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Abstract

Grothendieck’s inequality [Gro53] states that there is an absolute constant K > 1 such that
for any n× n matrix A

‖A‖∞→1 := max
s,t∈{±1}n ∑

i,j
A[i, j] · s(i) · t(j) ≥ 1

K
· max

ui ,vj ∈ Sn−1
∑
i,j

A[i, j] · 〈ui, vj〉.

In addition to having a tremendous impact on Banach space theory, this inequality has found
applications in several unrelated fields like quantum information, regularity partitioning, com-
munication complexity, etc. Let KG (known as Grothendieck’s constant) denote the smallest
constant K above. Grothendieck’s inequality implies that a natural semidefinite programming
relaxation obtains a constant factor approximation to ‖A‖∞→1. The exact value of KG is yet
unknown with the best lower bound (1.67 . . . ) being due to Reeds and the best upper bound
(1.78 . . . ) being due to Braverman, Makarychev, Makarychev and Naor [BMMN13]. In contrast,
the little Grothendieck inequality states that under the assumption that A is PSD the constant
K above can be improved to π/2 and moreover this is tight.

The inapproximability of ‖A‖∞→1 has been studied in several papers culminating in a tight
UGC-based hardness result due to Raghavendra and Steurer (remarkably they achieve this
without knowing the value of KG). Briet, Regev and Saket [BRS15] proved tight NP-hardness
of approximating the little Grothendieck problem within π/2, based on a framework by Gu-
ruswami, Raghavendra, Saket and Wu [GRSW16] for bypassing UGC for geometric problems.
This also remained the best known NP-hardness for the general Grothendieck problem due to
the nature of the Guruswami et al. framework, which utilized a projection operator onto the
degree-1 Fourier coefficients of long code encodings, which naturally yielded a PSD matrix A.

We show how to extend the above framework to go beyond the degree-1 Fourier coeffi-
cients, using the global structure of optimal solutions to the Grothendieck problem. As a result,
we obtain a separation between the NP-hardness results for the two problems, obtaining an in-
approximability result for the Grothendieck problem, of a factor π/2 + ε0 for a fixed constant
ε0 > 0.
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1 Introduction

The Grothendieck inequality [Gro53] is a fundamental result from Banach space theory, which
can be viewed from an optimization lens, as saying that the ∞ → 1 norm of a matrix A can be
approximated using a vector relaxation i.e.,

‖A‖∞→1 := max
s,t∈{±1}n ∑

i,j
A[i, j] · s(i) · t(j) ≥ 1

K
· max

ui ,vj ∈ Sn−1
∑
i,j

A[i, j] · 〈ui, vj〉.

The inequality has had a tremendous number of applications in a variety of areas including com-
binatorics, optimization, complexity theory, and quantum information theory. We refer the reader
to the excellent surveys by Khot and Naor [KN12] and Pisier [Pis12] and the references therein,
for an account of the rich history of the inequality, its variants, and their many connections and
applications.

The problem of computing the ∞ → 1 norm of a given matrix A, which is the subject of the
above inequality, is referred to as the Grothendieck problem. A long line of work has focused on
determining the smallest constant KG (known as Grothendieck’s constant) achievable in the above
inequality, or equivalently, the best approximation ratio for the Grothendieck problem, achieved
by a natural semidefinite programming (SDP) relaxation. The best upper known bound on KG is
due to Braverman, Makarychev, Makarychev, and Naor [BMMN13] who proved that a previous
bound of π

2·(1+
√

2)
≈ 1.782 . . . due to Krivine [Kri77] can be improved to π

2·(1+
√

2)
− ε0 for a fixed

ε0 > 0. The best lower bound KG ≥ 1.6769 . . . was proved independently by Davie [Dav84] and
Reeds [Ree91]. However, the true value of Grothendieck’s constant is unknown, and determining
it is an important open problem.

Approximability. From a computational perspective, a natural question to consider is the opti-
mal approximation ratio achievable by any efficient algorithm, and not just the SDP relaxation. The
first inapproximability result for the Grothendieck problem was obtained by Alon and Naor [AN04]
(in an influential paper that established a connection to cut-norm and several combinatorial ap-
plications) by giving an approximation preserving reduction to MAX-CUT, which yields an NP-
hardness of factor 17/16 via a result of Håstad [Hås01]. Assuming the Unique Games Conjecture
(UGC), the best explict bound is by Khot and O’Donnell [KO09] who proved an inapproxima-
bility result matching the Davie-Reeds lower bound. A remarkable later result by Raghavendra
and Steurer [RS09] proved that assuming the UGC, the approximation ratio by the semidefinite
program is optimal i.e., they prove an inapproximability result within factor KG, without having
to know the true value of KG!

The best known NP-hardness for the problem is by Briet, Regev and Saket [BRS15] who prove
inapproximability within a factor of π/2. Prior NP-hardness results for the Grothendieck problem
are all actually for a special subcase (known as the little Grothendieck problem), wherein the
matrix A is required to be positive semidefinite (PSD). In this case, one can easily observe that the
two vectors x, y achieving ‖A‖∞→1 can be equal without loss of generality, since

〈s, At〉 = 〈A1/2s, A1/2t〉 ≤ ‖A1/2s‖2‖A1/2t‖2 ≤ max {〈s, As〉, 〈t, At〉} .

Using the above observation, and taking A to be the Laplacian of a graph, shows that the problem
captures MAX-CUT as a subcase (although the result of Alon and Naor [AN04] used a slightly
different matrix). The result of Briet, Regev and Saket [BRS15] also shows the factor π/2 in-
approximability for the little Grothendieck problem. Moreover, their result is tight for the little
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Grothendieck problem, by a result of Rietz [Rie74] (see also Nesterov [Nes98]). Thus, any further
improvements to the NP-hardness, will require separating it from the little Grothendieck problem.

Techniques for proving inapproximability. There is also a technical reason why current NP-
hardness results do not separate the little Grothendieck problem from the Grothendieck problem.
This is because results for this problem, and a variety of other geometric problems, are proved by
taking the matrix A to be a projection operator, which is of course PSD. Many such results are based
on a framework by Guruswami, Raghavendra, Saket, and Wu [GRSW16] for bypassing the UGC
in obtaining hardness of geometric problems. They obtained tight inapproximability results using
“smooth label cover” instead of Unique Games, for the Lp-Grothendieck problem (matching the
UG-hardness result of Kindler, Naor, and Schechtman [KNS10]) and the subspace approximation
problem (matching the UG-hardness result of Deshpande, Tulsiani, and Vishnoi [DTV11]). This
was also the framework used by Briet, Regev and Saket [BRS15] for proving π/2 inapproxima-
bility for the (little) Grothendieck problem, matching an earlier UG-hardness result by Khot and
Naor [KN09]). This framework was also used in [BGG+19] to obtain inapproximability results for
‖A‖p→q for several other values of p and q.

To understand why the GRSW framework naturally leads to projection operators, in the study
of all the above problems, it is instructive to consider a “dictatorship test" gadget for the Grothendieck
problem. Viewing the vectors s, t as evaluation tables of Boolean functions, we can equivalently
think of the objective as 〈 f , Ag〉 where f , g : {−1, 1}R → {−1, 1} are Boolean functions over the
domain (say) {−1, 1}R. A simple test follows from the well-known fact that the `2

2 mass of the
degree-1 Fourier coefficients is at most 2/π + ε for any function far from a dictator, while it is
equal to 1 for a dictator function. Taking F1 to be the level-1 Fourier projection operator (which
only keeps Fourier characters and coefficients of degree 1), we have that the (normalized) opti-
mum value of 〈 f , F1g〉 is 1 when maximizing over all ±1 valued functions, and at most 2/π + ε
when restricted to functions far from dictators, since ‖F1 f ‖2

2 ≤ (2/π + ε) · ‖ f ‖2
2.

Of course dictatorship tests are nontrivial to combine with Unique Games, and even more so
with Label Cover instances. Considering an instance of Label Cover with vertex set V, and taking
( fv : {−1, 1}R → {−1, 1})v∈V to be the “long code" encodings for the labels, let f : V×{−1, 1}R →
{−1, 1} denote the combined function and let F1 denote the operator which projects each of the
long-codes to the degree-1 space i.e., F1 : RV×{−1,1}R → RV×[R]. The GRSW framework amounts
to defining a global projection operator P (which depends on the underlying Label Cover instance)
on the combined level-1 Fourier space, such that PF1f behaves as if far from a dictator in blocks
corresponding to most vertices, when starting with an unsatisfiable instance of Label Cover i.e.,,
‖PF1f‖2

2 ≤ (2/π + ε) · ‖f‖2
2. The final operator A in the result of [BRS15] can be taken to be the PSD

operator F∗1PF1. As before, the solution optimizing 〈f, F∗1PF1g〉 satisfies f = g, which is a dictator
in all blocks when the instance of Label Cover is satisfiable, and far from dictators in most blocks
otherwise. Results for all the geometric problems above similarly rely on projection operators,
and an analysis of the level-1 Fourier coefficients.

While improved dictatorship tests are indeed known for the Grothendieck problem, this re-
quires going beyond the level-1 Fourier coefficients. Indeed the dictatorship test used in the UG-
hardness result of Khot and O’Donnell [KO09] uses the operator F1 − λ · Id where Id denotes the
identity operator. They call this the Davie-Reeds operator, since it is based on the lower bound
constructions of Davie and Reeds, which can be viewed as integrality gap instances for the SDP
relaxation of the Grothendieck problem. Raghavendra and Steurer [RS09] obtain their result us-
ing operators of the form ∑i≥0 λi · Fi, where Fi is the level-i Fourier projection, and the coefficients
λi ∈ R can be chosen using any solution to the SDP relaxation that exhibits an integrality gap.
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However, it is not clear how to combine these tests with the Label Cover based projection operator
P defined by GRSW, since it only acts on the level-1 Fourier coefficients. Moreover, the analysis
in the case of the PSD operator F1PF1 can be local, since we can write 〈f, F∗1PF1〉 as ‖PF1‖2

2, which
can be analyzed by understanding the level-1 Fourier mass of the projected function f separately
in each block corresponding to some vertex v. Since the symmetry of the optimal solution f = g
and the interpretation of the objective as an `2

2 norm is not available when the operator is not PSD,
results based on the GRSW framework have been limited to projection operators.

Our techniques. We consider an operator A based on the Davie-Reeds operator. In particular,
we take

A = F∗1PF1 − λ · Id ,

where Id is the identity operator in the global space, and λ > 0 is a small constant. The optimizers
of 〈f, Ag〉 no longer enjoy the symmetry f = g that holds in the PSD case, but let us still suppose
this is the case for a moment. This suffices to finish the proof since

〈f, Ag〉 = ‖PF1f‖2
2 − λ · ‖f‖2

2 ≤
(

2
π
+ ε

)
· ‖f‖2

2 − λ · ‖f‖2
2 =

(
2
π
+ ε− λ

)
,

using the norm-reducing property of the GRSW projection operator, when starting from an unsat-
isfiable instance of label cover. One can check that for satisfiable instances, the optimal value is
1− λ, leading to a ratio strictly larger than π/2 when λ > 0.

The problem then reduces to still showing an approximate symmetry in the solution, namely
that ‖f− g‖ is small. We now rely on the global structure of the solution instead of the PSD nature of
the operator to conclude this. A simple (but crucial) observation in our analysis is that the optimal
solutions f and g must be close to linear threshold functions (LTFs). Indeed we must have for all
v ∈ V, that gv(x) = sgn(〈(PF1f)v, x〉 − λ · fv(x)) (whenever 〈(PF1f)v, x〉 − λ · fv(x) is non-zero)
and vice-versa for fv(x). For an LTF sgn(〈a, x〉) we will refer to a as the linear weights associated to
the LTF. By stability results for regular LTFs, we can then reduce the problem to showing that PF1f
is close to PF1g i.e., regular LTFs are close, if their associated linear weights are close. The most
technical part of the result is actually showing the regularity of the LTFs to apply this argument.
Finally, the optimality of the solutions f and g can be used to show the closeness of the linear
weights, since the term

〈f, F∗1PF1g〉 = 〈PF1f, PF1g〉 ,

which is part of the objective, and can be viewed as a measure of the correlation of the linear
weights for the above LTFs1.

Note that the above is a departure from the usual analysis of long codes, which considers a
global function f and decomposes it into block functions fv which are analyzed individually in
the evaluation or Fourier space. Instead, we need the global LTF structure of the solutions. We
then decompose the global functions into local blocks in the "linear weights space". We hope
such an analysis relying not only on local Fourier analysis, but also on global properties of the
optimal solution, will be helpful in further strengthening the results for other geometric problems
of interest.

1It has been pointed out to us by an anonymous referee that the above approach may be viewed as a generalization
of the approach taken by Davie to bound the ∞→ 1 norm of the Davie-Reeds operator.
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2 Preliminaries and Notation

2.1 p-Norms

For a vector s ∈ Rn, throughout this paper we will use s(i) to denote its i-th coordinate. For
p ∈ [1, ∞), we define ‖·‖`p to denote the counting p-norm and ‖·‖Lp to denote the expectation
p-norm; i.e., for a vector s ∈ Rn,

‖s‖`p :=

(
∑

i∈[n]
|s(i)|p

)1/p

and ‖s‖Lp := E
i∼[n]

[|s(i)|p] 1/p =

(
1
n
· ∑

i∈[n]
|s(i)|p

)1/p

.

Clearly ‖s‖`p = ‖s‖Lp · n1/p. For p = ∞, we define ‖s‖`∞ = ‖s‖L∞ := maxi∈[n] |s(i)|. We also
use 〈s, t〉c to explicitly denote the inner product under the counting measure, i.e., for two vectors
s, t ∈ Rn, 〈s, t〉c := ∑i∈[n] s(i)t(i). Later in the paper we will work with four different inner product
spaces and will always use 〈·, ·〉 to denote the associated inner product.

We will use p∗ to denote the ‘dual’ of p, i.e. p∗ = p/(p− 1). We also use the convention that
1∗ = ∞ and ∞∗ = 1. We next record a well-known fact about p-norms; namely that the dual norm
of the p-norm is the p∗ norm.

Observation 2.1. For any p ∈ [1, ∞], ‖s‖`p = sup‖t‖`p∗=1 〈t, s〉c.

We next define the operator norm between `n
p spaces.

Definition 2.2. For p, q ∈ [1, ∞], and a linear operator A : `n
p → `m

q the operator norm is defined as

‖A‖`p→`q := max
s∈Rn

‖As‖`q

‖s‖`p

We say Grothendieck optimization problem to refer to the important special case ‖A‖`∞→`1 . We
next state the well known fact that the ∞→ 1 operator norm is equivalent to bilinear maximiza-
tion over the hypercube.

Fact 2.3. For an m× n matrix A,

‖A‖`∞→`1 = sup
s∈{±1}n

sup
t∈{±1}m

〈t, As〉c = ‖A∗‖`∞→`1 .

Proof. Using 〈y, Ax〉 = 〈x, A∗y〉c,

‖A‖`∞→`1 = sup
‖s‖`∞≤1

‖As‖`1 = sup
‖s‖`∞ , ‖t‖`∞≤1

〈t, As〉c = sup
s∈{±1}n

sup
t∈{±1}m

〈t, As〉c

where the final equality follows since if any s(i) is in the interval (−1, 1) then setting s(i) :=
sgn(∑j A[i, j] · t(j)) cannot decrease the value. Similarly for any t(j) ∈ (−1, 1), setting t(j) :=
sgn(∑i A[i, j] · s(i)) cannot decrease the value.
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2.2 Fourier Analysis

We introduce some basic facts about Fourier analysis of Boolean functions. Let R ∈ N be a positive
integer, and consider a function f : {±1}R → R. For any subset S ⊆ [R] let χS := ∏i∈S xi. Then
we can represent f as

f (x1, . . . , xR) = ∑
S⊆[R]

f̂ (S) · χS(x1, . . . xR), (1)

where
f̂ (S) = Ex∈{±1}R [ f (x) · χS(x)] for all S ⊆ [R]. (2)

We interpret f̂ as a vector in R2[R] whose coordinates are indexed by S ⊆ [R]. We will always use
the expectation norms for f and counting norms for f̂ ; i.e.,

‖ f ‖Lp =

(
E

x∈{±1}R
[| f (x)|p]

)1/p

and ‖ f̂ ‖`p =

(
∑

S⊆[R]
| f̂ (S)|p

)1/p

.

Similarly the we use the expectation inner product for 〈 f , g〉 and we use the counting inner prod-
uct for 〈 f̂ , ĝ〉.

The Fourier transform refers to the linear operator F that maps f to f̂ as defined in (2). The
inverse Fourier transform is the linear operator that maps f̂ : 2[R] → R to f : {±1}R → R defined as
in (1). The inverse Fourier transform is simply the adjoint F∗ of the Fourier transform.

Fact 2.4. F∗F is the identity operator.

We refer to ˙̂f := ( f̂ ({1}), . . . , f̂ ({R})) as the linear Fourier coefficients of f (indeed f is a linear
function if and only if f̂ is supported completely inside ˙̂f ). We define the linear Fourier transform
denoted by F1 as the (non-invertible) linear operator mapping f to ˙̂f . The adjoint F∗1 maps ˙̂f to the

boolean linear function x 7→ 〈 ˙̂f , x〉. We define the level-1 weight of f as W1( f ) := ‖ ˙̂f ‖2
`2

. Similarly
the level-k weight of f is defined as Wk( f ) := ∑S∈([R]k )

f̂ (S)2. So we have ‖ f̂ ‖2
`2
= ∑k∈{0,...R}Wk( f ).

The following well-known fact from Fourier analysis states that the expectation 2-norm on f
coincides with the counting 2-norm on f̂ .

Fact 2.5 (Parseval). For any f : {±1}R → R, ‖ f ‖L2 = ‖ f̂ ‖`2 .

In particular we conclude from this that W1( f ) ≤ ‖ f ‖2
L2

.

2.3 Hilbert Spaces

Recall that a Hilbert space is a vector space endowed with an inner product which we denote by
〈·, ·〉. The inner product induces a Hilbert norm which we will denote by ‖h‖H :=

√
〈h, h〉. In this

paper we work predominantly with four finite dimensional real Hilbert spaces defined below. In
what follows V denotes the index set of the vertices of a graph. For the remainder of this paper,
we assume |V| = n.

1. Boolean function evaluation space HE over the vector space R{±1}R
whose elements are denoted

throughout by lower case letters (e.g., f , g, fv, gv, . . . ). HE is endowed with the expectation
inner product 〈 f , g〉 := Ex∈{±1}R [ f (x)g(x)], which induces the Hilbert norm ‖ f ‖H = ‖ f ‖L2 .
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2. Linear Fourier coefficient space H1
F over the vector space R[R] whose elements are denoted

throughout by lower case hatted letters with a dot (e.g., ˙̂f , ˙̂g, ˙̂fv, ˙̂gv, . . . ). H1
F is endowed with

the usual counting inner product 〈 ˙̂f , ˙̂g〉 := ∑i∈[R] f̂ ({i})ĝ({i}), which induces the Hilbert
norm ‖ ˙̂g‖H = ‖ ˙̂g‖`2 .

Remark 2.6. It should be noted that by Parseval’s identity, H1
F is isometric to the subspace of linear

functions from {±1}R to R endowed with the expectation norm, using the canonical linear bijection
˙̂f 7→ (x 7→ 〈 ˙̂f , x〉). In other words we have,

‖ ˙̂f ‖H = ‖ ˙̂f ‖`2 = ‖〈
˙̂f , x〉‖L2 = ‖〈

˙̂f , x〉‖H .

Thus H1
F is isometric to a subspace of HE. Nonetheless, we work directly with H1

F for notational ease.

3. Concatenated evaluation space HE = H⊕V
E over the vector space RV×{±1}R

whose elements are
tuples of boolean functions denoted as f = ( fv)v∈V . Elements of HE are denoted throughout
by bold lower case letters (e.g., f, g, . . . ). HE is endowed with the expectation inner prod-
uct 〈f, g〉 := Ev∈V [〈 fv, gv〉] = Ev∈V [Ex∈{±1}R [ fv(x)gv(x)]] which induces the Hilbert norm
‖f‖H = ‖f‖L2 .

4. Concatenated linear Fourier coefficient space H1
F = (H1

F)
⊕V over the vector space RV×[R] whose

elements are tuples of linear Fourier coefficient vectors denoted as ˙̂f = ( ˙̂fv)v∈V . Elements of
H1

F are denoted throughout by hatted bold lower case letters with a dot (e.g., ˙̂f, ˙̂g, . . . ). H1
F

is endowed with the inner product 〈 ˙̂f, ˙̂g〉 := Ev∈V [〈 ˙̂fv, ˙̂gv〉]. Note that the induced Hilbert
norm ‖ ˙̂f‖H = ‖ ˙̂f‖`2 /

√
n is neither a counting nor an expectation norm.

The linear Fourier transform can be naturally extended to the concatenated space by defining
F1 : f 7→ ˙̂f which represents the vertex-wise map fv 7→ ˙̂fv for all v ∈ V. The adjoint F∗1 maps
˙̂f = ( ˙̂fv)v∈V to the tuple of boolean linear functions (x 7→ 〈 ˙̂fv, x〉)v∈V .

2.4 Smooth Label Cover

An instance of Label Cover is given by a quadruple L = (G, [R], [L], Σ) that consists of a reg-
ular connected graph G = (V, E) (henceforth n := |V|), a label set [R], and a collection Σ =
((πe,v, πe,w) : e = (v, w) ∈ E) of pairs of maps both from [R] to [L] associated with the endpoints
of the edges in E. Given a labeling ` : V → [R], we say that an edge e = (v, w) ∈ E is satisfied if
πe,v(`(v)) = πe,w(`(w)). Let OPT(L) be the maximum fraction of satisfied edges by any labeling.

The following hardness result for Label Cover, given in [GRSW16], is a slight variant of a con-
struction originally due to [Kho02]. The theorem also describes several structural properties, in-
cluding smoothness, that are satisfied by the Label Cover instances.

Theorem 2.7. For any ξ > 0 and J ∈ N, there exist positive integers R = R(ξ, J), L = L(ξ, J) and
D = D(ξ), and a polynomial time reduction ϕ 7→ L(ϕ) from a 3-CNF instance ϕ to a Label Cover
instance L(ϕ) = (G, [R], [L], Σ) such that

- (Hardness):

– (Completeness): If ϕ is satisfiable, then OPT(L(ϕ)) = 1.
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– (Soundness): If ϕ is unsatisfiable, then OPT(L(ϕ)) ≤ ξ.

- (Structural Properties): For any ϕ, L(ϕ) has the following properties

– (J-Smoothness): For every vertex v ∈ V and distinct i, j ∈ [R], we have

P
e:v∈e

[πe,v(i) = πe,v(j)] ≤ 1/J.

– (D-to-1): For every vertex v ∈ V, edge e ∈ E incident on v, and i ∈ [L], we have |π−1
e,v (i)| ≤ D;

i.e., at most D elements in [R] are mapped to the same element in [L].
– (Weak Expansion): For any δ > 0 and any subset of vertices V ′ ⊆ V such that |V ′| = δ · |V|,

the number of edges induced by the vertices in |V ′| is at least (δ2/2)|E|.

2.5 Label Cover Consistency Subspace for Linear Fourier Coefficients

Let L = (G, [R], [L], Σ) be an instance of Label Cover with G = (V, E) (henceforth n := |V|) and let
P : RV×[R] → RV×[R] be the orthogonal projector to the subspace L̂ of H1

F which is defined as:

L̂ :=

 ˙̂f ∈ H1
F : ∑

j∈π−1
e,u (i)

˙̂fu(j) = ∑
j∈π−1

e,v (i)

˙̂fv(j) for all (u, v) ∈ E and i ∈ [L]

 . (3)

The following lemma shown in [BRS15] (informally speaking) states that if L is far from sat-
isfiable then for any element of ˙̂f ∈ L̂ there cannot be many vertices with influential coordinates
(otherwise one can decode an assignment to L contradicting unsatisfiability). In other words, pro-
jection to L̂ acts as a test of Label Cover consistency. For technical ease of use we state the lemma
in terms of projections of concatenated boolean functions f:

Lemma 2.8 (Corollary of Lemma 3.6 of [BRS15]). There exists an absolute constant C > 1 such that
if L is a T-to-1 label cover instance for some T ∈ N with soundness ξ, smoothness C · T/ξ and weak
expansion, then for any f ∈ {±1}V×{±1}R

, we have

|{v ∈ V | ‖(P ˙̂f)v‖`∞ > ξ1/14 , ‖(P ˙̂f)v‖`2 ≤ 1/ξ1/28}| < O(ξ1/14 · n)

Combining the preceding lemma with an appropriate dictatorship test (namely the bilinear
form ( f , g) 7→ 〈 ˙̂f , ˙̂g〉), [BRS15] showed the following soundness claim en route to their hardness
result for little Grothendieck.

Theorem 2.9 (Implicit in proof of Theorem 1.3 of [BRS15]). There exist absolute constants C > 1 and
c ∈ (0, 1) such that if L is a T-to-1 label cover instance for some T ∈ N with soundness ξ, smoothness
C · T/ξ and weak expansion, then for any f ∈ {±1}V×{±1}R

, we have ‖P ˙̂f‖H ≤
√

2/π + ξc.

2.6 Central Limit Phenomena and Linear Threshold Functions

Recall the classical Berry-Esseen central limit theorem states

Theorem 2.10 (Berry-Esseen Central Limit Theorem). Let S := X1 + · · ·+ XR where X1, . . . , XR are
independent centered random variables with E[X2

i ] = a2
i and E[|Xi|3] = b3

i . Let Ψ and Φ respectively
denote the CDFs of S and of a centered Gaussian distribution with variance ‖a‖2

`2
. Then

sup
x∈R

|Ψ(x)−Φ(x)| ≤ 10 ·
‖b‖3

`3

‖a‖3
`2
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An unbiased linear threshold function (henceforth LTF) is a boolean function of the form sgn(〈a, x〉)
for some vector a ∈ RR. We will refer to the entries of a as the linear weights of the LTF. Due to
the nature of our reduction, we will frequently deal with LTFs and perturbed LTFs in the analysis.
When ‖a‖`2 = 1 and ‖a‖`∞ ≤ ε, the LTF is called regular. In this section we collect and derive
some facts about central limit phenomena exhibited by regular LTFs (intuitively this is because
for a random ±1 vector x, 〈a, x〉 exhibits similar behaviour to a Gaussian random variable). The
following result stated as Theorem 5.17 in [O’D14] is a corollary of a multidimensional version of
the Berry-Esseen Central limit theorem due to [Ben05]. It states that the noise stability (and level-1
weight) of an LTF behaves like that of the function sgn(x1) in gaussian space.

Theorem 2.11 (Noise Stability and Level-1 Weight of LTFs).
Let f (x) = sgn(〈a, x〉) be an unbiased LTF where ‖a‖`2 = 1 and ‖a‖`∞ ≤ ε. Then for any ρ ∈ (−1, 1),

∑
k≥1

Wk( f ) · ρk ≤ 2
π
· arcsin ρ + O

( ε√
1− ρ2

)
.

Since Wk( f ) ≥ 0 and arcsin ρ ≤ ρ + 10 · ρ3, setting ρ :=
√

ε above implies the level-1 bound

W1( f ) ≤ 2/π + O(
√

ε) .

We require a version of Theorem 2.11 for perturbed LTFs:

Lemma 2.12 (Level-1 Weight of λ-Perturbed LTFs).
Let a ∈ RR and K > 1 be such that ‖a‖`2 ≥ 1

4π , ‖a‖`∞ ≤ ε, and let f , g : {±1}n → {±1} be
boolean functions satisfying g(x) = sgn(〈a, x〉 − λ · f (x)) whenever x is such that 〈a, x〉 − λ · f (x) 6=
0 (where λ ∈ (0, 1)). Then the fraction of inputs on which g(x) and sgn(〈a, x〉) disagree is at most
4
√

2π · λ + O(ε), and moreover W1(g) ≤ 2/π + 25/4π1/4 ·
√

λ + O(
√

ε).

Proof. Observe that the fraction of inputs on which g(x) and sgn(〈a, x〉) disagree is at most

P
x∼{±1}R

[|〈a, x〉| ≤ λ] = 2 · P
x∼{±1}R

[〈a, x〉 ≤ λ]− 1 .

Let Φ : R → R denote the CDF of a Gaussian random variable with mean 0 and variance ‖a‖2
`2

.
Since ‖a‖`∞ ≤ ε, we have ‖a‖3

`3
/‖a‖3

`2
≤ ε/‖a‖`2 ≤ 4πε. Thus by central limit theorem (Theo-

rem 2.10) we conclude that

2 · P
x∼{±1}R

[〈a, x〉 ≤ λ]− 1 ≤ 2 ·Φ(λ)− 1 + O(ε)

≤ O(ε) +
√

2
π ·

1
‖a‖`2
·
∫ λ

0 e−t2/(2‖a‖2
`2
) dt ≤ O(ε) +

∫ λ
0

√
2
π ·

dt
‖a‖`2

≤ O(ε) + 4
√

2πλ

as desired.
For the second claim, we have

W1(g)1/2 ≤W1(sgn(〈a, x〉))1/2 + W1(g− sgn(〈a, x〉))1/2

≤
√

2/π + O(
√

ε) + W1(g− sgn(〈a, x〉))1/2

≤
√

2/π + O(
√

ε) + ‖g− sgn(〈a, x〉)‖2 ≤
√

2/π + 25/4π1/4
√

λ + O(
√

ε)

where the first inequality follows from triangle inequality over the space `R
2 , the second inequality

follows from Theorem 2.11, and the fourth inequality follows from the 1− 4
√

2πλ−O(ε) agree-
ment that we proved above.
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We also need the following lemma which informally states that two regular LTFs are close
whenever their linear weights are close. Again we proceed by first passing to an appropriate
analogue over Gaussians.

Lemma 2.13 (Agreement of Regular LTFs with Correlated Linear Coefficients). Let a, b ∈ RR be
such that ‖a‖`2 , ‖b‖`2 ≥ 1/(4π), and ‖a‖`∞ , ‖b‖`∞ ≤ ε. Then

P
x
[sgn(〈a, x〉) 6= sgn(〈b, x〉)] ≤ 4

√
2‖a− b‖`2 + O(ε1/6)

Proof. Let u := a/‖a‖`2 , v := b/‖b‖`2 , ρ := 〈u, v〉. Note that ‖u‖`∞ , ‖v‖`∞ ≤ 4π · ε and further
that

‖a− b‖2
`2

= ‖a‖2
`2
+ ‖b‖2

`2
− 2ρ‖a‖`2‖b‖`2 ≥

AM-GM
2‖a‖`2‖b‖`2 − 2ρ‖a‖`2‖b‖`2

= ‖a‖`2‖b‖`2‖u− v‖2
`2
≥ (1/16π2) · ‖u− v‖2

`2
.

Thus it suffices to show a bound of (
√

2/π)‖u− v‖`2 + O(ε1/6).
To this end let K := {y ∈ RR | 〈u, y〉 ≥ 0, 〈v, y〉 ≤ 0} be the intersection of two (regular)

halfspaces, let x be a uniformly random vector in {±1}R and let γ ∈ RR be a vector with indepen-
dent standard Gaussian coordinates. It suffices to show P[x ∈ K] ≤ ‖u− v‖`2 /(

√
2π) + O(ε1/6)

since we have Px[sgn(〈a, x〉) 6= sgn(〈b, x〉)] ≤ Px[x ∈ K] + Px[x ∈ −K] = 2 · Px[x ∈ K]. By
Invariance principle for the intersection of regular halfspaces (e.g. Theorem 3.1 in [HKM13]) we
have

P
x
[x ∈ K] ≤ P

γ
[γ ∈ K] + O(ε1/6) =

cos−1 ρ

2π
+ O(ε1/6)

where the final equality follows since the probability of a random hyperplane lying between two
vectors u, v is precisely cos−1 ρ/π (sometimes referred to as the Grothendieck identity). By Taylor
expansion, we have ρ := cos θ ≤ 1− θ2/4. Therefore, cos−1 ρ ≤

√
4− 4ρ =

√
2‖u− v‖`2 , and we

obtain Px[x ∈ K] ≤ ‖u− v‖`2 /(
√

2π) + O(ε1/6) as desired.

3 (π
2 + ε0) NP-Hardness of ‖ · ‖`n

∞→`n
1

3.1 Reduction from Smooth Label Cover

Here we describe a polynomial time reduction taking as input a Label Cover instance L and pro-
ducing a self-adjoint linear operator A : RV×{±1}R → RV×{±1}R

. Let λ ∈ (0, 1) be a constant
whose value will be fixed later. A is defined as follows

A := F∗1 P F1 − λ · Id . (4)

Equivalently the corresponding bilinear form is given by

〈f, Ag〉 = 〈 ˙̂f, P ˙̂g〉 − λ · 〈f, g〉 . (5)

In other words, given f, we apply the Fourier transform for each v ∈ V, project the combined
Fourier coefficients to L̂ that checks the Label Cover consistency, and apply the inverse Fourier
transform. Since P is a projector, A is self-adjoint by design.

Remark 3.1. Our reduction is inspired both by the reduction L 7→ (F∗1)PF1 used in [GRSW16], [BRS15]
and by the dictatorship test F∗1F1 − λ · Id used in [KO09] (which was based on a gap instance due inde-
pendently to Davie and Reeds).
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3.2 Proof Sketch

It is easily seen that in the completeness case assigning each fv(x) = gv(x) = x`(v) to be dictator
functions (where ` is some satisfying label cover assignment) yields a value of 1− λ.

So to obtain a gap of π/2+ ε0 it suffices to show that for a sufficiently small constant λ sound-
ness is upper bounded by 2/π − kλ for any constant k > 2/π. We will do this by showing the
stronger bound of 2/π − λ + O(λ3/2 + ξc′) and taking λ, ξ sufficiently small (here ξ is label cover
soundness and can be taken to be an arbitrarily small constant independent of λ). By Theorem 2.9
we already have 〈 ˙̂f, P ˙̂g〉 = 〈P ˙̂f, P ˙̂g〉 ≤ 2/π + 3ξc. Thus it suffices to show that if f, g are optimal
then they must satisfy 〈f, g〉 ≥ 1−O(

√
λ) (since the remaining−λ〈 f , g〉 term would then subtract

the necessary amount from 2/π to yield our desired soundness).

Closeness of f, g. We begin with the crucial observation that optimal f, g are λ-perturbed LTFs.
Indeed it must be that whenever 〈(P ˙̂f)v, x〉 − λ · fv(x) 6= 0, we have gv(x) = sgn(〈(P ˙̂f)v, x〉 −
λ· fv(x)) (otherwise f, g are not optimal as the value can be improved). Using this structure (as
well as the central limit phenomenon) we show in Lemma 3.2 which is the most technical part
of the proof, that most vertices (at least 1−O(

√
λ) fraction) satisfy that ‖(P ˙̂f)v‖`2 , ‖(P ˙̂g)v‖`2 ≥

1/(4π) (i.e., are not too small in norm). Further by Lemma 2.8 most vertices (1 − O(ξc′) frac-
tion) satisfy that (P ˙̂f)v, (P ˙̂g)v do not have any large coordinates. Thus for most vertices we may
leverage the central limit phenomenon by applying Lemma 2.12 to conclude that f is close to
(sgn(〈(P ˙̂g)v, x〉))v∈V and g is close to (sgn(〈(P ˙̂f)v, x〉))v∈V . Finally we will conclude f is close to g
by showing that P ˙̂f is close to P ˙̂g.

Closeness of P ˙̂f, P ˙̂g. Note that 〈f, g〉 ∈ [−1, 1] and so 〈f, Ag〉 ≤ 〈 ˙̂f, P ˙̂g〉+ λ. So we may assume
that 〈 ˙̂f, P ˙̂g〉 ≥ 2/π − 2λ since otherwise we have already proved soundness of 2/π − λ. Thus
〈P ˙̂f, P ˙̂g〉 = 〈 ˙̂f, P ˙̂g〉 ≥ 2/π − 2λ. On the other hand, Theorem 2.9 states that ‖P ˙̂f‖H, ‖P ˙̂g‖H ≤√

2/π + ξc. Thus P ˙̂f is close to P ˙̂g allowing us to conclude f is close to g using Lemma 2.13.

3.3 Analysis

Let f, g ∈ {±1}V×{±1}R
be maximizers of 〈f, Ag〉. We begin the proof by defining various subsets

of vertices for which (P ˙̂f)v, (P ˙̂g)v have anomalous behaviour. In Lemma 3.2 we will show that all
of these anomalous sets are small.

Vertices with excessively large norm

V f
0 := {v ∈ V | ‖(P ˙̂f)v‖`2 > 1/ξ1/28}

Vg
0 := {v ∈ V | ‖(P ˙̂g)v‖`2 > 1/ξ1/28}

V0 := V f
0 ∪Vg

0

V0 := V \V0 = {v ∈ V | ‖(P ˙̂f)v‖`2 ≤ 1/ξ1/28 ∧ ‖(P ˙̂g)v‖`2 ≤ 1/ξ1/28}

Vertices with an influential coordinate

V1 := {v ∈ V0 | ‖(P ˙̂f)v‖`∞ > ξ1/14 ∨ ‖(P ˙̂g)v‖`∞ > ξ1/14}
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V1 := V0 \V1 = {v ∈ V0 | ‖(P ˙̂f)v‖`∞ ≤ ξ1/14 ∧ ‖(P ˙̂g)v‖`∞ ≤ ξ1/14}

Vertices with excessively small norm after projecting g

V2 := {v ∈ V1 | ‖(P ˙̂g)v‖`2 < 1/(2π)}
V2 := V1 \V2 = {v ∈ V1 | ‖(P ˙̂g)v‖`2 ≥ 1/(2π)}

Vertices with excessively small norm after projecting f

V3 := {v ∈ V2 | ‖(P ˙̂f)v‖`2 < 1/(4π)}

V3 := V2 \V3 = {v ∈ V1 | ‖(P ˙̂f)v‖`2 ≥ 1/(4π) ∧ ‖(P ˙̂g)v‖`2 ≥ 1/(2π)} .

V3 is the set of vertices on which we may use the central limit phenomenon (Lemma 2.12) for
showing closeness of f, g. We next show that V3 forms the vast majority of the vertices.

Lemma 3.2 (Most Vertices have Well Behaved Projections).
There exist absolute constants C > 1 and c, c1 ∈ (0, 1) such that if L is a T-to-1 label cover instance
for some T ∈ N with soundness ξ, smoothness C · T/ξ and weak expansion, and f, g ∈ {±1}V×{±1}R

are maximizers of 〈f, Ag〉, then we have |V \ V3| ≤ (1005 · δ + (2π)5/4 ·
√

λ + ξc1) · n, where δ :=
2/π + 3ξc − 〈 ˙̂f, P ˙̂g〉.

Proof. We begin by showing that P ˙̂f and P ˙̂g are very close (as a function of δ, λ). Indeed by Theo-
rem 2.9 we know

‖P ˙̂f‖H , ‖P ˙̂g‖H ≤
√

2
π + ξc . (6)

Thus δ ≥ 0 and further since P2 = P, we have 〈P ˙̂f, P ˙̂g〉 = 〈 ˙̂f, P ˙̂g〉 = 2/π + 3ξc − δ. Combining
this with (6) implies

‖P ˙̂f− P ˙̂g‖2
H ≤ 2 · δ + O(ξc) . (7)

By Cauchy-Schwarz we have ‖P ˙̂f‖H · ‖P ˙̂g‖H ≥ 〈P ˙̂f, P ˙̂g〉 = 2/π + 3ξc − δ. Combining this with
(6) yields

‖P ˙̂f‖H , ‖P ˙̂g‖H ≥
√

2
π −

√
π
2 · δ−O(ξc) . (8)

We next use the fact that P ˙̂f is close to P ˙̂g to conclude that there aren’t many vertices where
‖(P ˙̂g)v‖`2 is sufficiently large but ‖(P ˙̂f)v‖`2 is very small. We have

‖P ˙̂f− P ˙̂g‖2
H ≥

1
n
· ∑

v∈V2

‖(P ˙̂g)v − (P ˙̂f)v‖2
`2
≥ 1

n
· ∑

v∈V2

(‖(P ˙̂g)v‖`2 − ‖(P
˙̂f)v‖`2)

2

≥ 1
n
· ∑

v∈V3

(‖(P ˙̂g)v‖`2 − ‖(P
˙̂f)v‖`2)

2

≥ |V3|/(16π2 · n)
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Thus by (7) we conclude that

|V3| ≤ (32π2 · δ + O(ξc)) · n . (9)

Since ‖P ˙̂f‖H ≤ ‖f‖H ≤ 1 (and the same for P ˙̂g), we also have

|V0| ≤ 2 · ξ1/14 . (10)

Thus since V0, V3 and V1 (using Lemma 2.8) are small, we have established that most of the
vertices in V lie inside V3 ∪ V2. The rest of the proof is organized as follows. We will argue V2 is
small by showing that if V2 were large then this would contradict the fact that P ˙̂g is the projection
of ˙̂g. To do this we will show that the inner product 〈 ˙̂g, P ˙̂g〉 is too small (i.e., bounded away from
2/π) since the inner product terms involving the vertices in V2 are small by definition of V2 and
the inner product terms involving vertices in V3 aren’t larger than 2/π due to the central limit
phenomenon (Lemma 2.12). This forces V2 to be small.

We proceed with formalizing the aforementioned sketch. Since 〈 ˙̂g, P ˙̂g〉 = ‖P ˙̂g‖2
2, we have by

(8) that

〈 ˙̂g, P ˙̂g〉 ≥ 2/π − 2 · δ−O(ξc) . (11)

On the other hand we have the upper bound

〈 ˙̂g, P ˙̂g〉 = 1
n
· ∑

v∈V
〈 ˙̂gv, (P ˙̂g)v〉 ≤

1
n
· ∑

v∈V
W1(gv)

1/2 · ‖(P ˙̂g)v‖`2 (Cauchy-Schwarz)

≤ 1
n
· ∑

v∈V1

W1(gv)
1/2 · ‖(P ˙̂g)v‖`2 +

1
n
· ∑

v∈V0∪V1

W1(gv)
1/2 · ‖(P ˙̂g)v‖`2

≤ 1
n
· ∑

v∈V1

W1(gv)
1/2 · ‖(P ˙̂g)v‖`2 +

1
n
· ∑

v∈V0∪V1

‖(P ˙̂g)v‖`2 (W1(gv) ≤ 1) (12)

We bound the main term and the error term separately. We begin with the error term:

∑
v∈V0∪V1

‖(P ˙̂g)v‖`2 ≤
|V1|+ |V

f
0 \Vg

0 |
ξ1/28 + ∑

v∈Vg
0

‖(P ˙̂g)v‖`2

≤
(10) , Lemma 2.8

O(ξ1/28 · n) + ∑
v∈Vg

0

‖(P ˙̂g)v‖`2 ≤ O(ξ1/28 · n) + ∑
v∈Vg

0

ξ1/28 · ‖(P ˙̂g)v‖2
`2

≤ O(ξ1/28 · n) + ξ1/28 · ‖P ˙̂g‖2
`2
≤ O(ξ1/28 · n) + ξ1/28 · n · ‖g‖2

H ≤ O(ξ1/28 · n) (13)

Let c1 := min{1/28, c}. We now bound the main (first) term in (12):

1
n ·∑v∈V1

W1(gv)1/2 · ‖(P ˙̂g)v‖`2

< 1
n ·∑v∈V2

W1(gv)1/2 · ‖(P ˙̂g)v‖`2 +
|V2|
2π·n (∀v∈V2, ‖(P ˙̂g)v‖`2<

1
2π )

≤ 1
n ·
√

∑v∈V2
W1(gv) · ‖P ˙̂g‖`2 +

|V2|
2π·n (Cauchy-Schwarz)

≤ 1√
n ·
√

∑v∈V2
W1(gv) ·

(√
2
π + ξc

)
+ |V2|

2π·n (by (6))

≤
√

32π2 · δ + O(ξc) + ∑v∈V3
W1(gv)/n ·

(√
2
π + ξc

)
+ |V2|

2π·n (by (9))
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≤
√

32π2 · δ + O(ξc1) + |V3|
n ( 2

π + 25/4π1/4
√

λ) ·
(√

2
π + ξc

)
+ |V2|

2π·n (Lemma 2.12 with ε := ξ
1
14 )

≤
√

32π2 · δ + O(ξc1) + 2|V3|
πn + 25/4π1/4

√
λ ·
(√

2
π + ξc

)
+ |V2|

2π·n (|V3| ≤ n)

≤
√

2
π −

2|V2|
πn + 32π2 · δ + 25/4π1/4

√
λ + O(ξc1) ·

(√
2
π + ξc

)
+ |V2|

2π·n (|V3| ≤ n− |V2|)

=
√

1− |V2|
n + 16π3 · δ + 21/4π5/4 ·

√
λ + O(ξc1) ·

(
2
π + O(ξc)

)
+ |V2|

2π·n (factoring out
√

2/π)

≤ 2
π

(
1− |V2|

2n
+ 8π3 · δ + 2−3/4π5/4 ·

√
λ + O(ξc1)

)
+
|V2|

2π · n (∀x∈ (−1,1),
√

1+x ≤ 1+ x
2 )

≤ 2
π
− |V2|

2π · n + 16π2 · δ + 21/4π1/4
√

λ + O(ξc1) . (14)

The application of Lemma 2.12 above is valid since by assumption of optimality of f, g, when-
ever 〈(P ˙̂f)v, x〉 − λ · fv(x) 6= 0, we have gv(x) = sgn(〈(P ˙̂f)v, x〉 − λ· fv(x)) (otherwise f , g are
not optimal as the value can be improved). Combining (11), (12), (13) and (14) with the fact
that 2π(16π2 + 2) ≤ 1005 yields |V2|/n ≤ 1005 · δ + (2π)5/4 ·

√
λ + O(ξc1). Combining this

with (10), (9), Lemma 2.8 and the fact that V3 = V \ (V0 ∪ V1 ∪ V2 ∪ V3) yields |V \ V3|/n ≤
1005 · δ + (2π)5/4 ·

√
λ + O(ξc1) as desired.

Lemma 3.2 allows us to leverage the central limit phenomenon (Lemma 2.12) on most vertices
thereby obtaining that f is close to (sgn(〈(P ˙̂g)v, x〉))v∈V and g is close to (sgn(〈(P ˙̂f)v, x〉))v∈V .
Finally the proximity of P ˙̂f and P ˙̂g allows us to conclude that f is close to g using Lemma 2.13.

Lemma 3.3 (Closeness of f, g).
There are absolute constants C > 1 and c, c2 ∈ (0, 1) such that if L is a T-to-1 label cover instance for
some T ∈ N with soundness ξ, smoothness C · T/ξ and weak expansion, and f, g ∈ {±1}V×{±1}R

are
maximizers of 〈f, Ag〉, then setting δ := 2/π + 3ξc − 〈 ˙̂f, P ˙̂g〉 we have

〈f, g〉 ≥ 1− 29/4π5/4
√

λ− 8
√

δ− 2010 · δ + ξc2 .

Proof. By assumption of optimality we must have gv(x) = sgn(〈(P ˙̂f)v, x〉 − λ · fv(x)) whenever
〈(P ˙̂f)v, x〉−λ · fv(x) 6= 0 and fv(x) = sgn(〈(P ˙̂g)v, x〉−λ · gv(x)) whenever 〈(P ˙̂g)v, x〉−λ · gv(x) 6=
0 (otherwise f , g are not optimal as the value can be improved). So we have

〈f, g〉
= ∑

v∈V3

〈 fv, gv〉/n + ∑
v∈V\V3

〈 fv, gv〉/n

≥
(

∑
v∈V3

〈 fv, gv〉/n
)
− 1005 · δ− 25/4π5/4 ·

√
λ−O(ξc1) (Lemma 3.2)

= ∑
v∈V3

(1−P
x
[ fv(x) 6= gv(x)])/n− 1005 · δ− 25/4π5/4 ·

√
λ−O(ξc1)

≥ |V3|/n− 1005 · δ− 25/4π5/4 ·
√

λ−O(ξc1)− ∑
v∈V3

P
x
[ fv(x) 6= gv(x)] /n

≥ 1− 2010 · δ− 29/4π5/4 ·
√

λ−O(ξc1)− ∑
v∈V3

P
x
[ fv(x) 6= gv(x)] /n (Lemma 3.2) (15)
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Further we have

∑
v∈V3

P
x
[ fv(x) 6= gv(x)] /n

≤ ∑
v∈V3

P
x

[
fv(x) 6= sgn(〈(P ˙̂g)v, x〉)

]
/n + ∑

v∈V3

P
x

[
gv(x) 6= sgn(〈(P ˙̂f)v, x〉)

]
/n +

∑
v∈V3

P
x

[
sgn(〈(P ˙̂g)v, x〉) 6= sgn(〈(P ˙̂f)v, x〉)

]
/n

≤ ∑
v∈V3

P
x

[
sgn(〈(P ˙̂g)v, x〉) 6= sgn(〈(P ˙̂f)v, x〉)

]
/n + 4

√
2π · λ + O(ξ1/28) (16)

(applying Lemma 2.12 to first two sums with ε := ξ1/14)

Thus we have

∑
v∈V3

P
x

[
sgn(〈(P ˙̂g)v, x〉) 6= sgn(〈(P ˙̂f)v, x〉)

]
/n

≤ O(ξ1/84) + ∑
v∈V3

4
√

2 · ‖(P ˙̂g)v − (P ˙̂f)v‖`2 /n (by Lemma 2.13)

≤ O(ξ1/84) + 4
√

2 ·
(

∑
v∈V3

‖(P ˙̂g)v − (P ˙̂f)v‖2
`2

/n
)1/2

(Cauchy-Schwarz)

≤ 8
√

δ + O(ξ1/84) (by (7))

Plugging this back in (15) and setting c2 := min{c1, 1/84} yields the claim.

We are equipped to prove our main result.

Theorem 3.4 (π/2 + ε0 NP-Hardness of Grothendieck Optimization Problem).
There exists a constant ε0 ∈ (0, 1) such that it is NP-Hard to approximate ‖·‖`∞→`1 within a factor of
π/2 + ε0.

Proof. We proceed by showing that the reduction from Smooth Label Cover in Section 3.1 satisfies
the following

- (Completeness) If L is satisfiable, there exists f, g ∈ {±1}V×{±1}R
such that 〈 f , Ag〉 ≥ 1− λ.

- (Soundness) There are absolute constants C > 1 and c2 ∈ (0, 1) such that if L is a T-to-1 label
cover instance for some T ∈ N with soundness ξ, smoothness C · T/ξ and weak expansion,
then for any f, g ∈ {±1}V×2R

we have 〈f, Ag〉 ≤ 2/π − λ + 32 · λ3/2 + 4020 · λ2 + O(ξc2).

Completeness follows from assigning dictators to all vertices via the substitution fv(x) :=
gv(x) := x`(v) where ` is any assignment completely satisfying L. We then have 〈f, Ag〉 = 〈 ˙̂f, ˙̂g〉 −
λ〈f, g〉 = 1− λ since ˙̂f, ˙̂g already lie inside the subspace L̂ and therefore P acts as the identity map
on ˙̂f and ˙̂g.

For soundness consider any f, g ∈ {±1}V×2R
that are maximizers of 〈f, Ag〉. Let δ := 2/π +

3ξc − 〈 ˙̂f, P ˙̂g〉. Since 〈f, g〉 ≤ 1, we know 〈f, Ag〉 ≤ 〈 ˙̂f, P ˙̂g〉+ λ. Thus we may assume without loss

14



of generality that 〈 ˙̂f, P ˙̂g〉 > 2/π − 2λ (i.e., δ < 2λ + 3ξc) since otherwise the soundness claim is
already true. We then have

〈f, Ag〉 = 〈 ˙̂f, P ˙̂g〉 − λ · 〈f, g〉

= 〈P ˙̂f, P ˙̂g〉 − λ · 〈f, g〉 (P2 = P)

= ‖P ˙̂f‖2 · ‖P ˙̂g‖2 − λ · 〈f, g〉 (Cauchy-Schwarz)

≤ 2
π
+ O(ξc)− λ · 〈f, g〉 (by Theorem 2.9)

≤ 2
π
+ O(ξc)− λ · (1− 29/4π5/4

√
λ− 8

√
δ− 2010 · δ−O(ξc2)) (by Lemma 3.3)

≤ 2
π
− λ + 32 · λ3/2 + 4020 · λ2 + O(ξc2) (δ ≤ 2λ + 3ξc)

This completes the proof of soundness.
By Theorem 2.7 (smooth label cover hardness) we may take ξ to be an arbitrary small constant

independent of λ. Thus setting λ := 1/30000 we obtain an inapproximability factor of at least
π
2 + 3 · 10−6 as desired.
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