn are contained in D. It follows easily
that Cn meets hull.V;D/ for all n sufficiently large. Using equation (6.1), we can
then apply Theorem 6.3 to conclude that

S
�Cn is dense in C�, since every C 2 C�

meets ƒ.

7. Planes far from the boundary
In this section we finally prove Theorem 1.4, which we restate as Corollary 7.2. The
proof rests on the following more general density theorem.

THEOREM 7.1
Let M D �nH3 be a convex cocompact 3-manifold with incompressible boundary.
Let Ci ! C be a convergent sequence in C�, with C …

S
�Ci .

Suppose that C \ƒ contains a Cantor set of positive modulus. Then
S
�Ci is

dense in C�.

COROLLARY 7.2
If M D �nH3 is a convex cocompact acylindrical 3-manifold, then any �-invariant
set E � C� is either closed or dense in C�.
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Proof
Suppose E is not closed in C�. Then we can find a sequence Ci 2 E converging to
C 2 C��E . SinceM is acylindrical, C meetsƒ in a Cantor set of positive modulus,
by Theorem 3.1. Since E is �-invariant, the preceding result shows that

S
�Ci is

dense in C�, so the same is true for E .

The proof of Theorem 7.1 follows the same lines as the proof of Theorem 7.3 in
[6, Section 9]. We will freely quote results from [6] in the course of the proof. The
notation from Table 2 for the subgroups U , V , A, N of G and other objects will also
be in play. A generalization of Theorem 7.1 to manifolds with compressible boundary
is stated at the end of this section.

Setup in the frame bundle. To prepare for the proof, we first reformulate it in terms
of the frame bundle.

Let Ci ! C as in the statement of Theorem 7.1. Since C \ƒ contains a Cantor
set of positive modulus, by Proposition 4.3 we can choose k > 1 and x1 2 RFkM \
F � such that x1H corresponds to �C . Let us also choose xi ! x1 in F � such that
xiH corresponds to �Ci . Since C …

S
�Ci , we also have

x1 …E D
[
xiH:

To prove Theorem 7.1 we need to show that:

E is dense in F �:

We may also assume that:

The set E \RFkM \F
� is compact. (7.1)

Otherwise, E \F � D F � by Corollary 6.2, and hence E is dense in F �.

Dynamics of semigroups. We say that L�G is a 1-parameter semigroup if there
exists a nonzero � 2 Lie.G/ such that

LD
®
exp.t�/ W t � 0

¯
:

To show a set is dense in F �, we will use the following fact.

PROPOSITION 7.3
Let L� V be a 1-parameter semigroup. Then xLH contains F � for all x 2 F �.

Proof
Let C 2 C� be a circle corresponding to xH . Then xLH corresponds to a fam-
ily of circles C˛ such that

S
C˛ contains one of the components of S2 � C . Since
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C 2 C�, both components meet the limit set. Hence �C˛ � C� for some ˛ by [6,
Corollary 4.2].

The staccato horocycle flow. Recall that the compact set RFkM is invariant under
the geodesic flow A. Moreover, Proposition 4.2 states that

U.z; k/D ¹u 2 U W zu 2 RFkM º

is a thick subset of U , for all z 2 RFkM . In other words, RFkM is also invariant
under the staccato horocycle flow, which is interrupted outside of U.z; k/.

Recurrence. Next we define a compact set W with

x1 2W �E \F
�

with good recurrence properties for the horocycle flow. Namely, we let

W D

´
.E �E/\RFkM \F � if this set is compact, and
E \RFkM \F � otherwise:

(7.2)

(This definition is motivated by the proof of Lemma 7.6.)
In either case, W is compact by assumption (7.1). Since E \ F � is H -invariant,

we have

WADW and WU \RFkM �W:

The second inclusion gives good recurrence; namely, we have

xU.x;k/�W (7.3)

for all x 2W ; and U.x;k/ is thick, because W � RFkM .

The horocycle flow. We now exploit the fact that E is invariant under the horocycle
flow. The 1-parameter horocycle subgroup U �H is distinguished by the fact that
its normalizer contains (with finite index) the large subgroup AN � G. If X is U -
invariant, then so is Xg for any g 2AN .

Minimal sets. A closed set Y is a U -minimal set for E with respect toW if Y �E ,
Y meets W , Y U D Y , and

yU D Y for all y 2 Y \W:

Note that E itself has all these properties except for the last. The existence of a min-
imal set Y follows from the Axiom of Choice and compactness of W . From now on
we will assume that:

Y is a U -minimal set for E with respect to W .
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To show that E is large, our strategy is to show it contains Yg for many g 2AN .
To this end, we remark that for g 2AN :

If .Y \W /g meets E , then Yg �E .
Indeed, in this case by minimality we have:

E � ygU D yUgD Yg; (7.4)

where yg 2 .Y \W /g \E .

Translation of Y inside of Y . The fact that horocycles in Y return frequently to W
allows one to deduce additional invariance properties for Y itself. Note that the orbits
of AV are orthogonal to the orbits of U in the Riemannian metric on FM .

LEMMA 7.4
There exists a 1-parameter semigroup L�AV such that

YL� Y:

Proof
In the rigid acylindrical case, this is Theorem 9.4 in [6] for W D RFM . The only
property of RFM used in the proof is the k-thickness of ¹u 2 U W xu 2 RFM º for
any x 2 RFM . Hence the proof works verbatim with W replacing RFM , in view of
equation (7.3). In fact, YLD Y since id 2L.

Translation of Y inside of E . Our next goal is to find more elements g 2 G that
satisfy Yg �E . Consider the closed set S.Y /�G defined by

S.Y /D
®
g 2G W .Y \W /g \E ¤;

¯
:

Since E is H -invariant, we have S.Y /H D S.Y /.

LEMMA 7.5
If S.Y / contains a sequence gn ! id in G � H , then there exists vn 2 V � ¹idº
tending to id such that

Yvn �E:

Proof
Let gn 2 S.Y / be a sequence tending to id inG�H . First suppose that there is a sub-
sequence, which we continue to denote by ¹gnº, of the form gn D vnhn 2 VH . Since
gn …H , we have vn ¤ id for all n. The claim then follows from the H -invariance of
S.Y / and the U -minimality of Y (see (7.4)).
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Therefore, assume that gn … VH for all large n. Since gn 2 S.Y /, there exist
yn 2 Y \W such that yngn 2E .

Since Y is U -invariant and WU \RFkM � RFkM , we have yU.y;k/� Y for
all y 2 Y , and U.y;k/ is a k-thick subset of U .

Therefore, by [6, Theorem 8.1], for any neighborhood G0 of the identity in G we
can choose un 2 U.yn; k/ and hn 2H such that

u�1n gnhn! v 2 V \G0 � ¹idº:

After passing to a subsequence, we have ynun! y0 2 Y \W . Hence

yngnhn D .ynun/.u
�1
n gnhn/ 2E

converges to y0v 2E .
Since Y is U -minimal with respect to W and y0 2 Y \W , we have

y0vU D y0UvD Yv �E:

Since G0 was an arbitrary neighborhood of the identity, the claim follows.

Choosing Y . In general there are many possibilities for the minimal set Y , and it
may be hard to describe a particular one, since the existence of a minimal set is proved
using the Axiom of Choice. The next result shows that, nevertheless, we can choose
Y so it remains inside E under suitable translations transverse to H but still in AN .

LEMMA 7.6
There exists a U -minimal set Y for E with respect to W , and a sequence vn! id in
V � ¹idº, such that

Yvn �E

for all n.

Proof
By Lemma 7.5, it suffices to show that Y can be chosen so that S.Y / contains a
sequence gn ! id in G �H . We break the analysis into two cases, depending on
whether or not E meets the compact set W .

First consider the case where E is disjoint from W . Let Y be a U -minimal set
for E with respect to W . Choose y 2 Y \W . Since Y �E , there exist gn! id such
that ygn 2E . Then y …E , and hence gn 2G �H , so we are done.

Now suppose E meets W . Then W � E is not closed, by equation (7.2). So in
this case there exists a sequence xn 2W �E with xn! x 2 E \W . In particular,
xH \W ¤;. Thus there exists a U -minimal set Y for xH with respect to W .
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We now consider two cases. Assume first that Y \W � xH . Pick y 2 Y \W ;
then y D xh for some h 2H . Since xn! x we have xnh! y. Now writing ygn D
xnh, we have gn! id. As y 2 xH � E and xn … E , we have gn 2G �H , and we
are done.

Now suppose that W \ Y 6� xH . Choose y 2 .W \ Y / � xH . Since we have
Y � xH , there exist gn! id with ygn 2 xH . Moreover, gn 2G �H since y … xH ,
and the proof is complete in this case as well.

Semigroups. We are now ready to complete the proof of Theorem 7.1. We will
exploit the 1-parameter semigroup L � AV guaranteed by Lemma 7.4. To discuss
the possibilities for L, let us write the elements of V and A as

v.s/D

�
1 is

0 1

�
and a.t/D

�
et 0

0 e�t

�
:

We then have two semigroups in V , defined by V˙ D ¹v.s/ W ˙s � 0º, and two similar
semigroups in A˙ in A. It will also be useful to introduce the interval

VŒa;b� D
®
v.s/ W s 2 Œa; b�

¯
:

In the notation above, if L�AV is a 1-parameter semigroup, then either
(i) LD V˙;
(ii) LDA˙; or
(iii) LD v�1A˙v, for some v 2 V , v¤ id.

Proof of Theorem 7.1
To complete the proof, it only remains to show we have F � �E .

Choose Y and vn 2 V so that Yvn �E as in Lemma 7.6. Write vn D v.sn/; then
sn! 0 and sn ¤ 0. Passing to a subsequence, we can assume sn has a definite sign,
say, sn > 0.

By Lemma 7.4, there is a 1-parameter semigroup L�AV such that

YL� Y:

The rest of the argument breaks into three cases, depending on whether L is of type
(i), (ii), or (iii) in the list above.

(i). If LD V˙, then we have F � � YLH � EH D E by Proposition 7.3, and
we are done.

(ii). Now suppose LDA˙. Let

B D ¹idº [
[
A˙vnA:
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Since YL� Y and YvnA�EADE for all n, we have

YB �E:

Note that a.t/v.s/a.�t /D v.e2ts/. Consequently, we have

v.e2tsn/ 2B

for all n and all t with a.t/ 2LDA˙.
Suppose LDAC. Since sn! 0 and sn > 0, in this case we have VC �B ; hence

Y VCH �E and we are done as in case (i).
Now suppose LDA�. In this case at least we obtain an interval

VŒ0;s1� �B:

Choose a sequence an 2 A such that VC D
S
anVŒ0;s1�a

�1
n . Consider y 2 Y \ W .

Since ya�1n 2W , and W is compact, after passing to a subsequence we can assume
that

ya�1n ! y0 2W � F
�:

We then have

y0VC D
[
ya�1n .anVŒ0;s1�a

�1
n /�E;

which again implies that F � �E , by Proposition 7.3.
(iii). Finally, consider the case LD v�1A˙v for some v 2 V , v ¤ id. We then

have YB �E , where

B D v�1A˙vA:

By an easy computation, B contains VŒ0;˙s� for some s > 0, and the argument is
completed as in case (ii).

The compressible case. In conclusion, we remark that Theorems 6.1 and 7.1
remain true without the hypothesis that M has incompressible boundary, provided
we replace C� with

C# D ¹C 2 C� W C meets ƒº

and require that M � is nonempty. The proofs are simple variants of those just pre-
sented.
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