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ABSTRACT: Real-time emergency response decision-making (DM) during flooding is a
challenging problem. In contrast to the complexity of the problem, current DM frameworks are
generally oversimplified and neglect the uncertainty, infrastructure performance and socio-
demographics of the region. To address these limitations, this study poses a risk-informed DM
framework that integrates situational awareness, exposure, vulnerability, and decision-making.
First, real-time flood hazard information is obtained from a proven flood alert system. Next, the
hazard data is coupled with performance models to estimate infrastructure performance at the
component and network levels. Infrastructure performance is then placed in the context of socio-
demographic data to inform decision making. In addition to proposing the integrated framework,
this paper will present a case study application in Brays Bayou Watershed, Houston, Texas,
USA. By quantifying risk and associated uncertainty, the framework can aid emergency
managers seeking to identify high-risk locations and prioritize emergency response.

KEYWORDS: emergency response; flooding; decision making; situational awareness.

1 INTRODUCTION

Hurricane Harvey (2017), a slow-moving Category 4
hurricane, hovered near Houston dropping more than
1.3 meters of rain between 25 and 30 August 2017
(Zhang et al. 2018). The ensuing flood, impacted
more than 270,000 houses and rendered more than
780,000 people in need of shelter (FEMA 2017a).
More than 6400 people were rescued by Federal
Emergency Management Agency (FEMA) Urban
Search and Rescue teams alone (FEMA 2017b). At
such a scale, emergency response operations require
unprecedented  inter-department  collaboration,
effective decision-making, and communication
(Bharosa et al. 2010; Jiang & Yuan 2019). Decision-
making is especially challenging due to the lack of
situational awareness and limited resources. To
elaborate, during a natural disaster such as floods,
little information is often available on the flood extent
and flood impact on infrastructure and community. In
addition, the uncertainty associated with the available
information and the dynamic nature of floods pose
severe challenges to effective decision-making (Jiang
& Yuan 2019). With a potential increase in future

flood risk (Winsemius et al. 2016; Zscheischler et
al. 2018), a robust situational awareness and
decision-making framework is essential for
enhancing community resilience.

Several studies in the domain of flood alert
systems and structural health monitoring have
attempted innovative frameworks to address the
need for robust decision-making tools. Fang et al.
(2008) proposed Rice/TMC flood alert system that
uses real-time radar data and a precompiled
floodplain map library to aid emergency response
decision-making in the Texas Medical Center
region, Houston, USA. More recently, Liu et al.’s
(2018) flood prevention and emergency response
system (FPERS) leverages historical and current
forecast, remote sensing imageries, real-time
monitoring of water levels from select gauges, and
crowdsourcing for supporting decision making.
Flood alert systems (Bedient et al. 2003; Demir &
Krajewski 2013; Looper & Vieux 2012; Fang et al.
2008) provide information on the flood extents or
streamflow and generally do not attempt to
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characterize flood impact on infrastructure systems
and communities.

While real-time information on flood extent is
necessary, it alone is not sufficient for effective
emergency response operations; characterizing
infrastructure performance and its impact on the
exposed communities are essential for decision-
making. Real-time structural health monitoring
(SHA) (Tokognon et al. 2017; Abdelgawad &
Yelamarthi 2016) and Internet of Things (IoT) (Van
Ackere et al. 2019; Perumal et al. 2015) can provide
critical information and insights on the structural
performance of infrastructure systems under
stressors. Although SHA and IoT can assist in the
decision-making  process, the  deployment,
maintenance and operation of sensors can be
prohibitively expensive at an optimum spatial
density.  Panakkal et al. (2019) proposed an
alternative approach which couples a proven flood
alert system with infrastructure performance models.
Their model leveraged predelineated maps and inputs
from a flood alert system to characterize flood impact
on mobility. This approach could provide a cost-
effective alternative for modeling infrastructure
performance during flooding.

In addition to the limited consideration of
infrastructure performance, current DM frameworks
for floods generally lack in uncertainty quantification
and support for probabilistic risk-based decision
making (Jiang & Yuan 2019). This is concerning
because emergency response decision-making is
replete with uncertainties due to the paucity of real-
time data, the dynamic nature of flooding, and the
complex interaction between environmental forces,
the built environment, and communities.

Similarly, existing frameworks provide limited
consideration of the socio-demographics of the
exposed population. This is contrary to the
observations from several past studies that reported a
disproportionate impact of flooding on vulnerable
communities. For example, less expensive residential
buildings may be more likely to experience greater
relative damage than more expensive houses (Wing
et al. 2020). Similarly, vulnerable populations are
likely to see a higher mobility disruption and limited
accessibility to health care facilities during flooding
(Balomenos et al. 2019). Since the available
resources and other socio-economic factors could
influence evacuation, response, and recovery patterns
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during flooding (Rufat et al. 2015), a decision-
making framework should explicitly consider the
characteristics of the exposed population.

To address these identified limitations, this
study proposes Risk-Informed Decision-making
for Emergency Response (RIDER) framework.
RIDER integrates near-real-time information on
flooding, flood impact on different infrastructure
systems, and characteristics of the exposed
population. The hazard level is obtained from a
real-time flood alert system such as Rice/TMC
FAS. Consequences, defined here as the flood
impact on infrastructure  systems and
communities, are modeled using predelineated
deterministic and probabilistic maps. The 'risk
measure' quantifies consequences given a hazard
level. An example custom ‘risk measure’ would be
"quantify the population in damaged buildings
without either vehicles or access to evacuation
routes." Precompiled maps enable RIDER to
consider and propagate uncertainty without the
computation and time cost associated with real-

time execution of probabilistic analysis
considering multiple variables and their
interactions.

The rest of the paper is divided into three
sections. Section 2 presents an overview of the
RIDER framework. The components of RIDER
and the methodology for developing the
components are explained in detail. Next, Section
3 demonstrates a case study application of the
RIDER framework to Brays Bayou watershed in
Houston, Texas, USA. Finally, Section 4 lists
conclusions and future research directions.

2 OVERVIEW OF RIDER FRAMEWORK
21 Overview

The RIDER framework proposed in this study
leverages real-time flood inundation maps from
Rice/TMC flood alert system. Rice/TMC FAS is
selected due to two reasons: first, the FAS
framework’s methodology utilizes precompiled
maps that can overcome the computational
expense required for real-time probabilistic
analyses; second, the superior performance of
Rice/TMC FAS was well documented during past
flood events in the Brays Bayou watershed (Fang
et al. 2011). Rice/TMC FAS consists of three
main components. First, the data acquisition
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module, acquires near-real time NEXRAD rainfall
radar data at regular intervals. Second, flood plain
map library (FPML), consists of a set of
predelineated inundation maps. The FPML maps are
generated using hydrological and hydraulic analysis
after considering the characteristics of the
watershed. Finally, a map selection algorithm
processes the rainfall radar data and selects a flood
inundation map that can closely represent the current
inundation level in the watershed.

Following a structure similar to Rice/TMC FAS,
the RIDER framework consists of four main
components (Fig. 1). First, the Infrastructure
Performance and Exposure Map Library (IPEML)
consists of map groups quantifying flood impact on
select infrastructure systems for each scenario in
FPML. In addition, IPEML also contains maps
quantifying the socio-demographics and social
vulnerability of the exposed population. IPML can
contain deterministic as well as probabilistic maps
and are precompiled before the deployment of the
RIDER platform. For each scenario map in
Rice/TMC FAS FPML, there would be a set of
linked IPEML maps. Second, the Data Acquisition
module acquires the current scenario inundation map
from Rice/TMC FAS. The third component, a map
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selection algorithm, selects pertinent maps from
the IPEML for the current inundation scenario
obtained from Rice/TMC FAS. Finally, the
Decision-Making (DM) interface uses the
identified maps from the map selection algorithm
to answer queries from a decision-maker.

RIDER allows custom definitions of the ‘risk
measure’ through queries. The ‘risk measure’
quantifies consequences given a hazard level. The
hazard level is obtained from Rice/TMC FAS and
a decision-maker can define the 'risk measure'
based on available metrics from the IPEML maps
linked to the current flood scenario. An example
query would be “Identify regions with vulnerable
populations (defined, for example, as population
older than 60 years) in damaged buildings
(defined, for example, as buildings with
probability of building collapse greater than 50%)
and limited access to evacuation routes.” While
running this query, the DM interface will perform
a spatial query on the current maps from IPEML
to identify the regions that match the provided
criteria. A detailed description of the four
components follows.

22 Infrastructure Performance and Exposure
Map Library (IPEML)

Infrastructure Performance and Exposure Map Library (IPEML)

Data Acquisition

Infrastructure Performance Road Network
Maps Accessibility Measure

Socio-demographic Data

Current Inundation Map
from Rice/TMC FAS

Map Selection Algorithm 'Acquire current inundation map || Identify linked maps from IPEML ‘

Seenario ID: U0706L0706

o

=

Current scenario map

Decision-making
GeoPandas
@ python

Pore PP oF -
Mﬂ'?’g‘f)

B CL to hospitals and fire staions
and CDC SVI greater than 0.8

X Access to hospitals
X Access to fire stations Query
 Vulnerable population

Figure 1. Overview of RIDER
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IPEML consists of map groups -characterizing
infrastructure performance and socio-demographics
of the exposed population. Each map group
represents the state of an infrastructure system during
flooding. Consequently, there can be one map group
that captures the flood impact on the transportation
network and another characterizing the flood impact
on the residential buildings. Additional map groups
can also capture the performance of critical structures
such as chemical plants and industrial facilities. In
addition, map groups can contain maps
characterizing social-demographic characteristics of
the study area.

Construction of map groups depend on factors
such as infrastructure  types, uncertainty
consideration, and short-term impact versus long-
term impact. Here, a general workflow for developing
map groups is illustrated through two examples.
Figure 2 shows an example workflow that creates a
map group modeling flood impact on accessibility to
select facilities. First, a road transportation network
of the study area is constructed using graph theory.
Nodes represent roadway intersection and access to
select facilities. Links represent roadway links
between nodes. Next, for each scenario in FPML,
flood depth at road links is identified and flooded
roads are removed to create an updated network. The
updated network is then used to perform connectivity
analysis and estimate accessibility —measures.
Accessibility measures (AMs) quantify flood impact
on mobility. Example AMs include travel time

FPML from Rice/TMC FAS

k Scenarios

~ ':~ .;’J_"! -

For each FPML scenario
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between origin destination pairs. For additional
details please refer to Panakkal et al. (2019).

Similarly, Figure 3 illustrates the methodology
used for developing a probabilistic map group for
residential building damage. First, obtain the
building inventory and applicable probabilistic
damage functions for the study area. For each
flood scenario in FPML, estimate the flood depth
at buildings. The flood depth at buildings is then
used to estimate the probability of damage
exceeding a damage state DS. P(Damage>DS) =
30% and P(Damage>DS) = 90% represent two
separate maps with different confidence of
damage exceeding a damage state. During
emergency response, such maps can aid in optimal
allocation of resources. While the example
methodology showcased here utilized
probabilistic damage functions for characterizing
damage, a Monte-Carlo based approach can be
used to quantify and propagate uncertainties
associated with the building inventory and damage
process.

To model the characteristics of the exposed
population, map groups can be developed from
available data sources such as Census data (U.S.
Census Bureau 2011) and Center for Disease
Control and Prevention (CDC)  Social
Vulnerability Index (SVI) (Flanagan et al. 2018).
Some map groups such as socio-demographic data
are agnostic to flood condition.

Accessibility Map Group

k.n Maps

¥ R ‘ : /‘_./‘ J

— Inundated road links
Scenario ID: U0706L0706
+

A

)

Estimate flood depth at roads
and Identify flooded roads

Road network and select facilities

A

n Accessibility maps per scenario

il

-

Open roads
Perform network analysis and
estimate accessibility measures

Figure 2. Methodology for developing accessibility measure map group for IPEML.
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Residential Building Performance
Map Group

k.n Maps

T T

.

Scenario [D: U0706L0706

Estimate flood depth at buildings

Building inventory

n Maps for different
exceedance probability per scenario

P(Damage > DS = EP)

Estimate damage using
damage functions

Figure 3. Methodology for developing IPEML map groups for residential building

performance

23 Data acquisition and map selection

The Data Acquisition Module of RIDER acquires
the current flood scenario map from Rice/TMC FAS
framework at regular intervals. The current
Rice/TMC FAS framework updates maps at every
five-minute interval (Bedient et al. 2003). This
provides sufficient temporal resolution to facilitate
near-real-time decision making. Every map in the
Rice/TMC FAS FPML is linked to a set of maps in
IPEML using unique identifiers. For example, for an
FPML scenario with ID U0706L0706, there exists at
least one scenario map in all IPEML map groups. The
map selection algorithm is a lookup function which
selects maps from IPEML based on the current
scenario ID.

24 Decision-Making

RIDER provides a query-based framework which
equips a decision maker to assign weights to factors
that are relevant to the evolving flood situation. The
experimental framework in this study uses Python
scripts in a Jupyter notebook (Kluyver et al. 2016) for
user interface, GeoPandas (Jordahl 2014) for spatial
queries, and Folium and Leaflet (python-
visualization 2020) for visualization.

The decision-making interface provides access to
pertinent spatial data from IPEML and FPML. From
the list of available variables in each map, the
decision maker can generate a new query or use
predefined queries available in the interface. Table 1
lists example map groups and variables available
from an example IPEML. Figure 4 illustrates a query.
In this query, the decision maker is interested in
identifying socially vulnerable census tracts which

are not able to access hospitals and fire stations.
Here, connectivity loss ratio of greater than 0.8 is
used as a threshold for identifying regions with
limited access. The mathematical expression of
connectivity loss (CL) ratio is defined in Equation
1. DNommal and Driooded are the shortest distance
between an origin-destination (OD) pair under
normal and flood-affected road conditions
respectively. CL ratio varies between 0 and 1 with
1 representing complete loss of access to the
selected facility.

CL=1-— DNormal;

DFiooded

0<CL <1 (1)

Similarly, CDC SVI is used to identify
vulnerable census tracts. CDC SVI quantifies
social vulnerability on a 0-1 scale with higher
values representing higher vulnerability. CDC
estimates SVI after considering several
characteristics of the population such as household
composition, socioeconomic variables, race,
language, ethnicity, housing, and transportation
access.

CL to Hospitals > 0.8
AND
CL to Fire stations > 0.8
AND
CDC SVI =038
_
GeoPandas

@ python

Accessibility Measure
Map Group

Social Vulnerability
Map Group

Figure 4. An example query in RIDER
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Table 1. Map groups and available variables for an example
IPEML

Map groups | Available variables

Accessibility | Accessibility measures to select facilities.

Accessibility measures include connectivity
loss ratio, travel time, increase in travel time
compared to no flood condition, distance,
increase in distance, and number of paths.

Select facilities can be hospitals, fire
stations, evacuation routes, pharmacies,
dialysis centers, and schools.

Residential Different probability of exceeding a damage
buildings ratio.

Socio- Age, population density, education level,

demographic | car ownership, language, monthly income

3 CASE STUDY APPLICATION
31 Study area

To demonstrate the application of RIDER, a case
study is presented for the Brays Bayou Watershed in
Houston, Texas (Fig. 5). Brays Bayou watershed is
in southwest Harris County and includes a drainage
area of 329 sq. km (HCFCD 2020). This densely
populated  watershed site  several critical
infrastructure facilities such as Texas Medical
Center---the largest medical center in the world. In
response to the widespread damage in the watershed,
Rice-TMC Flood Alert system was implemented to
inform emergency-response decision-making in
TMC (Bedient et al. 2003). Due to the availability of
Rice/TMC FAS, Brays Bayou watershed is selected
for demonstrating RIDER. First, the methodology
used for generating IPEML is described briefly.
Then, application of the framework for a select
inundation scenario from the latest FPML is
presented.

32 Infrastructure Performance and Exposure Map
Library (IPEML)

IPEML generated for this case study consists of three
map groups. First, a deterministic map group models
flood impact on the transportation network of the
study area. Second, a probabilistic map group
captures flood impact on residential buildings.
Probabilistic damage functions from Wing et al.
(2020) are used to estimate the probability of building
damage exceeding a percent of its replacement value.
Finally, the CDC SVI (Flanagan et al. 2018) is used
to construct a socio-demographic map group.
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LG 10
Figure 5. Location of Brays Bayou Watershed, Houston,
Texas. (Source: OpenStreetMap)

Figure 2 illustrates the methodology for
developing the deterministic accessibility measure
map group. Road centerlines from OpenStreetMap
(OpenStreetMap contributors 2017) are used to
create an undirected graph network graph using
NetworkX (Hagberg et al. 2008) Python library.
The graph nodes represent roadway intersections
and other key points such as access to select critical
facilities. The selected critical facilities are
hospitals and fire stations, and their locations were
obtained from the Homeland Infrastructure
Foundation-Level Data (HIFLD 2020) layer. The
nodes are connected by links representing
roadways. The network was then checked for
accuracy and connectivity.

For each flood scenario in Rice/TMC FPML, a
spatial overlay analysis estimates the flood depth
at road links. Any road link with more than 0.60 m
(2 feet) of water is assumed flooded (Gori et al.
2020). An updated network is then created by
removing flooded links. Next, a network analysis
estimates the accessibility measures following
Panakkal et al. (2019). Figure 6 shows the road link
condition for a scenario flood corresponding to
seven inches of rainfall in 6 hours. The flooded
roads are marked in red, and the road links, either
open or outside the Brays Bayou floodplain, are

o
@
-l
“+
-

T Open
N Flooded
dhd e | b Fire stations
- Al i L o
= %I T ,,”F 1 T Hospitals
AL./\—_la 4~ 0 o 10km Wata‘ernepm

-

Figure 6. Imagé with roads, flood scenarib, and location of
fire stations and hospitals. Flooded roads are marked in red.
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printed gray. From Figure 6, many hospitals and fire
stations might be flooded in this scenario and may
neither be operational nor accessible via roadways for
emergency response.

Figure 7 shows the mean connectivity loss ratio
between fire stations and census tracts. The mean CL
ratio at a census tract is the average CL ratio of all
nodes in a census tract. Regions with severely limited
access to fire stations are marked red. These regions
are at an elevated risk of potential secondary failures
since they may not have timely access to fire stations
in case of an emergency. Similarly, Figure 8 shows
the flood impact on access to hospitals.

Figure 3 illustrates the methodology for
developing the probabilistic residential building
damage map group. The residential building
inventory is obtained from the Harris County
Appraisal District parcel data (HCFCD 2020). The
parcel data contains information such as the number
of floors and foundation type for each parcel. For each
scenario in FPML, the average flood depth at parcels
was estimated using spatial analysis. Flood depth
inside the building can be obtained from the parcel
flood depth if the building's first-floor elevation (FFE)
above the ground is known. Due to the paucity of
reliable FFE data, an FFE of one foot is assumed for
buildings with slab foundations, and a 3 feet FFE is
considered for other foundation types such as
crawlspace (Gadit 2020). The water depth inside the
building (i.e., average parcel flood depth - FFE) is
then used to estimate flood damage to buildings.

For modeling the flood depth-damage relation,
probabilistic damage functions from Wing et al.
(2020) were utilized. Wing et al. proposed six depth-
damage distributions for single-story residential
buildings without basement using the US National
Flood Insurance Program claim data. Figure 9 shows
the relative damage distribution for 1.5m (5 feet) of
water depth; the damage follows a Beta distribution.
Similar Beta distributions are available for water
depths 0.3 m (1 foot) to 1.5 m (5 feet) and 2.1 m (7
feet). Since no damage function is available if the
water depth is zero or 1.8 m (6 feet), this study
assumes no damage for zero water depth and uses the
damage function of 2.1 m (7 feet) if the water depth is
greater than 1.8 m (6 feet). This assumption could
overestimate the flood damage to buildings with 1.8
m (6 feet) of water. Since the damage functions for
only one-story buildings are available in Wing et al.,
this study only reports the damage of one-story
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Figure 7. Flood impact on connectivity to fire stations.
Census tracts with high connectivity loss ratio are marked in
red

71 Brays Bayou Watershed
T Hospitals

Figure 8. Flood impact on connectivity to hospitals. Census
tracts with high connectivity loss ratio are marked in red

e
Water depth = 5ft

44 Shape parameters: a =0.68, f = 0.42
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Figure 9. Probabilistic damage function for one-story
residential building from Wing et al. (2020)

structures. Moreover, while developing damage
functions, Wing et al. used flood claims from the
entire US; this could limit the applicability of
Wing et al's depth-damage relations to the
building inventory in the Houston region. These
limitations can be overcome by developing
probabilistic damage functions for the study
region.

For all one-story residential buildings in the
Brays Bayou Watershed region, the probability of
exceeding relative damage of 90 percent is
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estimated from Wing et al's functions. The
probability of exceeding 90 percent relative damage
is the area highlighted in Figure 9. Relative damage is
the ratio of the replacement cost to the structural value
of the building. Since the functions are available only
for integer water depths, the water depth at parcels is
rounded to the nearest integer.

Figure 10 maps the probability of relative
damage exceeding a 0.9 damage ratio for inundation
scenario U0706L0706. The parcels located closer to
the bayou (river) will see more significant damage
than regions away from the bayou. The area located
upstream of the bayou (left side in Fig. 10) will see a
higher damage potential than downstream regions
(right side in Fig. 10) for this scenario. While
performing emergency response under limited
resources, prioritizing regions with a high probability
of damage exceeding a select damage state might be
more impactful.

This study uses the Center for Disease Control
and Prevention (CDC) Social Vulnerability Index
(SVI) data for the socio-demographic map group.
Figure 11 shows the spatial distribution of CDC SVI
for the study region. The more vulnerable census
tracts upstream might have limited access to resources
to respond to and to recover from flood impacts
compared to the less-vulnerable downstream census
tracts.

33 Decision Making

In real-time, the RIDER framework will collect the
current scenario from Rice/TMC FAS and identify the
linked maps from IPEML map groups. A decision-
maker can then use predefined or custom queries to
gain insights. Figure 12 shows three example queries.
Figure 12a highlights census tracts with CL greater
than 0.8 for both fire stations and hospitals. Figure

b)

Stream

[ Tracts with CL to hospitals
and fire staions greater than 0.8

I CL to hospitals and fire staions
and CDC SVI greater than 0.8
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12b highlights socially vulnerable regions with

limited access to hospitals and fire stations. While

Figure 12c¢ visualizes weighted CL and SVI using

a decision-maker can combine

”‘f Wg}é%ﬂ gsﬂgﬁéﬂﬂ 7 Brays Bayou Watershed A
RN . gpﬂma éﬂ%ﬂ]ﬁ% P(Relative damage > 0.9)

[ 10%

Figure 10. An example map showing the spatial distribution
of residential building damage.

e [l L

[ erays Bayou Watershed | |

COC Social Vulnerability Index l
L Jogo-0.2s

Tlo2s-0.50

Ho50-0.75

Figure 11. CDC SVI for the study area
IPEML maps using custom weights.

Figure 13 illustrates a query combining CDC SVI
with residential building damage. Census tract
marked '1' is more socially vulnerable and contain
a higher proportion of critically damaged building
than the census tract marked '2'. Such spatial
quantitative analysis and visualizations can

O R
|
" f‘S"’éﬁ}q

ol 7 W
O AN
B o

Weighted CL and SVI

N 0.0-0.2
[Jo02-04
0 5 10km %0.4-0.6
T . 0.6-0.8
Bl o03-1.0

Figure 12. Example queries combining accessibility and social vulnerability.
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significantly improve emergency response decision
making.

[ Census Tracts
Stream

F(Relative damage > 0.9)

1 00.0-07.5

C107.5-15.0

I 15.0-22.5

Il 29.9-37.4
~ CDC SVI
L_100-02
[ 102-04
2 04-08
4 0608 :
i Bl os-10 <

Figure 13. A query combining CDC SVI with residential building
damage

4  DISCUSSION AND FUTURE WORK

This paper presents the first iteration of RIDER---a
risk-informed DM framework. RIDER leverages a
proven flood alert system and precompiled maps to
support real-time emergency response decision-
making during flooding. A case study application of
RIDER to the Brays Bayou watershed, located in
Houston, Texas, illustrates its capability to support
decision making and potential considerations moving
forward. Since the framework employs precompiled
maps, it is computationally inexpensive and robust.
Also, RIDER can be easily scaled to consider the flood
performance of different infrastructure systems and
their interactions. Moreover, RIDER facilitates risk-
informed decision making by providing an efficient
way to consider uncertainties either through
probabilistic damage models or precompiled Monte-
Carlo analyses based maps. Further, flood impacts on
infrastructure systems can be placed in the context of
socio-demographic data to develop a more
comprehensive picture of flood consequences. In
conclusion, RIDER can enhance community resilience
by providing a scalable, affordable, and efficient
framework to facilitate risk-informed emergency-
response decision-making accessible to communities.

Although initial case studies show promising results,
extensive testing and user inputs are necessary before
a real-world implementation of RIDER. Also, RIDER
can be further improved by a) developing probabilistic
damage models for modeling flood impact on diverse
infrastructure systems such as residential buildings,
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bridges, and industrial facilities; b) extending
RIDER to also consider live data. Example live data
include locations of response resources, input from
structural health monitoring and Internet of Things;
c) developing a web-based interface for RIDER;
and d) extending RIDER to consider cumulative
structural damage. To elaborate, the current
iteration of RIDER does not assess cumulative
structural damage to infrastructure systems through
the evolution of flooding. This limitation could
underestimate flood damage to infrastructure
systems. Future iterations of RIDER will address
these opportunities.
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