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ABSTRACT: Real-time emergency response decision-making (DM) during flooding is a 

challenging problem. In contrast to the complexity of the problem, current DM frameworks are 

generally oversimplified and neglect the uncertainty, infrastructure performance and socio-

demographics of the region. To address these limitations, this study poses a risk-informed DM 

framework that integrates situational awareness, exposure, vulnerability, and decision-making. 

First, real-time flood hazard information is obtained from a proven flood alert system. Next, the 

hazard data is coupled with performance models to estimate infrastructure performance at the 

component and network levels. Infrastructure performance is then placed in the context of socio-

demographic data to inform decision making. In addition to proposing the integrated framework, 

this paper will present a case study application in Brays Bayou Watershed, Houston, Texas, 

USA. By quantifying risk and associated uncertainty, the framework can aid emergency 

managers seeking to identify high-risk locations and prioritize emergency response. 
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1 INTRODUCTION 

Hurricane Harvey (2017), a slow-moving Category 4 

hurricane, hovered near Houston dropping more than 

1.3 meters of rain between 25 and 30 August 2017 

(Zhang et al. 2018). The ensuing flood, impacted 

more than 270,000 houses and rendered more than 

780,000 people in need of shelter (FEMA 2017a). 

More than 6400 people were rescued by Federal 

Emergency Management Agency (FEMA) Urban 

Search and Rescue teams alone (FEMA 2017b). At 

such a scale, emergency response operations require 

unprecedented inter-department collaboration, 

effective decision-making, and communication 

(Bharosa et al. 2010; Jiang & Yuan 2019). Decision-

making is especially challenging due to the lack of 

situational awareness and limited resources. To 

elaborate, during a natural disaster such as floods, 

little information is often available on the flood extent 

and flood impact on infrastructure and community. In 

addition, the uncertainty associated with the available 

information and the dynamic nature of floods pose 

severe challenges to effective decision-making (Jiang 

& Yuan 2019). With a potential increase in future 

flood risk (Winsemius et al. 2016; Zscheischler et 

al. 2018), a robust situational awareness and 

decision-making framework is essential for 

enhancing community resilience.  

Several studies in the domain of flood alert 

systems and structural health monitoring have 

attempted innovative frameworks to address the 

need for robust decision-making tools. Fang et al. 

(2008) proposed Rice/TMC flood alert system that 

uses real-time radar data and a precompiled 

floodplain map library to aid emergency response 

decision-making in the Texas Medical Center 

region, Houston, USA. More recently, Liu et al.’s 

(2018) flood prevention and emergency response 

system (FPERS) leverages historical and current 

forecast, remote sensing imageries, real-time 

monitoring of water levels from select gauges, and 

crowdsourcing for supporting decision making. 

Flood alert systems (Bedient et al. 2003; Demir & 

Krajewski 2013; Looper & Vieux 2012; Fang et al. 

2008) provide information on the flood extents or 

streamflow and generally do not attempt to 
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characterize flood impact on infrastructure systems 

and communities. 

While real-time information on flood extent is 

necessary, it alone is not sufficient for effective 

emergency response operations; characterizing 

infrastructure performance and its impact on the 

exposed communities are essential for decision-

making. Real-time structural health monitoring 

(SHA) (Tokognon et al. 2017; Abdelgawad & 

Yelamarthi 2016)  and Internet of Things (IoT) (Van 

Ackere et al. 2019; Perumal et al. 2015) can provide 

critical information and insights on the structural 

performance of infrastructure systems under 

stressors. Although SHA and IoT can assist in the 

decision-making process, the deployment, 

maintenance and operation of sensors can be 

prohibitively expensive at an optimum spatial 

density.  Panakkal et al. (2019) proposed an 

alternative approach which couples a proven flood 

alert system with infrastructure performance models. 

Their model leveraged predelineated maps and inputs 

from a flood alert system to characterize flood impact 

on mobility. This approach could provide a cost-

effective alternative for modeling infrastructure 

performance during flooding. 

In addition to the limited consideration of 

infrastructure performance, current DM frameworks 

for floods generally lack in uncertainty quantification 

and support for probabilistic risk-based decision 

making (Jiang & Yuan 2019). This is concerning 

because emergency response decision-making is 

replete with uncertainties due to the paucity of real-

time data, the dynamic nature of flooding, and the 

complex interaction between environmental forces, 

the built environment, and communities. 

Similarly, existing frameworks provide limited 

consideration of the socio-demographics of the 

exposed population. This is contrary to the 

observations from several past studies that reported a 

disproportionate impact of flooding on vulnerable 

communities. For example, less expensive residential 

buildings may be more likely to experience greater 

relative damage than more expensive houses (Wing 

et al. 2020). Similarly, vulnerable populations are 

likely to see a higher mobility disruption and limited 

accessibility to health care facilities during flooding 

(Balomenos et al. 2019). Since the available 

resources and other socio-economic factors could 

influence evacuation, response, and recovery patterns 

during flooding (Rufat et al. 2015), a decision-

making framework should explicitly consider the 

characteristics of the exposed population. 

To address these identified limitations, this 

study proposes Risk-Informed Decision-making 

for Emergency Response (RIDER) framework. 

RIDER integrates near-real-time information on 

flooding, flood impact on different infrastructure 

systems, and characteristics of the exposed 

population. The hazard level is obtained from a 

real-time flood alert system such as Rice/TMC 

FAS. Consequences, defined here as the flood 

impact on infrastructure systems and 

communities, are modeled using predelineated 

deterministic and probabilistic maps. The 'risk 

measure' quantifies consequences given a hazard 

level. An example custom ‘risk measure’ would be 

"quantify the population in damaged buildings 

without either vehicles or access to evacuation 

routes." Precompiled maps enable RIDER to 

consider and propagate uncertainty without the 

computation and time cost associated with real-

time execution of probabilistic analysis 

considering multiple variables and their 

interactions. 

The rest of the paper is divided into three 

sections. Section 2 presents an overview of the 

RIDER framework. The components of RIDER 

and the methodology for developing the 

components are explained in detail. Next, Section 

3 demonstrates a case study application of the 

RIDER framework to Brays Bayou watershed in 

Houston, Texas, USA. Finally, Section 4 lists 

conclusions and future research directions. 

2 OVERVIEW OF RIDER FRAMEWORK 

2.1 Overview 

The RIDER framework proposed in this study 
leverages real-time flood inundation maps from 
Rice/TMC flood alert system. Rice/TMC FAS is 
selected due to two reasons: first, the FAS 
framework’s methodology utilizes precompiled 
maps that can overcome the computational 
expense required for real-time probabilistic 
analyses; second, the superior performance of 
Rice/TMC FAS was well documented during past 
flood events in the Brays Bayou watershed (Fang 
et al. 2011). Rice/TMC FAS consists of three 
main components. First, the data acquisition 
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module, acquires near-real time NEXRAD rainfall 
radar data at regular intervals. Second, flood plain 
map library (FPML), consists of a set of 
predelineated inundation maps. The FPML maps are 
generated using hydrological and hydraulic analysis 
after considering the characteristics of the 
watershed. Finally, a map selection algorithm 
processes the rainfall radar data and selects a flood 
inundation map that can closely represent the current 
inundation level in the watershed.  

Following a structure similar to Rice/TMC FAS, 
the RIDER framework consists of four main 
components (Fig. 1). First, the Infrastructure 
Performance and Exposure Map Library (IPEML) 
consists of map groups quantifying flood impact on 
select infrastructure systems for each scenario in 
FPML. In addition, IPEML also contains maps 
quantifying the socio-demographics and social 
vulnerability of the exposed population. IPML can 
contain deterministic as well as probabilistic maps 
and are precompiled before the deployment of the 
RIDER platform. For each scenario map in 
Rice/TMC FAS FPML, there would be a set of 
linked IPEML maps. Second, the Data Acquisition 
module acquires the current scenario inundation map 
from Rice/TMC FAS. The third component, a map 

selection algorithm, selects pertinent maps from 
the IPEML for the current inundation scenario 
obtained from Rice/TMC FAS.  Finally, the 
Decision-Making (DM) interface uses the 
identified maps from the map selection algorithm 
to answer queries from a decision-maker.  

RIDER allows custom definitions of the ‘risk 
measure’ through queries. The ‘risk measure’ 
quantifies consequences given a hazard level. The 
hazard level is obtained from Rice/TMC FAS and 
a decision-maker can define the 'risk measure' 
based on available metrics from the IPEML maps 
linked to the current flood scenario. An example 
query would be “Identify regions with vulnerable 
populations (defined, for example, as population 
older than 60 years) in damaged buildings 
(defined, for example, as buildings with 
probability of building collapse greater than 50%) 
and limited access to evacuation routes.” While 
running this query, the DM interface will perform 
a spatial query on the current maps from IPEML 
to identify the regions that match the provided 
criteria. A detailed description of the four 
components follows. 

2.2 Infrastructure Performance and Exposure 

Map Library (IPEML) 

Figure 1. Overview of RIDER 
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IPEML consists of map groups characterizing 

infrastructure performance and socio-demographics 

of the exposed population. Each map group 

represents the state of an infrastructure system during 

flooding. Consequently, there can be one map group 

that captures the flood impact on the transportation 

network and another characterizing the flood impact 

on the residential buildings. Additional map groups 

can also capture the performance of critical structures 

such as chemical plants and industrial facilities. In 

addition, map groups can contain maps 

characterizing social-demographic characteristics of 

the study area.  

Construction of map groups depend on factors 

such as infrastructure types, uncertainty 

consideration, and short-term impact versus long-

term impact. Here, a general workflow for developing 

map groups is illustrated through two examples. 

Figure 2 shows an example workflow that creates a 

map group modeling flood impact on accessibility to 

select facilities. First, a road transportation network 

of the study area is constructed using graph theory. 

Nodes represent roadway intersection and access to 

select facilities. Links represent roadway links 

between nodes. Next, for each scenario in FPML, 

flood depth at road links is identified and flooded 

roads are removed to create an updated network. The 

updated network is then used to perform connectivity 

analysis and estimate accessibility measures. 

Accessibility measures (AMs) quantify flood impact 

on mobility. Example AMs include travel time 

between origin destination pairs. For additional 

details please refer to Panakkal et al. (2019).  

Similarly, Figure 3 illustrates the methodology 

used for developing a probabilistic map group for 

residential building damage. First, obtain the 

building inventory and applicable probabilistic 

damage functions for the study area. For each 

flood scenario in FPML, estimate the flood depth 

at buildings. The flood depth at buildings is then 

used to estimate the probability of damage 

exceeding a damage state DS. P(Damage>DS) = 

30% and P(Damage>DS) = 90% represent two 

separate maps with different confidence of 

damage exceeding a damage state. During 

emergency response, such maps can aid in optimal 

allocation of resources. While the example 

methodology showcased here utilized 

probabilistic damage functions for characterizing 

damage, a Monte-Carlo based approach can be 

used to quantify and propagate uncertainties 

associated with the building inventory and damage 

process.  

To model the characteristics of the exposed 

population, map groups can be developed from 

available data sources such as Census data (U.S. 

Census Bureau 2011) and Center for Disease 

Control and Prevention (CDC) Social 

Vulnerability Index (SVI) (Flanagan et al. 2018). 

Some map groups such as socio-demographic data 

are agnostic to flood condition.  

Figure 2. Methodology for developing accessibility measure map group for IPEML. 
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2.3 Data acquisition and map selection  

The Data Acquisition Module of RIDER acquires 

the current flood scenario map from Rice/TMC FAS 

framework at regular intervals. The current 

Rice/TMC FAS framework updates maps at every 

five-minute interval (Bedient et al. 2003). This 

provides sufficient temporal resolution to facilitate 

near-real-time decision making. Every map in the 

Rice/TMC FAS FPML is linked to a set of maps in 

IPEML using unique identifiers. For example, for an 

FPML scenario with ID U0706L0706, there exists at 

least one scenario map in all IPEML map groups. The 

map selection algorithm is a lookup function which 

selects maps from IPEML based on the current 

scenario ID. 

2.4 Decision-Making 

RIDER provides a query-based framework which 

equips a decision maker to assign weights to factors 

that are relevant to the evolving flood situation. The 

experimental framework in this study uses Python 

scripts in a Jupyter notebook (Kluyver et al. 2016) for 

user interface, GeoPandas (Jordahl 2014) for spatial 

queries, and Folium and Leaflet (python-

visualization 2020) for visualization. 

The decision-making interface provides access to 

pertinent spatial data from IPEML and FPML. From 

the list of available variables in each map, the 

decision maker can generate a new query or use 

predefined queries available in the interface. Table 1 

lists example map groups and variables available 

from an example IPEML. Figure 4 illustrates a query. 

In this query, the decision maker is interested in 

identifying socially vulnerable census tracts which 

are not able to access hospitals and fire stations. 

Here, connectivity loss ratio of greater than 0.8 is 

used as a threshold for identifying regions with 

limited access. The mathematical expression of 

connectivity loss (CL) ratio is defined in Equation 

1. DNormal and DFlooded are the shortest distance 

between an origin-destination (OD) pair under 

normal and flood-affected road conditions 

respectively. CL ratio varies between 0 and 1 with 

1 representing complete loss of access to the 

selected facility.  

 

𝐶𝐿 = 1 −	 ; 		0 < 𝐶𝐿	 ≤ 1               (1) 

 

Similarly, CDC SVI is used to identify 

vulnerable census tracts. CDC SVI quantifies 

social vulnerability on a 0-1 scale with higher 

values representing higher vulnerability. CDC 

estimates SVI after considering several 

characteristics of the population such as household 

composition, socioeconomic variables, race, 

language, ethnicity, housing, and transportation 

access. 

 

Figure 4. An example query in RIDER 

Figure 3. Methodology for developing IPEML map groups for residential building 

performance 
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Table 1. Map groups and available variables for an example 

IPEML 

Map groups Available variables 

Accessibility Accessibility measures to select facilities. 

 

Accessibility measures include connectivity 

loss ratio, travel time, increase in travel time 
compared to no flood condition, distance, 

increase in distance, and number of paths.  

 

Select facilities can be hospitals, fire 

stations, evacuation routes, pharmacies, 

dialysis centers, and schools.  

Residential 

buildings 

Different probability of exceeding a damage 

ratio.   

Socio-

demographic 

Age, population density, education level, 

car ownership, language, monthly income 

 

3 CASE STUDY APPLICATION 

3.1 Study area 

To demonstrate the application of RIDER, a case 
study is presented for the Brays Bayou Watershed in 
Houston, Texas (Fig. 5). Brays Bayou watershed is 
in southwest Harris County and includes a drainage 
area of 329 sq. km (HCFCD 2020). This densely 
populated watershed site several critical 
infrastructure facilities such as Texas Medical 
Center---the largest medical center in the world. In 
response to the widespread damage in the watershed, 
Rice-TMC Flood Alert system was implemented to 
inform emergency-response decision-making in 
TMC (Bedient et al. 2003). Due to the availability of 
Rice/TMC FAS, Brays Bayou watershed is selected 
for demonstrating RIDER. First, the methodology 
used for generating IPEML is described briefly. 
Then, application of the framework for a select 
inundation scenario from the latest FPML is 
presented.  

3.2 Infrastructure Performance and Exposure Map 

Library (IPEML) 

IPEML generated for this case study consists of three 
map groups. First, a deterministic map group models 
flood impact on the transportation network of the 
study area. Second, a probabilistic map group 
captures flood impact on residential buildings. 
Probabilistic damage functions from Wing et al. 
(2020) are used to estimate the probability of building 
damage exceeding a percent of its replacement value. 
Finally, the CDC SVI (Flanagan et al. 2018) is used 
to construct a socio-demographic map group. 

Figure 2 illustrates the methodology for 
developing the deterministic accessibility measure 
map group. Road centerlines from OpenStreetMap 
(OpenStreetMap contributors 2017) are used to 
create an undirected graph network graph using 
NetworkX (Hagberg et al. 2008) Python library. 
The graph nodes represent roadway intersections 
and other key points such as access to select critical 
facilities. The selected critical facilities are 
hospitals and fire stations, and their locations were 
obtained from the Homeland Infrastructure 
Foundation-Level Data (HIFLD 2020) layer. The 
nodes are connected by links representing 
roadways. The network was then checked for 
accuracy and connectivity.  

For each flood scenario in Rice/TMC FPML, a 
spatial overlay analysis estimates the flood depth 
at road links. Any road link with more than 0.60 m 
(2 feet) of water is assumed flooded (Gori et al. 
2020). An updated network is then created by 
removing flooded links. Next, a network analysis 
estimates the accessibility measures following 
Panakkal et al. (2019). Figure 6 shows the road link 
condition for a scenario flood corresponding to 
seven inches of rainfall in 6 hours. The flooded 
roads are marked in red, and the road links, either 
open or outside the Brays Bayou floodplain, are 

Figure 6. Image with roads, flood scenario, and location of 

fire stations and hospitals. Flooded roads are marked in red. 

 

Figure 5. Location of Brays Bayou Watershed, Houston, 

Texas. (Source: OpenStreetMap) 
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printed gray. From Figure 6, many hospitals and fire 
stations might be flooded in this scenario and may 
neither be operational nor accessible via roadways for 
emergency response. 

Figure 7 shows the mean connectivity loss ratio 
between fire stations and census tracts. The mean CL 
ratio at a census tract is the average CL ratio of all 
nodes in a census tract. Regions with severely limited 
access to fire stations are marked red. These regions 
are at an elevated risk of potential secondary failures 
since they may not have timely access to fire stations 
in case of an emergency. Similarly, Figure 8 shows 
the flood impact on access to hospitals. 

Figure 3 illustrates the methodology for 
developing the probabilistic residential building 
damage map group. The residential building 
inventory is obtained from the Harris County 
Appraisal District parcel data (HCFCD 2020). The 
parcel data contains information such as the number 
of floors and foundation type for each parcel. For each 
scenario in FPML, the average flood depth at parcels 
was estimated using spatial analysis. Flood depth 
inside the building can be obtained from the parcel 
flood depth if the building's first-floor elevation (FFE) 
above the ground is known. Due to the paucity of 
reliable FFE data, an FFE of one foot is assumed for 
buildings with slab foundations, and a 3 feet FFE is 
considered for other foundation types such as 
crawlspace (Gadit 2020). The water depth inside the 
building (i.e., average parcel flood depth - FFE) is 
then used to estimate flood damage to buildings. 

For modeling the flood depth-damage relation, 
probabilistic damage functions from Wing et al. 
(2020) were utilized. Wing et al. proposed six depth-
damage distributions for single-story residential 
buildings without basement using the US National 
Flood Insurance Program claim data.  Figure 9 shows 
the relative damage distribution for 1.5m (5 feet) of 
water depth; the damage follows a Beta distribution. 
Similar Beta distributions are available for water 
depths 0.3 m (1 foot) to 1.5 m (5 feet) and 2.1 m (7 
feet). Since no damage function is available if the 
water depth is zero or 1.8 m (6 feet), this study 
assumes no damage for zero water depth and uses the 
damage function of 2.1 m (7 feet) if the water depth is 
greater than 1.8 m (6 feet). This assumption could 
overestimate the flood damage to buildings with 1.8 
m (6 feet) of water. Since the damage functions for 
only one-story buildings are available in Wing et al., 
this study only reports the damage of one-story 

structures. Moreover, while developing damage 
functions, Wing et al. used flood claims from the 
entire US; this could limit the applicability of 
Wing et al.'s depth-damage relations to the 
building inventory in the Houston region. These 
limitations can be overcome by developing 
probabilistic damage functions for the study 
region. 

For all one-story residential buildings in the 
Brays Bayou Watershed region, the probability of 
exceeding relative damage of 90 percent is 

Figure 7. Flood impact on connectivity to fire stations. 

Census tracts with high connectivity loss ratio are marked in 

red 

Figure 8. Flood impact on connectivity to hospitals. Census 

tracts with high connectivity loss ratio are marked in red 

 

Figure 9. Probabilistic damage function for one-story 

residential building from Wing et al. (2020) 
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estimated from Wing et al.'s functions. The 
probability of exceeding 90 percent relative damage 
is the area highlighted in Figure 9. Relative damage is 
the ratio of the replacement cost to the structural value 
of the building. Since the functions are available only 
for integer water depths, the water depth at parcels is 
rounded to the nearest integer. 

Figure 10 maps the probability of relative 
damage exceeding a 0.9 damage ratio for inundation 
scenario U0706L0706. The parcels located closer to 
the bayou (river) will see more significant damage 
than regions away from the bayou.  The area located 
upstream of the bayou (left side in Fig. 10) will see a 
higher damage potential than downstream regions 
(right side in Fig. 10) for this scenario. While 
performing emergency response under limited 
resources, prioritizing regions with a high probability 
of damage exceeding a select damage state might be 
more impactful. 

This study uses the Center for Disease Control 
and Prevention (CDC) Social Vulnerability Index 
(SVI) data for the socio-demographic map group. 
Figure 11 shows the spatial distribution of CDC SVI 
for the study region. The more vulnerable census 
tracts upstream might have limited access to resources 
to respond to and to recover from flood impacts 
compared to the less-vulnerable downstream census 
tracts. 

3.3 Decision Making 

In real-time, the RIDER framework will collect the 
current scenario from Rice/TMC FAS and identify the 
linked maps from IPEML map groups. A decision-
maker can then use predefined or custom queries to 
gain insights. Figure 12 shows three example queries. 
Figure 12a highlights census tracts with CL greater 
than 0.8 for both fire stations and hospitals. Figure 

12b highlights socially vulnerable regions with 
limited access to hospitals and fire stations. While 
Figure 12c visualizes weighted CL and SVI using 
equal weights, a decision-maker can combine 

IPEML maps using custom weights.  

Figure 13 illustrates a query combining CDC SVI 
with residential building damage. Census tract 
marked '1' is more socially vulnerable and contain 
a higher proportion of critically damaged building 
than the census tract marked '2'. Such spatial 
quantitative analysis and visualizations can 

Figure 10. An example map showing the spatial distribution 

of residential building damage. 

Figure 11. CDC SVI for the study area 

 

Figure 12. Example queries combining accessibility and social vulnerability. 
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significantly improve emergency response decision 
making. 

4 DISCUSSION AND FUTURE WORK 

This paper presents the first iteration of RIDER---a 

risk-informed DM framework. RIDER leverages a 

proven flood alert system and precompiled maps to 

support real-time emergency response decision-

making during flooding. A case study application of 

RIDER to the Brays Bayou watershed, located in 

Houston, Texas, illustrates its capability to support 

decision making and potential considerations moving 

forward. Since the framework employs precompiled 

maps, it is computationally inexpensive and robust. 

Also, RIDER can be easily scaled to consider the flood 

performance of different infrastructure systems and 

their interactions. Moreover, RIDER facilitates risk-

informed decision making by providing an efficient 

way to consider uncertainties either through 

probabilistic damage models or precompiled Monte-

Carlo analyses based maps. Further, flood impacts on 

infrastructure systems can be placed in the context of 

socio-demographic data to develop a more 

comprehensive picture of flood consequences. In 

conclusion, RIDER can enhance community resilience 

by providing a scalable, affordable, and efficient 

framework to facilitate risk-informed emergency-

response decision-making accessible to communities. 

Although initial case studies show promising results, 

extensive testing and user inputs are necessary before 

a real-world implementation of RIDER. Also, RIDER 

can be further improved by a) developing probabilistic 

damage models for modeling flood impact on diverse 

infrastructure systems such as residential buildings, 

bridges, and industrial facilities; b) extending 

RIDER to also consider live data. Example live data 

include locations of response resources, input from 

structural health monitoring and Internet of Things; 

c) developing a web-based interface for RIDER; 

and d) extending RIDER to consider cumulative 

structural damage. To elaborate, the current 

iteration of RIDER does not assess cumulative 

structural damage to infrastructure systems through 

the evolution of flooding. This limitation could 

underestimate flood damage to infrastructure 

systems. Future iterations of RIDER will address 

these opportunities. 
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