
Xenic: SmartNIC-Accelerated Distributed Transactions
Henry N. Schuh
Univ. of Washington

Weihao Liang
Univ. of Washington

Ming Liu
Univ. of Wisconsin, Madison

Jacob Nelson
Microsoft Research

Arvind Krishnamurthy
Univ. of Washington

Abstract

High-performance distributed transactions require e�-
cient remote operations on database memory and protocol
metadata. The high communication cost of this workload
calls for hardware acceleration. Recent research has applied
RDMA to this end, leveraging the network controller to ma-
nipulate host memory without consuming CPU cycles on the
target server. However, the basic read/write RDMA primi-
tives demand trade-o�s in data structure and protocol design,
limiting their bene�ts. SmartNICs are a �exible alternative
for fast distributed transactions, adding programmable com-
pute cores and on-board memory to the network interface.
Applying measured performance characteristics, we design
Xenic, a SmartNIC-optimized transaction processing sys-
tem. Xenic applies an asynchronous, aggregated execution
model to maximize network and core e�ciency. Xenic’s co-
designed data store achieves low-overhead remote object
accesses. Additionally, Xenic uses �exible, point-to-point
communication patterns between SmartNICs to minimize
transaction commit latency. We compare Xenic against prior
RDMA- and RPC-based transaction systems with the TPC-
C, Retwis, and Smallbank benchmarks. Our results for the
three benchmarks show 2.42⇥, 2.07⇥, and 2.21⇥ throughput
improvement, 59%, 42%, and 22% latency reduction, while
saving 2.3, 8.1, and 10.1 threads per server.

CCS Concepts

• Information systems ! Distributed database trans-
actions; Parallel and distributed DBMSs.

Keywords

Distributed Transactions, SmartNICs, RDMA.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483555

ACM Reference Format:
Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. 2021. Xenic: SmartNIC-Accelerated Distributed
Transactions. InACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21), October 26–29, 2021, Virtual Event, Germany.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/347713
2.3483555

1 Introduction

Distributed transactions, though a valuable programming
model, are a challenging workload in the datacenter envi-
ronment. Providing replication and serializability requires
coordination between multiple shards of data with multiple
replicas of each shard. Together, these guarantees incur a
high communication cost, making the practicality of the dis-
tributed transaction model contingent on the performance
of datacenter networks [9, 15, 45].
Recent developments in hardware and software acceler-

ation have increased the performance of distributed trans-
action systems. Kernel-bypass networking reduces both the
latency of network transfers and the end-host processing
overhead. RDMA further cuts server processing costs by of-
�oading simple memory operations from the server CPU to
the NIC itself. One-sided RDMA enables reads, writes, and
atomic operations on a remote server’s memory without in-
volving the remote server’s CPU and with lower latency than
operations that traverse the host networking stack. By ex-
pressing the transaction commit and replication protocol in
terms of one-sided RDMA operations, the server-side compu-
tation involved in performing transactions can be eliminated,
avoiding software network stack overheads [8, 9, 45].
A critical limitation of current RDMA NICs, however, is

their small set of memory access primitives: read, write, fetch-
and-add, and compare-and-swap. Applying these RDMA
primitives to a distributed system typically requires signi�-
cant design trade-o�s in terms of data structures and protocol
logic. For instance, a remote hash lookup using one-sided
RDMA reads necessitates multiple network roundtrips for a
hash miss; this can be mitigated by reading multiple buckets
at once, but we then waste bandwidth to improve latency [8].
Likewise, one-sided RDMA supports only a request/response
message pattern, limiting options for protocol communica-
tion. Often, these compromises negate the bene�ts of hard-
ware o�oading. In the context of distributed transactions,

https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555

using RPCs for some [44] or all [15] remote operations can
lead to higher performance than fully applying one-sided
RDMA. Ultimately, the limited applicability of one-sided
RDMA limits the potential for performance bene�t.
SmartNICs provide a path forward. These devices inte-

grate compute cores and memory into the network interface,
plus accelerators for common packet-processing functions.
In particular, on-path ("bump in the wire") SmartNICs o�er
�exible compute cores on the packet data path, suggesting
a new approach to hardware-accelerated distributed trans-
actions. The SmartNIC’s cores enable remote data structure
accesses without network or RPC overhead. The on-board
DRAM allows for maintenance of metadata state on the NIC
itself, eliminating unnecessary PCIe memory accesses. When
PCIe DMAs are required, the NIC can batch these operations
to reduce overhead. Finally, the NIC can handle arbitrary pro-
tocol logic at both the source and remote target of a request,
implementing �exible, multi-hop, network communication.

Given these potential bene�ts, we conduct a performance
characterization of SmartNIC packet processing to identify
the challenges and opportunities of using SmartNICs to
accelerate distributed systems protocols. We �nd that the
SmartNIC’s software-based packet processing comes at a
performance cost relative to hardware-supported RDMA.
Therefore, a SmartNIC solution would only be e�ective if the
NIC programmability can be used to signi�cantly optimize
communications over the wire and PCIe. Further, the NIC’s
limited resources pose a challenge. The NIC cores have low
computational power relative to host cores, and the on-board
memory is small. Careful placement of state and logic is crit-
ical to bene�t from the NIC’s limited resources. Operations
must be interleaved and aggregated to e�ectively utilize NIC
compute, PCIe, and network bandwidth.

Armed with these insights, we design Xenic, a SmartNIC-
accelerated transaction processing system. Xenic adapts the
protocol of prior designs to bene�t from a stateful, asyn-
chronous SmartNIC execution model. First, Xenic employs
a co-designed data store that resides in host and SmartNIC
DRAM, conforms to the SmartNIC’s restrictions, and pro-
vides fast access to host-based data via indexing hints on the
SmartNIC. Second, Xenic maintains temporary synchroniza-
tion state on the SmartNIC to optimize concurrency control
mechanisms. Third, Xenic takes advantage of the SmartNIC’s
�exible communication primitives and a function shipping
interface [7, 9] to implement multi-hop (i.e., non-request-
response) distributed concurrency control optimizations that
lead to lower latencies and higher throughputs. Finally, Xenic
achieves communication e�ciency by asynchronously ag-
gregating work at all inputs and outputs of the SmartNIC.
The batched, asynchronous execution model enables high
utilization of network bandwidth and the PCIe DMA engine.

We implement Xenic using Marvell LiquidIO SmartNICs
[25] and compare it towell-optimized RDMA- and RPC-based
designs using Mellanox CX5 RDMA NICs [29]. Our evalu-
ation focuses on the TPC-C, Retwis, and Smallbank trans-
action benchmarks. On a 100Gbps network, Xenic demon-
strates a 2.42⇥, 2.07⇥, and 2.21⇥ peak throughput increase
relative to the best-performing RDMA and RPC alternatives,
for the three respective benchmarks, with 59%, 42%, and 22%
improvements in median latency, while saving 2.3, 8.1, and
10.1 threads per server.

2 Background & Related Work

2.1 RDMA NICs

Modern datacenter NICs commonly implement a hardware-
accelerated remote memory interface known as RDMA. An
application uses RDMA by registering regions of host DRAM
with the local NIC to enable remote access. There are two
categories of RDMA operations:
One-sided RDMA operations are simple memory manipu-
lations that are handled fully by the RDMA NIC. The target
server’s NIC parses the request, issues a PCIe DMA to read or
write the host memory region, and sends a response over the
network. One-sided verbs utilize connection-based transport.
Three one-sided RDMA verbs are supported by mainstream
RDMA NICs: (a) READ a remote memory address, copying
the requested data over the network, (b) WRITE data from
a local bu�er to a remote address, returning a completion
ack, and (c) ATOMIC compare-and-swap or fetch-and-add a
remote bu�er, returning the result.
Two-sided RDMA provides an e�cient send/receive inter-
face for message passing. Two-sided operations involve the
host CPU on both sending and receiving ends. On the receiv-
ing end, the host CPU must poll for received messages, han-
dle the bu�er contents, and release the bu�ers to receive later
messages. Two-sided RDMA o�ers a lightweight message-
passing abstraction to support an RPC-based system but does
not provide the CPU-bypass properties of one-sided RDMA.

2.2 Distributed Transactions

We target serializable distributed transactions over a repli-
cated key-value store. The keyspace is partitioned, with desig-
nated primary and backup replicas for each partition. Recent
work in this space assume persistent memory or battery-
backed DRAM for fault tolerance and a separate service o�
the critical path to handle recon�guration [9, 15, 44].
2.2.1 Commit Protocol Recent research systems share a
similar commit protocol design, extending optimistic concur-
rency control (OCC) [43] with primary-backup replication
for availability [6, 9, 15, 44]. Each transaction consists of a
set of keys to read and a set of key-value pairs to write. The
coordinator issues a series of operations for each transaction:

(1) In the E������ phase, the coordinator reads all read-set
objects from the objects’ primary replicas. Writes are
bu�ered locally at the coordinator, and the coordinator
contacts the primary for each write-set key to lock the
object. If a lock is already held, the transaction aborts.

(2) In the V������� phase, the coordinator again reads each
read-set value from its primary. If any value has changed
after being read in the execution phase (determined using
version counters), or its lock is held, the transaction aborts.
Otherwise, the transaction will commit.

(3) In the L�� phase, the transaction record is written to a log
on each write-set backup replica. The write-set updates
are applied to the backup shards in the background.

(4) In the C����� phase, the coordinator applies the new
write-set values to the primary replicas, increments the
objects’ version counters, and unlocks the objects.

2.2.2 RDMA-assistedDistributedTransactions Recent
systems use RDMA to accelerate the commit protocol, both
by using one-sided verbs to reduce host involvement and
two-sided verbs to implement low-latency RPCs.
FaRM [9]: FaRM’s design prioritizes the use of one-sided
RDMA. In particular, FaRM applies a Hopscotch hash data
structure, enabling remote key lookups with a single one-
sided READ. The Hopscotch structure incurs a high band-
width overhead, as a neighborhood of multiple objects must
be read for a single lookup. Further, key insertion also re-
quires displacement of existing objects, which cannot be
done e�ciently using one-sided RDMA primitives. Thus,
FaRM can fully o�oad execution and validation phase reads
using one-sided RDMA, but it consumes remote CPU cycles
for all other operations. To acquire write locks, to log trans-
action records, and to commit write objects, FaRM applies
an RPC protocol based on one-sided WRITEs to pairwise
message logs on each server. The servers poll logs and handle
requests, sending back responses using the same mechanism.
FaSST [15]: Instead of pursuing the CPU and latency savings
of one-sided RDMA, FaSST implements a lightweight two-
sided RPC protocol for all remote operations. With an RPC
model, no specialized data structure is required since lookups
and insertions occur locally at the RPC handler. This avoids
the read ampli�cation and insertion complexity of FaRM’s
hash structure. FaSST also consolidates multiple operations
into a single RPC: one RPC can lock a write-set object and
retrieve a read-set value, providing performance bene�ts at
the cost of host core usage.
DrTM+R [6]: DrTM+R aims to handle all remote operations
with one-sided RDMA. This is accomplished with separate
locking schemes for local and distributed transactions: re-
mote locking uses one-sided ATOMIC operations, and lo-
cal locking uses hardware transactional memory (HTM).

DrTM+R addresses the incompatibility of RDMA ATOM-
ICs with host CPU atomic instructions by applying an HTM
procedure for each local key operation, and instead of op-
timistically reading and performing a validation check, the
coordinator locks all keys in a transaction.
DrTM+H [44]: DrTM+H uses both one-sided RDMA and
two-sided RPCs, performing a phase-by-phase selection of
one-sided versus two-sided options tomaximize performance.
Like FaRM, DrTM+H uses one-sided RDMA to read remote
records during the execution/validation phases and to write
backup log entries. Writes during the execution and commit
phases are done via RPCs. The RPC protocol makes use of
two-sided RDMA, like FaSST, instead of FaRM’s one-sided
RDMA message logs. DrTM+H stores objects in a standard
open hash table and achieves one-sided lookups in a single
roundtrip by storing at each coordinator the remote memory
address of each key, incurring a memory cost. Ultimately,
DrTM+H exploits the CPU savings of one-sided RDMA to a
limited extent while using two-sided RPCs for all other work.
This selective use of one-sided RDMA shows a performance
bene�t relative to the purely two-sided alternative.

2.3 SmartNIC-based Systems

Emerging programmable NICs, or SmartNICs, represent
another promising approach to reducing host processing
overheads. By o�oading computations onto a NIC-sidemulti-
core processor [4, 25, 28, 33, 34] or an FPGA [1, 10, 11, 30, 46],
we can not only save server CPU cores but also achieve lower
request latency and higher overall energy e�ciency.
A SmartNIC has become a cost-e�ective computing unit

for stateful packet processing, as the programmable com-
ponents require only a modest amount of chip logic. For
example, the Pensando Elba chip devotes less than 30% of
its die for sixteen 2.8GHz ARM cores and the accompany-
ing memory controller [26, 35], with the majority of the
chip logic consumed by �ow processing engines (e.g., Broad-
com’s TruFlow [3], Mellanox’s ASAP2 [27], and Pensando’s
P4 [35]). Moreover, the enclosed processors and ASIC-based
accelerators consume much less power than a Xeon-based
solution when performing line-rate tra�c processing (e.g.,
the Pensando NIC consumes less than 25W [26]).
Thus, there is a growing body of research on SmartNICs,

with a signi�cant focus on the o�oading of network func-
tions [2, 11, 12, 14, 17, 19, 20, 32, 37, 39, 40]. There is also
work on generic frameworks for o�oading [16, 21, 23, 36]
and individual case studies focused on accelerating speci�c
applications (e.g., key-value storage o�oads [18, 22]). Our
work is along these lines and examines the utility of Smart-
NICs in accelerating distributed transactions, an application
that has traditionally been optimized using RDMA. Crucially,
unlike prior e�orts that focus on network functions or com-
plete o�oads of applications, we pursue a design where the

On-path

Ethernet

RX/TX

NIC

cores

Host

cores

PCIe DMA

Off-path

Ethernet

RX/TX Internal

switch

Host

cores

RDMA

NIC
cores

Figure 1: On-path (a) and o�-path (b) SmartNIC architectures, show-
ing packet data paths and the SmartNIC’s host memory interface.

NIC and the host are closely coupled, with shared data struc-
tures and a �ne-grained division of application logic.

3 SmartNIC Performance Analysis

We perform an experimental characterization to identify
the opportunities and challenges of using SmartNICs. We fo-
cus on SmartNICs that enclose a system-on-chip (SoC) multi-
core processor. These SmartNICs o�er the potential for hard-
ware acceleration while, unlike RDMA, delivering a �exible,
programmable interface. We �rst compare two SmartNIC ar-
chitectures: on-path SmartNICs and o�-path SmartNICs [21].
Second, we provide a performance evaluation of the 2x50GbE
Marvell LiquidIO 3 CN3380 SmartNIC. The LiquidIO has 24
ARMv8 cores running at 2.2GHz, 16GB of on-board DDR4
DRAM, and an 8-lane PCI 3.0 interface. We compare the
LiquidIO to the 100GbE Mellanox CX5 (MCX516A-CCAT)
RDMA NIC. We detail our server speci�cations in §5.

3.1 On-Path and O�-Path SmartNICs

On-path SmartNICs (Figure 1a) implement a software
packet pipeline, using the SoC to handle all inbound and
outbound tra�c between the Ethernet port and PCIe host
(e.g., Marvell LiquidIO [24, 25] and Netronome Agilio [33].
The SoC exposes low-level hardware interfaces for packet
manipulation. These include Ethernet RX/TX queues, packet
bu�er management, packet scheduling and ordering mod-
ules, and PCIe DMA engines. Functionality is o�oaded to the
SmartNIC by adding logic to the packet processing pipeline;
the SoC can modify tra�c, or generate tra�c, to the host and
the wire. Additionally, the SoC can manipulate host memory
by issuing PCIe DMA requests. This architecture requires all
tra�c to be handled by SoC cores. As a result, o�oaded appli-
cation work and basic packet-processing tasks both contend
for the limited SoC resources.

O�-path SmartNICs (Figure 1b) expose the SoC as a
second network endpoint, with an internal packet switch
between the host interface, SoC interface, and the wire. The
SoC typically runs Linux with a full networking stack such
as DPDK. Functionality is o�oaded to the SoC by directing
tra�c to the SoC instead of the host, typically via a secondary
Ethernet address. Current o�-path devices lack a low-level
interface for host memory manipulation. Instead, the SoC
issues network requests to the host (e.g., RDMA operations
or RPCs); the SmartNIC internally forwards tra�c between
the two endpoints. The o�-path design allows tra�c to be

� � �� �� ��
�D��/LTXLG,2�577�>XV@

1,&�53&

5HDG

:ULWH

+RVW�53&

����

����

����

����

���

���

���

����

� � �� �� ��
�E��&;��577�>XV@

�

���

���

����

1�$

)URP�1,&
)URP�+RVW

Figure 2: Roundtrip latency for LiquidIO SmartNIC remote opera-
tions originating from the host and from the NIC (a), and for CX5
RDMA (b). 256B data bu�er used for all measurements.

selectively directed to the SoC; however, the full network
stack on the SoC adds overhead to o�oaded packet process-
ing. Communication between the SoC and host is expensive
due to the networking layers involved. To demonstrate this,
we measure roundtrip latency for operations between a re-
mote endpoint, the host, and the NIC SoC using the Mellanox
Blue�eld 1M322A [28]. While RDMA writes to host memory
from a remote server have a median latency of 3.5us, we
measure 4.5us to SoC memory from a remote server and
5.1us to host memory from the local SoC. The Broadcom
Stingray PS225 [4] showed similar overheads: 7.6us to write
host memory from a remote server, but 8.5us from the local
SoC. This in�ated SoC-to-host latency suggests that opera-
tions accessing host DRAM cannot be o�oaded to the SoC
without a prohibitive latency cost. We, therefore, target the
on-path SmartNIC architecture for our o�oading work.

3.2 NIC and Host Access Latency

In Figure 2, we present a roundtrip latency comparison
of remote operations for the LiquidIO and CX5 NICs. For
the LiquidIO, we measure operations initiated on the source
host server via DPDK and operations initiated on the source
NIC cores. For both sources, we measure the end-to-end
latency of operations executed on the remote NIC, such
as a NOP (NIC RPC case), DMA reads and writes to host
memory (Read/Write cases), as well as two-sided operations
handled by DPDK on the target-side server (Host RPC). For
RDMA, we perform comparable experiments with the CX5
NIC, demonstrating READ and WRITE verbs, as well as two-
sided RPCs using SEND/RECV verbs with the RPC frame-
work from DrTM+H [44]. All cases use a 256B data payload;
latency is similar for smaller sizes.

Our measurements show a latency penalty for the Smart-
NIC’s software packet pipeline. RDMA operations, which
leverage specialized hardware, demonstrate lower latency
than the equivalent operations implemented in target-side
LiquidIO and initiated from the host CPU. While the Smart-
NIC’s software overhead poses a challenge, the ability to
reduce costly PCIe operations presents an opportunity for
performance improvement. Both devices show a signi�cant
cost for PCIe operations, with two-sided host RPCs incur-
ring the highest latency. For the LiquidIO, operations local

�� �� �� ��� ���
�D��1,&�'5$0�:ULWH�>%@

���

���

���

���

���

���

7K
UR
XJ
KS
XW
�>R
SV
�V
@��

��
�

�� �� �� ��� ���
�E��+RVW�'5$0�:ULWH�>%@

�

�

�

�

�

7K
UR
XJ
KS
XW
�>R
SV
�V
@��

��
�

/,2�%DWFKHG
/,2�6LQJOH
&;��5'0$

Figure 3: Remote memory write throughput, targeting SmartNIC
DRAM (a) and host DRAM (b), with and without batching enabled.
CX5 RDMAWRITE throughput is also shown for comparison.

to the NIC cores (e.g., NIC RPC with NIC source) outperform
all operations involving PCIe accesses. Operations initiated
from the NIC, avoiding the latency cost of a host-side DPDK
roundtrip, outperform two-sided RDMA RPCs. These obser-
vations suggest the LiquidIO has the potential for latency
improvement over two-sided RDMA without sacri�cing the
software �exibility of RPCs.

3.3 NIC and Host RPC Throughput

To compare packet-handling throughput between NIC
and host cores, we implement a minimal echo RPC handler
in a host DPDK application and in the LiquidIO �rmware.
For this experiment, RPC requests and responses consist of
80B UDP packets. We send requests from 5 remote servers
to the target server and measure total response throughput.
First, we deploy the host RPC handler on the target server,
using 16 threads with dedicated RX/TX queues (enough to
reach maximum throughput) and a packet burst size of 64.
Second, we repeat the experiment with the same con�gu-
ration but instead deploying the RPC handler on 16 NIC
threads. In both cases, further increasing the thread count
did not increase throughput. We measure an average host
RPC throughput of 23.0Mops/s and an average NIC RPC
throughput of 71.8Mops/s. This suggests that the NIC cores,
though wimpier in computational performance (see §3.6),
demonstrate higher packet-handling e�ciency than the host-
side alternative. Handling RPCs on the NIC cores, therefore,
creates the potential for throughput improvement, in addi-
tion to latency reduction, relative to host RPCs.

3.4 Batching Optimizations

Using read and write microbenchmarks, we consider the
potential of aggregation and batching at all stages of the
packet pipeline. We apply a software batching layer at the
NIC’s PCIe TX/RX queues, Ethernet packet output, and DMA
engine. We measure throughput for remote DMA writes to
host memory and remote writes to the LiquidIO’s on-board
memory, with and without batching. To compare against the
CX5, we measure RDMAWRITE throughput, applying door-
bell batching [31] of up to 64 requests (more batching did not
increase throughput). Figure 3 shows throughput for remote
memory writes at a range of 16-256B bu�er sizes, with and

�� �� �� ��� ���
�D��%XIIHU�6L]H�>%@

���

���

���

���

���

���

7K
UR
XJ
KS
XW
�>R
SV
�V
@��

��
�

�� �� �� ��� ���
�E��%XIIHU�6L]H�>%@

���

���

���

���

���

/D
WH
QF
\�
>X
V@ 5�ð�

5�ð��
:�ð�
:�ð��

Figure 4: DMA engine throughput (a), and latency (b), with individ-
ual requests andwith full 15-element vectors. For latency, solid bars
denote submission time and hatched bars denote completion time.

without batching. Reads demonstrate similar performance.
We �nd that batching enables e�cient bandwidth utiliza-
tion for small remote memory operations. With batching
disabled, throughput is consistent across the range of bu�er
sizes, 9.0-10.4Mops/s for both NIC and host memory targets.
Batching network and PCIe transfers results in a throughput
increase of up to 22.2⇥ for NIC memory writes and 7.0⇥ for
host memory writes. For operations on remote NIC memory,
throughput scales to the usable network bandwidth for all
write sizes. For operations on host memory, throughput is
limited by the DMA engine for requests smaller than 64B;
larger requests saturate the usable network bandwidth. For
CX5 RDMA, we observe 13.5-15.0Mops/s across the range
of bu�er sizes, lower than the respective batched LiquidIO
operations. 16-256B RDMA writes do not saturate network
bandwidth, even with extensive doorbell batching. This indi-
cates that application-level doorbell batching is insu�cient
to achieve high throughput with small RDMA operations.

3.5 DMA Performance

To understand the performance characteristics of the Liq-
uidIO’s DMA hardware, we measure DMA throughput (Fig-
ure 4a) and latency (Figure 4b) for singular and vectored
host memory accesses at a range of sizes. The DMA engine
provides 8 hardware request queues; we initiate DMAs on 8
NIC cores, with each core assigned a dedicated queue. The
DMA engine supports vectors of up to 15 reads or writes;
we measure with individual requests and full vectors.

Our throughput measurements indicate that using vec-
tored submission to batch DMAs improves throughput for
the range of request sizes, up to the hardware maximum of
8.7Mops/s. Full vectors do not increase submission or com-
pletion latency relative to single-bu�er requests. Instead,
vectored operations may amortize the request submission
time, up to 190ns, across up to 15 memory operations. Finally,
we observe that the signi�cant DMA completion latency, typ-
ically up to 1295ns for reads and 570ns for writes, must be
hidden to e�ciently utilize the NIC cores.

3.6 SmartNIC Core Performance

We compare the performance of the ARM and Intel Xeon
Gold 5218 CPU cores using the Coremark benchmark and

Benchmark Cores ARM Xeon ⇥
Coremark multi 4530 14771 3.3
DPDK hash_perf multi 349.8s 108.1s 3.2
DPDK readwrite_lf_perf multi 179.6s 52.5s 3.4
Coremark single 14294 29193 2.0
DPDK memcpy_perf single 325.8s 174.4s 2.0
DPDK rand_perf single 7.5s 2.9s 2.6
DPDK hash_perf single 186.5s 84.0s 2.2

Table 1: Benchmark results for the NIC ARM and host Xeon cores,
with relative the per-thread performance for the Xeon versus ARM.

relevant performance tests in DPDK’s test suite. We measure
single-threaded performance and per-thread performance
for workloads utilizing all cores. Table 1 shows the results.
For the LiquidIO’s 2.2GHz 24-thread ARM CPU, we measure
a Coremark throughput score of 108724 or 4530 per thread.
The host-side 2.3GHz, 32-thread Xeon’s score is 472691, with
per-thread throughput 3.26⇥ higher than that of the Liq-
uidIO.While the Xeon’s throughput scales with its 32 threads,
the LiquidIO’s per-thread Coremark throughput is substan-
tially lower with all cores active. Running Coremark on one
thread of each CPU, we observe higher relative throughput
on the ARM, with a smaller 2.04⇥ di�erence. The DPDK tests,
demonstrating hash table, random number, and memcpy
workloads, show a similar single-threaded (1.99⇥ to 2.60⇥)
and multi-threaded (3.24⇥ to 3.42⇥) performance di�erence.

3.7 Opportunities

Our measurements suggest that the SmartNIC’s software-
based packet processing comes at a latency cost relative to
RDMA. Despite this, we identify three optimization oppor-
tunities. The �rst is using the SmartNIC cores for stateful
remote operations without host RPC overhead or one-sided
RDMA limitations. NIC cores can handle protocol logic with
the �exibility of an RPC design. NIC cores are also a valuable
target for function shipping; logic can be pushed to NIC cores
to eliminate PCIe roundtrips, exploit low-latency NIC-to-NIC
communication (§3.2), and e�cient packet-handling (§3.3).
The second is using the SmartNIC memory to serve remote
operations without PCIe overhead. With co-designed data
structures spread across the host and NIC, we can use NIC
memory to avoid PCIe latency. We can use PCIe DMAs to
access host memory with lower latency than RPCs (§3.2), and
high throughput potential relative to one-sided RDMA (§3.4).
The third is leveraging the SmartNIC’s e�cient hardware in-
terfaces, which show high throughput with software-de�ned
asynchronous (§3.5), batched (§3.4) operations.

4 Design

Xenic provides a distributed, replicated database in server
DRAM with a transactional interface. Each node acts as a
transaction coordinator, a primary replica of one database
shard, and a backup replica for 5 other shards, if we use a

NIC DRAM

Host DRAM

… …

… dh di dj …dgDdf Ddk

Key Lock Seq Value

DM
A

di + 1

segment
Key Disp Seq Value

index 
ent

Figure 5: Overview of the Xenic data store, showing data and meta-
data placement. Over�ow is omitted for simplicity.

replication factor of 5 +1. A coordinator application, running
on each node, initiates transactions. The commit protocol
utilizes the coordinator’s local ("coordinator-side") SmartNIC,
and the ("server-side") SmartNICs at remote primary and
backup nodes. Xenic is designed to bene�t from SmartNICs
in the following ways:
• Stateful o�oads: Xenic implements its transaction commit

protocol as a set of stateful operations on the coordinator-
and server-side SmartNICs. By storing temporary transac-
tion state, e.g., locks, in SmartNIC memory, Xenic avoids
PCIe roundtrips and host RPCs on the critical path.

• Co-designed data store: Xenic’s data structures are spread
across the host and SmartNIC memory. All key-value ob-
jects are stored in server DRAM, supporting local mem-
ory access at the server. For remote access, Xenic utilizes
server-side SmartNIC memory to avoid PCIe reads for hot
objects. By storing lightweight location metadata on the
distribution of objects in host memory, Xenic canminimize
the latency and size of DMAs for cold objects.

• Distributed multi-hop OCC protocol: Like prior systems [8,
9], Xenic uses function shipping [7]. But, Xenic can target
SmartNICs and employ non-request-response protocols,
unlike RDMA-based systems. This not only reduces PCIe
operations but also enables �exible OCC communication
protocols that reduce network communication.

• Runtime support for asynchronous and batched commu-
nication: Xenic performs all work asynchronously and
aggregates operations at all inputs and outputs. By im-
plementing an asynchronous, batched operation model,
Xenic e�ciently utilizes the limited SmartNIC cores. By
batching work across PCIe DMAs, packet IO, and Ethernet
transmissions, Xenic achieves high bandwidth utilization.

4.1 Co-designed Data Store

Xenic’s data store is a co-designed hash structure resid-
ing in host and SmartNIC DRAM. All key-value objects are
stored in host memory. The following factors drive this de-
sign choice. First, the host application may retrieve objects

via local memory access, not requiring communication with
the SmartNIC. Second, the host memory size is typically
much larger than that of the SmartNIC memory. Finally, the
host’s memory can be battery-backed to provide durabil-
ity (as is the case in FaRM [9]). We optimize the host-side
structure for e�cient lookups and reads from the SmartNIC
via PCIe DMA. Local transactions’ lookups, insertions, and
writes are performed on the host via local memory access.

The SmartNIC hash structure serves as a caching index
of the host data store. It maintains �ne-grained distribution
metadata for regions of the host hash structure, enabling low-
cost lookups via PCIe DMA. Given the latency of PCIe, we
target lookups with a common-case single DMA read and low
bandwidth overhead. In addition to storing lookup metadata,
the SmartNIC structure maintains transaction metadata for
key-value objects accessed by ongoing transactions.

This design leads to three possible cases for lookups: �rst,
the host can perform lookups in its local memory; second,
the SmartNIC can serve remote lookups of hot objects via its
cache; third, upon a cache miss, the SmartNIC can retrieve
objects in host memory via a low-overhead DMA read.

4.1.1 Data Structures The Xenic data store applies three
structures. The host-side hash table (see §4.1.2) contains all
key-value objects. The NIC hash table (see §4.1.3) caches hot
objects and stores metadata. It is not a complete index of
the host hash structure but instead a cache with location
hints to facilitate e�cient DMA lookups on the host-side
hash table. The NIC table also stores transaction commit
metadata, e.g., lock state, for ongoing transactions. Placing
this metadata in NIC memory brings it closer, in terms of
latency, to inbound remote accesses, while the on-path NIC
architecture keeps it on the data path of outbound local
requests. Figure 5 shows the layout of the host and SmartNIC
hash structures. Finally, a host memory log (see §4.2) stores
recently committed transactions. TheNIC e�ciently appends
transactions’ write sets to the log, and the host applies the
updates to the host-side structure o� the critical path.

4.1.2 Robinhood Hash Table Xenic’s host-side hash
structure is a closed hash table adopting the Robinhood hash
table design [5], with several modi�cations to achieve e�-
cient operations in the SmartNIC context. The Robinhood
design is a form of closed hash table applying linear probing,
which aims to reduce the cost of lookup probing by displac-
ing existing objects as new ones are inserted. The insertion
procedure attempts to even out the displacement of objects
in the table: the distance of each object from its initial hash
position. Objects with a comparatively low displacement are
moved further as later insertions take place. The insertion
probing function accomplishes this by checking the displace-
ment of each element it reaches in the table. If the existing
element’s displacement is less than the current displacement

of the element to be inserted, it swaps the existing element
with the one to be inserted; thus, it steals the "displacement
wealth" from well-placed elements and hands it out to other
elements. Probing continues until reaching an empty slot,
where the element to be inserted is placed.

This swapping procedure results in low probing distance
variance throughout the hash table, even at high occupancy.
While the insertion cost is higher than simply probing for
an empty slot, the uniformity of probing distance improves
lookup e�ciency. This is important for lookups in the con-
text of high-latency, throughput-limited memory access, i.e.,
PCIe DMA. Unlike other swapping designs, such as Cuckoo
hashing, the Robinhood design prioritizes the locality of ob-
jects mapping to the same hash position. As a result, typical
lookups read a single, contiguous region of memory instead
of multiple disjoint buckets. This is crucial in the context of
remote memory access, where the initiation cost of reading
disjoint addresses is higher than that of a single bu�er.
Xenic imposes a global limit on maximum displacement,

⇡< . Xenic divides the table memory into �xed-size segments,
and for each segment, a linked over�ow bucket may be al-
located if necessary. If displacement reaches ⇡< during in-
sertion, the object to be inserted is instead appended to the
over�ow bucket corresponding to its initial hash position.
This allows Xenic to limit the cost of insertion and dele-
tion.While prior Robinhood implementations typically apply
tombstones to ensure an erased entry does not prematurely
end probing, Xenic uses a simpler approach. Xenic simply
swaps an over�ow element over the deleted element, if one
exists. If no over�ow element exists, Xenic performs a back-
ward shift; size is limited by ⇡< .

DMA-Consistent Swapping WhenRobinhood insertion
swaps a table element, the existing element is replaced with
the object to be inserted and bu�ered until the next swap
occurs. A concurrent DMA read could therefore miss the
existing element. Xenic addresses this by building a copy list
and performing swaps starting from the last (free) element.
This ensures an existing object is never removed from the
table. Xenic must also guarantee consistent DMA reads for
objects spanning multiple host cache lines. In this case, Xenic
surrounds swaps with transactional memory instructions
(XBEGIN, XEND), causing the swap to abort and retry if there is
a concurrent DMA. Because the NIC caches objects returned
in a DMA read, the host retries an aborted swap without
continued contention. Xenic stores large objects above 256B
outside the host hash table to avoid swapping large object
payloads and reduce DMA lookup cost. Instead, the hash
table contains pointers, which the NIC can use to retrieve
the value via a single-object DMA read.

4.1.3 SmartNICCaching Index Xenic uses NICmemory
to maintain lookup metadata for the host-side hash table, as

Data Structure Objects Read Roundtrips
Xenic Robinhood, ⇡< = 8 3.43 1.07
Xenic Robinhood, ⇡< = 16 4.13 1.04
Xenic Robinhood, ⇡< = 32 4.84 1.02
Xenic Robinhood, no limit 6.39 1
FaRM Hopscotch, � = 8 [8] > 8 1.04
DrTM+H Chained, ⌫ = 4 4.65 1.16
DrTM+H Chained, ⌫ = 8 8.81 1.10
DrTM+H Chained, ⌫ = 16 16.96 1.06

Table 2: Average number of objects read and number of roundtrips
per lookup, at 90% occupancy.

well as transaction metadata for objects actively involved in
transactions. For each segment of the host-side table, Xenic
allocates a NIC index entry. An index entry contains a cache
of objects that map to the corresponding host-side segment,
transactionmetadata (lock, version number) for those objects,
and a known displacement value, 38 , for objects mapping to
the corresponding host-side segment. Xenic implements a
�xed-size set of cache positions for each index entry, with
chained over�ow pages allocated as necessary.

The NIC index also enables e�cient host memory lookups
when a cache miss occurs. Each NIC index entry maintains
the highest known displacement 38 of objects mapping to the
entry’s host-side segment as well as an over�ow address if
objects in the segment have reached the displacement limit.
Lookups require reading a region of the table in host memory,
from the key’s initial hash position to its actual displacement.
While this actual displacement value is unknown until reach-
ing the key, 38 serves as an e�ective location hint for locating
a key with a single DMA read.
The NIC’s 38 values may be invalidated by concurrent

insertions performed in host memory: inserting one object
may move another object beyond the corresponding 38 main-
tained at the NIC. To address this, the NIC reads 38 + : addi-
tional elements beyond its known displacement, up to the
limit ⇡< . While insertions will invalidate 38 values some-
what regularly (e.g., 6% of insertions at 90% occupancy), 38
is rarely increased by more than one (e.g., only 0.2% of in-
sertions at 90% occupancy); therefore, we set : = 1 based on
experimentation. If the NIC does not read the item within
38 + : entries, the NIC performs a second, adjacent DMA
read up to the limit, ⇡< . If 38 is already equal to ⇡< , the NIC
instead reads the segment’s over�ow page.
Insertions, deletions, and cache eviction make use of the

transaction protocol and its metadata to ensure consistency
between the SmartNIC index and the host structure (§4.2).

4.1.4 Lookup E�ciency We compare the e�ciency of
lookup operations to the hash designs of FaRM [8] and
DrTM+H [44]. The three designs share similar priorities; each
is optimized for remote hash lookups via remote memory ac-
cess. All three designs perform updates using local memory

operations at the target, and their insertion procedures prior-
itize placing objects mapping to the same hash value within
a small, contiguous area of memory. This enables common-
case remote lookups with one remote memory read at the
cost of reading multiple objects per lookup. FaRM applies
a Hopscotch hash table; like Robinhood, the Hopscotch ta-
ble is a variant of linear probing. This design ensures that
any element must be located within a �xed neighborhood
size � , with � = 8 in FaRM’s published results. A remote
lookup �rst reads the neighborhood of� elements, and if the
object is not found, issues a second read of the correspond-
ing over�ow bucket, resulting in an additional roundtrip.
DrTM+H applies a simpler hash design, with a closed array
of ⌫-element �xed-size buckets and additional linked buck-
ets allocated as necessary. A remote lookup traverses bucket
links until �nding the object.

Wemeasure remote lookup performance at 90% table occu-
pancy, comparing to FaRM’s published results at the same oc-
cupancy. Table 2 shows the mean number of objects read and
mean roundtrips per lookup for 8 million uniform-random
keys. FaRM’s design reads � = 8 objects per lookup in the
common case, with a second roundtrip necessary for 4% of
keys; average over�ow read size is not published. DrTM+H
reads at least ⌫ keys for each lookup, and due to its chained
placement policy, often incurs multiple roundtrips traverse
the chain. Xenic dynamically bounds the size of lookup reads
based on hints stored in the NIC index. At high occupancy,
and with a similar 4% over�ow utilization to FaRM, Xenic’s
average read size is 48% lower than that of FaRM. If we dis-
able over�ow buckets and do not limit displacement, Xenic
still achieves 20% fewer object reads per lookup than FaRM
while also eliminating the over�ow roundtrip.

FaRM and DrTM+H both perform remote hash lookups
across the network via RDMA. Xenic instead performs re-
mote lookups at the target-side NIC. RDMA lookups impose
an end-to-end bandwidth cost and a full network roundtrip
penalty if multiple reads are needed. Xenic’s lookups, in con-
trast, consume only PCIe bandwidth and incur only PCIe
access latency. Likewise, Xenic’s remote lookups are always
performed at the target NIC rather than at any remote client.
This creates the opportunity for the NIC to cache objects and
metadata for the host-side structure. While DrTM+H also
applies index caching, it must store remote object addresses
for each remote primary at each coordinator. DrTM+H’s ap-
proach is limited in scalability, given its memory overhead,
and lacks an e�cient mechanism for cache invalidation.

4.2 Transaction Protocol

We �rst describe Xenic’s distributed transaction commit
procedure, thenwe detail special transaction cases andXenic’s
respective optimizations. Xenic applies function shipping to

NIC

Host

Primary Data Store
App

Coordinator

Coord

Backup 1

Backup 2

RH Worker

Log

Server

Eth RX/TX Eth RX/TX

CoordCoordinator ServerServer

PC
Ie

 R
X/

TX

DM
A

W

B

A

C D

iii

E

iv

… …

… …D

DM
A

R

i

ii

Figure 6: Xenic design overview, showing one server. Solid lines in-
dicate local memory access; dashed lines indicate PCIe transfers.

o�oad execution logic from the host server to the coordinator-
side SmartNIC (§4.2.2). Further, Xenic extends OCC with dis-
tributed, multi-hop protocol variants to increase communica-
tion e�ciency based on a transaction’s access pattern (§4.2.3).
While Xenic targets distributed transactionworkloads, where
common-case transactions involve remote data shards, we
ensure the SmartNIC optimizations do not add communica-
tion complexity to purely local transactions. §4.2.4 outlines
Xenic’s fast path for local transactions.

Figure 6 shows the components of each Xenic node. The
coordinator application, running on each host, initiates all
transactions and handles commits and aborts. We summarize
the execution of a distributed, read-write transaction:
(1) A host coordinator thread A initiates the transaction,

determining the initial read-set and write-set objects. The
coordinator may either generate the transaction or poll a
request queue from an external application thread B . It
assigns a transaction ID (node index and sequence num-
ber), then sends the transaction state, including its read-
set and write-set objects, to its local SmartNIC.

(2) A coordinator-side SmartNIC thread C then issues re-
mote E������ requests to each primary involved, speci-
fying the shard’s read-set and write-set keys. The request
is received by a server-side SmartNIC thread D , which
performs a lookup for each read- and write-set key in its
local-memory index i . If any key exists and is locked,
the NIC returns an abort response. Otherwise, the NIC
allocates an index entry, if necessary, and acquires a lock
for each write-set key. The NIC then retrieves the values
and version numbers of the read-set keys. As described in
§4.1, cached values are retrieved from SmartNIC memory
i , and cache-miss reads retrieve the value from host
memory ii via PCIe DMA. Finally, the coordinator sends
a response containing the read-set values and versions.

(3) After receiving successful E������ responses from all
primaries, the coordinator SmartNIC updates its transac-
tion state with the returned read-set values and sends the

transaction state via PCIe to the host. The host coordi-
nator performs an application-level function to generate
write-set values given the read-set values and sends these
writes to its NIC. For a multi-shot transaction, the coor-
dinator may issue subsequent execute requests to read
and/or lock additional keys until execution is �nished.

(4) The coordinator-side SmartNIC issues a V������� request
to the primary of each read-set key, except for those
locked for writing. The request includes the version num-
ber for each key obtained by E������. The primary NIC
retrieves the current version for each key in its index i ,
and returns commit if the version numbers match and no
keys are locked. Otherwise, the NIC returns abort, which
is propagated to the application and other primaries.

(5) After receiving successful V������� responses, the trans-
action completes if it is read-only. For read-write trans-
actions, the coordinator replicates the write set to each
shard’s backup replicas using a L�� request with the
shard’s key-values and version numbers. The NIC for
each backup handles the L�� request by appending it to
a hugepage of host memory reserved for logging iii via
DMA write. The NIC responds after the DMA completes.

(6) After receiving all L�� responses, the coordinator-side
NIC reports a Committed outcome to the host, and issues
a C����� request to each primary, with write-set key-
values and version numbers. The primary NIC appends
the C����� request to the host-memory log iii . Then,
it applies the new values to cached entries in the index
and updates the write version numbers. Once the DMA
completes, the NIC releases the write-set locks and sends
an ack response. The write-set objects are pinned in the
NIC’s index cache and cannot yet be evicted. This ensures
NIC lookups will not read a stale object before the host
applies the C����� writes to its hash structure.

(7) The host-side Robinhood worker threads E poll the log
for entries written by the NIC. The host threads asyn-
chronously handle requests by applying L�� write sets
to the backup shards iv in host memory and C�����
write sets to the primary shard ii . The host application
appends a log ack to tra�c between the host and the NIC,
allowing the NIC to reclaim log space and unpin cache
entries for committed writes.

4.2.1 Fault Tolerance Xenic applies the recon�guration
and recovery design of FaRM without additional require-
ments. To do so, we ensure that (a) lock state is maintained
in only one location (SmartNIC memory) and rebuilt upon
recovery, (b) Xenic’s host-side hash table maintains the same
set of objects as that of a static hash table, and (c) operations
are executed in the same sequence across the coordinator, pri-
maries, and backups as in FaRM’s protocol, with log records

written to host memory before a L�� operation or C�����
operation returns an acknowledgement.

Given these similarities, FaRM’s recovery protocol applies
to Xenic as follows. Xenic uses a typical Zookeeper-based
cluster manager to determine membership. Each node holds
a lease with the cluster manager, and lease expiration triggers
recon�guration. Only primaries maintain lock state, so when
a primary fails, a backup is promoted to become the new
primary, and the lock state is reconstructed. While other
shards may proceed, each node of the recovering shard scans
its log for transactions that have not yet been acknowledged
as committed to the primary. These recovering transactions’
write-set keys are communicated to the new primary, which
acquires locks on each object. Once all locks are set, the
shard can serve new transactions. Meanwhile, the replicas
communicate to ensure each recovering transaction is either
aborted or fully applied to all replicas before its associated
locks are �nally released.

4.2.2 SmartNIC Function Shipping O�oading execu-
tion logic from the host to the coordinator-side NIC provides
an opportunity for latency reduction, eliminating all but
one coordinator PCIe roundtrip. We apply function ship-
ping [7–9]; while FaRM used it between hosts, we use it to
move execution from the host to the NIC. Xenic implements
function shipping by adding an optional, application-de�ned
data �eld to each transaction state entry maintained on the
NIC. This data consists of the application’s external state, if
any, required for a transaction’s execution. Second, Xenic
provides an abstract interface for execution logic. This in-
terface exposes the transaction’s read and write sets and
the external state associated with the transaction. When
a transaction request is initially sent from the host to its
coordinator-side NIC, any external state data is attached to
the request and bu�ered at the NIC. When the transaction’s
E������ responses are received by the coordinator-side NIC,
the execution logic is invoked, transforming the transaction’s
read and write sets based on the current objects and external
state. If execution adds keys to the transaction, coordinator
issues E������ requests for the new keys, collects responses,
and repeats the execution function. Otherwise, the coordina-
tor proceeds to commit the transaction. O�oading execution
requires performing execution logic on the NIC and sending
associated application state to the NIC, potentially incurring
additional NIC CPU load and PCIe bandwidth utilization.
O�oading execution is feasible only when the object manip-
ulation is not computationally intensive and the application
state is small, i.e., when it does not introduce the NIC cores
or PCIe bandwidth as a performance bottleneck.

4.2.3 Multi-HopOCCCommunication Xenic addition-
ally applies function shipping to reduce commit protocol

P2

1 execute 2 execute

5 commit

6 commit
3 log
4 log

4 commit

2 log
3 log

1 execute

P1

B11 B12 B21 B22

P1

B11 B12 B21 B22

P2
5 commit

Figure 7: Commit messages for a transaction writing to local and
remote shards, with execution (a) performed at the coordinator P1,
and (b) shipped to remote P2 to minimize communication.

network communication. By leveraging point-to-point oper-
ations between NICs, in addition to the standard coordinator-
server pattern, Xenic can reduce commit messages and mes-
sage delays based on a transaction’s access pattern. When
the coordinator-side NIC receives a transaction request, it
determines the optimal execution node based on any remote
accesses in the read and write sets. If commit communica-
tion can be simpli�ed by performing execution at a remote
primary NIC, Xenic applies function shipping to invoke exe-
cution remotely and uses multi-hop requests to reduce com-
munication. For instance, transactions writing to the local
shard and one remote shard are executed at the remote pri-
mary NIC. Figure 7 shows communication with coordinator
execution and only request-response operations (a) and the
optimized communication pattern enabled by shipping exe-
cution to the remote primary NIC (b). In the optimized case,
the P2 NIC performs execution, then issues L�� requests to
the backup NICs, and the backups send L�� responses to
the coordinator-side P1 NIC. By shipping execution to the
remote primary NIC, Xenic eliminates a network message
delay from the commit protocol. Xenic handles remote exe-
cution with the same function shipping mechanism as in the
coordinator o�oad optimization. We limit remote execution
to transactions involving a single execution round, where all
keys are speci�ed in the initial request. We implement multi-
hop commit operations for all single-shard transactions and
transactions involving the local shard and one remote shard.
4.2.4 Local Transactions Local write transactions ex-
ecute optimistically on the host, accessing objects in the
host-side hash structure. After execution, the host sends the
transaction state to its coordinator-side SmartNIC for replica-
tion. Before issuing L�� requests, the coordinator-side NIC
acquires write-set locks in its index and aborts if any lock
is already held. Otherwise, the NIC proceeds with the com-
mit protocol. This adds no network or PCIe overhead for
committed transactions. Local read transactions require no
PCIe communication, performing reads and V������� logic
locally at the host-side hash table.

4.3 SmartNIC Operations Framework
We apply our performance analysis to design an e�cient

framework for Xenic’s SmartNIC commit operations. First,

our results show that PCIe DMAs have signi�cant submis-
sion and completion latency (§3.5). To achieve high core
utilization, NIC cores must perform work while awaiting
DMA completion. Second, we �nd substantial throughput
opportunities in batching DMA submissions (§3.5). Submit-
ting full vectors to the DMA engine amortizes submission
cost, without adding completion latency, and increases max-
imum throughput. Combining batched DMA submission
with batched Ethernet transmission (§3.4) results in high
network utilization, with potential for improved through-
put over one-sided RDMA. Individual commit operations,
however, typically do not �ll a 15-bu�er DMA vector or an
Ethernet MTU and do not have work to perform while await-
ing DMA completion. For this reason, we must interleave
commit operations and aggregate work at the point of DMA
submissions, NIC-to-NIC, and NIC-to-host communications.

4.3.1 AsynchronousOperations Xenic implements con-
tinuation-passing, asynchronous operations to interleave
work, and to minimize blocking for DMA completions. Each
NIC core maintains two vectors for pending read and write
DMAs, respectively. Transaction operations insert entries
(NIC/host addresses, size) into the read and write vectors,
along with a callback function to be executed upon DMA
completion. This callback may produce a network output,
e.g., a L�� acknowledgement, or further manipulate NIC
state, e.g., unlocking objects after C����� writes are trans-
ferred to host memory. When a NIC core is idle, or when the
DMA vector �lls, it is submitted to the core’s assigned DMA
engine. The DMA engine writes a completion status byte
once it has performed the DMA. Each core tracks in-�ight
DMAs using a core-local ring bu�er, mapping completion
byte addresses to the associated batch of callback work.

4.3.2 Opportunistic Batching Xenic runs a burst-oriented
polling loop on each NIC core, applying the NIC’s hardware
�ow engine to route �ows to cores. Each loop iteration han-
dles a burst of Ethernet tra�c and a burst of DMA comple-
tions, accumulating DMA requests and their callbacks in the
pending read/write vectors. After handling the burst, the
NIC submits any DMA requests and collects all outbound
NIC-to-host and NIC-to-NIC packet transmissions. The NIC
core uses a gather-list for each destination and performs
an aggregated Ethernet or PCIe packet transmission. This
allows Xenic to combine as many outputs as possible into
each packet.
Xenic’s batching approach allows the SmartNIC to ag-

gregate communication whenever there is su�cient tra�c
between two nodes. PCIe communications are batched sepa-
rately, and do not always achieve full batches; for instance, a
read-heavy workload largely served by the SmartNIC cache
results in few PCIe accesses. However, this scenario does not

result in lower performance because cache hits to SmartNIC
memory are lower-cost than DMA lookups.
4.3.3 Limited SmartNIC Resources The SmartNIC’s
compute and memory capacities are small relative to the
host server. Xenic is designed with this in mind, allowing
workloads to appropriately utilize the SmartNIC. First, Xenic
selectively applies function shipping to execute transactions
on NIC cores. This is applied on a per-transaction basis via a
user annotation. Doing so allows the NIC to execute latency-
critical transactions, reducing PCIe crossings, while the host
executes compute-heavy or predominantly local transac-
tions. Second, Xenic uses SmartNICmemory to cache objects,
adapting to available capacity. When caching is ine�ective,
due to the access pattern or cache eviction policy, the need
for DMA lookups increases. These misses incur PCIe band-
width overhead (§4.1.2), potentially becoming a bottleneck.
Decreasing probing distance su�ciently, say by expanding
the host-side hash memory, reduces PCIe overhead and al-
lows lookups to reach network throughput.
4.3.4 Other SmartNIC Platforms Xenic relies on Smart-
NIC hardware characteristics to reduce latency. First, han-
dling a remote request on the SmartNIC must be lower la-
tency than doing so with a host RPC. Some o�-path Smart-
NICs demonstrated higher latency when directing tra�c
to the SmartNIC cores versus sending requests directly to
the host with an RDMA NIC (§3.1). Second, the SmartNIC
must have an e�cient mechanism for host memory access.
SmartNICs that rely on an RDMA interface between the NIC
cores and host memory showed prohibitively high latency,
precluding Xenic’s latency reduction goal. If the SmartNIC
hardware does not show latency reduction potential, using
SmartNICs may not be justi�able over a host-only design. In
contrast, with a platform meeting these requirements, Xenic
can improve both latency and throughput.

5 Evaluation
We implement Xenic using LiquidIO 3 SmartNICs. We ex-

tend the generic NIC �rmware to add transaction-processing
logic, written in C using DPDK and the LiquidIO hardware
interfaces. The host-side coordinator also uses DPDK. Our
testbed consists of 6 servers, each with Intel Xeon Gold 5218
CPUs (16 cores, 32 hyperthreads, 2.3GHz) and 96GB DDR4
DRAM. Each server contains a 2x50GbE Marvell LiquidIO 3
(CN3380), with 24 2.2GHz ARM cores, 16GB DDR4 DRAM,
and a PCIe 3.0 x8 interface. We utilize both links of the NIC
for a per-server total network bandwidth of 100Gbps. Each
server also contains a 100GbE Mellanox CX5 (MCX516A-
CCAT) NIC with a PCIe 3.0 x16 interface for comparison.

5.1 Comparisons
We evaluate Xenic with case studies of the TPC-C [42],

Retwis [38, 41, 47], and Smallbank [13] benchmarks. We

use each benchmark to compare performance against recent
work in hardware-accelerated distributed transactions, mea-
suring per-server average throughput and median latency.
We focus on versions of DrTM+H [44] for this comparison,
a well-optimized research system applying a hybrid of one-
sided RDMA and two-sided RPCs to maximize performance.
In addition to its hybrid design, DrTM+H provides additional
versions representing alternate decisions in the RDMA de-
sign space. We compare the following con�gurations:
• DrTM+H is the best-case combination of one-sided and
two-sided operations for each protocol phase. One-sided
operations are typically used for execution reads, valida-
tion, and logging. DrTM+H avoids remote data structure
traversals by caching addresses for remote objects.

• DrTM+H with no remote caching (NC) matches DrTM+H
but disables the coordinator’s remote address cache. This
con�guration demonstrates the impact of RDMA hash
traversal for E������ reads.

• FaSST involves two-sided RPC operations exclusively, em-
ulating the design by Kalia et al. [15]. This version per-
forms remote data structure lookups via host RPC, and
where possible, consolidatesmultiple operations (e.g., read-
ing and locking) into individual RPCs.

• DrTM+R. This con�guration emulates DrTM+R’s use of
one-sided RDMA, retaining DrTM+H’s OCC protocol [44].
Of the open-source related work, only DrTM+H imple-

ments the TPC-C benchmark. However, DrTM+H’s support
is limited to a simpli�ed version of the TPC-C workload,
consisting of new order transactions, instead of the typical
mix of �ve types, and using a customized access pattern. We
evaluate Xenic using this workload for comparison with the
DrTM+H con�gurations (§5.2). Xenic supports the full TPC-
C workload, which we evaluate separately (§5.3). DrTM+H
provides a Smallbank implementation; we migrate their code
to Xenic and implement Retwis on both systems. For the
three benchmarks, we discuss host and NIC resource utiliza-
tion (§5.6). Finally, we evaluate key aspects of Xenic’s design
and their contributions to throughput and latency (§5.7).

5.2 Case Study: TPC-C New Order
The TPC-C benchmark simulates a warehouse order pro-

cessing system with nine tables and a range of object sizes
up to 660B. We �rst evaluate the performance of TPC-C’s
new order transaction, the predominant transaction of the
�ve types in the TPC-C speci�cation. Because DrTM+H only
supports the new order transaction, not the full workload, we
use this benchmark to compare performance with DrTM+H
and evaluate the full workload mix in §5.3. Each new order
selects 5-15 items, updates stock counts, and writes order
line-item records. The coordinator picks items from parti-
tions chosen uniformly at random; this matches the DrTM+H

authors’ evaluation, creating a strenuous remote access pat-
tern. Three of the tables are accessed by transactions across
the cluster, while the others are B+ trees local to their re-
spective coordinators; all tables are replicated. We deploy
TPC-C on the 6-server testbed with a replication factor of 3
(2 backups for each primary) at the scale of 72 warehouses
per server. Figure 8a shows the results.

Xenic achieves an average peak throughput of 1.19M txn/s
per server, a 2.42⇥ improvement over DrTM+H, the best al-
ternative. While both systems saturate network bandwidth,
DrTM+H requires multiple network operations for each TPC-
C stock object to retrieve the value, then lock and validate.
Xenic can lock and read a remote object in one remote oper-
ation, reducing bandwidth consumption and latency. Xenic
e�ectively aggregates work at the SmartNIC, further allow-
ing throughput to scale. Xenic’s throughput is 3.81⇥ greater
than DrTM+H with coordinator-side caching disabled, show-
ing the overhead of DrTM+H’s remote lookups. Although
RPCs avoid these one-sided RDMA ine�ciencies, handling
all operations with host RPCs limits FaSST’s throughput to
232k txn/s, even when utilizing all host threads.
At low load, Xenic’s median latency is 59% below that of

DrTM+H, the lowest-latency alternative. While DrTM+H
applies one-sided RDMA for reads, this requires separate
remote operations to read, lock, and validate a remote object,
limiting latency savings. Xenic can perform these functions
with a single remote request while reducing latency relative
to a host RPC. The latency penalty of FaSST’s RPC approach
is high for this benchmark since FaSST handles RPCs on the
same threads performing compute-intensive B+ tree opera-
tions. At 95% of peak throughput, FaSST shows high latency:
2.2⇥ that of DrTM+H and 4.0⇥ that of Xenic.

5.3 Case Study: TPC-C

The full TPC-C workload consists of �ve transaction types,
including new order. We deploy the full workload mix at the
same scale as §5.2, con�gured to match the standard bench-
mark speci�cation. Like prior implementations [45], we chop
the long-running local transaction logic into multiple data-
base transactions. Xenic ships execution of the new order and
payment transactions to the NIC; other transactions execute
on the host. Per the speci�cation, we measure throughput
as the rate of new order transactions per second within the
full workload mix; this is approximately 45% of the overall
transaction throughput. Figure 8b shows the result.
Xenic achieves peak throughput of 541k new orders per

second per server, saturating the network. With new order
transactions comprising 45% of the workload, the other trans-
actions consume bandwidth and limit throughput to approx-
imately half that of the new order workload in §5.2. In the
standard TPC-C con�guration, only ~10% of new order and
15% of payment transactions access a remote warehouse’s

��� ��� ��� ���
7KURXJKSXW�SHU�6HUYHU�>W[Q�V@�����

�

���

���

���

0
HG
LD
Q�
/D
WH
QF
\�
>X
V@

�D��73&�&�1HZ�2UGHU

� � � �
7KURXJKSXW�SHU�6HUYHU�>W[Q�V@�����

�

��

��

��

���

0
HG
LD
Q�
/D
WH
QF
\�
>X
V@

�E��73&�&

� � � �
7KURXJKSXW�SHU�6HUYHU�>W[Q�V@�����

�

��

���

���

���

0
HG
LD
Q�
/D
WH
QF
\�
>X
V@

�F��5HWZLV

��� ��� ��� ���
7KURXJKSXW�SHU�6HUYHU�>W[Q�V@�����

�

��

���

���

0
HG
LD
Q�
/D
WH
QF
\�
>X
V@

�G��6PDOOEDQN

;HQLF
'U70�+
'U70�+�1&
)D667
'U70�5

Figure 8: Throughput per server and median latency for (a) TPC-C New Order, (b) TPC-C, (c) Retwis, and (d) Smallbank benchmarks.

objects; this results in a median latency of 25`s at low load,
below that of the modi�ed new order workload.
Of the related work, DrTM+R and FaRM implement the

full TPC-C workload. While neither system is open-source,
DrTM+R’s authors provide a throughput evaluation at the
same scale as our testbed: 6 serverswith 3-way replication [6].
With a 56Gbps network, DrTM+R’s evaluation reports 150k
new orders per second per server, fully utilizing the net-
work bandwidth (a higher per-server throughput than FaRM).
Because DrTM+R’s throughput is limited by network band-
width, we deploy Xenic with a similar network con�guration
to compare throughput with this published result. For Xenic,
we use one 50Gbps link per server, instead of two, and run
TPC-C at a scale of 384 warehouses to match DrTM+R. In
this experiment, Xenic achieves a peak throughput of 322k
new orders per second per server, 2.1⇥ higher than DrTM+R.
This is a smaller increase than Xenic’s 2.7⇥ improvement for
the modi�ed new order workload. The full TPC-C workload
involves a higher frequency of local transactions, which only
utilize the network for replication (L�� operations). Xenic
does not improve e�ciency for these transactions relative
to DrTM+R.

5.4 Case Study: Retwis

We evaluate the Retwis benchmark [38, 47], representing
a Twitter-like application. The benchmark includes a mix of
transaction types, with 50% read-only transactions and 1-10
keys per transaction. Unlike TPC-C, minimal coordinator-
side computation is involved in performing transactions.
Relative to Smallbank, objects are moderately larger (64B
versus 4B values), accessed with a Zipf distribution, U =
0.5, with a higher proportion of read-only transactions. We
deploy Retwis with a replication factor of 3 and 1 million
keys per server. Figure 8c shows the results.
Xenic shows a 2.07⇥ peak throughput increase relative

to DrTM+H and 42% lower median latency at low load. As
with TPC-C, both systems fully utilize network bandwidth,
while Xenic achieves higher e�ciency. DrTM+H’s hybrid
design improves the performance of Retwis’ read-only trans-
actions, but its use of one-sided RDMA multiplies the num-
ber of requests for read-write transactions. This imposes
a throughput and latency cost; we evaluate this impact on
Retwis throughput in §5.7. Given the minimal computation

involved in the benchmark, FaSST nears the peak throughput
of DrTM+H without fully utilizing the host CPU. However,
its RPC design results in consistently higher latency, with a
minimum median latency 2.12⇥ higher than that of Xenic.

5.5 Case Study: Smallbank

The Smallbank benchmark represents simple transactions
on a database of account balances, with small 12B objects.
15% of transactions are read-only, and the remainder involves
additions and subtractions of balances, with up to 3 keys per
transaction. 90% of transactions access 4% of keys, resulting
in relatively low contention. We deploy Smallbank at a com-
parable scale to our related work: 2.4M accounts per server,
with a replication factor of 3. Figure 8d shows the results.

We observe a peak throughput of 12.0M txn/s per server
with Xenic, 2.21⇥ the maximum throughput of DrTM+H.
Both systems saturate network bandwidth at peak through-
put. Xenic delivers throughput improvement through proto-
col and communication e�ciency. Smallbank’s workload of
12B key-value objects presents a signi�cant opportunity for
batching. Given the small object sizes, minimizing the meta-
data overhead of each remote request is especially critical for
bandwidth e�ciency. The software �exibility of Xenic’s com-
mit operations enables higher bandwidth utilization, and its
aggregation of remote requests enables aggressive batching.

However, Smallbank’s small remote operations also demon-
strate the best-case latency potential of one-sided RDMA,
and DrTM+H performs optimal one-sided READs due to
its pointer cache. Xenic shows 21.5% lower minimum me-
dian latency than DrTM+H, achieving competitive perfor-
mance by eliminating PCIe accesses, utilizing NIC memory
for transaction metadata, and caching hot objects. As in the
other benchmarks, Xenic’s commit protocol requires fewer
remote operations per key than that of DrTM+H. For most
Smallbank transactions, Xenic reduces communication via
function shipping; we evaluate this optimization in §5.7.

5.6 SmartNIC Resource Utilization

To study utilization, we measure the minimum number
of cores to run each benchmark at peak throughput, with
Xenic, DrTM+H, and FaSST. We run each benchmark and de-
crease thread count until throughput drops below 95% of its
maximum. For Xenic, we repeat this analysis with NIC cores.

Benchmark Xenic Norm. (Host, NIC) DrTM+H FaSST
TPC-C NO 21.7 (18, 12) 24 32
Retwis 9.9 (5, 16) 18 24
Smallbank 9.9 (5, 16) 20 28

Table 3: Normalized thread count, for Xenic, DrTM+H, and FaSST.
NIC thread count is scaled by NIC/host Coremark score ratio.

�D��5HWZLV
�

�

�

7S
XW
�>W
[Q
�V
@��

��
�

����ð ����ð
����ð

����ð
����ð 'U70�+

;HQLF�EDVHOLQH
��6PDUW�UHPRWH�RSV
��(WK�DJJUHJDWLRQ
��$V\QF�'0$

�E��6PDOOEDQN
�

��

��

/D
WH
QF
\�
>X
V@

����ð

����ð
����ð

����ð
����ð

'U70�+
;HQLF�EDVHOLQH
��6PDUW�UHPRWH�RSV
��1,&�H[HFXWLRQ
��2&&�RSWLPL]DWLRQ

Figure 9: Retwis per-server throughput (a) and Smallbank median
latency (b), sequentially enabling key aspects of Xenic’s design.

Table 3 shows the result. We �nd that Xenic requires few
host threads for Retwis and Smallbank: 2 application threads
to initiate transactions and handle completions, and 3 worker
threads to apply writes to the primary and backup tables.
TPC-C, however, requires 18 host threads due to its compute-
intensive local B+ tree manipulations, which are performed
on both host application threads and worker threads (to ap-
ply updates to each backup). Smallbank and Retwis o�oad
all execution to the NIC, resulting in higher NIC utilization;
TPC-C instead shows higher host utilization.

To compare cumulative utilization across host and NIC
processors, we use the Coremark benchmark to normalize
computation power. We use the ratio of the NIC’s per-thread
Coremark score to that of the host: 0.31⇥. This clearly is an
approximation as the relative power is workload-dependent
(§3.6). With this approximation, we report that relative to
DrTM+H, Xenic saves 2.3 threads for TPC-C, 8.1 threads for
Retwis, and 10.1 threads for Smallbank. In all cases, Xenic
achieves higher throughput and core savings relative to
FaSST and DrTM+H. Xenic’s lower utilization suggests that
exploiting wimpy NIC cores close to the NIC’s hardware
interfaces enables higher overall computation e�ciency.

5.7 Impact of Optimizations

To evaluate how Xenic’s design features contribute to
improvements in throughput and latency, we begin with a
baseline design and sequentially enable features. The Xenic
baseline resembles DrTM+H, implementing the same set of
remote operations. We impose the same restrictions that
arise from DrTM+H’s use of one-sided RDMA; in particular,
we use separate requests to read, lock, and validate objects.

In Figure 9a, we enable a series of throughput-oriented op-
timizations and measure their impact on Retwis’ throughput
relative to the baseline and to DrTM+H. Despite their similar

protocol, the Xenic baseline shows 10% lower throughput
than DrTM+H. The NIC cores are saturated, with the NIC’s
software packet processing limiting throughput. Adding
Xenic’s optimized remote commit operations reduces the
number of remote requests; this increases throughput by
1.47⇥. Adding aggregated Ethernet transmissions facilitates
higher bandwidth utilization, for an overall 1.98⇥ increase.
Finally, we enable asynchronous NIC execution, batching
DMAs across multiple operations, to amortize overhead and
minimize blocking time. This results in a cumulative 2.30⇥
peak throughput increase, 2.07⇥ relative to DrTM+H.

Next, we evaluate latency-oriented optimizations and their
impact on Smallbank’s median latency. Figure 9b shows these
measurements. Relative to DrTM+H, the Xenic baseline la-
tency is 1.37⇥ higher. As in §3.2, the LiquidIO demonstrates
consistently higher latency than the CX5 for comparable
remote memory accesses, explaining this latency di�erence.
Enabling Xenic’s optimized commit operations, reducing
the number of requests involved per transaction, improves
latency by 20%. By shipping execution to the coordinator
SmartNIC, Xenic eliminates intermediate coordinator-side
PCIe traversals during each transaction, further reducing
latency, 32% below the baseline. Smallbank’s workload of
1-2 shard transactions presents the opportunity to further re-
duce latency by shipping execution to remote SmartNICs and
applying optimized communication patterns. This achieves a
42% latency reduction over the baseline, 22% belowDrTM+H.

6 Conclusion

We argue that SmartNICs o�er an opportunity for high-
performance, hardware-accelerated distributed transactions,
without the trade-o�s that de�ne RDMA systems. Using
measured performance characteristics to inform our design,
we build Xenic, a transaction processing system leveraging
on-path SmartNICs. Xenic employs a co-designed data store
spread across the NIC and the host, an asynchronous and
batched execution model, and �exible communications to
improve e�ciency. With three benchmarks comprising a
range of workloads, we compare Xenic against RDMA-based
systems. Our results show that despite software overheads
relative to RDMA, Xenic e�ectively applies the SmartNIC to
increase throughput and reduce latency.

Acknowledgements. We would like to thank the anony-
mous reviewers and our shepherd, Natacha Crooks, for their
comments and feedback. This work is supported by NSF
grants (CNS-2028771, CNS-2006349, and CNS-2106199) and
Futurewei.

References

[1] AlphaData. ADM-PCIE-9V3 -High-PerformanceNetworkAccelerator,
Sept. 2021. https://www.alpha-data.com/dcp/products.php?product=a
dm-pcie-9v3.

[2] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and
D. Wentzla�. Enabling programmable transport protocols in high-
speed nics. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 93–109, Santa Clara, CA, Feb.
2020. USENIX Association.

[3] Broadcom. The TruFlow Flow processing engine. https://www.broadc
om.com/applications/data-center/cloud-scale-networking, 2021.

[4] Broadcom Inc. Stingray SmartNIC Adapters and IC, Sept. 2021. https:
//www.broadcom.com/products/ethernet-connectivity/network-
adapters/smartnic.

[5] P. Celis, P. Larson, and J. I. Munro. Robin hood hashing (preliminary
report). In 26th Annual Symposium on Foundations of Computer Sci-
ence, Portland, Oregon, USA, 21-23 October 1985, pages 281–288. IEEE
Computer Society, 1985.

[6] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and general dis-
tributed transactions using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16, New York, NY,
USA, 2016. Association for Computing Machinery.

[7] D. W. Cornell, D. M. Dias, and P. S. Yu. On multisystem coupling
through function request shipping. IEEE Transactions on Software
Engineering, SE-12(10):1006–1017, 1986.

[8] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast
remote memory. In 11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 2014). USENIX – Advanced Computing
Systems Association, April 2014.

[9] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro. No compromises: Distributed
transactions with consistency, availability, and performance. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, page 54–70, New York, NY, USA, 2015. Association for Computing
Machinery.

[10] Exablaze. ExaNIC V5P High Density Network Application Card, Sept.
2021. https://exablaze.com/exanic-v5p.

[11] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caul�eld, E. Chung, H. K. Chan-
drappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure accelerated
networking: Smartnics in the public cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation, 2018.

[12] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren. Smartnic performance
isolation with fairnic: Programmable networking for the cloud. In
Proceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, 2020.

[13] H-Store Project. SmallBank Benchmark - H-Store, Sept. 2021. https:
//hstore.cs.brown.edu/documentation/deployment/benchmarks/smal
lbank/.

[14] S. Ibanez, M. Shahbaz, and N. McKeown. The case for a network fast
path to the cpu. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, page 52–59, New York, NY, USA, 2019.
Association for Computing Machinery.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable and
simple distributed transactions with two-sided (RDMA) datagram
rpcs. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, Savannah, GA, Nov. 2016.

USENIX Association.
[16] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishna-

murthy. High performance packet processing with �exnic. In Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, 2016.

[17] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. Swift, and
T. Lakshman. Uno: uni�ying host and smart nic o�oad for �exible
packet processing. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 506–519, 09 2017.

[18] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang. Kv-direct: High-performance in-memory key-value store
with programmable nic. In Proceedings of the 26th Symposium on
Operating Systems Principles, 2017.

[19] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen. Clicknp: Highly �exible and high performance network
processing with recon�gurable hardware. In Proceedings of the 2016
ACM SIGCOMM Conference, 2016.

[20] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella. PANIC: A
high-performance programmable NIC for multi-tenant networks. In
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), 2020.

[21] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta.
O�oading distributed applications onto smartnics using ipipe. In
Proceedings of the ACM Special Interest Group on Data Communication,
2019.

[22] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya.
Incbricks: Toward in-network computation with an in-network cache.
In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017.

[23] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana. E3:
Energy-e�cient microservices on smartnic-accelerated servers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
363–378, Renton, WA, July 2019. USENIX Association.

[24] Marvell Technology Group Ltd. LiquidIO III Solutions Brief, Sept. 2021.
https://www.marvell.com/content/dam/marvell/en/public-collateral
/embedded-processors/marvell-liquidio-III-solutions-brief.pdf.

[25] Marvell Technology Group Ltd. Multi-Core Processors - LiquidIO
Smart NICs | Network adapter, Sept. 2021. https://www.marvell.com/
products/infrastructure-processors/multi-core-processors/liquidio-
smart-nics.html.

[26] F. Matus. Pensando: Distributed services architecture. In 2020 IEEE
Hot Chips 32 Symposium (HCS), pages 1–17. IEEE Computer Society,
2020.

[27] Mellanox. Accelerated Switch and Packet Processing. http://www.me
llanox.com/page/asap2?mtag=asap2, 2021.

[28] Mellanox. BlueField SmartNIC Ethernet, Sept. 2021. https://www.mell
anox.com/products/BlueField-SmartNIC-Ethernet.

[29] Mellanox. ConnectX-5 EN Single/Dual-Port Adapter, Sept. 2021. https:
//www.mellanox.com/products/ethernet-adapters/connectx-5-en.

[30] Mellanox. Mellanox Innova SmartNIC. http://www.mellanox.com/p
age/products_dyn?product_family=275&mtag=blue�eld_smart_nic,
2021.

[31] Mellanox. OFED Documentation Rev 7.4.1.0.0.1, Sept. 2021. https:
//docs.mellanox.com/display/MLNXOFEDv471001.

[32] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter. Expanding across time to deliver bandwidth e�ciency and
low latency. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 1–18, Santa Clara, CA, Feb. 2020.
USENIX Association.

[33] Netronome. Agilio LX SmartNICs, Sept. 2021. https://www.netronom
e.com/products/agilio-cx/.

https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.broadcom.com/applications/data-center/cloud-scale-networking
https://www.broadcom.com/applications/data-center/cloud-scale-networking
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://exablaze.com/exanic-v5p
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
http://www.mellanox.com/page/asap2?mtag=asap2
http://www.mellanox.com/page/asap2?mtag=asap2
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
https://docs.mellanox.com/display/MLNXOFEDv471001
https://docs.mellanox.com/display/MLNXOFEDv471001
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/

[34] Pensando. Pensando DSC-100 Distributed Services Card, Sept. 2021.
https://pensando.io/documents/pensando-dsc-100-distributed-
services-card/.

[35] Pensando �oor plan. https://www.servethehome.com/pensando-
distributed-services-architecture-smartnic/, 2021.

[36] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson. Floem: A programming system for nic-accelerated net-
work applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation, 2018.

[37] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and
A. Vahdat. SENIC: Scalable NIC for end-host rate limiting. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 475–488, Seattle, WA, Apr. 2014. USENIX Association.

[38] Redis. Retwis - Example Twitter clone based on the Redis Key-Value
DB, Sept. 2021. http://retwis.redis.io.

[39] B. Stephens, A. Akella, and M. Swift. Loom: Flexible and e�cient NIC
packet scheduling. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 33–46, Boston, MA, Feb.
2019. USENIX Association.

[40] B. Stephens, A. Akella, and M. M. Swift. Your programmable nic should
be a programmable switch. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, HotNets ’18, page 36–42, New York, NY,
USA, 2018. Association for Computing Machinery.

[41] A. Szekeres, M. Whittaker, J. Li, N. K. Sharma, A. Krishnamurthy,
D. R. K. Ports, and I. Zhang. Meerkat: Multicore-scalable replicated

transactions following the zero-coordination principle. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

[42] Transaction Processing Performance Council. TPC Benchmark C
Standard Speci�cation, Revision 5.11, Sept. 2021. http://www.tpc.org/
tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[43] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transac-
tions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
page 18–32, New York, NY, USA, 2013. Association for Computing
Machinery.

[44] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing rdma-enabled
distributed transactions: Hybrid is better! In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
233–251, Carlsbad, CA, Oct. 2018. USENIX Association.

[45] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory trans-
action processing using rdma and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, page 87–104,
New York, NY, USA, 2015. Association for Computing Machinery.

[46] Xilinx. Alveo Adaptable Accelerator Cards for Data Center Workloads,
Sept. 2021. https://www.xilinx.com/products/boards-and-kits/alveo.h
tml.

[47] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.
Ports. Building consistent transactions with inconsistent replication.
ACM Trans. Comput. Syst., 35(4), Dec. 2018.

https://pensando.io/documents/pensando-dsc-100-distributed-services-card/
https://pensando.io/documents/pensando-dsc-100-distributed-services-card/
https://www.servethehome.com/pensando-distributed-services-architecture-smartnic/
https://www.servethehome.com/pensando-distributed-services-architecture-smartnic/
http://retwis.redis.io
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 RDMA NICs
	2.2 Distributed Transactions
	2.3 SmartNIC-based Systems

	3 SmartNIC Performance Analysis
	3.1 On-Path and Off-Path SmartNICs
	3.2 NIC and Host Access Latency
	3.3 NIC and Host RPC Throughput
	3.4 Batching Optimizations
	3.5 DMA Performance
	3.6 SmartNIC Core Performance
	3.7 Opportunities

	4 Design
	4.1 Co-designed Data Store
	4.2 Transaction Protocol
	4.3 SmartNIC Operations Framework

	5 Evaluation
	5.1 Comparisons
	5.2 Case Study: TPC-C New Order
	5.3 Case Study: TPC-C
	5.4 Case Study: Retwis
	5.5 Case Study: Smallbank
	5.6 SmartNIC Resource Utilization
	5.7 Impact of Optimizations

	6 Conclusion
	References

