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Abstract. We consider a compact perturbation H0 = S+K∗
0K0 of a self-adjoint operator

S with an eigenvalue λ◦ below its essential spectrum and the corresponding eigenfunction
f . The perturbation is assumed to be “along” the eigenfunction f , namely K0f = 0. The
eigenvalue λ◦ belongs to the spectra of both H0 and S. Let S have σ more eigenvalues below
λ◦ than H0; σ is known as the spectral shift at λ◦.

We now allow the perturbation to vary in a suitable operator space and study the con-
tinuation of the eigenvalue λ◦ in the spectrum of H(K) = S + K∗K. We show that the
eigenvalue as a function of K has a critical point at K = K0 and the Morse index of this crit-
ical point is the spectral shift σ. A version of this theorem also holds for some non-positive
perturbations.

Introduction

The first step in the proofs of several spectral geometry theorems is perturbing the operator
“along” a given eigenfunction f . To give a classical example, the Courant bound on the
number of nodal domains of the n-th eigenfunction f = fn of a Dirichlet Laplacian is shown
by introducing additional Dirichlet conditions along the zero set of f . The function f is
still an eigenfunction of the perturbed operator and, as a consequence, the corresponding
eigenvalue λ remains in the spectrum.

Recently, it was discovered that some nodal properties of eigenfunctions are related to
stability with respect to perturbation of the original operator of suitably defined energy
functionals. More precisely, the nodal deficiency of the n-th eigenfunction fn on a manifold
(defined as n minus the number of the nodal domains of fn) is equal to the Morse index of the
energy of the nodal partition with respect to variation of the partition boundaries [BKS12].
On graphs, the nodal surplus (defined as the number of zeros of fn minus n − 1) is equal
to the Morse index of λn considered as a function of the perturbation of the Schrödinger
operator by the magnetic field [Ber13, CdV13, BW14]. One is left wondering what other
types of perturbations can produce similar results. The answer is presented in this paper.
Essentially this is true for any “sufficiently rich” family of perturbations.

At this point, we set up notation and outline terms and conditions. Let H be a separable
Hilbert space with the inner product 〈·, ·〉 (assumed linear with respect to the second argu-
ment) and S : H → H be a self-adjoint operator bounded from below. Assume that below
its essential spectrum, S has an eigenvalue λ◦ with the eigenfunction f . Consider further a
self-adjoint non-negative1 perturbation operator P such that Pf = 0. This is a perturbation
“along” the eigenfunction f : f is also an eigenfunction of the perturbed operator H := S+P
with eigenvalue λ◦. Assume that λ◦ is simple in the spectrum of S + P . If λ◦ has index n

Date: April 22, 2021.
1Sign-indefinite perturbations will also be considered in the paper. Here, for simplicity, we assume non-

negativity.
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2 G. BERKOLAIKO AND P. KUCHMENT

in the spectrum of H, i.e. λ◦ = λn(S + P0) then, due to positivity of P0, λ
◦ = λn+σ(S) with

some integer σ ≥ 0. We call this value σ the spectral shift. In the special case when P0

has rank r <∞, one has 0 ≤ σ ≤ r.
We remark that, in the hindsight, the theorems about nodal surplus or deficiency men-

tioned above are in fact statements about the spectral shift followed by some known relation
between the index of the eigenvalue and the nodal count for the perturbed operator H. The
spectral shift σ and its relations to Morse indices is the primary object of interest here.
We now represent P as a product2 P = K∗

0K0, where K0 is a compact operator from
H to an auxiliary Hilbert space K and K0f = 0. We now allow the operator K0 to vary,
and consider the continuation of the eigenvalue λ◦ as a function of K. Namely, we consider
Λ(K) := λ(A+K∗K) such that Λ(K0) = λ◦. Due to the standard perturbation theory, this
function is (real-)analytic with respect to K. We will prove that Λ(K) has a critical point at
K = K0 and, if the family of variations K is “rich enough,” the Morse index of this critical
point is equal to the spectral shift σ. Here the Morse index is the number of negative
eigenvalues of the Hessian at the critical point of the function.
By “rich enough” we mean the following. Perturbations by operators annihilating f pre-

serve f as eigenfunction and do not affect the eigenvalue. We are interested in further
(“lateral”) perturbations, which do change the eigenvalue and carry information about the
spectral shift. To capture the entirety of this information (in the form of the Morse index),
the family of variations has to be transversal to the subspace of operators K such that
Kf = 0.

This result is important for a variety of extremal eigenvalue problems. For example, the
question of optimizing an eigenvalue with respect to the location of a given perturbation
has direct relevance to many applications, such as, for instance, photonic crystals (where
one is interested in impurity modes in spectral gaps, to confine photons in cavities), or
civil engineering (where the perturbation could be the introduction of extra supports in a
beam structure, and the first eigenvalue is proportional to the critical pressure at which
the structure will start to buckle). As mentioned above, our result also provides a unifying
framework for the nodal counting theorems. In this manuscript we derive and strengthen one
of them as an example. Finally, the classical tool of spectral theory, the Birman–Schwinger
operator (or Schur complement in linear algebra), arises naturally as the Hessian with respect
to variation of the perturbation. Its eigenfunctions are interpreted as giving the directions
in which the eigenvalue changes the most.

1. Main results in the simplified form

Let H and K be separable complex Hilbert spaces and denote by C := C(H,K) the Banach
space of compact linear operators from H to K.

Let λ◦ be an eigenvalue of a bounded below self-adjoint operator S : H → H, lying
below the essential spectrum of S; let f be the corresponding eigenfunction. Consider the
perturbed operator S +K∗

0K0, K0 ∈ C and assume K0f = 0 so that λ◦ is also an eigenvalue
of S+K∗

0K0. For a self-adjoint operator A we denote by N(λ◦;A) the number of eigenvalues
of A below λ◦ and denote by σ the spectral shift

σ = N(λ◦;S)−N(λ◦;S +K∗

0K0).

2This is a positive perturbation, however more general perturbations are treated in the main result.
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We will now allow the perturbation K0 to vary in the most general way, considering H(K) =
S +K∗K with K ranging over an open neighborhood of K0 in C.

Denote by F the subspace of C consisting of the rank one operators acting as x 7→ 〈f, x〉Hψ,
where ψ ∈ K. The subspace F is isometric to K and we have the direct3 decomposition
C = F ⊕ F ◦, where F ◦ is the subspace of operators K ∈ C vanishing on f , i.e. such that
Kf = 0.

Here is a somewhat simplified version of the main result:

Theorem 1.1 (Main Theorem — a simplified form). Let λ◦ be a simple eigenvalue of S with
eigenfunction f and let K0f = 0. Consider the family

H(K) = S +K∗K, K ∈ C(H,K). (1)

Assume that the eigenvalue λ◦ is also simple in the spectrum of H(K0) and let the function
Λ(K) := λ(H(K)) be its real analytic continuation defined in a neighborhood of K0 in C.
Then

(1) K = K0 is a critical point of the function Λ(K),
(2) the Hessian of Λ(K) at K = K0 is zero on the space F ◦ and is reduced by the

decomposition C = F ⊕ F ◦,
(3) the Hessian restricted to F is a quadratic form on F and its Morse index (number of

its negative eigenvalues) is equal to the spectral shift σ.

By a “critical point” we mean that the R-linear terms in the analytic expansion of Λ(K)
at K = K0 are zero. By the “Hessian” we mean the quadratic terms of the real analytic
expansion of Λ(K). The theorem above directly follows from a more general result, Theo-
rem 3.5 in Section 3, where we drop such restrictions as the simplicity of λ◦ in the spectrum
of S and H(K) being a positive perturbation of S.
It is also not necessary to vary K in all possible directions to recover the spectral shift

as the Morse index of Λ(K). Restricting K to a submanifold in C transversal to F ◦ we will
obtain the same result in Theorems 3.10 and 3.11.

2. Morse indices and Schur complements

2.1. Morse indices. We define first the indices that are involved in our main results. We
denote by σ(H) the spectrum of H and by σess(H) its essential spectrum, defined as the
complement of the set of λ ∈ C such that H − λ is Fredholm. We recall that for self-adjoint
operators, σ(H) is the disjoint union of σess(H) and the discrete spectrum σd(H), i.e. the set
of isolated eigenvalues of finite multiplicity.

Definition 2.1. Let H be a self-adjoint operator on H. For an interval I ⊂ R, we denote by
EI the (projector-valued) spectral measure of I corresponding to H. We define two indices
i− and i0 (which may be infinite) as follows:

i− : = dimRanE(−∞,0), (2)

i0 : = dimKerH, (3)

where Ker denotes the kernel of the operator and Ran denotes the range.
We will refer to i− as the Morse index and to i0 as the nullity of H.

3Throughout the paper we use the notation ⊕ for a direct sum and the notation ⊕̇ for an orthogonal sum
of subspaces. We note, however, that restricted to the subspace of C consisting of Hilbert–Schmidt operators,
the decomposition F ⊕ F ◦ becomes orthogonal.
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A well-known and very useful equivalent formula for i− (often called Glazman’s lemma,
see e.g. [BS91, Lemma 3.1 in Supplement 1]) looks as follows.

Lemma 2.2. The Morse index i− is the maximal dimension of a subspace M on which
operator H is negative, i.e. (x,Hx) < 0 for all x ∈ M, x 6= 0.

This interpretation of the Morse index allows for a simple, general, and surely well known
proof of the classical Sylvester’s law of inertia:

Lemma 2.3. Let H be a self-adjoint operator on H with domain Dom(H). If S is a bounded
invertible operator in H, then S∗HS is self-adjoint on the natural domain S−1(Dom(H)) and
and

i−(H) = i−(S
∗HS), (4)

i0(H) = i0(S
∗HS). (5)

Proof. Since (x, S∗HSx) = (Sx,HSx) on S−1(Dom(H)), the operator S−1 establishes an
isomorphism between subspaces in Dom(H) and Dom(S∗HS), which preserves the negativity
property (and in fact, the numerical range). �

2.2. Schur complement; finite dimensional case. We recall first the notion of the Schur
complement in the matrix case. Let

M =

(
A B
C D

)
(6)

be a block-matrix, with the diagonal block D being invertible.

Definition 2.4. The matrix A−BD−1C is called the Schur complement of D in M (or
just Schur complement, if no confusion can arise). We denote it as follows:

M/D := A− BD−1C (7)

The name (introduced by E. Haynsworth [Hay68]) comes from a well known J. Schur
determinant formula [Sch17], which was based on a Gauss elimination procedure reducing
M to the form (

A− BD−1C B
0 D

)
. (8)

2.3. Schur complement; unbounded operators. Let operator H be as in the beginning
of the section, and P1 be an orthogonal projector keeping the domain Dom(H) invariant,
i.e. P1 Dom(H) ⊂ Dom(H). We denote by H1 and H2 the ranges of projector P1 and
of the complementary projector P2 := I − P1 respectively. We thus have the orthogonal
decomposition

H = H1⊕̇H2. (9)

Thus, operator H can be represented in the block form

H =

(
A B

B̃ D

)
, (10)

where all blocks are closed operators between the corresponding spaces. Due to self-adjointness
of H, it checks out that A and D are self-adjoint in the spaces H1 and H2 correspondingly
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with the natural domains Pi(Dom(H)). Also, the operator B̃ : H1 → H2 is adjoint to
B : H2 → H1. We thus end up with the decomposition

H =

(
A B
B∗ D

)
. (11)

A thorough study of operators represented in this form can be found in [Tre08].
We need to remind the reader the following notion:

Definition 2.5. An operator D+ is said to be a generalized inverse to D if the following
equality holds:

DD+D = D. (12)

In other words, D+ is a right inverse to D on the range of D.

Remark 2.6. Different flavors of generalized inverses exist (see, for example, [BIG03, Chap. 9]),
but the above basic property is sufficient for our purposes. The reader should notice that an
operator D+ satisfying (12) always exists, for example defined on Ran(D), without requiring
D to be injective or surjective. A particular choice, satisfying more restrictive conditions
which guarantee uniqueness, is the Moore–Penrose (pseudo-)inverse.

The following formula, proved originally for matrices, goes back at least to a 1968 article
by Haynsworth [Hay68].

Theorem 2.7. Let H be a self-adjoint operator on H and let H1⊕̇H2 = H be the orthogonal
decomposition described above, in particular P1 Dom(H) ⊂ Dom(H).

(1) If 0 6∈ σess(D) and for some constant C > 0 and all x ∈ H2,

‖Bx‖H1
≤ C‖Dx‖H2

, (13)

then, with any choice D+ of the generalized inverse of D, the operator A− BD+B∗

is self-adjoint and

i−(H) = i−(D) + i−
(
A− BD+B∗

)
, (14)

i0(H) = i0(D) + i0
(
A− BD+B∗

)
, (15)

assuming the relevant indices are finite.
(2) If 0 6∈ σess(A) ∪ σess(D) and, in addition to (13),

‖B∗x‖H2
≤ C‖Ax‖H1

, (16)

for some C > 0, one has

i−(A)− i−(D) = i−
(
A− BD+B∗

)
− i−

(
D − B∗A+B

)
, (17)

i0(A)− i0(D) = i0
(
A− BD+B∗

)
− i0

(
D − B∗A+B

)
, (18)

assuming the relevant indices are finite.

Remark 2.8.

(1) Equations (14) and (15) are known in the matrix case as the “Haynsworth formula”,
usually formulated under the condition of invertibility of D. Extended version using
various flavors of generalized matrix inverses are also known, see e.g. [CHM74, HF85,
Mad88, JMRT87, Tia10] and [BCCM20, Thm A.1]. To the best of our knowledge, the
present version might be the first one for unbounded operators with not necessarily
invertible D (however, several similar results are contained in [Tre08]). Extending
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Definition 2.4, we will call the operator A−BD+B∗ the Schur complement M/D
of D in M .

(2) Condition (13) implies the inclusion KerD ⊂ KerB. In finite dimension, they are
equivalent.

(3) Part (1) of the theorem has a symmetric counterpart: if 0 6∈ σess(A) and (13) is
replaced with (16), one has

i−(H) = i−(A) + i−
(
D − B∗A+B

)
, (19)

i0(H) = i0(A) + i0
(
D − B∗A+B

)
, (20)

assuming the relevant indices of H and A are finite. This is used, in particular, to
prove part (2) of the theorem.

(4) Part (2) of the theorem shows that the spectral shift between the operators A and D
is the same as between their Schur complements. In particular, if indices of A and
D coincide, then those of M/A and M/D also do.

(5) According the Definition 2.1, we need 0 to be away from the essential spectrum of
the corresponding operator in order to have the indices i0 and i− well-defined. In
particular, i0 will be finite. But we need not assume finiteness of i− in order to use
(15) or (18).

Our proof of Theorem 2.7 mostly adheres to the existing proofs for matrices, except for
the use of Lemma 2.2 instead of the original definition of the indices. We prove the following
auxiliary statement first.

Lemma 2.9. Let D be a self-adjoint operator on H2 and let 0 6∈ σess(D). If condition (13)
holds for an operator B : H2 → H1, then the following properties hold:

(1) the operator BD+B∗ does not depend on the choice of the generalized inverse D+,
(2) for an arbitrary choice of D+, we have BD+D = B,
(3) there exists a self-adjoint choice of D+, such that the operator BD+ is bounded,

Proof. Since zero is not in the essential spectrum of D, D is Fredholm and its range D is
closed. From inequality (13) we have KerD ⊂ KerB and therefore RanB∗ ⊂ RanD =
RanD.

Let nowD+ be an arbitrary generalized inverse ofD. Equation (12) implies thatD(D+Dx−
x) = 0 for any x ∈ DomD, or, equivalently

D+Dx− x ∈ KerD ⊂ KerB. (21)

We apply B to (21) and obtain

BD+Dx− Bx = 0, (22)

establishing part (2) of the lemma.
Since RanB∗ ⊂ RanD, for a given y there exists an x ∈ DomD such that B∗y = Dx.

Then (22) becomes BD+B∗y = Bx and, since x did not depend on the choice of D+, neither
does the operator BD+B.

Finally, let P be the orthogonal projection onto the range of D, then D restricted to the
space PH1 = RanD is self-adjoint and has a bounded inverse, which we denote by D−1

P .
The generalized inverse4 P+ = PD−1

P P = D−1
P ⊕ 0 is self-adjoint (the latter representation

4This is, in fact, the Moore–Penrose inverse.
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is with respect to the decomposition H1 = RanD⊕̇KerD). Furthermore, (13) yields

‖BD+x‖H2
≤ C‖DD+x‖H1

= C‖Px‖H1
≤ C‖x‖H1

,

establishing part (3). �

Proof of Theorem 2.7. According to the lemma, it is enough to prove (14)-(15) for one par-
ticular choice of D+ and we will use the self adjoint D+ such that the operator BD+ is
bounded. This implies boundedness and invertibility of the operator matrix

Q :=

(
I BD+

0 I

)
.

We can now represent the operator matrix H as follows:

H =

(
A B
B∗ D

)
= Q

(
A− BD+B∗ 0

0 D

)
Q∗. (23)

Indeed, direct calculation shows

Q

(
A− BD+B∗ 0

0 D

)
Q∗ =

(
A− BD+B∗ +BD+D(D+)∗B∗ BD+D

D(D+)∗B∗ D

)
,

and the identities BD+D = B and (D+)∗ = D+ do the rest.
From Sylvester’s law of inertia (Lemma 2.3), we have that A−BD+B∗ is self-adjoint and

i− (H) = i−

((
A− BD+B∗ 0

0 D

))
= i−(D) + i−

(
A− BD+B∗

)
, (24)

by definition 2.1 and the orthogonal decomposition of the spectral projectors of the block-
diagonal operator matrix. The equality for i0 is established in the same way.

To establish the second part of the theorem, we reverse the roles of A and D and (with
estimate (16) playing the role of (13)) obtain

i−(H) = i−(A) + i−
(
D − B∗A+B

)
,

i0(H) = i0(A) + i0
(
D − B∗A+B

)
,

Using (14) and (15) to eliminate i−(H) and i0(H) we obtain the desired result. �

Remark 2.10. The Schur complement technique (and its close relatives) is very natural and
thus has been re-invented many times under various guises, e.g. as Dirichlet-to-Neumann
operators, m-functions for ODEs, Birman–Schwinger approach, and probably many others.

3. The main result

Let H and K be separable complex Hilbert spaces and, as before, we denote by C(H,K)
the Banach space of compact operators from H to K.

Definition 3.1. We denote by F the subspace of C(H,K) consisting of the operators Kψ

acting as
Kψ : x ∈ H 7→ 〈f, x〉ψ, (25)

for some ψ ∈ K.
The subspace F ◦ consists of operators K such that Kf = 0.

Remark 3.2. Alternatively, F can be defined as the subspace of K ∈ C(H,K) such that
KerK ⊃ f⊥ := {u ∈ H : 〈f, u〉 = 0}.
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Lemma 3.3.

(1) The correspondence ψ ↔ Kψ is an isometry between K and F .
(2) F ⊕ F ◦ = C.

Proof. To compute the operator norm of Kψ we use Cauchy–Schwartz inequality, keeping in
mind that ‖f‖ = 1,

‖Kψx‖K = |〈f, x〉|‖ψ‖K ≤ ‖ψ‖K‖x‖H,

with equality achieved when x = f .
The splitting of a K ∈ C(H,K) is given explicitly by

〈f, ·〉Kf ∈ F and K − 〈f, ·〉Kf ∈ F ◦.

�

Let H0 be a bounded below self-adjoint operator on H and λ◦ be its simple isolated
eigenvalue with the corresponding normalized eigenfunction f . Assume that the spectrum
of H0 below λ◦ consists of finitely many eigenvalues of finite multiplicity. Suppose also that
H0 is of the form

H0 = S +K∗

0ΩK0, with K0 ∈ F ◦, i.e. K0f = 0, (26)

where Ω is a bounded invertible self-adjoint operator5 on K, whose spectrum below zero
consists of finitely many eigenvalues of finite multiplicity, so i0(Ω) = 0 and i−(Ω) <∞.
Since K0f = 0, f is also an eigenfunction of S with the same eigenvalue λ◦. The essential

spectrum of S also lies above λ◦, although λ◦ may no longer be simple in the spectrum of S.
Let, as before, i−(H0 − λ◦) be the number of eigenvalues (counted with multiplicity) of

H0 below λ◦ and denote by σ the spectral shift

σ := σ(λ◦;S,H0) := i−(S − λ◦)− i−(H0 − λ◦). (27)

Remark 3.4. Notice that when Ω is positive, the spectral shift is also positive.

Consider the family of operators

H(K) = S +K∗ΩK, K ∈ C(H,K), (28)

so, in particular, H(K0) = H0.
Since λ◦ is a simple eigenvalue of H0 = H(K0), there is a real-analytic branch Λ(K) of

the eigenvalues of H(K) that is the continuation of λ◦ defined to a neighborhood Π of K0

in C(H,K). Real analyticity means, in particular, the existence of the expansion

Λ(K) = λ0 + A1(δK) + A2(δK) +O(‖δK‖3), (29)

where δK := K −K0 and Am : C(H,K) → R is homogeneous of degree m,

Am(α δK) = αmAm(δK), α ∈ R.

If A1 ≡ 0, we say that K0 is a critical point of Λ(K); the quadratic term A2 will be called
the Hessian of Λ(K) at K0.

Theorem 3.5 (Main Theorem — General Form).

(1) The function Λ(K) has a critical point at K = K0.

5A simple and essentially sufficient example is when Ω = (−IK
−

)⊕ IK+
with respect to some orthogonal

decomposition K−⊕̇K+ = K, with i−(Ω) = dim(K−) < ∞.
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(2) The Hessian A2 of Λ(K) at K0 is zero on the space F ◦ and is reduced by the decom-
position C(H,K) = F ⊕ F ◦ in the following sense: for any δKψ ∈ F and δKa ∈ F ◦,

A2(δKψ + δKa) = A2(δKψ). (30)

Restricted to F (which is viewed as a Hilbert space isometric to K), the Hessian A2

is a quadratic form.
(3) The Morse index (cf. Lemma 2.2) of the Hessian A2 on F is

i− (A2|F ) = σ + i−(Ω), (31)

where σ is the spectral shift defined in (27). In particular, if Ω is positive, then the
Hessian’s Morse index is equal to the spectral shift.

(4) The nullity of the Hessian A2 on F is

i0 (A2|F ) = m− 1, (32)

where m the multiplicity of the eigenvalue λ◦ in the spectrum of S. In particular,
if λ◦ is a simple eigenvalue of S, the critical point K = K0 is non-degenerate with
respect to variations δK ∈ F .

(5) The quadratic form A2|F corresponds to the bounded self-adjoint operator on K,

Q := Ω− ΩK0

(
H0 − λ◦

)+
K∗

0Ω, (33)

which is a compact perturbation of the operator Ω.

Remark 3.6. The operator Q of (33) often arises in spectral analysis of perturbations of the
form (28) (see [KK66, How70, Yaf92]); it is an operator-valued Herglotz function [GKMT01]
which is well-known for its role in Birman–Schwinger principle and spectral shift, see [GMN99,
Pus09, BGN18, BtEG20] and references therein. It is the Birman–Schwinger principle (see,
e.g. [Pus09, Thm. 4.1]) that extracts parts (3) and (4) of our Theorem from part (5). We
keep our proof self-contained by relating everything to Schur complement and Theorem 2.7.
The link between Schur complement and Birman–Schwinger operator has also been observed
before [Tre08].

Remark 3.7. The statement of the theorem may seem puzzling at first: how could any
information about the operator S be extracted from small perturbations of the “far away”
operator H0? This confusion is resolved by realizing that the operator K0, whose small
perturbations are used, is known, and thus S is defined by H0 and K0.

Remark 3.8. The spectral shift σ defined by (27) can be negative, but it cannot exceed the
rank of the negative part of the perturbation. Thus σ + i−(Ω) ≥ 0, which we would expect
for a Morse index.

Proof of Theorem 3.5. Let K be close to K0 and z be in a punctured neighborhood of λ◦.
The condition of z being in the spectrum of H(K) is equivalent to

1 = i0
(
H(K)− z

)
= i0

(
(S − z)−K∗(−Ω)K

)
. (34)

Consider the block operator on H⊕K
(
A B
B∗ D

)
:=

(
S − z K∗

K −Ω−1

)
,
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which is self-adjoint as a bounded perturbation of a self-adjoint block-diagonal operator.
The blocks S − z and −Ω−1 are invertible and therefore i0(A) = i0(D) = 0. Using identity
(18) of Theorem 2.7 we get6 an equivalent condition for z being equal to Λ(K):

i0
(
− Ω−1 −K(S − z)−1K∗

)
= 1. (35)

We decompose K in accordance to the direct sum C(H,K) = F ⊕ F ◦, see Lemma 3.3,

K = Kψ +Ka, Kaf = 0, Kψ = 〈f, ·〉ψ, with ψ = Kf. (36)

The operators Ka and Kψ are perturbations “along” f and “lateral” to it, correspondingly.
The operator in equation (35) can now be expanded as

Ω−1 + (Kψ +Ka)(S − z)−1(Ka +Kψ)
∗

= Ω−1 +Ka(S − z)−1K∗

a +Ka(S − z)−1K∗

ψ +Kψ(S − z)−1K∗

a +Kψ(S − z)−1K∗

ψ

= Ω−1 +Ka(S − z)−1K∗

a +
1

λ◦ − z
KψK

∗

ψ,

where we used

K∗

ψ = 〈ψ, ·〉f, (S − z)−1K∗

ψ =
1

λ◦ − z
K∗

ψ, KaK
∗

ψ = 0,

to eliminate middle terms. Furthermore, we can represent

1

λ◦ − z
KψK

∗

ψ =
1

λ◦ − z
〈ψ, ·〉ψ =Mψ

1

λ◦ − z
M∗

ψ,

whereMψ is the operator from C
1 to K acting as multiplication by ψ andM∗

ψ = 〈ψ, ·〉K : K →
C

1 is its adjoint.
We continue equation (35) with

1 = i0
(
− Ω−1 −K(S − z)−1K∗

)

= i0
(
− Ω−1 −Ka(S − z)−1K∗

a −Mψ

1

λ◦ − z
M∗

ψ

)

= i0

(
λ◦ − z +M∗

ψ

(
Ω−1 +Ka(S − z)−1K∗

a

)−1
Mψ

)
, (37)

where we used (18) on the bounded block operator on C
1 ⊕K defined by

(
A B
B∗ D

)
:=

(
λ◦ − z M∗

ψ

Mψ −Ω−1 −K(S − z)−1K∗

)
.

The correction terms on the left-hand side of (18) are zero because, for z in a punctured
neighborhood of λ◦, the blocks A and D are invertible; the latter is due to the following
simple lemma (see also [GKMT01, Eqs. (3.18)-(3.19)]).

Lemma 3.9. For z in a punctured neighborhood of λ◦,
(
Ω−1 +Ka(S − z)−1K∗

a

)−1
= Ω− ΩKa

(
H(Ka)− z

)−1
K∗

aΩ (38)

Proof of the Lemma. First we observe that since Kaf = 0, and Ka − K0 is small, λ◦ is an
isolated eigenvalue of H(Ka). Therefore, z is in the resolvent set of both S and H(Ka). We

6The fact that i−(−Ω) is possibly infinite is of no concern since we are dealing with nullity only.
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can now use the second resolvent identity for the operators S and H(Ka) = S +K∗
aΩKa to

directly verify that the product, in any order, of

Ω−1 +Ka(S − z)−1K∗

a and Ω− ΩKa

(
H(Ka)− z

)−1
K∗

aΩ,

is equal to IK. �

We apply Lemma 3.9 to equation (37) to get

i0

(
λ◦ − z +M∗

ψ

(
Ω− ΩKa

(
H(Ka)− z

)+
K∗

aΩ
)
Mψ

)
= 1.

Obviously, the generalized inverse
(
H(Ka)− z

)+
coincides with the inverse of H(Ka)− z in

a punctured neighborhood of λ◦. However, because Ran(K∗
a) is orthogonal to Ker

(
H(Ka)−

λ◦
)
, the expression Ka

(
H(Ka) − z

)+
K∗
a is now well-defined and continuous in z up to and

including the point z = λ◦.
Finally, we use the definition of Mψ and observe that the argument of i0 is a scalar,

resulting in the scalar equation for z to be the eigenvalue of H(K), i.e. the value of Λ(K) =
Λ(Ka +Kψ),

z = λ◦ +
〈
ψ,

(
Ω− ΩKa

(
H(Ka)− z

)+
K∗

aΩ
)
ψ
〉
. (39)

We now use the analyticity of Λ(K) to estimate the relevant terms with respect to the
perturbation δK = K −K0,

z = Λ(K) = λ◦ +O(‖δK‖),

ψ = Kf = (K −K0)f = O(‖δK‖),

Ka = K0 +O(‖δK‖).

Keeping only the leading order of the scalar product in (39) results in

Λ(K) = λ◦ +
〈
ψ,

(
Ω− ΩK0

(
H0 − λ◦

)+
K∗

0Ω
)
ψ
〉
+O(‖δK‖3). (40)

Comparing with expansion (29) we immediately identify

A1(δK) ≡ 0, (41)

A2(δK) =
〈
δKf,

(
Ω− ΩK0

(
H0 − λ◦

)+
K∗

0Ω
)
δKf

〉
. (42)

Since δKf = δKψf = ψ, the Hessian A2 does not depend on the part of the perturbation
from F ◦, completing the proof of parts (1) and (2) of the theorem. The Hessian A2 restricted
to F identified with K (see Lemma 3.3) corresponds to the self-adjoint operator Q : K → K,

Q := Ω− ΩK0

(
H0 − λ◦

)+
K∗

0Ω, (43)

which is a compact perturbation of the bounded operator Ω, establishing part (5) of the
Theorem.

Aiming to use Theorem 2.7 again, we let
(
A B
B∗ D

)
:=

(
Ω ΩK0

K∗
0Ω H0 − λ◦

)
,

which is self-adjoint as a bounded perturbation of a block-diagonal operator. We compute

D − B∗A+B = H0 − λ◦ −K∗

0ΩK0 = S − λ◦,

A− BD+B∗ = Ω− ΩK0(H0 − λ◦)+K∗

0Ω = Q.
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Since the conditions of part (2) of Theorem 2.7 are clearly satisfied, we can use equations (17)
and (18) to get

i−(Ω)− i−(H0 − λ◦) = i−(Q)− i−(S − λ◦) (44)

and

i0(Ω)− i0(H0 − λ◦) = i0(Q)− i0(S − λ◦). (45)

Taking into account notation σ = i−(S−λ
◦)− i−(H0−λ

◦) and m = i0(S−λ
◦), as well as the

identities i0(Ω) = 0 and i0(H0 − λ◦) = 1, we get statements (3) and (4) of the theorem. �

3.1. Restricted variation. It is also possible to restrict variations K of K0 to live on a
submanifold of L(H,K). The next results specify how much freedom of variation is enough
to capture the right Morse index.

Assume, as before, that λ◦ is simple eigenvalue of S+K∗
0K0 and an eigenvalue of S with the

same eigenfunction f (the latter may have a multiplicity m). Let also subspaces F, F ◦ ⊂ C
be defined as before. We will also denote by Π the projector onto F parallel to F ◦. After
identifying F with K, this mapping becomes very simple: K 7→ Kf .

Let N ⊂ C be a real C2-smooth Banach sub-manifold, such that K0 ∈ N , and let TK0
N ⊂

C denote the tangent space to N at K0.
We will be interested in the perturbations of the following form:

Λ(K) := K ∈ N 7→ Λ(S +K∗ΩK). (46)

In particular, Λ(K0) = λ◦. Now the following version of the main result holds:

Theorem 3.10. Suppose that Π : TK0
N → F is an isomorphism (which gives TK0

N the
structure of a Hilbert space). Then

(1) The point K0 is a critical point of the function Λ : K ∈ N 7→ Λ(S +K∗ΩK);
(2) The Hessian of Λ at K0 is a quadratic form on TK0

N whose Morse index is equal to
σ+ i−(Ω) and whose nullity is m−1, where σ is the spectral shift and m = i0(S−λ

◦).

Proof. The Hessian of Λ on N is the restriction of Hessian on F ⊕ F ◦ to TK0
. For any

K ∈ TK0
N we have A2(K) = A2(ΠK) by Theorem 3.5(2). The rest follows from Lemma 2.3

(with S = Π) and the results of Theorem 3.5. �

It is straightforward to upgrade this theorem to the following less restrictive statement:

Theorem 3.11. Suppose that Π : TK0
N → F is surjective (i.e., N is transversal to F ◦ at

their common point K0). Then

(1) The point K0 is a critical point of the function Λ : K ∈ N 7→ Λ(S +K∗ΩK);
(2) The Hessian of Λ at K0 (which is a function on TK0

N ) pushes down to a quadratic
form on the space TK0

N /(TK0
N

⋂
F ◦). The latter space is given Hilbert space struc-

ture by Π.
(3) the Morse index of this quadratic form is equal to σ+ i−(Ω) and its nullity is m− 1.
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Figure 1. Top: the eigenvalues of H(t,~0) as functions of t; red (larger) dots

highlight the eigenvalues of H(0,~0), black (smaller) dots indicate the values
of t where the lateral variation is explored in the bottom figures. Bottom:
the continuation of the eigenvalue 0 in the spectrum of H(0.1, ~s), H(1, ~s) and
H(2.5, ~s), correspondingly, shown as functions of ~s = (s1, s2).

4. Examples and applications

4.1. A numerical example. We illustrate our results with a simple numerical example.
Consider the 4× 4 matrix family

H(t, ~s) =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −2


+ tK(~s)∗K(~s), t ∈ R, ~s ∈ C

2, (47)

where

K(~s) = K0 + s1K1 + s2K2, K0 =

(
0 0.5 0.5 1.5
0 1 2 1

)
. (48)

The choice of K1 and K2 is random; the transversality condition of section 3.1 is satisfied
with probability 1.

The one-parameter family H(t,~0) is a perturbation of H(0,~0) along the eigenvector e1 of
the eigenvalue 0. As t increases, the eigenvalue 0 remains constant while the other eigenvalues
increase, see Fig. 1(top). This type of figure is usually called spectral flow.

The spectral shift at λ = 0 between H(0,~0) and H(t,~0) is visualized as the number of
eigenvalues crossing λ = 0 between 0 and t. Thus, at the values of t = 0.1, 1.0 and 2.5,
highlighted by black dots in Fig. 1(top), the spectral shift is 0, 1 and 2 correspondingly. The
spectrum of the lateral variations at these points (more precisely, the continuations of the
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q3 − γ
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1

γ
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1
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1
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Figure 2. Top left: the graph corresponding to operator H in Example 4.1.
Bottom left: the graph corresponding to operator S. Right: eigenvalues of the
matrix H(α) as function of α ∈ [−π, π]; the legend lists the “sign flip counts”
for the corresponding eigenfunction of H(0). We used q1 = 1, q2 = 2, q3 = 4
and q4 = 5.

eigenvalue 0 in the spectrum of H(0.1, ~s), H(1, ~s) and H(2.5, ~s)) is shown in the bottom row
of Fig. 1. As predicted by Theorem 3.10, the point ~s = (0, 0) is a minimum, saddle point
and maximum correspondingly.

4.2. An application: magnetic–nodal theorem. We will show that a recent theorem of
Berkolaiko and Colin de Verdière, which already has two different but complicated proofs
[Ber13, CdV13], is a simple consequence of the results of this paper. We start with a simple
example.

Example 4.1. Consider the matrix

H(α) =




q1 −1 0 0
−1 q2 −1 −1
0 −1 q3 −eiα

0 −1 −e−iα q4


 ,

which is a matrix representation of the magnetic Schrödinger operator on the graph in
Fig. 2, top left (precise definition will be given below). We are interested in the number
of sign flips of the n-th eigenvector f of H(0), which in this case can be described as
the number of pairs (j, k) ∈ {(1, 2), (2, 3), (2, 4), (3, 4)} such that fjfk < 0. We denote this
number by φn.

It was discovered in [Ber13] that φn is closely related to local behavior of eigenvalues of
H(α), shown in Fig. 2, right. Whether the eigenvalue λn(H(α)) experiences a minimum or
a maximum at α = 0 is determined by whether the quantity σn := φn − n + 1 is 0 or 1 (a
part of the result is that σn can only be 0 or 1 in this case). In other words, φn − n + 1 is
the Morse index of λn(H(α)).
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The relation to previous results comes from the fact that H(α) can be represented as

H(α) =




q1 −1 0 0
−1 q2 −1 −1
0 −1 q3 − γ 0
0 −1 0 q4 − 1/γ


+




0 0 0 0
0 0 0 0
0 0 γ −eiα

0 0 −e−iα 1/γ


 =: S + P (α),

where γ is adjusted so that P (0)f = 0 for a given eigenfunction f . The matrix S is a
Schrödinger operator on the tree shown in Fig. 2, bottom left. It was established by Fiedler
[Fie75] that any tree satisfies Sturm nodal theorem: the n-th eigenfunction has n − 1 sign
flips. The spectral shift of H with respect to S can then be interpreted as “extra number of
sign flips”7, compared to the baseline number n − 1. On the other hand, the spectral shift
is equal to the Morse index of λn(α) by Theorem 1.1 (or Theorem 3.5).

Let us now extend and formalize the above example. Let H be a real symmetric N ×
N matrix representing the Schrödinger operator (with generalized edge weights) on a
connected graph Γ = (V , E) in the following sense,

• V = {1, . . . , N},
• Hu,v = Hv,u,
• for u 6= v,

Hu,v 6= 0 ⇔ (u, v) ∈ E .

Let T be a spanning tree of Γ and let C = E(Γ)\E(T ). There are exactly β = |E|− |V|+1
edges in the set C. We assume the graph Γ is not a tree itself, i.e. β > 0.
Orient each edge in C in an arbitrary fashion and order the set C. Let ~α be a point in

the β-dimensional torus T
β := (−π, π]β and denote by H(~α) the magnetic Schrödinger

operator obtained from H by letting

H(~α)uj ,vj = eiαjHuj ,vj , H(~α)vj ,uj = e−iαjHvj ,uj , (49)

if (uj, vj) ∈ C and H(~α)u,v = Hu.v otherwise. We note that H(0) = H.

Theorem 4.2 (And extended version of [Ber13, CdV13]). Let ~α◦ ∈ {0, π}β, let λ◦ be the n-th
eigenvalue in the spectrum of H (~α◦). Assume λ◦ is simple and the corresponding eigenvector
f has no zero entries. Consider Λ(~α), the smooth continuation of the eigenvalue λ◦ in the
spectrum of H(~α). Then

(1) Λ(~α) has a critical point ~α = ~α◦,
(2) the Morse index of the critical point is equal to the nodal surplus of f defined as

σ = φ(f,Γ)− (n− 1), (50)

where φ(f,Γ) is the flip count of f with respect to the graph Γ,

φ(f,Γ) = # {(u, v) ∈ E : − fufvH(~α◦)u,v < 0} . (51)

Proof. For an e = (v1, v2) ∈ C, define

se = sgn (−H(~α◦)v1,v2fv1fv2) , pe =
√
|H(~α◦)v1,v2fv2/fv1 |,

7Under some simplifying assumptions, in the quantity σ = φ− (n− 1), the number of sign flips φ remains
the same — since the eigenfunction f is unchanged — but the position n of the eigenvalue in the spectrum
may change due to the spectral shift
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and introduce a β × |V| matrix K(~α)

K(~α)e,v =





pese if v = v1,

ei(αe−α
◦

e)H(~α◦)v1,v2/pe if v = v2,

0 otherwise,

where e = (v1, v2) ∈ C.

A direct calculation shows that K(~α◦)f = ~0.
Let Ω be the diagonal β × β matrix of signs se and consider the matrix

S := H(~α)−K(~α)∗ΩK(~α), ~α ∈ R
β. (52)

The elements of S corresponding to the edges e ∈ C are zero; moreover the matrix S is
independent of ~α. In other words, the matrix-function

HC(~α) := S +K(~α)∗ΩK(~α), ~α ∈ C
β (53)

coincides with H(~α) for real ~α.
Consider the function ΛC(~α) = λn

(
HC(~α)

)
. By Theorems 3.5 and 3.108 its Hessian at

~α = ~α◦ is the operator (33) which is a matrix with real entries. Being real, it coincides with
the Hessian of the function Λ(~α) = λn

(
H(~α)

)
of the real argument. Furthermore, its Morse

index µ is equal to m− n+ ω−, where m is such that λ◦ = λm(S) and ω− is the number of
e ∈ C with se < 0.
The graph corresponding to the matrix S is the spanning tree T = Γ \ C we chose, and

we have

φ(f,Γ) = φ(f, T ) + ω−.

Because the matrix T is acyclic and the eigenfunction f has no zero entries, the eigenvalue
λ◦ is simple in the spectrum of S, see [Fie75], and the critical point ~α◦ of the function Λ(~α)
is non-degenerate.

The same paper [Fie75] also established that φ(f, T ) = m − 1, where m is as above, i.e.
the number of the λ◦ in the spectrum of S. Combining all of the above, we get

µ = m− n+ ω− = 1 + φ(f, T )− n+ ω− = φ(f,Γ)− (n− 1).

�
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