
This article �rst appeared in the Proceedings of the American Mathematical

Society 150 (2022), no. 7, published by the American Mathematical Society.

MALNORMAL MATRICES

GARRETT MULCAHY AND THOMAS SINCLAIR

Abstract. We exhibit an operator norm bounded, in�nite sequence {An} of 3n × 3n
complex matrices for which the commutator map X 7→ XAn−AnX is uniformly bounded
below as an operator over the space of trace-zero self-adjoint matrices equipped with
Hilbert�Schmidt norm. The construction is based on families of quantum expanders. We
give several potential applications of these matrices to the study of quantum expanders.
We formulate several natural conjectures and provide numerical evidence.

1. Introduction

In [21], von Neumann demonstrated the following surprising result on the existence of
matrix contractions in arbitrarily large dimension which uniformly poorly commute with
all self-adjoint contractions of trace zero. We recall a representative result from that paper:

Theorem (von Neumann, [21, Theorem 9.7]). For every δ > 0 there is an ε > 0 so that for

any n ∈ N there is a contraction A ∈Mn which satis�es ‖[A,B]‖2 < n1/2ε⇒ ‖B‖2 < n1/2δ
where B ∈Mn is any self-adjoint contraction of trace zero.

Here, as throughout, Mn denotes the complex n × n matrices, [A,B] denotes the com-
mutator AB − BA and ‖B‖2 denotes the Hilbert�Schmidt norm. This remarkable result
has found several important applications such as to the theory of free probability [11, 15]
and to the model theory of II1 factors [6]. Moreover, von Neumann's interest in the ��nite,
but very great� [21] can be seen to anticipate the vibrant and rapidly developing �eld of
asymptotic geometric analysis [17, 20].

Von Neumann's techniques are essentially probabilistic and are not constructive. He
remarks [21, Paragraph 11] that this is �somewhat unsatisfactory,� and that �although our
volumetric method seems to be quite powerful in securing existential results, it ought to
be complemented by a more direct algebraic method, which names the resulting elements
A of Mn explicitly.� The call for a constructive proof of von Neumann's result was more
recently taken up by Vershik [20, Remark 2].

The goal of this note is to make progress in this direction. Our main result is the following
variation on von Neumann's theorem:

Theorem 1.1. There is a universal constant γ > 0 so that for in�nitely many values

n ∈ N there is a contraction A ∈ Mn satisfying ‖B‖2 ≤ γ‖[A,B]‖2 where B ∈ Mn is any

self-adjoint matrix of trace zero.
1
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We call a sequence of matrices satisfying the conclusion of Theorem 1.1 malnormal, and
refer the reader to section 3 below for a fuller treatment of this concept. The advantages to
our approach are chie�y twofold. First, the dependency of ε on δ in von Neumann's result,
though explicit, is di�cult to work out and does not appear to be linear, or even low-degree
polynomial, while the dependency in our result is explicitly linear. Second, the proof of our
result constructs a malnormal matrix given an input pair U, V ∈ U(n) of unitaries which
form a so-called �quantum expander.� The existence of such pairs with uniform expansion
constant for all n suitably large is guaranteed by a result of Hastings [10] (see Lemma 2.4),
though this result is again non-constructive. This will be the starting point of our result,
so the malnormal matrices are ultimately produced non-constructively. However, work of
Ben-Aroya, Schwartz, and Ta-Shma [2, Theorems 4.3 and 4.4] and Harrow [9] shows how to
construct explicit in�nite families of uniform quantum expanders in U(nk)

D with nk →∞
given a suitable (and explicit) �seed� expander U ∈ U(n0)

d with D = d2 ≥ 4. We believe
that our construction can be adapted to produce a malnormal matrix from any d-tuple of
unitaries which form a quantum expander for d ≥ 2 arbitrary, but we leave this as an open
problem. Our result has, in fact, several connections with the theory of quantum expanders
as developed in [2, 3, 10, 19]. As will be shown in section 3.2 below, the malnormality of
the matrix (ReU + i ImV )/2 implies that the pair U, V ∈ U(n) forms a �quantum edge
expander,� a weaker notion than the aforementioned quantum expander. We do not know
if the converse is true; see Remark 3.6.

In light of this we investigate the following conjecture for the case of Haar random
orthogonal matrices via numerical methods in section 4 and provide some positive evidence.

Conjecture 1.2. Let U, V ∈ U(n) be independently chosen Haar random unitaries and

consider the random contraction J := 1
2

(
ReU+i ImV

)
. There is a universal constant γ′ > 0

so that with probability approaching 1 as n→∞ the matrix J satis�es ‖B‖2 ≤ γ′‖[J,B]‖2
where B ∈Mn is any self-adjoint matrix of trace zero.

The computations also suggest a positive answer to [20, Conjecture 1.1] though the
method of choosing random contractions di�ers from ours. There are, in fact, various ways
one could go about sampling random contractions. The most straightforward would be

to use the uniform (Lebesgue) measure on the set of contractions in Mn realized in R2n2
,

but this is di�cult to work with in practice. Indeed, von Neumann would have liked to
work directly with such random contractions [21, Paragraph 11]. He instead resorts to
considering the more tractable uniform measure on the ‖ · ‖2-norm unit ball, deploying his
formidable analytic skill to deal with the fact that such matrices can have arbitrarily large
singular values as n → ∞. The matrix J as above is a guaranteed contraction as it is
randomly chosen under the push-forward of the Haar probability measure on U(n)2 under
the map (U, V ) 7→ (U + U∗ + V − V ∗)/4. It is easy to simulate Haar random unitaries, as
this requires only a means of choosing an n× n array Y of independent complex gaussian
random variables. The unitary in the polar decomposition of Y = U |Y | is Haar distributed
[19, Appendix A]. In the last section, devoted to open problems, we consider using the
Ginibre ensemble, which does not produce a random contraction, but does produce a matrix
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with largest singular value at most 2 with probability tending to 1 as n→∞; this follows
from [5, Theorem 2.11], for instance.

2. Preliminaries

For A = (Aij) ∈Mn we denote the usual matrix trace by tr and the normalized trace of
A as τ(A), given by τ(A) := 1

n

∑
iAii. Note that τ(In) = 1, where In is the identity matrix.

The Hilbert�Schmidt norm of a matrix A ∈Mn is de�ned as

‖A‖2 := tr(A∗A)1/2 =

∑
i,j

|Aij |2
1/2

.

This is the norm onMn corresponding to the inner product 〈A ,B〉 := tr(B∗A) =
∑

i,j AijBij .

Note that ‖A‖2 = ‖A∗‖2. It is easy to see from the de�nition and unitary invariance of the
trace that for A ∈Mn and U, V ∈ U(n) we have that

(1) ‖UAV ‖2 = ‖A‖2.

It is a standard fact for A,B ∈ Mn that ‖AB‖2 ≤ ‖A‖‖B‖2 where ‖A‖ is the operator
norm, i.e., the largest singular value of A [4, Proposition IV.2.4].

Let U = (U1, . . . , Uk) ∈ U(n)k be a k-tuple of unitaries and de�ne

(2) EU (X) :=
1

k

k∑
i=1

U∗i XUi , E†U (X) :=
1

k

k∑
i=1

UiXU
∗
i , EhU :=

1

2
(EU + E†U )

which are trace-preserving, unital, completely positive maps. It is easy to check that

tr(EU (X)Y ) = tr(E†U (Y )X) for all X,Y ∈Mn; hence,

(3) tr(EU (B)B) = tr(EhU (B)B) = tr(E†U (B)B)

for all B self-adjoint.

Notation 2.1. For a matrix B, let Ḃ := B − τ(B)I. In particular tr(Ḃ) = 0 and

‖[X,B]‖2 = ‖[X, Ḃ]‖2. Let Hn (respectively, H0
n) be the subspace of n × n self-adjoint

matrices (resp., self-adjoint matrices of trace zero) equipped with the Hilbert-Schmidt norm.

We recall the de�nitions of a quantum expander and a quantum edge expander due to
Hastings [10].

De�nition 2.2. We will say that U = (U1, . . . , Uk), a k-tuple of unitaries, is a quantum

δ-edge expander for some 0 ≤ δ < 1 if we have that EU satis�es

(4) tr(EU (Ḃ)Ḃ) ≤ δ tr(Ḃ2)

for all B self-adjoint. Likewise, we say that U is a quantum δ-expander if

(5) ‖EU : H0
n → H0

n‖ ≤ δ
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Equivalently, we have that U is a quantum δ-edge expander if and only if

(6) τ(EU (B)B) ≤ δ τ(B2) + (1− δ) τ(B)2

for all B self-adjoint. Using the identity

(7)
1

k

k∑
i=1

‖[Ui, B]‖22 = 2‖Ḃ‖22 − 2 tr(EU (Ḃ)Ḃ)

the conditions (4) and (6) are again equivalent to

(8)
1

k

k∑
i=1

‖[Ui, B]‖22 ≥ 2(1− δ)‖Ḃ‖22

for all B self-adjoint.
In Hastings' original formulation [10, Appendix] a quantum λ-edge expander U is a tuple

of unitaries from U(n) so that

(9) tr(EU (P )P ) ≤ λ tr(P )

for all projections P ∈Mn of rank at most n/2. Using (6) it follows that a quantum δ-edge
expander satis�es (9) with λ ≤ (1 + δ)/2. Conversely, by [10, (A11)] it follows that the

constant δ in (4) can be chosen to satisfy 1− λ ≤
√

2(1− δ).

Remark 2.3. Note that ‖EhU : H0
n → H0

n‖ ≤ ‖EU : H0
n → H0

n‖. Since EhU : H0
n → H0

n is
self-adjoint, we have that

‖EhU : H0
n → H0

n‖ = sup
‖B‖2=1,B∈H0

n

| tr(EhU (B)B)| ≥eq.(3) sup
‖B‖2=1,B∈H0

n

tr(EU (B)B).

Thus U being a quantum δ-edge expander is weaker than U being a quantum δ-expander.

The following result is due to Hastings [10] (cf. [19, Lemma 1.8 and Theorem 4.2]).

Lemma 2.4. Let U = (U1, . . . , Uk) ∈ U(n)k be a k-tuple of unitaries sampled according to

Haar measure for some k ≥ 2. For all ε > 0 we have that

‖EhU : H0
n → H0

n‖ ≤
√

2k − 1

k
+ ε

with probability tending to 1 as n→∞.

3. Malnormal Matrices

De�nition 3.1. A matrix X ∈Mn is κ-malnormal if

(10) ‖[X,B]‖2 ≥ κ‖B − τ(B)I‖2
for all self-adjoint matrices B ∈ Hn. We de�ne mal(X) to be the largest constant κ for
which X is κ-malnormal, and we simply say that X is malnormal if mal(X) > 0.
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Since ‖[X,B]‖2 = ‖[X, Ḃ]‖2, X being κ-malnormal is equivalent to the linear operator
B 7→ [X,B] being κ-bounded from below on H0

n equipped with the Hilbert-Schmidt norm.
Moreover, by compactness of the unit ball in H0

n, mal(X) is attained; hence, mal(X) = 0
if and only if X commutes with a non-scalar self-adoint matrix if and only if X and X∗

commute with a common non-scalar matrix. The term `malnormal' is borrowed from group
theory where a subgroup H of a group G is said to be malnormal if gHg−1 ∩H = {1} for
all g ∈ G \H [16, p. 203]. Similary, X being malnormal is a strong negation of X being
normal as any normal matrix commutes with its real and imaginary parts.

As we will see below, malnormality is really intended as a quantitative concept, that is,
the size of the constant mal(X) is more pertinent than its mere existence. More precisely,
there seem to be many explicit constructions of families of contractions Xn ∈Mn for which
mal(Xn)−1 = O(

√
n) (for instance, the shift matrices (Sn)i,j = δi,j−1), while it seems to

be a nontrivial task to produce examples which even satisfy mal(Xn)−1 = o(
√
n). Thus

this property seemingly captures some genuinely new phenomenon about the matrix when
mal(X)−1 �

√
n‖X‖.

3.1. Proof of the Main Result.

Proposition 3.2. There exists a constant c > 0 so that for each n ∈ N su�ciently large,

there is a contraction Xn ∈M3n satisfying mal(Xn) ≥ c.

Proof. Let us �x n ∈ N su�ciently large and choose U, V ∈ U(n) to be a quantum δ-
expander. Such a pair of unitaries is guaranteed to exist for n su�ciently large and δ = 0.87
by Lemma 2.4. Consider the matrix

X =

 0 2U 0
0 0 V

3In 2In In

 ∈M3n.

Clearly, ‖X‖ ≤ 9. Let B ∈ H0
3n be a unit vector which we will write as

B =

 A X Y
X∗ B Z
Y ∗ Z∗ C


with A,B,C,X, Y, Z ∈Mn.

Now let us compute

(11) XB =

 2UX∗ 2UB 2UZ
V Y ∗ V Z∗ V C

3A+ 2X∗ + Y ∗ 3X + 2B + Z∗ 3Y + 2Z + C


and

(12) BX =

3Y 2AU + 2Y XV + Y
3Z 2X∗U + 2Z BV + Z
3C 2Y ∗U + 2C Z∗V + C

 .

Before proceeding we will pause to introduce some convenient
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Notation 3.3. For a, b ∈ R we will write a ≤ε b if a ≤ b+ ε and a =ε b if a ≤ε b and b ≤ε a,
i.e, |a− b| ≤ ε. For X,Y ∈Mn we will write X =ε Y to denote ‖X − Y ‖2 ≤ ε.

In what follows we will denote a := ‖A‖2, x := ‖X‖2, and analogously for the norms of
all block components of X . The notation of [(i, j), (k, l)] indicates that the approximate
identities are obtained by comparing the (i, j)-blocks and the (k, l)-blocks, in that order, of
the matrices (11) and (12).

Let us �x ε > 0 su�ciently small and suppose that ‖[X ,B]‖2 ≤ ε. From the (2, 1) and
(2, 2)-blocks and the (1,1)-block we have that

Y =ε 3Z∗V =3ε 6V ∗X∗UV + 6V ∗Z∗V [(2, 1), (2, 2)](13)

=3ε 9V ∗U∗Y UV + 6V ∗ZV ; [(1, 1)](14)

hence, by several applications of the triangle inequality and (1), 8y ≤ 6z + 7ε as follows,

(15) 8y = ‖9V ∗U∗Y UV ‖2 − ‖Y ‖2 ≤ ‖9V ∗U∗Y UV − Y ‖2 ≤7ε ‖6V ∗ZV ‖2 = 6z.

The (2,1)-block gives us that

(16) 3z − y ≤ ‖Y − 3Z∗V ‖2 ≤ ε,
so by combining (15) and (16) we have that

(17) 8y ≤ 6z + 7ε ≤ 2y + 9ε ⇒ y ≤ 3

2
ε.

From this bound on y, we can use the (2,1)-block to deduce

(18) 3z ≤ y + ε ≤ 3

2
ε+ ε ⇒ z ≤ 5

6
ε.

Lastly, from the (1,1)-block we get

(19) 2x ≤ 3y + ε ≤ 9

2
ε+ ε ⇒ x ≤ 11

4
ε.

Hence, we have deduced that

x, y, z ≤ 3ε.(20)

Setting

B0 =

A 0 0
0 B 0
0 0 C

 ,

using (20) the triangle inequality implies that

(21) ‖B0‖2 ≥ ‖B‖2 − ‖B − B0‖2 ≥ 1− 6(3ε) ≥ 1− 102ε.

Since

[X ,B0] =

 0 2UB 0
0 0 V C

3A 2B C

−
 0 2AU 0

0 0 BV
3C 2C C


it follows by (11) and (12) combined with (20) that

(22) ‖[X ,B0]‖2 ≤ ‖[X ,B]‖2 + ‖[X ,B]− [X ,B0]‖2 ≤ ε+ 36(3ε) ≤ 103ε.
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Examining the entries of [X ,B0] it follows that

(23)

{
‖A− C‖2, ‖B − C‖2 ≤ 103ε,

‖B − U∗AU‖2, ‖C − V ∗BV ‖2 ≤ 103ε;

hence, by the �rst line and the triangle inequality

‖A−B‖2, ‖A− C‖2 ≤ (2× 103)ε.

Along with the second line of (23) and (1) this implies that

‖A− S∗AS‖2 ≤ (5× 103)ε, S = U, V, U∗, V ∗.(24)

Here is one case; the others are similar:

‖A− V ∗AV ‖2 ≤ ‖A− C‖2 + ‖C − V ∗BV ‖2 + ‖V ∗BV − V ∗AV ‖2
= ‖A− C‖2 + ‖C − V ∗BV ‖2 + ‖B −A‖2 ≤ (5× 103)ε.

Setting E(A) = 1
2(U∗AU + V ∗AV ) and using (24) this implies that

(25) ‖A− Eh(A)‖2 ≤ 104ε.

By assumption ‖Eh : H0
n → H0

n‖ ≤ δ < 1; hence, by the triangle inequality

(26)

(1− δ)‖Ȧ‖2 ≤ ‖Ȧ‖2 − ‖Eh(Ȧ)‖2 ≤ ‖Ȧ− Eh(Ȧ)‖2
= ‖(A− τ(A)In)− Eh(A− τ(A)In)‖2
= ‖A− τ(A)In + τ(A)In − Eh(A)‖2 = ‖A− Eh(A)‖2

since Eh(In) = In. Thus, we have that

(27) ‖A− τ(A)In‖2 = ‖Ȧ‖2 ≤ 104ε/(1− δ).

Recall that for X ∈ Mn the map X 7→ τ(X)In is the orthogonal projection of X onto CIn
from which it follows that ‖X − τ(X)In‖2 = infc ‖X − c In‖2. Combining (22), (23), and
(27) this shows that

(28) 1− 102ε ≤ ‖B0‖2 = ‖B0 − τ(B0)I3n‖2 ≤ ‖B0 − τ(A)I3n‖2 ≤ 105ε/(1− δ)

which is impossible for ε > 0 chosen suitably small. Thus there is a uniform constant c > 0
depending only on δ so that mal(X ) > c = c(δ). �

3.2. Connections with Quantum Edge Expanders. As seen in the proof of the main
result, malnormal matrices have close connections to the theory of quantum expanders. We
take the opportunity to sketch out several more ways in which the theories are connected.

Lemma 3.4. Let X ∈Mn and B ∈ Hn, then

(29) ‖[X,B]‖22 = ‖[ReX,B]‖22 + ‖[ImX,B]‖22.
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Proof. Since B is self-adjoint we have that

‖[X,B]‖22 = tr([X,B]∗[X,B]) = − tr([X∗, B][X,B]).

Writing X = S + iT , with S, T self-adjoint, we have

tr([X∗, B][X,B]) = tr([S,B]2) + tr([T,B]2)− i tr([T,B][S,B]) + i tr([S,B][T,B])

from which it follows that ‖[X,B]‖22 = ‖[S,B]‖22 + ‖[T,B]‖22. �

Proposition 3.5. Let (U, V ) be a pair of unitaries in Mn and set J = 1
2

(
ReU+ i ImV

)
. If

J is malnormal, then (U, V ) form a quantum edge expander with constant δ ≤ 1−mal(J)2.

Proof. Since J is malnormal there is some κ > 0 so that ‖[J,B]‖22 ≥ κ2‖Ḃ‖22 for all B
self-adjoint. We �x B self-adjoint. It follows from two applications of Lemma 3.4 that

(30) 4‖[J,B]‖22 = ‖[ReU,B]‖22 + ‖[ImV,B]‖22 ≤ ‖[U,B]‖22 + ‖[V,B]‖22.

Combining (30) with (7), we have

(31) κ2‖Ḃ‖22 ≤ ‖[J,B]‖22 ≤ ‖Ḃ‖22 − tr(E(Ḃ)Ḃ),

where E(X) = 1
2(U∗XU + V ∗XV ) as above. Thus tr(E(Ḃ)Ḃ) ≤ (1− κ2) tr(Ḃ2) and E is a

quantum edge expander. �

Remark 3.6. In terms of a converse, even assuming that (U, V ) is a quantum expander,
we were not able to determine whether J is malnormal with e�ective control on mal(J), so
this remains an interesting open problem.

Any contraction X ∈ Mn may be decomposed as an average of two unitaries, say X =
(U + V )/2. We do not know whether X being malnormal implies that such (U, V ) can
be chosen to form a quantum (edge) expander. However, the following result lies in this
direction.

Proposition 3.7. Let U1, . . . , Uk be unitaries in Mn. For ω ∈ Tk let Jω := 1√
2k

∑k
i=1 ωiUi.

Let λk be the Haar probability measure on Tk. If Jω is malnormal λk-almost surely, then

(U1, . . . , Uk) form a quantum edge expander.

Proof. Let κ(ω) = mal(Jω) and set κ :=
(∫

Tk κ(ω)2 dλk(ω)
)1/2

. Fixing B self-adjoint we
have that

(32)

κ2‖Ḃ‖22 ≤
∫
Tk

‖[Jω, B]‖22 dλk(ω) =
1

2k

n∑
i,j=1

∫
Tk

ωiω̄j tr([Ui, B][Uj , B]∗)dλk(ω)

=
1

2k

k∑
i=1

‖[Ui, B]‖22 = ‖Ḃ‖22 − tr(E(Ḃ)Ḃ)

where E(X) = 1
k

∑k
i=1 U

∗
i XUi. The last equality is (7). This proves the claim. �
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4. Experimental Methods and Results

As motivated in Section 3.2, we wish to investigate the distribution of mal(J) for matrices
of the form J = 1

2

(
Re(U) + i Im(V )

)
, where (U, V ) are random unitary matrices sampled

independently according to the Haar measure. We also wish to study the asymptotics of
this distribution as n tends to in�nity.
N.B. In order to reduce the number of variables to optimize over, we only consider

the real-valued equivalent of this problem; that is, for the remainder of this section we
investigate matrices of the form J = 1

2(Re(U) + i Im(V )), where (U, V ) are independent
Haar random orthogonal matrices.

For a given matrix X, the quantity mal(X) is the solution to the following optimization
problem.

(33)

minimize
B∈Rn×n

‖XB −BX‖2

subject to ‖B‖2 − 1 = 0

tr(B) = 0

We will now present (33) as an optimization problem over vectors as opposed to matrices.

Let d(n) := dim(H0
n) = n(n+1)

2 −1, then H0
n and Rd(n) are isometrically isomorphic as inner

product spaces. Let ϕ : Rd(n) → H0
n be an isometry, that is, an isomorphism that preserves

the norm between Rd(n) and H0
n. We now consider f : Rd(n) → R de�ned as

(34) f(b) := ‖Xϕ(b)− ϕ(b)X‖22.
Since f is a sum of squares, it is a quadratic function with the form

(35) f(b) =
1

2
bTH(X)b = ‖Xϕ(b)− ϕ(b)X‖22

where H(X) ∈ Md(n) is the Hessian of f whose entries are completely determined by the
�xed matrix X. Since f is C∞ and non-negative, H(X) is symmetric and positive semide�-
nite. Lastly, since ϕ is an isometry, the �rst equality constraint of (33) that ‖ϕ(b)‖2−1 = 0

is equivalent to bT b−1 = 0 for all b ∈ Rd(n). Let λ1 denote the smallest eigenvalue of H(X),

then the global minimum of (35) subject to bT b−1 = 0 is λ1/2, and thus mal(X) =
√
λ1/2.

Further, any global minimizer is then an eigenvector of H(X) corresponding to λ1. Setting
H = H(X) we see that the problem stated in (33) is a special case of the more general
�quadratic over a sphere� problem [8]:

(36) minimize
x∈Rn

1

2
xTHx, s.t. xTx− 1 = 0

for H a hermitian n× n (real) matrix.
We now establish the following result that will be essential in using optimization algo-

rithms to �nd constants of malnormality. The result is probably well-known, but we include
a proof here for the sake of completeness.

Proposition 4.1. A vector x∗ ∈ Rn is a local minimizer of (36) if and only if it is a global

minimizer of (36).
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Proof. If x∗ is a global minimizer then the conclusion is immediate, so suppose that x∗ is a
local minimizer of (36). By the Second Order Necessary conditions as stated in [7, Theorem
9.3.1] there exists ξ∗ ∈ R such that

Hx∗ + 2ξ∗x∗ = 0

(x∗)Tx∗ − 1 = 0

dT (H + 2ξ∗I)d ≥ 0, ∀d s.t. (x∗)Td = 0.

The �rst two conditions imply that −2ξ∗ is an eigenvalue. For a contradiction, suppose
that there exists an eigenvalue λ∗ of H such that λ∗ < −2ξ∗. Let v∗ be a unit eigenvector
corresponding to λ∗, then since v∗ and x∗ are in di�erent eigenspaces of H, we must have
that (x∗)T v∗ = 0. However,

(v∗)T (H + 2ξ∗I)v∗ = λ∗ + 2ξ∗ < 0,

which contradicts the third stipulation of the second order necessary conditions. Hence,
−2ξ∗ must be the smallest eigenvalue of H. Since x∗ is then an eigenvector corresponding
to the smallest eigenvalue of H, we have that x∗ is the global minimizer of (36). �

4.1. Numerical Implementation. We utilized two approaches to calculate a matrix's
constant of malnormality. For small dimension, we computed the Hessian H(X) and then
computed its smallest eigenvalue. The other approach involved using MATLAB's optimiza-
tion toolbox to solve the optimization problem outlined in (36). Both approaches rely on

constructing some explicit isometry ϕ between Rd(n) and H0
n. The precise details of our

implementation are described on the project's GitHub repository [18].

For the �rst approach, given a general matrix X ∈ Mn and vector b ∈ Rd(n) we used
the MATLAB symbolic toolbox [14] to compute f(b) = ‖Xϕ(b) − ϕ(b)X‖22. Then, we
symbolically di�erentiated f to obtain the Hessian H(X) as a function of the entries of
the �xed matrix X. Lastly, we evaluate the Hessian for a large number of matrices X,
computing mal(X) =

√
λ1/2 for each matrix.

However, the Hessian �les created in the aforementioned procedure became exceedingly
large very quickly; thus, to compute a large enough quantity of malnormality constants
we turned to MATLAB's optimization toolbox [12]. For a given matrix X we posed the
problem (36) with H = H(X). As Proposition 4.1 shows, if the algorithm converges to
a local minimum, then that minimum is the global minimum. Hence, the square root of
that global minimum is mal(X). MATLAB returns an exit �ag indicating whether or not
the algorithm converged to a local minimum (with respect to a set of speci�ed tolerances);
thus, as long as an exit �ag indicating convergence to a local minimum was returned, we
accepted the value as a global minimum.

4.2. Results. Let Jn = {(U + U∗ + V − V ∗)/4 : U, V ∈ O(n)} be equipped with the push-
forward of the product Haar measure on O(n)×O(n), and let mal(Jn) denote the distribu-
tion of the constants of malnormality of Jn. To study these distributions, we compute the
constant of malnormality for a large number of matrices generated from Jn for n = 3, . . . 30.
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For n ≤ 17, we used the �rst approach outlined previously (direct computation of the Hes-
sian). For n ≥ 18 we used MATLAB's fmincon solver with the interior-point algorithm and
only included values which had an exit �ag reporting convergence to a minimum.

To see how the distribution of mal(Jn) changes as n increases, we use plot the densities
of the empirical distributions for n = 10, 15, 20, 25, 30 on the same axis. We obtained these
distributions by �tting a kernel smoothing function with Gaussian kernel, which allowed us
to avoid introducing any distributional assumptions on the data.

Figure 1. mal(Jn) for various n

From Figure 1, it appears that as the dimension increases, the variance of the distribution
is shrinking and the center of the distribution is converging to a value around 0.16. Of all
the distributions supported in MATLAB's Distribution Fitter application [13], the Burr
Type XII Distribution (a generalized log-logistic distribution) appears to be the best �t for
the distributions. Since the distributions appear to converge to a point distribution, it is
of interest to see if that is the case, and if so, what the value might be. To address these
questions, we performed a regression analysis on the data.

4.3. Empirical Asymptotics. We used the MATLAB Curve Fitting application [13] to
�t a power regression model p(n) = αnβ +γ to both the variance and the mean of mal(Jn).

Let Var(n) denote the variance of the distribution mal(Jn) and µ(n) denote the mean.
Then the parameter estimates for the �tted models are summarized in Table 1.

Thus, empirically at least, the growth of Var(n) is roughly proportional to n−3. Since 0
is included in the con�dence interval for γ in the Var(n) model, we can reasonably conclude
that Var(n)→ 0 as n→∞. It is important to note that the calculated means and variances
for mal(Jn), n = 3, 4, 5, are excluded because for n ≥ 6 the distributions of mal(Jn) appear
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Figure 2. Regression analysis of variance and average of mal(Jn)

homogeneous in shape. These analyses are depicted in Figure 2. These results suggest the
following

Conjecture 4.2. The limit of µ(n) exists as n→∞ and is approximately equal to 0.1654.
Further it holds that for all ε > 0 that P (|mal(Jn)− µ(n)| ≥ ε) = O

(
ε−2n−3

)
.

Var(n) µ(n)
Parameter Point Estimate 95% Conf. Int. Point Estimate 95% Conf. Int.
α 0.4176 (0.4093, 0.4259) -0.1768 (-0.191, -0.1627)
β -2.97 (-2.981, -2.96) -1.12 (-1.171, -1.069)

γ 9.861 ×10−8
(−1.241 × 10−6,
1.439× 10−6)

0.1654 (0.165, 0.1659)

Table 1. Parameter estimates for power regression model αnβ + γ

5. Further Problems

We list several other natural problems and conjectures related to malnormal matrices.

Problem 5.1. Construct a malnormal sequence of matrices An with An ∈ Mn for all
n = 1, 2, 3, . . . .
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Problem 5.2. Find a sharp quantitative bound for the constant γ in Theorem 1.1.

Problem 5.3. Determine the distribution of eigenvalues for Jn.

There is a di�erence in the distribution of eigenvalues of Jn when the set is constructed
from orthogonal matrices as opposed to unitary matrices. For convenience, we use Jn(O)
and Jn(U) when the set is constructed from orthogonals and unitaries, respectively. The
relative frequency of the eigenvalues of 105 matrices from J10,J50, and J100 are shown in
Figures 3 and 4. Both Jn(O) and Jn(U) display a clustering of eigenvalues in the corner of
a clearly-de�ned �pillow� shaped region, and this clustering intensi�es as n increases. Note
the band of high probability of real-valued eigenvalues in Jn(O). A similar property is
observed in the eigenvalues of the real-valued Ginibre ensemble [1]. The behavior displayed
in Figure 3 suggests that the limiting distribution of the eigenvalues of Jn(O) is likely
complicated, which would make it an interesting problem for further study, especially if the
techniques from [1] could be modi�ed to this situation.

Problem 5.4. Let Xn be a random matrix in the (normalized) n × n Ginibre ensemble,
i.e., Xn = 1√

n
(gij) where gij are independent normal complex Gaussian random variables.

Determine the asympotic distribution of mal(Xn).

We performed some preliminary data generation to provide a starting point for this
problem using matrices with independent real gaussian entries each with variance 1/n. We
summarize the data generation in Table 2. Note thatXn is no longer necessarily contractive,
but has operator norm close to 2 with high probability.

Figure 3. Eigenvalues of 105 matrices in Jn(O) for n = 10, 50, 100

Figure 4. Eigenvalues of 105 matrices in Jn(U) for n = 10, 50, 100
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n Mean Median Variance Size of Sample

5 0.35186 0.34889 0.011115 106

10 0.33723 0.33898 0.0020601 105

15 0.33938 0.34114 0.00086524 105

20 0.34218 0.3439 0.00048062 104

25 0.34391 0.34541 0.00031995 104

30 0.34389 0.34559 0.00022611 104

Table 2. Summary statistics of data generated from mal(Xn)
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