Stability Properties
of Moduli Spaces

Rita Jiménez Rolland and Jennifer C. H. Wilson

1. Moduli Spaces and Stability

Moduli spaces are spaces that parameterize topological or
geometric data. They often appear in families; for exam-
ple, the configuration spaces of n points in a fixed mani-
fold, the Grassmannians of linear subspaces of dimension
d in R®, and the moduli spaces M, of Riemann surfaces
of genus g. These families are usually indexed by some
geometrically defined quantity, such as the number n of
points in a configuration, the dimension d of the linear
subspaces, or the genus g of a Riemann surface. Under-
standing the topology of these spaces has been a subject
of intense interest for the last 60 years.
For a family of moduli spaces {X,,},, we ask:

Question 1.1. How does the topology of the moduli
spaces X,, change as the parameter n changes?
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For many natural examples of moduli spaces X,,, some

aspects of the topology get more complicated as the pa-
rameter n gets larger. For instance, the dimension of X,
frequently increases with n as well as the number of gener-
ators and relations needed to give a presentation of their
fundamental groups. But, maybe surprisingly, there are
sometimes features of the moduli spaces that ‘stabilize’ as
n increases. In this survey we will describe some forms of
stability and some examples of where they arise.
1.1. Homology and cohomology. Algebraic topology is
a branch of mathematics that uses tools from abstract alge-
bra to classify and study topological spaces. By construct-
ing algebraic invariants of topological spaces, we can trans-
late topological problems into (typically easier) algebraic
ones. An algebraic invariant of a space is a quantity or alge-
braic object, such as a group, that is preserved under home-
omorphism or homotopy equivalence. One example is
the fundamental group 7,(X, x,) of homotopy classes of
loops in a topological space X based at the point x,. Ho-
mology and cohomology groups are other examples and
are the focus of this article. Their definitions are more sub-
tle than those of homotopy groups like 7; (X, x;), but they
are often more computationally tractable and are widely
studied.
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Given a topological space X and k € Z,, we can asso-
ciate groups Hy(X;R) and H*(X;R), the kth homology and
cohomology groups (with coefficients in R), where R is a com-
mutative ring such as Z or Q. These algebraic invariants de-
fine functors from the category of topological spaces to the
category of R-modules: for any continuous map of topo-
logical spaces f : X — Y there are induced R-linear maps

fi t H((X;R) —» Hi(Y;R) (covariant),

f*: H*(Y;R) = H*(X;R) (contravariant).

The cohomology groups H*(X;R) = P, H*(X;R) in fact
have the structure of a graded R-algebra with respect to the
cup product operation.

The group Hy(X; Z) is the free abelian group on the path
components of the topological space X and H°(X;Z) is
its dual. If X is path-connected, H,(X;Z) is naturally iso-
morphic to the abelianization of 7;(X, x,) with respect to
any basepoint x,, and its elements are certain equivalence
classes of (unbased) loops in X.

For a topological group G there exists an associated clas-
sifying space BG for principal G-bundles. 1t is constructed
as the quotient of a (weakly) contractible space EG by a
proper free action of G. The space BG is unique up to
(weak) homotopy equivalence. If G is a discrete group,
then BG is precisely an Eilenberg-MacLane space K(G, 1), i.e.,
a path-connected topological space with 7;(BG) = G and
trivial higher homotopy groups. For example, up to ho-
motopy equivalence, BZ is the circle, BZ, is the infinite-
dimensional real projective space RP*®, and the Grassma-
nian of d-dimensional linear subspaces in R*® is BGL;(R).

Some motivation to study the cohomology of BG: its
cohomology classes define characteristic classes of princi-
pal G-bundles, invariants that measure the ‘twistedness’
of the bundle. For instance the cohomology algebra
H*(BGL4(R); Z) can be described in terms of Pontryagin
and Stiefel-Whitney classes.

With BG we can define the group homology and group co-
homology of a discrete group G by

Hi(G;R) := H,(BG;R), HX(G;R):= H*(BG;R).
We can refine Question 1.1 to the following:

Question 1.2. Given family {X,,},, of moduli spaces or
discrete groups, how do the homology and cohomology
groups of the nth space in the sequence change as the pa-
rameter n increases?

In this article we discuss Question 1.2 with a particu-
lar focus on the families of configuration spaces and braid
groups. For further reading' we recommend R. Cohen’s
survey [Coh09] on stability of moduli spaces.

LA version of this note with an extended reference list is available at https://
arxiv.org/abs/2201.04096.
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1.2. Homological stability.

Definition 1.3. A sequence of spaces or groups {X,},>o
with maps

So Sn—-2 Sp—-1 Sn Sn+1
Xo— . — X1 — X, = Xy —

satisfies homological stability if, for each k, the induced map
in degree-k homology

(8 + H(Xp; 2) = H(Xp41:2)
is an isomorphism for all n > N for some stability thresh-
old N € Z depending on k. The maps s,, are sometimes

called stabilization maps and the set {(n,k) € Z> | n > N}
is the stable range.

If the maps s, : X,, - X, are inclusions we define
Xo = U, Xn to be the stable group or space. Under
mild assumptions, if {X,,}, satisfies homological stability,
then

Hk(Xoo;Z) = Hk(Xn;Z) for n > Nk'
We call the groups Hy.(X,,; Z) the stable homology.
2. An Example: Configuration Spaces

and the Braid Groups
2.1. A primer on configuration spaces.

Definition 2.1. Let M be a topological space, such as

a graph or a manifold. The (ordered) configuration space
E,(M) of n particles on M is the space

E,(M) = {(xq, ...

topologized as a subspace of M". Notably, F,(M) is a point
and F;,(M) = M.

,X,) € M™ | Xq,..., X, distinct},

Configuration spaces have a long history of study in con-
nection to topics as broad-ranging as homotopy groups of
spheres and robotic motion planning.

One way to conceptualize the configuration space F,,(M)
is as the complement of the union of subspaces of M" de-
fined by equations of the form x; = x;.

FZ([O’ 1]) =

N

Figure 1. The space F,([0,1]) is obtained by deleting the
diagonal from the square [0, 1]2.

In other words, we can construct F,(M) by deleting the
“fat diagonal” of M", consisting of all n-tuples in M" where
two or more components coincide. In the simplest case,
when n = 2 and M is the interval [0, 1], we see that F,([0, 1])
consists of two contractible components, as in Figure 1.

Another way we can conceptualize F,(M) is as the space
of embeddings of the discrete set {1, 2, ..., n} into M, appro-
priately topologized. We may visualize a point in F,(M) by
labelling n points in M, as in Figure 2.
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Figure 2. A point in the ordered configuration space of an
open surface .

From this perspective, we may reinterpret the path com-
ponents of F,([0,1]): one component consists of all con-
figurations where particle 1 is to the left of particle 2, and
one component has particle 1 on the right. See Figure 3.

12
Blo= /.| 21

Figure 3. The path components of F,([0,1]).

Any path through [0,1]* that interchanges the rela-
tive positions of the two particles must involve a ‘colli-
sion’ of particles, and hence exit the configuration space
F,([0,1]) C [0,1]?>. We encourage the reader to verify that,
in general, the configuration space F,([0,1]) is the union
of n! contractible path components, indexed by elements
of the symmetric group S,,. See Figure 4.

2143

—_—

€ Fy([0,1])

Figure 4. A point in F4([0,1]) in the path component indexed
by the permutation 2143 in S,.

In contrast, if M is a connected manifold of dimension
2 or more, then F,(M) is path-connected: given any two
configurations, we can construct a path through M" from
one configuration to the other without any ‘collisions’ of
particles. In this case Hy(F,(M);Z) = Z for all n > 0, and
this is our first glimpse of stability in these spaces as n —
0.

For any space M, the symmetric group S, acts freely
on F,(M) by permuting the coordinates of an n-tuple
(x1,...,X,), equivalently, by permuting the labels on a
configuration as in Figure 2. The orbit space C,,(M) =
E,(M)/S,, is the (unordered) configuration space of n particles
on M. This is the space of all n-element subsets of M, topol-
ogized as the quotient of F,(M). The reader may verify that
the quotient map (illustrated in Figure 5) is a regular S,,-
covering space map. In particular, by covering space the-
ory, the quotient map F,(M) — C,,(M) induces an injective
map on fundamental groups.

In the case that M is the complex plane C, we can iden-
tify C,,(C) with the space of monic degree-n polynomials
over C with distinct roots, by mapping a configuration
{z1,..., 2, } to the polynomial p(x) = (x—2z;) --- (x—2z,). For
this reason the topology of C,,(C) has deep connections to
classical problems about finding roots of polynomials.
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< 3
4' 2 ‘
Fn(M) \O/.

1
Cn(M) = Fn(M)/Sn

Figure 5. The quotient map F,,(M) - C,,(M).

We will address Question 1.2 for the families {C, (M)},

and {F,(M)},,, but we first specialize to the case when
M = C. Although the spaces C,(C) and F,(C) are path-
connected, in contrast to the configuration spaces of M =
[0,1], they have rich topological structures: they are classi-
fying spaces for the braid groups and the pure braid groups,
respectively, which we now introduce.
2.2. A primer on the braid groups. Since F,(C) is path-
connected, as an abstract group its fundamental group is
independent of choice of basepoint. For path-connected
spaces, we sometimes drop the basepoint from the nota-
tion for 7;.

Definition 2.2. The fundamental group 7m;(C,(C)) is
called the braid group B,, and 7,(F,(C)) is the pure braid
group P,.

We can understand 7, (F,(C)) as follows. Choose a base-
point configuration (z, ..., z,) in F,(C), and then we may
visualize a loop as a ‘movie’ where the n particles contin-
uously move around C, eventually returning pointwise to
their starting positions. If we represent time by a third spa-
cial dimension, as shown in Figure 6, we can view the par-
ticles as tracing out a braid. Note that, up to homeomor-
phism, we may view F,(C) as the configuration space of
the open 2-disk.

5 basepoint

time ¢ o
Figure 6. A visualization of a loop y(¢) in F5(C) representing an
element of 7;(F5(C)) = Ps.

Loops in C,(C) are similar, with the crucial distinction
that the n particles are unlabelled and indistinguishable,
and so need only return set-wise to their basepoint config-
uration.
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Figure 7. A braid on 3 strands.

It is traditional to represent elements of the group
B, and its subgroup P, by equivalence classes of braid
diagrams, as illustrated in Figure 7. These braid diagrams
depict n strings (called strands) in Euclidean 3-space, an-
chored at their tops at n distinguished points in a hori-
zontal plane, and anchored at their bottoms at the same n
points in a parallel plane. The strands may move in space
but may not double back or pass through each other. The
group operation is concatenation, as in Figure 8.

Group structure:
concatenation

{1

Figure 8. The group structure on B,,.

Identity
braid

The braid groups were defined rigorously by Artin in
1925, but the roots of this notion appeared in the earlier
work of Hurwitz, Firckle, and Klein in the 1890s and of
Vandermonde in 1771. This topological interpretation of
braid groups as the fundamental groups of configuration
spaces was formalized in 1962 by Fox and Neuwirth.

Artin established presentations for the braid group and
the pure braid group. His presentation for B,,,

0i0j =0j0; ifli—jl>2 >

B, ~(0,0;..,0,_
" DRz Bl 61614101 = 044101014

uses (n — 1) generators o; corresponding to half-twists of
adjacent strands, as in Figure 9.

Artin also gave a finite presentation for P,,. We will not
state it in full, but comment that there are (;’) generators

i (i+1)

s

Figure 9. Artin’s generator o; for B,,.

Tij, (i # j, i,j € {1,2,..,n}) corresponding to full twists of
each pair of strands, as in Figure 10.

Corresponding to the regular covering space map
E,(C) — C,(C) of Figure 5, there is a short exact sequence
of groups

1-P,—-B,—>S,—~1
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A

Figure 10. Artin’s generator T;j = T j; for Py,.

The quotient map B,, — S,,, shown in Figure 11, takes a
braid, forgets the n strands and simply records the permu-
tation induced on their endpoints. The generator o; maps
to the simple transposition (i i + 1). The kernel is those
braids that induce the trivial permutation, i.e., the pure

braid group.
(

2

2
3
Figure 11. The quotient map B,, - S,,.
2.3. Homological stability for the braid groups. Arnold

calculated some homology groups of B, in low degree (Ta-
ble 1).

klo|1]2]|3|4]s5
n
0 VA
1 z
2 zZ|z
3 zZ\|z
4 z|z|z,
5 zZ|z|z,
6 z\z|z,| 2|z
7 z|72\2, |2, |27
8 Z2172\2, 2,2 |2
9 Z|7\2,|2,| 7|2

Table 1. The homology groups Hy(B,;;Z). Empty spaces are
zero groups. Stable groups are shaded.

The k = 0 column follows from the fact that C,,(R?) is
path-connected and the k = 1 column can be obtained
by abelianizing Artin’s presentation of B,,. Even the low-
degree calculations in Table 1 suggest a pattern: the ho-
mology of B,, in a fixed degree k becomes independent of
n as n increases.

Arnold proved the following stability result, in terms of
the stabilization map s, : B,, < B, defined by adding
an unbraided (n + 1)% strand as in Figure 12.

ik

Figure 12. The stabilization map s3 : B; & By.
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Theorem 2.3 (Arnold [Arn70]). Foreach k > 0, the induced
map

(Sn)* : Hk(Bn;Z) - Hk(Bn+1;Z)
is an isomorphism for n > 2k.

The family {C,(C)},, therefore satisfies homological sta-
bility. Arnold in fact proved the result for cohomology,
and Theorem 2.3 follows from the universal coefficients
theorem.

May and Segal proved that the stable braid group B,

has the same homology as the path component of the triv-
ial loop in the double loop space Q2S2. Fuks calculated
the cohomology of braid groups with coefficients in [F,.
E Cohen and Vainstein computed the cohomology ring
with coefficients in [, (for p an odd prime), and described
H¥*(B,,;Z) in terms of the groups H*"1(B,,; Fp) (p prime)
fork > 2.
2.4. Homological stability for configuration spaces. For
a d-manifold M, it is possible to visualize homology
classes in F,(M) and C, (M) concretely. Consider Figure 13.
This figure shows a 2-parameter family of configurations in
E,(M), in fact (because the two loops do not intersect) it
shows an embedded torus S! x S! < F5(M). Thus, up to
sign, this figure represents an element of H,(F5(M)). In
a sense, the loop traced out by particle 3 arises from the
homology of the surface M, and the loop traced out by
particle 4 arises from the homology of E,(R%). From the
homology of M and F,(R%), it is possible to generate lots
of examples of homology classes in F,(M). The problem
of understanding additive relations among these classes,
however, is subtle, and the groups Hy(F,(M);Z) are un-
known in most cases.

Figure 13. A class in H,(F5(M)).

When M is (punctured) Euclidean space, the (co)ho-
mology groups of F,(M) were computed by Arnold and
Cohen. However, even in the case that M is a genus-
g surface, we currently do not know the Betti numbers
Bi = rank(H(F,(M);Z)). Recently Pagaria computed the
asymptotic growth rate in n of the Betti numbers in the
case M is a torus. In the case of unordered configuration
spaces, in 2016 Drummond-Cole and Knudsen computed
the Betti numbers of C,(M) for M a surface of finite type.

Even though the (co)homology groups of configura-
tions spaces remain largely mysterious, the tools of homo-
logical stability give us a different approach to understand-
ing their structure.

Theorem 2.3 on stability for braid groups raises the
question of whether the unordered configurations spaces

526 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

{C,,(M)},, satisfy homological stability for a larger class of
topological spaces M. Let M be a connected manifold. To
generalize Theorem 2.3 we must define stabilization maps

Ch(M) — Cpyi(M)
{1, e, X} — {X1, s X0, X g1 1

Unfortunately, in general there is no way to choose a dis-
tinct particle x,,, continuously in the inputs {xi, ..., x,},
and no continuous map of this form exists. To define the
stabilization maps, we must assume extra structure on M,
for example, assume that M is the interior of a manifold
with nonempty boundary. Then, if we choose a boundary
component, it is possible to define the stabilization map
Sp: Cp(M) — C,1(M) by placing the new particle in a
sufficiently small collar neighbourhood of the boundary
component. This procedure (illustrated in Figure 14) is
informally described as ‘adding a particle at infinity’

Figure 14. Stabilization map s3 : C3(M) —» C4(M).

In the 1970s McDuff proved that the sequence {C,, (M)},
satisfies homological stability and Segal gave explicit stable
ranges.

Theorem 2.4 (McDuff [McD75]; Segal [Seg79]). Let M be
the interior of a compact connected manifold with nonempty
boundary. For each k > 0 the maps

(8n)s © Hk(Cr(M); Z) — Hy(Cpy1(M); 2)
are isomorphisms for n > 2k.

Concretely, this theorem states that degree-k homology
classes arise from subconfigurations on at most 2k parti-
cles. Heuristically, these homology classes have the form
of Figure 15.

-———e
2k particles  n-2k

Figure 15. A homology class after stabilizing by the addition
of n — 2k particles.

Moreover, McDuft related the homology of the sta-
ble space C.,(M) to the homology of I'(M), the space of
compactly-supported smooth sections of the bundle over
M obtained by taking the fibrewise one-point compactifi-
cation of the tangent bundle of M.
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3. Other Stable Families

We briefly describe some other significant families satisfy-
ing (co)homological stability.

Symmetric groups. In [Nak60] Nakaoka proved that
the symmetric groups {S,},, satisfy homological stability
with respect to the inclusions S,, < S,,;;. The Barratt-
Priddy-Quillen theorem states that the infinite symmetric
group S, = Un Sy has the same homology of QFS®, the
path-component of the identity in the infinite loop space
QXS

General linear groups. Let R be a ring. Consider the se-
quence of general linear groups {GL,(R)},, with the inclu-
sions GL,(R) & GL,,4;(R) given by
A 0
A [ 0 1] .

In the 1970s Quillen studied the homology of these
groups when R is a finite field F, of characteristic p in his
seminal work on the K-theory of finite fields. He computes
H*(GL,(Fy); F,) for prime ¢ # p and determines a vanish-
ing range for ¢ = p.

In 1980 Charney proved homological stability when R
is a Dedekind domain. Van der Kallen, building on work
of Maazen, proved the case that R is an associative ring
satisfying Bass's “stable rank condition;” this arguably in-
cludes any naturally arising ring.

These results are part of a large stability literature on
classical groups that warrants its own survey; see the ex-
tended version of this article for further references. Ho-
mological stability is known to hold for special linear
groups, orthogonal groups, unitary groups, and other fam-
ilies of classical groups. There is ongoing work to study
(co)homology with twisted coefficients, and sharpen the
stable ranges.

Mapping class groups and moduli space of Riemann sur-
faces. Let Xg; be an oriented surface of genus g with one
boundary component and let the mapping class group

Mod(Zg,) := mo(Diff" (4 rel 9))

be the group of isotopy classes of diffeomorphisms of Z, ;
fixing a collar neighbourhood of the boundary. There is a
map f, : Mod(Zg;) & Mod(Z4,,,;) induced by the inclu-
sion Xy ; & g1, by extending a diffeomorphism by the
identity on the complement Zg4,, ; \ Z,;, as in Figure 16.
There is also a map cap: Mod(Zg;) — Mod(Z,) in-
duced by gluing a disk on the boundary component of
%, 1. Harer proved [Har85] that the sequence {Mody ; }, sat-
isfies homological stability with respect to the inclusions
ty and that for large g the map cap induces isomorphisms
on homology. The proof and the stable ranges have been
improved by the work of Ivanov, Boldsen, and others.

AprriL 2022

fQQ

extend by id

——

Figure 16. The map Mod(Z; ;) — Mod(Z, ;) is induced by the
inclusion 23 ; < %4 ;.

Madsen and Weiss computed the stable homology by iden-
tifying the homology of mapping class groups, in the sta-
ble range, with the homology of a certain infinite loop
space.

The rational homology of the mapping class group
Mod(Z,) is the same as that of the moduli space M, of
Riemann surfaces of genus g > 2. This moduli space
parametrizes:

« isometry classes of hyperbolic structures on X,

« conformal classes of Riemannian metrics on Zg,

+ biholomorphism classes of complex structures on
the surface Zq

« isomorphism classes of smooth algebraic curves
homeomorphic to Z,.

One consequence of Harer’s stability theorem and the
Madsen-Weiss theorem is their proof of Mumford’s conjec-
ture: the rational cohomology of M, is a polynomial alge-
bra on generators x; of degree 2i, the so-called Mumford-
Morita—Miller classes, in a stable range depending on g. See
Tillman'’s survey [Til13].

Homological stability was established for mapping
class groups of non-orientable surfaces by Wahl, for map-
ping class groups of some 3-manifolds by Hatcher-Wahl
and framed, Spin, and Pin mapping class groups by
Randal-Williams.

Automorphism groups of free groups. Let F, denote
the free group of rank n. Hatcher and Vogtmann proved
that the sequence {Aut(F,)}, satisfies homological sta-
bility with respect to inclusions Aut(F,) < Aut(F,,;).
Galatius computed the stable homology by proving that
H, (Aut(E,); Z) = H,(QF S®;Z) = H,(Sy;Z). In particular,
forn>2k+1,

H (Aut(E,); Q) = Hy(Aut(E,); Q) = 0.

Moduli spaces of high-dimensional manifolds. Let M be
a smooth compact manifold. The moduli space M(M) of
manifolds of type M is the classifying space BDiff(M rel 9).
In the last few years Galatius and Randal-Williams proved
homological stability for M (M) for simply connected man-
ifolds M of dimension 2d > 4, with respect to the n-fold
connected sum with S¢ x S¢.  This generalizes Harer’s
result to higher-dimensional manifolds. They also ob-
tained a generalized Madsen-Weiss's theorem for simply
connected manifolds of dimension 2d > 4. Homological
stability with respect to connected sum with SP x S9, for
p < q < 2p — 2, was established by Perlmutter.
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4. A Proof Strategy

There is a well-established strategy for proving homolog-
ical stability that traces back to unpublished work by
Quillen in the 1970s. We describe a simplified version of
Quillen’s argument for a family of discrete groups with in-
clusions.

Recall that a p-simplex AP is a p-dimensional polytope
defined as the convex hull of (p+1) points in R in general
position, called its vertices. For example, a 0-simplex is a
point, a 1-simplexis a closed line segment, and a 2-simplex
is triangle. A face of a simplex is the convex hull of a subset
of its vertices. A map f: AP — A9 is simplicial if it maps
vertices to vertices, and takes the form

p p
[t Y tf)
i=0 i=0

with vy, ..., v, the vertices of AP and 0 < t; < 1, Zi ti=1.

A triangulation of a topological space W is a decompo-
sition of W as a union of simplices, such that the intersec-
tion o N 7 of any pair of simplices o, 7 in W is either empty
or equal to a single common face of 0 and 7. A triangulated
space is called a simplicial complex. A map f of simplicial
complexes is simplicial if it maps simplices to simplices and
its restriction to each simplex is simplicial.

A simplicial complex W is called (—1)-connected if it
is nonempty, O-connected if it is path-connected, and 1-
connected if it is simply connected. More generally, a
nonempty simplicial complex W is called d-connected if its
homotopy groups 7;(W) vanish for all 0 < i < d. By the
Hurewicz theorem, W is d-connected (d > 2) if and only
if W is simply connected and H;(X) =0 forall2 <i <d.

With this terminology, we can now describe Quillen’s
argument. The following formulation of Theorem 4.1 is
due to Hatcher-Wahl [HW10, Theorem 5.1].

Theorem 4.1 (Quillen’s argument for homological sta-
bility). Let0 & G; © ... © G, & ... be a sequence of discrete
groups. For each n let W, be a simplicial complex with a sim-
plicial action of G,, satisfying the following properties:

(i) The simplicial complexes W}, are (nT_Z)-connected.

(ii) For each p > 0, the group G,, acts transitively on the
set of p-simplices.

(iii) For each simplex o, in W, the stabilizer stab(ap)
fixes o, pointwise.

(iv)  The stabilizer stab(cp,) of a p-simplex ay is conjugate
in Gy, to the subgroup G,,_,_; C Gy. (By convention G, =
0ifn<0.)

(v) For each edge [vgy, 1] in Wy, there exists g € G, such
that g - vy = v, and g commutes with all elements of G,
that fix [vg, 1] pointwise.

Then the sequence {G,, },, is homologically stable. Specifically,

the inclusion G,, & G, induces an isomorphism on degree-k
homology for n > 2k + 1 and a surjection for n = 2k.
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Theorem 4.1 follows from a formal algebraic argument
involving a sequence of spectral sequences associated to
the complexes W},. We remark, for the readers familiar with
spectral sequences, that for each n we obtain a homology
spectral sequence by using W, Xg, EG,, to build an approx-
imation to BG,, from the spaces BG,,_,, for p > 0. The nth
spectral sequence has E! page

Epq = Hy(stab(c,); Z) = Hy(Gy_p_1;2),

El, 4 = Hy(Gy; 2),

and By ; = 0 for p < —1.
The assumption that the complexes W, are highly con-
nected implies that the spectral sequence converges to 0

forp+q< nT_l The differential

d': Ey; = H{(Gn_1;2) — E,; = Hi(Gp; 2)

is the map induced by the inclusion G,_; < G,,. Under
the hypotheses of the theorem, we can argue by induction
on i that this map is an isomorphism (respectively, a sur-
jection) in the desired range, to complete the proof of The-
orem 4.1.

In practice, given Theorem 4.1, the most difficult step in
a proof of homological stability is usually the proof that
the complexes W, are highly connected.

In recent years, the argument that we just outlined
has been axiomatized by Randal-Williams and Wahl
[RWW17] and Krannich [Kral9] to give a very general
framework to prove homological stability results, includ-
ing (co)homology with twisted abelian and polynomial
coefficients. Another axiomatization is due to Hepworth.
4.1. An example: the braid group B,. Let D? be the
closed disk. Fix n marked points in its interior and a dis-
tinguished point * € dD?. Associated to the braid group
B,, is an (n — 1)-dimensional simplicial complex W, called
the arc complex which we define combinatorially.

« vertices: W), has a vertex for each isotopy class of
embedded arcs in D? joining * with one of the
marked points.

+ p-simplices: A set of (p + 1) vertices spans a p-
simplex if the corresponding isotopy classes can
be represented by arcs that are pairwise disjoint
except at their starting point .

Figure 17. The action of o, € B,, on a 1-simplex {vy, v;} of the
arc complex W,,.
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Hatcher and Wahl proved that W, is ( >

(though it is in fact contractible).

The braid group B, is isomorphic to the group
Mod"(D?) of isotopy classes of difffomorphisms of the
closed disk that stabilize the set of marked points and re-
strict to the identity on dD?. Thus B,, has an action on W,
that is simplicial and satisfies conditions (i)-(v). See Fig-
ure 17. Theorem 4.1 gives a modern proof of homological
stability for B,, (Theorem 2.3), a result originally due to
Arnold.

) connected

5. Representation Stability

5.1. Configuration spaces revisited. Let us address Ques-
tion 1.2 for the ordered configuration spaces {E,(M)},
when M is the interior of a compact connected manifold
with nonempty boundary. As with the unordered configu-
ration spaces, given a choice of boundary component, we
can define a stabilization map F,(M) — F,, (M) that con-
tinuously introduces a new particle ‘at infinity. See Fig-

ure 18.
-

Figure 18. Stabilization map F;(M) — F4(M).

This suggests the question: for a fixed manifold M, do
the spaces {F,(M)},, satisfy homological stability? The an-
swer is, in contrast to {C,,(M)},,, they do not, as we will
verify directly.

Let M = C, so the homology H;(F,(C);Z) in degree 1
is the abelianization of the pure braid group P,. Artin’s

presentation implies that P2 ~ 7 > is free abelian on the
images a;; of the ( ) generators Tj; of Figure 10. Viewed
as a homology class in F,(C), we can represent a;; by the
loop illustrated in Figure 19. Hence, rank(H; (P,; Z)) grows
quadratically in n, and homological stability fails.

Figure 19. The homology class «;; € H,(F,(C)).

Church and Farb, however, proposed a new para-
digm for stability in spaces like the ordered configuration
spaces F,(M) of a manifold M. Because (co)homology
is functorial, the S,-action on F,(M) induces an action
of S, on the (co)homology groups. Even though the
(co)homology does not stabilize as a sequence of abelian
groups, they proposed, it does stabilize as a sequence of
S, -representations.
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There are several ways to formalize the idea of stabil-
ity for a sequence of S,-representations. One way, which
was initially the primary focus of Church and Farb, is to
consider the multiplicities of irreducible representations
in the rational (co)homology groups. Suppose V is a finite-
dimensional rational S,-representation. Because S,, is a fi-
nite group, V is semisimple: it decomposes as a direct sum
of irreducible subrepresentations. The multiplicities of the
irreducible components are uniquely defined and deter-
mine V up to isomorphism.

The irreducible rational S,-representations are classi-
fied, and are in canonical bijection with partitions of n. A
partition A of a positive integer n is a set of positive integers
(called the parts of 1) that sum to n. It is traditionally en-
coded by a Young diagram, a collection of n boxes arranged
into rows of decreasing lengths equal to the parts of 1. For

example, the Young diagram HF corresponds to the parti-
tion 3+2 of 5. If 1is a partition of n (equivalently, a Young
diagram of size n), we write V' ; to denote the irreducible
S, -representation associated to 4.

Church and Farb observed a pattern in the rational ho-
mology of F,(C), which we illustrate in Figure 20 in homo-
logical degree 1.

H(Fy(C):Q) = 0
Hi(F>(C);Q) = Vm
H(F(C:Q) = Vi ° Vp
HFE©Q = Vorm  © Vo @ Vi
(RO = Vamm  © Vo © Vg
Hi(Fs(C)Q) = Vrrmm @ VB:\:ED ® W
Hi(F(C€);Q) = Vomommm @ VU\HH ® Voo

s

Figure 20. The decomposition of the homology groups
H,(F,(C); Q) for some small values of n.

For n > 4k, we can recover the decomposition of
H(F,(C); Q) into irreducible components simply by tak-
ing the decomposition of H(F,_1(C); Q) and adding a
single box to the top row of each Young diagram. They
showed that this pattern holds for all k, and Church
later proved that it holds for the cohomology groups
H¥(E,(M); Q) of the ordered configuration space of a con-
nected oriented manifold of finite type.

Church, Farb, and others observed the same patterns in
the (co)homology of a number of other families of groups
and spaces. These results raise the question,

Question 5.1. What underlying structure is responsible
for these patterns?

Church, Ellenberg, Farb, Nagpal, and Putman answered
this question by developing an algebraic framework that
brought their work into a broader field, now called the
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field of representation stability. Other pioneers of the field,
who approached it from different perspectives, include
Sam, Snowden, Gan, Li, Djament, Pirashvili, and Vespa.
5.2. Fl-modules. The key to answering Question 5.1 is
the concept of an Fl-module. The theory of Fl-modules
gives a conceptual framework that explains the ubiquity
of the patterns observed in so many naturally arising se-
quences of S,-representations, and it also provides alge-
braic machinery to prove stronger results with streamlined
arguments.

Definition 5.2. Let FI be the category whose objects are
finite sets (including ##), and whose morphisms are all in-
jective maps. Given a commutative ring R (typically Z or
Q), an Fl-module V over R is a functor from Fl to the cate-
gory of R-modules.

To describe an FI-module V, it is enough to consider the
“standard” finite sets in FI,

[0]=¢ and

For n > 0, we write V, to denote the image of V on [n]. The
endomorphisms of [n] in FI are the symmetric group S,
so V, is an S,-representation. The data of an Fl-module V'
is determined by the sequence of S, -representations {V,},,,
along with S,,-equivariant maps ¢,, : V;, = V;,; induced by
the inclusion [n] & [n + 1]. Figure 21 gives a schematic.

[n] ={1,2,...,n}.

{1} —{1,2}>{1,2,3}=>{1,2,3,4} =—>{1,2,3,4,5} —>

O O O O O
S1 So S3 i Sy Ss
LV
v
Vi—Vo—> V3 Vi Vs
O O O O O
S1 S Ss Sy Ss

Figure 21. An FI-module V.

We refer to (the morphisms of) the category Fl acting on
an Fl-module V in the same sense that a ring R acts on an
R-module.

We encourage the reader to verify that the following se-
quences of S,,-representations form Fl-modules.

« 1, = Q the trivial S,,-representations,
1, the identity map.

« , = Q" S, permutes the standard basis,
1, . Q"= (Q"x{0}) = Q"L

« ¥, = Q[xy,..., x,] the polynomial algebra with S,
permuting the variables, ¢, the inclusion.

Applying any endofunctor of R-modules to an Fl-module
will produce another Fl-module, so we can construct more
examples (say) by taking tensor products or exterior pow-
ers of any of the above.

We leave it as an exercise to the reader to verify that the
following sequences of S,,-representations do not form an
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Fl-module. A hint to this exercise: first verify thatif o € S,
fixes the letters {1,2,...m}, then o must act trivially on the
image of V,, in V,, under the map induced by the inclusion
[m] C [n].
+ 1, = Q the alternating representation,
ie. o-v=(-1)%"yforv e qQ,
t,, the identity map.
« 1, = Q[S,,] the regular representation,
t,, induced by the inclusion S,, C S, ;.

Importantly for present purposes, the (co)homology
groups of ordered configuration spaces form Fl-modules
in many cases. If M is any space, there is a contravariant
action of Fl on its ordered configuration spaces by contin-
uous maps. If we view a point in F,(M) as an embedding
p: [n] = M, then an FI morphism f: [m] — [n] acts by
precomposition,

70 By(M) — Eu,(M)
p+—pof.
See Figure 22.

Figure 22. An FI morphism and its contravariant action on the
configuration spaces {F,(M)},,.

Composing this Fl action with the (contravariant) coho-
mology functor gives a covariant action of Fl on the coho-
mology groups {H*(F,(M))},,.

To obtain a covariant action of Fl on {F,(M)},,, we need
additional assumptions on the space M. Let M be the in-
terior of a compact manifold of dimension at least 2 with
nonempty boundary. Consider an Fl morphism f: [m] —
[n] and a configuration in F,,(M). We relabel particles by
their image under f, and apply the stabilization map of
Section 2.4 to introduce any particles not in f([m]) in a
neighbourhood of a distinguished boundary component.
See Figure 23.

1- .a
~<
2> b
AN

-d

Figure 23. An FI morphism and its covariant action on the
configuration spaces {F,(M)},,.

This action of Fl is only functorial up to homotopy, but
this suffices to induce a well-defined Fl-module structure
on the sequence of homology groups {H (E,(M))},,.
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Modules over the category Fl behave in many ways like
modules over a ring (technically, they are an abelian cate-
gory). We define a map of Fl-modules V' — W to be a nat-
ural transformation, that is, a sequence of maps V, - W,
that commute with the FI morphisms. The kernels and
images of these maps themselves form Fl-modules, and we
can define operations like tensor products and direct sums
in a natural way. This structure allows us to import many
of the standard tools from commutative and homological
algebra to the study of Fl-modules.

Church, Ellenberg, and Farb showed the answer to
Question 5.1 is that the sequences in question are FI-
modules that are finitely generated.

Definition 5.3. Let V be an Fl-module. A subset S C
|l,,»o Vi generates V if the images of S under the FI mor-
phisms span V, for all n > 0. Equivalently, the smallest
Fl-submodule of V' containing S is V itself. The FI-module
V is finitely generated in degree < d if there is a finite subset
of elements S C | |, V, that generates V.

For example, consider the FI-module V over a ring R
such that V; = R[x, ..., X,](g) is the submodule of homoge-
neous degree-d polynomials in n variables, S,, acts by per-
muting the variables, and ¢, : V;, — V},, is the inclusion
map. We encourage the reader to verify that V is finitely
generated in degree < d. Figure 24 shows a finite generat-
ing set when d = 2.

S S Ss
Rlz1)@) = Rlz1, 22 — Rlz1,29,23]0)
Il I Il
(x2) (22, 22, 1122) (22, 23, 22, 2129, 1173, T372)
W W
J% T1T2
Generators

Figure 24. A finite generating set for the FI-module
R[xl, ...Xn](z).

Another example: from our description of the groups
{H,(F,(C); Q)},, in Figure 19, we see that this Fl-module is
generated by the single element «; , € H;(F,(C); Q) shown
in Figure 25. Arnold’s description of the homology groups
of F,(C) makes it straightforward to verify finite generation
of {H(E,(C); Q)},, in every degree k.

Figure 25. The homology class «; ; € H;(F,(C)) generates the
FI-module {H;(F,(C); Q)},.
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Church-Ellenberg-Farb and (independently) Snowden
proved that Fl-modules over Q satisfy a Noetherian prop-
erty: submodules of finitely generated modules are them-
selves always finitely generated. Using this result, Church-
Ellenberg-Farb proved that, if V is a finitely generated
Fl-module, then the sequence {};},, of S,-representations
stabilizes in several senses.

Theorem 5.4 (Church-Ellenberg-Farb [CEF15]). Let V be
an Fl-module over Q, finitely generated in degree < d. The
following hold.

« Finite generation. For n > d,
Sn+1 : ln(w'l) spans W1+1-

+ Polynomial growth. There is a polynomial in n of
degree < d that agrees with the dimension dimg(V},)
for all n sufficiently large.

» Multiplicity stability. For all n > 2d the decompo-
sition of V, into irreducible constituents stabilizes (in
the sense illustrated in Figure 20).

+ Character polynomials. The character of V,, is in-
dependent of n for all n > 2d.

The characters of V are in fact eventually equal to a
character polynomial of degree < d, independent of n; see
[CEF15, Section 3.3].

The answer of Question 1.2 for the family {F,(M)},, is
then given by the following result.

Theorem 5.5 (Church [Chul2]; Church-Ellenberg-Farb
[CEF15]; Miller-Wilson [MW19]). Let M be the interior of
a compact connected smooth manifold of dimension at least
2 with nonempty boundary. In each degree k the homology
and cohomology of ordered configuration spaces {F,(M)},, of M
are finitely generated Fl-modules. In particular the degree-k
(co)homology groups with rational coefficients stabilize in the
sense of Theorem 5.4.

Heuristically, Theorem 5.5 states that the homology of
E,(M) is spanned by classes of the form shown in Figure 26.

—
n—2k
Figure 26. A homology class in the image of Hy(Fy(M); Z).

2k particles

From the S,-covering relationship (Figure 5) it fol-
lows that dim H¥(C,,(M); Q) is equal to the multiplicity of
the trivial representation in H¥(F,(M); Q). Hence Theo-
rem 5.5 implies classical cohomological stability with Q-
coefficients for unordered configuration spaces {C,,(M)},,.
Church [Chul2] used representation stability techniques
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to prove rational (co)homological stability results for the
unordered configuration spaces {C,(M)},, even in the case
that M is a closed manifold, so the isomorphisms are not
necessarily induced by natural stabilization maps.

5.3. Other instances of representation stability. The def-
inition of a finitely generated FI-module makes sense for
representations over the integers or other coefficients, even
in situations where the representations are not semisimple
and multiplicity stability is not well-defined. Moreover,
this approach readily generalizes to analogous categories
that encode actions by families of groups other than the
symmetric groups. Some examples that have been studied
are the classical Weyl groups, certain wreath products, var-
ious linear groups, and products or decorated variants of
FI. The term “representation stability” now refers to alge-
braic finiteness results (like finite generation or presenta-
tion degree) for a module over one of these categories. For
further reading on representation stability, see the intro-
ductory notes and article [Wil18, Sno19, Sam20].

The (co)homology of several families of groups and
moduli spaces exhibit representation stability.

Generalized ordered configuration spaces and pure
braid groups. There is a large and growing body of work
on representation stability for the homology of configu-
ration spaces: improving stable ranges, studying configu-
ration spaces of broader classes of topological spaces, or
studying alternate stabilization maps.

Other families generalizing the pure braid groups also
have representation stable cohomology groups, including
the pure virtual braid groups, the pure flat braid groups,
the pure cactus groups, and the group of pure string mo-
tions.

Pure mapping class groups and moduli spaces of sur-
faces with marked points. Given a set of n labelled
marked points in a surface X, the mapping class group
Mod"(Z) is the group of isotopy classes of (orientation-
preserving if ¥ is orientable) diffeomorphisms of X that fix
0% and stabilize the set of marked points. The pure mapping
class group PMod" (Z) is the subgroup that fixes the marked
points pointwise. These groups also generalize the braid
groups since Mod"(D?) = B, and PMod"(D?) = P,,. There
is a short exact sequence

1 - PMod"(Z) » Mod"(Z) » S, = 1

that defines an action of S, on the (co)homology of
PMod"(Z). Hatcher and Wahl [HW10] proved that
the sequence {Mod"(Z)}, satisfies homological stabil-
ity and Jiménez Rolland [JR19] proved that the groups
H¥(PMod"(Z);Z) assemble to a finitely generated FI-
module.

For g > 2 the moduli space My ,, of Riemann surfaces
of genus g with n marked points is a rational model of the
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classifying space BPModn(Zg), and the symmetric group
S,, acts on My, by permuting the n marked points. Hence,
the sequence {Hk(Mg,n;Q)}n of S,-representations stabi-
lizes in the sense of Theorem 5.4.

In contrast, for fixed genus g the cohomology groups
Hk(_g,n;@) of the Deligne-Mumford compactification of
Mg, can grow exponentially in n.  Thus these se-
quences cannot be finitely generated as Fl-modules.
Tosteson [Tos21]| proved, however, that the sequences
{H¥(M ; @)}, are subquotients of finitely generated FS°-
modules, where FS°? is the opposite category of the cat-
egory of finite sets and surjective maps. From this he
deduced constraints on the growth rate and on the irre-
ducible S, -representations that occur.

Flag varieties. Let G}Y be a semisimple complex Lie group
of type A,_1, B,, Cp, or D,,, with Weyl group W, and B}Y
a Borel subgroup. The space G}Y/B) is called a generalized
flag variety. Representation stability of these cohomology
groups (as S,- or W,-representations) has been studied by
Church-Ellenberg-Farb, Wilson, and others.

Complements of arrangements. The cohomology of
hyperplane complements associated to certain reflection
groups W, (and their toric and elliptic analogues) sta-
bilizes as a sequence of W,-representations by the work
of Wilson and Bibby. Representation stability holds for
the cohomology of more general linear subspace arrange-
ments with a wider class of groups actions by the work of
Gadish.

Congruence subgroups. Let K be a commutative ring
and I C K a proper two-sided ideal. The level I con-
gruence subgroups GL,(K,I) of GL,(K) are defined to be
the kernel of the “reduction modulo I” map GL,(K) —
GL,(K/I). Representation stability of the sequence of
homology groups {H,(GL,(K,I); Z)}, (as S, or GL,(K/I)-
representations) has been extensively studied; see the ex-
tended version of this article for references.

6. Current Research Directions

Work continues on proving (co)homological stability
for new families or new coefficients systems, improving
stable ranges, and computing the stable and unstable
(co)homology for families known to stabilize.

Recently Galatius, Kupers and Randal-Williams
[GKRW18] identified and proved a new kind of stabi-
lization result, which they describe by the slogan “the
failure of homological stability is itself stable”. They
defined homological-degree-shifting stabilization maps
and use them to prove secondary homological stability
for the homology of mapping class groups and gen-
eral linear groups outside the stable range of (pri-
mary) homological stability. Himes studied secondary
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stability for unordered configuration spaces. Miller-Patzt-
Petersen studied stability with polynomial coefficient sys-
tems. Miller-Wilson, Bibby-Gadish, Ho, and Wawrykow
studied representation-theoretic analogues of secondary
stability for ordered configuration spaces.

For a more in-depth introduction to homological stabil-
ity and these current research directions, we recommend
Kupers’ minicourse notes [Kup21] and references therein.
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