
ar
X

iv
:2

11
2.

01
64

7v
1

 [c
s.D

S]
 2

 D
ec

 2
02

1

Explicit Abelian Lifts and Quantum LDPC Codes

Fernando Granha Jeronimo* Tushant Mittal† Ryan O’Donnell‡

Pedro Paredes§ Madhur Tulsiani¶

December 6, 2021

For an abelian group H acting on the set [ℓ], an (H, ℓ)-lift of a graph G0 is a graph
obtained by replacing each vertex by ℓ copies, and each edge by a matching corresponding
to the action of an element of H.

In this work, we show the following explicit constructions of expanders obtained via
abelian lifts. For every (transitive) abelian group H 6 Sym(ℓ), constant degree d ≥ 3 and
ε > 0, we construct explicit d-regular expander graphs G obtained from an (H, ℓ)-lift of a
(suitable) base n-vertex expander G0 with the following parameters:

(i) λ(G) ≤ 2
√

d − 1 + ε, for any lift size ℓ ≤ 2nδ
where δ = δ(d, ε),

(ii) λ(G) ≤ ε · d, for any lift size ℓ ≤ 2nδ0 for a fixed δ0 > 0, when d ≥ d0(ε), or

(iii) λ(G) ≤ Õ(
√

d), for lift size “exactly” ℓ = 2Θ(n).

As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev
of almost linear distance (and also in a wide range of parameters) and explicit classical
quasi-cyclic LDPC codes with wide range of circulant sizes.

Items (i) and (ii) above are obtained by extending the techniques of Mohanty, O’Donnell
and Paredes [STOC 2020] for 2-lifts to much larger abelian lift sizes (as a byproduct sim-
plifying their construction). This is done by providing a new encoding of special walks
arising in the trace power method, carefully “compressing” depth-first search traversals.
Result (iii) is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the
expense of polylog factors in the expansion.

*IAS. granha@ias.edu. This material is based upon work supported by the National Science Foundation
under Grant No. CCF-1900460 and also supported in part by NSF grant CCF-1816372.

†UChicago. tushant@uchicago.edu. Supported in part by NSF grant CCF-1816372.
‡CMU. odonnell@cs.cmu.edu. Supported by NSF grant FET-1909310.
§CMU. preisben@cs.cmu.edu. Supported by NSF grant FET-1909310.
¶TTIC. madhurt@ttic.edu. Supported by NSF grant CCF-1816372.

http://arxiv.org/abs/2112.01647v1

Contents

1 Introduction 1

1.1 Our Results and Techniques . 3

1.2 Derandomized Quantum and Classical Codes 5

2 Preliminaries 6

3 Proof Strategy 7

4 A New Encoding for Special Walks 10

4.1 Graph Encoding . 11

4.1.1 Counting the encodings . 12

4.2 Bounding Singleton Free Hikes . 13

5 Instantiation of The First Two Main Results 15

5.1 A Simple Generalization of The Trace Power Method in MOP 15

5.2 The Instantiation . 17

6 Derandomizing Exponential Lifts 19

6.1 The Setup and Construction . 19

6.2 A Simpler Lifting Proof . 20

7 Explicit Quantum and Classical Codes 23

A Signed Non-backtracking Operator 27

A.1 Diagonalizing Non-backtracking Operator 27

A.2 A Simple Consequence of Ihara-Bass . 28

B A Precise Implementation of DFS 29

i

1 Introduction

Graphs are ubiquitous in theoretical computer science and the ability to explicitly construct
graphs with special properties can be quite useful. Two such properties are expansion
and symmetry. A graph is expanding if it is simultaneously sparse and highly connected
(meaning that we need to remove a lot of edges to disconnect a large part of the graph.)
The theory of explicit constructions of expander graphs has seen a dramatic development
over the past four decades1 [LPS88, Mar88, Mor94, RVW00, BL06, BATS08, Coh16, MOP20,
OW20, Alo21]. We now have constructions via diverse methods achieving a wide range
of expansion guarantees. These range from very explicit algebraic constructions of so-
called Ramanujan graphs [LPS88] to recursive combinatorial ones based on the Zig-Zag
product [RVW00]. These constructions have a plethora of applications specially to coding
theory and pseudorandomness [Vad12]. A highly sought goal is to make the expansion of
a family of (bounded) degree d graphs as close to the Ramanujan bound as possible, i.e.,
having largest non-trivial eigenvalue at most 2

√
d − 1. The Alon-Boppana bound[Nil91]

states that the largest non-trivial eigenvalue is at least 2
√

d − 1 − o(1), so the Ramanujan
bound is in a sense optimal. This goal of achieving strong spectral guarantees has been an
important motivation.

Moving beyond spectral guarantees, we can ask for graphs that combine the important
property of expansion with additional structure and the one we focus on is symmetry2. One
of the problems that has been studied in graph theory is to construct graphs with a given
automorphism group. Frucht proved in 1939 that for every finite group H, we have a
graph G such that Aut(G) = H . Babai [Bab74] later showed that there is such a graph on
at most 2|H| vertices3. Thus, we have a natural question

Can we explicitly construct expanding graphs with given symmetries?

While interesting in its own right, the ability to control symmetries also has concrete
applications. For example, a very recent work [GW21] constructs many families of expand-
ing asymmetric graphs, i.e., having no symmetries, and shows applications to property
testing and other areas. We will focus on an important connection to both quantum and
classical codes that was the motivation behind this work.

Low-density parity check (LDPC) codes were first introduced by Gallager [Gal62] in
the ’60s and are one of the most popular classes of classical error-correcting codes, both in
theory and in practice. LDPC codes are linear codes whose parity check matrices have row
and column weights bounded by a constant (which means that each parity check depends
only on a constant number of bits). The popularity of this family of codes comes from the
fact that there are many known constructions of classical LDPC codes that achieve linear
rate and distance that can also be decoded in linear time [RU08].

A family of codes that has been extensively studied is cyclic codes, i.e., codes that are
invariant under the action of ZN where N is the blocklength. This symmetry leads to
efficient encoding and decoding algorithms and a major open problem is whether good

1See [HLW06] for an excellent survey on expander graphs.
2Informally, we say that G has symmetries of H if H ⊆ Aut(G), where Aut(G) denotes the group of all

graph isomorphisms to itself.
3Except for Z3, Z4 and Z5.

1

cyclic codes exist. Babai, Shpilka and Stefankovich [BSS05] showed that cyclic codes can-
not be good LDPC codes and this negative result was extended by Kaufman and Wigder-
son [KW10] to LDPC codes with a transitive action by an arbitrary abelian group.

Quasi-cyclic codes are a generalization of cyclic codes in which symmetry is only un-
der rotations of multiples of a parameter (called index) n where N = nℓ. This is equivalent
to relaxing the transitivity condition to allow for n orbits. Unlike cyclic codes, good quasi-
cyclic codes are known to exist as was shown by Chen, Peterson and Weldon [CPW69].
More recently, Bazzi and Mitter [BM06] gave a randomized construction for any constant
n > 2 and showed that it attains Gilbert–Varshamov bound rate 1/n. Quasi-cyclic codes
have been extensively studied and are very useful in practice (e.g., their LDPC counter-
parts are part of the 5G standard of mobile communication [LBM+18]).

In the realm of quantum computing, the fragility of qubits makes quantum error cor-
recting codes crucial for the realization of scalable quantum computation. Calderbank-Shor-
Steane (CSS) codes are a family of quantum error-correcting codes that was first described
in [CS96, Ste96]. A CSS code is defined by a pair of classical linear codes that satisfy an
orthogonality condition. The quantum analog of LDPC codes is thus defined as CSS codes
where the parity check matrices of both codes have bounded row and column weights.

Constructing quantum LDPC codes of large distance has been active area of research
recently. After two decades, [EKZ20] broke the

√
N barrier and there was a flurry of activ-

ity with [HHO21] extending it to N3/5 (up to poly log factors). Panteleev and Kalachev
[PK21b] came up with another breakthrough construction achieving almost linear dis-
tance. Both [HHO21] and [PK21b] are non-explicit constructions crucially relying on sym-
metries. The construction in [PK21b] interestingly used quasi-cyclic LDPC codes which
in turn was constructed using expander graphs with cyclic symmetry. Moreover, Breuck-
mann and Eberhardt [BE21] introduced a new approach for constructing quantum codes
simultaneously generalizing [HHO21] and [PK21b] in order to obtain explicit codes out of
a pair of graphs having the symmetries of any group. This provides a very concrete mo-
tive to study explicit construction of expander graphs symmetric under various families of
groups.

Update While the current paper was being prepared for publication, Panteleev and Kalachev
[PK21a] found a breakthrough construction of explicit good quantum LDPC codes.

Current Techniques

Many of the current known constructions of expanders are Cayley graphs and therefore
are highly symmetric but are somewhat rigid in the sense that one may not be able to finely
control the symmetries of a given construction. One general approach is to construct an
expanding Cayley graph for a given group but the Alon–Roichman theorem [AR94] only
guarantees a logarithmic degree which is tight when the group is abelian (and this large
degree is undesirable for some application in coding theory). The other technique used to
build expanders is via an operation called lifting.

In general form, the random lifting operation takes a lift size parameter ℓ, a base ex-
pander graph G0 on n vertices and a subgroup H of the symmetric group, Sym(ℓ), and
constructs a new “lifted” graph G on nℓ vertices where each vertex v of G0 is replaced by
ℓ-copies (v, 1), . . . , (v, ℓ) and for every edge e = (u, v) of G0 a uniformly random element
of he ∈ H is sampled and (u, i) is connected to (v, he(i)) for i ∈ [ℓ]. We say that G obtained

2

this way is a random (H, ℓ)-lift of G0. We call it an unstructured ℓ-lift if there is no restriction
on the group, i.e., H = Sym(ℓ).

Lifting has three very useful properties. One, it preserves the degree of the base graph.
Secondly, random lifts preserve expansion4 with high probability. Finally, (and impor-
tantly for us), if H is abelian, then the lifted graph inherits symmetries of H. The first two
properties are clearly useful in constructing larger expanders from a small one, and for this
reason, there has been extensive work on lift based constructions.

Bilu and Linial [BL06] introduced 2-lifts in an explicit construction of graphs with ex-

pansion O(
√

d log1.5(d)) for every degree. More recently, Mohanty, O’Donnell and Pare-
des [MOP20] gave the first explicit construction of near-Ramanujan, i.e., largest non-trivial
eigenvalue bounded by 2

√
d − 1 + ε, graphs of every degree. The key technique in their

work was a finer derandomization of 2-lifts. Subsequently, Alon [Alo21] gave explicit con-
structions of near-Ramanujan expanders of every degree and every number of vertices.
The work in [MOP20] was also generalized to achieve finer spectral guarantees together
with local properties via unstructured ℓ-lifts in O’Donnell and Wu [OW20].

When one restricts H to be abelian, Agarwal et al. [ACKM19] showed that random
(Zℓ, ℓ)-lifts (also known as shift lifts) are expanding. Motivated by the applications of these
lifts to codes, we obtain explicit constructions of expanding abelian lifts, for a wide range
of lift sizes.

1.1 Our Results and Techniques

Our construction of the lifts (and the expansion thereof) vary based on the parameter ℓ and
we make the following classification for ease in presenting the results. Let n, d, ε be given.

- Sub-Exponential - This is the regime where ℓ ≤ exp
(

nδ(d,ε)
)

. The exponent δ(d, ε)

goes to zero as the degree (d) increases or ε vanishes.

- Moderately-Exponential - This is when ℓ ≤ exp
(
nδ0

)
. The exponent is some fixed

universal constant δ0 ∈ (0, 1) .

- Exactly-Exponential - This is the regime where ℓ = exp(Θd(n)).

Our first main result shows explicit constructions in the sub-exponential and moder-
ately exponential regimes.

Theorem 1.1. For large enough n and constant degree d ≥ 3, given ℓ such that ℓ ≤ exp(nΘ(1)),
the generating elements of a transitive abelian group H 6 Sym(ℓ), and any fixed constant ε ∈
(0, 1), we can construct in deterministic polynomial time, a d-regular graph G on Θ(nℓ) vertices
such that

- G is (H, ℓ)-lift of a graph G0 on Θ(n) vertices.

- (Sub-Exponential) If ℓ ≤ exp
(

nδ(d,ε)
)

, then λ(G) ≤ 2
√

d − 1 + ε.

4This holds for any lift size in the case of “unstructured” ℓ-lifts, but only holds for ℓ ≤ 2Od(n) when H is
abelian (and transitive).

3

- (Moderately-Exponential) If ℓ ≤ exp
(
nδ
)

and also d ≥ d0(ε), then λ(G) ≤ ε · d.

The bulk of the technical work is in the proof of Theorem 1.1. For this, we build on the
techniques of [MOP20] for derandomizing 2-lifts via the trace power method. When ana-
lyzing larger lift sizes (required in our derandomization of quantum and classical codes),
we are led to consider much larger walk lengths in the trace power method. A central
technical component in their work is the counting of some special walks which ultimately

governs the final spectral bound of the construction. For lift sizes larger than 22Θ(
√

log n)
, their

counting trivializes no longer implying expansion of the construction. Our main techni-
cal contribution consists in providing alternative ways of counting such special walks by
carefully compressing the traversal of the depth-first search (DFS) algorithm.

We are able to extend the near-Ramanujan guarantee for 2-lifts from [MOP20] to the
entire sub-exponential regime of lift sizes ℓ. In the moderately exponential regime, the
walks are too long and we resort to another counting that can only guarantee an expansion
of ε · d. Theorem 1.1 can be seen (slight) simplification of the construction in [MOP20] since
we can now do a single large lift instead of performing a sequence of 2-lifts as in their
work5.

Let us now formally state the results of Agarwal et al. in Theorem 1.2 showing random-
ized constructions of abelian lifts.

Theorem 1.2 (Agarwal et al. [ACKM19], Theorem 1.2). Let G0 be a d-regular n-vertex graph,
where 2 ≤ d ≤

√
n/(3 ln n). Let G be a random (Zℓ, ℓ)-lift of G0. Then

λ(G) = O(λ(G0)),

with probability 1 − ℓ · e−Ω(n/d2). Moreover, if ℓ ≥ exp(Oε(nd)), then no abelian (H, ℓ) lift has
λ(G) ≤ ε · d.

This result is based on discrepancy methods building on the work of Bilu and Linial
[BL06] and gives lower and upper bounds that are tight up to a factor of d3 in the exponent.

Theorem 1.1 can be seen as a (derandomization of the parameters) in Theorem 1.2 for
every constant degree and lift size from 2 all the way to exp(nΘd(1)). In the sub-exponential

regime, our result improves their spectral guarantee from O(
√

d) to 2
√

d − 1 + ε.

Our second main result shows explicit constructions in the exponential regime. While
it is not hard to observe that one can derandomize the exponential lift by using off-the-shelf
tools, we give a short proof via a key lemma of Bilu and Linial [BL06] that is a converse
of the expander mixing lemma. Although it gives a spectral guarantee that is weaker by
a log factor, it yields an accessible proof and moreover, interpolates the exponent from
exp(O(n/d2)) all the way to the barrier of exp(O(nd)) thereby bridging the d3-gap.

Theorem 1.3 (Exactly Exponential Lifts). For any positive integers n, ℓ and every constant de-
gree d ≥ 3, given ℓ, the generating elements of a transitive abelian group H 6 Sym(ℓ), there exists
a deterministic poly(exp(n), ℓ) time algorithm that constructs a d-regular graph G on nℓ vertices
such that

- G is (H, ℓ)-lift of a graph G0 on n vertices, and

5Performing a single lift also has the advantage of having to meet a technical condition (bicycle-freeness)
only once instead of at each lift operation.

4

- If ℓ ≤ exp
(

Θ
(

n/
√

d
))

, then λ(G) ≤ O
(√

d · log d
)

.

- If ℓ = exp
(
Θ
(
ndδ

))
for δ ∈ [−1/2, 1), then λ(G) ≤ O

(
d

2+δ
3 · log d

)
.

In particular, we have explicit polynomial time construction of a lift when ℓ = exp(Θ(n)).

1.2 Derandomized Quantum and Classical Codes

We first state the code constructions in [PK21b] and then show how large explicit abelian
lifts derandomize their codes.

Theorem 1.4 ([PK21b]). Let G be a d-regular graph on nℓ-vertices such that G has a symmetry6

of Zℓ and λ2(G) ≤ ε · d. Then we can construct the following,

- A good quasi-cyclic LDPC code of block length N = Θ(nℓ) and index Θ(n).

- A quantum LDPC code which has distance Θε,d(ℓ) and dimension Θ(n).

Panteleev and Kalachev use the aforementioned randomized construction of abelian
lifted expanders by Agarwal et al. [ACKM19], where each edge of the base graph is a
associated with an element in Zℓ sampled uniformly. When ℓ is in the exponential regime
they obtain quantum LDPC codes with almost linear distance, i.e., Ω(N/ log(N)).

Breuckmann and Eberhardt [BE21] gave a derandomization of [PK21b] in a more re-
stricted parameter regime by observing that the Ramanujan graph construction by Lubot-
sky, Philips and Sarnak [LPS88] of size n has a (free) action of Zn1/3 . By Theorem 1.4, we
have an explicit quantum LDPC code of distance O(N1/3) under the notion of distance7

in [PK21b, HHO21].

As a direct corollary of Theorem 1.3, we have a complete derandomization of [PK21b]
yielding explicit quantum LDPC codes of almost linear distance. This greatly improves the
distance of the existing explicit construction. We also get good quasi-cyclic LDPC codes
of almost linear circulant size. Moreover, the ability to construct a wide range of lift sizes
from Theorem 1.1 lets us control the circulant size which can be useful in practice. By
controlling the lift size, we can also directly amplify the rate of their quantum LDPC codes
(without resorting to the product of complexes). To summarize,

Corollary 1.5 ([PK21b], Theorem 1.1 ,Theorem 1.3). We have explicit polynomial time con-
struction of each of the following,

- Good quasi-cyclic LDPC code of block length N and any circulant size up to N/polylog(N)
or Θ(N/ log(N)).

- Quantum LDPC code with distance Ω(N/ log(N)) and dimension Ω(log(N)).

- Quantum LDPC code with distance Ω(N1−α) and dimension Θ(Nα) for every constant
α > 0.

6To be more precise, Zℓ acts freely on G.
7[BE21] state their result for a slightly different notion of a quantum codes called subsystems codes for

which the corresponding distance (also known as dressed distance) is larger.

5

Further Directions

Our work also leads to several natural avenues for further exploration.

1. More Symmetries - While these lift-based constructions yield graphs with symmetries
arising from abelian groups, it is interesting to understand whether one can construct
sparse graphs with symmetries corresponding to other families of groups. Such con-
structions may require new ways of using the symmetry groups, in ways other than
in lifts of a base graph. More generally, it may be useful to investigate other ways of
exploiting graph symmetry, beyond their applications to codes.

2. Better notions of explicitness - It is a very interesting problem to find strongly explicit
constructions of lifted abelian expander. Even making the running time closer to
linear would be interesting. Also, since quasicyclic codes are widely used in practice,
it may be helpful to find explicit constructions which are efficiently implementable.

3. Complete Range - Can we derandomize abelian lifts for ℓ in between 2nΘ(1)
and 2Od(n)?

Can we extend the near-Ramanujan bound beyond the subexponential range?

2 Preliminaries

For an operator M, let its eigenvalues be ordered such that {|λ1(M)| ≥ · · · ≥ |λn(M)|}.
We define ρ2(M) = |λ2(M)|. For an an n-vertex graph G = (V, E), we denote by λ(G) =
ρ2(A), where A is its adjacency operator.

We assume that we have an an ordering on V and by convention, (u, v) ∈ E if u ≤ v.

A character8 of a group is a map χ : H → C∗ that respects group multiplication, i.e.,
χ(h1h2) = χ(h1)χ(h2). For a finite group |χ(h)| = 1 for every h ∈ H. The trivial character is
the one which has χ(h) = 1 for every h. The rest of the characters we call non-trivial.

The action of a group H on a set of ℓ elements is defined by a map ψ : H → Sym(ℓ)
which satisfies ψ(h1h2) = ψ(h1)ψ(h2). Since we only care about the action of the group,
we will assume that our input is actually ψ(H) ⊆ Sym(ℓ) and the action is the natural one.

Definition 2.1 ((H, ℓ)-lift of a graph). An (H, ℓ)-signing of an undirected graph G = (V, E) is
a function s : E → H ⊆ Sym(ℓ). The lifted graph G(s) = (V ′, E′) is a graph on ℓ copies of the
vertices V ′ = V × [ℓ] where for every edge (u, v) ∈ E we have ((u, i), (v, s(u, v)·i)) ∈ E′

We will restrict to analyzing abelian H and the most important case to consider is when
H = Zℓ, i.e. the cyclic group. A necessary condition for the lift to be expanding is for it
to be connected. A subgroup H is transitive if for every i, j ∈ [ℓ], there exists h ∈ H such
that h · i = j. Lifts of non-transitive subgroups are disconnected because if the pair {i, j}
violate the condition then any pair (u, i) and (v, j) are disconnected. Thus, we will assume
henceforth that we work with transitive abelian subgroups.

Let Ed denote the set of directed edges i.e. Ed = {(u, v), (v, u) | (u, v) ∈ E}. We extend
the signing to Ed such that for an edge (u, v) ∈ E, s(v, u) := s(u, v)−1.

8The definition we give is that of a linear character. We use the term character as we work only with abelian
groups.

6

Definition 2.2 (Non-backtracking walk operator). For an extended signing s : Ed → H and
a character χ of H, the signed non-backtracking walk matrix Bs(χ) is a non-symmetric matrix of
size |Ed| × |Ed| in which the entry corresponding to the pair of edges (u, v), (x, y) is χ(s(x, y)) if
v = x, u 6= y, and zero otherwise.

The unsigned variant is obtained by taking the trivial character in the definition above.
Let the non-backtracking walk matrix of G be B and the lifted graph with respect to a
signing s be BG(s). We use the following standard facts.

Fact 2.3. Let B be the non-backtracking walk matrix of a d-regular graph G. Then,

λ(G) ≤ 2 · max{
√

d − 1, ρ2(B)}.

Fact 2.4. If H ⊆ Sym(ℓ) is abelian, then there exist characters {χ1, · · · , χℓ}9 such that we have
Spec(BG(s)) =

⋃
i Spec(Bs(χi)). If H is transitive, then exactly one of the characters is trivial.

3 Proof Strategy

We give an overview of the proof of Theorem 1.1. As mentioned earlier, our results build
on the work of Mohanty, O’Donnell and Paredes [MOP20], so we briefly recall notions and
ideas from their work that we will need.

Let G0 be a base expander graph and s : E0 → Z2 be a signing that defines a lift. It
is convenient to first think that the signing is chosen uniformly at random and later see
which properties were indeed used so that an appropriate derandomization tool may be
used. Using well known facts (Fact 2.3 and Fact 2.4) they reduce the problem of analyzing
the expansion of the lifted graph to that of bounding the spectral radius ρ(Bs) of the non-
backtracking operator Bs.

The MOP Argument: A common technique to bound the spectral radius is the trace power
method which in our case amounts to counting special non-backtracking walks. This is the
motivation for using the non-backtracking operator Bs instead of the more common adja-
cency operator which require counting closed walks (which is potentially harder). Another
standard fact10 is that

ρ(Bs)
2k ≤ tr((B∗

s)
kBk

s) = ∑
(e1,...,e2k)

closed edge walk

2k

∏
i=1

χ(s(ei)).

The above expression greatly simplifies when we take the expectation over a uniformly
random signing since only walks in which every edge occurs at least twice stand a chance
of surviving the expectation. These walks are called singleton free in [MOP20]. We have

E
s∈Z

E0
2

[
ρ(Bs)

2k
]

≤ ∑
(e1,...,e2k)

closed edge walk

E
s∈Z

E0
2

[
2k

∏
i=1

χ(s(ei))

]
≤

∣∣∣
{

2k-length singleton free
non-backtracking walks in G0

}∣∣∣ ,

9These need not be distinct. For example if H is trivial, then all the χi are trivial
10To avoid discussing some unimportant technicalities, we will make some simplifications in this high-level

overview.

7

reducing the problem of bounding the spectral radius to a counting problem of these spe-
cial walks. In the hypothetical (idealized) scenario of G0 being Ramanujan and the count-
ing on the RHS above being (d − 1)k, we would have a Ramanujan lift. The above expres-
sion also hints that ε-bias distributions might be a useful derandomization tool here. This
idealized scenario can be too optimistic and the count of (d − 1)k has additional factors,
but they remain small after taking a 2k-th root (when k is neither too small or large)

One of the main technical contributions in [MOP20] is the counting of 2k-length sin-
gleton free non-backtracking walks in G0, which they call hikes. For the sake of intuition,
we will assume that G0 has girth g, but it is not hard to modify the argument when G0 has
at most one cycle around any neighborhood of radius < g/2 centered at vertex in G0 (the
bicycle freeness property). They view the vertices and edges visited in a hike as forming
a hike graph H. Assuming that g = Ω(logd−1(n)), if k is not too large, then H looks like
a tree possibly with a few additional edges forming cycles as established by Alon, Hoory
and Linial in [AHL02] (and generalized in [MOP20] to bicycle-free radius from girth).

Assuming that the hike is singleton free, we can have at most k steps that visit an edge
that was not previously visited. This implies that the hike graph H has at most k edges
and at most k + 1 vertices (since it is connected). They count the number of these special
walks by directly specifying an encoding for the hike. Up to negligible factors (after 2k-th
root for k not too small), they show that there are at most

n · (d − 1)k · k
O
(

ln(k)
g

)
·k

,

singleton free hikes of length 2k (see [MOP20, Theorem 3.9] for precise details). This bound

trivializes, i.e., it becomes at least (d − 1)2k, for ln(k) ≫ √
g = Θ

(√
logd−1(n)

)
. This

means that we cannot use their bound for very long walks and this in turn prevents us

from getting lift sizes larger than 22Θ(
√

logd−1(n))

from their results.

Our Approach: Now, let’s consider Zℓ lifts for large ℓ. The spectral radius of each indi-
vidual Bs(χ) can be analyzed in a similar fashion as above via the trace power method.
However, we need to bound all of them simultaneously. We know no better way than a
simple union bound over the ℓ − 1 cases, but this will force us to obtain a much better
concentration guarantee out of the trace power method which in turn entails having to
consider much larger walk lengths.

Instead of encoding a hike directly as in [MOP20], we will first encode the subgraph of
G0 traversed by the hike, which we call hike graph, and then encode the hike having the
full hike graph at our disposal. We will give two different encodings for the hike graph.
The first one is simpler and can encode an arbitrary graph. The second encoding uses the
special structure of the hike graph, namely, having few vertices of degree greater than 2.
Both encodings are based on the traversal history of the simple depth-first search (DFS)
algorithm. Let H be the hike graph on m ≤ k edges and n′ ≤ k + 1 vertices. As DFS
traverses H, each of its edges will be visited twice: first “forward” via a recursive call and
later “backwards” via a backtracking operation. We view each step of the DFS traversal as
being associated with an edge that is being currently traversed and the associated type of
traversal: recursive (R) or backtracking (B). A key observation is that only for the recursive
traversals we need to know the next neighbor out of d − 1 possibilities (except for the first
step). For the backtracking steps, we can rely on the current stack of DFS. Thus, if we are
given a starting vertex from G0, a binary string in {R, B}2m and a next neighbor for each

8

recursive step, we can reconstruct H. Note that there at most

n · d · (d − 1)k · 22k,

such encodings. Having access to the hike graph and again assuming that the graph has
girth g = Ω(logd−1(n)) (similarly, bicycle freeness is also enough). Using the locally tree-
like structure, a 2k-length hike can be specified by splitting it into segments of length <

g/2, by specifying the starting vertex of the first segment and the ending vertex of each
segment, we have enough information to recover the full hike. Note that there are at most

kO(k/g),

ways of encoding a hike. Then, the number of 2k-hikes in G0 is at most

n · d · (d − 1)k · 22k · kO(k/g).

Now we can take k ≈ nδ for a sufficiently small δ = δ(d) > 0 and obtain, after taking the
2k-th root of the above quantity,

ρ(Bs) ≤ (1 + ε) · 2 ·
√
(d − 1),

when k = k(n, d, ε) is sufficiently large and c = c(ε) is sufficiently small. The extra factor
2 prevent us from obtaining near-Ramanujan bounds with this counting. Nonetheless, the

simple counting already allows us to obtain expansion O(
√

d) for lifts sizes as large as

2nδ(d)
. Moreover, by weakening the expansion guarantee we can obtain lift sizes as large

as 2nΘ(1)
from this counting and obtain part of Theorem 1.1. If we insist on getting a near-

Ramanujan bound, we need to compress the traversal history further since storing a string
{R, B}2m is too costly and leads to this factor of 2. Note that this string has an equal number
of R and B symbols, so it cannot be naively compressed.

To obtain a near-Ramanujan graph, we will take advantage of the special structure of
the hike graph (when the walk length is large but not too large) in which most of its vertices
have degree exactly 2. These degree 2 vertices are particularly simple to handle in a DFS
traversal. For them, we only need to store the next neighbor out of d − 1 possibilities in
G0 (except possibly for the first step). In a sequence of backtrackings, if the top of the DFS
stack is a degree 2 vertex we know that we are done processing it since no further recursive
call will be initiated from it. Then, we simply pop it from the stack. It is for the “rare” at
most δ · n′ vertices v of degree ≥ 3 that we need to store how many extra recursive calls tv

we issue from v and a tuple of additional next neighbors (d1, . . . , dtv). The total number of
such encodings is at most

n · d · (d − 1)k ·
(

k + 1

δ(k + 1)

)
· (d − 1)δ(k+1),

which combined with the same previous way of encoding a hike given its graph results in
a total number of hike encodings of G0 of at most

n · d · (d − 1)k ·
(

k + 1

δ(k + 1)

)
· (d − 1)δ(k+1) · kO(k/g),

9

By choosing δ = δ(d, ε) sufficiently small and taking k = k(n, d, ε) ≤ 2δ·g ≈ nOd(δ) suffi-
ciently large, we obtain after taking the 2k-th root

ρ(Bs) ≤
√
(d − 1) + ε,

indeed leading to a near-Ramanujan bound for lifts as large as 2nδ
in Theorem 1.1.

Now we briefly explain how to handle the union bound to ensure that ρ(Bs(χ)) is si-
multaneously small for all (ℓ− 1) non-trivial characters (in the decomposition of Fact 2.4).
This union bound is standard when using the trace power method, what is relevant is the
trade-off between lift size and walk length. To obtain a high probability guarantee from a
guarantee on expectation, it is standard to consider larger walk lengths from which con-
centration follows from a simple Markov inequality. More precisely, if for some function
f , Eρ(Bs(χj))

2k ≤ f (n, d, g, k), then by Markov’s inequality,

Pr
s∈Z

E0
ℓ

[
ρ(Bs(χ)) ≥ 2log2(ℓ)/(2k) · f (n, d, g, k)1/(2k)

]
≤ 1

ℓ
.

Therefore, for k ≥ log2(ℓ) sufficiently large, we can union bound over all characters χ and
obtain similar bounds as before. As alluded above, this lower bound on the length of the
walk depending on the lift size is the reason why we are led to consider much longer walks.
To conclude this proof sketch, we need to replace a random signing by a pseudorandom
random one. As in [MOP20], we use ε-biased distributions but suitably generalized to
abelian groups, e.g., the one11 by Jalan and Moshkovitz in [JM21]. We may be taking very
large walks on the base graph G0, so the error of the generator needs to be smaller than
n · d2k, where k can be as large as nΘ(1). We note that as long as the degree d is a constant
this quantity is at most a polynomial in the size of the final lifted graph G since walks of
length O(log(|V(G)|)) suffice for any lift size up to full extent of 2O(n), for which abelian
lifts can be expanding.

The above argument covers Theorem 1.1, namely, the sub-exponential and moderately-
exponential abelian lift sizes. The “exact” exponential regime of Theorem 1.3 relies on
an elegant converse of the expander mixing lemma by Bilu and Linial [BL06]. Since this
regime is simpler, we defer the details to Section 6, where it is formally presented.

4 A New Encoding for Special Walks

In this section we will count the total number of singleton-free hikes of a given length on
a fixed graph, G. We split the count into two parts. First, we count the number of possible
hike graphs and then, for a given hike graph H, we count the number of hikes that can
i.e., yield H on traversal. Each of these counts is via an encoding argument and therefore
we have two kinds of encoding. One for graphs and the other for hikes. In the first part of
the section we give two ways of encoding graphs, and in the other half, we encode hikes.
Since the first section is a general encoding for subgraphs, we relegate formal definitions
related to hikes to a later section.

11For our application, it suffices to have the support size of the ε-biased distribution polynomial in 1/ε.

10

4.1 Graph Encoding

Let H be a subgraph of a fixed d-regular graph G. We wish to encode H in a succinct way
such that given the encoding and G, we can recover H uniquely. We will give two ways
of encoding H. The first one will be generic that works for any subgraph of a d-regular
graph. The second encoding takes advantage of the special sparse structure (not too many
vertices of degree greater than two). We assume that we have an order on the neighbors of
every vertex, and thus, given (v, j), we can access the jth neighbor of v efficiently.

We will do this by encoding a DFS based-traversal of it from a given start vertex . Here,
we really need our DFS traversal to be optimal in the sense that the number of times each
edge is traversed is at most two and not any higher. We, therefore, include precise details
of our implementation in Appendix B.

To reconstruct the graph, we reconstruct the traversal and so need access to two types
of data before every step - (1) Is this step recursive or backtracking (2) If it is a recursive
step, then which neighbour do we recurse to.

To determine the neighbor of the current vertex we need to move to in a recursive
call we need to specify one out d − 1 possibilities (except in the first step which has d
possibilities). This can be specified by a tuple of (d1, . . . , d|E(H)|) ∈ [d] × [d − 1]|E(H)|−1

indicating the neighbor. For a backtracking step, we just pop the stack and thus don’t need
any additional data.

We use two ways to figure out whether a step is recursive or backtracking. The direct
way is to just record the sequence in a binary string of length 2|EH|. A neighbour u of v is
called recursive if the edge (v, u) is visited by a recursive call from v. A simple observation
about backtracking sequences is that – It starts when we encounter a vertex that has al-
ready been visited or we reach a degree one vertex and ends when we see a visited vertex
that has unvisited recursive neighbors. Therefore, we store a string σ ∈ [d]× [d− 1]|V(H)|−1

in which σi denotes the number of recursive neighbors of the ith visited vertex. To summa-
rize,

GraphEnc(H):

(a) Starting vertex v1 ∈ V(G)

(b) A sequence of degrees (d1, . . . , d|E(H)|) ∈ [d]× [d − 1]|E(H)|−1

(c) Either σ ∈ {R, B}2|E(H)| (Encoding I) or σ ∈ [d]× [d − 1]|V(H)|−1 (Encoding II)

11

Algorithm 4.1 (Unpacking Algorithm for GraphEnc).
Input GraphEnc(H)

Output H

· Initialize DFS stack S with v1

· Initialize H = ({v1}, ∅)

· Initialize n, r, t = 1 // count visited vertices, recursive steps and total steps

· Initialize ord(v1) = 1

· While S 6= ∅:

· Let v be the top vertex on the stack S

· step = StepType(v, t)

· If step = R (recursive):

· Assign vnext to be dth
r neighbor of v and increment r

· Add edge {v, vnext} to H
· If vnext is unvisited :

· Add vertex vnext to H
· n ← n + 1

· ord(vnext) ← n

· push(vnext, S)

· Else if vnext is visited, increment t // Next step is backtracking

· If step = B (backtracking):

· pop(S)

· t ← t + 1

· return H
Algorithm 4.2 (StepType).

Input (v, t)
Output (Type)
Note - The subroutine to detect the type of step depends on the encoding string σ.

· If σ is from Encoding I, return σt

· Else, let j = ord(v)

· If σj > 0 //Check if there are any remaining recursive neighbours

· Decrement σj ← σj − 1

· return R

· Else, return B

4.1.1 Counting the encodings

For the first kind of encoding of type, we have 22k strings of length 2k over {R, B}. The
second encoding might seem wasteful in general but it is much better when the graph has

12

special structure that our hike graph will satisfy. We first note that for any vertex v, the
number of recursive neighbours σv ≤ degH(v)− 1 (or ≤ degH(v) if v = v0).

Definition 4.3 (Excess). The excess of H is defined as exc(H) := |E(H)| − |V(H)|.

Definition 4.4 (Excess Set). We define a vertex to be an excess vertex in H if degH(v) > 2 and
we define the excess set to be the set consisting of such vertices i.e

excSet(H) := |{v ∈ V(H) | deg(v) > 2}| .

Lemma 4.5. Let G be a fixed d-regular graph on n vertices. The total number of connected sub-
graphs H of G having at most ≤ k edges is at most

2n · d · (d − 1)k−1 · 22k.

Moreover, if H is constrained to have at most two vertices of degree one12 and exc(H) ≤ δk, the
count is at most

2nk3 · d · (d − 1)k−1 · 2H2(δ
1−δ)k · dδk.

Proof. We first fix the number of edges as m and we will then sum up the expression for
m ≤ k. Algorithm 4.1 unambiguously recovers the graph and therefore the number of
possible graphs can be counted by counting the number of possible inputs. The number
of degree sequences and start vertices are n · d(d − 1)m−1. The number of σ-strings of
encoding I are 22m. Therefore for a given m, we have nd · (d − 1)m−1 · 22m and summing
this gives the first claim.

In the second case, the key idea is that for every vertex (except the start) of degree 2, σv

must be 1. Since |excSet(H)| ≤ δm, almost all of the string σ is filled by 1.

We first pick the number of vertices, say t. There are at most m choices for this. Then,
we let the number of excess vertices be j. Summing over all possible j, the number of

σ-strings of length t is ≤ t2 ∑
δm
j=0 (

t
j)d

j ≤ t2dδm ∑
δm
j=0 (

t
j) ≤ t2dδm2H2(δ

1−δ)t.

Here the first term counts the ways or having or up to two vertices of degree 1, the
second counts the ways to choose the excess vertices and the third counts the number of
their recursive neighbours. In the last inequality we used that t = m − exc(H) ≥ (1 − δ)m.

The complete expression for the number of graphs would then be

∑
m≤k

(
nd(d − 1)m−1

m

∑
t=(1−δ)m

t2dδm2H2(δ
1−δ)t

)
≤ 2nk3 · d · (d − 1)k−1 · 2H2(δ

1−δ)k · dδk.

4.2 Bounding Singleton Free Hikes

Following [MOP20], we make the following useful definitions,

Definition 4.6 (Singleton-free hikes). A k-hike W is a closed walk of 2k-steps13 in G in which
every step except possibly the (k + 1)st is non-backtracking. A hike is singleton-free if no edge is
traversed exactly once.

12We will see later that hike graphs satisfy this strange property
13That is sequence of (v0, · · · , v2k−1) such that (vi, vi+1) ∈ E(G) and v0 = v2k−1

13

Definition 4.7 (Bicycle free radius [MOP20]). A graph G is said to have a bicycle-free radius at
radius r if the subgraph H of distance-r neighborhood of every vertex has exc(H) ≤ 0.

We will work with singleton-free hikes in this section. A singleton-free k-hike on G
defines a subgraph H such that there at most two vertices of degree 1 (the start vertex and
the middle vertex) and the number of edges is at most k as every edge is traversed at least
twice. The goal now is to count the possible number of singleton-free k-hikes that yield a
fixed subgraph H. Having access to H, we will need to encode the hike in a way similar
to the encoding of stale stretches in [MOP20].

HikeEnc:

(a) (v1, . . . , vs) ∈ V(H)s,where s = ⌈2k/r⌉ and r is the bicycle free radius of H.

(b) (c1, . . . , cs) ∈ {0,±1, · · · ,±⌊r/2⌋}s . Here, ci denotes the number of times the unique
cycle (in the neighborhood of vi) is to be traversed and the sign indicates the orien-
tation. Since each stretch is of length r and each cycle of length at least 2 we can
traverse a cycle at most ⌊r/2⌋ times.

Claim 4.8. For any graph H that is bicycle free at radius r, the number of simple singleton-free

k-hikes that have H as their hike graph is at most (|rV(H)|)⌈2k/r⌉.

Proof. Follows from the possible values the encoding HikeEnc can take.

We use a generalization of the bound of Alon et al. [AHL02] on the excess number
(originally involving the girth), extended to bicycle-free radius in [MOP20].

Theorem 4.9. [MOP20, Theorem 2.13] Let H be a bicycle free graph of radius r ≥ 10 ln(|V(H)|).
Then

exc(H) ≤ ln(e |V(H)|)
r

· |V(H)| .

Corollary 4.10. Let G be a d regular graph on n vertices bicycle free at radius r. Let H be a
subgraph with at most two vertices of degree one on n0 vertices where n0 = eδr−1 for some δ ≤
1/10. Then,

excSet(H) ≤ 2δn0 + 2.

Lemma 4.11. Let G be a d regular graph, with d ≥ 3, on n vertices bicycle free at radius r. Then,
the total number of singleton free (k − 1)-hikes on G is at most

(
2γ1

√
d − 1

)2k
where γ1 = 1 +

log(nrk)

2k
+

log(rk)

r
.

If we assume that 3 ≤ k ≤ eδr , then it is at most

(
2γ2

√
d − 1

)2k
where γ2 =

log(16nk3rd)

2k
+

log(rk)

r
+ H2(5δ)/2 + δ log d.

Proof. Any singleton-free (k − 1)-hike defines a connected graph H with at most k − 1
edges and therefore at most k − 1 vertices. If there is no backtracking step then all vertices
except the start have degree at least two. Else, the end point of one of the backtracking step
may have degree 1. Thus there are at most 2 vertices of degree one. When k is unbounded,

14

we use the bound from the first encoding i.e. Lemma 4.5 and combine it with the number
of possible hikes on this from Claim 4.8 to get

≤ 2n · d · (d − 1)k−2 · 22(k−1)(r(k − 1))
2(k−1)

r +1

≤ (nrk) · (d − 1)k · 22k(rk)
2k
r

≤
(

2 · 2log(nrk)/2k2
log(rk)

r

)2k

(d − 1)k

≤
(

2γ1
√

d − 1
)2k

.

The assumption on k lets us use Corollary 4.10 which when combined with Lemma 4.5

gives us the bound on the number of such graphs as 4nk2d · (d − 1)k−1 · (k
2δk+1) · d2δk+1.

Combining with the number of possible hikes on this from Claim 4.8, we get the total
number of singleton-free k-hikes bounded by

≤ 4n(k − 1)2 · d · (d − 1)k−2 ·
(

k − 1

2δ(k − 1) + 2

)
· d2δ(k−1)+2(r(k − 1))

2k−2
r +1

≤ (16nk3rd)(d − 1)k · 2H2(5δ)k · d2δk(rk)
2k
r

≤
(

2log(16nk3rd))/2kdδ2
log(rk)

r 2H2(5δ)/2
)2k

(d − 1)k

≤
(

2γ2
√

d − 1
)2k

.

5 Instantiation of The First Two Main Results

In this section, we will use the bound on singleton-free hikes obtained in the last section
to bound the eigenvalue of the lifted graph. We first handle non-singleton free hikes and
show that they can be easily bounded by the ε-biased property of the distribution of the
signings. We then formalize the construction by instantiating it using an expander from
MOP having large bicycle-free radius and then bring the bounds together.

5.1 A Simple Generalization of The Trace Power Method in MOP

We now show that the problem of bounding the spectral radius of the signed non-backtracking
operator reduces to counting singleton-free hikes. This reduction is a straightforward gen-
eralization of the argument [MOP20, Prop. 3.3] for Z2 to any abelian group.

Let Bs(χ) (as defined in Definition 2.2) be the signed non-backtracking operator with
respect to a signing and a non-trivial character χ and ρ(Bs) denote its spectral radius. The
goal is to bound the largest eigenvalue of Bs(χ). The trace method is the name for utilizing
the following inequality,

tr((B∗)kBk) =
∥∥∥Bk

∥∥∥
F
= ∑

i

∣∣∣λk
i

∣∣∣
2
≥ ρ(B)2k.

The signing s is drawn from some distribution D and we wish to show via the probabilistic
method that there exists a signing in D for which ρ(Bs(χ)) is small for any set of (l − 1)

15

non-trivial characters χ. We will use a first-order Markov argument and therefore wish to
bound Es∼D tr(Bk

s (B∗
s)

k). Writing it out we get,

Tχ(s) = tr((B∗
s)

kBk
s) = ∑

e∈Ed

(
(B∗

s)
kBk

s e
)

e

= ∑
(e0,··· ,e2k)

B(e0, e1) · · · B(ek−1, ek)B∗(ek, ek+1) · · · B∗(e2k−1, e2k)

= ∑
(e0,··· ,e2k)

χ(s(e1)) · · · χ(s(ek))χ
∗(s(ek)) · · · χ∗(s(e2k−1))

= ∑
(e0,··· ,e2k)

χ(s(e1)) · · · χ(s(ek−1))χ
∗(s(ek+1)) · · · χ∗(s(e2k−1)).

Notice that e0, ek don’t appear in the term and so we define Hk−1 as the multiset of all
tuples (e1, . . . , ek−1, ek+1, . . . , e2k−1) appearing in the support of this summation. We denote
each term in the summation above by χw(s) where w ∈ Hk−1. It follows directly from the
definition that each w ∈ Hk−1 defines a (k − 1)-hike. Also observe that, any tuple appears
at most (d − 1)2 times as given a tuple w, we have at most (d − 1) choices for each e0, ek.
Let Hs

k−1 denote the singleton-free hikes in Hk−1. We can split Tχ(s) = T1(s) + T2(s) where

T1(s) = ∑
w∈Hs

k−1

χw(s), T2(s) = ∑
w 6∈Hs

k−1

χw(s).

We now define ε-biased distributions that will be the key pseudorandomness tool.

Definition 5.1 (Bias). Given a distribution D on a group H and a character χ, we can define
the bias of D with respect to χ as biasχ(D) := |Eh∼Dχ(h)| and the bias of D as bias(D) =
maxχ biasχ(D), where the maximization is over non-trivial characters.

Lemma 5.2. Let D ⊆ HE(G) be an ν-biased distribution and let w 6∈ Hs
k−1 be a singleton-hike i.e.

there is an edge that is travelled exactly once. Then, |Es∼Dχw(s)| ≤ ν.

Proof. Let the set of distinct edges in w be {e1, · · · , er} and let edge ei be travelled ti times
where ti takes the sign into account.14Let ej be the edge traversed exactly once. Then,
tj = ±1. Now, we can rewrite χw(s) = ∏

r
i=1 χ(s(ei))

ti and it can be extended to a character

on HE(G). Since tj = ±1, this character is non-trivial and the claim follows from the ν-
biased property.

Lemma 5.3 (Analog of Corr. 3.11 in [MOP20]). Let G be a d-regular graph on n-vertices, ε < 1
be a fixed constant, ℓ be a parameter, H ⊆ Sym(ℓ) be an abelian group and D ⊆ Hm be an ν-biased

distribution such that ν ≤ (nld2)−1.
(

ε
d

)2k
.

Assume that the number of singleton-free (k − 1)-hikes is bounded by (2γ
√

d − 1)2k. Then
for any non-trivial character χ of Hm, we have that except with probability at most 1/ℓ over D,

ρ(B(χ)) ≤ 2γ′√
d − 1 + ε where γ′ = γ + log(ℓd2)

2k .

14Let ei appear f1 times in the first k − 1 steps and b1 times in the next (k − 1) steps. Similarly let eT
i which

is the reverse direction of e appear f2 times in the first k − 1 steps and b2 times in the next (k − 1) steps. Then,
ti = f1 + b2 − f2 − b1.

16

Proof. By the decomposition above, we have T(s) = T1(s) + T2(s). As each term in the
expression is of the form χ(h) and as remarked earlier, all the characters are roots of unity
so |χ(s(e))| = 1. Thus, |T1(s)| ≤

∣∣π−1
(
H∗

k−1

)∣∣ ≤ (d − 1)2
∣∣H∗

k−1

∣∣

µ := |Es∼DT| = |ET1 + ET2|
≤ |ET1|+ |ET2|
≤

∣∣Hs
k−1

∣∣+ ∑
w 6∈Hs

k−1

|Es∼Dχw(s)|

≤ d2(2γ
√

d − 1)2k + ν |Hk−1|
≤ d2(2γ

√
d − 1)2k + νnd2k+2.

Here we have used the observation that
∣∣Hs

k−1

∣∣ ≤ (d − 1)2{|Singleton-free (k − 1)-hikes|}
and Lemma 5.2. The bound on |Hk−1| is trivial as we have nd choices for the starting
edge and a walk of length of 2k + 1. Since T is a non-negative random variable, we apply
Markov to conclude that T ≤ µℓ with probability at most 1/ℓ.

ρ(Bs(χ)) ≤ T1/2k
< (µℓ)1/2k ≤

(
d2
ℓ

(
2γ
√

d − 1
)2k

+ νℓnd2k+2

)1/2k

≤ (d2
ℓ)1/2k2γ

√
d − 1 +

(
νℓnd2k+2

)1/2k

≤ 2γ′√
d − 1 + (νℓnd2)1/2kd

≤ 2γ′√
d − 1 +

ε

d
d

≤ 2γ′√
d − 1 + ε.

5.2 The Instantiation

Before we instantiate the explicit construction of abelian lifted expanders leading to Theorem 1.1,
we will need two tools. The first one is an explicit construction of expander graphs to be
used as base graphs in the lifting operation. Since we need this technical condition of
bicycle-freeness, we use the construction in [MOP20].

Theorem 5.4. [MOP20, Theorem 1.1] For any given constants d ≥ 3, ε > 0, one can construct in
deterministic polynomial time, an infinite family of graphs {Gn} with λ(Gn) ≤ 2

√
d − 1 + ε and

Gn is

- n ≤ |V(Gn)| ≤ 2n ,

- Gn is bicycle-free at radius c logd−1(|V(Gn)|),

- λ2(BG) ≤
√

d − 1 + ε.

The second tool is a ν-biased distribution for abelian groups (having a sample space
depending polynomial on 1/ν). In particular, we use a recent construction by Jalan and
Moshkovitz.

17

Theorem 5.5. [JM21] Given the generating elements of a finite abelian group H and an integer
m ≥ 1 and ν > 0, there is a deterministic polynomial time algorithm that constructs subset

S ⊆ Hm with size O
(

m log(H)O(1)

ν2+o(1)

)
such that the uniform distribution over S is ν-biased.

We are now ready to prove our first main result.

Theorem 1.1. For large enough n and constant degree d ≥ 3, given ℓ such that ℓ ≤ exp(nΘ(1)),
the generating elements of a transitive abelian group H 6 Sym(ℓ), and any fixed constant ε ∈
(0, 1), we can construct in deterministic polynomial time, a d-regular graph G on Θ(nℓ) vertices
such that

- G is (H, ℓ)-lift of a graph G0 on Θ(n) vertices.

- (Sub-Exponential) If ℓ ≤ exp
(

nδ(d,ε)
)

, then λ(G) ≤ 2
√

d − 1 + ε.

- (Moderately-Exponential) If ℓ ≤ exp
(
nδ
)

and also d ≥ d0(ε), then λ(G) ≤ ε · d.

Proof. Construct G0 on n ≤ n′ ≤ 2n vertices for given (d, ε) using Theorem 5.4 which has
r ≥ c logd−1 n′.

· Regime 1 - Here shorter walks will suffice and we will use the bound on γ2 from Lemma 4.11.

To get Near-Ramanujan, we need γ′ = γ2 +
log(d2ℓ)

2k = γ′
2 +

log(ℓ)
2k to be vanishing with

ε. Observe that when k = ω(log n), γ2 is bounded by o(1) +
(

2
√

δ + δ log d
)

. We pick

δ small enough and assume that n′ ≥ N(ε, d) such that γ′
2 ≤ 2ε√

d−1
. In the bounded

k regime we can pick k < eδr. Since,
log(ℓ)

2k must also be vanishing in ε, this forces
log(ℓ) ≤ εk ≤ εeδr. This explains the bound on ℓ.

· Regime 2 - Here ℓ is larger and so we pick k = log ℓ. Now, we need to use γ1 which we re-

call is 1+ log k
r + o(1). Thus, γ′ = (γ1 +

log d2

k)+ log ℓ

k ≤ 3/2+ log k
r . Since, r = c logd−1(n

′),
to get non-trivial expansion k ≤ nc/2 which explains the bound on the exponent δ.

The precise parameters are as follows

Regime δ k ν γ′

1 O
(

ε2

d

)
10
√

d−1
ε max(log ℓ, log n) (nld2)−1

(
ε

3d

)2k
= (nℓ)cd,ε 2ε

3
√

(d−1)

2 ≤ c/2 log ℓ = nδ (nℓd2)−1
(

1
3d

)2k
= (nℓ)cd 2 + δ

c log(d − 1)

Construct a ν-biased distribution D using Theorem 5.5. These two constructions take
poly(n, ℓ) time.

From Corollary A.2, we have to analyze B(χ) for ℓ − 1 non-trivial characters χ that
appear in this decomposition. The largest eigenvalue is clearly given by B(1) which is
d − 1. For the second largest, λ2(B(1)) ≤

√
d − 1 + ε by the property of the base graph G

obtained by Theorem 5.4. Since we have the bicycle-free property, we can use Lemma 5.3
to conclude that for any non-trivial characters we have except with probability at most 1/ℓ

· Regime 1 - ρ(B(χ)) ≤ 2γ′√
d − 1 + ε/3 ≤

√
d − 1 + ε.

18

· Regime 2 - ρ(B(χ)) ≤ 2γ′√
d − 1 + 1 ≤ 2 · 22dδ/c

√
d − 1 ≤ εd when d ≥

(
8
ε

) 2c
c−2δ .

Using the Fact 2.4, we assume that the decomposition has exactly one trivial charac-
ter (say, χ1) and (l − 1) non-trivial characters. Then for the trivial character ρ(BG0(s)) =

ρ(B(χ1)) = d − 1 and thus, ρ2(B) = max
{

λ(G0), maxℓi=2 ρ(B(χi))
}

.

Since the bound holds for any non-trivial χ except with probability 1/ℓ we take a union
bound over these ℓ− 1 characters we get that there is a labelling s ∈ D such that the bound
holds for ρ(B(χi)) and thus for λ(BG0(s)). By Fact 2.3, we get that λ(G) ≤ 2ρ2(BG) which
satisfies the bounds we need.

We can brute force through each s ∈ Supp(D) to find an s such that the lifted graph
G = G0(s) has the required spectral gap. Checking this is a simple linear algebraic task
and can be done in time cubic in nℓ. Therefore, the total time taken is poly(n, ℓ).

6 Derandomizing Exponential Lifts

We will now construct explicit expanding graphs where the lift size is exponential. In this
regime, known tools like expander Chernoff suffice and in fact, one can verify that the
results of [ACKM19] can be directly derandomized by an application of these. However,
we give a simplified (mostly) self-contained proof relying on a key lemma of Bilu and
Linial [BL06] which could be of independent interest and derandomize it.

6.1 The Setup and Construction

In this subsection, we will describe how the signings for the lift are generated via walks
on an expander and utilize an expander Hoeffding bound which will be used to bound
the spectrum. We will assume from now that the group is Zℓ

15 We start with a expander
construction from [Alo21],

Theorem 6.1. [Alo21, Thm. 1.3] For every degree d ≥ 3, every ε > 0 and all sufficiently large
m ≥ n0(d, ε) where md is even, there is an explicit construction of an (m, d, λ)-graph with λ ≤
2
√

d − 1 + ε.

We can fix the degree to be an even constant, say d′, and have ε =
√

d′ − 1. Then, for
every large enough m, we have an expander on m vertices. We use this to get an explicit
expander, L, on ℓ vertices. To obtain a sequence of lifts i.e. elements of Zℓ, we first pick a
random vertex, v1, of L which uses log ℓ bits of randomness. Then, we do a random walk
for dn − 1 steps producing a sequence (v1, · · · , vdn−1) of vertices of L which we interpret
as elements of Zℓ. Each step of the random walk requires O(log d′) bits of randomness
as the graph is d′-regular. Therefore, the total amount of randomness is O(log ℓ + (dn −
1) log d′)16 The main observation is that an expander random walk suffices to guarantee
that the lifted graph will be an expander. To formalize this, we first state a Hoeffding
type concentration result for our random variables generated via the Markov chain on an
expander.

15This can be extended in a straightforward manner to any abelian subgroup H 6 Sym(ℓ) by just taking the
expander graph on |H| vertices. Since, we only work with abelian groups having a transitive action, |H| = ℓ.

16Another way to say this is that the number of walks of length on dn on L is |H| · d′dn.

19

Theorem 6.2. [Rao19, Thm. 1.1] Let {Yi}∞
i=1 be a stationary Markov chain with state space [N],

transition matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1 is
distributed according to π. Let λ = |A − Eπ|L2(π)→L2(π) and let f1, · · · , ft : [N] → R so that
E[fi(Yi)] = 0 for all i and | fi(v)| ≤ ai for all v ∈ [N] and all i. Then for u ≥ 0,

Pr

∣∣∣∣∣

t

∑
i=1

fi(Yi)

∣∣∣∣∣ ≥ u

(
t

∑
i=1

a2
i

)1/2

 ≤ 2 exp

(−u2(1 − λ)

64e

)
.

Corollary 6.3. Let U be any subset of edges in the base graph G. Then,

Pr

[∣∣∣∣∣∑
e∈U

Re(χ(s(e)))

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(−t2

128e|U|

)
,

Pr

[∣∣∣∣∣∑
e∈U

Im(χ(s(e)))

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(−t2

128e|U|

)
.

Proof. Let Ye = s(e) be the random variables associated to each edge e. From the con-
struction described earlier, {Yu,v} is a Markov chain with the transition matrix being the
weighted adjacency matrix of the expander L with second (normalized)eigenvalue bounded
by 3

√
d′ − 1/d′. Thus, 1 − λ ≥ 1 − 3√

d′
≥ 1/2 for d′ ≥ 36. The stationary measure π is the

uniform measure on vertices of L and it is stationary as the all-ones vector is an eigenvector
of the weighted adjacency matrix with eigenvalue 1. Recall that we picked the first vertex
(Y1) uniformly i.e. from π. Let fe = Re(χ(s(e))) if e ∈ U and 0 otherwise. Analogously
ge = Im(χ(s(e)) when the edge is in U and 0 otherwise.

E[fe] =
1
ℓ ∑

ℓ−1
i=0 Re(ωi) because the characters are roots of unity and the expectation

is over π which is uniform. Since the sum of roots of unity are zero, so is its real and
imaginary part. This holds thus for ge too. Moreover, ae = 1 if e ∈ U and is 0 otherwise.
Applying Theorem 6.2 with u := t/

√
|U| gives the result.

6.2 A Simpler Lifting Proof

In this section, we give a simpler proof of a weaker result similar to one in [ACKM19]
which says that if the lifts were picked independently and uniformly at random, then the
lifted graph is also expanding. In place of the random signings, we will use the signings
generated from random walks as described in the earlier section. The proof can be seen as
building up from the tools of [BL06] by simplifying their derandomization of the 2-lift and
extending it to ℓ-lifts.

Let G be a graph, H be an abelian group and s be a signing s : E → H that gives a
(H, ℓ)-lift. Let A be its adjacency matrix. We will use the earlier notation and denote by
A(χ), the matrix where for every edge e, we replace 1 by χ(s(e)). Let A(χ) = C + iD
where C, D are real symmetric matrices. We want to bound the spectral radius of A(χ).
It is not very hard to see that ‖A‖ ≤ 2 max{‖C‖ , ‖D‖}. This can be observed by letting

20

v = v1 + iv2 be an eigenvector and α = max{‖C‖ , ‖D‖}. Then,

v∗Av = Re(v∗Av) = (vT
1 Cv1 + vT

2 Cv2 − vT
1 Dv2 + vT

2 Dv1)

≤ ‖C‖ ‖v1‖2 + 2 ‖D‖ ‖v1‖ ‖v2‖
≤ α(‖v1‖+ ‖v2‖)2

≤ 2α
(
‖v1‖2 + ‖v2‖2

)

= 2α ‖v‖2 .

Therefore we reduce the problem to bounding spectral radius for the constituent real ma-
trices. We now state a very useful lemma by Bilu and Linial which is a discretization result
and can be seen as a converse to the expander mixing lemma. It says that bounding the
Rayleigh coefficient on Boolean vectors suffices to bound the real spectrum up to logarith-
mic factors.

Theorem 6.4. [BL06, Lemma 3.3] Let A be an n× n real symmetric matrix such that the l1 norm of
each row in A is at most d, and all diagonal entries of A are, in absolute value, O(α(log(d/α)+ 1)).
Assume that for any two vectors, u, v ∈ {0, 1}n, with Supp(u) ∩ Supp(v) = ∅:

|ut Av|
‖u‖ ‖v‖ ≤ α,

then spectral radius of A is O(α(log(d/α) + 1)).

Since the graph is d-regular, A(χ) is d-sparse and so is C and D. The ℓ1-norm of any
row of C, D ≤ d as we have a sum of d entries of the form Re(ω j), Im(ω j) for some j and
the absolute value of each of these is upper bounded by 1. Moreover, the diagonal entries
are all zero. Therefore, these satisfy the norm criteria of the theorem. Now, we need to
bound the (generalized) Rayleigh coefficient.

Let S, T be subsets of the vertices of a d-regular graph. Define E(S, T) = {(x, y) ∈
E | x ∈ S, y ∈ T} and let e(S, T) := |E(S, T)|. Let u, v ∈ {0, 1}n and let S := Supp(u), T :=
Supp(v). Then,

∣∣∣uTCv
∣∣∣ ≤ ∑

u∈E(S,T)

|Re(χ(s(e)))| ≤ e(S, T), (1)

∣∣∣uTDv
∣∣∣ ≤ ∑

u∈E(S,T)

| Im(χ(s(e)))| ≤ e(S, T). (2)

Let us now state the expander mixing lemma,
∣∣∣∣e(S, T)− d|S||T|

n

∣∣∣∣ ≤ λ(G)
√
|S||T|. (3)

Now we assume that the signing s was generated from the random walk as described
earlier. This lets us use Corollary 6.3.

Lemma 6.5. Let M be either C or D where these are the matrices defined above. Pick γ such that

γ3 ≥ 256e
√

d
n ln(3ℓ). Then for every pair of vectors u, v ∈ {0, 1}n , |uT Mv| ≤ α ‖u‖ ‖v‖ where

α = (γ + 1)λ except with probability 2
3ℓ over choice of s.

Proof. Since the proofs are identical, we use M as a placeholder which can be replaced by
C or D. Let S := Supp(u), T := Supp(v) and define a :=

√
‖u‖ ‖v‖ =

√
|S||T|.

21

Case 1 - a ≤ γnλ
d . From Eq. (1) and Eq. (3), we have,

|uT Mv| ≤ e(S, T) ≤ d

n
a2 + λa ≤ (γ + 1)aλ.

Case 2 - a >
γnλ

d . Using the trivial bound that a ≤ n in Eq. (3), we get,

e(S, T) ≤ a(
da

n
+ λ) ≤ a(d + λ) ≤ 2ad.

By Corollary 6.3 we get,

Pr
[∣∣∣uT Mv

∣∣∣ ≥ (γ + 1)aλ
]

≤ 2 exp

(−((γ + 1)aλ)2

128e · e(S, T)

)
.

We can upper bound this as,

((γ + 1)aλ)2

128e · e(S, T)
≥ ((γ + 1)aλ)2

128e(2ad)

≥ (γ + 1)2a

256e
(λ2

> d)

≥ γ(γ + 1)2nλ

256ed
(By case assumption on a)

≥ γ3n

2 · 256e
√

d

≥ ln(3l). (By assumption on γ)

Theorem 6.6 (Exactly Exponential Lifts). For any positive integers n, ℓ and every constant de-
gree d, there exists a deterministic poly(exp(n), ℓ) time algorithm that constructs a d-regular
graph G on nℓ vertices such that

- G is quasi-cyclic with lift size ℓ, and

- If ℓ ≤ exp
(
cnd−1/2

)
, then λ(G) ≤ O(

√
d log d).

- If ℓ = exp
(
cndδ

)
for δ ∈ [−1/2, 1), then λ(G) ≤ O

(
d

2+δ
3 log d

)
.

In particular, this yields an explicit polynomial time construction of a lift in the regime when ℓ =
exp(O(n)).

Proof. We construct a d-regular graph G0 using [Alo21] on n vertices such that λ2(G) ≤
2
√

d. We generate a set of signings as described above using a d′-regular expander on
ℓ vertices. This takes time ℓ exp(nd ln(d′)) and we can fix d′ = 36. or each signing we
compute the eigenvalue of the adjacency matrix of the lifted graph and pick the one with
the smallest λ2. The existence of a good signing is guaranteed as follows.

Lemma 6.5 gives a bound of α = (γ + 1)λ on the Rayleigh quotient of C, D holds
except with probability 2

3ℓ over the signings. Theorem 6.4 then implies that

λmaxA(χ) ≤ 2 max{‖C‖ , ‖D‖} ≤ 2α log(d/α) ≤ O(α log d).

22

Here, γ3 = O(ln ℓ
√

d
n) = O(d1/2+δ). Note that if δ < −1/2, then O((γ + 1)λ) = O(λ)

Thus, α = O(
√

dd1/6+δ/3 + λ) = O
(

max
{

d
2+δ

3 ,
√

d
})

.

To finish the proof we need to take a union bound over each of the ℓ − 1 non-trivial
characters and bound the spectrum of A(χ) as above. Thus, we have that the probability
that there exists a good signing is at least 1 − ℓ

(
2
3ℓ

)
> 0.

7 Explicit Quantum and Classical Codes

We now briefly recall the construction of quantum LDPC codes as in [PK21b] and show
how our results derandomize it. The construction is as follows. Let G be a d-regular graph
(on nℓ vertices) such that G is a (Zℓ, ℓ)-lift of a graph on n-vertices. Let C0 ⊆ Fd

2 be a binary
linear code (of block length d). Let B denote the bipartite graph of the Tanner code T(G, C0)
and let F denote the cycle graph on ℓ vertices. They define the lifted product LP(B, F) of B
and F which is a variation of the usual tensor product and is also equivalent to the twisted
product in [HHO21]. The main result of [PK21b] is the following.

Theorem 7.1 ([PK21b]). Let G be (Zℓ, ℓ)-lift of a d regular graph on n-vertices with λ2(G) ≤
ε · d. Let C0 ⊆ Fd

2 and its dual attain the Gilbert–Varshamov bound. If ε > 0 is sufficiently small
and d is a sufficiently large constant, then

- T(G, C0) is a good quasi-cyclic LDPC code of blocklength Θ(nℓ) and circulant size Θ(ℓ).

- The quantum lifted product code LP(B, F) is LDPC and has distance Θε,d(ℓ) and dimension
Θ(n).

To achieve these, [PK21b] picks a d-regular expander on n vertices and creates a ran-
dom ℓ-lift i.e. where each signing is chosen uniformly at random from Zℓ. The final graph
is expanding with high probability from the results of [ACKM19] (Theorem 1.2). The
distance achieves the almost-linear bound only when the lift is large and thus lifts of ex-
ponential size are preferred. By the upper bound in Theorem 1.2, better than exponential
size lifts break expansion for abelian groups.

For this application, the constant degree regime is important for two reasons. The lo-
cality of the code is essentially d and thus it has to be constant for it to be LDPC. Moreover,
the code C0 ⊆ Fd

2 can be easily constructed via brute-force search since d is constant.

While the corollary follows in a straightforward manner from our main results, we
show the computations for completeness.

Corollary 7.2 ([PK21b], Theorem 1.1, Theorem 1.3). We have explicit polynomial time con-
struction of each of the following,

1. Good quasi-cyclic LDPC code of block length N and any circulant size up to N/polylog(N)
or Θ(N/ log(N)).

2. Quantum LDPC code with distance Ω(N/ log(N)) and dimension Ω(log(N)).

3. Quantum LDPC code with distance Ω(N1−α) and dimension Θ(Nα) for every constant
α > 0.

23

Proof. We always work in the constant degree regime so C0 ⊆ Fd
2 can be found by brute-

force. When ℓ = exp(Θ(n)), we use Theorem 1.3 to construct G explicitly. Thus, N = nℓ
and thus the circulant size and distance are both Θ(ℓ) = Θ(N/ log N).

For ℓ ≤ 2nδ0 with some fixed δ0 ∈ (0, 1), we can explicitly construct G which is a
(Zℓ, ℓ)-lift by Theorem 1.1 and by [PK21b], T(G, C0) has circulant size Θ(ℓ) and log(N) ≤
log n+ nδ0 ≤ 2nδ0 (for n sufficiently large) and thus, ℓ = O

(
N/(log N)1/δ0

)
. Therefore, the

construction works for any size less than N/(log N)1/δ0 . This calculation also shows that
we get quantum LDPC codes for any distance less than N/(log N)1/δ0 . So for a given α,
we take a base graph on n = Nα vertices and construct a ℓ = N1−α = n1/α−1 lift. For any
α, this is a polynomial sized-lift and can be done via Theorem 1.1.

References

[ACKM19] Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek
Madan. On the Expansion of Group-Based Lifts. SIAM J. Discret. Math.,
33(3):1338–1373, 2019. arXiv:1311.3268, doi:10.1137/17M1141047. 3, 4, 5,
19, 20, 23

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound
for irregular graphs. Graphs and Combinatorics, 18:53–57, 2002.
doi:10.1007/s003730200002. 8, 14

[Alo21] Noga Alon. Explicit expanders of every degree and size. Combinatorica, Febru-
ary 2021. arXiv:2003.11673, doi:10.1007/s00493-020-4429-x. 1, 3, 19, 22

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Ran-
dom Struct. Algorithms, 5(2):271–285, 1994. doi:10.1002/rsa.3240050203. 2

[Bab74] László Babai. On the minimum order of graphs with given group. Canadian
Mathematical Bulletin, 17(4):467–470, 1974. doi:10.4153/CMB-1974-082-9. 1

[BATS08] Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction
of almost-ramanujan graphs using the zig-zag product. In Proceedings
of the 40th ACM Symposium on Theory of Computing, page 325–334, 2008.
doi:10.1145/1374376.1374424. 1

[BE21] Nikolas P. Breuckmann and Jens N. Eberhardt. Balanced Product Quan-
tum Codes. IEEE Transactions on Information Theory, 67(10):6653–6674, 2021.
arXiv:2012.09271, doi:10.1109/TIT.2021.3097347. 2, 5

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly
optimal spectral gap. Combinatorica, 26(5):495–519, October 2006.
doi:10.1007/s00493-006-0029-7. 1, 3, 4, 10, 19, 20, 21

[BM06] L.M.J. Bazzi and S.K. Mitter. Some randomized code constructions from
group actions. IEEE Transactions on Information Theory, 52(7):3210–3219, 2006.
doi:10.1109/TIT.2006.876244. 2

24

http://arxiv.org/abs/1311.3268
https://doi.org/10.1137/17M1141047
https://doi.org/10.1007/s003730200002
http://arxiv.org/abs/2003.11673
https://doi.org/10.1007/s00493-020-4429-x
https://doi.org/10.1002/rsa.3240050203
https://doi.org/10.4153/CMB-1974-082-9
https://doi.org/10.1145/1374376.1374424
http://arxiv.org/abs/2012.09271
https://doi.org/10.1109/TIT.2021.3097347
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1109/TIT.2006.876244

[BSS05] László Babai, Amir Shpilka, and Daniel Stefankovic. Locally
testable cyclic codes. IEEE Trans. Inf. Theory, 51(8):2849–2858, 2005.
doi:10.1109/TIT.2005.851735. 2

[Coh16] Michael B. Cohen. Ramanujan graphs in polynomial time. In Proceed-
ings of the 57th IEEE Symposium on Foundations of Computer Science, 2016.
arXiv:1604.03544, doi:10.1109/FOCS.2016.37. 1

[Con] Keith Conrad. Simultaneous Ccommutativity Of Operators.
https://kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.pdf.
[Online; accessed 7-September-2021]. 27

[CPW69] C.L. Chen, W.W. Peterson, and E.J. Weldon. Some results on quasi-
cyclic codes. Information and Control, 15(5):407–423, November 1969.
doi:10.1016/s0019-9958(69)90497-5. 2

[CS96] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes
exist. Phys. Rev. A, 54:1098–1105, Aug 1996. doi:10.1103/PhysRevA.54.1098.
2

[EKZ20] Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum
LDPC codes beyond the square root distance barrier using high dimen-
sional expanders. In Proceedings of the 61st IEEE Symposium on Founda-
tions of Computer Science, pages 218–227. IEEE, 2020. arXiv:2004.07935,
doi:10.1109/FOCS46700.2020.00029. 2

[Gal62] R. Gallager. Low-density parity-check codes. IRE Transactions on Information
Theory, 8(1):21–28, 1962. doi:10.1109/TIT.1962.1057683. 1

[GW21] Oded Goldreich and Avi Wigderson. Robustly self-ordered graphs: Construc-
tions and applications to property testing. In Valentine Kabanets, editor, Pro-
ceedings of the 36th IEEE Conference on Computational Complexity, volume 200 of
LIPIcs, pages 12:1–12:74. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CCC.2021.12. 1

[HHO21] Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle
codes: breaking the n1/2polylog(n) barrier for quantum LDPC codes. In Pro-
ceedings of the 52nd ACM Symposium on Theory of Computing, pages 1276–1288.
ACM, 2021. arXiv:2009.03921, doi:10.1145/3406325.3451005. 2, 5, 23

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bull. Amer. Math. Soc., 43(04):439–562, August 2006.
doi:10.1090/S0273-0979-06-01126-8. 1

[JM21] Akhil Jalan and Dana Moshkovitz. Near-optimal cayley ex-
panders for abelian groups. CoRR, abs/2105.01149, 2021. URL:
https://arxiv.org/abs/2105.01149, arXiv:2105.01149. 10, 18

[KW10] Tali Kaufman and Avi Wigderson. Symmetric LDPC codes and local
testing. In Andrew Chi-Chih Yao, editor, Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010.
Proceedings, pages 406–421. Tsinghua University Press, 2010. URL:

25

https://doi.org/10.1109/TIT.2005.851735
http://arxiv.org/abs/1604.03544
https://doi.org/10.1109/FOCS.2016.37
https://kconrad.math.uconn.edu/blurbs/linmultialg/simulcomm.pdf
https://doi.org/10.1016/s0019-9958(69)90497-5
https://doi.org/10.1103/PhysRevA.54.1098
http://arxiv.org/abs/2004.07935
https://doi.org/10.1109/FOCS46700.2020.00029
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.4230/LIPIcs.CCC.2021.12
http://arxiv.org/abs/2009.03921
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1090/S0273-0979-06-01126-8
https://arxiv.org/abs/2105.01149
http://arxiv.org/abs/2105.01149

http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/32.html.
2

[LBM+18] Huaan Li, Baoming Bai, Xijin Mu, Ji Zhang, and Hengzhou Xu. Algebra-
assisted construction of quasi-cyclic LDPC codes for 5G new radio. IEEE Ac-
cess, 6:50229–50244, 2018. doi:10.1109/ACCESS.2018.2868963. 2

[LPS88] Alexander Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8:261–277, 1988. doi:10.1007/BF02126799. 1, 5

[Mar88] G. A. Margulis. Explicit group-theoretic constructions of combinato-
rial schemes and their applications in the construction of expanders and
concentrators. Problemy Peredachi Informatsii, 24(1):51–60, 1988. URL:
http://mi.mathnet.ru/eng/ppi686. 1

[MOP20] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit near-
ramanujan graphs of every degree. In Proceedings of the 52nd ACM Sympo-
sium on Theory of Computing, pages 510–523. ACM, 2020. arXiv:1909.06988,
doi:10.1145/3357713.3384231. 1, 3, 4, 7, 8, 10, 13, 14, 15, 16, 17, 28

[Mor94] M. Morgenstern. Existence and explicit constructions of q + 1 regular Ramanu-
jan graphs for every prime power q. J. Comb. Theory Ser. B, page 44–62, Septem-
ber 1994. doi:10.1006/jctb.1994.1054. 1

[Nil91] Alon Nilli. On the second eigenvalue of a graph. Discrete Mathematics,
91(2):207–210, 1991. doi:10.1016/0012-365X(91)90112-F. 1

[OW20] R. O’Donnell and X. Wu. Explicit near-fully x-ramanujan graphs. In Proceed-
ings of the 61st IEEE Symposium on Foundations of Computer Science, pages 1045–
1056, 2020. arXiv:2009.02595, doi:10.1109/FOCS46700.2020.00101. 1, 3

[PK21a] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally
testable classical ldpc codes, 2021. arXiv:2111.03654. 2

[PK21b] Pavel Panteleev and Gleb Kalachev. Quantum LDPC Codes with Almost Lin-
ear Minimum Distance. IEEE Transactions on Information Theory, December
2021. arXiv:2012.04068, doi:10.1109/TIT.2021.3119384. 2, 5, 23, 24

[Rao19] Shravas Rao. A Hoeffding inequality for Markov chains. Elec-
tronic Communications in Probability, 24:1 – 11, 2019. arXiv:1806.11519,
doi:10.1214/19-ECP219. 20

[RU08] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge
university press, 2008. doi:10.1017/CBO9780511791338. 1

[RVW00] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders and extractors. In Pro-
ceedings of the 41st IEEE Symposium on Foundations of Computer Science, 2000.
arXiv:math/0406038, doi:10.1109/SFCS.2000.892006. 1

[Ste96] Andrew Steane. Multiple-particle interference and quantum error cor-
rection. Proceedings of the Royal Society of London. Series A: Mathe-
matical, Physical and Engineering Sciences, 452(1954):2551–2577, Nov 1996.
arXiv:quant-ph/9601029v3, doi:10.1098/rspa.1996.0136. 2

26

http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/32.html
https://doi.org/10.1109/ACCESS.2018.2868963
https://doi.org/10.1007/BF02126799
http://mi.mathnet.ru/eng/ppi686
http://arxiv.org/abs/1909.06988
https://doi.org/10.1145/3357713.3384231
https://doi.org/10.1006/jctb.1994.1054
https://doi.org/10.1016/0012-365X(91)90112-F
http://arxiv.org/abs/2009.02595
https://doi.org/10.1109/FOCS46700.2020.00101
http://arxiv.org/abs/2111.03654
http://arxiv.org/abs/2012.04068
https://doi.org/10.1109/TIT.2021.3119384
http://arxiv.org/abs/1806.11519
https://doi.org/10.1214/19-ECP219
https://doi.org/10.1017/CBO9780511791338
http://arxiv.org/abs/math/0406038
https://doi.org/10.1109/SFCS.2000.892006
http://arxiv.org/abs/quant-ph/9601029v3
https://doi.org/10.1098/rspa.1996.0136

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical
Computer Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010. 1

A Signed Non-backtracking Operator

A.1 Diagonalizing Non-backtracking Operator

Let ρ : Sym(l) → GL(Cl) be the matrix representation of a permutation. More concretely,
given a permutation σ ∈ Sym(l) the map ρ(σ)ei = eσ·i where {e1, · · · , el} is the set of
elementary basis vectors of V = Cl. Since H ⊆ Sym(l) → GL(Cl) it also gives a map on
H by restriction. For example, let P be the l × l permutation matrix that maps Pei = ei+1

where i + 1 is taken modulo l. Then for H = Zl and for t ∈ Zl , ρ(t) = Pt.

For a map ρ as above and an extended signing s , define a generalized non-backtracking
walk matrix in which for a non-zero entry indexed by (e1, e2) we replace 1 by the block ma-
trix ρ(s(e2)).

Lemma A.1. The non-backtracking walk matrix of the lifted graph is BG(s) = BG(ρ).

Proof. In the lifted graph, the edges are of the form [(u, i − s(u, v)), (v, i)] =: [u, v, i] and
thus can be indexed by E′ × [l]. The non-backtracking walk matrix BĜ would then have a
non zero entry from ([u, v, i], [x, y, j]) iff (v, i) = (x, j − s(x, y)) and (y, j) 6= (u, i − s(u, v)).
Assume that the first condition is met i.e. x = v and j = i + s(x, y). If y = u, then
i − s(u, v) = i − s(y, x) = i + s(x, y) = j and therefore, the second condition can’t be met.
This is just a longer way of saying that the lifts give a matching between u × [l] and v × [l].
The implication of all this is that, y has to be distinct from u and thus the pair of edges
(u, v), (v, y) has a non-zero entry in BG. Moreover, for every i and every pair of edges
(u, v), (v, y) we have a non-zero entry for (u, v, i), (v, y, i + s(v, y)) in BG(s) and thus it can
be written as a block matrix with the entry in (u, v), (v, y) equal to ρ(s(v, y)).

Since the base graph G and the signing s will be fixed throughout, we will drop the
subscript to make reading less hurtful. We will need the following well-known fact (see
[Con, Thm. 5] for a nice proof) that a collection of commuting matrices that are diagonal-
izable are also simultaneously diagonalizable. Since, H is abelian, we have that {ρ(h)} are
commuting and since they are invertible, they clearly are diagonalizable. Thus, they si-
multaneously diagonalize, i.e., there exists F such that ρ(h) = F diag(χ1(h), · · · , χl(h))F−1

where χi are characters of H.

Corollary A.2. If for H, the standard representation splits as ρ = ⊕iχi, then the non-backtracking
walk matrix BĜ = Q diag(B(χ1), · · · , B(χt))Q−1 and thus Spec(BĜ) = ∪i Spec(B(χi)). More-
over, if H is transitive, then exactly one of the characters is trivial.

Proof. To ease notation we write BG(ρ) = ∑ Mu,v ⊗ ρ(s(u, v)) for some Mu,v. We have
ρ(s(u, v)) = F diag(χ1(h), · · · , χl(h))F−1 and thus

BG(ρ) = (I ⊗ F)∑ Mu,v ⊗ diag(χ1(h), · · · , χl(h))(I ⊗ F−1)

Let |E| = N and let T denote the permutation on Nt that maps T(i) := bt + (a + 1)
where a, b are the unique non-negative integers such that 0 ≤ b < N i − 1 = aN + b.

27

https://doi.org/10.1561/0400000010

It can then be seen that ∑ Mu,v ⊗ diag(χ1(h), · · · , χt(h)) = T diag (∑ Mu,v ⊗ χi(h)) T−1.
Notice that ∑ Mu,v ⊗ χi(h) = BG(χi) and thus putting it together we have that for Q =
(I ⊗ F)T, BG(s) = Q diag(B(χ1), · · · , B(χt))Q−1. The statement on the spectrum follows
immediately.

Since, the all-ones vector is clearly invariant under the standard representation, we
have a copy of the trivial character χ0 in ρ. Let there be another vector v ∈ Cℓ that is
invariant. Let i ∈ supp(v) and j 6∈ supp(v). By transitivity, we have an h such that h · i = j
but then h · v 6= v which violates the invariance.

A.2 A Simple Consequence of Ihara-Bass

We now slightly extend a claim in [MOP20] for general signings.

Claim A.3. Let A be the (signed) adjacency matrix of a d-regular graph. Suppose f is an eigen-
vector of A satisfying

A f =

(
β +

d − 1

β

)
f .

Then g(u, v) := (f (u)− β f (v)) (or in the signed case g(u, v) := A(u, v)−1(f (u)− β · A(u, v) f (v)))
is an eigenvector of the (signed) non-backtracking matrix B with eigenvalue β.

Proof. Let f and g be as in the statement of the claim. Suppose for that A and B are not
signed. Computing we have

(Bg)(u, v) = ∑
w∼v,w 6=u

f (v)− β · f (w)

= (d − 1) f (v) − ∑
w∼v,w 6=u

β · f (w)

= (d − 1) f (v) + β · f (u)− β ∑
w∼v

f (w)

= (d − 1) f (v) + β · f (u)− β(A f)(v)

= (d − 1) f (v) + β · f (u)− β

(
β +

d − 1

β

)
f (v)

= β(f (u)− β · f (v)) = β · g(u, v).

Now suppose that A and B are signed. First note that g is well-defined since for every
entry g(u, v) the pair (u, v) is an orientation of an edge of the graph so it has a signing

28

A(u, v) 6= 0. We have

(Bg)(u, v) = ∑
w∼v,w 6=u

A(v, w)A(v, w)−1(f (v)− β · A(v, w) f (w))

= (d − 1) f (v)− β ∑
w∼v,w 6=u

A(v, w) f (w)

= (d − 1) f (v) + β · A(v, u) f (u)− β ∑
w∼v

A(v, w) f (w)

= (d − 1) f (v) + β · A(v, u) f (u)− β(A f)(v)

= (d − 1) f (v) + β · A(v, u) f (u)− β

(
β +

d − 1

β

)
f (v)

= β · A(v, u)

(
f (u)− β

1

A(v, u)
f (v)

)
,

= β · A(u, v)−1 (f (u)− β · A(u, v) f (v)) = β · g(u, v),

where we used A(v, u) = A(u, v)−1.

Corollary A.4. Let A be the (signed) adjacency matrix of a d-regular graph. Let B be its (signed)
non-backtracking operator. For any λ > 2

√
d − 1, if ρ2(B) ≤ λ/2, then ρ2(A) ≤ λ. Hence,

λ(G) = ρ(A) ≤ 2 max{
√

d − 1, ρ2(B)}.

Proof. We show via the contrapositive. Suppose that f is eigenvector of A with eigen-
value α such that |α| > λ. By possibly multiplying A and B by a phase (i.e., eiθ), we
can assume α is a non-negative real number. By Claim A.3, we have that β satisfying
the equation β2 − αβ + (d − 1) = 0 is an eigenvalue of B. Considering the solution
β+ = (α +

√
α2 − 4(d − 1))/2 and thus, we have β+ ≥ α/2 > λ/2.

B A Precise Implementation of DFS

We now present the precise implementation of the depth-first search algorithm (different
versions could traverse an edge of an input graph more than twice, but here we need
exactly twice).

Algorithm B.1 (DFS(G, v)).
Input connected graph G and starting vertex v

Output traversal T of G and step types σ

· Color all vertices of G with ’green’

· Traversal T = ()

· Step types σ = ”

· Parent π = null

· DFSRec(G, T , π, σ, v, e = null)

· return T , σ

29

Algorithm B.2 (DFSRec(G, T , π, σ, v, e)).
Input graph G, traversal T , parent π, step types σ, vertex v and traversed edge e

Output Updated T (as side effect)

· T .append(e) if e 6= null

· If v is ’green’:

· Color v with ’yellow’

· For each neighbor u of v not colored ’red’ and u 6= π:

· σ.append(’R’) (recursive step)

· DFSRec(G, T , π = v, σ, u, e = (v, u))

· Color v with ’red’

· σ.append(’B’) (backtrack step)

The key observation we need for this particular implementation of DFS is the following.

Remark B.3. Let G be a connected graph. The DFS algorithm traversals each edge of G exactly
twice: first in a recursive step and subsequently in a backtrack step.

30

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Derandomized Quantum and Classical Codes

	2 Preliminaries
	3 Proof Strategy
	4 A New Encoding for Special Walks
	4.1 Graph Encoding
	4.1.1 Counting the encodings

	4.2 Bounding Singleton Free Hikes

	5 Instantiation of The First Two Main Results
	5.1 A Simple Generalization of The Trace Power Method in MOP
	5.2 The Instantiation

	6 Derandomizing Exponential Lifts
	6.1 The Setup and Construction
	6.2 A Simpler Lifting Proof

	7 Explicit Quantum and Classical Codes
	A Signed Non-backtracking Operator
	A.1 Diagonalizing Non-backtracking Operator
	A.2 A Simple Consequence of Ihara-Bass

	B A Precise Implementation of DFS

