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Abstract Since their introduction by Erdős in 1950, covering systems (that
is, finite collections of arithmetic progressions that cover the integers) have
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378 P. Balister et al.

posed regarding the existence of covering systems with various properties. In
particular, Erdős asked if the moduli can be distinct and all arbitrarily large,
Erdős andSelfridge asked if themoduli can be distinct and all odd, andSchinzel
conjectured that in any covering system there exists a pair of moduli, one of
which divides the other. Another beautiful conjecture, proposed by Erdős and
Graham in 1980, states that if the moduli are distinct elements of the interval
[n,Cn], and n is sufficiently large, then the density of integers uncovered by the
union is bounded below by a constant (depending only on C). This conjecture
was confirmed (in a strong form) by Filaseta, Ford, Konyagin, Pomerance
and Yu in 2007, who moreover asked whether the same conclusion holds if
the moduli are distinct and sufficiently large, and

∑k
i=1

1
di

< C . Although,
as we shall see, this condition is not sufficiently strong to imply the desired
conclusion, as one of the main results of this paper we will give an essentially
best possible condition which is sufficient. More precisely, we show that if all
of the moduli are sufficiently large, then the union misses a set of density at
least e−4C/2, where

C =
k∑

i=1

μ(di )

di

and μ is a multiplicative function defined by μ(pi ) = 1 + (log p)3+ε/p for
some ε > 0. We also show that no such lower bound (i.e., depending only
on C) on the density of the uncovered set holds when μ(pi ) is replaced by
any function of the form 1 + O(1/p). Our method has a number of further
applications.Most importantly, as our secondmain theorem, we prove the con-
jecture of Schinzel stated above, which was made in 1967. We moreover give
an alternative (somewhat simpler) proof of a breakthrough result of Hough,
who resolved Erdős’ minimummodulus problem, with an improved bound on
the smallest difference. Finally, we make further progress on the problem of
Erdős and Selfridge.

1 Introduction

A covering system is a finite collection A1, . . . , Ak of arithmetic progressions
that cover the integers, i.e., that satisfy

⋃k
i=1 Ai = Z. The study of covering

systems with distinct differences (or moduli) d1 < · · · < dk was initiated in
1950 byErdős [3],who used them to answer a question ofRomanoff, and posed
a number of problems regarding their properties. For example, Erdős [3] asked
whether there exist such systems with minimum modulus arbitrarily large,
Erdős and Selfridge (see, e.g., [5]) asked if there exists a covering system with
all moduli distinct and odd, and Schinzel [9] conjectured that in any covering
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On the Erdős covering problem 379

system there exist a pair of moduli, one of which divides the other. In 1980,
Erdős and Graham [4] initiated the study of the density of the uncovered set;
in particular, they conjectured that if the (distinct) moduli d1, . . . , dk all lie in
the interval [n,Cn], where n � n0(C) is sufficiently large, then the uncovered
set has density at least ε for some ε = ε(C) > 0.

The first significant progress on these problems was made by Filaseta, Ford,
Konyagin, Pomerance and Yu [6] in 2007, who proved (in a strong form) the
conjecture of Erdős and Graham, and took an important step towards solving
Erdős’ minimum modulus problem by showing that the sum of reciprocals
of the moduli of a covering system with distinct differences grows (quickly)
with the minimum modulus. Building on their work, and in a remarkable
breakthrough, Hough [7] resolved the minimum modulus problem in 2015,
showing that in every covering system with distinct moduli, the minimum
modulus is at most 1016. The method of [7] was further refined by Hough
and Nielsen [8], who used it to prove that every covering system with distinct
differences contains a difference that is divisible by either 2 or 3. However,
Hough’s method does not appear to be strong enough to resolve the problem of
Erdős and Selfridge, and it moreover gives little information about the density
of the uncovered set.

The main aim of this paper is to develop a general method for bounding the
density of the uncovered set. Our method, which is based on that of Hough, but
is actually somewhat simpler, turns out to be sufficiently powerful and flexible
to allowus to alsomake further progress on the problemofErdős and Selfridge,
and to prove Schinzel’s conjecture. Our starting point is the following natural
and beautiful question of Filaseta, Ford, Konyagin, Pomerance and Yu [6].

Question Is it true that for each C > 0, there exist constants M > 0 and
ε > 0 such that the following holds: for every covering system whose distinct
moduli satisfy

d1, . . . , dk � M and
k∑

i=1

1

di
< C, (1)

the uncovered set has density at least ε?

In Sect. 10, below, we will answer this question negatively for every C �
1, by constructing (a sequence of) families of arithmetic progressions with
arbitrarily largemoduli, for which the density of the uncovered set is arbitrarily
small, and

∑k
i=1

1
di

< 1. However, this immediately suggests the following
question: what condition on the (distinct) moduli d1, . . . , dk , in place of (1),
would allow us to deduce a lower bound (depending only on C) on the density
of the uncovered set? Our main theorem provides a sufficient condition that is
close to best possible.
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380 P. Balister et al.

Theorem 1.1 Let ε > 0 and let μ be the multiplicative function defined by

μ(pi ) = 1 + (log p)3+ε

p
(2)

for all primes p and integers i � 1. There exists M > 0 so that if A1, . . . , Ak
are arithmetic progressions with distinct moduli d1, . . . , dk � M, and

C =
k∑

i=1

μ(di )

di
,

then the density of the uncovered set R := Z \ ⋃k
i=1 Ai is at least e−4C/2.

Note that Hough’s theorem is an immediate consequence of Theorem 1.1.
Our proof of Theorem 1.1 was inspired by that of Hough [7], but is simpler in
various important ways (for example, we do not need to appeal to the Lovász
Local Lemma, and do not need his notion of quasi-randomness), and as a result
we obtain a somewhat simpler proof of his theorem, with a better bound on
the minimum difference (less than 106). Our method of sieving, which (as we
shall see) has a number of further applications, is outlined in Sect. 2.

We remark that the question of Filaseta, Ford, Konyagin, Pomerance and Yu
[6] corresponds to replacing μ by the constant function 1. As noted above, we
will show that the conclusion of the theorem does not hold under this weaker
condition; in fact, we will prove that the theorem is close to best possible in
the following much stronger sense. We will show (see Sect. 10) that if (2) is
replaced by

μ(pi ) = 1 + λ

p

for any fixed λ > 0, then there exists a constant C = C(λ) > 0 such that the
following holds: for every M > 0 and ε > 0, there exists a finite collection
of arithmetic progressions, with distinct moduli d1, . . . , dk � M satisfying
∑k

i=1
μ(di )
di

� C , such that the uncovered set has density less than ε. It would
be extremely interesting to characterize the functions μ such that, under the
conditions of Theorem 1.1, the density of the uncovered set is bounded from
below by a constant δ(C) > 0 depending only on C .

Althoughour sievewas developed to control the density of the uncovered set,
it turns out that it can be used to prove a number of additional interesting results
about covering systems. We will focus here on the two classical examples
mentioned above: the question of Erdős and Selfridge, and the conjecture of
Schinzel. Over 50 years ago, Erdős and Selfridge (see [5] or [9]) askedwhether
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On the Erdős covering problem 381

or not there exist covering systems with distinct odd moduli.1 Schinzel [9]
showed that if no such covering system exists, then for every polynomial
f (x) ∈ Z[x] with f �≡ 1, f (0) �= 0 and f (1) �= −1, there exists an (infinite)
arithmetic progressionof values ofn ∈ Z such that xn+ f (x) is irreducible over
the rationals. He also showed that this would imply the following statement:
in any covering system, one of the moduli divides another. In Sect. 9 we will
prove this latter statement, known as Schinzel’s conjecture.

Theorem 1.2 IfA is a finite collection of arithmetic progressions that covers
the integers, then at least one of the moduli divides another.

Unfortunately, our method does not seem to be strong enough to resolve
the Erdős–Selfridge problem (see the discussion in Sect. 6). However, it does
allow us tomake some further progress towards a solution; in particular, we can
prove that no such covering system exists under the additional constraint that
the moduli are square-free. Since this application of our sieve requires several
additional (somewhat technical) ideas, we provide the details elsewhere [1].

Theorem 1.3 IfA is a finite collection of arithmetic progressions with distinct
square-free moduli that covers the integers, then at least one of the moduli is
even.

A different strengthening of the condition in the Erdős–Selfridge problem
was considered recently by Hough and Nielsen [8], who showed that in any
covering system with distinct moduli, one of the moduli is divisible by either
2 or 3. Their proof required careful optimisation of their techniques, and it
seems difficult to use it to strengthen their result. Using our methods, we will
give a short proof of the following strengthening of their theorem.

Theorem 1.4 Let A = {Ad : d ∈ D} be a finite collection of arithmetic
progressions with distinct moduli that covers the integers, and let Q = lcm(D)

be the least common multiple of the moduli. Then either 2 | Q, or 9 | Q, or
15 | Q.

In other words, either there is an even d, a d divisible by 32 = 9, or there
are d1, d2 ∈ D (possibly equal) with 3 | d1 and 5 | d2. We remark that we are
unable to prove that a single d ∈ D has 15 | d in this last case.

The rest of this paper is organized as follows: in Sect. 2 we outline the
sieve we will use in the proofs, and in Sect. 3 we state and prove our main
technical results, Theorems 3.1 and 3.2 . In Sect. 4 we complete the proof of
Theorem 1.1, and in Sect. 5 we prove a variant of the main result of [6]. In

1 Moreover, as recounted in [5], Erdős (who thought that such coverings are likely to exist)
offered $25 for a proof that there is no covering with these properties, and Selfridge (who
expected the opposite) offered $300 (later increased to $2000) for a construction of such a
covering.
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Sect. 6 we explain how our sieve can be used to prove the non-existence of
coverings sets with certain properties, and in Sects. 7–9 we use this method to
improve Hough’s bound on the minimummodulus, and to prove Theorems 1.2
and 1.4 . Finally, in Sect. 10, we provide the constructions described above.

2 The Sieve

In this section we will outline the proof of Theorem 1.1. We consider a finite
set of moduli denoted by D ⊆ N and a finite collection A = {Ad : d ∈ D}
of arithmetic progressions, where Ad = ad + dZ is an arithmetic progression
with modulus d. The goal is to estimate the density of the uncovered set

R := Z \
⋃

d∈D
Ad .

Rather than considering the entire collection of progressions A all at once,
we expose the progressions ‘prime by prime’ and track how the density of the
uncovered set evolves. To be more precise, let p1, p2, …, pn be the distinct
prime factors of Q := lcm(D) (usually, but not necessarily, listed in increasing
order) so that

Q =
n∏

j=1

p
γ j
j

for some integers γ j � 1. Define, for each 0 � i � n,

Qi :=
i∏

j=1

p
γ j
j

and write

Di := {
d ∈ D : d | Qi

}
and Ai := {

Ad : d ∈ Di
}

for the set of differences and the corresponding arithmetic progressions whose
prime factorization only includes the first i of these primes. (In particular,
Q0 = 1 and D0 = A0 = ∅.) Note that, although lcm(Di ) | Qi , we do
not necessarily have lcm(Di ) = Qi , since earlier primes can occur to higher
powers in later moduli. Let

Ri := Z \
⋃

d∈Di

Ad = Z \
⋃

Ad∈Ai

Ad ,
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On the Erdős covering problem 383

be the set of elements not contained in any of the progressions of Ai , so that
R0 = Z and Rn = R. We also write Ni := Di \ Di−1 for the set of “new”
differences at the i th stage, and define

Bi :=
⋃

d∈Ni

Ad (3)

to be the union of the arithmetic progressions exposed at step i , so that Ri =
Ri−1 \ Bi .
It will be convenient to consider Ri as a subset of the cyclic group ZQi

(or of ZQ), which is possible because for each d ∈ Di the set Ad is periodic
with period d | Qi . In particular, note that the density of Ri in Z is equal to
the measure of the set Ri in the uniform probability measure on the finite set
ZQi . During the proof we will in fact need to consider non-uniform probability
measures Pi on ZQi ; note that each such measure can be extended (uniformly
on each congruence class mod Qi ) to a probability measure on ZQ .2 We
will borrow (and abuse) terminology from measure theory by calling a subset
S ⊆ ZQ (or a Q-periodic set S ⊆ Z) Qi -measurable if S is a union of
congruence classes mod Qi .

2.1 A sketch of the method

The basic idea is quite simple. We construct measures Pi in such a way that
Pi (Bi ) is small, but without changing the measure of Bj for any j < i . It
follows that the measure of Z\ R in the final measure Pn is at most

∑
i Pi (Bi ),

and thus if this quantity is less than 1, it follows that the arithmetic progressions
do not cover Z.

To bound Pi (Bi ), we use the 1st and 2nd moment methods (see Lemma 3.3,
below). More precisely, we bound the expectation (in the measure Pi−1) of the
proportion of the ‘fibre’ F(x) = {

(x, y) : y ∈ Zp
γi
i

}
of x ∈ ZQi−1 removed

in step i , and the expectation of the square of this quantity. Bounding these
moments is not too difficult, see Lemmas 3.6 and 3.7 , below.

Finally, to deduce a lower bound on the uncovered set in the uniform mea-
sure, P0, we shall need to bound the average distortion Pn(x)/P0(x). We will
design the measures Pi so that the ‘average’ here (which we take in the Pn-
measure) is enough (by a convexity argument) to give such a lower bound, see
Lemma 3.5.

2 To be precise, we can set Q · Pi (x + QZ) := Qi · Pi (x + QiZ). Note that, since
gcd(Qi , Q/Qi ) = 1, we can (via the Chinese Remainder Theorem) consider Pi on ZQ ∼=
ZQi × ZQ/Qi as a product measure of Pi on ZQi with the uniform measure on ZQ/Qi .
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2.2 The probability measures Pi

We will next define the non-uniform probability measures Pi , which are
inspired by (but different in important ways to) a sequence of measures used
in [7], and which will play a key role in the proof of Theorem 1.1. The rough
idea is that we would like to distort the space so as to ‘blow up’ the uncovered
set, but without increasing the measure of any single point too much. More
precisely, we will define themeasures inductively, choosingPi so that it agrees
withPi−1 on Qi−1-measurable sets, is not toomuch larger thatPi−1 anywhere,
and (subject to these conditions) is as small as possible on the set Bi , the union
of the arithmetic progressions removed at step i .

First, letP0 be the trivial probabilitymeasure onZQ0 = Z1, or (equivalently,
by the comments above) the uniform measure on ZQ . Now fix δ1, . . . , δn ∈
[0, 1/2], let i ∈ [n], and supposewehave already defined a probabilitymeasure
Pi−1 on ZQi−1 . Our task is to define a probability measure Pi on ZQi .

In order to view Ri−1 and Ri as subsets of the same set, let us (by theChinese
Remainder Theorem) represent ZQi as ZQi−1 × Zp

γi
i
, and denote elements of

ZQi by pairs (x, y), where x ∈ ZQi−1 and y ∈ Zp
γi
i
. We may view Ri−1 as

a collection of ‘fibres’ of the form F(x) = {(x, y) : y ∈ Zp
γi
i

}, noting that

Pi−1 is uniform on each fibre, and view Ri as being obtained from Ri−1 by
removing the points that are contained in the new progressions of Ai \ Ai−1.

Now, for each x ∈ ZQi−1 , define

αi (x) = Pi−1
(
F(x) ∩ Bi

)

Pi−1(x)
=

∣
∣
{
y ∈ Zp

γi
i

: (x, y) ∈ Bi
}∣
∣

pγi
i

, (4)

that is, the proportion of the fibre F(x) that is removed at stage i . The proba-
bility measure Pi on ZQi is defined as follows:

Pi (x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

max

{

0,
αi (x) − δi

αi (x)(1 − δi )

}

· Pi−1(x, y), if (x, y) ∈ Bi ;

min

{
1

1 − αi (x)
,

1

1 − δi

}

· Pi−1(x, y), if (x, y) /∈ Bi .
(5)

This is an important (and slightly technical) definition, and therefore deserves
some additional explanation. First, observe that if αi (x) � δi , then Pi (x, y) =
0 for every element of Qi that is covered in step i , and that the measure
is increased proportionally elsewhere to compensate. On the other hand, for
those x ∈ ZQi−1 for which αi (x) > δi , we ‘cap’ the distortion by increasing
the measure at each point not covered in step i by a factor of 1/(1 − δi ), and
decreasing the measure on removed points by a corresponding factor.
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On the Erdős covering problem 385

The following simple properties of the measure Pi will be useful in the
proof.

Lemma 2.1 Pi (S) = Pi−1(S) for any Qi−1-measurable set S.

Proof Let x ∈ ZQi−1 , and observe first that if αi (x) � δi , then

Pi (x) =
(
αi (x) · 0 + (

1 − αi (x)
) · 1

1 − αi (x)

)
· Pi−1(x) = Pi−1(x),

where Pi (x) = ∑
(x,y)∈F(x) Pi (x, y). On the other hand, if αi (x) > δi then

Pi (x) =
(
αi (x) · αi (x) − δi

αi (x)(1 − δi )
+ (

1 − αi (x)
) · 1

1 − δi

)
· Pi−1(x) = Pi−1(x).

Summing over x ∈ S, we obtain Pi (S) = Pi−1(S), as claimed.

Lemma 2.2 For any set S ⊆ ZQ, we have

Pi (S) � 1

1 − δi
· Pi−1(S). (6)

Moreover, if S ⊆ Bi then

Pi (S) � Pi−1(S). (7)

Proof Both inequalities follow immediately (for each ‘atom’ S = {(x, y)},
and hence also in general, by additivity) from (5).

Given a function f : ZQ → R�0, let us define the expectation of f with
respect to Pi to be

Ei
[
f (x)

] :=
∑

x∈ZQ

f (x)Pi (x).

By the observations above, we have

Ei
[
f (x)

]
� 1

1 − δi
· Ei−1

[
f (x)

]
,

andmoreoverEi [ f (x)] � Ei−1[ f (x)] if f is supported on Bi , andEi [ f (x)] =
Ei−1[ f (x)] if f is Qi−1-measurable.
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3 A general theorem

In this section we will prove our main technical results, Theorems 3.1 and 3.2 ,
below, which together imply Theorems 1.1, 1.2 and 1.4 , and also Hough’s the-
orem. In each case the deduction involves little more than choosing a suitable
sequence (δ1, . . . , δn).

Given a finite collection A = {Ad : d ∈ D} of arithmetic progressions,
let n be the number of distinct prime factors of Q = lcm(D), and for each
sequence δ1, . . . , δn ∈ [0, 1/2], let the probability distributions Pi and func-
tions αi : ZQi−1 → [0, 1] be as defined in (4) and (5). Set

M (1)
i := Ei−1

[
αi (x)

]
and M (2)

i := Ei−1
[
αi (x)

2],

and define a multiplicative function ν, defined on factors of Q, by setting

ν(d) =
∏

p j |d

1

1 − δ j
(8)

for each d | Q.

Theorem 3.1 Let A = {Ad : d ∈ D} be a finite collection of arithmetic
progressions, and let δ1, . . . , δn ∈ [0, 1/2]. If

η :=
n∑

i=1

min

{

M (1)
i ,

M (2)
i

4δi (1 − δi )

}

< 1, (9)

thenA does not cover the integers. Moreover, the uncovered set R has density
at least

P0(R) �
(
1 − η

)
exp

(

− 2

1 − η

∑

d∈D

ν(d)

d

)

. (10)

In order to show that (9) holds in our applications, we need to bound the
moments of αi (x). The following technical theorem provides general bounds
that are sufficient in most cases.

Theorem 3.2 Let A = {Ad : d ∈ D} be a finite collection of arithmetic
progressions, and let δ1, . . . , δn ∈ [0, 1/2]. Then

M (1)
i �

∑

mp j
i ∈Ni ,m|Qi−1

p− j
i · ν(m)

m
� 1

pi − 1

∏

j<i

(

1 + 1

(1 − δ j )(p j − 1)

)

,
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and

M (2)
i �

∑

m1 p
j1
i ,m2 p

j2
i ∈Ni

m1,m2 | Qi−1

p−( j1+ j2)
i · ν

(
lcm(m1,m2)

)

lcm(m1,m2)

� 1

(pi − 1)2
∏

j<i

(

1 + 3p j − 1

(1 − δ j )(p j − 1)2

)

.

The proofs of Theorems 3.1 and 3.2 are both surprisingly simple. Let us
begin with the following easy lemma, which is the first step in the proof of
Theorem 3.1. We assume throughout this section that A = {Ad : d ∈ D} is a
given finite collection of arithmetic progressions such that Q = lcm(D) has
exactly n distinct prime factors, and fix a sequence δ1, . . . , δn ∈ [0, 1/2], and
hence a function αi and measure Pi for each i ∈ [n].
Lemma 3.3

Pi (Bi ) � min

{

Ei−1
[
αi (x)

]
,

Ei−1
[
αi (x)2

]

4δi (1 − δi )

}

.

Proof Observe first that

Pi (Bi ) � Pi−1(Bi ) = Ei−1
[
αi (x)

]
,

where the inequality holds by (7), and the equality by (4).
For the other upper bound, we will use the elementary inequality max{a −

d, 0} � a2/4d, which is easily seen to hold for all a, d > 0 by rearranging
the inequality (a − 2d)2 � 0. By (4) and (5) (the definitions of αi and Pi ), we
have

Pi (Bi ) =
∑

x∈ZQi−1

max

{

0,
αi (x) − δi

αi (x)(1 − δi )

}

· Pi−1
(
F(x) ∩ Bi

)

= 1

1 − δi

∑

x∈ZQi−1

max
{
0, αi (x) − δi

} · Pi−1(x)

� 1

1 − δi

∑

x∈ZQi−1

αi (x)2

4δi
· Pi−1(x) = Ei−1

[
αi (x)2

]

4δi (1 − δi )
,

as required.

It is already straightforward to deduce from Lemma 3.3 and inequality (9)
that A does not cover the integers. In order to deduce the bound (10) on the
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density of the uncovered set, we will need to work slightly harder. First, we
need the following easy bound on thePi -measure of an arithmetic progression.

Lemma 3.4 For each 0 � i � n, and all b, d ∈ Z such that d | Q, we have

Pi
(
b + dZ

)
� 1

d

∏

p j |d, j�i

1

1 − δ j
= ν

(
gcd(d, Qi )

)

d
. (11)

Proof The proof is by induction on i . Note first that P0 is just the uniform
measure, so P0(b + dZ) = 1/d. So let i ∈ [n], and assume that the claimed
bound holds for Pi−1. Suppose first that pi | d. Then, by (6) and the induction
hypothesis, we have

Pi
(
b + dZ

)
� 1

1 − δi
· Pi−1

(
b + dZ

)

� 1

d
· 1

1 − δi

∏

p j |d, j<i

1

1 − δ j
= 1

d

∏

p j |d, j�i

1

1 − δ j
,

as required. On the other hand, if pi � d then we may write d = m	, where
m = gcd(d, Qi ) = gcd(d, Qi−1). It follows that

Pi
(
b + dZ

) = Pi
(
b + mZ

)

	
= Pi−1

(
b + mZ

)

	

� 1

	m

∏

p j |d, j<i

1

1 − δ j
= 1

d

∏

p j |d, j�i

1

1 − δ j
,

as required.

Let us define the distortion 
i (x) of a point x ∈ ZQi by


i (x) := max

{

0, log
Pi (x)

P0(x)

}

. (12)

The following bound on the average distortion will allow us to prove (10).

Lemma 3.5 For each 0 � i � n, we have

Ei
[

i (x)

]
� 2 ·

∑

d∈Di

ν(d)

d
.
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Proof We claim first that

log
P j (x)

P j−1(x)
� 2 · α j (x)

for every j ∈ [n] and x ∈ ZQ j . Indeed, observe that P j−1(x)/P j (x) �
max{1 − α j (x), 1 − δ j }, by (5), and use the inequality − log(1 − z) � 2z,
which holds for z � 1/2, and the fact that δ j � 1/2. It follows that

Ei
[

i (x)

]
�

i∑

j=1

Ei

[

max

{

0, log
P j (x)

P j−1(x)

}]

� 2 ·
i∑

j=1

Ei
[
α j (x)

]
.

Now, by (4) and Lemma 2.1, we have

Ei
[
α j (x)

] = E j−1
[
α j (x)

] = P j−1(Bj )

for each j ∈ [i], since the function α j is Q j−1-measurable. Moreover, by (3)
(the definition of Bi ), the union bound, and Lemma 3.4, we have

P j−1(Bj ) �
∑

d∈N j

P j−1(Ad) �
∑

d∈N j

ν(gcd(d, Q j−1))

d
�

∑

d∈N j

ν(d)

d
.

Hence we obtain

Ei
[

i (x)

]
� 2 ·

i∑

j=1

∑

d∈N j

ν(d)

d
= 2 ·

∑

d∈Di

ν(d)

d
,

as claimed.

Theorem 3.1 now follows easily from Lemmas 3.3 and 3.5 .

Proof of Theorem 3.1 We claim first that

1 − Pn(R) �
n∑

i=1

Pn(Bi ) =
n∑

i=1

Pi (Bi ) � η. (13)

Indeed, the first inequality is just the union bound; the equality holds by
Lemma 2.1, since Bi is Qi -measurable, so Pi (Bi ) = Pi+1(Bi ) = · · · =
Pn(Bi ); and the final inequality follows from Lemma 3.3 and (9), the defi-
nition of η. It follows that Pn(R) � 1 − η > 0 if η < 1, and hence R is
non-empty, i.e., A does not cover the integers.
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To prove the claimed lower bound on the density of the uncovered set, we
will use Lemma 3.5. Indeed, by the definition (12) of 
n(x), we have

P0(R) = E0
[
11x∈R

]
� En

[
11x∈R exp

( − 
n(x)
)]

.

Now, by the convexity of e−z , and noting that Pn(R) · En
[

n(x) | x ∈ R

]
�

En
[

n(x)

]
,

En
[
11x∈R exp

( − 
n(x)
)] = Pn(R) · En

[
exp

( − 
n(x)
) ∣

∣ x ∈ R
]

� Pn(R) · exp ( − En
[

n(x) | x ∈ R

])

� Pn(R) · exp
(

− En
[

n(x)

]

Pn(R)

)

.

Hence, by Lemma 3.5, and since Pn(R) � 1 − η, by (13), we obtain

P0(R) �
(
1 − η

)
exp

(

− 2

1 − η

∑

d∈D

ν(d)

d

)

,

as required.

3.1 Bounding the moments of αi (x)

The proof of Theorem 3.2 is also quite straightforward. First, recall that Ni :=
Di \ Di−1 is the set of new differences at step i , and note that any d ∈ Ni can
be represented in the form d = mp j

i , where m | Qi−1 and 1 � j � γi . The
first step is the following general bound on the moments of αi (x).

Lemma 3.6 For each k ∈ N,

Ei−1
[
αi (x)

k] �
∑

m1 p
j1
i ,...,mk p

jk
i ∈Ni

m1,...,mk | Qi−1

1

p j1+···+ jk
i

· ν
(
lcm(m1, . . . ,mk)

)

lcm(m1, . . . ,mk)
(14)

� 1

(pi − 1)k
∑

m1,...,mk | Qi−1

ν
(
lcm(m1, . . . ,mk)

)

lcm(m1, . . . ,mk)
. (15)

Proof. Recall the definitions (3) and (4) of the set Bi and the function αi ,
respectively. Applying the union bound, we obtain, for each x ∈ ZQi−1 ,

αi (x) =
∑

(x,y)∈ZQi

p−γi
i · 11[(x, y) ∈ Bi

]
�

∑

(x,y)∈ZQi

∑

d∈Ni

p−γi
i · 11[(x, y) ∈ Ad

]
.
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Now, observe that if d = mp j
i ∈ Ni , where pi � m, then there are either zero

or pγi− j values of y ∈ Zp
γi
i
with (x, y) ∈ Ad . Indeed, (x, y) ∈ Ad = ad +dZ

iff x ≡ ad mod m and y ≡ ad mod p j
i . It follows that

αi (x) �
∑

d=mp j
i ∈Ni

p− j
i · 11[x ≡ ad mod m

]
,

and hence

Ei−1
[
αi (x)

k]

�
∑

d1=m1 p
j1
i ∈Ni

· · ·
∑

dk=mk p
jk
i ∈Ni

1

p j1+···+ jk
i

Pi−1
(
x ≡ ad j mod m j for j ∈ [k]).

Now, note that the intersection of the events {x ≡ ad j mod m j } over j ∈ [k]
is either empty (if the congruences are incompatible), or is equivalent to x ≡
b mod lcm(m1, . . . ,mk) for some b. Therefore, by Lemma 3.4, we have

Pi−1
(
x ≡ ad j mod m j for j ∈ [k]) �

ν
(
lcm(m1, . . . ,mk)

)

lcm(m1, . . . ,mk)
,

and hence

Ei−1
[
αi (x)

k] �
∑

m1 p
j1
i ,...,mk p

jk
i ∈Ni

m1,...,mk | Qi−1

1

p j1+···+ jk
i

· ν
(
lcm(m1, . . . ,mk)

)

lcm(m1, . . . ,mk)

�
∑

j1,..., jk�1

1

p j1+···+ jk
i

∑

m1,...,mk | Qi−1

ν
(
lcm(m1, . . . ,mk)

)

lcm(m1, . . . ,mk)
.

This proves (14); to obtain (15), simply note that

∑

j1,..., jk�1

1

p j1+···+ jk
i

=
( ∑

j�1

1

p j
i

)k

= 1

(pi − 1)k
.

To complete the proof of Theorem3.2, it only remains to prove the following
bounds.

Lemma 3.7 For each i ∈ [n],
∑

m|Qi−1

ν(m)

m
�

∏

j<i

(

1 + 1

(1 − δ j )(p j − 1)

)
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and

∑

m1,m2|Qi−1

ν
(
lcm(m1,m2)

)

lcm(m1,m2)
�

∏

j<i

(

1 + 3p j − 1

(1 − δ j )(p j − 1)2

)

.

Proof Recall from (8) that ν is a multiplicative function. It follows that

∑

m|Qi−1

ν(m)

m
=

∏

j<i

γ j∑

t=0

ν(ptj )

ptj
,

and by (8), we have

∏

j<i

γ j∑

t=0

ν(ptj )

ptj
=

∏

j<i

(

1 + 1

1 − δ j

γ j∑

t=1

1

ptj

)

�
∏

j<i

(

1 + 1

(1 − δ j )(p j − 1)

)

.

To prove the second inequality, let us write χ(m) for the number of ways of
representing a number m > 1 as the least common multiple of two numbers,
i.e.,

χ(m) := ∣
∣
{
(m1,m2) : lcm(m1,m2) = m

}∣
∣,

so that

∑

m1,m2|Qi−1

ν
(
lcm(m1,m2)

)

lcm(m1,m2)
=

∑

m|Qi−1

χ(m)ν(m)

m
.

Observe that the function χ is multiplicative and satisfies χ(pt ) = 2t + 1 for
all primes p and integers t � 0. It follows that

∑

m|Qi−1

χ(m)ν(m)

m
=

∏

j<i

γi∑

t=0

χ(ptj )ν(ptj )

ptj
�

∏

j<i

(

1 +
∞∑

t=1

2t + 1

(1 − δ j )ptj

)

.

(16)

Finally, note that for any p > 1, we have

∑

t�1

2t + 1

pt
= 1

(1 − p−1)

(
3

p
+ 2

p2
+ 2

p3
+ . . .

)

= 1

(1 − p−1)2

(
3

p
− 1

p2

)

= 3p − 1

(p − 1)2
. (17)
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This completes the proof of the lemma.

Theorem 3.2 is an almost immediate consequence of Lemmas 3.6 and 3.7 .

Proof of Theorem 3.2 To bound M (1)
i we apply Lemma 3.6 with k = 1 and

the first inequality in Lemma 3.7. This gives

Ei−1
[
αi (x)

]
�

∑

mp j
i ∈Ni

m|Qi−1

1

p j
i

· ν(m)

m
� 1

pi − 1

∑

m|Qi−1

ν(m)

m

� 1

pi − 1

∏

j<i

(

1 + 1

(1 − δ j )(p j − 1)

)

,

as claimed. To bound M (2)
i we apply Lemma 3.6 with k = 2 and the second

inequality in Lemma 3.7. We obtain

Ei−1
[
αi (x)

2] �
∑

m1 p
j1
i ,m2 p

j2
i ∈Ni

m1,m2|Qi−1

p−( j1+ j2)
i · ν

(
lcm(m1,m2)

)

lcm(m1,m2)

� 1

(pi − 1)2
∑

m1,m2|Qi−1

ν
(
lcm(m1,m2)

)

lcm(m1,m2)

� 1

(pi − 1)2
∏

j<i

(

1 + 3p j − 1

(1 − δ j )(p j − 1)2

)

,

as required.

4 Proof of the Main Theorem

In order to deduce Theorem 1.1 from Theorems 3.1 and 3.2 , it will suffice to
show that there is an appropriate choice of M and δ1, δ2, . . . , δn .

Proof of Theorem 1.1 Let p1, . . . , pn be the primes that divide Q, listed in
increasing order, and fix an integer k∗, to be determined later. We set δi = 0
for i � k∗ and

δi = μ(pi ) − 1

μ(pi )
= (log pi )3+ε

pi

(

1 + (log pi )3+ε

pi

)−1

for i > k∗. Note that we have δ1, . . . , δn ∈ [0, 1/2] if k∗ is chosen sufficiently
large.

123



394 P. Balister et al.

In order to apply Theorem 3.1, we will bound M (1)
i for each i � k∗, and

M (2)
i for i > k∗. We will do so using Theorem 3.2.

Claim 1 For any choice of k∗, if M is sufficiently large then

∑

i�k∗
M (1)

i � 1

4
.

Proof of Claim 1 Note first that ν(d) = 1 for every d ∈ Dk∗ , by (8) and our
choice of δ1, . . . , δn . Thus, by Theorem 3.2, we have

∑

i�k∗
M (1)

i �
∑

i�k∗

∑

mp j
i ∈Ni

p− j
i · ν(m)

m
=

∑

i�k∗

∑

d∈Ni

1

d
=

∑

d∈Dk∗

1

d
.

Now, let S(q) denote the set of q-smooth numbers, i.e., numbers all of whose
prime factors are at most q, and note that Dk∗ ⊆ S(pk∗), and moreover

∑

d∈S(q)

1

d
=

∏

p�q

(

1 + 1

p − 1

)

< ∞

for every q, where the product is over primes p � q. Hence, by choosing M
to be sufficiently large, it follows that

∑

i�k∗
M (1)

i �
∑

d∈S(pk∗ ), d�M

1

d
� 1

4
,

as claimed.

Bounding M (2)
i for i > k∗ is only slightly less trivial.

Claim 2 If k∗ is sufficiently large, then

∑

i>k∗
M (2)

i � 1

4
.

Proof of Claim 2 Recall from Theorem 3.2 that

M (2)
i � 1

(pi − 1)2
∏

j<i

(

1 + 3p j − 1

(1 − δ j )(p j − 1)2

)

� 1

(pi − 1)2
exp

( ∑

j<i

3p j − 1

(1 − δ j )(p j − 1)2

)

.
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Now, by our choice of δ1, . . . , δn , we have

3p j − 1

(1 − δ j )(p j − 1)2
� 3

p j
+ O

(
(log p j )

3+ε
)

p2j

for every j < i , and hence, using a weak form of Merten’s theorem to deduce
that

∑
j<i

1
p j

� log log pi + O(1), we obtain

M (2)
i � 1

(pi − 1)2
exp

(
3 log log pi + O(1)

)
� C0(log pi )3

p2i

for some absolute constant C0 > 0. It follows that, if i > k∗, then

M (2)
i

4δi (1 − δi )
= μ(pi )2

4
(
μ(pi ) − 1

) · M (2)
i � C1

pi (log pi )ε
,

for some absolute constant C1 > 0. Now, using the prime number theorem
π(x) ∼ x/ log x to crudely bound the sum of the right-hand side over all
primes p, we obtain

∑

p�3

C1

p(log p)ε
=

∑

t�1

∑

et<p�et+1

C1

p(log p)ε
�

∑

t�1

C1 · π
(
et+1)

et · tε �
∑

t�1

C2

t1+ε
< ∞

for any ε > 0. It follows that if k∗ is sufficiently large, then

∑

i>k∗

M (2)
i

4δi (1 − δi )
� 1

4
.

as claimed.

By Claims 1 and 2 , it follows that η � 1/2, and hence, by Theorem 3.1,
the uncovered set has density at least

1

2
exp

(

− 4
∑

d∈D

ν(d)

d

)

.

Finally, observe that μ(d) � ν(d) for every d ∈ N, since both functions are
multiplicative,

μ(p) = 1 + (log p)3+ε

p
= 1

1 − δi
= ν(p)
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for p > pk∗ , and μ(p) � 1 = ν(p) for p � pk∗ . It follows that the uncovered
set has density at least

1

2
exp

(

− 4
∑

d∈D

μ(d)

d

)

= e−4C

2
,

as required.

5 The Erdős–Graham Conjecture

Asa simple consequence ofTheorem1.1,wewill next give a newstrengthening
of the conjecture of Erdős and Graham [4] mentioned in the Introduction.
Recall that in the original conjecture, which was confirmed by Filaseta, Ford,
Konyagin, Pomerance andYu [6] in 2007, the lower boundM on nwas allowed
to depend on K . The result proved in [6] required such a bound (of the form
n > Kω for some ω = ω(K ) → ∞ as K → ∞), but gave an asymptotically
optimal bound on the density of the uncovered set. Our result gives a non-
optimal bound on this density, but does not require n to grow with K .

Theorem 5.1 There exists M such that for any K � 1, there exists δ =
δ(K ) > 0 such that the following holds. If A1, . . . , Ak are arithmetic progres-
sions with distinct moduli d1, . . . , dk ∈ [n, Kn], n � M, then the uncovered
set R := Z \ ⋃k

i=1 Ai has density at least δ.

Proof We apply Theorem 1.1 with ε = 1. In order to prove the corollary, it
will suffice to show that there exists a constant C > 0, depending only on K ,
such that

∑

d∈[n,Kn]

μ(d)

d
� C (18)

for all n ∈ N. Indeed, if we set δ := e−4C/2 then it follows from Theorem 1.1
that, if (18) holds and n � M , then the density of R is at least δ.

We will prove, by induction on t � 0, that (18) holds for all n � 2t . This is
clearly the case when t = 0 (assuming that C = C(K ) is sufficiently large),
so let t � 1, and let us assume that (18) holds for all n � 2t−1. We will
use the following telescopic series, which holds for any i0 and d | Q by the
definition (2) of μ:

μ(d) = μ
(
gcd(d, Qi0)

) +
∑

i>i0

(
μ

(
gcd(d, Qi )

) − μ
(
gcd(d, Qi−1)

))

= μ
(
gcd(d, Qi0)

) +
∑

pi |d, i>i0

(
μ(pi ) − 1

)
μ

(
gcd(d, Qi−1)

)
.
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Summing over d ∈ [n, Kn], we obtain
∑

d∈[n,Kn]

μ(d)

d
�

∑

d∈[n,Kn]

μ(Qi0)

d
+

∑

i>i0

μ(pi ) − 1

pi

∑

d∈[n/pi ,Kn/pi ]

μ(d)

d
.

Now, since n/p � 2t−1 for every prime p, it follows by the induction hypoth-
esis that

∑

d∈[n,Kn]

μ(d)

d
� μ(Qi0)

(
log K + 1

) + C
∑

i>i0

μ(pi ) − 1

pi
.

Finally, note that the sum over all primes

∑

p prime

μ(p) − 1

p
=

∑

p prime

(log p)4

p2

converges, and therefore

∑

d∈[n,Kn]

μ(d)

d
� μ(Qi0)

(
log K + 1

) + C

2
� C

if i0 and then C = C(K ) are chosen sufficiently large, as required.

6 A general method of applying the sieve

In this section we describe a practical method of applying our method to
problems involving covering systems, such as Schinzel’s conjecture and the
Erdős–Selfridge problem. More precisely, we will show how one can choose
the constants δi sequentially and optimally via a simple recursion which may
be run on a computer. We will also give a simple criterion (see Theorem 6.1,
below) which we prove is sufficient to deduce that the collection A does not
cover the integers. Combining these (that is, running the recursion until the
criterion is satisfied), we reduce the problems to finite calculations, which in
some cases are tractable. To demonstrate the power of this approach, we will
use it in Sects. 7–9 to prove Theorems 1.2 and 1.4 , and to significantly improve
the bound on M in Hough’s theorem.

We begin by defining a sequence of numbers fk = fk(A), which will
(roughly speaking) encode how “well” we are doing after k steps of our sieve.
We remark that, from now on, we will perform a step of the sieve for every
prime, whether or not it divides Q. We will therefore write pk for the kth
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prime, i.e., p1 = 2, p2 = 3, etc. Fix i0 ∈ N, and define

fk = fk(A) := κ

μk

∏

i0<i�k

(

1 + 3pi − 1

(1 − δi )(pi − 1)2

)

(19)

for each k � i0, where

μk := 1 −
∑

i�k

Pi (Bi ),

and κ > 0 and i0 ∈ N are chosen so that

M (2)
k � κ

(pk − 1)2
∏

i0<i<k

(

1 + 3pi − 1

(1 − δi )(pi − 1)2

)

= μk−1 fk−1

(pk − 1)2
(20)

for every k > i0. For example, by Theorem 3.2,

κ =
∏

i�i0, pi |Q

(

1 + 3pi − 1

(1 − δi )(pi − 1)2

)

(21)

is a valid choice, although in some cases we can prove a stronger bound. We
remark that, in practice, we will choose the constants κ and δ1, . . . , δi0 , and
show that (20) holds for any sequence (δi0+1, . . . , δn). We will then choose
each subsequent δi so as to minimize fi .

The following theorem gives a sufficient condition (at step k) for our sieve
to be successful. The bound we prove gives an almost optimal termination
criterion when k is large.

Theorem 6.1 Let k � 10. If μk > 0 and fk(A) � (log k + log log k − 3)2k,
then the system of arithmetic progressions A does not cover Z.

In this section, it will be convenient to define, for each i ∈ N,

ai = 3pi − 1

(pi − 1)2
and bi = 1

4(pi − 1)2
. (22)

The first step in the proof of Theorem 6.1 is the following simple (but key)
lemma.

Lemma 6.2 Let i > i0, and assume that μi−1 > 0. If bi fi−1 < δi (1 − δi ),
then μi > 0, and

fi �
(

1 + ai
1 − δi

)(

1 − bi fi−1

δi (1 − δi )

)−1

fi−1. (23)
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Proof Recall from Lemma 3.3 and (20), that

μi−1 − μi = Pi (Bi ) �
M (2)

i

4δi (1 − δi )
� μi−1 fi−1

4δi (1 − δi )(pi − 1)2
. (24)

It follows that μi � μi−1
(
1 − bi fi−1/δi (1 − δi )

)
> 0, and moreover

fi
fi−1

= μi−1

μi

(

1 + 3pi − 1

(1 − δi )(pi − 1)2

)

�
(

1 + 3pi − 1

(1 − δi )(pi − 1)2

)(

1 − fi−1

4δi (1 − δi )(pi − 1)2

)−1

,

as claimed.

To deduce Theorem 6.1, we will use the main result (which is also the
title) of [2], which states that for each k � 2, the kth prime is greater than
k(log k + log log k − 1).

Proof of Theorem 6.1 We are required to show that μn > 0; to do so, we will
use Lemma 6.2 to show, by induction on i , that μi > 0 for every k � i � n.
As part of the induction, we will also prove that fi � λ2i i for each k � i � n,
where λi = log i + log log i − 3.

Note that the base case, i = k, follows from our assumptions, and set
δi = 1/2 for each k < i � n. By Lemma 6.2, for the induction step it will
suffice to show that 4bi fi−1 < 1 and

λ2i−1(i − 1)

(
1 + 2ai

1 − 4bi fi−1

)

� λ2i i,

where ai and bi were defined in (22). We claim that, writing λ = λi−1, we
have

2ai � 6(λ + 2)i + 4

(λ + 2)2i2
, 4bi fi−1 � λ2(i − 1)

(λ + 2)2i2
< 1, and λ2i i � λ(λi + 2).

To see these inequalities, note that pi � (λi + 2)i for all i � k, by the result
of [2] stated above, and λi − λi−1 � log(i/(i − 1)) > 1/ i , so pi − 1 �
(λi−1 + 1/ i + 2)i − 1 = (λ + 2)i .

It is therefore sufficient to show that

λ2(i − 1)

(

1 + 6(λ + 2)i + 4

(λ + 2)2i2

)

� λ(λi + 2)

(

1 − λ2(i − 1)

(λ + 2)2i2

)

,
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Table 1 Upper bounds on fk that ensure that the system does not cover the integers

k pk gk �

2 3 1.260997

3 5 3.007888

4 7 5.860938

5 11 9.032082

6 13 13.30344

7 17 17.99687

8 19 23.90973

9 23 30.38722

10 29 36.72372

100 541 1691.365

1000 7919 42420.78

10000 104729 802133.7

51000 625187 5821999

All the bounds are rounded down in the last decimal digit. At each stage in the calculation,
fk was increased by a factor of 1 + 10−15 to account for rounding errors in the floating point
arithmetic. The choice of 51000 is needed to make pk > 616000, as used in Sect. 8, below

which (aftermultiplying by (λ+2)2i2/λ, expanding and rearranging) becomes

0 � 8i2 + λ3i + 4λ2i + 8λi + 2λ2 + 4λ.

This clearly holds for all λ > 0 and i ∈ N, and so the theorem follows.

Now, combining Theorem 6.1 and Lemma 6.2, we can deduce from (suf-
ficiently strong) bounds on fk , for any k ∈ N, that the uncovered set is
non-empty. To do so, observe first that, given fi−1, the bound on fi given
by Lemma 6.2 is just a function of a single δi . Elementary calculus shows that
the optimal choice of δi occurs when

δi = 1 + ai

1 + √
1 + ai (1 + ai )/(bi fi−1)

. (25)

This expression for δi allows for very fast numerical computation of the bounds
on the fi .

Let us therefore, for each i ∈ N, define gi to be the largest value of fi (A)

such that, by repeatedly applying the recursion (23) with δ j given by (25),
we eventually satisfy the conditions of Theorem 6.1 for some k � 10. In
Table 1 we list the bounds on gk given by performing this calculation, which
was implemented as follows: starting with a potential value of f3, we ran
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the iteration given in (23) using the value of δi given in (25) until either the
conditions of Theorem 6.1 were satisfied, or the condition bi fi−1 < δi (1−δi )

failed. The optimal value g3 of f3 was determined by binary chop, and the
other bounds gk were read off by taking the largest successful f3 and listing
the corresponding bounds on fk .

Let us state, for future reference, the conclusion of this section.

Corollary 6.3 If fk(A) � gk for some k ∈ N, then the system of arithmetic
progressions A does not cover Z.

We remark that the bound on g1 given by our sieve is less than 1, and for
this reason we are unable to resolve the Erdős–Selfridge problem.

7 The Erdős–Selfridge Problem

In this section we will prove Theorem 1.4, which is a simple consequence of
the method described in the previous section. First, however, let us show how
to prove the following (only slightly weaker) theorem, which was first proved
by Hough and Nielsen [8].

Theorem 7.1 Let A be a finite collection of arithmetic progressions with dis-
tinct moduli, none of which is divisible by 2 or 3. Then A does not cover the
integers.

Proof Set i0 = 2 and κ = 1, note thatμ1 = μ2 = 1, since there are no moduli
divisible by 2 or 3, and recall from (21) that this is a valid choice of κ , by
Theorem 3.2. Recalling from (19) that f2 = κ/μ2, and using Table 1, we see
that f2 = 1 < 1.26 < g2, and hence, by Corollary 6.3, the systemA does not
cover the integers.

We remark that we did not actually need the full strength of Corollary 6.3 to
prove this theorem; in fact, we could have just run our sieve with δ1 = · · · =
δn = 1/4, say, and applied Theorems 3.1 and 3.2 , together with Theorem 6.1.
In order to prove Theorem 1.4, we will need a slightly more complicated
version of the proof above.

Proof of Theorem 1.4 By Theorem 7.1, we may assume that Q = lcm(D)

satisfies Q = 3Q′, where Q′ is not divisible by 2, 3 or 5. Observe thatμ1 = 1,
and that μ3 = μ2 � 2/3, by the (trivial) first moment bound M (1)

2 � 1/3, and
since there are no moduli divisible by 2 or 5. Set i0 = 3, δ1 = δ2 = δ3 = 0,
and κ = 2. To see that this is a valid choice of κ , we need to improve (21)
slightly, using the fact that 32 � Q. To be precise, in the proof of Lemma 3.7,
in the last expression in (16), when j = 2 we only need to include the term
t = 1 in the sum. Keeping the rest of the proof of Theorem 3.2 the same, this
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implies that

M (2)
i � 1

(pi − 1)2

(

1 + 3

(1 − δ2)p2

) ∏

3< j<i

(

1 + 3p j − 1

(1 − δ j )(p j − 1)2

)

,

and hence (20) holds with κ = 1 + 3/p2 = 2, as claimed. Using Table 1, it
follows that

f3 = κ

μ3
� 3 < 3.007 � g3,

and therefore, by Corollary 6.3, the systemA does not cover the integers.

8 The Minimum Modulus Problem

In this section we improve the bound on the minimum modulus given in [7,
Theorem 1].

Theorem 8.1 Let A be a finite collection of arithmetic progressions with dis-
tinct moduli d1, . . . , dk � 616000. Then A does not cover the integers.

Proof We apply Theorem 3.1, using the first moment M (1)
i and setting δi = 0

for i � 51 (note that p51 = 233). After the first 51 primes we have

μ51 � 1 −
∑

d�616000
p51-smooth

1

d
� 0.654258 (26)

and

f51 � 1

μ51

∏

j�51

(

1 + 3p j − 1

(p j − 1)2

)

� 886.56.

For 51 < i � 51000 we apply the second moment bound using

M (2)
i � M̂ (2)

i :=
∑

m1 p
j
i ,m2 pki �616000

m1,m2 pi−1-smooth

p− j−k · ν
(
lcm(m1,m2)

)

lcm(m1,m2)
. (27)

The values of δi were not optimized, but instead defined by the following
equation

δi =
(

1 − 1√
pi

)

· 1 + ai

1 +
√
1 + 4μ̂i ai (1 + ai )/M̂

(2)
i

,
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which is based on (25), but with bi fi−1 replaced by the bound on M (2)
i /(4μi )

implied by (27). The (rather arbitrary) factor of (1 − 1/
√
pi ) was included

to improve the bounds obtained, and μ̂i is the lower bound on μi defined
inductively by

μ̂i = μ̂i−1 − M̂ (2)
i

4δi (1 − δi )
.

Finally, after processing p51000 = 625187 > 616000 we calculated the bound
f51000 � 5589593 from (19) using i0 = 0 and κ = 1. This is less than the
bound g51000 given in Table 1, and hence, by Corollary 6.3, the systemA does
not cover the integers.

It only remains to describe an efficient way of calculating the expressions
(26) and (27). For (26) we note that the sum of 1/d over all pi -smooth d is
given by the product

∑

d pi -smooth

1

d
=

∏

j�i

(

1 + 1

p j − 1

)

and the sum in (26) can then be calculated by subtracting the finite sum of 1/d
over all pi -smooth d < 616000. For (27) the procedure is somewhat more
complicated. First we define

�i (s, t) :=
∑

m1�s,m2�t
m1,m2 pi -smooth

ν
(
lcm(m1,m2)

)

lcm(m1,m2)
,

which can be calculated inductively using the identity

�i (s, t) = �i−1(s, t) + 1

1 − δi

∑

j,k�0, j+k>0

p−max{ j,k}
i · �i−1

(�s/p j
i �, �t/pki �

)
,

which, despite its appearance, can be calculated as a finite sum. Indeed,
�s/p j

i � = 1 for sufficiently large j , and so there are only finitely many terms
�i−1(s′, t ′) that occur, and these are multiplied (when s′ or t ′ = 1) by geo-
metric series that can be summed exactly. Finally, the calculation of

M (2)
i �

∑

j,k�1

p− j−k
i · �i−1

(�K/p j
i �, �K/pki �

)
,

where K = 616000, can similarly be reduced to a finite sum.
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9 Schinzel’s Conjecture

In this section wewill use the method of Sect. 6 to prove Schinzel’s Conjecture
[9], which we restate here for convenience.

Theorem 9.1 If 1 < d1 < d2 < · · · < dk are the moduli of a finite collection
of arithmetic progressions that covers the integers, then di | d j for some i < j .

We will argue by contradiction, assuming that we have a set {d1, . . . , dk}
of moduli of a covering system of the integers that forms an antichain under
divisibility.We call an antichain of natural numbers p-smooth if all its elements
are p-smooth, i.e., have no prime factor greater than p. In order to apply
our sieve, we will need the following three simple lemmas about 5-smooth
antichains.

Lemma 9.2 If D is a 5-smooth antichain containing no prime power, then

∑

d∈D

1

d
� 1

3
,

with equality if and only if D = {6, 10, 15}.
Proof Suppose first that D′ is a 3-smooth antichain (possibly containing a
prime power), and observe that

D′ = {
2a13b1, 2a23b2, . . . , 2ak3bk

}

for some a1 > a2 > · · · > ak and b1 < b2 < · · · < bk . We claim that∑
d∈D′ 1

d is maximized (over all such sets of size k) when D′ is ‘compressed’,
that is, when ai = ai+1 + 1 and bi+1 = bi + 1 for all i ∈ [k − 1]. Indeed, if
ai > ai+1 + 1 then we can reduce ai , and if bi+1 > bi + 1 then we can reduce
bi+1, in each case increasing

∑
d∈D′ 1

d while maintaining the property that D′
is an antichain.

Now, let us write the 5-smooth antichain D as a union of sets of the form
{5i d : d ∈ Di }, where each Di is a (possibly empty) 3-smooth antichain. Since
D contains no prime power, neither can D0, so

∑
d∈D0

1
d is maximized when

D0 = {2a · 3, 2a−1 · 32, . . . , 2 · 3a}. In this case a simple calculation shows
that

∑
d∈D0

1
d = 2−a − 3−a , which attains a unique maximum when a = 1.

Thus
∑

d∈D0
1
d � 1

6 , with equality if and only if D0 = {6}.
Next, observe that 1 /∈ Di for every i � 1, and therefore

∑
d∈Di

1
d is

maximized when Di = {2a, 2a−131, . . . , 3a}, with a � 1. In this case we
have

∑
d∈Di

1
d = 6(2−1−a − 3−1−a) and the unique extremal case is a = 1,

so
∑

d∈Di
1
d � 5

6 , with equality if and only if Di = {2, 3}. If we additionally
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assume that Di �= {2, 3}, then ∑
d∈Di

1
d � 11

18 , with the unique maximum
occurring for the (uncompressed) antichain Di = {2, 9}.

Finally, if D1 = {2, 3} then Di = ∅ for every i > 1, and therefore

∑

d∈D

1

d
=

∑

d∈D0

1

d
+ 1

5

∑

d∈D1

1

d
� 1

6
+ 1

5
· 5
6

= 1

3
,

with equality only when D = {6, 10, 15}. On the other hand, if D1 �= {2, 3}
then

∑

d∈D

1

d
=

∞∑

i=0

1

5i
∑

d∈Di

1

d
� 1

6
+ 11

5 · 18 +
∞∑

i=2

1

5i−1 · 6 = 119

360
<

1

3
,

as required.

Lemma 9.3 If A and B are two 3-smooth antichains, then

∑

a∈A

∑

b∈B

1

lcm(a, b)
� 31

36
, (28)

except in the cases A = B = {1} and A = B = {2, 3}.
Note that the sum in (28) is equal to 1 if A = B = {1}, and to 7/6 if

A = B = {2, 3}.
Proof Suppose first that |A| � |B|, and that B = {2k−1, 2k−231, . . . , 3k−1}
for some k � 5. Then

∑

a∈A

∑

b∈B

1

lcm(a, b)
�

∑

a∈A

∑

b∈B

1

b
= |A|

∑

b∈B

1

b
= 6k

(
2−k − 3−k) <

31

36
.

However, if |B| = k � 5 but B �= {2k−1, 2k−231, . . . , 3k−1}, then by com-
pressing (as in the proof of Lemma 9.2) we may increase the left-hand side
of (28), so we are also done in this case. The lemma therefore reduces to a
finite check of families with max{|A|, |B|} � 4, and in fact (using compres-
sion once again) it is sufficient to consider the antichains {1}, {2, 3}, {2, 9},
{3, 4}, {4, 6, 9}, and {8, 12, 18, 27}. The lemma now follows from a trivial case
analysis, which can be done by hand.

Lemma 9.4 If A and B are two 5-smooth antichains, then

∑

a∈A

∑

b∈B

1

lcm(a, b)
� 1.7,
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with equality if and only if A = B = {2, 3, 5}.
Proof We decompose A and B as a union of sets 5i · Ai and 5 j · Bj , where Ai
and Bj are 3-smooth antichains, as in the proof of Lemma 9.2. Suppose first
that there is no pair (i, j) with Ai = Bj = {1} or Ai = Bj = {2, 3}. Then, by
Lemma 9.3 and (17), we have

∑

a∈A

∑

b∈B

1

lcm(a, b)
=

∞∑

i=0

∞∑

j=0

1

5max{i, j}
∑

a∈Ai

∑

b∈Bj

1

lcm(a, b)

� 31

36

(

1 + 3

5
+ 5

52
+ 7

53
+ · · ·

)

= 31

36
· 15
8

< 1.7 − 1

12
.

Next, suppose that Ai = Bj = {1} for some pair (i, j), and observe that
Ai ′ = Bj ′ = ∅ for every i ′ > i and j ′ > j , so the pair (i, j) is unique. If there
is no pair (s, t) with As = Bt = {2, 3}, then the bound above increases by at
most (1− 31

36)5
−max{i, j}, and this is less that 1

12 if max{i, j} � 1. On the other
hand, if A0 = B0 = {1}, then (since Ai = Bi = ∅ for all i > 0) we have
A = B = {1}, and so ∑

a∈A
∑

b∈B 1
lcm(a,b) = 1 < 1.7.

Wemay therefore assume that Ai = Bj = {2, 3} for some pair (i, j), which
implies that Ai ′, Bj ′ ⊆ {1} for every i ′ > i and j ′ > j , and (as above) at most
one of the sets in each sequence is non-empty. The bound above increases by
at most

(
7

6
− 31

36

)
1

5max{i, j} +
(

1 − 31

36

)
1

5max{i, j}+1 = 1

3
· 1

5max{i, j} <
1

12

if max{i, j} � 1. However, if A0 = B0 = {2, 3}, then it is easy to see that∑
a∈A

∑
b∈B 1

lcm(a,b) is maximized by taking A = B = {2, 3, 5}, and in that
case it is equal to 1.7.

Having completed the easy preliminaries, we are ready to prove Schinzel’s
conjecture.

Proof of Theorem 1.2 We first observe that we may assume that none of the
moduli di are prime powers. Indeed, we may assume that the covering is
minimal, so the removal of any Adi results in a set of progressions that do not
cover Z. If di = p j for some prime p and j > 0, then the prime can appear at
most to the ( j−1)st power in any othermoduli. Thus the other progressions fail
to cover some congruence class mod Q/p, where Q = lcm{d1, . . . , dk}. But
this congruence class cannot be covered by Adi as di � Q/p, a contradiction.

We now apply our sieve with δ1 = δ2 = δ3 = 0, so that Pi is equal to the
uniform measure when processing the primes p1 = 2, p2 = 3 and p3 = 5,
and claim that f3 � 2.55 < g3. Observe that, by Lemma 9.2, the total measure
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of B1 ∪ B2 ∪ B3 is at most 1/3. Now we improve the bound on E[αi (x)2] for
i � 4 as follows. By Theorem 3.2, we have

M(2)
i �

∑

j1, j2�1

1

p j1+ j2
i

∑

m1,m2∈Si

ν
(
lcm(m1,m2)

)

lcm(m1,m2)

∑

a∈D(m1, j1)

∑

b∈D(m2, j2)

1

lcm(a, b)
,

where Si is the set of integers whose prime factors all lie between 7 and pi−1,
and for each m ∈ Si and j � 1, we define

D(m, j) = {
a : mp j

i a ∈ D and a is 5-smooth
}
.

Since D(m, j) is a 5-smooth antichain, it follows from Lemmas 3.7 and 9.4
that

M (2)
i � 1.7

∑

j1, j2�1

1

p j1+ j2
i

∑

m1,m2∈Si

ν
(
lcm(m1,m2)

)

lcm(m1,m2)

= 1.7

(pi − 1)2

i−1∏

j=4

(

1 + 3p j − 1

(1 − δ j )(p j − 1)2

)

.

Therefore, setting i0 = 3 and κ = 1.7, it follows that (20) holds. Hence,
recalling from above that μ3 � 2/3, we obtain f3 = 1.7 · 3/2 = 2.55 < g3
(see Table 1), so, by Corollary 6.3, the system A = {Ad : d ∈ D} does not
cover the integers.

10 Constructions

In this section we will provide constructions of families of arithmetic pro-
gressions that answer (negatively) the question of Filaseta, Ford, Konyagin,
Pomerance and Yu [6] mentioned in the Introduction, and show that Theo-
rem 1.1 is not far from best possible. To be precise, we will prove the following
two theorems.

Theorem 10.1 For every M > 0 and ε > 0, there exists a finite collection
of arithmetic progressions A1, . . . , Ak with distinct moduli d1, . . . , dk � M,
such that

k∑

i=1

1

di
< 1 (29)

and the density of the uncovered set R = Z \ ⋃k
i=1 Ai is less than ε.
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Note that the bound (29) is (obviously) best possible; we remark that the
moduli in our construction will moreover be square-free. Our second theorem
shows that the function (log p)3+ε in the statement of Theorem 1.1 cannot be
replaced by a constant.

Theorem 10.2 For every λ > 0, there exists C = C(λ) > 0 such that the
following holds. Let μ be the multiplicative function defined by

μ(pi ) = 1 + λ

p

for all primes p and integers i � 1. For every M > 0 and ε > 0, there
exists a finite collection of arithmetic progressions A1, . . . , Ak with distinct
square-free moduli d1, . . . , dk � M, such that

k∑

i=1

μ(di )

di
� C,

and the density of the uncovered set R = Z \ ⋃k
i=1 Ai is at most ε.

The proof of Theorem 10.1 is relatively simple, while the proof of Theo-
rem 10.2 will require somewhat more work.

Proof of Theorem 10.1 Wewill choose a collection P1, . . . , PN of disjoint sets
of primes, and define

Qi :=
∏

j�i

∏

p∈Pj

p and Di := {
p · Qi−1 : p ∈ Pi

}

for each i ∈ [N ], where Q0 := 1. We will show that, for a suitable choice of
P1, . . . , PN , the set D = D1 ∪ · · · ∪ DN has the following properties:

∑

d∈D

1

d
� 1 + ε

3
, (30)

and there exists a collection of arithmetic progressions, with distinct moduli
in D, such that the uncovered set has density at most ε/3. By removing a few
of the progressions from this family, we will obtain the claimed collection
A1, . . . , Ak .
We construct the sets P1, . . . , PN of primes as follows. First, let us fix some

positive constants c0, c and δ such that

c0 := 1 + ε

3
, and c = δ

1 − e−δ
∈ (1, c0).
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Indeed, δ/(1 − e−δ) is a continuous increasing function of δ which tends to
1 as δ → 0, so for sufficiently small δ we have 1 < δ/(1 − e−δ) < c0.
Assume (without loss) that M > 3/ε, and choose N sufficiently large so that
e−δN < ε/3. Now let P1 be any set of primes such that p � M for every
p ∈ P1, and

δ �
∑

p∈P1

1

p
� δ + c0 − c

N
.

In general, if we have already constructed P1, . . . , Pj , then let Pj+1 be any set
of primes (disjoint from P1 ∪ · · · ∪ Pj ) such that p � M for every p ∈ Pj+1,
and

δe−δ j �
∑

p∈Pj+1

1

p · Q j
� δe−δ j + c0 − c

N
. (31)

As the sum
∑

1/p over prime p diverges, it is clear that sets P1, . . . , PN exist
with these properties. It follows that

∑

d∈D

1

d
=

N−1∑

j=0

∑

p∈Pj+1

1

p · Q j
�

N−1∑

j=0

(

δe−δ j + c0 − c

N

)

� c0 = 1 + ε

3
,

where in the final inequality we used the identity
∑∞

j=0 δe−δ j = δ
(
1 −

e−δ
)−1 = c.
Now, to construct the arithmetic progressions, simply choose (for each d ∈

D in turn) any arithmetic progression with modulus d that has at least the
expected intersection with the (as yet) uncovered set. To be more precise, for
each j ∈ [N ] let A j denote the collection of arithmetic progressions whose
modulus lies in Dj , and write ε j := P0(R j ) for the density of the uncovered
set R j := ZQ j \ ⋃

A∈B j
A, where B j := A1 ∪ · · · ∪ A j . Now observe that if

d = p · Q j ∈ Dj+1, then there are p · |R j | congruence classes mod d that
completely cover R j . Hence there is a congruence class that covers at least a
fraction 1/(p · |R j |) of the as yet uncovered set. It follows that

ε j+1 � ε j

∏

p∈Pj+1

(

1 − 1

p · |R j |
)

� ε j · exp
(

− 1

|R j |
∑

p∈Pj+1

1

p

)

for each 0 � j � N − 1 (where ε0 := 1), and hence, by (31),

ε j+1 � ε j · exp
(

− Q j

|R j | · δe−δ j
)

= ε j · exp
(

− δe−δ j

ε j

)

.
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It now follows immediately by induction that ε j � e−δ j for every j ∈ [N ],
and in particular εN � e−δN � ε/3, by our choice of N .

We have therefore constructed a collection of arithmetic progressionswhose
set D of (distinct) moduli satisfies (30), and whose uncovered set has density
at most ε/3. To complete the construction, simply choose a maximal subset
D′ ⊂ D such that

∑
d∈D′ 1

d < 1, and observe that the density of the set
uncovered by

{
Ad : d ∈ D′} is at most

ε

3
+

∑

d∈D\D′

1

d
� ε

3
+ ε

3
+ 1

M
� ε,

as required.

The proof of Theorem 10.2 is similar to that of Theorem 10.1, but the details
are somewhat more complicated.

Proof of Theorem 10.2 Wewill again choose a large collection of disjoint sets
of primes, but this time we will arrange them in a tree-like structure, and our
common differences will be formed by taking products of certain subsets of
the primes along paths in the tree. To begin, let us choose t > 2 sufficiently
large so that tλ < et−3, and let P1 be a set of primes such that p � M for
every p ∈ P1, and

t − 1 �
∏

p∈P1

(

1 + 1

p

)

� t.

This is possible as the product
∏

p(1+ 1/p) over all primes is infinite, and by
taking only primes greater than t we can ensure that some finite product lands
in [t − 1, t]. Set

Q1 :=
∏

p∈P1

p and D1 := {
d > 1 : d | Q1

}
,

and choose a collection of arithmetic progressions A1 = {ad + dZ : d ∈ D1}
so as to minimize the density of the uncovered set R1 := ZQ1 \ ⋃

A∈A1
A. As

in the previous proof, this can be done (greedily) so that

P0(R1) �
∏

d∈D1

(

1 − 1

d

)

� exp

(

−
∑

d∈D1

1

d

)

� exp

(

1 −
∏

p∈P1

(

1 + 1

p

))

� e2−t .
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Now, for each x1 ∈ R1, let P
x1
2 be a set of new primes (i.e., disjoint for each

choice of x1, and disjoint from P1) such that p � M for every p ∈ Px1
2 , and

t − 1 �
∏

p∈P
x1
2

(

1 + 1

p

)

� t.

Set

Qx1
2 :=

∏

p∈P
x1
2

p and Dx1
2 := {

d · Q1 : d > 1 and d | Qx1
2

}
,

and choose a collection of arithmetic progressionsAx1
2 = {ad+dZ : d ∈ Dx1

2 }
so as to minimize the density of the uncovered set

Rx1
2 :=

{
(x1, y) : y ∈ ZQ

x1
2

}
\

⋃

A∈Ax1
2

A,

where (as usual) each A ∈ Ax1
2 is viewed as a subset ofZQ1 ×ZQ

x1
2
. Note that

P0
(
Rx1
2

)
� 1

Q1

∏

dQ1∈Dx1
2

(

1 − 1

d

)

� 1

Q1
· exp

(

1 −
∏

p∈P
x1
2

(

1 + 1

p

))

� e2−t

Q1
,

and hence, setting R2 := ⋃
x1∈R1

Rx1
2 and summing over x1 ∈ R1, we have

P0(R2) � |R1| · e
2−t

Q1
= P0(R1) · e2−t � e2(2−t).

To describe a general step of this construction, suppose that we have already
defined the tree of primes and progressions to depth i−1, and for each x1 ∈ R1,
x2 ∈ Rx2

2 ,…, xi−1 ∈ Rx1,...,xi−2
i−1 , choose a set Px1,...,xi−1

i of newprimes (disjoint
from all previously chosen sets) such that p � M for every p ∈ Px1,...,xi−1

i ,
and

t − 1 �
∏

p∈P
x1,...,xi−1
i

(

1 + 1

p

)

� t.

Set

Qx1,...,xi−1
i :=

∏

p∈P
x1,...,xi−1
i

p
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and

Dx1,...,xi−1
i := {

d · Q1 · Qx1
2 · · · Qx1,...,xi−2

i−1 : d > 1 and d | Qx1,...,xi−1
i

}
,

and choose a collection of arithmetic progressions Ax1,...,xi−1
i = {ad + dZ :

d ∈ Dx1,...,xi−1
i } so as to minimize the density of the uncovered set

Rx1,...,xi−1
i :=

{
(xi−1, y) : y ∈ ZQ

x1,...,xi−1
i

}
\

⋃

A∈Ax1,...,xi−1
i

A,

where, as before, each A ∈ Ax1,...,xi−1
i is viewed as a subset of ZQ1 × · · · ×

ZQ
x1,...,xi−1
i

. Setting Ri := ⋃
x1∈R1

· · ·⋃xi−1∈R
x1,...,xi−2
i−1

Rx1,...,xi−1
i , and repeat-

ing the calculation above, we obtain

P0
(
Rx1,...,xi−1
i

)
� 1

Q1 · · · Qx1,...,xi−2
i−1

∏

dQ1···Qx1,...,xi−2
i−1 ∈Dx1,...,xi−1

i

(

1 − 1

d

)

� e2−t

Q1 · · · Qx1,...,xi−2
i−1

,

and therefore

P0(Ri ) � P0(Ri−1) · e2−t � e(2−t)i ,

by induction. Hence, defining Ai to be the union of all Ax1,...,xi−1
i and A =

A1 ∪ · · · ∪ An , it follows that the uncovered set R has density

P0(R) = P0(Rn) � e(2−t)n → 0

as n → ∞.
It remains to show that

∑

d∈D

μ(d)

d
� C

for every n ∈ N, where D is the set of moduli of progressions in A. To prove
this, observe first that

μ(Q1) =
∏

p∈P1

(

1 + λ

p

)

�
∏

p∈P1

(

1 + 1

p

)λ

� tλ,
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and, assuming (as we may) that M � λ,

∑

d∈D1

μ(d)

d
=

∏

p∈P1

(

1 + μ(p)

p

)

− 1 �
∏

p∈P1

(

1 + 1

p
+ λ

p2

)

�
∏

p∈P1

(

1 + 1

p

)2

� t2.

Similarly, we have

∑

d∈Dx1
2

μ(d)

d
= μ(Q1)

Q1

∑

dQ1∈Dx1
2

μ(d)

d
� tλ+2

Q1

for each x1 ∈ R1, and, more generally,

∑

d∈Dx1,...,xi−1
i

μ(d)

d
�

μ
(
Q1 · · · Qx1,...,xi−2

i−1

)

Q1 · · · Qx1,...,xi−2
i−1

∑

d|Qx1,...,xi−1
i

μ(d)

d
� tλ(i−1)+2

Q1 · · · Qx1,...,xi−2
i−1

.

Hence, summing over i ∈ [n] and sequences x1 ∈ R1, . . . , xi−1 ∈ Rx1,...,xi−2
i−1 ,

we obtain

∑

d∈D

μ(d)

d
�

n−1∑

i=0

tλi+2 · P0(Ri ) �
n−1∑

i=0

tλi+2 · e(2−t)i < 2t2,

since tλ < et−3, as required.
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lem with square-free moduli. Algebra Number Theory 15, 609–626 (2021)

2. Dusart, P.: The kth prime is greater than k(log k + log log k − 1) for k � 2. Math. Comput.
68, 411–415 (1999)
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