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Rita Jiménez Rolland and Jennifer C. H. Wilson
1. Moduli Spaces and Stability
Moduli spaces are spaces that parameterize topological or
geometric data. They often appear in families; for exam-
ple, the configuration spaces of 𝑛 points in a fixed mani-
fold, the Grassmannians of linear subspaces of dimension𝑑 in ℝ∞, and the moduli spaces ℳ𝑔 of Riemann surfaces
of genus 𝑔. These families are usually indexed by some
geometrically defined quantity, such as the number 𝑛 of
points in a configuration, the dimension 𝑑 of the linear
subspaces, or the genus 𝑔 of a Riemann surface. Under-
standing the topology of these spaces has been a subject
of intense interest for the last 60 years.

For a family of moduli spaces {𝑋𝑛}𝑛 we ask:

Question 1.1. How does the topology of the moduli
spaces 𝑋𝑛 change as the parameter 𝑛 changes?
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For many natural examples of moduli spaces 𝑋𝑛, some
aspects of the topology get more complicated as the pa-
rameter 𝑛 gets larger. For instance, the dimension of 𝑋𝑛
frequently increases with 𝑛 as well as the number of gener-
ators and relations needed to give a presentation of their
fundamental groups. But, maybe surprisingly, there are
sometimes features of the moduli spaces that ‘stabilize’ as𝑛 increases. In this survey we will describe some forms of
stability and some examples of where they arise.
1.1. Homology and cohomology. Algebraic topology is
a branch of mathematics that uses tools from abstract alge-
bra to classify and study topological spaces. By construct-
ing algebraic invariants of topological spaces, we can trans-
late topological problems into (typically easier) algebraic
ones. An algebraic invariant of a space is a quantity or alge-
braic object, such as a group, that is preserved under home-
omorphism or homotopy equivalence. One example is
the fundamental group 𝜋1(𝑋, 𝑥0) of homotopy classes of
loops in a topological space 𝑋 based at the point 𝑥0. Ho-
mology and cohomology groups are other examples and
are the focus of this article. Their definitions are more sub-
tle than those of homotopy groups like 𝜋1(𝑋, 𝑥0), but they
are often more computationally tractable and are widely
studied.
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Given a topological space 𝑋 and 𝑘 ∈ ℤ≥0, we can asso-
ciate groups 𝐻𝑘(𝑋; 𝑅) and 𝐻𝑘(𝑋; 𝑅), the 𝑘th homology and
cohomology groups (with coefficients in 𝑅), where 𝑅 is a com-
mutative ring such as ℤ orℚ. These algebraic invariants de-
fine functors from the category of topological spaces to the
category of 𝑅-modules: for any continuous map of topo-
logical spaces 𝑓∶ 𝑋 → 𝑌 there are induced 𝑅-linear maps𝑓∗ ∶ 𝐻𝑘(𝑋; 𝑅) → 𝐻𝑘(𝑌; 𝑅) (covariant),𝑓∗ ∶ 𝐻𝑘(𝑌; 𝑅) → 𝐻𝑘(𝑋; 𝑅) (contravariant).
The cohomology groups 𝐻∗(𝑋; 𝑅) = ⨁𝑘 𝐻𝑘(𝑋; 𝑅) in fact
have the structure of a graded 𝑅-algebra with respect to the
cup product operation.

The group𝐻0(𝑋; ℤ) is the free abelian group on the path
components of the topological space 𝑋 and 𝐻0(𝑋; ℤ) is
its dual. If 𝑋 is path-connected, 𝐻1(𝑋; ℤ) is naturally iso-
morphic to the abelianization of 𝜋1(𝑋, 𝑥0) with respect to
any basepoint 𝑥0, and its elements are certain equivalence
classes of (unbased) loops in 𝑋 .

For a topological group 𝐺 there exists an associated clas-
sifying space B𝐺 for principal 𝐺-bundles. It is constructed
as the quotient of a (weakly) contractible space E𝐺 by a
proper free action of 𝐺. The space B𝐺 is unique up to
(weak) homotopy equivalence. If 𝐺 is a discrete group,
then B𝐺 is precisely an Eilenberg-MacLane space 𝐾(𝐺, 1), i.e.,
a path-connected topological space with 𝜋1(B𝐺) ≅ 𝐺 and
trivial higher homotopy groups. For example, up to ho-
motopy equivalence, Bℤ is the circle, Bℤ2 is the infinite-
dimensional real projective space ℝP∞, and the Grassma-
nian of 𝑑-dimensional linear subspaces in ℝ∞ is BGL𝑑(ℝ).

Some motivation to study the cohomology of B𝐺: its
cohomology classes define characteristic classes of princi-
pal 𝐺-bundles, invariants that measure the ‘twistedness’
of the bundle. For instance the cohomology algebra𝐻∗(BGL𝑑(ℝ); ℤ) can be described in terms of Pontryagin
and Stiefel–Whitney classes.

With B𝐺 we can define the group homology and group co-
homology of a discrete group 𝐺 by𝐻𝑘(𝐺; 𝑅) ≔ 𝐻𝑘(B𝐺; 𝑅), 𝐻𝑘(𝐺; 𝑅) ≔ 𝐻𝑘(B𝐺; 𝑅).

We can refine Question 1.1 to the following:

Question 1.2. Given family {𝑋𝑛}𝑛 of moduli spaces or
discrete groups, how do the homology and cohomology
groups of the 𝑛th space in the sequence change as the pa-
rameter 𝑛 increases?

In this article we discuss Question 1.2 with a particu-
lar focus on the families of configuration spaces and braid
groups. For further reading1 we recommend R. Cohen’s
survey [Coh09] on stability of moduli spaces.

1A version of this note with an extended reference list is available at https://
arxiv.org/abs/2201.04096.

1.2. Homological stability.

Definition 1.3. A sequence of spaces or groups {𝑋𝑛}𝑛≥0
with maps𝑋0 𝑠0−→ … 𝑠𝑛−2−−−→ 𝑋𝑛−1 𝑠𝑛−1−−−→ 𝑋𝑛 𝑠𝑛−→ 𝑋𝑛+1 𝑠𝑛+1−−−→ …
satisfies homological stability if, for each 𝑘, the induced map
in degree-𝑘 homology(𝑠𝑛)∗ ∶ 𝐻𝑘(𝑋𝑛; ℤ) → 𝐻𝑘(𝑋𝑛+1; ℤ)
is an isomorphism for all 𝑛 ≥ 𝑁𝑘 for some stability thresh-
old 𝑁𝑘 ∈ ℤ depending on 𝑘. The maps 𝑠𝑛 are sometimes
called stabilization maps and the set {(𝑛, 𝑘) ∈ ℤ2 | 𝑛 ≥ 𝑁𝑘}
is the stable range.

If the maps 𝑠𝑛 ∶ 𝑋𝑛 → 𝑋𝑛+1 are inclusions we define𝑋∞ ∶= ⋃𝑛≥1 𝑋𝑛 to be the stable group or space. Under
mild assumptions, if {𝑋𝑛}𝑛 satisfies homological stability,
then 𝐻𝑘(𝑋∞; ℤ) ≅ 𝐻𝑘(𝑋𝑛; ℤ) for 𝑛 ≥ 𝑁𝑘.
We call the groups 𝐻𝑘(𝑋∞; ℤ) the stable homology.
2. An Example: Configuration Spaces

and the Braid Groups
2.1. A primer on configuration spaces.

Definition 2.1. Let 𝑀 be a topological space, such as
a graph or a manifold. The (ordered) configuration space𝐹𝑛(𝑀) of 𝑛 particles on 𝑀 is the space𝐹𝑛(𝑀) = {(𝑥1, … , 𝑥𝑛) ∈ 𝑀𝑛 | 𝑥1, … , 𝑥𝑛 distinct},
topologized as a subspace of𝑀𝑛. Notably, 𝐹0(𝑀) is a point
and 𝐹1(𝑀) = 𝑀.

Configuration spaces have a long history of study in con-
nection to topics as broad-ranging as homotopy groups of
spheres and robotic motion planning.

Oneway to conceptualize the configuration space 𝐹𝑛(𝑀)
is as the complement of the union of subspaces of 𝑀𝑛 de-
fined by equations of the form 𝑥𝑖 = 𝑥𝑗.

𝐹2([0, 1]) =
Figure 1. The space 𝐹2([0, 1]) is obtained by deleting the
diagonal from the square [0, 1]2.

In other words, we can construct 𝐹𝑛(𝑀) by deleting the
“fat diagonal” of𝑀𝑛, consisting of all 𝑛-tuples in𝑀𝑛 where
two or more components coincide. In the simplest case,
when 𝑛 = 2 and𝑀 is the interval [0, 1], we see that 𝐹2([0, 1])
consists of two contractible components, as in Figure 1.

Another way we can conceptualize 𝐹𝑛(𝑀) is as the space
of embeddings of the discrete set {1, 2, … , 𝑛} into𝑀, appro-
priately topologized. Wemay visualize a point in 𝐹𝑛(𝑀) by
labelling 𝑛 points in 𝑀, as in Figure 2.
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� ∈ 𝐹4(Σ)

Figure 2. A point in the ordered configuration space of an
open surface Σ.

From this perspective, we may reinterpret the path com-
ponents of 𝐹2([0, 1]): one component consists of all con-
figurations where particle 1 is to the left of particle 2, and
one component has particle 1 on the right. See Figure 3.

𝐹2([0, 1]) =
�

�

�

�
Figure 3. The path components of 𝐹2([0, 1]).

Any path through [0, 1]2 that interchanges the rela-
tive positions of the two particles must involve a ‘colli-
sion’ of particles, and hence exit the configuration space𝐹2([0, 1]) ⊆ [0, 1]2. We encourage the reader to verify that,
in general, the configuration space 𝐹𝑛([0, 1]) is the union
of 𝑛! contractible path components, indexed by elements
of the symmetric group 𝑆𝑛. See Figure 4.

�� � � ∈ 𝐹4([0, 1])
Figure 4. A point in 𝐹4([0, 1]) in the path component indexed
by the permutation 2143 in 𝑆4.

In contrast, if 𝑀 is a connected manifold of dimension2 or more, then 𝐹𝑛(𝑀) is path-connected: given any two
configurations, we can construct a path through 𝑀𝑛 from
one configuration to the other without any ‘collisions’ of
particles. In this case 𝐻0(𝐹𝑛(𝑀); ℤ) ≅ ℤ for all 𝑛 ≥ 0, and
this is our first glimpse of stability in these spaces as 𝑛 →∞.

For any space 𝑀, the symmetric group 𝑆𝑛 acts freely
on 𝐹𝑛(𝑀) by permuting the coordinates of an 𝑛-tuple(𝑥1, … , 𝑥𝑛), equivalently, by permuting the labels on a
configuration as in Figure 2. The orbit space 𝐶𝑛(𝑀) =𝐹𝑛(𝑀)/𝑆𝑛 is the (unordered) configuration space of 𝑛 particles
on𝑀. This is the space of all 𝑛-element subsets of𝑀, topol-
ogized as the quotient of 𝐹𝑛(𝑀). The reader may verify that
the quotient map (illustrated in Figure 5) is a regular 𝑆𝑛-
covering space map. In particular, by covering space the-
ory, the quotient map 𝐹𝑛(𝑀) → 𝐶𝑛(𝑀) induces an injective
map on fundamental groups.

In the case that 𝑀 is the complex plane ℂ, we can iden-
tify 𝐶𝑛(ℂ) with the space of monic degree-𝑛 polynomials
over ℂ with distinct roots, by mapping a configuration{𝑧1, … , 𝑧𝑛} to the polynomial 𝑝(𝑥) = (𝑥−𝑧1)⋯ (𝑥−𝑧𝑛). For
this reason the topology of 𝐶𝑛(ℂ) has deep connections to
classical problems about finding roots of polynomials.

𝐹𝑛(𝑀)

𝐶𝑛(𝑀) ≔ 𝐹𝑛(𝑀)/𝑆𝑛

�
�

�
�

Figure 5. The quotient map 𝐹𝑛(𝑀) → 𝐶𝑛(𝑀).
We will address Question 1.2 for the families {𝐶𝑛(𝑀)}𝑛

and {𝐹𝑛(𝑀)}𝑛, but we first specialize to the case when𝑀 = ℂ. Although the spaces 𝐶𝑛(ℂ) and 𝐹𝑛(ℂ) are path-
connected, in contrast to the configuration spaces of 𝑀 =[0, 1], they have rich topological structures: they are classi-
fying spaces for the braid groups and the pure braid groups,
respectively, which we now introduce.
2.2. A primer on the braid groups. Since 𝐹𝑛(ℂ) is path-
connected, as an abstract group its fundamental group is
independent of choice of basepoint. For path-connected
spaces, we sometimes drop the basepoint from the nota-
tion for 𝜋1.
Definition 2.2. The fundamental group 𝜋1(𝐶𝑛(ℂ)) is
called the braid group 𝐁𝑛 and 𝜋1(𝐹𝑛(ℂ)) is the pure braid
group 𝐏𝑛.

We can understand 𝜋1(𝐹𝑛(ℂ)) as follows. Choose a base-
point configuration (𝑧1, … , 𝑧𝑛) in 𝐹𝑛(ℂ), and then we may
visualize a loop as a ‘movie’ where the 𝑛 particles contin-
uously move around ℂ, eventually returning pointwise to
their starting positions. If we represent time by a third spa-
cial dimension, as shown in Figure 6, we can view the par-
ticles as tracing out a braid. Note that, up to homeomor-
phism, we may view 𝐹𝑛(ℂ) as the configuration space of
the open 2-disk.

� �

� �

�

�

�

�

�

�
Figure 6. A visualization of a loop 𝛾(𝑡) in 𝐹5(ℂ) representing an
element of 𝜋1(𝐹5(ℂ)) ≅ 𝐏5.

Loops in 𝐶𝑛(ℂ) are similar, with the crucial distinction
that the 𝑛 particles are unlabelled and indistinguishable,
and so need only return set-wise to their basepoint config-
uration.
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Figure 7. A braid on 3 strands.

It is traditional to represent elements of the group𝐁𝑛 and its subgroup 𝐏𝑛 by equivalence classes of braid
diagrams, as illustrated in Figure 7. These braid diagrams
depict 𝑛 strings (called strands) in Euclidean 3-space, an-
chored at their tops at 𝑛 distinguished points in a hori-
zontal plane, and anchored at their bottoms at the same 𝑛
points in a parallel plane. The strands may move in space
but may not double back or pass through each other. The
group operation is concatenation, as in Figure 8.

Figure 8. The group structure on 𝐁𝑛.
The braid groups were defined rigorously by Artin in

1925, but the roots of this notion appeared in the earlier
work of Hurwitz, Firckle, and Klein in the 1890s and of
Vandermonde in 1771. This topological interpretation of
braid groups as the fundamental groups of configuration
spaces was formalized in 1962 by Fox and Neuwirth.

Artin established presentations for the braid group and
the pure braid group. His presentation for 𝐁𝑛,𝐁𝑛 ≅ ⟨𝜎1, 𝜎2 … , 𝜎𝑛−1 ||| 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 if |𝑖 − 𝑗| ≥ 2𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 ⟩,
uses (𝑛 − 1) generators 𝜎𝑖 corresponding to half-twists of
adjacent strands, as in Figure 9.

Figure 9. Artin’s generator 𝜎𝑖 for 𝐁𝑛.
Artin also gave a finite presentation for 𝐏𝑛. We will not

state it in full, but comment that there are (𝑛2) generators𝑇𝑖𝑗, (𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}) corresponding to full twists of
each pair of strands, as in Figure 10.

Corresponding to the regular covering space map𝐹𝑛(ℂ) → 𝐶𝑛(ℂ) of Figure 5, there is a short exact sequence
of groups 1 → 𝐏𝑛 → 𝐁𝑛 → 𝑆𝑛 → 1.

j 

Figure 10. Artin’s generator 𝑇𝑖𝑗 = 𝑇𝑗𝑖 for 𝐏𝑛.
The quotient map 𝐁𝑛 → 𝑆𝑛, shown in Figure 11, takes a
braid, forgets the 𝑛 strands and simply records the permu-
tation induced on their endpoints. The generator 𝜎𝑖 maps
to the simple transposition (𝑖 𝑖 + 1). The kernel is those
braids that induce the trivial permutation, i.e., the pure
braid group.

1

1

32

2 3
Figure 11. The quotient map 𝐁𝑛 → 𝑆𝑛.
2.3. Homological stability for the braid groups. Arnold
calculated some homology groups of 𝐁𝑛 in low degree (Ta-
ble 1).

𝑘 0 1 2 3 4 5𝑛
0 ℤ
1 ℤ
2 ℤ ℤ
3 ℤ ℤ
4 ℤ ℤ ℤ2
5 ℤ ℤ ℤ2
6 ℤ ℤ ℤ2 ℤ2 ℤ3
7 ℤ ℤ ℤ2 ℤ2 ℤ3
8 ℤ ℤ ℤ2 ℤ2 ℤ6 ℤ3
9 ℤ ℤ ℤ2 ℤ2 ℤ6 ℤ3

Table 1. The homology groups 𝐻𝑘(𝐁𝑛; ℤ). Empty spaces are
zero groups. Stable groups are shaded.

The 𝑘 = 0 column follows from the fact that 𝐶𝑛(ℝ2) is
path-connected and the 𝑘 = 1 column can be obtained
by abelianizing Artin’s presentation of 𝐁𝑛. Even the low-
degree calculations in Table 1 suggest a pattern: the ho-
mology of 𝐁𝑛 in a fixed degree 𝑘 becomes independent of𝑛 as 𝑛 increases.

Arnold proved the following stability result, in terms of
the stabilization map 𝑠𝑛 ∶ 𝐁𝑛 ↪ 𝐁𝑛+1 defined by adding
an unbraided (𝑛 + 1)𝑠𝑡 strand as in Figure 12.

Figure 12. The stabilization map 𝑠3 ∶ 𝐁3 ↪ 𝐁4.
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Theorem 2.3 (Arnold [Arn70]). For each 𝑘 ≥ 0, the induced
map (𝑠𝑛)∗ ∶ 𝐻𝑘(𝐁𝑛; ℤ) → 𝐻𝑘(𝐁𝑛+1; ℤ)
is an isomorphism for 𝑛 ≥ 2𝑘.

The family {𝐶𝑛(ℂ)}𝑛 therefore satisfies homological sta-
bility. Arnold in fact proved the result for cohomology,
and Theorem 2.3 follows from the universal coefficients
theorem.

May and Segal proved that the stable braid group 𝐁∞
has the same homology as the path component of the triv-
ial loop in the double loop space Ω2𝑆2. Fuks calculated
the cohomology of braid groups with coefficients in 𝔽2.
F. Cohen and Vaı̆ns̆teı̆n computed the cohomology ring
with coefficients in 𝔽𝑝 (for 𝑝 an odd prime), and described𝐻𝑘(𝐁𝑛; ℤ) in terms of the groups 𝐻𝑘−1(𝐁𝑛; 𝔽𝑝) (𝑝 prime)
for 𝑘 ≥ 2.
2.4. Homological stability for configuration spaces. For
a 𝑑-manifold 𝑀, it is possible to visualize homology
classes in 𝐹𝑛(𝑀) and 𝐶𝑛(𝑀) concretely. Consider Figure 13.
This figure shows a 2-parameter family of configurations in𝐹𝑛(𝑀), in fact (because the two loops do not intersect) it
shows an embedded torus 𝑆1 × 𝑆1 ↪ 𝐹5(𝑀). Thus, up to
sign, this figure represents an element of 𝐻2(𝐹5(𝑀)). In
a sense, the loop traced out by particle 3 arises from the
homology of the surface 𝑀, and the loop traced out by
particle 4 arises from the homology of 𝐹𝑛(ℝ𝑑). From the
homology of 𝑀 and 𝐹𝑛(ℝ𝑑), it is possible to generate lots
of examples of homology classes in 𝐹𝑛(𝑀). The problem
of understanding additive relations among these classes,
however, is subtle, and the groups 𝐻𝑘(𝐹𝑛(𝑀); ℤ) are un-
known in most cases.

�
�

�
� �

Figure 13. A class in 𝐻2(𝐹5(𝑀)).
When 𝑀 is (punctured) Euclidean space, the (co)ho-

mology groups of 𝐹𝑛(𝑀) were computed by Arnold and
Cohen. However, even in the case that 𝑀 is a genus-𝑔 surface, we currently do not know the Betti numbers𝛽𝑘 = rank(𝐻𝑘(𝐹𝑛(𝑀); ℤ)). Recently Pagaria computed the
asymptotic growth rate in 𝑛 of the Betti numbers in the
case 𝑀 is a torus. In the case of unordered configuration
spaces, in 2016 Drummond-Cole and Knudsen computed
the Betti numbers of 𝐶𝑛(𝑀) for 𝑀 a surface of finite type.

Even though the (co)homology groups of configura-
tions spaces remain largely mysterious, the tools of homo-
logical stability give us a different approach to understand-
ing their structure.

Theorem 2.3 on stability for braid groups raises the
question of whether the unordered configurations spaces

{𝐶𝑛(𝑀)}𝑛 satisfy homological stability for a larger class of
topological spaces 𝑀. Let 𝑀 be a connected manifold. To
generalize Theorem 2.3 we must define stabilization maps𝐶𝑛(𝑀)⟶ 𝐶𝑛+1(𝑀){𝑥1, … , 𝑥𝑛}⟼ {𝑥1, … , 𝑥𝑛, 𝑥𝑛+1}.
Unfortunately, in general there is no way to choose a dis-
tinct particle 𝑥𝑛+1 continuously in the inputs {𝑥1, … , 𝑥𝑛},
and no continuous map of this form exists. To define the
stabilization maps, we must assume extra structure on 𝑀,
for example, assume that 𝑀 is the interior of a manifold
with nonempty boundary. Then, if we choose a boundary
component, it is possible to define the stabilization map𝑠𝑛 ∶ 𝐶𝑛(𝑀) → 𝐶𝑛+1(𝑀) by placing the new particle in a
sufficiently small collar neighbourhood of the boundary
component. This procedure (illustrated in Figure 14) is
informally described as ‘adding a particle at infinity.’

Figure 14. Stabilization map 𝑠3 ∶ 𝐶3(𝑀) → 𝐶4(𝑀).
In the 1970sMcDuff proved that the sequence {𝐶𝑛(𝑀)}𝑛

satisfies homological stability and Segal gave explicit stable
ranges.

Theorem 2.4 (McDuff [McD75]; Segal [Seg79]). Let 𝑀 be
the interior of a compact connected manifold with nonempty
boundary. For each 𝑘 ≥ 0 the maps(𝑠𝑛)∗ ∶ 𝐻𝑘(𝐶𝑛(𝑀); ℤ)⟶ 𝐻𝑘(𝐶𝑛+1(𝑀); ℤ)
are isomorphisms for 𝑛 ≥ 2𝑘.

Concretely, this theorem states that degree-𝑘 homology
classes arise from subconfigurations on at most 2𝑘 parti-
cles. Heuristically, these homology classes have the form
of Figure 15.

^�

2k particles ^�

n-2k
Figure 15. A homology class after stabilizing by the addition
of 𝑛 − 2𝑘 particles.

Moreover, McDuff related the homology of the sta-
ble space 𝐶∞(𝑀) to the homology of Γ(𝑀), the space of
compactly-supported smooth sections of the bundle over𝑀 obtained by taking the fibrewise one-point compactifi-
cation of the tangent bundle of 𝑀.
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3. Other Stable Families
We briefly describe some other significant families satisfy-
ing (co)homological stability.

Symmetric groups. In [Nak60] Nakaoka proved that
the symmetric groups {𝑆𝑛}𝑛 satisfy homological stability
with respect to the inclusions 𝑆𝑛 ↪ 𝑆𝑛+1. The Barratt–
Priddy–Quillen theorem states that the infinite symmetric
group 𝑆∞ = ⋃𝑛 𝑆𝑛 has the same homology of Ω∞0 𝑆∞, the
path-component of the identity in the infinite loop spaceΩ∞𝑆∞.

General linear groups. Let 𝑅 be a ring. Consider the se-
quence of general linear groups {GL𝑛(𝑅)}𝑛 with the inclu-
sions GL𝑛(𝑅) ↪ GL𝑛+1(𝑅) given by

𝐴 ↦ [𝐴 00 1] .
In the 1970s Quillen studied the homology of these

groups when 𝑅 is a finite field 𝔽𝑞 of characteristic 𝑝 in his
seminal work on the𝐾-theory of finite fields. He computes𝐻∗(GL𝑛(𝔽𝑞); 𝔽ℓ) for prime ℓ ≠ 𝑝 and determines a vanish-
ing range for ℓ = 𝑝.

In 1980 Charney proved homological stability when 𝑅
is a Dedekind domain. Van der Kallen, building on work
of Maazen, proved the case that 𝑅 is an associative ring
satisfying Bass’s “stable rank condition;” this arguably in-
cludes any naturally arising ring.

These results are part of a large stability literature on
classical groups that warrants its own survey; see the ex-
tended version of this article for further references. Ho-
mological stability is known to hold for special linear
groups, orthogonal groups, unitary groups, and other fam-
ilies of classical groups. There is ongoing work to study
(co)homology with twisted coefficients, and sharpen the
stable ranges.

Mapping class groups andmoduli space of Riemann sur-
faces. Let Σ𝑔,1 be an oriented surface of genus 𝑔 with one
boundary component and let the mapping class group

Mod(Σ𝑔,1) ∶= 𝜋0(Diff+(Σ𝑔,1 rel 𝜕))
be the group of isotopy classes of diffeomorphisms of Σ𝑔,1
fixing a collar neighbourhood of the boundary. There is a
map 𝑡𝑔 ∶ Mod(Σ𝑔,1) ↪ Mod(Σ𝑔+1,1) induced by the inclu-
sion Σ𝑔,1 ↪ Σ𝑔+1,1 by extending a diffeomorphism by the
identity on the complement Σ𝑔+1,1 ⧵ Σ𝑔,1, as in Figure 16.

There is also a map 𝑐𝑎𝑝∶ Mod(Σ𝑔,1) → Mod(Σ𝑔) in-
duced by gluing a disk on the boundary component ofΣ𝑔,1. Harer proved [Har85] that the sequence {Mod𝑔,1}𝑔 sat-
isfies homological stability with respect to the inclusions𝑡𝑔 and that for large 𝑔 the map 𝑐𝑎𝑝 induces isomorphisms
on homology. The proof and the stable ranges have been
improved by the work of Ivanov, Boldsen, and others.

{ extend by id
f

Figure 16. The map Mod(Σ3,1) → Mod(Σ4,1) is induced by the
inclusion Σ3,1 ↪ Σ4,1.
Madsen andWeiss computed the stable homology by iden-
tifying the homology of mapping class groups, in the sta-
ble range, with the homology of a certain infinite loop
space.

The rational homology of the mapping class group
Mod(Σ𝑔) is the same as that of the moduli space ℳ𝑔 of
Riemann surfaces of genus 𝑔 ≥ 2. This moduli space
parametrizes:• isometry classes of hyperbolic structures on Σ𝑔,• conformal classes of Riemannian metrics on Σ𝑔,• biholomorphism classes of complex structures on

the surface Σ𝑔,• isomorphism classes of smooth algebraic curves
homeomorphic to Σ𝑔.

One consequence of Harer’s stability theorem and the
Madsen–Weiss theorem is their proof of Mumford’s conjec-
ture: the rational cohomology ofℳ𝑔 is a polynomial alge-
bra on generators 𝜅𝑖 of degree 2𝑖, the so-called Mumford–
Morita–Miller classes, in a stable range depending on 𝑔. See
Tillman’s survey [Til13].

Homological stability was established for mapping
class groups of non-orientable surfaces by Wahl, for map-
ping class groups of some 3-manifolds by Hatcher–Wahl
and framed, Spin, and Pin mapping class groups by
Randal-Williams.

Automorphism groups of free groups. Let 𝐹𝑛 denote
the free group of rank 𝑛. Hatcher and Vogtmann proved
that the sequence {Aut(𝐹𝑛)}𝑛 satisfies homological sta-
bility with respect to inclusions Aut(𝐹𝑛) ↪ Aut(𝐹𝑛+1).
Galatius computed the stable homology by proving that𝐻∗(Aut(𝐹∞); ℤ) ≅ 𝐻∗(Ω∞0 𝑆∞; ℤ) ≅ 𝐻∗(𝑆∞; ℤ). In particular,
for 𝑛 > 2𝑘 + 1,𝐻𝑘(Aut(𝐹𝑛); ℚ) ≅ 𝐻𝑘(Aut(𝐹∞); ℚ) = 0.
Moduli spaces of high-dimensional manifolds. Let𝑀 be
a smooth compact manifold. The moduli space ℳ(𝑀) of
manifolds of type𝑀 is the classifying space BDiff(𝑀 rel 𝜕).
In the last few years Galatius and Randal-Williams proved
homological stability forℳ(𝑀) for simply connectedman-
ifolds 𝑀 of dimension 2𝑑 > 4, with respect to the 𝑛-fold
connected sum with 𝑆𝑑 × 𝑆𝑑. This generalizes Harer’s
result to higher-dimensional manifolds. They also ob-
tained a generalized Madsen–Weiss’s theorem for simply
connected manifolds of dimension 2𝑑 > 4. Homological
stability with respect to connected sum with 𝑆𝑝 × 𝑆𝑞, for𝑝 < 𝑞 < 2𝑝 − 2, was established by Perlmutter.
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4. A Proof Strategy
There is a well-established strategy for proving homolog-
ical stability that traces back to unpublished work by
Quillen in the 1970s. We describe a simplified version of
Quillen’s argument for a family of discrete groups with in-
clusions.

Recall that a 𝑝-simplex Δ𝑝 is a 𝑝-dimensional polytope
defined as the convex hull of (𝑝+1) points inℝ𝑝 in general
position, called its vertices. For example, a 0-simplex is a
point, a 1-simplex is a closed line segment, and a 2-simplex
is triangle. A face of a simplex is the convex hull of a subset
of its vertices. A map 𝑓∶ Δ𝑝 → Δ𝑞 is simplicial if it maps
vertices to vertices, and takes the form

𝑓∶ 𝑝∑𝑖=0 𝑡𝑖𝑣𝑖 ↦
𝑝∑𝑖=0 𝑡𝑖𝑓(𝑣𝑖)

with 𝑣0, … , 𝑣𝑝 the vertices of Δ𝑝 and 0 ≤ 𝑡𝑖 ≤ 1, ∑𝑖 𝑡𝑖 = 1.
A triangulation of a topological space 𝑊 is a decompo-

sition of 𝑊 as a union of simplices, such that the intersec-
tion 𝜎∩ 𝜏 of any pair of simplices 𝜎, 𝜏 in𝑊 is either empty
or equal to a single common face of 𝜎 and 𝜏. A triangulated
space is called a simplicial complex. A map 𝑓 of simplicial
complexes is simplicial if it maps simplices to simplices and
its restriction to each simplex is simplicial.

A simplicial complex 𝑊 is called (−1)-connected if it
is nonempty, 0-connected if it is path-connected, and 1-
connected if it is simply connected. More generally, a
nonempty simplicial complex𝑊 is called 𝑑-connected if its
homotopy groups 𝜋𝑖(𝑊) vanish for all 0 ≤ 𝑖 ≤ 𝑑. By the
Hurewicz theorem, 𝑊 is 𝑑-connected (𝑑 ≥ 2) if and only
if 𝑊 is simply connected and 𝐻𝑖(𝑋) = 0 for all 2 ≤ 𝑖 ≤ 𝑑.

With this terminology, we can now describe Quillen’s
argument. The following formulation of Theorem 4.1 is
due to Hatcher–Wahl [HW10, Theorem 5.1].

Theorem 4.1 (Quillen’s argument for homological sta-
bility). Let 0 ↪ 𝐺1 ↪ … ↪ 𝐺𝑛 ↪ … be a sequence of discrete
groups. For each 𝑛 let 𝑊𝑛 be a simplicial complex with a sim-
plicial action of 𝐺𝑛 satisfying the following properties:

(i) The simplicial complexes 𝑊𝑛 are (𝑛−22 )-connected.
(ii) For each 𝑝 ≥ 0, the group 𝐺𝑛 acts transitively on the
set of 𝑝-simplices.

(iii) For each simplex 𝜎𝑝 in 𝑊𝑛, the stabilizer 𝑠𝑡𝑎𝑏(𝜎𝑝)
fixes 𝜎𝑝 pointwise.

(iv) The stabilizer 𝑠𝑡𝑎𝑏(𝜎𝑝) of a 𝑝-simplex 𝜎𝑝 is conjugate
in 𝐺𝑛 to the subgroup 𝐺𝑛−𝑝−1 ⊆ 𝐺𝑛. (By convention 𝐺𝑛 =0 if 𝑛 ≤ 0.)

(v) For each edge [𝑣0, 𝑣1] in𝑊𝑛, there exists 𝑔 ∈ 𝐺𝑛 such
that 𝑔 ⋅ 𝑣0 = 𝑣1 and 𝑔 commutes with all elements of 𝐺𝑛
that fix [𝑣0, 𝑣1] pointwise.

Then the sequence {𝐺𝑛}𝑛 is homologically stable. Specifically,
the inclusion 𝐺𝑛 ↪ 𝐺𝑛+1 induces an isomorphism on degree-𝑘
homology for 𝑛 ≥ 2𝑘 + 1 and a surjection for 𝑛 = 2𝑘.

Theorem 4.1 follows from a formal algebraic argument
involving a sequence of spectral sequences associated to
the complexes𝑊𝑛. We remark, for the readers familiar with
spectral sequences, that for each 𝑛 we obtain a homology
spectral sequence by using𝑊𝑛×𝐺𝑛 E𝐺𝑛 to build an approx-
imation to B𝐺𝑛 from the spaces B𝐺𝑛−𝑝 for 𝑝 > 0. The 𝑛th
spectral sequence has 𝐸1 page𝐸1𝑝,𝑞 ≅ 𝐻𝑞(𝑠𝑡𝑎𝑏(𝜎𝑝); ℤ) ≅ 𝐻𝑞(𝐺𝑛−𝑝−1; ℤ),𝐸1−1,𝑞 ≅ 𝐻𝑞(𝐺𝑛; ℤ),
and 𝐸1𝑝,𝑞 = 0 for 𝑝 < −1.

The assumption that the complexes 𝑊𝑛 are highly con-
nected implies that the spectral sequence converges to 0
for 𝑝 + 𝑞 ≤ 𝑛−12 . The differential𝑑1 ∶ 𝐸10,𝑖 = 𝐻𝑖(𝐺𝑛−1; ℤ)⟶ 𝐸1−1,𝑖 = 𝐻𝑖(𝐺𝑛; ℤ)
is the map induced by the inclusion 𝐺𝑛−1 ↪ 𝐺𝑛. Under
the hypotheses of the theorem, we can argue by induction
on 𝑖 that this map is an isomorphism (respectively, a sur-
jection) in the desired range, to complete the proof of The-
orem 4.1.

In practice, given Theorem 4.1, themost difficult step in
a proof of homological stability is usually the proof that
the complexes 𝑊𝑛 are highly connected.

In recent years, the argument that we just outlined
has been axiomatized by Randal-Williams and Wahl
[RWW17] and Krannich [Kra19] to give a very general
framework to prove homological stability results, includ-
ing (co)homology with twisted abelian and polynomial
coefficients. Another axiomatization is due to Hepworth.
4.1. An example: the braid group 𝐁𝑛. Let 𝔻2 be the
closed disk. Fix 𝑛 marked points in its interior and a dis-
tinguished point ∗ ∈ 𝜕𝔻2. Associated to the braid group𝐁𝑛 is an (𝑛−1)-dimensional simplicial complex𝑊𝑛 called
the arc complex which we define combinatorially.• vertices: 𝑊𝑛 has a vertex for each isotopy class of

embedded arcs in 𝔻2 joining ∗ with one of the
marked points.• 𝑝-simplices: A set of (𝑝 + 1) vertices spans a 𝑝-
simplex if the corresponding isotopy classes can
be represented by arcs that are pairwise disjoint
except at their starting point ∗.
���

v v

���

*

v0 v1

���
v0 v1

���
v0 v1

Figure 17. The action of 𝜎2 ∈ 𝐁𝑛 on a 1-simplex {𝑣0, 𝑣1} of the
arc complex 𝑊𝑛.
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Hatcher and Wahl proved that 𝑊𝑛 is (𝑛−22 )-connected
(though it is in fact contractible).

The braid group 𝐁𝑛 is isomorphic to the group
Mod𝑛(𝔻2) of isotopy classes of diffeomorphisms of the
closed disk that stabilize the set of marked points and re-
strict to the identity on 𝜕𝔻2. Thus 𝐁𝑛 has an action on 𝑊𝑛
that is simplicial and satisfies conditions (𝑖)-(𝑣). See Fig-
ure 17. Theorem 4.1 gives a modern proof of homological
stability for 𝐁𝑛 (Theorem 2.3), a result originally due to
Arnold.

5. Representation Stability
5.1. Configuration spaces revisited. Let us address Ques-
tion 1.2 for the ordered configuration spaces {𝐹𝑛(𝑀)}𝑛
when 𝑀 is the interior of a compact connected manifold
with nonempty boundary. As with the unordered configu-
ration spaces, given a choice of boundary component, we
can define a stabilization map 𝐹𝑛(𝑀) → 𝐹𝑛+1(𝑀) that con-
tinuously introduces a new particle ‘at infinity.’ See Fig-
ure 18.

�
�

�
�

�
�

�
Figure 18. Stabilization map 𝐹3(𝑀) → 𝐹4(𝑀).

This suggests the question: for a fixed manifold 𝑀, do
the spaces {𝐹𝑛(𝑀)}𝑛 satisfy homological stability? The an-
swer is, in contrast to {𝐶𝑛(𝑀)}𝑛, they do not, as we will
verify directly.

Let 𝑀 = ℂ, so the homology 𝐻1(𝐹𝑛(ℂ); ℤ) in degree 1
is the abelianization of the pure braid group 𝐏𝑛. Artin’s

presentation implies that 𝐏𝑎𝑏𝑛 ≅ ℤ(𝑛2) is free abelian on the
images 𝛼𝑖𝑗 of the (𝑛2) generators 𝑇𝑖𝑗 of Figure 10. Viewed
as a homology class in 𝐹𝑛(ℂ), we can represent 𝛼𝑖𝑗 by the
loop illustrated in Figure 19. Hence, rank(𝐻1(𝐏𝑛; ℤ)) grows
quadratically in 𝑛, and homological stability fails.

i

j
�
�
�
���

Figure 19. The homology class 𝛼𝑖𝑗 ∈ 𝐻1(𝐹𝑛(ℂ)).
Church and Farb, however, proposed a new para-

digm for stability in spaces like the ordered configuration
spaces 𝐹𝑛(𝑀) of a manifold 𝑀. Because (co)homology
is functorial, the 𝑆𝑛-action on 𝐹𝑛(𝑀) induces an action
of 𝑆𝑛 on the (co)homology groups. Even though the
(co)homology does not stabilize as a sequence of abelian
groups, they proposed, it does stabilize as a sequence of𝑆𝑛-representations.

There are several ways to formalize the idea of stabil-
ity for a sequence of 𝑆𝑛-representations. One way, which
was initially the primary focus of Church and Farb, is to
consider the multiplicities of irreducible representations
in the rational (co)homology groups. Suppose𝑉 is a finite-
dimensional rational 𝑆𝑛-representation. Because 𝑆𝑛 is a fi-
nite group, 𝑉 is semisimple: it decomposes as a direct sum
of irreducible subrepresentations. Themultiplicities of the
irreducible components are uniquely defined and deter-
mine 𝑉 up to isomorphism.

The irreducible rational 𝑆𝑛-representations are classi-
fied, and are in canonical bijection with partitions of 𝑛. A
partition 𝜆 of a positive integer 𝑛 is a set of positive integers
(called the parts of 𝜆) that sum to 𝑛. It is traditionally en-
coded by a Young diagram, a collection of 𝑛 boxes arranged
into rows of decreasing lengths equal to the parts of 𝜆. For
example, the Young diagram corresponds to the parti-
tion 3+2 of 5. If 𝜆 is a partition of 𝑛 (equivalently, a Young
diagram of size 𝑛), we write 𝑉 𝜆 to denote the irreducible𝑆𝑛-representation associated to 𝜆.

Church and Farb observed a pattern in the rational ho-
mology of 𝐹𝑛(ℂ), which we illustrate in Figure 20 in homo-
logical degree 1.

H1(F1(C); Q) ∼= 0

H1(F2(C); Q) ∼= V

H1(F3(C); Q) ∼= V ⊕ V

H1(F4(C); Q) ∼= V ⊕ V ⊕ V

H1(F5(C); Q) ∼= V ⊕ V ⊕ V

H1(F6(C); Q) ∼= V ⊕ V ⊕ V

H1(F7(C); Q) ∼= V ⊕ V ⊕ V

...
...

...
...

Figure 20. The decomposition of the homology groups𝐻1(𝐹𝑛(ℂ); ℚ) for some small values of 𝑛.
For 𝑛 ≥ 4𝑘, we can recover the decomposition of𝐻𝑘(𝐹𝑛(ℂ); ℚ) into irreducible components simply by tak-

ing the decomposition of 𝐻𝑘(𝐹𝑛−1(ℂ); ℚ) and adding a
single box to the top row of each Young diagram. They
showed that this pattern holds for all 𝑘, and Church
later proved that it holds for the cohomology groups𝐻𝑘(𝐹𝑛(𝑀);ℚ) of the ordered configuration space of a con-
nected oriented manifold of finite type.

Church, Farb, and others observed the same patterns in
the (co)homology of a number of other families of groups
and spaces. These results raise the question,

Question 5.1. What underlying structure is responsible
for these patterns?

Church, Ellenberg, Farb, Nagpal, and Putman answered
this question by developing an algebraic framework that
brought their work into a broader field, now called the
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field of representation stability. Other pioneers of the field,
who approached it from different perspectives, include
Sam, Snowden, Gan, Li, Djament, Pirashvili, and Vespa.
5.2. 𝖥𝖨-modules. The key to answering Question 5.1 is
the concept of an 𝖥𝖨-module. The theory of 𝖥𝖨–modules
gives a conceptual framework that explains the ubiquity
of the patterns observed in so many naturally arising se-
quences of 𝑆𝑛-representations, and it also provides alge-
braic machinery to prove stronger results with streamlined
arguments.

Definition 5.2. Let 𝖥𝖨 be the category whose objects are
finite sets (including ∅), and whose morphisms are all in-
jective maps. Given a commutative ring 𝑅 (typically ℤ orℚ), an 𝖥𝖨-module 𝑉 over 𝑅 is a functor from 𝖥𝖨 to the cate-
gory of 𝑅-modules.

To describe an 𝖥𝖨-module 𝑉 , it is enough to consider the
“standard” finite sets in 𝖥𝖨,[0] = ∅ and [𝑛] = {1, 2, … , 𝑛}.
For 𝑛 ≥ 0, we write 𝑉𝑛 to denote the image of 𝑉 on [𝑛]. The
endomorphisms of [𝑛] in 𝖥𝖨 are the symmetric group 𝑆𝑛,
so 𝑉𝑛 is an 𝑆𝑛-representation. The data of an 𝖥𝖨-module 𝑉
is determined by the sequence of 𝑆𝑛-representations {𝑉𝑛}𝑛,
along with 𝑆𝑛-equivariant maps 𝜄𝑛 ∶ 𝑉𝑛 → 𝑉𝑛+1 induced by
the inclusion [𝑛] ↪ [𝑛 + 1]. Figure 21 gives a schematic.

Figure 21. An 𝖥𝖨-module 𝑉 .
We refer to (the morphisms of) the category 𝖥𝖨 acting on

an 𝖥𝖨-module 𝑉 in the same sense that a ring 𝑅 acts on an𝑅-module.
We encourage the reader to verify that the following se-

quences of 𝑆𝑛-representations form 𝖥𝖨-modules.• 𝑉𝑛 = ℚ the trivial 𝑆𝑛–representations,𝜄𝑛 the identity map.• 𝑉𝑛 = ℚ𝑛, 𝑆𝑛 permutes the standard basis,𝜄𝑛 ∶ ℚ𝑛 ≅ (ℚ𝑛 × {0}) ↪ ℚ𝑛+1.• 𝑉𝑛 = ℚ[𝑥1, … , 𝑥𝑛] the polynomial algebra with 𝑆𝑛
permuting the variables, 𝜄𝑛 the inclusion.

Applying any endofunctor of 𝑅-modules to an 𝖥𝖨-module
will produce another 𝖥𝖨-module, so we can construct more
examples (say) by taking tensor products or exterior pow-
ers of any of the above.

We leave it as an exercise to the reader to verify that the
following sequences of 𝑆𝑛-representations do not form an

𝖥𝖨-module. A hint to this exercise: first verify that if 𝜎 ∈ 𝑆𝑛
fixes the letters {1, 2, …𝑚}, then 𝜎 must act trivially on the
image of 𝑉𝑚 in 𝑉𝑛 under the map induced by the inclusion[𝑚] ⊆ [𝑛].• 𝑉𝑛 = ℚ the alternating representation,

i.e. 𝜎 ⋅ 𝑣 = (−1)𝑠𝑔𝑛(𝜍)𝑣 for 𝑣 ∈ ℚ,𝜄𝑛 the identity map.• 𝑉𝑛 = ℚ[𝑆𝑛] the regular representation,𝜄𝑛 induced by the inclusion 𝑆𝑛 ⊆ 𝑆𝑛+1.
Importantly for present purposes, the (co)homology

groups of ordered configuration spaces form 𝖥𝖨-modules
in many cases. If 𝑀 is any space, there is a contravariant
action of 𝖥𝖨 on its ordered configuration spaces by contin-
uous maps. If we view a point in 𝐹𝑛(𝑀) as an embedding𝜌∶ [𝑛] → 𝑀, then an 𝖥𝖨 morphism 𝑓∶ [𝑚] → [𝑛] acts by
precomposition, 𝑓∗ ∶ 𝐹𝑛(𝑀)⟶ 𝐹𝑚(𝑀)𝜌⟼ 𝜌 ∘ 𝑓.
See Figure 22.
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Figure 22. An 𝖥𝖨 morphism and its contravariant action on the
configuration spaces {𝐹𝑛(𝑀)}𝑛.

Composing this 𝖥𝖨 action with the (contravariant) coho-
mology functor gives a covariant action of 𝖥𝖨 on the coho-
mology groups {𝐻𝑘(𝐹𝑛(𝑀))}𝑛.

To obtain a covariant action of 𝖥𝖨 on {𝐹𝑛(𝑀)}𝑛, we need
additional assumptions on the space 𝑀. Let 𝑀 be the in-
terior of a compact manifold of dimension at least 2 with
nonempty boundary. Consider an 𝖥𝖨morphism 𝑓∶ [𝑚] →[𝑛] and a configuration in 𝐹𝑚(𝑀). We relabel particles by
their image under 𝑓, and apply the stabilization map of
Section 2.4 to introduce any particles not in 𝑓([𝑚]) in a
neighbourhood of a distinguished boundary component.
See Figure 23.
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Figure 23. An 𝖥𝖨 morphism and its covariant action on the
configuration spaces {𝐹𝑛(𝑀)}𝑛.

This action of 𝖥𝖨 is only functorial up to homotopy, but
this suffices to induce a well-defined 𝖥𝖨-module structure
on the sequence of homology groups {𝐻𝑘(𝐹𝑛(𝑀))}𝑛.
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Modules over the category 𝖥𝖨 behave in many ways like
modules over a ring (technically, they are an abelian cate-
gory). We define a map of 𝖥𝖨-modules 𝑉 → 𝑊 to be a nat-
ural transformation, that is, a sequence of maps 𝑉𝑛 → 𝑊𝑛
that commute with the 𝖥𝖨 morphisms. The kernels and
images of these maps themselves form 𝖥𝖨-modules, and we
can define operations like tensor products and direct sums
in a natural way. This structure allows us to import many
of the standard tools from commutative and homological
algebra to the study of 𝖥𝖨-modules.

Church, Ellenberg, and Farb showed the answer to
Question 5.1 is that the sequences in question are 𝖥𝖨-
modules that are finitely generated.

Definition 5.3. Let 𝑉 be an 𝖥𝖨-module. A subset 𝑆 ⊆⨆𝑛≥0 𝑉𝑛 generates 𝑉 if the images of 𝑆 under the 𝖥𝖨 mor-
phisms span 𝑉𝑛 for all 𝑛 ≥ 0. Equivalently, the smallest𝖥𝖨-submodule of 𝑉 containing 𝑆 is 𝑉 itself. The 𝖥𝖨-module𝑉 is finitely generated in degree ≤ 𝑑 if there is a finite subset
of elements 𝑆 ⊆ ⨆𝑛≤𝑑 𝑉𝑛 that generates 𝑉 .

For example, consider the 𝖥𝖨-module 𝑉 over a ring 𝑅
such that𝑉𝑛 = 𝑅[𝑥1, … , 𝑥𝑛](𝑑) is the submodule of homoge-
neous degree-𝑑 polynomials in 𝑛 variables, 𝑆𝑛 acts by per-
muting the variables, and 𝜄𝑛 ∶ 𝑉𝑛 → 𝑉𝑛+1 is the inclusion
map. We encourage the reader to verify that 𝑉 is finitely
generated in degree ≤ 𝑑. Figure 24 shows a finite generat-
ing set when 𝑑 = 2.

Figure 24. A finite generating set for the 𝖥𝖨-module𝑅[𝑥1, … 𝑥𝑛](2).
Another example: from our description of the groups{𝐻1(𝐹𝑛(ℂ); ℚ)}𝑛 in Figure 19, we see that this 𝖥𝖨-module is

generated by the single element 𝛼1,2 ∈ 𝐻1(𝐹2(ℂ); ℚ) shown
in Figure 25. Arnold’s description of the homology groups
of 𝐹𝑛(ℂ)makes it straightforward to verify finite generation
of {𝐻𝑘(𝐹𝑛(ℂ); ℚ)}𝑛 in every degree 𝑘.

�

�

Figure 25. The homology class 𝛼1,2 ∈ 𝐻1(𝐹2(ℂ)) generates the𝖥𝖨-module {𝐻1(𝐹𝑛(ℂ); ℚ)}𝑛.

Church–Ellenberg–Farb and (independently) Snowden
proved that 𝖥𝖨-modules over ℚ satisfy a Noetherian prop-
erty: submodules of finitely generated modules are them-
selves always finitely generated. Using this result, Church–
Ellenberg–Farb proved that, if 𝑉 is a finitely generated𝖥𝖨-module, then the sequence {𝑉𝑛}𝑛 of 𝑆𝑛-representations
stabilizes in several senses.

Theorem 5.4 (Church–Ellenberg–Farb [CEF15]). Let 𝑉 be
an 𝖥𝖨-module over ℚ, finitely generated in degree ≤ 𝑑. The
following hold.• Finite generation. For 𝑛 ≥ 𝑑,𝑆𝑛+1 ⋅ 𝜄𝑛(𝑉𝑛) spans 𝑉𝑛+1.• Polynomial growth. There is a polynomial in 𝑛 of

degree ≤ 𝑑 that agrees with the dimension dimℚ(𝑉𝑛)
for all 𝑛 sufficiently large.• Multiplicity stability. For all 𝑛 ≥ 2𝑑 the decompo-
sition of 𝑉𝑛 into irreducible constituents stabilizes (in
the sense illustrated in Figure 20).• Character polynomials. The character of 𝑉𝑛 is in-
dependent of 𝑛 for all 𝑛 ≥ 2𝑑.

The characters of 𝑉 are in fact eventually equal to a
character polynomial of degree ≤ 𝑑, independent of 𝑛; see
[CEF15, Section 3.3].

The answer of Question 1.2 for the family {𝐹𝑛(𝑀)}𝑛 is
then given by the following result.

Theorem 5.5 (Church [Chu12]; Church–Ellenberg–Farb
[CEF15]; Miller–Wilson [MW19]). Let 𝑀 be the interior of
a compact connected smooth manifold of dimension at least
2 with nonempty boundary. In each degree 𝑘 the homology
and cohomology of ordered configuration spaces {𝐹𝑛(𝑀)}𝑛 of𝑀
are finitely generated 𝖥𝖨-modules. In particular the degree-𝑘
(co)homology groups with rational coefficients stabilize in the
sense of Theorem 5.4.

Heuristically, Theorem 5.5 states that the homology of𝐹𝑛(𝑀) is spanned by classes of the form shown in Figure 26.
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Figure 26. A homology class in the image of 𝐻𝑘(𝐹2𝑘(𝑀); ℤ).
From the 𝑆𝑛-covering relationship (Figure 5) it fol-

lows that dim𝐻𝑘(𝐶𝑛(𝑀);ℚ) is equal to the multiplicity of
the trivial representation in 𝐻𝑘(𝐹𝑛(𝑀);ℚ). Hence Theo-
rem 5.5 implies classical cohomological stability with ℚ-
coefficients for unordered configuration spaces {𝐶𝑛(𝑀)}𝑛.
Church [Chu12] used representation stability techniques
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to prove rational (co)homological stability results for the
unordered configuration spaces {𝐶𝑛(𝑀)}𝑛 even in the case
that 𝑀 is a closed manifold, so the isomorphisms are not
necessarily induced by natural stabilization maps.
5.3. Other instances of representation stability. The def-
inition of a finitely generated 𝖥𝖨-module makes sense for
representations over the integers or other coefficients, even
in situations where the representations are not semisimple
and multiplicity stability is not well-defined. Moreover,
this approach readily generalizes to analogous categories
that encode actions by families of groups other than the
symmetric groups. Some examples that have been studied
are the classical Weyl groups, certain wreath products, var-
ious linear groups, and products or decorated variants of𝖥𝖨. The term “representation stability” now refers to alge-
braic finiteness results (like finite generation or presenta-
tion degree) for a module over one of these categories. For
further reading on representation stability, see the intro-
ductory notes and article [Wil18,Sno19,Sam20].

The (co)homology of several families of groups and
moduli spaces exhibit representation stability.

Generalized ordered configuration spaces and pure
braid groups. There is a large and growing body of work
on representation stability for the homology of configu-
ration spaces: improving stable ranges, studying configu-
ration spaces of broader classes of topological spaces, or
studying alternate stabilization maps.

Other families generalizing the pure braid groups also
have representation stable cohomology groups, including
the pure virtual braid groups, the pure flat braid groups,
the pure cactus groups, and the group of pure string mo-
tions.

Pure mapping class groups and moduli spaces of sur-
faces with marked points. Given a set of 𝑛 labelled
marked points in a surface Σ, the mapping class group
Mod𝑛(Σ) is the group of isotopy classes of (orientation-
preserving if Σ is orientable) diffeomorphisms of Σ that fix𝜕Σ and stabilize the set ofmarked points. The pure mapping
class group PMod𝑛(Σ) is the subgroup that fixes the marked
points pointwise. These groups also generalize the braid
groups since Mod𝑛(𝔻2) ≅ 𝐁𝑛 and PMod𝑛(𝔻2) ≅ 𝐏𝑛. There
is a short exact sequence1 → PMod𝑛(Σ) → Mod𝑛(Σ) → 𝑆𝑛 → 1
that defines an action of 𝑆𝑛 on the (co)homology of
PMod𝑛(Σ). Hatcher and Wahl [HW10] proved that
the sequence {Mod𝑛(Σ)}𝑛 satisfies homological stabil-
ity and Jiménez Rolland [JR19] proved that the groups𝐻𝑘(PMod𝑛(Σ); ℤ) assemble to a finitely generated 𝖥𝖨-
module.

For 𝑔 ≥ 2 the moduli space ℳ𝑔,𝑛 of Riemann surfaces
of genus 𝑔 with 𝑛 marked points is a rational model of the

classifying space BPMod𝑛(Σ𝑔), and the symmetric group𝑆𝑛 acts onℳ𝑔,𝑛 by permuting the 𝑛marked points. Hence,
the sequence {𝐻𝑘(ℳ𝑔,𝑛; ℚ)}𝑛 of 𝑆𝑛-representations stabi-
lizes in the sense of Theorem 5.4.

In contrast, for fixed genus 𝑔 the cohomology groups𝐻𝑘(ℳ𝑔,𝑛; ℚ) of the Deligne-Mumford compactification ofℳ𝑔,𝑛 can grow exponentially in 𝑛. Thus these se-
quences cannot be finitely generated as 𝖥𝖨-modules.
Tosteson [Tos21] proved, however, that the sequences{𝐻𝑘(ℳ𝑔,𝑛; ℚ)}𝑛 are subquotients of finitely generated 𝖥𝖲𝑜𝑝-
modules, where 𝖥𝖲𝑜𝑝 is the opposite category of the cat-
egory of finite sets and surjective maps. From this he
deduced constraints on the growth rate and on the irre-
ducible 𝑆𝑛-representations that occur.

Flag varieties. Let 𝐆𝒲𝑛 be a semisimple complex Lie group
of type 𝐴𝑛−1, 𝐵𝑛, 𝐶𝑛, or 𝐷𝑛, with Weyl group 𝒲𝑛 and 𝐁𝒲𝑛
a Borel subgroup. The space 𝐆𝒲𝑛 /𝐁𝒲𝑛 is called a generalized
flag variety. Representation stability of these cohomology
groups (as 𝑆𝑛- or𝒲𝑛-representations) has been studied by
Church–Ellenberg–Farb, Wilson, and others.

Complements of arrangements. The cohomology of
hyperplane complements associated to certain reflection
groups 𝒲𝑛 (and their toric and elliptic analogues) sta-
bilizes as a sequence of 𝒲𝑛-representations by the work
of Wilson and Bibby. Representation stability holds for
the cohomology of more general linear subspace arrange-
ments with a wider class of groups actions by the work of
Gadish.

Congruence subgroups. Let 𝐾 be a commutative ring
and 𝐼 ⊆ 𝐾 a proper two-sided ideal. The level 𝐼 con-
gruence subgroups GL𝑛(𝐾, 𝐼) of GL𝑛(𝐾) are defined to be
the kernel of the “reduction modulo 𝐼” map GL𝑛(𝐾) →
GL𝑛(𝐾/𝐼). Representation stability of the sequence of
homology groups {𝐻𝑘(GL𝑛(𝐾, 𝐼); ℤ)}𝑛 (as 𝑆𝑛 or GL𝑛(𝐾/𝐼)-
representations) has been extensively studied; see the ex-
tended version of this article for references.

6. Current Research Directions
Work continues on proving (co)homological stability
for new families or new coefficients systems, improving
stable ranges, and computing the stable and unstable
(co)homology for families known to stabilize.

Recently Galatius, Kupers and Randal-Williams
[GKRW18] identified and proved a new kind of stabi-
lization result, which they describe by the slogan “the
failure of homological stability is itself stable”. They
defined homological-degree-shifting stabilization maps
and use them to prove secondary homological stability
for the homology of mapping class groups and gen-
eral linear groups outside the stable range of (pri-
mary) homological stability. Himes studied secondary
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stability for unordered configuration spaces. Miller–Patzt–
Petersen studied stability with polynomial coefficient sys-
tems. Miller–Wilson, Bibby–Gadish, Ho, and Wawrykow
studied representation-theoretic analogues of secondary
stability for ordered configuration spaces.

For amore in-depth introduction to homological stabil-
ity and these current research directions, we recommend
Kupers’ minicourse notes [Kup21] and references therein.
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