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Abstract

A longstanding open problem in coding theory is to determine the best (asymptotic) rate
R2(δ) of binary codes with minimum constant (relative) distance δ. An existential lower bound
was given by Gilbert and Varshamov in the 1950s. On the impossibility side, in the 1970s
McEliece, Rodemich, Rumsey and Welch (MRRW) proved an upper bound by analyzing Del-
sarte’s linear programs. To date these results remain the best known lower and upper bounds
on R2(δ) with no improvement even for the important class of linear codes. Asymptotically,
these bounds differ by an exponential factor in the blocklength.

In this work, we introduce a new hierarchy of linear programs (LPs) that converges to the
true size ALin

2 (n, d) of an optimum linear binary code (in fact, over any finite field) of a given
blocklength n and distance d. This hierarchy has several notable features:

i. It is a natural generalization of the Delsarte LPs used in the first MRRW bound.

ii. It is a hierarchy of linear programs rather than semi-definite programs potentially making
it more amenable to theoretical analysis.

iii. It is complete in the sense that the optimum code size can be retrieved from level O(n2).

iv. It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the
question of how to cut Delsarte’s LP polytopes to approximate the true size of linear codes.

We obtain our hierarchy by generalizing the Krawtchouk polynomials and MacWilliams in-
equalities to a suitable “higher-order” version taking into account interactions of ℓ words. Our
method also generalizes to translation schemes under mild assumptions.
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1 Introduction

A fundamental question in coding theory is the maximum size of a binary code given a block-
length parameter n and a minimum distance parameter dn. This value is typically denoted by
A2(n, dn). A particularly important regime occurs when limn→∞ dn/n = δ for some absolute con-
stant δ ∈ (0, 1/2). In this regime, A2(n, dn) is known to grow exponentially in n. However, the
precise rate of this exponential growth remains an elusive major open problem. It is often con-
venient to denote the asymptotic basis of this growth as 2R2(δ), where the rate R2(δ) is defined
as

R2(δ) := lim sup
n→∞

1

n
log2 (A2(n, ⌊δn⌋)) .

An equivalent way of defining A2(n, d) is as the independence number of the graph Hn,d

whose vertex set is V(Hn,d) := Fn
2 and two vertices x, y ∈ V(Hn,d) are adjacent if and only if their

Hamming distance ∆(x, y) lies in {1, . . . , d − 1}. Note that there is a one-to-one correspondence
between independent sets in this graph and binary codes of blocklength n and minimum distance
d. Most of the literature about A2(n, d) takes advantage of this graph-theoretic interpretation.

A lower bound on A2(n, d) follows from the trivial degree bound on the independence number
of a graph, namely, α(Hn,d) ≥ |V(Hn,d)|/(deg(Hn,d) + 1), which gives α(Hn,d) ≥ 2(1−h2(d/n)+o(1))n

where h2 is the binary entropy function. First discovered by Gilbert [Gil52] and later generalized to
linear codes by Varshamov [Var57], this existential bound is now known as the Gilbert–Varshamov
(GV) bound. Observe that the GV bound readily implies that R2(δ) ≥ 1 − h2(δ). Despite its
simplicity, this bound remains the best (existential) lower bound on R2(δ).

The techniques to upper bound A2(n, d) are oftentimes more involved, with the most promi-
nent being the Delsarte linear programming method that we now describe. A binary code C ⊆ Fn

2

is linear if it is a subspace of Fn
2 and its weight distribution is the tuple (a0, a1, . . . , an) ∈ Nn+1,

where ai is the number of codewords of C of Hamming weight i. MacWilliams [Mac63] showed
that the weight distribution (b0, b1, . . . , bn) of the dual code C⊥ can be obtained by applying a
linear transformation to (a0, a1, . . . , an). More precisely, the MacWilliams identities establish that

bj =
1

|C|

n

∑
i=0

Kj(i) · ai,

where the coefficients Kj(i) are evaluations of the so-called Krawtchouk (or Kravchuk) polynomial
of degree j. The Krawtchouk polynomials form a family of orthogonal polynomials under the
measure µn(i) = (n

i)/2n and they play an important role in coding theory [vL99, Chapter 1]. Since

the weight distribution of the dual C⊥ is non-negative, the MacWilliams identities can be relaxed
to inequalities

n

∑
i=0

Kj(i) · ai ≥ 0

for j = 0, . . . , n. This naturally leads to the following linear program (LP) relaxation for A2(n, d)
when C is a linear code (recall that for a linear code, having distance at least d is equivalent to
having no words of Hamming weight 1 through d − 1).

1



max
n

∑
i=0

ai

s.t. a0 = 1 (Normalization)

ai = 0 for i = 1, . . . , d − 1 (Distance constraints)
n

∑
j=1

Ki(j) · aj > 0 for i = 0, . . . , n (MacWilliams inequalities)

ai > 0 for i = 0, . . . , n (Non-negativity).

Figure 1: Delsarte’s linear program for A2(n, d).

The ai can be suitably generalized to codes which are not necessarily linear (by setting ai :=∣∣{(x, y) ∈ C2|∆(x, y) = i}
∣∣ / |C|). The MacWilliams inequalities hold for these generalized ai’s as

proven by MacWilliams, Sloane and Goethals [MSG72]. Therefore, the same linear program above
also bounds A2(n, d) for general codes. This family of linear programs was first introduced by
Delsarte in [Del73], where it was obtained in greater generality from the theory of association
schemes. We refer to the above linear program as Delsarte’s linear program, or, more formally, as
DelsarteLP(n, d).

The best known upper bound on R2(δ) for distances δ ∈ (0.273, 1/2) is obtained by con-
structing solutions to the dual program of Delsarte’s linear program, as first done by McEliece,
Rodemich, Rumsey and Welch (MRRW) [MRRW77] in their first linear programming bound. In
the same work, McEliece et al. also gave the best known bound for δ ∈ (0, 0.273) via a second
family of linear programs. Since our techniques are more similar to their first linear programming
bound, we restrict our attention to it in this discussion. In the first linear programming bound,
they showed that R2(δ) ≤ h2(1/2 −

√
δ(1 − δ)) with a reasonably sophisticated argument us-

ing properties of general orthogonal polynomials and also particular properties of Krawtchouk
polynomials. Simpler perspectives on the first LP bound analysis were found by Navon and
Samorodnitsky [NS05] and by Samorodnitsky [Sam21].

Instead of linear programming, one can use more powerful techniques based on semi-definite
programming (SDP) to upper bound A2(n, d). For instance, the Sum-of-Squares/Lasserre SDP
hierarchy was suggested for this problem by Laurent [Lau09]. The value of the program equals
α(Hn,d) for a sufficiently high level of the hierarchy, so in principle analyzing these programs
could give A2(n, d) exactly. Analyzing SDP methods to improve R2(δ) seems challenging and we
do not even know how to analyze the simplest of them [Sch05], which is weaker than degree-4
Sum-of-Squares (see related work below for more details on SDP methods).

On the one hand, we have reasonably simple linear programs of Delsarte already requiring a
non-trivial theoretical analysis for proving upper bounds on R2(δ). On the other hand we have
more sophisticated SDP methods which are provably stronger than the Delsarte LP, but for which
no theoretical analyses are known.
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1.1 Our Contribution

In this work, we refine the Delsarte linear programming method used in the first LP bound
for A2(n, d) by designing a hierarchy of linear programs. For a parameter ℓ ∈ N+, the hierarchy is
based on specific higher-order versions of Krawtchouk polynomials and MacWilliams inequalities
that take advantage of ℓ-point interactions of words. We denote by KrawtchoukLP(n, d, ℓ) the
linear programming relaxation for A2(n, d) at level ℓ of our hierarchy.

We define ALin
2 (n, d) analogously to A2(n, d) as the maximum size of a linear binary code of

blocklength n and minimum distance d. For linear codes, we impose additional “semantic” con-
straints on the programs in the hierarchy taking advantage of the linear structure of the code.
We denote by KrawtchoukLPLin(n, d, ℓ) the linear program relaxation for ALin

2 (n, d) with these
additional constraints. Both KrawtchoukLPLin(n, d, 1) and KrawtchoukLP(n, d, 1) coincide with
DelsarteLP(n, d) at the first level of our hierarchy.

There is a known gap between the value of Delsarte’s linear programs and the GV bound.
In particular when δ = 1/2 − ε, Delsarte’s linear programs do not yield an upper bound tighter
than R2(1/2 − ε) ≤ Θ(ε2 log(1/ε)), as shown by Navon and Samorodnitsky [NS05], whereas the
GV bound establishes a lower bound of R2(1/2 − ε) ≥ Ω(ε2). There are no known improvements
to these bounds even for the important class of linear codes. If the GV bound is indeed tight, then
analyzing DelsarteLP is not sufficient to prove it. The goal of our hierarchy is to give tighter and
tighter upper bounds on A2(n, d) as the level of the hierarchy increases.

We show that for linear codes the hierarchy KrawtchoukLPLin(n, d, ℓ) is complete, meaning that
the value of the hierarchy converges to ALin

2 (n, d) as ℓ grows larger. We prove that level roughly
ℓ = O(n2) is enough to retrieve the correct value of ALin

2 (n, d). More generally, for linear codes
over Fq, we have the following completeness theorem for ALin

q (n, d).

Theorem 1.1 (Completeness - Informal version of Theorem 6.1). For ℓ ≥ Ωε,q(n2), we have

ALin
q (n, d) 6 val(KrawtchoukLP

Fq

Lin(n, d, ℓ))1/ℓ 6 (1 + ε) · ALin
q (n, d).

We think that the KrawtchoukLPLin(n, d, ℓ) hierarchy is an extremely interesting object for the
following reasons.

i. It is takes advantage of higher-order interactions of codewords by naturally computing
Hamming weight statistics of subspaces spanned by ℓ codewords (see Definition 3.1).

ii. It is a generalization of the Delsarte LP used in the first MRRW bound and the two share
strong structural similarities (see Section 3).

iii. It is a hierarchy of linear programs rather than semi-definite programs (see Definition 3.11
and Section 4.2).

iv. It is a complete hierarchy (see Theorem 6.1).

v. It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the ques-
tion of how to cut Delsarte’s LP polytopes [NS05] to approximate the true size of linear codes.
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We hope this hierarchy will fill an important gap in the coding theory literature between Del-
sarte’s LP, for which theoretical analyses are known, and more powerful SDP methods, for which
we seem to have no clue how to perform asymptotic analysis.

Not unexpectedly, the hierarchy KrawtchoukLP(n, d, ℓ) corresponding to general (not neces-
sarily linear) codes does not improve on Delsarte’s linear program. Without the extra structure of
linearity, the number of constraints we can add to our LP hierarchy is limited. We prove that so-
lutions of DelsarteLP(n, d) (easily) lift to solutions of KrawtchoukLP(n, d, ℓ) with the same value
as follows.

Proposition 1.2 (Hierarchy Collapse - Informal version of Proposition 6.5). For ℓ ∈ N, we have

val(KrawtchoukLP(n, d, ℓ))1/ℓ = DelsarteLP(n, d).

This contrast between the hierarchies KrawtchoukLPLin(n, d, ℓ) and KrawtchoukLP(n, d, ℓ)
reinvigorates the question of whether the maximum sizes of general and linear codes are sub-
stantially different or not.

Though we give special attention to the binary case since it may be the most important one,
we prove completeness and lifting results more generally in the language of association schemes.
For example, a suitable modification of the linear programming hierarchy also converges to the
maximum size of a D-code in the Hamming scheme over any finite field (see Remark 6.2); this in
particular covers other types of codes that may be of interest such as ε-balanced codes.

More on Related Work

Although quantitatively the McEliece et al. [MRRW77] upper bound on R2(δ) has not im-
proved, our qualitative understanding of this upper bound is now substantially better. Friedman
and Tillich [FT05] designed generalized Alon–Boppana theorems in order to bound the size of
linear binary codes. Inspired by [FT05], Navon and Samorodnitsky [NS05, NS09] rederived the
McEliece et al. bound on R2(δ) for general codes using a more intuitive proof based on Fourier
analysis. Despite a seemingly different language, the proof in [NS05] also yields feasible solutions
to the dual of Delsarte’s LP as in MRRW. More recently, Samorodnitsky [Sam21] gave yet a new
interpretation of the McEliece et al. upper bound and conjectured interesting hypercontractivity
inequalities towards improving the upper bound on R2(δ).

Schrijver [Sch79] showed that the seemingly artificial Delsarte LP has the same value1 as the
Lovász ϑ′ relaxation for α(Hn,d), which is also essentially the degree-2 Sum-of-Squares/Lasserre
relaxation of α(Hn,d) (with additional non-negativity constraints on the entries of the matrix).
Schrijver showed that this holds generally for commutative association schemes, a connection
that allows us to also express KrawtchoukLP as ϑ′ of a certain graph.

A line of work (similar in motivation to the current work) is to strengthen a convex relaxation
of A2(n, d). In Delsarte’s approach, only the distance between pairs of points is taken into account
in the optimization. For this reason, Delsarte’s approach is classified as a 2-point bound [Val19].
Nonetheless, there is no reason to restrict oneself to just 2-point interactions. Schrijver [Sch05]
constructed a family of semi-definite programs (SDPs) for A2(n, d) designed to take into account

1In fact, by a symmetrization of the ϑ′ SDP on Hn,d using its graph automorphisms, one obtains DelsarteLP(n, d)
exactly, see Section 4.
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the 3-point interactions. Extending Schrijver’s result to a 4-point interaction bound, Gijswijt, Mit-
telmann and Schrijver [GMS12] gave another tighter family of SDPs for A2(n, d) (they also give a
description of their hierarchy for arbitrary ℓ). A complete SDP hierarchy for α(Hn,d) is the Sum-
of-Squares/Lasserre hierarchy, which was proposed for code upper bounds by Laurent [Lau07],
building on de Klerk et al. [dKPS07].

Since the Sum-of-Squares hierarchy is guaranteed to find the correct value of α(Hn,d) when the
level is sufficiently high (precisely, level 2α(Hn,d)), in principle it would be enough to analyze this
SDP to compute A2(n, d). Unfortunately, studying the performance of SDPs on a fixed instance
is a notoriously difficult task. In particular, the global positive semi-definiteness constraint is
nontrivial. Unfortunately, no theoretical analysis is known for “genuine” SDP methods even for
the simplest of them, the 3-point bound of Schrijver [Sch05] mentioned above.

In summary, the state of affairs on upper bounding A2(n, d) or ALin
2 (n, d) is as follows. On one

hand, we have a thorough theoretical understanding of techniques based on Delsarte’s LP, but if
the true value of A2(n, d) or ALin

2 (n, d) is closer to the GV bound, then these techniques fall short
of providing tight bounds. On the other hand, we have ℓ-point bounds from SDP techniques
capable of yielding the correct value of A2(n, d), but (apparently) no clue how to theoretically
analyze them to bound R2(δ) for general codes or linear codes. We hope that our hierarchy will
open a new angle of attack on this elusive problem for the important class of linear binary codes.

1.2 Outline of the Paper

Section 2 contains some notation and basic facts.

Section 3 shows the construction of the LP hierarchy for the binary code case. In this section,
we introduce the notion of an ℓ-configuration, which roughly capture the Hamming weights of all
words in the subspace spanned by the ℓ points. In analogy with the usual the Delsarte LP, we
then analyze statistics of codes called ℓ-configuration profiles, which capture the number of ℓ-tuples
in each possible ℓ-configuration. In the rest of the section we construct higher-order Krawtchouk
polynomials, show MacWilliams identities, define the LP hierarchy and prove that its restrictions

can be computed in O(n2ℓ+1−2) time (for ℓ ∈ N+ fixed).

Section 4 shows how the LP hierarchy admits several other interpretations. The LP hierarchy
is a symmetrization of an exponential-size hierarchy, which has a natural interpretation either as
checking non-negativity of Fourier coefficients of the code, or as ϑ′(G) for a large graph G.

In Section 5, we study our construction in more generality through the theory of association
schemes. Our construction can be seen as adding extra constraints to the ℓ-fold tensor product of
the Delsarte LP. More specifically, the underlying association scheme is a refinement of the ℓ-fold
tensor product scheme in which “semantic” constraints can be added due to linearity of the code in
the original translation scheme. We study this type of refinement, giving conditions under which
it is still a bona fide translation scheme. The other sections may be read mostly independently of
this section.

In Section 6, we show the main results: that the LP hierarchy is complete for linear codes, and
no better than the Delsarte LP in the general (not necessarily linear) case.

We conclude in Section 7 with some open problems.
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2 Preliminaries

A binary code C of block length n is a subset of Fn
2 . For a word x ∈ Fn

2 , we denote by |x| :=
|{i ∈ [n] | xi 6= 0}| its Hamming weight. Given two words x, y ∈ Fn

2 , we denote by ∆(x, y) := |x− y|
their Hamming distance. The (minimum) distance of C is defined by ∆(C) := min{∆(x, y) | x, y ∈
C ∧ x 6= y}. The rate of C is defined by r(C) := log2(|C|)/n. The maximum size of a code of
blocklength n and minimum distance at least d is defined as

A2(n, d) := max{|C| | C ⊆ F
n
2 , ∆(C) ≥ d}.

We denote the asymptotic rate of codes of relative distance at least δ and alphabet size q as

R2(δ) := lim sup
n→∞

1

n
log2 (A2(n, ⌊δn⌋)) .

We define ALin
2 (n, d) and RLin

2 (δ) for linear codes in an analogous way, by further requiring the
code C to be linear (i.e., an F2-linear subspace of Fn

2 ).

Note that a code of distance at least d can alternatively be viewed as an independent set in the
Hamming cube graph of distance less than d, Hn,d, whose vertex set is V(Hn,d) := Fn

2 and whose edge

set is E(Hn,d) := {{x, y} ∈ (Fn
2

2 ) | ∆(x, y) 6 d − 1}.

Let f , g : Fn
2 → R. We denote by 〈 f , g〉 := Ex∈RFn

2
[ f (x)g(x)] the inner product of f and g under

the uniform measure and we denote by f ∗ g their convolution given by ( f ∗ g)(x) := Ey∈RFn
2
[ f (y) ·

g(x − y)] (x ∈ Fn
2 ). The Fourier transform f̂ of f is given by f̂ (x) := 〈 f , χx〉 = Ey∈RFn

2
[ f (y) · χx(y)],

where χx(y) := (−1)〈x,y〉. The (simple) Plancherel identity will be used in our computations.

Fact 2.1 (Plancherel). Let f , g : Fn
2 → R. Then 〈 f , g〉 = ∑x∈Fn

2
f̂ (x) · ĝ(x).

Given a linear code C ⊆ Fn
2 , the dual code of C is defined as C⊥ := {x ∈ Fn

2 | ∀y ∈ C, χx(y) =
1}. The Fourier transform of the indicator of a linear code maps it to a multiple of the indicator of
its dual code in the following way.

Fact 2.2. If C ⊆ Fn
2 is a linear code and 1C is its indicator function, then 1̂C = |C| · 1C⊥/2n =

1C⊥/|C⊥|.

3 Krawtchouk Hierarchies for Binary Codes

In this section, we describe the LP hierarchy for the standard case of binary codes. We opt
for an ad hoc derivation from boolean Fourier analysis to show how the higher-order Krawtchouk
polynomials nicely parallel the usual Krawtchouk polynomials. Any omitted proofs in this section
can be found in Appendix A. In Section 5, we will generalize the construction using the language
of association schemes.

3.1 Higher-order Krawtchouk polynomials

As we alluded to previously, we want to incorporate ℓ-point interactions in our optimization
problem for A2(n, d) similar in spirit to the Sum-of-Squares semi-definite programming hierarchy

6



for the independence number of a graph but in the simpler setting of linear programming. To
accomplish this goal, we measure the profile of “configurations” of ℓ-tuples of codewords from
the code.

We start with the definition of symmetric difference configurations. In plain English, the sym-
metric difference configuration of an ℓ-tuple (z1, . . . , zℓ) ∈ (Fn

2)
ℓ of words captures all information

of (z1, . . . , zℓ) corresponding to Hamming weights of linear combinations of the words.

Definition 3.1. The symmetric difference configuration of the ℓ-tuple (z1, . . . , zℓ) ∈ (Fn
2)

ℓ is the func-
tion Config∆

n,ℓ(z1, . . . , zℓ) : 2[ℓ] → R defined by

Config∆
n,ℓ(z1, . . . , zℓ)(J) :=

∣∣∣∣∣∑
j∈J

zj

∣∣∣∣∣ ,

for every J ⊆ [ℓ], that is, the value of the function at J ⊆ [ℓ] is the Hamming weight of the linear
combination ∑j∈J zj.

By viewing Config∆
n,ℓ as a function (Fn

2 )
ℓ → R2[ℓ] (i.e., a function from the space of ℓ-tuples of

words to the space of functions 2[ℓ] → R), the set of (valid) symmetric difference configurations of
ℓ-tuples of elements of Fn

2 is captured by its image im(Config∆
n,ℓ).

Given a symmetric difference configuration g ∈ im(Config∆
n,ℓ), we will also abuse notation and

write (z1, . . . , zℓ) ∈ g to mean that (z1, . . . , zℓ) ∈ (Fn
2)

ℓ has configuration Config∆
n,ℓ(z1, . . . , zℓ) = g.

In other words, this abuse of notation consists of thinking of a configuration as the set of all ℓ-
tuples of words that have this configuration (see also Lemma 3.4 below). We also let |g| be the size
of this set, i.e., the number of ℓ-tuples whose configuration is g.

The trivial symmetric difference configuration is the constant 0 function (denoted by 0), which is
the symmetric configuration of the tuple (0, . . . , 0) ∈ (Fn

2 )
ℓ.

Remark 3.2. A configuration measures the Hamming weights of vectors in the subspace of Fn
2

spanned by z1, . . . , zℓ. However, Definition 3.1 depends on the choice of basis for the subspace.
With more technical difficulty one can define configurations in a basis-independent way; see the
discussion at the end of Section 4.1.

Even though the space (Fn
2 )

ℓ has exponential size in n (for a fixed ℓ), the next lemma says that
the number of configurations is polynomial in n (for a fixed ℓ).

Lemma 3.3. We have
∣∣∣im(Config∆

n,ℓ)
∣∣∣ =

(
n + 2ℓ − 1

2ℓ − 1

)
.

The next lemma provides an alternative way of viewing configurations: for each symmetric
difference configuration g ∈ im(Config∆

n,ℓ), the set of ℓ-tuples with a certain configuration g is
precisely one of the orbits of the natural (diagonal) right action of the symmetric group Sn on n
points on (Fn

2)
ℓ.

Lemma 3.4. Let n, ℓ ∈ N+ and consider the natural (diagonal) right action of Sn on (Fn
2)

ℓ given
by (x1, . . . , xℓ) · σ := (y1, . . . , yℓ), where (yj)i := (xj)σ(i) ((x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn

2)
ℓ, σ ∈ Sn,

j ∈ [ℓ], i ∈ [n]).

The following are equivalent for (x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn
2)

ℓ.
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i. (x1, . . . , xℓ) and (y1, . . . , yℓ) are in the same Sn-orbit.

ii. Config∆
n,ℓ(x1, . . . , xℓ) = Config∆

n,ℓ(y1, . . . , yℓ).

Similarly to the weight profile of a code, we can define a higher-order configuration profile.

Definition 3.5. The ℓ-configuration profile of a code C ⊆ Fn
2 is the sequence (aC

g )g∈im(Config∆
n,ℓ)

defined

by

aC
g :=

1

|C|ℓ

∣∣∣
{(

(x1, . . . , xℓ), (y1, . . . , yℓ)
)
∈ Cℓ × Cℓ

∣∣∣ Config∆
n,ℓ(x1 − y1, . . . , xℓ − yℓ) = g

}∣∣∣.

Remark 3.6. Note that if C is linear, aC
g can alternatively be computed as

aC
g = |{(z1, . . . , zℓ) ∈ Cℓ | Config∆

n,ℓ(z1, . . . , zℓ) = g}|.

Recall that the (usual) Krawtchouk polynomial Ki of degree i is defined by

Ki(t) := 2n
E

x∈Fn
2

[1Wi
(x) · χy(x)]

= ∑
x∈Wi

χy(x),

where Wi ⊆ Fn
2 is the set of all words of Hamming weight i, 1Wi

: Fn
2 → {0, 1} is its indicator

function and y ∈ Wt is any element with of Hamming weight t.

Definition 3.7 (Higher-order Krawtchouk). Let h ∈ im(Config∆
n,ℓ) be a symmetric difference config-

uration. The higher-order Krawtchouk polynomial indexed by h is the function Kh : im(Config∆
n,ℓ) →

R defined by

Kh(g) := 2ℓn
E

(y1,...,yℓ)∈(F
n
2 )

ℓ

[
1h(y1, . . . , yℓ) ·

ℓ

∏
j=1

χxj
(yj)

]

= ∑
(y1,...,yℓ)∈h

ℓ

∏
j=1

χxj
(yj),

(1)

for every symmetric difference configuration g ∈ im(Config∆
n,ℓ), where (x1, . . . , xℓ) ∈ g is any ℓ-

tuple of words with symmetric difference configuration g and 1h is the indicator function of the set
of ℓ-tuples whose symmetric difference configuration is h (Lemma 3.19 shows this is well-defined).

Remark 3.8. Another way to see Kh above is as the unique function (see Lemma 3.19 below) such
that

1̂h =
Kh ◦ Config

∆
n,ℓ

2nℓ
.

Note that when ℓ = 1, a symmetric difference configuration Config∆
n,1(x) of a word x ∈ Fn

2 only

tracks the Hamming weight Config∆
n,1(x)({1}) = |x| of x (as Config∆

n,1(x)(∅) is always equal to 0)
thus we recover the univariate Krawtchouk polynomials.

For explicit computations of the higher-order Krawtchouk polynomials, the formula (1) is
quite inconvenient as it involves a sum of 2nℓ terms. We will provide an alternative formula in
Section 3.4.
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3.2 Higher-order MacWilliams Identities and Inequalities

In this section, we show a higher-order analogue of MacWilliams identities and inequalities
using only basic Fourier analysis. Later we are going to define a suitable family of association
schemes from which MacWilliams identities and inequalities follow from the general theory of
association schemes of Delsarte [Del73, DL98].

The MacWilliams identities show a surprising combinatorial fact: the weight profile of the
dual C⊥ of a linear code C ⊆ Fn

2 is completely determined by the weight profile of C. The higher-
order MacWilliams identities generalize this fact to ℓ-configuration profiles.

Lemma 3.9 (Higher-order MacWilliams identities). Let C ∈ Fn
2 be a linear code and let h ∈

im(Config∆
n,ℓ) be a symmetric difference configuration. Then

aC⊥

h =
1

|C|ℓ ∑
g∈im(Config∆

n,ℓ)

Kh(g) · aC
g .

Proof. By Remark 3.6, we have

aC⊥

h = 2nℓ
〈
1h,1(C⊥)ℓ

〉
= 2nℓ ∑

x∈(Fn
2 )

ℓ

1̂h(x)1̂(C⊥)ℓ(x)

=
1

|C|ℓ ∑
x∈(Fn

2 )
ℓ

Kh(Config
∆
n,ℓ(x)) · 1Cℓ(x) =

1

|C|ℓ ∑
g∈im(Config∆

n,ℓ)

Kh(g) · aC
g ,

where the second equality follows from Fact 2.1 and the third equality follows from Remark 3.8
and Fact 2.2. �

Just as the usual MacWilliams inequalities hold for arbitrary codes, we can prove that the same
transformation at least yields non-negative numbers.

Lemma 3.10 (Higher-order MacWilliams inequalities). Let C ∈ Fn
2 be an arbitrary code. For h ∈

im(Config∆
n,ℓ), we have

∑
g∈im(Config∆

n,ℓ)

Kh(g) · aC
g > 0.

Proof. Note that Remark 3.8 implies that the Fourier transform of Kh ◦ Config
∆
n,ℓ is 1h, so we have

∑
g∈im(Config∆

n,ℓ)

Kh(g) · aC
g = ∑

x,y∈(Fn
2 )

ℓ

Kh(Config
∆
n,ℓ(x − y)) · 1Cℓ(x)1Cℓ(y)

= 22nℓ
〈

Kh ◦ Config
∆
n,ℓ,1Cℓ ∗ 1Cℓ

〉

= 22nℓ ∑
x∈(Fn

2 )
ℓ

1h(x)1̂Cℓ

2
> 0,

where the third equality follows from Fact 2.1. �
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3.3 Higher-order Delsarte’s Linear Programs

Now we have all the elements to define a hierarchy of linear programs for A2(n, d) parame-
terized by the size of the interactions ℓ ∈ N+ in analogy to DelsarteLP(n, d).

Definition 3.11. For n, ℓ ∈ N+ and d ∈ {0, 1, . . . , n}, we let KrawtchoukLP(n, d, ℓ) be the following
linear program.

max ∑
g∈im(Config∆

n,ℓ)

ag

s.t. a0 = 1 (Normalization)

ag = 0 ∀g ∈ ForbConfig(n, d, ℓ) (Distance constraints)

∑
g∈im(Config∆

n,ℓ)

Kh(g) · ag > 0 ∀h ∈ im(Config∆
n,ℓ) (MacWilliams inequalities)

ag > 0 ∀g ∈ im(Config∆
n,ℓ) (Non-negativity),

where the variables are (ag)g∈im(Config∆
n,ℓ)

and

ForbConfig(n, d, ℓ) := {g ∈ im(Config∆
n,ℓ) | ∃j ∈ [ℓ], g({j}) ∈ {1, . . . , d − 1}}.

We also define KrawtchoukLPLin(n, d, ℓ) as the linear program obtained by replacing the set
ForbConfig(n, d, ℓ) with

ForbConfigLin(n, d, ℓ) := {g ∈ im(Config∆
n,ℓ) | ∃J ⊆ [ℓ], g(J) ∈ {1, . . . , d − 1}}.

Proposition 3.12. The linear programs KrawtchoukLP(n, d, ℓ) and KrawtchoukLPLin(n, d, ℓ) are
sound, that is, we have

val(KrawtchoukLP(n, d, ℓ))1/ℓ > A2(n, d),

val(KrawtchoukLPLin(n, d, ℓ))1/ℓ > ALin
2 (n, d).

Proof. Recall that for C ⊆ Fn
2 , we have

aC
g :=

1

|C|ℓ
|{(x1, . . . , xℓ), (y1, . . . , yℓ) ∈ Cℓ × Cℓ | Config∆

n,ℓ(x1 − y1, . . . , xℓ − yℓ) = g}|.

If C is an arbitrary code of distance at least d, then Lemma 3.10 implies that the ℓ-configuration
profile aC satisfies the MacWilliams inequalities. On the other hand, if g ∈ ForbConfig(n, d, ℓ), that
is, we have g({j}) ∈ {1, . . . , d − 1} for some j ∈ [ℓ], then clearly no pair of ℓ-tuples of codewords
(x1, . . . , xℓ), (y1, . . . , yℓ) ∈ Cℓ can satisfy Config∆

n,ℓ(x1 − y1, . . . , xℓ − yℓ) = g as it would imply |xj −
yj| = g({j}) ∈ {1, . . . , d − 1}, thus the distance constraints are also satisfied.

All other restrictions follow trivially from the definition of aC, thus aC is a feasible solution of
KrawtchoukLP(n, d, ℓ). Since the objective value of aC is ∑g∈im(Config∆

n,ℓ)
aC

g = |C|ℓ, it follows that

val(KrawtchoukLP(n, d, ℓ))1/ℓ > A2(n, d).

If we further assume that C is linear and g ∈ ForbConfigLin(n, d, ℓ) is such that g(J) ∈ [d − 1]
for some J ⊆ [ℓ], then no tuple (z1, . . . , zℓ) ∈ Cℓ can satisfy Config∆

n,ℓ(z1, . . . , zℓ) = g as it would

imply |∑j∈J zj| = g(J) ∈ {1, . . . , d − 1}. By Remark 3.6, we get aC
g = 0, so aC is also a feasible

solution of KrawtchoukLPLin(n, d, ℓ) and thus val(KrawtchoukLPLin(n, d, ℓ))1/ℓ > ALin
2 (n, d). �
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3.4 Properties of higher-order Krawtchouk polynomials

In this section, we explore more properties of the higher-order Krawtchouk polynomials in
order to show that the objective and restrictions of the linear programs KrawtchoukLP(n, d, ℓ) and

KrawtchoukLPLin(n, d, ℓ) can be algorithmically computed in O(n2ℓ+1−2) time for a fixed ℓ ∈ N+

(see Proposition 3.21).

Even though symmetric difference configurations are more natural from the point of view of
linear codes, for computations and properties with the higher-order Krawtchouk polynomials, it
is more convenient to work with Venn diagram configurations defined below. In plain English,
each word z ∈ Fn

2 induces a partition of [n] into its support supp(z) := {i ∈ [n] | zi 6= 0} and
its complement [n] \ supp(z); the Venn diagram configuration of a tuple (z1, . . . , zℓ) ∈ (Fn

2)
ℓ then

encodes the information about the sizes of each of the cells of the Venn diagram of the coarsest
common refinement of the partitions induced by the zi.

Definition 3.13. The Venn diagram configuration of the ℓ-tuple (z1, . . . , zℓ) ∈ (Fn
2)

ℓ is the function
ConfigV

n,ℓ(z1, . . . , zℓ) : 2[ℓ] → R defined by

ConfigV
n,ℓ(z1, . . . , zℓ)(J) :=

∣∣∣∣∣∣
⋂

j∈J

supp(zi) ∩
⋂

j∈[ℓ]\J

([n] \ supp(zj))

∣∣∣∣∣∣

=
∣∣∣
{

i ∈ [n]
∣∣∣ {j ∈ [ℓ] | (zj)i = 1} = J

}∣∣∣,

for every J ⊆ [ℓ].

By viewing ConfigV
n,ℓ as a function (Fn

2)
ℓ → R2[ℓ] , the set of (valid) Venn diagram configurations

of ℓ-tuples of elements of Fn
2 is im(ConfigV

n,ℓ).

The next lemma gives an easy description of the set of Venn diagram configurations of ℓ-tuples
of elements of Fn

2 as the set of all functions 2[ℓ] → R whose values are non-negative integers that
add up to n. Combining it with Lemma 3.15 below gives an explicit description of the set of
symmetric difference configurations.

Lemma 3.14. For every n, ℓ ∈ N+, we have

im(ConfigV
n,ℓ) =

{
g : 2[ℓ] → R

∣∣∣∣∣ ∑
J⊆[ℓ]

g(J) = n ∧ ∀J ⊆ [ℓ], g(J) ∈ N

}
. (2)

The next lemma provides a pair of linear transformations that transform a symmetric differ-
ence configuration into a Venn diagram configuration and vice-versa.

Lemma 3.15. Let n, ℓ ∈ N+, let

Sn,ℓ
def
=

{
g ∈ R

2[ℓ]

∣∣∣∣∣ ∑
J⊆[ℓ]

g(J) = n

}
, Zn,ℓ

def
= {g ∈ R

2[ℓ] | g(∅) = 0}

11



and let Vn,ℓ : Zn,ℓ → Sn,ℓ and Dn,ℓ : Sn,ℓ → Zn,ℓ be given by

Dn,ℓ(g)(J)
def
= ∑

T⊆[ℓ]
|T∩J| odd

g(T), (3)

Vn,ℓ(g)(J)
def
= n · 1[J = ∅] + 21−ℓ ∑

T⊆[ℓ]

(−1)|T∩J|−1g(T), (4)

for every J ⊆ [ℓ].

Then Vn,ℓ and Dn,ℓ are inverses of each other and Config∆
n,ℓ = Dn,ℓ ◦ Config

V
n,ℓ and ConfigV

n,ℓ =

Vn,ℓ ◦ Config
∆
n,ℓ.

Making use of Venn diagram configurations, we can also easily compute the number of ℓ-
tuples with a given configuration as a multinomial.

Lemma 3.16. For a symmetric difference configuration g ∈ im(Config∆
n,ℓ), we have

|g| = Kg(0) =

(
n

Vn,ℓ(g)

)
=

n!

∏J⊆[ℓ] Vn,ℓ(g)(J)!
,

where Vn,ℓ is given by (4).

The following lemma says that, similarly to the univariate case, the higher-order Krawtchouk
polynomials are orthogonal with respect to the natural discrete measure on symmetric configura-
tions in which each g ∈ im(Config∆

n,ℓ) has measure |g| = ( n
Vn,ℓ(g)) (see Lemma 3.16), i.e., the number

of ℓ-tuples with configuration g.

Lemma 3.17. [Orthogonality] For n, ℓ ∈ N+ and h, h′ ∈ im(Config∆
n,ℓ), we have

∑
g∈im(Config∆

n,ℓ)

|g| · Kh(g) · Kh′(g) = 2ℓn · |h| · 1[h = h′].

Also similarly to the univariate case, the higher-order Krawtchouk polynomials satisfy the
following reflection property.

Lemma 3.18. [Reflection] For n, ℓ ∈ N+ and g, h ∈ im(Config∆
n,ℓ), we have

Kh(g)

|h|
=

Kg(h)

|g|
.

The next lemma provides an alternative formula for the higher-order Krawtchouk polynomial

in which the sum involves only O(n22ℓ
) terms (as opposed to the 2ℓn terms in (1)).

Lemma 3.19. For every n, ℓ ∈ N+ and every g, h ∈ im(Config∆
n,ℓ), we have

Kh(g) = ∑
F∈F

∏
J⊆[ℓ]

Vn,ℓ(g)(J)!

∏K⊆[ℓ] F(J, K)!
·

ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K),
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where F is the set of functions F : 2[ℓ] × 2[ℓ] → {0, 1, . . . , n} such that

∀J ⊆ [ℓ], ∑
K⊆[ℓ]

F(J, K) = Vn,ℓ(g)(J),

∀K ⊆ [ℓ], ∑
J⊆[ℓ]

F(J, K) = Vn,ℓ(h)(K),

and Vn,ℓ is given by (4).

The next lemma allows the computation of the Krawtchouk polynomials even faster via dy-
namic programming.

Lemma 3.20. Let n, ℓ ∈ N+ with n > 2, let g, h ∈ im(Config∆
n,ℓ) be symmetric difference configura-

tions and let J0 ⊆ [ℓ] be such that Vn,ℓ(g)(J0) > 0 for Vn,ℓ given by (4). Then

Kh(g) = ∑
K0⊆[ℓ]

Vn,ℓ(h)(K0)>0

(−1)|J0∩K0| · Kh⊖K0
(g ⊖ J0), (5)

Kh(g) = − ∑
K0⊆[ℓ]

V(h)(K0)>0
K0 6=∅

Kh⊕∅⊖K0
(g) + ∑

K0⊆[ℓ]
V(h)(K0)>0

(−1)|J0∩K0| · Kh⊕∅⊖K0
(g ⊕∅⊖ J0), (6)

where

h ⊖ K0 := Dn−1,ℓ(Vn,ℓ(h)− 1{K0}), g ⊖ J0 := Dn−1,ℓ(Vn,ℓ(g)− 1{J0}),

h ⊕∅ := Dn+1,ℓ(Vn,ℓ(h) + 1{∅}), g ⊕∅ := Dn+1,ℓ(Vn,ℓ(g) + 1{∅}),

and Dn−1,ℓ and Dn+1,ℓ are given by (3).

Proposition 3.21. The objective and restrictions of the linear programs KrawtchoukLP(n, d, ℓ) and

KrawtchoukLPLin(n, d, ℓ) can be algorithmically computed in O(n2ℓ+1−2) time for a fixed ℓ ∈ N+.

Proof. The number of variables and restrictions of these linear programs is the number of config-

urations at level ℓ, which is O(n2ℓ−1) by Lemma 3.3. Furthermore, converting between symmetric
difference configurations and Venn diagram configurations using Lemma 3.15 can be done in time
O(2ℓ) = O(1) and using Lemma 3.19 and (6) in Lemma 3.20, we can compute all values of all

Krawtchouk polynomials of level ℓ in time O((n2ℓ−1)2) = O(n2ℓ+1−2). �

4 Unsymmetrized Formulations of the Krawtchouk Hierarchies

In this section we give other formulations for KrawtchoukLP. These formulations are unsym-
metrized versions of the same hierarchy. Working with the unsymmetrized hierarchy can be easier,
since it avoids the technical definitions of the Krawtchouk polynomials Kh(g), but computation-
ally the number of variables and constraints of these hierarchies is huge.
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4.1 The Hierarchy as Checking Non-negativity of Fourier Coefficients

The LP hierarchy for linear codes can be simply described as checking non-negativity of prod-
ucts of Fourier coefficients. Define the linear programming hierarchy FourierLPLin(n, d, ℓ) with
the variables ax (x ∈ (Fn

2)
ℓ):

max ∑
x∈(Fn

2 )
ℓ

ax

s.t. a0 = 1 (Normalization)

a(x1 ,...,xℓ) = 0 ∃w ∈ span(x1, . . . , xℓ), |w| ∈ {1, . . . , d − 1} (Distance constraints)

∑
x∈(Fn

2 )
ℓ

axχα(x) > 0 ∀α ∈ (Fn
2)

ℓ (Fourier coefficients)

ax > 0 ∀x ∈ (Fn
2 )

ℓ (Non-negativity).

Proposition 4.1. For every n, ℓ ∈ N+ and d ∈ {0, 1, . . . , n}, val(FourierLPLin(n, d, ℓ)) > ALin
2 (n, d)ℓ.

Proof. Given a linear code C with distance d, a feasible solution with value |C|ℓ is a(x1 ,...,xℓ)
:=

∏
ℓ
i=1 1[xi ∈ C]. The Fourier coefficient constraints are satisfied because

∑
x∈(Fn

2 )
ℓ

ℓ

∏
i=1

1[xi ∈ C]χαi
(xi) = 2nℓ

ℓ

∏
i=1

1̂C(αi),

which are nonnegative by Fact 2.2. �

The corresponding hierarchy for non-linear codes FourierLP(n, d, ℓ) is defined over the vari-
ables ax (x ∈ (Fn

2)
ℓ) as:

max ∑
x∈(Fn

2 )
ℓ

ax

s.t. a0 = 1 (Normalization)

a(x1 ,...,xℓ) = 0 ∃i ∈ [ℓ], |xi| ∈ {1, . . . , d − 1} (Distance constraints)

∑
x∈(Fn

2 )
ℓ

axχα(x) > 0 ∀α ∈ (Fn
2)

ℓ (Fourier coefficients)

ax > 0 ∀x ∈ (Fn
2)

ℓ (Non-negativity).

It turns out that KrawtchoukLP is a symmetrization of FourierLP (and likewise for the pro-
grams KrawtchoukLPLin and FourierLPLin). We will briefly describe the technique of symmetriz-
ing convex programs, which is also described in the survey article by Vallentin [Val19]. The proof
that KrawtchoukLP and FourierLP are equivalent continues at Proposition 4.5.

The technique exploits the fact that convex relaxations for the independence number α(Hn,d)
of the Hamming cube graph Hn,d of distance less than d are highly symmetric, that is, programs
that are invariant under large permutation groups as defined below.
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Definition 4.2 (Program invariance). Let P be a linear program with variables (ax)x∈X for some
set X. We say that P is invariant under a permutation σ of X if for all feasible solutions (ax), the
point a · σ defined by (a · σ)x := aσ(x) is also feasible, and the objective value is the same.

Similarly, a semi-definite program P with variable M ∈ RX×X is invariant under σ if for all
feasible M, the matrix M · σ defined by (M · σ)[x, y] := M[σ(x), σ(y)] is also feasible, and the
objective value is the same.

The group of permutations of X under which P is invariant is called the automorphism group
of P and is denoted Aut(P).

If the input of a program P is a graph G and the program only depends on the isomorphism
class of G, then the program is invariant under the automorphism group Aut(G) of the graph
G. For convex relaxations such as the Lovász ϑ-function or the Sum-of-Squares hierarchy, the
variables of the program are indexed by tuples of vertices from G, and thus a case of interest is
when Aut(G) acts diagonally on tuples of vertices.

By symmetrizing solutions, i.e., by averaging the values of the variables over the automor-
phism group Aut(P), we may assume that the solution has the same symmetry:

Fact 4.3. For any H ⊆ Aut(P), the value val(P) equals the value of P with the additional con-
straints ∀σ ∈ H, ∀x ∈ X, ax = aσ(x) (or ∀σ ∈ H, ∀x, y ∈ X, M[x, y] = M[σ(x), σ(y)] for an SDP).

A symmetrized solution is constant on each orbit of the group action on X or X2. Therefore,
the “effective” number of variables in the convex program is only the number of orbits, which
may be significantly smaller than even |V(G)|.

For example, the graph Hn,d has a large symmetry group:

Fact 4.4. For 1 < d < n, Aut(Hn,d) is the hyperoctahedral group, which is the semidirect product
Fn

2 ⋊ Sn in which Sn permutes the coordinates and Fn
2 applies a bit flip.

Even though the hypercube has size 2n and thus |V(Hn,ℓ)
ℓ| = 2nℓ, the number of orbits of

the diagonal action of Aut(Hn,d) on ℓ-tuples is only poly(n) for constant ℓ. For example, for
ℓ = 4, viewing the hypercube momentarily as {−1,+1}n , the orbit of (x1, x2, x3, x4) essentially
only depends on the angles between the vectors: it is determined by the seven numbers

〈x1, x2〉 , 〈x1, x3〉 , 〈x1, x4〉 , 〈x2, x3〉 , 〈x2, x4〉 , 〈x3, x4〉 ,
n

∑
i=1

x1,ix2,ix3,ix4,i. (7)

Equivalently, it is determined by Config∆
n,ℓ(x2 − x1, x3 − x1, x4 − x1) (see Lemma 3.4).

Since each of the numbers in (7) takes at most n + 1 values, the effective number of variables
in the degree-4 Sum-of-Squares relaxation for α(Hn,d) is at most O(n7). Thus, the search for an
upper bound on an exponential-size object is reduced to a polynomial-size convex program! Of
course, to actually run this in polynomial time, one also needs to show that this polynomial-size
convex program can be computed in polynomial time (which rules out explicitly computing the
original program then taking a quotient).

We use the symmetrization technique to show that KrawtchoukLP and FourierLP are equiva-
lent.
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Proposition 4.5. For every n, ℓ ∈ N+ and every d ∈ {0, 1 . . . , n}, we have

val(FourierLP(n, d, ℓ)) = val(KrawtchoukLP(n, d, ℓ)),

val(FourierLPLin(n, d, ℓ)) = val(KrawtchoukLPLin(n, d, ℓ)).

Proof. Recall that the natural right action of Sn on Fn
2 is given by (x · σ)i := xσ(i) (x ∈ Fn

2 , σ ∈ Sn,

i ∈ [n]) and consider the diagonal action of Sn on (Fn
2)

ℓ given by

(x1, . . . , xℓ) · σ := (x1 · σ, . . . , xℓ · σ) ((x1, . . . , xℓ) ∈ (Fn
2)

ℓ, σ ∈ Sn).

It is straightforward to check that FourierLP(n, d, ℓ) is invariant under this diagonal action.

By Fact 4.3 we may consider only solution to the LP that are symmetrized over Sn, that is, we
have ax = ay for each x, y ∈ (Fn

2)
ℓ in the same orbit of the Sn-action.

Recall from Lemma 3.4 that ℓ-tuples of words are in the same Sn-orbit if and only if they
have the same symmetric difference configuration. We claim that the correspondence between the
program KrawtchoukLP with variables (a′g)g∈im(Config∆

n,ℓ)
and FourierLP is

a′g = |g| · ax1 ,...,xℓ for any (x1, . . . , xℓ) ∈ g.

It is straightforward to check that the objective function, normalization, distance, and non-
negativity constraints for FourierLP(n, d, ℓ) (under the assumption of an Sn-invariant solution)
match exactly those of KrawtchoukLP(n, d, ℓ). For the MacWilliams inequalities, note that for
every h ∈ im(Config∆

n,ℓ) and every α ∈ h, we have

∑
g∈Config(n,ℓ)

a′gKh(g) > 0

⇔ ∑
g∈Config(n,ℓ)

a′g
|h|

|g|
Kg(c) > 0 (Reflection, Lemma 3.18)

⇔ ∑
g∈Config(n,ℓ)

a′g

|g|
Kg(h) > 0

⇔ ∑
x∈(Fn

2 )
ℓ

axχα(x) > 0 (Definition of Kg),

where the third equivalence follows since ag/|g| = ax for every x ∈ g.

The same proof goes through for FourierLPLin and KrawtchoukLPLin. �

Remark 4.6. The linear programs FourierLP and FourierLPLin are not invariant under the other
automorphisms of the hypercube of the form x 7→ x + z (z ∈ Fn

2 ), because of the normalization
constraint and the distance constraints. It makes more sense to view the underlying space as Fn

2

instead of the hypercube, which does not have the Fn
2 automorphism because the origin is treated

specially.

There is actually more symmetry in the programs than just Sn. In the case of the program for
non-linear codes, there is a symmetry under the right action of Sℓ on (Fn

2)
ℓ that permutes the words

x1, . . . , xℓ, that is, we have (x1, . . . , xℓ) · τ := (xτ(1), . . . , xτ(ℓ)) ((x1, . . . , xℓ) ∈ (Fn
2)

ℓ, τ ∈ Sℓ). In the
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case of the program for linear codes, we have symmetry under the action of GLℓ(F2) that applies
a basis change to (x1, . . . , xℓ), that is, it is given by

(A · x)i := ∑
j∈[ℓ]

A[i, j] · xj ∈ F
n
2

for every A ∈ GLℓ(F2), every x ∈ (Fn
2)

ℓ and every i ∈ [ℓ]. The distance constraints are evidently
invariant under this action as it does not change the linear subspace spanned by (x1, . . . , xℓ). The
Fourier constraints are invariant since

χα(A · x) = χA⊤·α(x)

for every x, α ∈ Fℓ
2.

Note that the actions of GLℓ(F) and Sn commute with each other and thus induce an action of
the direct product GLℓ(F) × Sn. Another reasonable definition of the higher-order Krawtchouk
polynomials and linear program symmetrizes under this larger group action of GLℓ(F) × Sn.
There is one Krawtchouk polynomial and one free variable for each orbit of this action.

Definition 4.7 (Fully symmetrized higher-order Krawtchouks). Let O := (Fn
2)

ℓ/(GLℓ(F2)× Sn) be
the set of orbits of the (GLℓ(F2)× Sn)-action as above. For each h ∈ O we define the higher-order
Krawtchouk polynomial Kh : O → R by

Kh(g) := ∑
(α1,...,αℓ)∈h

ℓ

∏
j=1

χαj
(xj),

where (x1, . . . , xℓ) is any element in the orbit g ∈ O.

Since the symmetry group is larger and the number of orbits is smaller, the size of the resulting
LP is smaller. However, since |GLℓ(F2)| = ∏

ℓ−1
t=0(2

ℓ − 2t) = Oℓ(1), for a constant ℓ, this would
only decrease the size of KrawtchoukLP by a constant factor. For practical computations, constant
factors make a difference and this symmetrization should likely be performed. We chose our
definition of Krawtchouks in Section 3 because the orbits are simpler to describe (being captured
by explicit combinatorial objects, configuration functions) and we can compute the set of orbits
and the Krawtchouk polynomials efficiently (see Proposition 3.21).

There is an equivalent interpretation of (GLℓ(F2)× Sn)-orbits as “subspace weight profiles”
as follows. The right action of Sn naturally induces an action over linear subspaces of Fn

2 given by

W · σ := {w · σ | w ∈ W} (W 6 F
n
2 , σ ∈ Sn).

It is straightforward to see that two ℓ-tuples (x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn
2 )

ℓ are in the same
(GLℓ(F2)× Sn)-orbit if and only if span{x1, . . . , xℓ} and span{y1, . . . , yℓ} are in the same Sn-orbit,
which in turn is equivalent to saying that both spaces have the same dimension, say k, and there
are ordered bases bx = (bx

1 , . . . , bx
k ) and by = (b

y
1 , . . . , b

y
k) of these spaces respectively such that

Config∆
n,k(b

x) = Config∆
n,k(b

y). Thus, the hierarchy corresponding to the (GLℓ(F2)× Sn)-action has
an interesting interpretation as measuring weight statistics of linear subspaces of the linear code
of dimension at most ℓ.
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4.2 The Hierarchy as an SDP

The LP hierarchy is also equivalent to an SDP relaxation with the harsh constraint that the
SDP matrix must be translation invariant.

Define the semi-definite program TranslationSDP(n, d, ℓ) as

max ∑
x∈(Fn

2 )
ℓ

M[0, x]

s.t. M[0, 0] = 1 (Normalization)

M[0, (x1, . . . , xℓ)] = 0 ∃i ∈ [ℓ], |xi| ∈ {1, . . . , d − 1} (Distance constraints)

M[x, y] = M[0, y − x] ∀x, y ∈ (Fn
2)

ℓ (Translation symmetry)

M < 0 (PSD-ness)

M[x, y] > 0 ∀x, y ∈ (Fn
2)

ℓ (Non-negativity),

where the variable is M ∈ R(Fn
2 )

ℓ×(Fn
2 )

ℓ

.

To form TranslationSDPLin(n, d, ℓ), replace the distance constraints by

M[0, (x1, . . . , xℓ)] = 0 ∃w ∈ span(x1, . . . , xℓ), |w| ∈ {1, . . . , d − 1}.

The crucial translation symmetry property of TranslationSDP ensures M lies in the commutative
matrix algebra span{Dz | z ∈ (Fn

2)
ℓ}, where

Dz[x, y] := 1[y − x = z].

The coefficient of M on Dz is M[0, z].

Since the matrices Dz commute, they are simultaneously diagonalizable. More specifically,
their common eigenvectors are the Fourier characters.

Fact 4.8. The matrices Dz are simultaneously diagonalized by (χα | α ∈ (Fn
2)

ℓ) with the eigenvalue
of Dz on χα being χα(z).

Therefore, the PSD-ness constraint in TranslationSDP is particularly simple: to check that
λzDz < 0, it is equivalent to check ∑z∈(Fn

2 )
ℓ λzχα(z) > 0 for all α ∈ (Fn

2)
ℓ. This is a linear con-

straint on the λz, and hence we can express the SDP as an LP, giving yet another formulation of
the hierarchy.

Proposition 4.9. For every n, ℓ ∈ N+ and every d ∈ {0, 1, . . . , n}, we have

val(FourierLP(n, d, ℓ)) = val(TranslationSDP(n, d, ℓ)),

val(FourierLPLin(n, d, ℓ)) = val(TranslationSDPLin(n, d, ℓ)).

Proof. The formal correspondence of the variables is M[0, x] = ax. The Fourier coefficient con-
straints in FourierLP are equivalent to PSD-ness as described above, and the other constraints also
match up. �

Along with Proposition 4.5, the above implies that TranslationSDP also has the same value as
KrawtchoukLP.
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Remark 4.10. In previous convex relaxations for A2(n, d), in order to implement the program effi-
ciently, a key technical step has been finding an explicit block diagonalization of the SDP matrix
(which reduces the program size). This step requires significant technical work [Sch05, GMS12,
Gij09]. An advantage of the LP hierarchy is that complete diagonalization is trivial.

4.3 The Hierarchy as ϑ′

The hierarchy can also be seen as computing the (modified) Lovász ϑ′ function on progres-
sively larger graphs, whose definition is recalled below. In fact, this formulation of the hierarchy
holds for any association scheme (see Theorem 5.22 below).

Definition 4.11 (ϑ′ Program). The (modified) Lovász ϑ′ function is defined as follows. For a graph
G, ϑ′(G) is the optimum value of the semi-definite program S(G) given by

max 〈J, M〉

s.t. tr M = 1 (Normalization)

M[u, v] = 0 ∀{u, v} ∈ E(G) (Independent set)

M < 0 (PSD-ness)

M[u, v] ≥ 0 ∀u, v ∈ V(G) (Non-negativity),

where the variable is M ∈ RV×V symmetric, J is the all ones matrix and 〈A, B〉 := tr(A⊤B).

By strong duality ϑ′(G) is also the optimum value of the dual semi-definite program S ′(G)
given by

min β

s.t. βI − N < 0 (PSD-ness)

N[u, v] > 1 ∀u, v ∈ V(G) with {u, v} /∈ E (Independent set),

where the variables are N ∈ RV×V symmetric and β ∈ R.

It is straightforward to see that ϑ′(G) is an upper bound for the independence number of the
graph G since if A ⊆ V(G) is an independent set, then 1A1

⊤
A/|A| is a feasible solution of S(G)

with value |A|.

In the same way that a code C ⊆ Fn
2 of distance at least d can be seen as an independent set in

the graph Hn,d, we can see Cℓ as an independent set in exclusion graphs defined below based on
the sets ForbConfig(n, d, ℓ) and ForbConfigLin(n, d, ℓ) of Definition 3.11.

Definition 4.12 (Exclusion Graph). We define the exclusion graph Hn,d,ℓ to have vertex set (Fn
2)

ℓ

and edge set

E(Hn,d,ℓ) :=

{
(x, y) ∈

(
(Fn

2)
ℓ

2

) ∣∣∣∣ Config∆
n,ℓ(x − y) ∈ ForbConfig(n, d, ℓ)

}
.

We define HLin
n,d,ℓ analogously replacing ForbConfig(n, d, ℓ) with ForbConfigLin(n, d, ℓ).

Lemma 4.13. For every n, ℓ ∈ N+ and every d ∈ {0, 1, . . . , n}, we have

val(TranslationSDP(n, d, ℓ)) = val(ϑ′(Hn,d,ℓ)),

val(TranslationSDPLin(n, d, ℓ)) = val(ϑ′(HLin
n,d,ℓ)).
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Proof. The program S(Hn,d,ℓ) corresponding to ϑ′(Hn,d,ℓ) is invariant under Aut(G), so it is invari-
ant in particular under the translation action of Fn

2 on itself.

Therefore, by Fact 4.3, we may consider only solutions of S(Hn,d,ℓ) that are translation in-
variant. Now there is a correspondence between solutions M for TranslationSDP and translation
invariant solutions M′ for S(Hn,d,ℓ) given by M = 2nℓ · M′. The proof goes through similarly for
the linear case. �

5 Generalized Krawtchouk Hierarchies from Association Schemes

In this section, we recall some of the basic definitions and results of association scheme theory
and show that our construction generalizes nicely to translation schemes with an underlying left
module structure over some ring, producing a translation scheme “refining” a tensor power of
the original scheme; once this is shown, MacWilliams identities and inequalities follow from the
theory of translation schemes. The general theory of association schemes will also be used to show
our completeness and lifting results of Section 6.1 and Section 6.2.

Further background on association scheme theory can be found in the survey article by Martin
and Tanaka [MT09].

5.1 Association Scheme Theory Review

Definition 5.1 (Association schemes). An association scheme is a pair (X, R) where X is a finite
set and R ⊆ 2X×X is a collection of non-empty subsets of X × X, called relations, satisfying the
following properties.

i. R is a partition of X × X into non-empty subsets.

ii. The diagonal relation DX := {(x, x) | x ∈ X} is an element of R.

iii. For every r ∈ R, the transposed relation r⊤ := {(y, x) | (x, y) ∈ r} is an element of R.

iv. For every r, s, t ∈ R, there exists an intersection number pt
rs ∈ N such that for every (x, y) ∈ t,

we have

pt
rs = |{z ∈ X | (x, z) ∈ r ∧ (z, y) ∈ s}|.

Furthermore, the association scheme S is called:

1. Commutative, if pt
rs = pt

sr for every r, s, t ∈ R.

2. Symmetric, if r⊤ = r for every r ∈ R.

Fact 5.2. A symmetric association scheme is also commutative.

As the next definition describes, association schemes can be viewed as certain matrix algebras.
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Definition 5.3 (Bose–Mesner algebra). Given an association scheme S = (X, R), for each r ∈ R, let
Dr ∈ CX×X be given by Dr[x, y] := 1[(x, y) ∈ r]. The Bose–Mesner algebra of S is the C-algebra AS

generated by {Dr | r ∈ R}.

The key observation underlying the above definition is that the intersection numbers pt
rs in the

definition of an association scheme guarantee that the linear span of {Dr | r ∈ R} is closed under
matrix multiplication and adjoints. Since

DrDs = ∑
t∈R

pt
rsDt,

it follows that (Dr)r∈R is also a C-vector space basis of AS. Furthermore, the above also implies
that S is commutative if and only if its Bose–Mesner algebra is commutative. Moreover, S is
symmetric if and only if every matrix in AS is symmetric.

Fact 5.4. The Bose–Mesner algebra AS of a commutative association scheme S has a unique (up
to permutation of its elements) C-vector space basis of idempotent orthogonal matrices (Es)s∈R′ ,
where |R′| = |R|. That is, we have Es1

Es2 = 1[s1 = s2]Es1
for every s1, s2 ∈ R′; namely, each Es is

the projection onto a maximal common eigenspace of the matrices {Dr | r ∈ R}.

Since both (Dr | r ∈ R) and (Es | s ∈ R′) are bases of AS, each of their elements can be written
as a linear combination of the elements of the other basis using the p and q-functions defined
below.

Definition 5.5 (p-functions and q-functions). The p-functions pr : R′ → C (r ∈ R) and q-functions
qs : R → C (s ∈ R′) of an association scheme S are the unique functions such that

Dr = ∑
s∈R′

pr(s)Es, Es = ∑
r∈R

qs(r)Dr.

An important subclass of association schemes is that of Schurian schemes defined below,
which arise by considering orbits of the diagonal action induced from a group action on the base
set. The Bose–Mesner algebra of Schurian schemes is then precisely the algebra of matrices that are
invariant under the natural conjugation action (see Fact 5.7 below). This makes Schurian schemes
particularly useful in the study of semi-definite programs as for one such program P (see Fact 4.3).

Definition 5.6 (Schurian scheme). Let G be a group acting transitively on a finite set X. The
Schurian scheme associated with this action is defined as S := (X, (X × X)/G), where (X × X)/G
is the set of orbits of the natural diagonal action of G on X × X given by σ · (x, y) := (σ(x), σ(y))
(x, y ∈ X, σ ∈ G).

Fact 5.7. Let G be a group acting transitively on a finite set X. The Schurian scheme is an associ-
ation scheme and its Bose–Mesner algebra is precisely the algebra of G-invariant matrices under
the natural conjugation action of G on CX×X given by A · σ = P−1

σ APσ (A ∈ CX×X, σ ∈ G), where
Pσ ∈ CX×X is the permutation matrix given by Pσ[x, y] := 1[x = σ(y)] (x, y ∈ X).

Definition 5.8 (Codes in an association scheme). A code in an association scheme S = (X, R) is a
non-empty subset C ⊆ X.

The inner distribution of the code C is the function aC : R → R given by aC
r := |C2 ∩ r|/|C|.

For a set D ⊆ R, we say that C is a D-code if aC
r = 0 for every r ∈ R \ D.
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Given an association scheme S = (X, R), by letting S′ := (X, R′), where R′ := {r ∪ r⊤ | r ∈ R},
it is straightforward to check that S′ is a symmetric association scheme and if C is a D-code in
S, then it is also a D′-code in S′, where D′ := {r ∪ r⊤ | r ∈ D}. For this reason, when working
with codes, we may suppose without loss of generality that the underlying association scheme is
symmetric.

Definition 5.9 (Delsarte linear program). Given a set D ⊆ R, the Delsarte linear program associ-
ated with (S, D) is the program LS(D) given by

max ∑
r∈R

ar

s.t. aDX
= 1 (Normalization)

ar = 0 ∀r ∈ R \ D (D-code constraints)

∑
r∈R

qs(r) · ar ∈ R+ ∀s ∈ R′ (MacWilliams inequalities)

ar ∈ R+ ∀r ∈ R (Non-negativity),

where the variables are (ar)r∈R.

It is clear that the inner distribution aC of a D-code is a feasible solution of LS(D), so the
optimum value of LS(D) is an upper bound on the size of D-codes (since ∑r∈R aC

r = |C|).

When the underlying scheme S is symmetric, one can use instead the real Bose–Mesner algebra
of S, which is the R-algebra generated by {Dr | r ∈ R}. All facts above remain true with C replaced
with R.

Definition 5.10 (Dual). Two association schemes S = (X, R) and Ŝ = (X, R̂) over the same set X
are said to be dual to each other if there exist bijections f : R → R̂′ and g : R′ → R̂ such that for
every r ∈ R and every s ∈ R′, we have

pr(s) = q f (r)(g(s)), qs(r) = pg(s)( f (r)).

In this case it is typical to identify R and R′ with R̂′ and R̂, respectively through these bijections.
An association scheme S = (X, R) is self-dual when it is its own dual.

Definition 5.11 (Translation schemes). A translation scheme is an association scheme S = (X, R)
in which X is further equipped with an Abelian group structure and each relation r ∈ R is an
X-invariant set, i.e., for every x, y, z ∈ X, we have (x, y) ∈ r ⇔ (z + x, z + y) ∈ r.

Equivalently, an association scheme S = (X, R) where X has Abelian group structure is a
translation scheme if and only if there exists a function fS : X → R such that (x, y) ∈ fS(x − y) for
every x, y ∈ X. This means that we can also alternatively view R as a partition of X rather than
X × X; the relations of the association scheme are defined by the “first row” of the matrix.

Fact 5.12. Every translation scheme is commutative.

Remark 5.13. It is easy to see that the function fS satisfies fS(−x) = fS(x)⊤ for every x ∈ X, hence
S is symmetric if and only if the function fS is even (i.e., fS(−x) = fS(x) for every x ∈ R).

Remark 5.14. For translation schemes, the p and q-functions can be computed via Fourier analysis
as follows. Let us fix an indexing of the characters χx : X → C of X by X so that χx(y) = χy(x).
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Define the functions ϕr : X → C (r ∈ R) by

ϕr(x) := ∑
y∈ f−1

S (r)

χy(x).

The level sets of each ϕr induce a partition of X, so we let R′ ⊆ 2X be the coarsest common
refinement of them and let f ′S : X → R′ be the unique function such that x ∈ f ′S(x) for every x ∈ X.
Define then the functions ψs : X → C (s ∈ R′) by

ψs(y) := ∑
x∈s

χx(y) = ∑
x∈( f ′S)

−1(s)

χx(y).

It is a standard fact of association scheme theory that for every x ∈ X, every r ∈ R and every
s ∈ R′, we have

ϕr(x) = pr( f ′S(x)), ψs(x) = qs( fS(x)).

It is also straightforward to see that f ′S induces a translation scheme structure Ŝ = (X, R̂) on X

where R̂ := {rs | s ∈ R′} for the relations rs := {(x, y) ∈ X × X | f ′S(x − y) = s} and S and Ŝ are

dual of each other, and as such we typically identify R′ with R̂ with s 7→ rs.

Definition 5.15 (Additive codes and annihilator codes). A code C in a translation scheme S is
called additive if it is a subgroup of X. Trivially, an additive code C is a D-code if and only if
fS(C) ⊆ D.

Given an additive code C in S, the annihilator code of C is

C◦ := {y ∈ X | χy(x) = 1}.

It is straightforward to see that C◦ is additive and (C◦)◦ = C (as long as C is additive). It
is more natural to see the annihilator code as a code in the dual scheme Ŝ, as the (generalized)
MacWilliams identities say that the inner distribution of C◦ in Ŝ can be retrieved from the inner
distribution of C in S as follows.

Theorem 5.16 (Generalized MacWilliams identities). For a translation scheme S = (X, R) with
dual scheme Ŝ = (X, R̂) and an additive code C in S, we have

aC◦

s =
1

|C| ∑
r∈R

qs(r)a
C
r ,

for all s ∈ R̂,

Definition 5.17 (Tensor product schemes). Given two schemes S1 = (X1, R1) and S2 = (X2, R2),
their tensor product is the association scheme S1 ⊗ S2 := (X1 × X2, R1 ⊗ R2), where R1 ⊗ R2 :=
{r1 ⊗ r2 | r1 ∈ R1 ∧ r2 ∈ R2} for the relations

r1 ⊗ r2 := {((x1, x2), (y1, y2)) ∈ (X1 × X2)× (X1 × X2) | (x1, y1) ∈ r1 ∧ (x2, y2) ∈ r2}.

For ℓ ∈ N+, the ℓth tensor power of the association scheme S is defined as

Sℓ := S ⊗ · · · ⊗ S︸ ︷︷ ︸
ℓ times

.
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It is straightforward to check that S1 ⊗ S2 is an association scheme that inherits the properties
of S1 and S2 in the sense that if both S1 and S2 are commutative (resp., symmetric, translation),
then S1 ⊗ S2 is so (in the case of translation scheme, the group structure in X1 × X2 is the direct
product group). Furthermore, if Ci is a Di-code in Si (i ∈ [2]), then C1 × C2 is a D1 ⊗ D2-code in
S1 ⊗ S2, where

D1 ⊗ D2 := {r1 ⊗ r2 | r1 ∈ D1 ∧ r2 ∈ D2}.

Definition 5.18 (Refinement of a scheme). A refinement of an association scheme S = (X, R) is an
association scheme S2 = (X, R2) over the same underlying set X such that each r ∈ R is a union
of elements of R2.

Trivially, a D-code in S is a D′-code in S′, where

D′ = {r′ ∈ R2 | ∃r ∈ D, r′ ⊆ r}.

Example 5.19 (Weak Hamming scheme). Given a non-trivial finite Abelian group G and n ∈ N+,
the (weak) Hamming scheme of order n over G is the translation scheme Hn(G) := (Gn, R), where
R := {ri | i ∈ {0, . . . , n}} for

ri := {(x, y) | ∆(x, y) = i},

where ∆(x, y) := |{j ∈ [n] | xj 6= yj}| is the Hamming distance between x and y. It is easy to
see that Hn(G) is a translation scheme over the direct product group Gn in which fHn(G)(x) =
r∆(x,0) for every x ∈ Gn. In fact, Hn(G) is self-dual and its p and q functions are the Krawtchouk
polynomials:

pri
(rj) = qri

(rj) =
j

∑
t=0

(−1)t(|G| − 1)i−t

(
j

t

)(
n − j

i − t

)
.

We use the notation Hn := Hn(F2), when the underlying group is the field with two elements.
Under this notation, a binary code of blocklength n and distance d is simply a Dd-code in Hn,
where Dd := {r0, rd, rd+1, . . . , rn}.

Alternatively, the weak Hamming scheme can be seen as a Schurian scheme as follows. Con-
sider the natural right action of the symmetric group Sn on n letters on Gn given by (x · σ)i := xσ(i)

(x ∈ Gn, σ ∈ Sn, i ∈ [n]) and the natural left action of the symmetric group SGn on Gn. These ac-
tions together induce an action of a semidirect product SGn ⋊ Sn on Gn whose associated Schurian
scheme is precisely Hn(G).

Example 5.20 (Strong Hamming scheme). Given a non-trivial finite Abelian group G and n ∈ N+,
the strong Hamming scheme of order n over G is the translation scheme H∗

n(G) := (Gn, R), where
R := {rh | h ∈ {0, 1, . . . , n}G} \ {∅}, for

rh := {(x, y) | ∀g ∈ G, |x − y|g = h(g)},

where

|z|g := |{i ∈ [n] | zi = g}|.
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It is easy to see that H∗
n(G) is a translation scheme that is a refinement of Hn(G) and for every

x ∈ Gn, we have fH∗
n(G)(x) = rhx

for hx(g) := |x|g. In fact, H∗
n(G) is self-dual and its p and q

functions are given by

prh1
(rh2

) = qrh1
(rh2

) = ∑
F∈F

(
∏

g1∈G

h1(g1)!

∏g2∈G F(g1, g2)!

)
∏

g1,g2∈G

χg1
(g2)

F(g1,g2),

where F is the set of all functions F : G × G → {0, . . . , n} such that

∑
g′∈G

F(g, g′) = h1(g), ∑
g′∈G

F(g′, g) = h2(g),

for every g ∈ G.

Alternatively, the strong Hamming scheme can be seen as a Schurian scheme as follows. Con-
sider the natural right action of the symmetric group Sn on n letters on Gn given by (x · σ)i := xσ(i)

(x ∈ Gn, σ ∈ Sn, i ∈ [n]) and the natural translation action of the product group Gn on itself.
These actions together induce an action of a semidirect product Gn ⋊ Sn on Gn whose associated
Schurian scheme is precisely H∗

n(G).

While for binary alphabets, the strong and weak Hamming scheme obviously coincide (i.e.,
H∗

n(F2) = Hn(F2)), for larger alphabets this is not the case.

We finish this section recalling the connection of the Delsarte linear program with the modified
Lovász ϑ′-function from graph theory (see Definition 4.11).

Definition 5.21. Given a commutative association scheme S = (X, R) and D ⊆ R with DX ∈ D,
the graph GS(D) is defined by

V(GS(D)) := X,

E(GS(D)) :=

{
{x, y} ∈

(
X

2

) ∣∣∣∣ ∃r ∈ R \ D, (x, y) ∈ r

}
.

Under this definition, a D-code on S is simply an independent set in the graph GS(D). The next
theorem by Schrijver connects the Delsarte linear program LS(D) to the semi-definite program
S(GS(D)).

Theorem 5.22 (Schrijver [Sch79]). Let S = (X, R) be a commutative association scheme and let
D ⊆ R with DX ∈ D. Then ϑ′(GS(D)) is equal to the optimum value of the Delsarte linear
program LS(D).

5.2 Natural Refinements of Translation Schemes

In this section, we show how our construction generalizes nicely to translation schemes with
an underlying left module structure over some ring. This can be applied to any translation scheme
by recalling that any Abelian group is naturally a Z-module, but sometimes it is more interesting
to use a different module structure (e.g., a vector space over a finite field).

Definition 5.23 (Association scheme automorphism). An automorphism of an association scheme
S = (X, R) is a bijection f : X → X that fixes each r ∈ R as a set, that is, we have {( f (x), f (y)) |
(x, y) ∈ r} = r. The group of automorphisms of S is denoted Aut(S).
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Definition 5.24. Let S = (X, R) be a translation scheme and let fS : X → R be the unique function
such that (x, y) ∈ fS(x − y) for every (x, y) ∈ X × X. Given a ring K, let us further assume
that X is equipped with a left K-module structure extending the Abelian group structure and let
AutK(S) 6 Aut(S) be the subgroup of automorphisms of the association scheme S that are also
left K-module automorphisms of X.

A code C in S is called K-linear if it is both additive and K-invariant in the sense that kx ∈ C
for every k ∈ K and every x ∈ C.

Let ℓ ∈ N+ and let T ⊆ Kℓ be a collection of ℓ-tuples of K. Define the function fS,T : Xℓ → RT

by

fS,T(x)(k) := fS

(
ℓ

∑
i=1

kixi

)
(x ∈ Xℓ, k ∈ T).

We say that fS,T factors through types of S if for every x, y ∈ Xℓ, we have fS,T(x) = fS,T(y) if and
only if there exists σ ∈ AutK(S) such that σ(xi) = yi for every i ∈ [ℓ].

Similarly to symmetric difference configurations of Definition 3.1, the function fS,T captures
information of the value of fS in K-linear combinations of ℓ-tuples of elements of X using coeffi-
cients in T ⊆ Kℓ. The definition of factoring through types then requires that this information is
enough to determine the orbit2 of a tuple x ∈ Xℓ under the natural diagonal action of AutK(S).

Remark 5.25. It is straightforward to see that fS is AutK(S)-invariant in the sense that fS ◦ σ = fS

for every σ ∈ AutK(S).

This in particular implies that in the definition of fS,T factoring through types, the backward
implication always holds: if x, y ∈ Xℓ and σ ∈ AutK(S) are such that σ(xi) = yi for every i ∈ [ℓ],
then for every k ∈ T we have

fS,T(y)(k) = fS

(
ℓ

∑
i=1

kiσ(xi)

)
= fS

(
σ

(
ℓ

∑
i=1

kixi

))
= fS

(
ℓ

∑
i=1

kixi

)
= fS,T(x)(k).

The next definition generalizes the construction of Section 3.

Definition 5.26. Let S = (X, R) be a translation scheme over a left K-module X, let ℓ ∈ N+, let
T ⊆ Kℓ be such that ei ∈ T for every i ∈ [ℓ], where (ei)j := 1[i = j] and suppose fS,T factors
through types.

The T-refined ℓth tensor power of S is the translation scheme Sℓ,T = (Xℓ, Rℓ,T) is defined by
letting

Rℓ,T := {rh | h ∈ RT} \ {∅},

where

rh := {(x, y) ∈ Xℓ × Xℓ | fS,T(x − y) = h}

for each function h : T → R and Xℓ is equipped with the direct product left K-module structure.
Theorem 5.27 below shows that Sℓ,T is indeed a translation scheme.

2This is also the reason behind the name “factors through types”: in model theory, two elements of a finite model
have the same type if and only if they are in the same orbit under the action of the automorphism group.
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Before we show that Sℓ,T is indeed a translation scheme, two particular choices of (K, T) de-
serve special attention.

i. When K = Z and T = {ei | i ∈ [ℓ]}, then Sℓ,T is just the ℓth tensor power Sℓ.

ii. When T = Kℓ, then fS,T encodes the complete K-linear configuration of x as it is able to de-
termine the value of fS in any K-linear combination of x1, . . . , xℓ. This will be particularly
useful when K is a (finite) field (and thus X is a K-vector space).

Theorem 5.27. Let S = (X, R) be a translation scheme over a left K-module X, let ℓ ∈ N+, let
T ⊆ Kℓ be such that ei ∈ T for every i ∈ [ℓ], where (ei)j := 1[i = j] and suppose fS,T factors
through types.

Then the following hold.

1. Sℓ,T := (Xℓ, Rℓ,T) is a translation scheme over the direct product group Xℓ that refines the
tensor power Sℓ.

2. If S is symmetric, then so is Sℓ,T.

3. If C is a K-linear D-code in S, then Cℓ is a K-linear Dℓ,T-code in Sℓ,T, where

Dℓ,T := {rh | h ∈ RT ∧ im(h) ⊆ D} \ {∅}.

Proof. We start proving item (1).

It is obvious that Rℓ,T forms a partition of Xℓ × Xℓ into non-empty subsets.

Note also that if (x, y) ∈ Xℓ × Xℓ are such that fS,T(x − y)(k) = DX for every k ∈ T, then since
ei ∈ T, we get xi = yi, thus x = y. Since we also have fS,T(0)(k) = fS(0) = DX for every k ∈ T, it
follows that for the function T → R that is constant equal to DX we have rDX

= DXℓ .

It is also easy to see that for h : T → R, by letting h⊤ : T → R be given by h⊤(k) := h(k)⊤ , we
have r⊤h = rh⊤ .

Note further that for each r1, r2, . . . , rℓ ∈ R, we have

r1 ⊗ · · · ⊗ rℓ =
⋃
{rh | h ∈ RT ∧ ∀i ∈ [ℓ], h(ei) = ri}.

It remains only to show that the existence of the intersection numbers for Sℓ,T.

For every h1, h2 : T → R and every x, y ∈ Xℓ, let

Nh1 ,h2
(x, y) := |{z ∈ Xℓ | fS,T(x − z) = h1 ∧ fS,T(z − y) = h2}|.

It is sufficient to show that if x, y, x′, y′ ∈ Xℓ are such that fS,T(x − y) = fS,T(x′ − y′), then
Nh1 ,h2

(x, y) = Nh1 ,h2
(x′, y′).
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Since fS,T factors through types of S, there exists σ ∈ AutK(S) such that σ(xi − yi) = x′i − y′i
for every i ∈ [ℓ]. Then we have

Nh1,h2
(x′, y′) = |{z ∈ Xℓ | fS,T(x

′ − z) = h1 ∧ fS,T(z − y′) = h2}|

=

∣∣∣∣∣

{
u ∈ Xℓ

∣∣∣∣∣ ∀k ∈ T,

(
fS

(
ℓ

∑
i=1

ki(x
′
i − y′i − ui)

)
= h1(k) ∧ fS

(
ℓ

∑
i=1

kiui

)
= h2(k)

)}∣∣∣∣∣

=

∣∣∣∣∣

{
u ∈ Xℓ

∣∣∣∣∣ ∀k ∈ T,

(
fS

(
ℓ

∑
i=1

ki(σ(xi − yi)− ui)

)
= h1(k) ∧ fS

(
ℓ

∑
i=1

kiui

)
= h2(k)

)}∣∣∣∣∣

=

∣∣∣∣∣

{
u ∈ Xℓ

∣∣∣∣∣ ∀k ∈ T,

(
fS

(
ℓ

∑
i=1

ki(xi − yi − σ−1(ui))

)
= h1(k) ∧ fS

(
ℓ

∑
i=1

ki · σ−1(ui)

)
= h2(k)

)}∣∣∣∣∣

=

∣∣∣∣∣

{
w ∈ Xℓ

∣∣∣∣∣ ∀k ∈ T,

(
fS

(
ℓ

∑
i=1

ki(xi − wi)

)
= h1(k) ∧ fS

(
ℓ

∑
i=1

ki(wi − yi)

)
= h2(k)

)}∣∣∣∣∣
= Nh1,h2

(x, y),

where the second equality follows from the substitution ui := zi − y′i, the fourth equality follows
since σ is a left K-module automorphism of X and fS is σ-invariant (see Remark 5.25) and the fifth
equality follows from the substitution wi := σ−1(ui) + yi.

For item (2), since a translation scheme S is symmetric if and only if the function fS is even
(see Remark 5.13), the fact that S is symmetric implies fS is even, hence fS,T is also even and thus
Sℓ,T is symmetric (as fSℓ,T(x) = r fS,T (x)).

For item (3), it is obvious that Cℓ is both a subgroup of Xℓ and K-invariant. Let x ∈ Cℓ and note
that since C is K-linear, for every k ∈ T, we have ∑

ℓ
i=1 kixi ∈ C, so fS,T(x)(k) = fS(∑

ℓ
i=1 kixi) ∈ D

and thus

fSℓ,T(Cℓ) = {r fS,T (x) | x ∈ Cℓ} ⊆ D,

hence Cℓ is a K-linear Dℓ,T-code. �

Note that if the underlying translation scheme S = (X, R) is a Schurian scheme associated to a
group action of a semidirect product X ⋊ G in X such as in the (weak or strong) Hamming scheme
(see Examples 5.19 and 5.20), then we could easily produce a Schurian translation scheme refining
the ℓth tensor power by considering the action of a semidirect product Xℓ ⋊ G on Xℓ obtained by
considering the product action of Xℓ and the diagonal action of G. However, even in the Schurian
case, the true value of Theorem 5.27 above lies in two facts:

i. The relation of (x, y) ∈ Xℓ × Xℓ is determined by the value of fS,T(x − y), that is, the value
of fS in K-linear combinations of (x − y) using tuples in T.

ii. If C is a K-linear D-code in S, we can deduce “extra” restrictions of the code Cℓ in Sℓ,T besides
the ones that follow from the tensor power. More specifically, it is trivial that Cℓ is a D⊗ℓ-code
in the tensor power Sℓ, which in turn implies that it is a D̂-code in Sℓ,T, where

D̂ := {rh ∈ Rℓ,T | ∃r ∈ R⊗ℓ, rh ⊆ r}

= {rh | h ∈ RT ∧ ∀i ∈ [ℓ], h(ei) ∈ D}.

However, Theorem 5.27 says that we further have h(k) ∈ D for every k ∈ T (not only for the
ei).
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Our next objective is to show that under mild assumptions on the structure of the left K-
module G, for the weak and strong Hamming schemes Hn(G) and H∗

n(G) of Examples 5.19
and 5.20, the functions fHn(G),Kℓ and fH∗

n(G),Kℓ factor through types when Gn is equipped with
the direct product left K-module structure. A particular case when all such mild assumptions
hold is when G = K = F for some finite field F.

Remark 5.28. Once we prove that the function f
Hn(F2),Fℓ

2
factors through types of the weak Ham-

ming scheme Hn(F2) (Corollary 5.46 below), the hierarchy of linear programs presented in Section 3

can be retrieved as KrawtchoukLPLin(n, d, ℓ) = LSℓ,T(Dℓ,T
d ) for S = Hn(F2), T = Fℓ

2 and Dd :=
{r0, rd, rd+1, . . . , rn}.

Analogously, the hierarchy for non-linear codes can be retrieved as KrawtchoukLP(n, d, ℓ) =
LSℓ,T(D̂ℓ

d) using instead the weaker restriction set

D̂ℓ
d := {r ∈ Rℓ,T | ∃r′ ∈ D⊗ℓ

d , r ⊆ r′}.

These can also be retrieved using the strong Hamming scheme H∗
n(F2) instead (see Corollary 5.35

below) as for the binary case we have H∗
n(F2) = Hn(F2).

However, the same corollaries apply for the more general case of a (not necessarily binary)
finite field F, in which the weak and strong Hamming schemes are different. In this case, we
define

KrawtchoukLPF

Lin(n, d, ℓ) := LSℓ,T(Dℓ,T
d )

using S = Hn(F), T = Fℓ and Dd := {r0, rd, rd+1, . . . , rn}.

We can also define KrawtchoukLPF(n, d, ℓ) analogously for arbitrary finite fields, but as we
will see in Proposition 6.5, these hierarchies for non-linear codes collapse and yield the same
bound as the usual Delsarte linear program.

Before we start with the case of the strong Hamming scheme H∗
n(G), let us prove a few lem-

mas.

Lemma 5.29. Let K be a finite ring, let G be a finite simple left K-module and let χ : G → C be a
non-trivial character of G. Then

∑
k∈K

χ(kg) = |K| · 1[g = 0]

for every g ∈ G.

Proof. If g = 0, then χ(kg) = 1 for every k ∈ K, thus ∑k∈K χ(kg) = |K|.

On the other hand, if g 6= 0, then we must have Kg = G as Kg is a non-trivial left K-submodule
of G and G is simple. Note also that for k1, k2 ∈ K, we have χ(k1g) = χ(k2g) if and only if
k1 − k2 ∈ H, where

H := {k ∈ K | χ(kg) = 1}.

Since H is a subgroup of K, each level set of k 7→ χ(kg) is a coset of H, so they must all have the
same size, namely |K|/|H|, so we get

∑
k∈K

χ(kg) =
|K|

|H|
·
|im(χ)|

|G| ∑
g′∈G

χ(g′) = 0,
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where the last equality follows since χ is a non-trivial character (so it is orthogonal to the trivial
character). �

The next lemma says that the joint distribution of ℓ random variables with values in a finite
simple left K-module (for a finite ring K) can be recovered from the (individual) distributions of
all K-linear combinations of them.

Lemma 5.30. Let K be a finite ring, let G be a finite simple left K-module and let χ : G → C be a
non-trivial character of G. Suppose further that X is a random variable with values in Gℓ for some
ℓ ∈ N+ and for every k ∈ Kℓ, let Yk := ∑

ℓ
i=1 kiXi. Then

P[X = x] =
1

|Kℓ| ∑
k∈Kℓ

y∈G

χ

(
ℓ

∑
i=1

kixi − y

)
· P[Yk = y]

for every x ∈ Gℓ.

Proof. First note that for every k ∈ Kℓ and every y ∈ G, we have

P[Yk = y] = ∑
z∈Gℓ

∑
ℓ
i=1 kizi=y

P[X = z],

which implies that

1

|Kℓ| ∑
k∈Kℓ

y∈G

χ

(
ℓ

∑
i=1

kixi − y

)
· P[Yk = y] =

1

|Kℓ| ∑
z∈Gℓ

P[X = z] · ∑
k∈Kℓ

y∈G

∑
ℓ
i=1 kizi=y

χ

(
ℓ

∑
i=1

kixi − y

)

=
1

|Kℓ| ∑
z∈Gℓ

P[X = z] · ∑
k∈Kℓ

χ

(
ℓ

∑
i=1

ki(xi − zi)

)

= P[X = x] +
1

|Kℓ| ∑
z∈Gℓ

z 6=x

P[X = z] · ∑
k∈Kℓ

χ

(
ℓ

∑
i=1

ki(xi − zi)

)
.

(8)

To complete the proof, it is sufficient to show that the inner sum of the second term in (8) is
zero. But note that

∑
k∈Kℓ

χ

(
ℓ

∑
i=1

ki(xi − zi)

)
=

ℓ

∏
i=1

∑
k∈K

χ(k(xi − zi))

and since xi 6= zi for at least one i ∈ [ℓ], from Lemma 5.29, the above is zero as desired. �

Let us also recall one standard fact from algebra.
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Lemma 5.31. Let K be a ring and G be a left K-module. If G is both finite and faithful, that is, the
annihilator

AnnK(G) := {k ∈ K | ∀g ∈ G, kg = 0}

is trivial (i.e., AnnK(G) = {0}). Then K is finite.

Proof. Each element k ∈ K induces a left K-module endomorphism fk : G → G of G given by
fk(g) = k · g. Note that for k1, k2 ∈ K, we have fk1

= fk2
if and only if k1 − k2 ∈ AnnK(G), so since

G is faithful, all fk must be different. If G is finite, it has only finitely many endomorphisms, so K
must also be finite. �

We can now show that for the strong Hamming scheme H∗
n(G) over a finite simple left K-

module G, the function fH∗
n(G),Kℓ factors through types. We recall that when K is commutative, the

simplicity condition reduces to saying that there is a maximal ideal I of K such that G ∼= K/I as
a K-module, that is, it is a 1-dimensional vector space over the (necessarily finite) field F := K/I
(note that K itself does not need to be a field, e.g., K = Z and G = Zp for some prime p); in other
words, all cases when K is commutative and G is simple are indirectly captured by the usual case
K = G = F for some finite field F.

Proposition 5.32. Let K be a ring, let G be a finite simple left K-module and let n, ℓ ∈ N+. Consider
the strong Hamming scheme H∗

n(G) of order n over G equipped with the direct product left K-
module structure on Gn. Then fH∗

n(G),Kℓ factors through types of H∗
n(G).

Proof. First, recall that the strong Hamming scheme relations are given by

rh := {(x, y) | ∀g ∈ G, |x − y|g = h(g)},

for h ∈ {0, 1, . . . , n}G} such that rh is non-empty, where |z|g is the number of positions i ∈ [n] such
that zi = g. In this proof we will abuse notation and write fH∗

n(G)(x) = h in place of fH∗
n(G)(x) = rh,

that is, we will view fH∗
n(G) as a function with values in {0, 1, . . . , n}G rather than in R := {rh |

h ∈ {0, 1, . . . , n}G} \ {∅}. Accordingly, we will also view fH∗
n(G),Kℓ as a function with values in

({0, 1, . . . , n}G)Kℓ

rather than in RKℓ

.

First, we claim that it is enough to prove the case when K is finite. Indeed, recall that the anni-
hilator AnnK(G) of G in K is a two-sided ideal of K and the left K-module structure on G induces a
natural left K/ AnnK(G)-module structure given by (k + AnnK(G)) · g := k · g + AnnK(G) (k ∈ K,
g ∈ G). Note also that for every x ∈ (Gn)ℓ and every k ∈ Kℓ, we have

fH∗
n(G),(K/ AnnK(G))ℓ(x)

(
(ki + AnnK(G) | i ∈ [ℓ])

)
= fH∗

n(G)

(
n

∑
i=1

ki · xi

)
= fH∗

n(G),Kℓ(x)(k),

so if fH∗
n(G),(K/ AnnK(G))ℓ factors through types, then fH∗

n(G),Kℓ also does so. From Lemma 5.31,
K/ AnnK(G) must be finite as G is a finite faithful left K/ AnnK(G)-module, completing our re-
duction.

Let us now prove the case when K is finite.
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First, note that AutK(Hn(G)) contains a subgroup isomorphic to the symmetric group Sn on
n letters3; namely, the natural right action of Sn on Gn given by (x · σ)i := xσ(i) (x ∈ Gn, σ ∈ Sn,
i ∈ [n]) is free and preserves the left K-module structure of Gn and every relation rh ∈ R of H∗

n(G)
is invariant under this action and thus this action induces a subgroup of AutK(H

∗
n(G)) isomorphic

to Sn where σ ∈ Sn corresponds to the automorphism Fσ : x 7→ x · σ.

Given a point z ∈ (Gn)ℓ, let Xz be the random variable with values in Gℓ defined by

X
z
j := (zj)i (j ∈ [ℓ]),

where i is picked uniformly at random in [n], that is, Xz
j is the value of the jth word zj at the

(uniformly at random) position i. Note that we use the same i for all values of j ∈ [ℓ], so the
coordinates of X are not necessarily independent.

For every k ∈ Kℓ, let also Y
z

k := ∑
ℓ
j=1 kjX

z
j and note that for every g ∈ G, we have

P[Y z
k = g] =

∣∣∣
{

i ∈ [n]
∣∣∣ ∑

ℓ
j=1 kj(zj)i = g

}∣∣∣
n

=
fH∗

n(G),Kn(z)(k)

n
.

By Lemma 5.30, the distribution of Y
z completely determines the distribution of X

z. This
means that if x, y ∈ (Gn)ℓ are such that fH∗

n(G),Kℓ(x) = fH∗
n(G),Kℓ(y), then X

x has the same distribu-
tion as Xy and thus there exists a permutation σ ∈ Sn such that for every i ∈ [n] and every j ∈ [ℓ],
we have (xj)σ(i) = (yj)i, that is, for the automorphism Fσ ∈ AutK(H

∗
n(G)), we have Fσ(xj) = yj

for every j ∈ [ℓ], so fH∗
n(G),Kℓ factors through types. �

The next example shows that the simplicity assumption in Proposition 5.32 is necessary.

Example 5.33. Consider the finite left F2-module F2
2, let n := 4 and ℓ := 2 and consider the ele-

ments x, y ∈ ((F2
2)

n)ℓ defined as

y1 := x1 :=
(
(0, 0), (0, 1), (1, 0), (1, 1)

)
,

x2 :=
(
(0, 1), (1, 0), (0, 0), (1, 1)

)
,

y2 :=
(
(1, 0), (0, 1), (1, 1), (0, 0)

)

and note that

x1 + x2 =
(
(0, 1), (1, 1), (1, 0), (0, 0)

)
,

y1 + y2 =
(
(1, 0), (0, 0), (0, 1), (1, 1)

)
,

If we think of the function f
H∗

4 (F
2
2)

as taking values in {0, 1, 2, 3, 4}F2
2 as we did in the proof of

Proposition 5.32 and the function f
H∗

4(F
2
2),F

2
2

as taking values in ({0, 1, 2, 3, 4}F2
2 )F2

2 , then for every

g ∈ F2
2, we have

f
H∗

4 (F
2
2),F

2
2
(x)(0, 0)(g) = f

H∗
4 (F

2
2),F

2
2
(y)(0, 0)(g) = 4 · 1[g = 0],

f
H∗

4 (F
2
2),F

2
2
(x)(1, 0)(g) = f

H∗
4 (F

2
2),F

2
2
(y)(1, 0)(g) = 1,

f
H∗

4 (F
2
2),F

2
2
(x)(0, 1)(g) = f

H∗
4 (F

2
2),F

2
2
(y)(1, 0)(g) = 1,

f
H∗

4 (F
2
2),F

2
2
(x)(1, 1)(g) = f

H∗
4 (F

2
2),F

2
2
(y)(1, 0)(g) = 1.

3In fact, AutK(Hn(G)) is precisely equal to this subgroup, but we will not need this fact.
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However, no σ ∈ AutF2
(H∗

4(F
2
2)) satisfies σ(x1) = y1 and σ(x2) = y2. This is because σ(x1) =

y1 implies that σ = id(F2
2)

4 (as AutF2
(H∗

4(F
2
2)) is precisely given by the natural right action of the

symmetric group S4 on (F2
2)

4 by (g · σ)i := gσ(i) (g ∈ (F2
2)

4, σ ∈ S4 and i ∈ [4])).

The next example shows that it is not enough to consider the set {0, 1}ℓ ⊆ Kℓ that captures
information only about subset sums of the tuples of words.

Example 5.34. Consider the finite simple left F3-module F3, let n := 3 and ℓ := 2 and consider the
elements x, y ∈ (Fn

3)
ℓ defined as

y1 := x1 := x2 := (0, 1, 2),

y2 := (2, 0, 1),

and note that

x1 + x2 = (0, 2, 1),

y1 + y2 = (2, 1, 0).

Again, thinking of the function fH∗
3 (F3) as taking values in {0, 1, 2, 3}F3 as we did in the proof

of Proposition 5.32 and the function fH∗
3 (F3),{0,1}2 as taking values in ({0, 1, 2, 3}F3 ){0,1}2

, then for
every g ∈ F3, we have

fH∗
3 (F3),{0,1}2(x)(0, 0)(g) = fH∗

3 (F3),{0,1}2(y)(0, 0)(g) = 3 · 1[g = 0],

fH∗
3 (F3),{0,1}2(x)(0, 1)(g) = fH∗

3 (F3),{0,1}2(y)(0, 1)(g) = 1,

fH∗
3 (F3),{0,1}2(x)(1, 0)(g) = fH∗

3 (F3),{0,1}2(y)(1, 0)(g) = 1,

fH∗
3 (F3),{0,1}2(x)(1, 1)(g) = fH∗

3 (F3),{0,1}2(y)(1, 1)(g) = 1.

However, no σ ∈ AutF3
(H∗

3(F3)) satisfies σ(x1) = y1 and σ(x2) = y2 because the former
implies σ = id

F3
3
.

Corollary 5.35. Let F be a finite field and let C be an F-linear D-code in the strong Hamming
scheme H∗

n(F). Then for every ℓ ∈ N+, we have

|C| 6 val(L
H∗

n(F)
ℓ,Fℓ (Dℓ,Fℓ

))1/ℓ.

Proof. Since F is a simple F-module, by Theorem 5.27 and Proposition 5.32, Cℓ is a K-linear Dℓ,Fℓ

-

code in H∗
n(F)

ℓ,Fℓ

and thus we have the bound

|Cℓ| 6 val(L
H∗

n(F)
ℓ,Fℓ (Dℓ,Fℓ

))

provided by the Delsarte linear program for H∗
n(F)

ℓ,Fℓ

. �

For the case of the weak Hamming scheme, annihilators of single elements will play an im-
portant role and it will be more convenient to work with annihilator Hamming schemes defined
below. We will show that the annihilator Hamming scheme is indeed a symmetric translation
scheme in Proposition 5.39 and the connection to the weak Hamming scheme will be established
in Lemma 5.37.
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Definition 5.36. Given a ring K, a finite simple left K-module G and n ∈ N+, the annihilator Ham-

ming scheme of order n over G is the symmetric translation scheme H
AnnK
n (G) := (Gn, R) (with Gn

equipped with the direct product left K-module structure), where

R := {rh | h : 2K → {0, 1, . . . , n}} \ {∅},

rh := {(x, y) ∈ Gn × Gn | ∀A ⊆ K, |x − y|A = h(A)} (h : 2K → {0, 1, . . . , n}),

|z|A := |{i ∈ [n] | AnnK(z) = A}|,

that is, (x, y) is in the relation rh if and only if for each set A ⊆ K, the number of positions i ∈ [n]
such that AnnK(xi − yi) = A is exactly h(A).

Before we actually prove that H
AnnK
n (G) is indeed a symmetric translation scheme, let us prove

the following small lemma that says that when K is commutative, then the annihilator and the
weak Hamming schemes coincide.

Lemma 5.37. Let K be a ring, let G be a finite simple left K-module and let n ∈ N+. If K is

commutative, then Hn(G) = H
AnnK
n (G).

Proof. Since K is commutative, for every g ∈ K \ {0} we have

AnnK(g) = AnnK(Kg) = AnnK(G) 6= K.

Since the relations of H
AnnK
n (G) are based on the values of

|z|A := |{i ∈ [n] | AnnK(z) = A}|

we get

|z|A =





|{i ∈ [n] | zi 6= 0}|, if A = AnnK(G),

|{i ∈ [n] | zi = 0}|, if A = K,

0, otherwise.

Thus it follows trivially that H
AnnK
n (G) = Hn(G). �

Our next order of business is to show that H
AnnK
n (G) is indeed a symmetric translation scheme

(even when K is not necessarily commutative). To do so, we need one lemma that says that in a
finite simple left K-module G, the orbits of G under the natural action of the group AutK(G) of
K-module automorphisms of G are completely determined by the annihilators of its elements. We
in fact will prove a more general version over Gℓ that will be needed later.

Lemma 5.38. Let K be a ring, let G be a simple left K-module and let ℓ ∈ N+. Let us also equip
Gℓ with the natural left Kℓ-module structure over the direct product ring Kℓ given by (kg)i := kigi

(k ∈ Kℓ, g ∈ Gℓ and i ∈ [ℓ]). The following are equivalent for x, y ∈ Gℓ.

i. We have AnnKℓ(x) = AnnKℓ(y).

ii. There exists a left K-module automorphism σ ∈ AutK(G) of G such that σ(xi) = yi for every
i ∈ [ℓ].
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Proof. For the implication (ii)⇒(i), note that for k ∈ Kℓ, we have the equivalences

ky = 0 ⇔ (∀i ∈ [ℓ], kiyi = 0) ⇔ (∀i ∈ [ℓ], kiσ(xi) = 0) ⇔ (∀i ∈ [ℓ], kixi = 0) ⇔ kx = 0,

where the third equivalence follows since σ ∈ AutK(G) is a left K-module automorphism of G.
Thus AnnKℓ(x) = AnnKℓ(y).

Let us now prove the implication (i)⇒(ii). If x = 0, then Kℓ = AnnKℓ(x) = AnnKℓ(y). Since
G is simple, we must have y = 0 (as {z ∈ G | AnnK(z) = K} is a proper left K-submodule of G,
so it must be trivial) and any left K-module automorphism σ ∈ AutK(G) of G satisfies σ(xi) = yi

for every i ∈ [ℓ]. Suppose then that x 6= 0 and without loss of generality, suppose that x1 6= 0 and
thus AnnK(x1) 6= K. Since

AnnK(x1) = {k ∈ K | (k, 0, . . . , 0) ∈ AnnKℓ(x)} = {k ∈ K | (k, 0, . . . , 0) ∈ AnnKℓ(y)} = AnnK(y1),

it follows that AnnK(y1) 6= K so y1 6= 0.

Since G is simple, we have Kx1 = G, so we can define a function σ : G → G indirectly by
σ(kx1) := ky1 for every k ∈ K. To check that σ is well-defined, note that if k1x1 = k2x1, then
k1 − k2 ∈ AnnK(x1) = AnnK(y1) and thus k1y1 = k2y2. It is straightforward to check that σ is
a left K-module endomorphism of G. Since the kernel of σ is a left K-submodule of G that does
not contain x1 and G is simple, it follows that the kernel of σ must be trivial, so σ is injective. On
the other hand, the image of σ is a left K-submodule of G that contains y1 6= 0, so simplicity of G
implies that σ is surjective and thus σ is a left K-module automorphism of G.

Let us now show that σ(xi) = yi for every i ∈ [ℓ]. For i = 1, this is obvious. For i > 2, let
k′ ∈ K be such that k′x1 = xi so that σ(xi) = k′y1. We now let k ∈ Kℓ be given by k1 := k′, ki := −1
and kj := 0 for every j ∈ [ℓ] \ {1, i}. Since k′x1 − xi = 0, we have k ∈ AnnKℓ(x) = AnnKℓ(y), so we
get k′y1 − yi = 0, and thus σ(xi) = k′y1 = yi as desired. �

Let us now prove that H
AnnK
n (G) is indeed a symmetric translation scheme. The proof uses

similar ideas to that of Theorem 5.27.

Proposition 5.39. Let K be a ring, let G be a finite simple left K-module and let n ∈ N+. Then the

annihilator Hamming scheme H
AnnK
n (G) of order n over G is a symmetric translation scheme over

the direct group Gn.

Proof. Recall that the relation set of H
AnnK(G)
n is given by

R := {rh | h : 2K → {0, 1, . . . , n}} \ {∅},

where

rh := {(x, y) ∈ Gn × Gn | ∀A ⊆ K, |x − y|A = h(A)} (h : 2K → {0, 1, . . . , n}),

|z|A := |{i ∈ [n] | AnnK(z) = A}|.

The fact that R forms a partition of Gn × Gn into non-empty subsets is obvious.

Since G is simple, the only element g ∈ G with AnnK(g) = K is g = 0 (as the set of such
elements is a proper left K-submodule of G, so it must be trivial), thus for the function h : 2K →
{0, 1, . . . , n} given by h(A) := n1[A = K], we have rh = DGn .
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Note further that AnnK(z) = AnnK(−z) for every z ∈ G, which immediately implies that
r⊤h = rh for every h : 2K → {0, 1, . . . , n}.

It is also obvious that each rh is invariant under the group action of Gn.

It remains only to show the existence of the intersection numbers for H
AnnK(G)
n .

For every A1, A2 ⊆ K and every g1, g2 ∈ G, let

NA1 ,A2
(g1, g2) := |{z ∈ G | AnnK(g1 − z) = A1 ∧ AnnK(z − g2) = A2}|.

Claim 5.40. If AnnK(g1 − g2) = AnnK(g′1 − g′2), then NA1,A2
(g1, g2) = NA1,A2

(g′1, g′2).

Proof. By Lemma 5.38, there exists a left K-module automorphism σ ∈ AutK(G) of G such that
σ(g1 − g2) = g′1 − g′2. Then we have

NA1,A2
(g′1 − g′2) = |{z ∈ G | AnnK(g′1 − z) = A1 ∧ AnnK(z − g′2) = A2}|

= |{u ∈ G | AnnK(g′1 − g′2 − u) = A1 ∧ AnnK(u) = A2}|

= |{u ∈ G | AnnK(σ(g1 − g2)− u) = A1 ∧ AnnK(u) = A2}|

= |{u ∈ G | AnnK(g1 − g2 − σ−1(u)) = A1 ∧ AnnK(σ
−1(u)) = A2}|

= |{w ∈ G | AnnK(g1 − w) = A1 ∧ AnnK(w − g2) = A2}|,

where the second equality follows from the substitution u := z − g′2, the fourth equality follows
since σ ∈ AutK(G) is a left K-module automorphism and the fifth equality follows from the sub-
stitution w := σ−1(u) + g2. �

Claim 5.40 implies that for A1, A2, B ⊆ K we can define NB
A1,A2

∈ N such that NA1 ,A2
(g1, g2) =

NB
A1 ,A2

whenever AnnK(g1 − g2) = B.

Note now that if (x, y) ∈ rh for some h : 2K → {0, 1, . . . , n} and h1, h2 : 2K → {0, 1, . . . , n}, then
we have

|{z ∈ Gn | (x, z) ∈ rh1
∧ (z, y) ∈ rh2

}|

= ∑
F∈F

n

∏
i=1

|{w ∈ G | AnnK(xi − w) = F(i)1 ∧ AnnK(w − yi) = F(i)2}|,

where F is the set of functions F : [n] → 2K × 2K such that

|{i ∈ [n] | F(i)j = A}| = hj(A) (j ∈ [2], A ⊆ K).

Using the definition of the numbers NB
A1 ,A2

, we get

∑
F∈F

n

∏
i=1

|{w ∈ G | AnnK(xi − w) = F(i)1 ∧ AnnK(w − yi) = F(i)2}| = ∑
F∈F

n

∏
i=1

N
AnnK(xi−yi)
F(i)1,F(i)2

.

Finally, note that if (x′, y′) ∈ rh, then there exists a permutation σ ∈ Sn such that AnnK(x′i −
y′i) = AnnK(xσ(i) − yσ(i)) for every i ∈ [n], which implies that

∑
F∈F

n

∏
i=1

N
AnnK(x′i−y′i)

F(i)1,F(i)2
= ∑

F∈F

n

∏
i=1

N
AnnK(xi−yi)

F(σ−1(i))1,F(σ−1(i))2
= ∑

F′∈F

n

∏
i=1

N
AnnK(xi−yi)
F′(i)1,F′(i)2

,
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where the last equality follows from the substitution F′ := F ◦ σ−1. Thus the existence of the
intersection numbers is proved. �

It will be very convenient to work with the following equivalence relation that can be seen as
the equivalence relation of the “projective space of Gℓ with origin”.

Definition 5.41. Let K be a ring, let G be a finite simple left K-module and ℓ ∈ N+. The equivalence
relation ∼ℓ over Gℓ is defined by

x ∼ℓ y ⇔ ∃σ ∈ AutK(G), ∀i ∈ [ℓ], σ(xi) = yi,

that is, the equivalence classes of ∼ℓ are the orbits of the natural diagonal action of AutK(G) on Gℓ

given by (σ · x)i := σ(xi) (σ ∈ AutK(G), x ∈ Gℓ, i ∈ [ℓ]).

In the definition above, if K = F for a finite field F (hence G is a 1-dimensional F-vector space),
then x ∼ℓ y if and only if there exist k1, k2 ∈ F \ {0} such that k1x = y and x = k2y, that is, ∼ℓ is the
equivalence relation defining the (ℓ− 1)-dimensional projective space P(Fℓ) ∪ {0} with origin.

Remark 5.42. Under the definition of ∼ℓ, we can reinterpret Lemma 5.38, as saying that x ∼ℓ y if
and only if AnnKℓ(x) = AnnKℓ(y).

The next lemma is an analogue of Lemma 5.30 that says that the distribution of the∼ℓ-equivalence
class of an ℓ-tuple of random variables with values in a finite simple left K-module (for a finite ring
K) can be recovered from the (individual) distributions of the ∼1-equivalence classes of all K-linear
combinations of them.

Lemma 5.43. Let K be a finite ring, let G be a finite simple left K-module, let X be a random

variable with values in Gℓ for some ℓ ∈ N+ and for every k ∈ Kℓ, let Yk := ∑
ℓ
i=1 kiXi. Then

P[X ∼ℓ x] =

(
|G|

|StabAutK(G)(x)| · |Kℓ| · (|G| − 1)
· ∑

k∈Kℓ

∣∣∣∣∣StabAutK(G)

(
ℓ

∑
i=1

kixi

)∣∣∣∣∣ · P

[
Yk ∼1

ℓ

∑
i=1

kixi

])

−
|OAutK(G)(x)|

|G| − 1

for every x ∈ Gℓ, where StabAutK(G)(z) is the stabilizer group of z under the action of AutK(G) and

OAutK(G)(z) is the orbit of z under the action of AutK(G) (the actions of AutK(G) on G and Gℓ are
respectively the natural action and the diagonal action).

Proof. By Lemma 5.38 (see also Remark 5.42), we know that the ∼ℓ-equivalence class of x is pre-
cisely the orbit OAutK(G)(x), so we have

P[X ∼ℓ x] =
1

|StabAutK(G)(x)| ∑
σ∈AutK(G)

P[X = σ(x)].

Letting χ be a non-trivial character of G, by Lemma 5.30, we get

P[X ∼ℓ x] =
1

|StabAutK(G)(x)| · |Kℓ|
· ∑

σ∈AutK(G)
k∈Kℓ

y∈G

χ

(
ℓ

∑
i=1

kiσ(xi)− y

)
· P[Yk = y].
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Recall that for every g ∈ G, if we average the value χ(g) over all non-trivial characters of
G, then we get (|G|1[g = 0]− 1)/(|G| − 1), thus by performing such averaging operation in the
above, we get

P[X ∼ℓ x] =
1

|StabAutK(G)(x)| · |Kℓ| · (|G| − 1)

· ∑
σ∈AutK(G)

k∈Kℓ

y∈G

(
|G|1

[
ℓ

∑
i=1

kiσ(xi) = y

]
− 1

)
· P[Yk = y].

(9)

Note now that

∑
σ∈AutK(G)

k∈Kℓ

y∈G

|G|1

[
ℓ

∑
i=1

kiσ(xi) = y

]
· P[Yk = y] = ∑

σ∈AutK(G)
k∈Kℓ

|G| · P

[
Yk = σ−1

(
ℓ

∑
i=1

kixi

)]

= |G| ∑
k∈Kℓ

∣∣∣∣∣StabAutK(G)

(
ℓ

∑
i=1

kixi

)∣∣∣∣∣ · P

[
Yk ∼1

ℓ

∑
i=1

kixi

]
,

(10)
where the last equality follows since Lemma 5.38 and Remark 5.42 imply that the ∼1-equivalence
class of ∑

ℓ
i=1 kixi is precisely its AutK(G)-orbit.

On the other hand, we have

∑
σ∈AutK(G)

k∈Kℓ

y∈G

P[Yk = y] = ∑
σ∈AutK(G)

k∈Kℓ

1 = |AutK(G)| · |Kℓ| = |OAutK(G)(x)| · |StabAutK(G)(x)| · |Kℓ|. (11)

The result now follows by putting together (9), (10) and (11). �

We can finally prove that for the annihilator Hamming scheme H
AnnK
n (G), the associated func-

tion f
H

AnnK
n (G),Kℓ

factors through types.

Proposition 5.44. Let K be a ring, let G be a finite simple left K-module and let n, ℓ ∈ N+. Consider

the annihilator Hamming scheme H
AnnK
n (G) of order n over G. Then f

H
AnnK
n (G),Kℓ

factors through

types of H
AnnK
n (G).

Proof. Recall that the relation set of H
AnnK(G)
n is given by

R := {rh | h : 2K → {0, 1, . . . , n}} \ {∅},

where

rh := {(x, y) ∈ Gn × Gn | ∀A ⊆ K, |x − y|A = h(A)} (h : 2K → {0, 1, . . . , n}),

|z|A := |{i ∈ [n] | AnnK(z) = A}|.
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Just as in the proof of Proposition 5.32, we will abuse notation and write f
H

AnnK
n (G)

(x) = h in

place of f
H

AnnK
n (G)

(x) = rh, thus viewing f
H

AnnK
n

as a {0, 1, . . . , n}2K
-valued function. Accordingly,

we will also view f
H

AnnK
n (G),Kℓ

as a function with values in ({0, 1, . . . , n}2K
)Kℓ

rather than in RKℓ

.

By the same argument as in the proof of Proposition 5.32, it is enough to prove the case when
K is finite: the arbitrary case can be reduced to the finite case by letting K′ := K/ AnnK(G), con-
sidering the natural K′-module structure on G and noting that f

H
AnnK
n (G),Kℓ

factors through types

of H
AnnK
n (G) if and only if f

H
Ann

K′
n (G),(K′)ℓ

factors through types of H
AnnK′
n (G) and K′ is finite by

Lemma 5.31.

Let us then prove the case when K is finite.

First, we claim that AutK(H
AnnK
n (G)) contains a subgroup isomorphic to a semidirect product4

AutK(G)n ⋊ Sn, where Sn is the symmetric group on [n]. Indeed, consider the natural actions of
AutK(G) and Sn on Gn given by

(F · g)i := Fi(gi), (g · σ)i := gσ(i)

for F ∈ AutK(G)n, g ∈ Gn, σ ∈ Sn and i ∈ [n]. It is obvious that these actions are free and preserve
the K-module structure of Gn, and thus induce subgroups of the K-module automorphism group
of Gn isomorphic to AutK(G)n and Sn, respectively. Let H be the product of these subgroups. It is
straightforward to check that if F · g = g · σ holds for every g ∈ Gn, then Fi = idn

G for every i ∈ [n]
and σ = idn, so these subgroups have trivial intersection. Since

((
F · (g · σ)

)
· σ−1

)
i
=

(
F · (g · σ)

)
σ−1(i)

= Fσ−1(i)

(
(g · σ)σ−1(i)

)
= Fσ−1(i)(gi),

it follows that the subgroup isomorphic to AutK(G)n is normal in H and thus H ∼= AutK(G)n ⋊ Sn.
It remains to show that H also preserves the association scheme structure. Indeed, note that for
F ∈ AutK(G)n, g ∈ Gn, σ ∈ Sn and A ⊆ K, we have

|F(g)|A = |{i ∈ [n] | AnnK(Fi(gi)) = A}| = |{i ∈ [n] | AnnK(gi) = A}| = |g|A

|g · σ|A = |{i ∈ [n] | AnnK(gσ(i)) = A}| = |{i ∈ [n] | AnnK(gi) = A}| = |g|A .

Thus f
H

AnnK
n (G)

is invariant under both actions of the groups AutK(G)n and Sn, so H is a subgroup

of AutK(H
AnnK
n (G)).

We now define the same random variables as in Proposition 5.32: given a point z ∈ (Gn)ℓ, let
X

z be the random variable with values in Gℓ defined by

X
z
j := (zj)i (j ∈ [ℓ]),

where i is picked uniformly at random in [n] and for every k ∈ Kℓ, let Y z := ∑
ℓ
j=1 kjX

z
j .

4In fact, AutK(H
AnnK
n (G)) is exactly equal to this semidirect product, but we will not need this result.
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Note that for every g ∈ G, we have

P[Y z
k ∼1 g] = P[AnnK(Y

z
k ) = AnnK(g)]

=

∣∣∣
{

i ∈ [n]
∣∣∣ AnnK

(
∑

ℓ
j=1 kj(zj)i

)
= AnnK(g)

}∣∣∣
n

=
f
H

AnnK
n (G),Kℓ

(z)(k)(AnnK(g))

n
,

where the first equality follows from Lemma 5.38 and Remark 5.42.

By Lemma 5.43, the individual distributions of the ∼1-equivalence classes of the Y
z

k (k ∈ Kℓ)
completely determine the distribution of the ∼ℓ-equivalence class of Xz. This means that if x, y ∈
(Gn)ℓ are such that f

H
AnnK
n (G),Kℓ

(x) = f
H

AnnK
n (G),Kℓ

(y), then for every w ∈ Gℓ, we have

P[Xx ∼ℓ w] = P[Xy ∼ℓ w].

Thus there exists a permutation σ ∈ Sn such that for every i ∈ [n], we have
(
(x1)σ(i), (x2)σ(i), . . . , (xℓ)σ(i)

)
∼ℓ

(
(y1)i, (y2)i, . . . , (yℓ)i

)
,

so by the definition of ∼ℓ, for each i ∈ [n], there exists a left K-module automorphism Fi ∈
AutK(G) such that

Fi((xj)σ(i)) = (yj)i

for every j ∈ [ℓ] and thus for F = (F1, . . . , Fn) ∈ AutK(G)n, we get

F · (xj · σ) = yj

for every j ∈ [ℓ], so f
H

AnnK
n (G),Kℓ

factors through types. �

From Lemma 5.37 and Proposition 5.44 above, we can finally show that under mild assump-
tions f

Hn(G),Kℓ also factors through types for the weak Hamming scheme Hn(G).

Proposition 5.45. Let K be a ring and G be a finite simple left K-module and n, ℓ ∈ N+. Consider
the weak Hamming scheme Hn(G) of order n over G equipped with the product left K-module
structure on Gn.

If K is commutative, then fHn(G),Kℓ factors through types of Hn(G).

Proof. Follows directly from Proposition 5.44 as Lemma 5.37 implies that the weak Hamming

scheme Hn(G) coincides with the annihilator Hamming scheme H
AnnK
n (G). �

Corollary 5.46. Let F be a finite field and let C be an F-linear D-code in the weak Hamming scheme
Hn(F). Then for every ℓ ∈ N+, we have

|C| 6 val(L
Hn(F)ℓ,Fℓ (Dℓ,Fℓ

))1/ℓ.

Proof. By Theorem 5.27 and Proposition 5.45, Cℓ is a K-linear Dℓ,Fℓ

-code in Hn(F)ℓ,Fℓ

and thus we
have the bound

|Cℓ| 6 val(L
Hn(F)ℓ,Fℓ (Dℓ,Fℓ

))

provided by the Delsarte linear program for Hn(F)ℓ,Fℓ

. �
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6 Main Properties of the Krawtchouk Hierarchies

This section presents our main results on the linear programming hierarchy. The first result is
the completeness of the higher-order linear programming hierarchies for linear codes. The second
result is the collapse of the hierarchies for general codes.

6.1 Completeness for Linear Codes

In this section, we show the (approximate) completeness of our linear programming hierarchy
for linear codes over a finite field F.

We will show completeness at level O(n2) via a counting argument. The intuition is that the
hierarchy is likely already complete at level n (and we conjecture this to be the case). At level n,
the feasible region of the LP already encodes ALin

q (n, d). That is, since at level n there is a vari-
able for each possible basis of a subspace of Fn

q , just writing down the distance constraints of

KrawtchoukLPF

Lin(n, d, n) allows one to deduce the true value of ALin
q (n, d). Of course this prop-

erty is not sufficient to imply that the value of KrawtchoukLPF

Lin(n, d, n) is correct. At an intuitive
level, the below proof shows that at level O(n2) the large-dimensional subspaces outweigh the
small-dimensional subspaces enough to deduce the correct value of ALin

q (n, d).

Theorem 6.1 (Completeness). Let F be a finite field, let q := |F|, let ε ∈ (0, 1) and let ℓ >

9(n2 ln(q) + 1)/(ln(1 + ε))2. Then for every d ∈ {0, 1, . . . , n}, we have

val(KrawtchoukLPF

Lin(n, d, ℓ))1/ℓ 6 (1 + ε) · ALin
q (n, d).

Before proving this theorem, note that since F-linear codes must necessarily have size of the
form qk for some k ∈ N, by taking ε < q − 1, we get

ALin
q (n, d) = q⌊(logq val(KrawtchoukLPF

Lin(n,d,ℓ)))/ℓ⌋

whenever ℓ > 9(n2 ln(q) + 1)/(ln(q))2.

Proof. By Remark 5.28 that KrawtchoukLPF

Lin(n, d, ℓ) is the Delsarte linear program LSℓ,T(Dℓ,T
d ) for

S = Hn(F2), T = Fℓ
2 and Dd := {r0, rd, rd+1, . . . , rn}. By Theorem 5.22, the value of this linear

program coincides with the value of ϑ′ in the associated graph G := GSℓ,T(Dℓ,T
d ), i.e., the optimum

value of the semi-definite program

max 〈J, M〉

s.t. tr M = 1 (Normalization)

M[u, v] = 0 ∀{u, v} ∈ E(G) (Independent set)

M < 0 (PSD-ness)

M[u, v] ≥ 0 ∀u, v ∈ V(G) (Non-negativity),

where the variables is M ∈ RV×V symmetric and

E(G) :=

{
{x, y} ∈

(
(Fn)ℓ

2

) ∣∣∣∣∣ ∀k ∈ F
ℓ,

∣∣∣∣∣
ℓ

∑
i=1

ki(xi − yi)

∣∣∣∣∣ /∈ [d − 1]

}
,
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where |z| := |{j ∈ [n] | zj 6= 0}| is the Hamming weight of z.

Let k0 be the maximum dimension of an F-linear code of distance d in Fn (that is, let k0 :=
logq ALin

q (n, d)), let M be a feasible solution of the program above and let us provide an upper

bound for the objective value 〈J, M〉. Note that symmetrizing M under the automorphism group
Aut(G) of the Cayley graph G does not change the objective value 〈J, M〉 (and preserves all re-
strictions), so we may suppose that M is Aut(G)-invariant, which in particular implies that all
diagonal entries of M are equal and since the trace of M is 1, it follows that all diagonal entries
of M are equal to q−nℓ. On the other hand, since M is positive semi-definite, any 2 × 2 principal
minor of M is non-negative and thus all off-diagonal entries of M have absolute value at most
q−nℓ, that is, we have ‖M‖∞ = q−nℓ.

Since the objective value 〈J, M〉 is simply the sum of all entries of M, we can provide an upper
bound for it by simply giving an upper bound on how many entries of M are allowed to be non-
zero.

Note that for an entry Mxy indexed by (x, y) ∈ (Fn)ℓ × (Fn)ℓ to be non-zero, the difference
vectors z1, . . . , zℓ ∈ Fn given by zi := xi − yi (i ∈ [ℓ]) must span an F-linear subspace of dimension
at most k0 (as any subspace of larger dimension necessarily has distance smaller than d and thus
some k ∈ Fℓ will have |∑ℓ

i=1 ki(xi − yi)| ∈ [d − 1]).

By letting γn,ℓ,k be the number of tuples (z1, . . . , zℓ) that span a subspace of dimension k ∈
{0, 1, . . . , n}, since each difference (z1, . . . , zℓ) is realized as zi = xi − yi for exactly qnℓ pairs (x, y) ∈
(Fn)ℓ × (Fn)ℓ, we get

〈J, M〉 6
k0

∑
k=0

γn,ℓ,k · qnℓ · ‖M‖∞ 6

k0

∑
k=0

γn,ℓ,k.

We claim that

γn,ℓ,k 6

(
ℓ

k

)
· βn,k · (q

k)ℓ−k, (12)

where

βn,k :=
k−1

∏
j=0

(qn − qj)

is the number of linearly independent ordered k-tuples in Fn. Indeed, the upper bound in (12)
follows by picking k out of the ℓ vectors to have a linearly independent ordered k-tuple, then
picking each of the other ℓ− k positions to be a linear combination of these k vectors.

Using this bound along with (ℓk) 6 ℓk and βn,k 6 qnk, we get

〈J, M〉 6
k0

∑
k=0

γn,ℓ,k 6

k0

∑
k=0

ℓ
kqnkqkℓ 6 ℓ

k0 qnk0

(
qk0ℓ +

k0−1

∑
k=0

qkℓ

)

= ℓ
k0 qnk0

(
qk0ℓ +

qk0ℓ − 1

qℓ − 1

)
6 2ℓnqn2

qk0ℓ.
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Taking the ℓth root and recalling that qk0 = ALin
q (n, d) we conclude that

val(KrawtchoukLPF

Lin(n, d, ℓ))1/ℓ 6 (2ℓnqn2
)1/ℓALin

q (n, d).

Finally, the hypothesis ℓ > 9(n2 ln(q) + 1)/(ln(1 + ε))2 implies that (2ℓnqn2
)1/ℓ 6 1 + ε, which

concludes the proof (a detailed computation is included in Lemma B.1 in Appendix B). �

Remark 6.2. The same proof of Theorem 6.1 also works for D-codes over the weak Hamming
scheme Hn(F) yielding

val(Lℓ,Fℓ

Hn(F)
(Dℓ,Fℓ

))1/ℓ 6 (1 + ε)|C∗|,

where C∗ is a D-code in Hn(F) of maximum size. The same proof also applies to D-codes over
the strong Hamming scheme H∗

n(F).

6.2 Hierarchy Collapse for General Codes

In this section, we show that without the additional semantic linearity constraints imposed
by KrawtchoukLPLin(n, d, ℓ), the associated hierarchy KrawtchoukLP(n, d, ℓ) does not give any
improvement over the original Delsarte linear programming approach. The proof is in two steps:
first, we show that just tensoring the program does not change the relative value (Lemma 6.3).
Second, we show that refining the scheme and adding only natural (non-semantic) constraints
does not change the value of the associated Delsarte linear program (Lemma 6.4).

Recall that all of our linear programming hierarchies can be interpreted as a Delsarte LP of
some association scheme and some code constraints (see Remark 5.28). For these proofs, we then
heavily rely on the connection to the unsymmetrized program ϑ′ in Theorem 5.22.

Lemma 6.3. Let S1 = (X1, R1) and S2 = (X2, R2) be commutative association schemes and let
Di ⊆ Ri with DXi

∈ Di (i ∈ [2]). Then

val(LS1⊗S2
(D1 ⊗ D2)) = val(LS1

(D1)) · val(LS2
(D2)),

where

D1 ⊗ D2 := {r1 ⊗ r2 | r1 ∈ D1 ∧ r2 ∈ D2}.

Proof. By Theorem 5.22, for i ∈ [2], we have

val(LSi
(Di)) = ϑ′(GSi

(Di)), val(LS1⊗S2
(D1 ⊗ D2)) = ϑ′(GS1⊗S2

(D1 ⊗ D2)).

Given solutions M1 and M2 of the primal semi-definite programs S(GS1
(D1)) and S(GS2

(D2))
associated with ϑ′(GS1

(D1)) and ϑ′(GS2
(D2)), respectively, note that the tensor product M :=

M1 ⊗ M2 is a feasible solution of S(GS1⊗S2
(D1 ⊗ D2)) since for if ((x1, x2), (y1, y2)) ∈ r1 ⊗ r2 for

some r1 ⊗ r2 ∈ (R1 ⊗ R2) \ (D1 ⊗ D2), then (x1, y1) ∈ r1 or (x2, y2) ∈ r2, which implies that
M(x1,x2),(y1,y2) = 0. Since we also have

〈J, M〉 = 〈J, M1〉 · 〈J, M2〉,
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it follows that

val(LS1⊗S2
(D1 ⊗ D2)) > val(LS1

(D1)) · val(LS2
(D2)).

For the other inequality, given solutions (β1, N1) and (β2, N2) of the dual semi-definite pro-
grams S ′(GS1

(D1)) and S ′(GS2
(D2)), respectively, let β := β1 · β2 and N := N1 ⊗ N2. Since

Ni 4 βi I (i ∈ [2]), it follows that N 4 βI. Note also that if ((x1, x2), (y1, y2)) ∈ r1 ⊗ r2 for some
r1 ⊗ r2 ∈ D1 ⊗ D2, then since ri ∈ Di, we must have

N((x1,x2),(y1,y2)) = N1
x1 ,y1

· N2
x2 ,y2

> 1,

thus (β, N) is a feasible solution of S ′(GS1⊗S2
(D1 ⊗ D2)) which implies

val(LS1⊗S2
(D1 ⊗ D2)) 6 val(LS1

(D1)) · val(LS2
(D2)),

as desired. �

We now proceed to refinements.

Lemma 6.4. Let S′ = (X, R′) be a commutative refinement of a commutative association scheme
S = (X, R), let D ⊆ R be such that DX ∈ D and let

D′ := {r ∈ R′ | ∃r̂ ∈ R, r ⊆ r̂}.

Then

val(LS(D)) = val(LS′(D′)).

Proof. By Theorem 5.22, we have

val(LS(D)) = ϑ′(GS(D)), val(LS′(D′)) = ϑ′(GS′(D′)).

But note that the semi-definite programs S(GS(D)) and S(GS′(D′)) corresponding to ϑ′(GS(D))
and ϑ′(GS′(D′)) are identical (i.e., have exactly the same restrictions and objective value), so we
get ϑ′(GS(D)) = ϑ′(GS′(D′)) trivially. �

Composing Lemmas 6.3 and 6.4, we conclude that if we do not add any extra restrictions other
than the natural ones, the value of the Delsarte linear program remains unchanged.

Proposition 6.5 (Lifting). For every finite field F and every ℓ ∈ N+, we have

val(KrawtchoukLPF(n, d, ℓ))1/ℓ = val(DelsarteLPF(n, d)).

Proof. By Remark 5.28, the program KrawtchoukLPF(n, d, ℓ) can be seen as the Delsarte linear

program L
Hn(F)ℓ,Fℓ (D̂ℓ

d) of the refinement Hn(F)ℓ,Fℓ

of the tensor power Hn(F)ℓ using the natural

restrictions

D̂ℓ
d := {r ∈ Rℓ,Fℓ

2 | ∃r′ ∈ R⊗ℓ, r ⊆ r′},

so the result follows from Lemmas 6.3 and 6.4. �
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As a secondary corollary, we can also show that in the linear case, the logarithm of the value
of the hierarchy is subadditive. Let us note that this is also true of the hierarchy for non-linear
codes for trivial reasons.

Corollary 6.6. For every finite field F and every ℓ1, ℓ2 ∈ N+, we have

val(KrawtchoukLPF

Lin(n, d, ℓ1 + ℓ2))

6 val(KrawtchoukLPF

Lin(n, d, ℓ1)) · val(KrawtchoukLPF

Lin(n, d, ℓ2)),

Proof. By Remark 5.28, the program KrawtchoukLPF

Lin(n, d, ℓ) can be seen as the Delsarte linear

program LSℓ
(Dℓ,Fℓ

d ) of the translation scheme Sℓ := Hn(F)ℓ,Fℓ

.

Note also that for ℓ1, ℓ2 ∈ N+, if

D̂ℓ1,ℓ2

d := {r ∈ Rℓ1+ℓ2,Fℓ1+ℓ2 | ∃r1 ∈ Dℓ1,Fℓ1

d , ∃r2 ∈ Dℓ2,Fℓ2

d , r ⊆ r1 ⊗ r2},

then we have

Dℓ1+ℓ2,Fℓ1+ℓ2

d ⊆ D̂ℓ1,ℓ2

d ,

and thus we get

val(KrawtchoukLPF

Lin(n, d, ℓ1 + ℓ2))

= val(LSℓ1+ℓ2
(Dℓ1+ℓ2,Fℓ1+ℓ2

d ))

6 val(LSℓ1+ℓ2
(D̂ℓ1,ℓ2

d ))

= val(LSℓ1
(Dℓ1,Fℓ1

d )) · val(LSℓ2
(Dℓ2,Fℓ2

d ))

= val(KrawtchoukLPF

Lin(n, d, ℓ1)) · val(KrawtchoukLPF

Lin(n, d, ℓ2)),

where the second equality follows from Lemmas 6.3 and 6.4. �

7 Conclusion

In this paper, we presented a pair of hierarchies of linear programs KrawtchoukLPF(n, d, ℓ)
and KrawtchoukLPF

Lin(n, d, ℓ) that provide upper bounds for the maximum size of codes and lin-
ear codes, respectively, of distance d in the weak Hamming scheme Hn(F) over a finite field F.
We showed that while the first hierarchy KrawtchoukLPF(n, d, ℓ) collapses, the second hierarchy
obtains the true value of the maximum code up to rounding by level ℓ = O(n2). Finally, we
also showed how to extend these hierarchy constructions to translation schemes under the mild
assumption of factoring through types.

As we mentioned in the introduction, we view the main contribution of KrawtchoukLPLin as
being a hierarchy that is sufficiently powerful to ensure completeness while still being sufficiently
simple to remain a hierarchy of linear programs (as opposed to SDPs), and bearing enough simi-
larities with the original Delsarte’s LP to be amenable to theoretical analysis. Thus the main open
problem is to provide better upper or lower bounds to the optimum value of KrawtchoukLPLin.
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The contrast between completeness of KrawtchoukLPLin and collapse of KrawtchoukLP also
surfaces a very natural question: are optimum codes very far from being linear? Along these lines,
note that at level ℓ, KrawtchoukLPLin(n, d, ℓ) does not require full linearity of a code; namely, if
C ⊆ Fn

2 satisfies

∆

(
t

∑
j=1

xj,
t

∑
j=1

yj

)
/∈ [d − 1], (13)

for every t 6 ℓ and every x1, . . . , xt, y1, . . . , yt ∈ C, then aC is a feasible solution of the program
KrawtchoukLPLin(n, d, ℓ). For constant ℓ, the condition (13) is extremely mild and much weaker
than C being a linear (or even affine) code. For example, if 0 ∈ C, then (13) boils down to requiring
sums of at most 2ℓ codewords from C to not have Hamming weight in [d− 1]. This makes studying
KrawtchoukLPLin(n, d, ℓ) at constant levels ℓ quite interesting.

In Theorem 6.1, we showed the (approximate) completeness of KrawtchoukLPF

Lin(n, d, ℓ) at
level O(n2), via an unusual counting argument. The hierarchy does not have the same conceptual
structure as Sum-of-Squares or Sherali–Adams, so completeness does not follow in the same way.
In an earlier version of this manuscript, we conjectured that level n would have exact complete-
ness, and we believe we now have a proof of this result5. It is plausible that exact completeness of
KrawtchoukLPF

Lin(n, d, ℓ) can be attained at level O(k0), where k0 is the dimension of an optimum
linear code over F of distance d and blocklength n.

As we mentioned in the introduction, our techniques provide a higher-order version of the
linear program responsible for the first linear programming bound in [MRRW77]. The second
linear programming bound in [MRRW77] also consists of analyzing a Delsarte LP but for the
Johnson scheme instead of the Hamming scheme. However, since the Johnson scheme is not a
translation scheme, one cannot apply the theory developed in Section 5.2 directly. It is then natural
to ask if there is a suitable generalization of this construction that would apply to non-translation
schemes such as the Johnson scheme.

In Section 5.2, we showed how to generalize the hierarchy constructions to translation schemes
under the assumption of factoring through types. However, in the general case it is not clear that
the p and q-functions of Sℓ,T can be computed efficiently even if those of S can be computed ef-
ficiently. For the particular case of the binary Hamming scheme, we obtained efficient formulas
in Lemmas 3.19 and 3.20 (see also Proposition 3.21), but one can also compute the higher-order
Krawtchouk polynomials efficiently from the usual Krawtchouk polynomials. This raises the
natural question: for a translation scheme S in which fS,T factors through types, can the p and
q-functions of Sℓ,T be efficiently computed from the p and q-functions of S?

For the particular case of the strong Hamming scheme H∗
n(F) over an arbitrary finite field F,

an efficient formula for the higher-order F-Krawtchouk polynomials can be obtained by general-
izing Lemma 3.19: first, one generalizes the notion of Venn diagram configuration by saying that
(x1, . . . , xℓ) ∈ (Fn)ℓ has F-Venn diagram configuration g : Fℓ → {0, 1, . . . , n} if

g(t) = |{i ∈ [n] | ∀j ∈ [ℓ], (xj)i = tj}|

for every t ∈ Fℓ. Lemma 5.30 implies that fH∗
n(F),F

ℓ(x) = fH∗
n(F),F

ℓ(y) if and only if x and y have
the same F-Venn diagram configuration. By indexing the F-Krawtchouk polynomials of order ℓ

5To give appropriate time for the verification of this proof, we leave it to a future work. We are including this note
here to alert the interested reader that a proof might now be known.
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by F-Venn diagram configurations, a proof analogous to that of Lemma 3.19 gives

Kh(g) = ∑
F∈F

∏
t∈Fℓ

g(t)!

∏u∈Fℓ F(t, u)! ∏
t,u∈Fℓ

χt(u)
F(t,u),

for all F-Venn diagram configurations h, g : Fℓ → {0, 1, . . . , n}, where F is the set of functions
F : Fℓ × Fℓ → {0, 1, . . . , n} such that

∀t ∈ F
ℓ, ∑

u∈Fℓ

F(t, u) = g(t),

∀u ∈ F
ℓ, ∑

t∈Fℓ

F(t, u) = h(u).

One can also obtain efficient formulas for the F-Krawtchouk polynomials of order ℓ in the weak
Hamming scheme Hn(F) with similar methods (but the formulas are considerably more compli-
cated).
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A Deferred Binary Case Proofs

Since the proofs of Lemmas 3.3 and 3.4 use Lemma 3.15, we postpone them until after the
proof of the latter.

Lemma 3.14. For every n, ℓ ∈ N+, we have

im(ConfigV
n,ℓ) =

{
g : 2[ℓ] → R

∣∣∣∣∣ ∑
J⊆[ℓ]

g(J) = n ∧ ∀J ⊆ [ℓ], g(J) ∈ N

}
. (2)
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Proof. It is obvious that every Venn diagram configuration g is in the set in right-hand side of (2).
On the other hand, if g is in the set in the right-hand side of (2), then the hypotheses imply that
we can find a partition (XJ)J⊆[ℓ] of [n] into 2ℓ parts such that |XJ | = g(J). It is easy to see that the
words z1, . . . , zℓ ∈ Fn

2 defined by

(zj)i
def
= 1[∃J ⊆ [ℓ], (j ∈ J ∧ i ∈ XJ)] (i ∈ [n], j ∈ [ℓ])

have Venn diagram configuration g. �

Lemma 3.15. Let n, ℓ ∈ N+, let

Sn,ℓ
def
=

{
g ∈ R

2[ℓ]

∣∣∣∣∣ ∑
J⊆[ℓ]

g(J) = n

}
, Zn,ℓ

def
= {g ∈ R

2[ℓ] | g(∅) = 0}

and let Vn,ℓ : Zn,ℓ → Sn,ℓ and Dn,ℓ : Sn,ℓ → Zn,ℓ be given by

Dn,ℓ(g)(J)
def
= ∑

T⊆[ℓ]
|T∩J| odd

g(T), (3)

Vn,ℓ(g)(J)
def
= n · 1[J = ∅] + 21−ℓ ∑

T⊆[ℓ]

(−1)|T∩J|−1g(T), (4)

for every J ⊆ [ℓ].

Then Vn,ℓ and Dn,ℓ are inverses of each other and Config∆
n,ℓ = Dn,ℓ ◦ Config

V
n,ℓ and ConfigV

n,ℓ =

Vn,ℓ ◦ Config
∆
n,ℓ.

Proof. First note that for g ∈ Zn,ℓ, we have

∑
J⊆[ℓ]

Vn,ℓ(g)(J) = n + 21−ℓ ∑
T⊆[ℓ]

g(T) ∑
J⊆[ℓ]

(−1)|T∩J|−1 = n − 21−ℓ ∑
T⊆[ℓ]

g(∅)2ℓ = n,

so Vn,ℓ is well-defined. Since for g ∈ Sn,ℓ, we clearly have Dn,ℓ(g)(∅) = 0, it follows that Dn,ℓ is
also well-defined.

Let now g ∈ Sn,ℓ and note that

Vn,ℓ(Dn,ℓ(g))(J) = n · 1[J = ∅] + 21−ℓ ∑
T⊆[ℓ]

(−1)|T∩J|−1 ∑
K⊆[ℓ]

|K∩T| odd

g(K)

= n · 1[J = ∅] + 21−ℓ ∑
K⊆[ℓ]

g(K) ∑
T⊆[ℓ]

|K∩T| odd

(−1)|T∩J|−1.
(14)
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But note that

∑
T⊆[ℓ]

|K∩T| odd

(−1)|T∩J|−1 = ∑
T⊆[ℓ]

(−1)|T∩J|−1 1 − (−1)|K∩T|

2

=
1

2

(
− ∑

T⊆[ℓ]

(−1)|T∩J| + ∑
T⊆[ℓ]

(−1)|T∩(J△K)|

)

= 2ℓ−1(−1[J = ∅] + 1[J = K]),

so plugging this in (14), we get

Vn,ℓ(Dn,ℓ(g))(J) = n · 1[J = ∅] + ∑
K⊆[ℓ]

g(K)(−1[J = ∅] + 1[J = K]) = g(J),

where the second equality follows since ∑K⊆[ℓ] g(K) = n as g ∈ Sn,ℓ.

Therefore Vn,ℓ is a left-inverse of Dn,ℓ. But since both Sn,ℓ and Zn,ℓ are R-linear subspaces of
dimension 2ℓ − 1 and Vn,ℓ and Dn,ℓ are R-linear, it follows that Vn,ℓ and Dn,ℓ are inverses of each
other.

By Lemma 3.14, we know that im(ConfigV
n,ℓ) ⊆ Sn,ℓ. On the other hand, if g ∈ im(ConfigV

n,ℓ)

and ConfigV
n,ℓ(z1, . . . , zℓ) = g, then it is straightforward to check that Config∆

n,ℓ(z1, . . . , zℓ) = Dn,ℓ(g),

thus Config∆
n,ℓ = Dn,ℓ ◦Config

V
n,ℓ. Applying Vn,ℓ to both sides, we get Vn,ℓ ◦Config

∆
n,ℓ = ConfigV

n,ℓ. �

Lemma 3.3. We have

∣∣∣im(Config∆
n,ℓ)

∣∣∣ =
(

n + 2ℓ − 1

2ℓ − 1

)
.

Proof. By Lemma 3.15, it is sufficient to prove that |im(ConfigV
n,ℓ)| = (n+2ℓ−1

2ℓ−1 ). But the number of
valid Venn diagram configurations is easy to count using Lemma 3.14: it is exactly the number of

partitions of n indistinguishable objects into 2ℓ distinguishable parts, which is (n+2ℓ−1
2ℓ−1 ). �

Lemma 3.4. Let n, ℓ ∈ N+ and consider the natural (diagonal) right action of Sn on (Fn
2)

ℓ given
by (x1, . . . , xℓ) · σ := (y1, . . . , yℓ), where (yj)i := (xj)σ(i) ((x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn

2)
ℓ, σ ∈ Sn,

j ∈ [ℓ], i ∈ [n]).

The following are equivalent for (x1, . . . , xℓ), (y1, . . . , yℓ) ∈ (Fn
2)

ℓ.

i. (x1, . . . , xℓ) and (y1, . . . , yℓ) are in the same Sn-orbit.

ii. Config∆
n,ℓ(x1, . . . , xℓ) = Config∆

n,ℓ(y1, . . . , yℓ).

Proof. By Lemma 3.15, item (ii) is equivalent to:

iii. ConfigV
n,ℓ(x1, . . . , xℓ) = ConfigV

n,ℓ(y1, . . . , yℓ).
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Let us prove that (i)⇒(iii), if (y1, . . . , yℓ) = (x1, . . . , xℓ) · σ for some σ ∈ Sn, then for every
J ⊆ [ℓ], we have

ConfigV
n,ℓ(y1, . . . , yℓ) = |{i ∈ [n] | {j ∈ [ℓ] | (yj)i = 1} = J}|

= |{i ∈ [n] | {j ∈ [ℓ] | (xj)σ(i) = 1} = J}| = ConfigV
n,ℓ(x1, . . . , xℓ).

To show (iii)⇒(i), let (XJ)J⊆[ℓ] and (YJ)J⊆[ℓ] be the partitions corresponding to (x1, . . . , xℓ) and
(y1, . . . , yℓ), respectively, given by

XJ
def
=

⋂

j∈J

supp(xj) ∩
⋂

j∈[ℓ]\J

([n] \ supp(xj)),

YJ
def
=

⋂

j∈J

supp(yj) ∩
⋂

j∈[ℓ]\J

([n] \ supp(yj)).

Since ConfigV
n,ℓ(x1, . . . , xℓ) = ConfigV

n,ℓ(y1, . . . , yℓ), it follows that |XJ | = |YJ | for every J ⊆ [ℓ],
so there exists a permutation σ ∈ Sn such that σ(XJ) = YJ for every J ⊆ [ℓ]. Since

(xj)i
def
= 1[∃J ⊆ [ℓ], j ∈ J ∧ i ∈ XJ ],

(yj)i
def
= 1[∃J ⊆ [ℓ], j ∈ J ∧ i ∈ YJ ],

for every j ∈ [ℓ] and every i ∈ [n], it follows that (x1, . . . , xℓ) · σ = (y1, . . . , yℓ). �

Lemma 3.16. For a symmetric difference configuration g ∈ im(Config∆
n,ℓ), we have

|g| = Kg(0) =

(
n

Vn,ℓ(g)

)
=

n!

∏J⊆[ℓ] Vn,ℓ(g)(J)!
,

where Vn,ℓ is given by (4).

Proof. By Lemma 3.15, |g| is precisely the number of (z1, . . . , zℓ) ∈ Fn
2 whose Venn diagram config-

uration is Vn,ℓ(g). But the set of such (z1, . . . , zℓ) is naturally in bijection with the set of partitions
(XJ)J⊆[ℓ] of [n] such that |XJ | = Vn,ℓ(g)(J) (J ⊆ [ℓ]) and the number of the latter is clearly the
multinomial

(
n

Vn,ℓ(g)

)
=

n!

∏J⊆[ℓ] Vn,ℓ(g)(J)!
.

Finally, from (1), we also have

Kg(0) = ∑
(y1,...,yℓ)∈g

ℓ

∏
j=1

χyj
(0) = |g|. �

Lemma 3.17. [Orthogonality] For n, ℓ ∈ N+ and h, h′ ∈ im(Config∆
n,ℓ), we have

∑
g∈im(Config∆

n,ℓ)

|g| · Kh(g) · Kh′(g) = 2ℓn · |h| · 1[h = h′].

51



Proof. By Remark 3.8, we have

Kh(g) = 2ℓn · 1̂h(x), Kh′(g) = 2ℓn · 1̂h′(x),

and thus we have

∑
g∈im(Config∆

n,ℓ)

|g| · Kh(g) · Kh′(g) = ∑
x∈(Fn

2 )
ℓ

22ℓn · 1̂h(x) · 1̂h′(x)

= 22ℓn · 〈1h,1h′〉

= 2ℓn · |h| · 1[h = h′],

as desired. �

Since the proof of Lemma 3.18 uses Lemma 3.19, we prove the latter first.

Lemma 3.19. For every n, ℓ ∈ N+ and every g, h ∈ im(Config∆
n,ℓ), we have

Kh(g) = ∑
F∈F

∏
J⊆[ℓ]

Vn,ℓ(g)(J)!

∏K⊆[ℓ] F(J, K)!
·

ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K),

where F is the set of functions F : 2[ℓ] × 2[ℓ] → {0, 1, . . . , n} such that

∀J ⊆ [ℓ], ∑
K⊆[ℓ]

F(J, K) = Vn,ℓ(g)(J),

∀K ⊆ [ℓ], ∑
J⊆[ℓ]

F(J, K) = Vn,ℓ(h)(K),

and Vn,ℓ is given by (4).

Proof. For an ℓ-tuple z = (z1, . . . , zℓ) ∈ (Fn
2)

ℓ, let Pz = (Pz
J )J⊆[ℓ] be the natural partition of [n]

associated with z given by

Pz
J :=

⋂

j∈J

supp(zj) ∩
⋂

j∈[ℓ]\J

([n] \ supp(zj)).

Note that by Lemma 3.15, if the symmetric difference configuration of z is some function f , then
it has Venn diagram configuration Vn,ℓ( f ) and thus |Pz

J | = Vn,ℓ( f )(J) for every J ⊆ [ℓ].

Fix an ℓ-tuple x = (x1, . . . , xℓ) ∈ g whose symmetric difference configuration is g. We now
classify the ℓ-tuples y = (y1, . . . , yℓ) ∈ h of symmetric difference configuration h based on how
the partitions Px and Py interact; namely, to each such y we associate the function Fy : 2[ℓ] × 2[ℓ] →
{0, 1, . . . , n} given by

Fy(J, K) := |Px
J ∩ P

y
K|

for every J, K ⊆ [ℓ].
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By our previous observations, we know that for every J ⊆ [ℓ], we have

∑
K⊆[ℓ]

Fy(J, K) = ∑
K⊆[ℓ]

|Px
J ∩ P

y
K| = |Px

J | = Vn,ℓ(g)(J).

Similarly, we know that for every K ⊆ [ℓ], we have

∑
J⊆[ℓ]

Fy(J, K) = ∑
J⊆[ℓ]

|Px
J ∩ P

y
K| = |P

y
K| = Vn,ℓ(h)(K).

Therefore Fy ∈ F .

Note further that for each j ∈ [ℓ] we have

supp(xj) ∩ supp(yj) =
⋃

J,K⊆[ℓ]
j∈J∩K

Px
J ∩ P

y
K,

so in the formula (1), the summand of y ∈ h is given by

ℓ

∏
j=1

χyj
(xj) =

ℓ

∏
j=1

(−1)supp(xj)∩supp(yj) =
ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K).

For each F ∈ F , let nF be the number of y ∈ h such that Fy = F. It is easy to compute

nF from the definition of Fy: since Fy = F if and only if the partition (Px
J ∩ P

y
K)J,K⊆[ℓ] satisfies

|Px
J ∩ P

y
K| = F(J, K), it follows that to get F = Fy, each part Px

J (whose size is Vn,ℓ(g)) has to be

partitioned into 2ℓ parts of sizes (F(J, K))K⊆[ℓ] and thus nF is given by the following product of
multinomials

nF = ∏
J⊆[ℓ]

(
Vn,ℓ(g)(J)

F(J, · )

)
= ∏

J⊆[ℓ]

Vn,ℓ(g)(J)!

∏K⊆[ℓ] F(J, K)!
.

Putting everything together, we get

Kh(g) = ∑
F∈F

nF ·
ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K)

= ∑
F∈F

∏
J⊆[ℓ]

Vn,ℓ(g)(J)!

∏K⊆[ℓ] F(J, K)!
·

ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K),

as desired. �

Lemma 3.18. [Reflection] For n, ℓ ∈ N+ and g, h ∈ im(Config∆
n,ℓ), we have

Kh(g)

|h|
=

Kg(h)

|g|
.

53



Proof. Let Vn,ℓ the function of Lemma 3.15 given by (4). By Lemma 3.16, we have

|g|

|h|
=

( n
Vn,ℓ(g))

( n
Vn,ℓ(h)

)
= ∏

J⊆[ℓ]

Vn,ℓ(h)(J)!

Vn,ℓ(g)(J)!

and thus by using the formula of Lemma 3.19, we get

|g|

|h|
· Kh(g) = Kg(h),

which gives the result. �

Lemma 3.20. Let n, ℓ ∈ N+ with n > 2, let g, h ∈ im(Config∆
n,ℓ) be symmetric difference configura-

tions and let J0 ⊆ [ℓ] be such that Vn,ℓ(g)(J0) > 0 for Vn,ℓ given by (4). Then

Kh(g) = ∑
K0⊆[ℓ]

Vn,ℓ(h)(K0)>0

(−1)|J0∩K0| · Kh⊖K0
(g ⊖ J0), (5)

Kh(g) = − ∑
K0⊆[ℓ]

V(h)(K0)>0
K0 6=∅

Kh⊕∅⊖K0
(g) + ∑

K0⊆[ℓ]
V(h)(K0)>0

(−1)|J0∩K0| · Kh⊕∅⊖K0
(g ⊕∅⊖ J0), (6)

where

h ⊖ K0 := Dn−1,ℓ(Vn,ℓ(h)− 1{K0}), g ⊖ J0 := Dn−1,ℓ(Vn,ℓ(g)− 1{J0}),

h ⊕∅ := Dn+1,ℓ(Vn,ℓ(h) + 1{∅}), g ⊕∅ := Dn+1,ℓ(Vn,ℓ(g) + 1{∅}),

and Dn−1,ℓ and Dn+1,ℓ are given by (3).

Proof. We start by proving (5).

First note that if K0 ⊆ [ℓ] is such that Vn,ℓ(h)(K0) > 0 for some symmetric difference configu-
ration h ∈ im(Config∆

n,ℓ), then Lemmas 3.14 and 3.15 imply that Vn,ℓ(h) − 1{K0} is a Venn diagram

configuration in the space F
n−1
2 (and level ℓ) and thus h ⊖ K0 = Dn−1,ℓ(Vn,ℓ(h)− 1{K0}) is a sym-

metric difference configuration in the space F
n−1
2 . This also shows that g ⊖ J0 is a symmetric

difference configuration in the space F
n−1
2 .

Let us denote by Fg,h the set of functions F : 2[ℓ] × 2[ℓ] → {0, 1, . . . , n} such that

∀J ⊆ [ℓ], ∑
K⊆[ℓ]

F(J, K) = Vn,ℓ(g)(J),

∀K ⊆ [ℓ], ∑
J⊆[ℓ]

F(J, K) = Vn,ℓ(h)(K).

We define Fg⊖J0,h⊖K0
analogously (replacing n with n − 1).

By Lemma 3.19, we have

Kh(g) = ∑
F∈Fg,h

∏
J⊆[ℓ]

Vn,ℓ(g)(J)!

∏K⊆[ℓ] F(J, K)!
·

ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K).
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Using the multinomial identity

Vn,ℓ(g)(J0)!

∏K⊆[ℓ] F(J0, K)!
=

(
Vn,ℓ(g)(J0)

F(J0, · )

)
= ∑

K0⊆[ℓ]
F(J0,K0)>0

(Vn,ℓ(g)(J0)− 1)!

(F(J0, K0)− 1)! ∏K⊆[ℓ]
K 6=K0

F(J0, K)!

and noting that F(J0, K0) > 0 implies V(h)(K0) > 0, we obtain

Kh(g) = ∑
K0⊆[ℓ]

V(h)(K0)>0

∑
F∈Fg,h

F(J0,K0)>0

(Vn,ℓ(g)(J0)− 1)!

(F(J0, K0)− 1)! ∏K⊆[ℓ]
K 6=K0

F(J0, K)!
, ·

ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F(J,K)

= ∑
K0⊆[ℓ]

∑
F′∈Fg⊖J0,h⊖K0

∏
J⊆[ℓ]

Vn−1,ℓ(g ⊖ J0)(J)!

∏K⊆[ℓ] F′(J, K)!
·

ℓ

∏
j=1

∏
J,K⊆[ℓ]
j∈J∩K

(−1)F′(J,K) · (−1)|J0∩K0|

where the second equality follows from the substitution corresponding to the bijection

{F ∈ Fg,h | F(J0, K0) > 0} → Fg⊖J0,h⊖K0

that maps F to F′ := F − 1{(J0,K0)}.

Equation (5) now follows by applying Lemma 3.19 again.

Note now that since h ⊕∅⊖∅ = h, equation (6) is equivalent to

∑
K0⊆[ℓ]

V(h)(K0)>0

Kh⊕∅⊖K0
(g) = ∑

K0⊆[ℓ]
V(h)(K0)>0

(−1)|J0∩K0| · Kh⊕∅⊖K0
(g ⊕∅⊖ J0).

By (5), both sides of the above are equal to Kh⊕∅(g ⊕∅): the left-hand side using (5) with J0 = ∅

and the right-hand side using J0 = J0. �

B Deferred Computations

Lemma B.1. Let ε ∈ (0, 1) and n, q ∈ N+ be positive integers with q ≥ 2. For ℓ > 9(n2 ln(q) +
1)/(ln(1 + ε))2, we have

(2ℓnqn2
)1/ℓ 6 1 + ε.

Proof. The statement is equivalent to

ln 2 + n ln ℓ+ n2 ln q 6 ℓ ln(1 + ε),

which in turn is equivalent to

n2 ln q + ln 2

ln(1 + ε)
6 ℓ

(
1 −

ln ℓ

ℓ
·

n

ln(1 + ε)

)
. (15)
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We claim that it is sufficient to show that

ln ℓ

ℓ
6

8

9
·

ln(1 + ε)

n
. (16)

Indeed, if this is the case, then the right-hand side of (15) is at least ℓ/9, which in turn is at least
(n2 ln(q) + 1)/(ln(1 + ε))2 and thus (15) follows from ln(1 + ε) 6 ln 2 6 1.

To show (16), first note that the function f (t)
def
= ln(t)/t is decreasing when t > e and since

ℓ >
9(n2 ln(q) + 1)

(ln(1 + ε))2
>

9n2 ln(q)

(ln(1 + ε))2
> e,

it is sufficient to prove that

f

(
9n2 ln(q)

(ln(1 + ε))2

)
6

8

9
·

ln(1 + ε)

n
. (17)

But since

f

(
9n2 ln(q)

(ln(1 + ε))2

)
=

ln 9 + 2 ln n + ln ln q + 2 ln
1

ln(1 + ε)

9n2 ln(q)

ln(1 + ε)2

,

(17) is equivalent to

ln 9 + 2 ln n + ln ln q + 2 ln
1

ln(1 + ε)
6

8n ln(q)

ln(1 + ε)
.

This is clearly true by recalling that ln(1 + ε) 6 1 and upper bounding the terms on the left-hand
side of the above respectively by

3, 2n, ln(q),
2

ln(1 + ε)
.

The last three bounds follow from ln x 6 x for x > 0. �
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