On Computing the Hyperparameter of Extreme Learning Machines:
Algorithm and Application to Computational PDEs, and
Comparison with Classical and High-Order Finite Elements

Suchuan Dong? Jielin Yang
Center for Computational and Applied Mathematics
Department of Mathematics
Purdue University, USA

(May 4, 2022)

Abstract

We consider the use of extreme learning machines (ELM) for computational partial differential equa-
tions (PDE). In ELM the hidden-layer coefficients in the neural network are assigned to random values
generated on [—Ry,, Ry, and fixed, where R,, is a user-provided constant, and the output-layer coeffi-
cients are trained by a linear or nonlinear least squares computation. We present a method for computing
the optimal or near-optimal value of R,, based on the differential evolution algorithm. The presented
method enables us to illuminate the characteristics of the optimal R,, for two types of ELM config-
urations: (i) Single-Rm-ELM, corresponding to the conventional ELM method in which a single R,
is used for generating the random coefficients in all the hidden layers, and (ii) Multi-Rm-ELM, cor-
responding to a modified ELM method in which multiple R,, constants are involved with each used
for generating the random coefficients of a different hidden layer. We adopt the optimal R,, from this
method and also incorporate other improvements into the ELM implementation. In particular, here we
compute all the differential operators involving the output fields of the last hidden layer by a forward-
mode auto-differentiation, as opposed to the reverse-mode auto-differentiation in a previous work. These
improvements significantly reduce the network training time and enhance the ELM performance. We sys-
tematically compare the computational performance of the current improved ELM with that of the finite
element method (FEM), both the classical second-order FEM and the high-order FEM with Lagrange
elements of higher degrees, for solving a number of linear and nonlinear PDEs. It is shown that the
current improved ELM far outperforms the classical FEM. Its computational performance is comparable
to that of the high-order FEM for smaller problem sizes, and for larger problem sizes the ELM markedly
outperforms the high-order FEM.

Keywords: eztreme learning machine, local extream learning machine, neural network, least squares,
nonlinear least squares, differential evolution

1 Introduction

This work focuses on the use of extreme learning machines (ELM) for computational partial differential
equations (PDEs). ELM was originally developed in [29, 30] for linear classification/regression problems
with single hidden-layer feed-forward neural networks, and has since found wide applications in a number
of fields; see the reviews in [28, 1] and the references therein. Two strategies underlie ELM: (i) random but
fixed (non-trainable) hidden-layer coeflicients, and (ii) trainable linear output-layer coefficients determined

by a linear least squares method or by using the pseudo-inverse of the coefficient matrix (for linear problems).

*Author of correspondence. Email: sdong@purdue.edu

The ELM type idea has also been developed for nonlinear problems; see e.g. [12, 13] for solving stationary
and time-dependent nonlinear PDEs in which the neural network is trained by a nonlinear least squares
method. Following [13], we broadly refer to the artificial neural network-based methods exploiting these
strategies as ELM type methods, including those employing neural networks with multiple hidden layers and
those for nonlinear problems [57, 59, 12, 13, 19].

Our research is motivated by the following questions:

e (Can artificial neural networks provide a competitive technique for scientific computing and in particular

for computational PDEs?

e Can we devise a neural network-based method for approximating PDEs that can outcompete traditional

numerical techniques in computational performance?

These questions have been hanging in the air ever since the early studies on neural networks for differential
equations in the 1990s (see e.g. [40, 45, 46, 8, 66, 38]). The remarkable success of deep learning [22] in the
last decade or so has stimulated a significant amount of efforts in the development of deep neural network
(DNN) based PDE solvers and scientific machine learning [34, 54, 50, 17, 60]. By exploiting the universal
approximation property of neural networks [26, 27, 5, 43], these solvers transform the PDE solution problem
into an optimization problem. The field function is represented by a neural network, whose weight/bias
coefficients are adjusted to minimize an appropriate loss function. The differential equation, the boundary
and initial conditions are then encoded into the loss function by penalizing some residual norms of these
quantities in strong or weak forms [38, 39, 54, 50, 17, 68, 37]. The differential operators involved therein are
usually computed analytically with shallow neural networks in the early works (see e.g. [38]), and in modern
implementations they are typically computed by auto-differentiation [2] available from the common machine
learning libraries such as Tensorflow (www.tensorflow.org) and PyTorch (pytorch.org). The minimization of
the loss function is performed by an optimizer, which is usually based on some flavor of gradient descent
or back propagation type techniques [63, 23] (see [7] for a combined gradient descent-least squares training
algorithm). The optimization process constitutes the predominant computations in the neural network-based
PDE solvers, and it is commonly known as the training of the neural network. We refer the reader to the
recent works in e.g. [33, 32, 42] (among others) for the use of domain decomposition and parallelization to
improve the cost of network training. Upon convergence of the optimization process, the PDE solution is
given by the neural network, with the adjustable weight /bias parameters set based on their converged values.
A number of prominent works on DNN-based PDE solvers have appeared in the literature, and we refer the
reader to e.g. [50, 54, 17, 51, 64, 24, 36, 68, 62, 52, 42, 33, 32, 7, 58, 3, 61, 14] (among others), and also the
review article [34] and the references contained therein.

As discussed in [12], while their computational performance is promising, the existing DNN-based PDE
solvers suffer from several drawbacks: limited accuracy, general lack of convergence with a certain convergence
rate, and extremely high computational cost (very long time to train). We refer the reader to [12] for more
detailed discussions of these aspects. These drawbacks make such solvers numerically less than attractive and

computationally uncompetitive. There is mounting evidence that these solvers, in their current state, seem to

fall short and cannot compete with traditional numerical methods for commonly-encountered computational
PDE problems (especially in low dimensions) [12].

The pursuit for higher accuracy and more competitive performance with neural networks for computa-
tional PDEs has led us in [12, 13] to explore randomized neural networks (including ELM) [53, 20]. Since
optimizing the entire set of weight/bias coefficients in the neural network can be extremely hard and costly,
perhaps randomly assigning and fixing a subset of the network’s weights will make the resultant optimization
task of network training simpler, and ideally linear, without severely sacrificing the achievable approxima-
tion capacity. This is the basic strategy in randomizing the neural networks. In ELM one assigns random
values to and fixes the hidden-layer coefficients, and only allows the output-layer (assumed to be linear)
coefficients to be trainable. For linear problems, the resultant system becomes linear with respect to the
output-layer coefficients, which can then be determined by a linear least squares method [29, 48, 16, 12, 13, 4].
Random-weight neural networks similarly possess a universal approximation property. This property has
been investigated in e.g. [31, 41, 30]. We refer the reader to [31] (Theorem 1, on page 1323) and [30] (Theorem
I1.1, on page 882) for the universal approximation theorem for random-weight neural networks with a single
hidden layer (hidden-layer coefficients randomly assigned, output-layer coefficients trained). For example, it
has been shown in [30] that a single hidden-layer feed-forward neural network having random but fixed (not
trained) hidden nodes can approximate any continuous function to any desired degree of accuracy, provided
that the number of hidden units is sufficiently large. In [31] (Theorem 3, on page 1324) an estimate of the
expected rate of convergence for the approximation of Lipschitz continuous functions with random-weight
neural networks is provided; see also [49].

In [12] we have developed a local version of the ELM method (termed locELM) for solving linear and
nonlinear PDEs, which combines the ideas of ELM, domain decomposition, and local neural networks. We
use a local feed-forward neural network to represent the field solution on each sub-domain, and impose C*
(with an appropriate k) continuity conditions on the sub-domain boundaries. The weight/bias coefficients
in all the hidden layers of the local neural networks are preset to random values generated on [—R,,, Rp]
(R, denoting a user-provided constant) and fixed, and the weights of the linear output layers of the local
networks are trained by a linear least squares method for linear PDEs or by a nonlinear least squares method
for nonlinear PDEs. For time-dependent linear/nonlinear PDEs, we have introduced a block time marching
scheme together with locELM for long-time dynamic simulations. Note that locELM reduces to (global) ELM
if a single subdomain is used in the domain decomposition. Most interesting is that locELM is highly accurate
and computationally fast. This method exhibits a clear sense of convergence with respect to the degrees of
freedom in the neural network. For smooth PDE solutions, its numerical errors decrease exponentially or
nearly exponentially as the number of training parameters or the number of training data points increases,
reminiscent of the spectral convergence of traditional high-order methods such as the spectral, spectral
element or hp-finite element (high-order finite element) type techniques [35, 56, 69, 67, 15, 10, 9, 44, 65]. When
the number of degrees of freedom (number of training collocation points, number of training parameters)
becomes large, the errors of locELM can reach a level close to the machine zero.

More importantly, it is shown in [12] that the computational performance (accuracy, computational cost)

of locELM is on par with that of the classical FEM (2nd order, linear elements), and locELM outperforms
the classical FEM for larger problem sizes. Here for locELM the computational cost refers to the time
for training the neural network and related computations, and for FEM it refers to the FEM computation
time (see [12] for details). By “outperform” we mean that one method achieves a better accuracy under
the same computational budget/cost or incurs a lower computational cost to achieve the same accuracy.
More specifically, there is a cross-over point in the relative performance between locELM and the FEM with
respect to the problem size. The classical FEM typically outperforms locELM for smaller problem sizes, and
for larger problem sizes locELM outperforms the classical FEM [12].

Some comparisons between locELM and the high-order FEM (employing high-order Lagrange elements)
for the 2D Poisson equation have also been conducted in [12]. Tt is observed that the locELM method can
outperform the Lagrange elements of degree 2, but can barely outperform the Lagrange elements of degree
3. The method as implemented in [12] cannot outcompete high-order FEM with element degrees 4 or larger.
Overall the method of [12] seems competitive to some degree when compared with the high-order FEM, but
it is in general not as efficient as the latter as of the writing of [12]. This inefficiency in comparison with
high-order FEM is the primary motivator for the current work.

We would like to mention that in [12] a systematic comparison between locELM and two state-of-the-art
DNN-based PDE solvers, the deep Galerkin method (DGM) [54] and the physics-informed neural network
(PINN) method [50], has also been performed. It is shown that locELM outperforms PINN and DGM by a
considerable degree. The numerical errors and the computational cost (network training time) of locELM
are considerably smaller, typically by orders of magnitude, than those of DGM and PINN.

In the current paper we present improvements to the ELM technique (which also apply to locELM) in two
aspects. First, we present a method for computing the optimal (or near-optimal) value of the R,, constant
in ELM, i.e. the maximum magnitude of the random hidden-layer coefficients. Note that in [12] R,, is
estimated by using a preliminary simulation with manufactured solutions for a given problem. The method
presented here is based on the differential evolution algorithm [55], and seeks the optimal R,, by minimizing
the residual norm of the linear/nonlinear algebraic system that results from the ELM representation of the
PDE solution and that corresponds to the ELM least squares solution to the system. This method amounts
to a pre-processing procedure that determines a near-optimal value for R,,, which can be used in ELM for
solving linear or nonlinear PDEs.

The procedure for computing the optimal R,,, enables us to investigate two types of ELM methods based
on how the random hidden-layer coefficients are assigned: Single-Rm-ELM and Multi-Rm-ELM. The Single-
Rm-ELM configuration corresponds to the conventional ELM method, in which the weight/bias coefficients
in all the hidden layers are set to random values generated on [—R,,, R;,], with a single R,, for all hidden
layers. The Multi-Rm-ELM configuration corresponds to a modified ELM method, in which the weight /bias
coefficients for any given hidden layer are set to random values generated on [—R,,, R,;], with a different
R,, value for a different hidden layer. Therefore, multiple R,, constants are involved in Multi-Rm-ELM for
assigning the random coeflicients, with each corresponding to a different hidden layer. The characteristics of

the optimal R,, corresponding to these two types of ELM configurations are studied and illuminated. The

Multi-Rm-ELM configuration leads to more accurate simulation results than Single-Rm-ELM.

The second aspect of improvement is in the implementation of the ELM method. A major change in
the current work lies in that here we compute all the differential operators involving the output fields of
the last hidden layer of the neural network by the forward-mode auto-differentiation, implemented by the
“ForwardAccumulator” in the Tensorflow library. In contrast, in the ELM implementation of [12] these
differential operators are computed by the default reverse-mode auto-differentiation (“GradientTape”) in
Tensorflow. Because in ELM the number of nodes in the last hidden layer is typically much larger than that
of the input layer, this change reduces the ELM network training time dramatically.

Building upon these improvements, in the current paper we systematically compare the current improved
ELM with the classical FEM (2nd-order) and the high-order FEM employing Lagrange elements of higher
degrees (with both h-type and p-tye refinements [35, 11]) for solving a number of linear and nonlinear PDEs.
We show that the improved ELM far outperforms the classical FEM. The ELM’s computational performance
is comparable to that of the high-order FEM for smaller problem sizes, and for larger problem sizes the ELM
markedly outperforms the high-order FEM. Overall, the current ELM method is computationally far more
competitive than the classical FEM, and is more competitive than or as competitive as the high-order FEM.

As in [12], the ELM method here is implemented in Python using the Tensorflow and Keras (keras.io)
libraries. The classical FEM and the high-order FEM are implemented in Python using the FEniCS library,
in which the linear and higher-order Lagrange elements are available.

The rest of this paper is structured as follows. In Section 2 we present the method for computing
the optimal R, constant(s) with the Single-Rm-ELM and Multi-Rm-ELM configurations based on the
differential evolution algorithm. In Section 3 we investigate the characteristics of the optimal R,,, and study
the effect of the network/simulation parameters on the optimal R,, for function approximation and for
solving linear/nonlinear PDEs. We compare systematically the computational performance of the ELM
and the classical/high-order FEMs for solving the differential equations. In Section 4 we summarize the
common characteristics of the optimal R,, in Single-Rm-ELM and Multi-Rm-ELM and also the performance
comparisons between ELM and classical/high-order FEM to conclude the presentations. The Appendix

provides a study of the effect of activation functions on the ELM accuracy with the Poisson equqation.

2 Computing the Optimal R,, Constant(s) in ELM
2.1 The Maximum Magnitude of Random Coefficients (R,,)

When the ELM method is used to solve linear /nonlinear PDEs, the hidden-layer coefficients are set to uniform
random values generated on the interval [—R,,, R;,], where R, is a user-defined constant (see [12, 13]). The
R,, constant is a hyperparameter of the ELM method. Its value can have a marked influence on the accuracy
of the ELM results [12]. The best accuracy is typically associated with R, from a range of moderate values,
while very large or very small R,, values can result in simulation results with poor or poorer accuracy
(see [12] for details). For a given problem, in [12] the R,, (or the optimal range of R,,) is estimated by

preliminary simulations using some manufactured solution.

One goal of this work is to devise a method to attain the optimal or near-optimal value of the constant R,
for a given problem. This method enables us to explore and study the characteristics of and the effects of the
simulation/network parameters on the optimal R,,. In particular, it enables us to look into a modified ELM
method, which employs multiple R,, constants, each for generating the random coefficients of a different
hidden layer, in a deeper neural network. The use of multiple R,,, constants in ELM leads to more accurate
simulation results. It would be extremely difficult, and often practically impossible, to determine an optimal
vector of R, values without the automatic procedure.

The method for computing the optimal R, presented here amounts to a pre-processing procedure. It
only needs to be performed when a given problem (or some configuration) is considered for the first time.
The R,, in ELM can then be fixed to the value obtained by the method in subsequent computations. As
will become clear in later sections, the optimal R, is insensitive to the number of training collocation points
and has a quite weak dependence on the number of training parameters. In addition, the R, values in a
range around the optimal R, lead to comparable and essentially the same accuracy as the optimal R,,.
Therefore, for a given problem one can basically employ a specific set of collocation points and a specific
number of training parameters to compute the optimal R,, using the method developed here. Then in
subsequent computations one can fix the R,, in ELM at the returned value for a different set of collocation
points or different number of training parameters. This is especially useful in long-time dynamic simulations
of time-dependent PDEs by the block time marching scheme [12]. The pre-processing computation for the
optimal R,, only needs to be performed using the spatial-temporal domain of the first time block. Then the

R,, fixed at the returned value can be used for ELM computations on all the time blocks.

2.2 ELM Configuration with a Single R,, Constant (Single-Rm-ELM)

We now develop a procedure for computing the optimal R,,, constant in ELM for solving partial differential
equations. Consider a domain 2 in d (d = 1, 2 or 3) dimensions, and the following generic boundary value

problem on €2,

L(u) = f(x), (1a)
B(u) = g(x), on 09, (1b)

where L and B are differential (or algebraic) operators that may be linear or nonlinear, u(x) is the field
function to be solved for, f and g are given functions (source terms) in the domain or on the domain
boundary 992. We assume that this problem is well-posed.

We solve this problem using a feed-forward neural network by the ELM method (see [12]). Let the vector
[Mo, My, ..., My] denote the architecture of the neural network, where (L + 1) is the number of layers in the
neural network with L > 2, and M; > 1 denotes the number of nodes in layer i (0 < ¢ < L). The input layer
(i.e. layer 0) to the neural network represents the coordinate x, with My = d. The output layer (i.e. layer
L) represents the field solution u(x), with M, being the dimension of u. Those layers in between are the
hidden layers.

The neural network logically represents a parameterized function constructed through repeated function

compositions with a nonlinear activation function and repeated affine transforms [22]. More specifically, we
choose a set of @ discrete points (collocation points) on the domain €2, among which @} (1 < Q) < Q) points

reside on the boundary 02, and these are the training data points. We use
Z={x,€0,1<i<Q}, and Zp={x; € Zand x; €00, 1 <i<Qp} (2)

to denote the set of all collocation points and the set of boundary collocation points, respectively. Let the
matrix X of dimension @ x My denote the coordinates of the collocation points, which are the input data to
the network. Let the matrix U of dimension @ x M}, denote the output data of the neural network, which
represent u(x) on the collocation points. Let the matrix ®; of dimension @) x M; denote the output data
of layer I (0 <1< L), with &5 = X and ®;, = U. Then the logic of the hidden layer I (1 <1< L —1)is
represented by

P, =0(®_1W;+b)), 1<I<L-1, (3)

where o(-) is the activation function, W; is a constant matrix of dimension M;_; x M, representing the
weight coeflicients of layer I, and b; is a row vector of dimension 1 x M, representing the biases of this layer.
Note that we have used the convention (as in the Python language) here that when computing the right
hand side of (3) the data in b; will be propagated along the first dimension to form a @ x M; matrix.
With the ELM method, we follow [12] to set the weight/bias coefficients in all the hidden layers, (W, b;)
for 1 <1< L —1, to uniform random values generated on [—R,,, Ry, and fix their values (not trainable)
once they are set. The output layer is required to be linear, i.e. without the activation function, with zero

bias. The logic of the output layer is given by,
U=%, W, (4)

where W, is a My _1 x M}, constant matrix denoting the weights of the output layer, which are the trainable
parameters of the ELM neural network.

On the continuum level, the relation (4) becomes the following in terms of the coordinate x,

M
ui(x) =Y V;(x)B;, 1<i< M, (5)

j=1
where u = (u1,uz,...,unm,), Wi = [Bijlps, pr,» and M = My_q denotes the number of nodes in the last

hidden layer, which can be large in the ELM neural network. V;(x) (1 < j < M) are the output fields of the
last hidden layer, whose data on the collocation points are given by ®_1.
Substituting the expression (5) for u(x) into the system (1), enforcing (1a) on all the collocation points

in Z and enforcing (1b) on all the boundary collocation points in Z;,, we have

M

L ZVj(xp)ﬁj =f(x,), forallx,eZ, 1<p<Q, (6a)
j=1
M

B ZVJ(Xq)ﬁj =g(xy), forallx, € 7, 1<q<Qy, (6b)
j=1

where B8; = (8j1,08j2,---,8;m,). This is a system of (Q + @) algebraic equations about the training
parameters Wy, = [3;;] My xar, - Lhis system is linear with respect to 3;; if the original system (1) is linear
with respect to u, and it is nonlinear if the original system (1) is nonlinear. Following [12], we solve this
algebraic system (6) for 3;; by the linear least squares (LLSQ) method if it is linear, and by the nonlinear
least squares method with perturbations (NLLSQ-perturb) if it is nonlinear; see [12] for details.

What has been discussed so far is the main idea of the ELM method from [12] for solving the system (1).
Let us now consider how to determine the optimal value for the R,,, constant.

We first modify the generation of the random hidden-layer coefficients as follows. Let Nj, = Zfz_ll (My_1 + 1) M,
denote the total number of hidden-layer coefficients (weights/biases) in the neural network. We first generate
a set of Ny uniform random values on the interval [—1, 1], which will be denoted by the vector £ of length
Np. Once £ is generated, it will be fixed throughout the computation. Given a constant R,,, the vector
R,,& contains a set of Nj, random values on [—R,,, R;,], and we will set the random hidden-layer coefficients,
(Wi, by) for 1 <1< L—1, by the random vector R,,&. With this modification the R,, constant becomes a
scaling coefficient, and it is not confined to positive values. In the following discussions R,,, can in principle
assume positive, zero, or negative values.

Let ﬁiLjS (1 <4< Mp_1,1<j < M) denote the least squares solution to the system (6) obtained
by the linear or nonlinear least squares method. Define the residual vector r, with length (Q + Q3), of the

system (6) at the least squares solution,

M
L (Zj-l Vi (xp, Rin) fs) —f(xp) L (u’5(x,, Rpn)) — £(x,)
r(Rpy) = [-----mo oo e = [roeereem e (7)
B (3000, 1 (g, Rn) BF) — (x,) B (0" (xg, Rn)) — 8(xq)
where 855 = (5%, L5, ..., JLA%L), uls = EJM:1 V;Bf® is the least squares solution, x, € Z and x, € Zj,.

Note that here the dependence of the residual r(R,,), the output fields of the last hidden layer Vj(x, R.,),

and the least squares solution u”? (x, Ry,) on the scaling coefficient R,, has been made explicit. Let
j<:(Rm) = Hr(Rm)H (8>

denote the Euclidean norm of the residual vector r(R,,).
We seek the optimal value R,,o for R,, such that the norm KX(R,,) is minimized, i.e.

R0 = ar%min K(Rpm). (9)

This is an optimization problem of a scalar function with a single variable. Note that the derivative X'(R,;,)
may be approximated by finite difference. But in general X'(R,,) cannot be computed directly based on the
system (6), if this system is nonlinear. This is because of the nonlinear least squares solution BiLjS involved

therein. If this system is linear X'(R,,) can be computed from (6) in principle.

Algorithm 1: Computing the cost function X(R,,) in Single-Rm-ELM

input : R,,; input data X to neural network; fixed random vector £, of length N, containing
uniform random values on [—1, 1].
output: X(R,,).

update the hidden-layer coefficients, (W, b;) for 1 <1< L —1, by R,€

compute ®;_; by evaluating the neural network (first (L — 1) layers) on the input data X

solve system (6) for 355 by the linear or nonlinear least squares method from [12]

update the output-layer coefficients Wy, by BiLjS (I<i<Mr1,1<j< M)

compute u”®, L(u?®) and B(u”®) by evaluating the neural network on X and by
auto-differentiation

6 compute the residual vector r(R,,) by equation (7)

7 compute K(R,,) by equation (8)

(S N I

A number of methods can be used for solving the problem (9). In the current work we adopt the differential
evolution (DE) algorithm [55] for computing R,,o. Differential evolution is a population-based evolutionary
(genetic) algorithm for continuous functions. The implementation of differential evolution is available in
several scientific libraries, e.g. the Tensorflow-Probability library (www.tensorflow.org/probability) and the
scipy library. In the current paper we employ the scipy implementation for the differential evolution algo-
rithm. This algorithm requires, as an input argument, a routine for evaluating the cost function X(R,,) for

any given R,,. The procedure for computing X(R,,) is summarized in Algorithm 1.

Remark 2.1. If the system (6) is linear, then in line 2 of the Algorithm 1 one also needs to the compute the
derivatives of ®1,_1 involved in the L(u) and B(u) operators. This can be done by auto-differentiation. In
this case, in line 5 of Algorithm 1, one can compute u™ by equation (4), and compute L(u*®) and B(u*?)
by multiplying W, to the appropriate derivatives already computed in line 2.

When solving a linear system (6), it is important to avoid implementations of linear least squares solvers
employing normal equations (e.g. the Tensorflow’s “Istsq” routine with the default “fast” option), which can
lead to severe ill-conditioning and significantly lower accuracy, even if the original system is only moderately
ill-conditioned [21]. In the current paper (and in [12]), we employ the linear least squares routine from the

LAPACK, available through the wrapper function in the scipy package (“scipy.linalg.lstsq”).

Remark 2.2. The computation for R,,o amounts to a pre-processing procedure, which can be performed when
a given problem setting or neural network setup is considered for the first time. In subsequent computations
the R, in ELM can be fized to the attained Ry (or a value nearby). Numerical experiments indicate that the
optimal R, in Single-Rm-ELM is not sensitive to the number of collocation points and only weakly depends
on the number of training parameters, and that the R,, values in a range around the optimum R,,o lead to
essentially the same accuracy as R,,o. Therefore, in general one can use a specific set of degrees of freedom
(number of collocation points and training parameters) in the pre-processing run to compute the optimal
R,,. Then the R, fized at the obtained value can be used in subsequent computations with other sets degrees
of freedom or simulation parameters. Oftentimes one would like to perform a series of simulations with a
simulation parameter varied in a range of values, e.g. varying the number of training parameters between 10

and 500. In this case, one can compute the Ryo in the pre-processing run with a representative value for

this parameter. One can typically use a larger value (e.g. the largest or close to the largest value) for this

stmulation parameter. The resultant R,,0 can be used for R, to perform the planed series of simulations.
When computing the R0 during pre-processing we require that the number of collocation points be suffi-

ciently large such that in the system (6) the number of equations is larger than the number of unknowns. This

18 to try to avoid the regime where, if the system is linear, its coefficient matrixz may become rank deficient.

Remark 2.3. The methods for computing the optimal R,, and for solving PDEs using ELM all involve
random number generators. Given a specific problem to be solved, in the current work we require that the
seed for the random number generator be fized when computing the R,,o during pre-processing and when using
the ELM with a fixed R,, to solve the PDE subsequently. In other words, the random number generator should
be initialized by the same fixed seed in all these computations. The specific seed value is unimportant, as long
as the random numbers are all generated by that seed. This is to ensure that the random coefficients of the
neural network in the pre-processing run for computing the R0, and in the subsequent ELM runs using the
attained Rp,o value, are generated by the same seed. A fized and known seed value also makes all the ELM
simulation results (their numerical values) deterministic and exactly reproducible. We follow this convention

in all the numerical experiments reported in Section 3.

Remark 2.4. In addition to differential evolution, we have also considered the simplicial homology global
optimization (SHGO) algorithm [18] (implementation also available from scipy) for computing the Ry,o. The
results from SHGO and from differential evolution are comparable. We only consider the results from the
differential evolution algorithm in Section 3. When one uses the differential evolution implementation from
scipy a pair of values, (Rmin, Rmax), needs to be provided to serve as the lower/upper bounds for the range

of Ry, values.

Remark 2.5. One should note that the computed R,y is but a reference value in practice. The R,, values in
a neighborhood of R, typically lead to simulation results with comparable or essentially the same accuracy.
Therefore, in ELM simulations one can usually employ a “nicer” R, value that is close to R, instead
of R itself. For example, with an R0 = 1.24931 obtained from the method, one can typically employ

R,, = 1.25 in subsequent ELM computations to attain results with the same or similar accuracy.

Remark 2.6. For a nonlinear system (6), when computing R0 one can turn off the initial-guess perturba-
tions and the associated sub-iterations in the NLLSQ-perturb method (see [12] for details). In other words,
in the Ry,o computation we can solve the nonlinear algebraic system (6) for f;; using the nonlinear least
squares method without perturbations. This is because only the relative merits of different R,, values are
important when computing the optimal R,,. Once the R0 is obtained, one can turn on the perturbations in

the subsequent ELM computations with the NLLSQ-perturb method.

Remark 2.7. If the PDE is time-dependent and the temporal domain [0,T] is small, we can treat the time
variable t in the same way as the spatial coordinate x, e.g. by treating t as the (d+1)-th independent variable,
and generate collocation points in the spatial-temporal domain Qx [0,T]. Therefore, the foregoing discussions
equally apply to solving the initial-boundary value problems and for computing the optimal R,, with time-

dependent PDEs. If the temporal domain is large (large T), we employ the block time marching (BTM)

10

scheme (see [12] for details) together with the ELM method for solving the problem. The temporal domain
is divided into a number of windows (time blocks) and the problem is computed block by block [12].

When using ELM together with block time marching for time-dependent PDFEs, in the pre-processing run
for computing the optimal R, one only needs to use the first time block. In other words, when computing
R0 we can use a smaller spatial-temporal domain in the computation, which consists of only the first time
block (not the entire temporal domain). The resultant Ryo can then be used subsequently in the ELM/BTM

simulations for all the time blocks in the entire spatial-temporal domain.

Remark 2.8. When the domain is partitioned into multiple sub-domains and the system (1) is solved by
the locELM method (see [12] for details), the procedure for computing the optimal R, remains essentially
the same. The modification lies in that in the system (6) one needs to additionally include the C* continuity
conditions (see [12]) on the collocation points of the sub-domain boundaries. The residual vector in (7) needs

to be modified accordingly to include these additional equations.

2.3 ELM Configuration with Multiple R,, Constants (Multi-Rm-ELM)

We next consider a modified ELM method that involves multiple R,, constants for setting the random
hidden-layer coefficients, and present a procedure for computing the optimal values of these constants. This
modified ELM has the advantage over the conventional ELM from Section 2.2 that it leads to generally more
accurate simulation results. The notation below follows that of Section 2.2.

We modify the ELM configuration for solving the system (1) as follows. Instead of setting the coeffi-
cients for all the hidden layers to random values from [—R,,, R,,] with a single R,,, we set the weight/bias
coefficients for each different hidden layer to random values generated on an interval with a different R,,.
Specifically, we set the weight/bias coefficients in hidden layer I, (W, b;) for 1 < I < L — 1, to uniform
random values generated on [fqul@), qul@)], where R\ (1 <1< L—1) are user-prescribed constants (hyperpa-
rameters). The random hidden-layer coefficients are again fixed once they are assigned. This modified ELM
provides increased freedom for generating the random hidden-layer coeflicients.

Let us consider how to determine the optimal or near-optimal values for these R,(ql@) constants. We first
generate, for each hidden layer I (1 < I < L — 1), a set of (M;_1 + 1)M; uniform random values on the
interval [—1, 1], which will be denoted by the vector & of length (M;_; + 1)M;. Once the random vectors
& (1 <1< L-—1) are generated, they will be fixed throughout the computation. Given the constants RrY
(1 <1< L—1), the random hidden-layer coefficients (W, b;) will be set by the random vector Rffz)fl for

1<I<L—1. Let Ry = (R, RY, ... RE!

)). Then R, represents the set of scaling parameters for the
random hidden-layer coefficients.

We use a procedure analogous to that of Section 2.2 for computing the optimal R,,,. We solve system (6)
by the linear or nonlinear least squares method, and let BZ-L]-S (1<i< Mp_q,1<j< M) denote its least

squares solution. Let u”d(x) = Z]M:1 Vj(x)ﬁjLS denote the least squares solution to the system (1). The

11

Algorithm 2: Computing the cost function X(R,,) in Multi-Rm-ELM

input : R, = (Rg,?, ceey R%_l)); input data X; fixed random vectors &, of length (M;_1 + 1)M,;
and containing uniform random values on [—1,1], for 1 <! < N — 1.
output: X(R,,).

update the hidden-layer coefficients (W, b)) by RY€, for 1 <1< L —1

compute ®;_; by evaluating the neural network (first (L — 1) layers) on the input data X

solve system (6) for 6{;5 by the linear or nonlinear least squares method from [12]

update the output-layer coefficients Wy, by ,BiLjS (I1<i<Mp_1,1<j<Myp)

compute u®, L(u’®) and B(u’®) by evaluating the neural network on X and by
auto-differentiation

6 compute the residual vector r(R,,) by equation (10)

7 compute X(R,,) by equation (11)

[SLTNE NI VR

residual vector of the system at the least squares solution is given by

where the dependence on R,,, has been explicitly specified. Note that now r depends on the multitude of

R,(f} (1 <1< L—1) constants. Consider the Euclidean norm of the residual vector
K(Rom) = [r(Ron)]| (1)
We seek the optimal value R,,o for Ry, such that X(R,,) is minimized, namely,

R0 = argmin X(R,,). (12)
R

We solve the optimization problem (12) again by the differential evolution algorithm [55] and employ its
scipy implementation. This algorithm requires the valuation routine for the cost function X(R,,) for any
given R,,. K(R,,) can be evaluated by a modification of the Algorithm 1, and the modified version is
summarized in Algorithm 2.

The modified ELM method involves the multiple components of R,,. An automatic procedure is essential
for computing the optimal or near-optimal R, in this case. It would be extremely difficult, and practically

impossible if the neural network becomes deeper, to determine a near-optimal R,,, manually such as in [12].

Remark 2.9. For neural networks with a single hidden layer, the modified ELM method would contain a
single R,, and is therefore identical to the conventional ELM for this case. If the neural network consists
of two or more hidden layers, the modified ELM and the conventional ELM will generally be different. It
is observed that the modified ELM with multiple R, constants generally leads to a better accuracy than the

12

conventional ELM, under the same network architecture and the same number of collocation points. The cost
for computing the optimal R, in the modified ELM is generally larger than that for computing the optimal
R, in the conventional ELM. Note that a list of lower-/upper-bound pairs, each for a component of Ry,

needs to be provided when using the scipy routine of the differential evolution algorithm.

Remark 2.10. Several parameters are important and can influence the accuracy when the differential evo-
lution routine in scipy (scipy.optimize.differential_evolution) is invoked. These include the population size,
the bounds for R,, (or R,,), and the relative tolerance for convergence. The size of the population must be
at least 4, as required by the differential evolution algorithm [55]. We observe that a population size in the
range of 6 to 10 will typically suffice. While a large population size can in principle produce more accurate
results, in reality this can make the algorithm harder to converge and take significantly more iterations, with
little improvement in the obtained result. As mentioned previously, a pair of bounds [Rmin, Rmax) for Ry in
Single-Rm-ELM (or pairs of bounds for R, in Multi-Rm-ELM, each for a component of R,,) needs to be
provided to the routine. Since R, is in a range of moderate values, we typically employ a range [0.01,5] (or
[0.01,3]) for R,, and also for the R,, components in the numerical tests. A larger range can ensure that the
true optimum R,,g will not be missed, but on the other hand may not produce a very accurate R,,o under
a given maximum number of iterations. An appropriate narrower range is conducive to attaining a more
accurate R,,o. One can therefore also start out with a larger range to get a rough estimate for R,q, and then
narrow down the range based on the rough estimate to obtain a more accurate R,,g. The relative tolerance
refers to the tolerance on the ratio between the standard deviation and the mean of the objective function
values within the population. A small enough tolerance ensures that all members of the population will reach
the minimum upon convergence. We observe that a relative tolerance around 0.1 would typically lead to very
good simulation results. Even smaller tolerance values can substantially increase the number of iterations,
with little improvement in the obtained results. In the current paper we employ a relative tolerance 0.1 for all
the numerical tests in Section 3. In addition to the above parameters, the scipy routine can also optionally
polish the obtained result in the end using a local minimizer. We observe that the local polishing typically
has little or no tmprovement on the result. In the current paper no polishing is performed on the result from
the differential evolution algorithm. We typically employ a maximum of 50 generations in the differential

evolution algorithm for the numerical tests.

Remark 2.11. We would like to emphasize that there is one major difference between the current paper and
our previous work [12] in terms of the ELM implementation, for computing the V;(x) (last hidden-layer output
fields) and the differential operators involving V; (see equation (6)). In [12] these differential operators are
computed by the default reverse-mode auto-differentiation (“GradientTape”) in Tensorflow. In the current
work we have employed the forward-mode auto-differentiation (implemented by the “ForwardAccumulator”
in Tensorflow) for computing the differential operators involving V;(x). This modification has sped up the
computations and significantly reduced the ELM network training time in the current paper, when compared
with that of [12]. This is because in ELM the number of nodes in the last hidden layer is typically much
larger than that of the input layer, which is particularly suitable for forward-mode auto-differentiations.

In the current paper we have compared extensively the current implementation of the ELM method with

13

the finite element method (FEM), including both the classical second-order FEM and the high-order FEM
with Lagrange elements [6], in terms of their accuracy and computational cost (FEM computation time,
ELM network training time). We observe that, for time-dependent PDEs, the ELM method combined with
block time marching consistently and far outperforms the FEM (both 2nd-order and high-order FEM). For
stationary PDEs, ELM outperforms FEM (both 2nd-order and high-order FEM) for essentially all problem
sizes, except for a range of very small problem sizes. By “outperform” we mean that one method achieves a
better accuracy under the same computational budget/cost or incurs a lower computational cost to achieve
the same accuracy. These observations can be contrasted with those of [12], where the comparisons between
ELM (locELM) and FEM are also performed. In [12] it is observed that: (i) ELM (with the implementation
therein) outperforms the classical 2nd-order FEM for larger problem sizes; (i) ELM is competitive to some
degree compared with the high-order FEM, but is not as efficient as the latter. With the improvements in the
algorithm and implementation in the current work, the ELM method far outperforms the classical second-
order FEM. Furthermore, ELM can markedly outperform the high-order FEM. It is more efficient than or
as efficient as the high-order FEM. The comparisons between ELM and the classical and high-order FEMs
will be detailed in Section 3.

3 Numerical Examples

In this section we use several numerical examples, with linear/nonlinear and stationary/dynamic PDEs in
two dimensions (2D), or in one spatial dimension (1D) plus time for dynamic problems, to demonstrate the
effectiveness of the presented method for computing the optimal R,,. We also compare the current improved
ELM method with the classical second-order and high-order finite element methods (FEM) with regard to

their accuracy and computational cost.

3.1 General Notes on the Implementations

We first provide some implementation notes on the ELM and FEM. They apply to all the numerical tests
in the following subsections.

The ELM method is implemented in Python, employing the Tensorflow (www.tensorflow.org) and the
Keras (keras.io) libraries. In particular, the differential operators involving the output fields of the last hidden
layer are computed using the forward-mode auto-differentiation employing the “ForwardAccumulator” in
Tensorflow, as stated before. We use the Gaussian activation function, o(z) = e*xQ, in all the hidden nodes
for all the test problems in Section 3.

In the pre-processing run for computing the optimum R, (or R.,0), we have monitored and recorded the
wall time for R,,o (or R,,0) computation using the “timeit” module in Python. The R,,0/R.,0 computation
time includes all the time spent in the iterations with the differential evolution algorithm and the update
of the random hidden-layer coeflicients with the final R,,o (or R,,0) value upon convergence. Within every
differential evolution iteration, the primary computations involve the evaluation of X(R,,) or X(R,,) using
the Algorithm 1 or Algorithm 2 for a given R,, or R,,.

When ELM is used to solve a PDE with a given R,, (or R,,), the computational cost refers to the

14

training time of the ELM neural network. The ELM network training time includes the computation time
for the output fields of the last hidden layer (V;(x)) and the associated differential operators involving these
field functions, the computation time for the coefficient matrix and the right hand side for the linear least
squares problem, the computation time for the residual of the nonlinear algebraic system and the associated
Jacobian matrix for the nonlinear least squares problem, the solution time for the linear/nonlinear least
squares problem, and the update time of the output-layer coefficients by the linear /nonlinear least squares
solution. Note that, following the protocol in [12], this time does not include, after the network is trained,
the evaluation time of the neural network on a set of given data points for the output of the solution data.

In the current paper, the computations for V;(x) (output fields of the last hidden layer) and the associated
differential operators are implemented as “Tensorflow Functions” (tf.function) executed as a computational
graph [22]. When these functions are invoked for the first time, the Tensorflow library builds the computa-
tional graph by “autograph and tracing” the operations contained in these functions, and performs graph
optimizations. When they are invoked subsequently, the computations are performed directly in the graph
mode, which generally speeds up the computations significantly. The autograph/tracing operations during
the first invocation of the Tensorflow Functions can slow down the computations notably. This means that
the network training time when the ELM training routine is invoked for the first time can be markedly
larger than that when the training routine is invoked subsequently. We will illustrate this difference with
some specific test problems in the following subsections. In the comparisons between ELM and FEM, the
ELM network training time refers to the time obtained with the computations in the graph mode (no
autograph/tracing).

The finite element method is implemented also in Python, by using the FEniCS library (fenicsproject.org).
The FEM implementations for different problems follow those in [12], which we refer the reader to for more
detailed discussions.

When FEM is used to solve a given PDE, the computational cost refers to the FEM computation time.
The computation time includes the symbolic specifications of the mesh, the finite element space, the trial /test
function spaces, the variational problem, the forming and solution of the linear system [12]. All these
operations are handled by FEniCS, and are opaque to the user. Note that the FEM computation time does
not include the output of the solution data after the problem is solved.

As pointed out in [12], when the FEM code is run for the first time, the FEniCS library compiles the
key operations in the Python code into a C++ code using Just-in-Time (JIT) compilers, which is in turn
compiled by the C++ compiler and then cached. In subsequent runs of the FEM code, the cached operations
are used directly in the FEM computation, making it significantly faster. Therefore, the FEM computation
time when the code is run for the first time (with JIT compilation) is considerably larger than that when the
code is run subsequently (no JIT compilation). In the comparisons between ELM and FEM for different test
problems in the following subsections, the FEM computation time refers to the time collected by “timeit”
in subsequent runs of the FEM code (other than the first run, no JIT compilation). All the timing data in
this paper are collected on a MAC computer (Intel Core i5 CPU 3.2GHz, 24GB memory) in the authors’

institution.

15

Here are some further comments on the random number generators. In the current ELM implementation,
the random vector £ in Algorithm 1, the random vectors & (1 <1< L —1) in Algorithm 2, and the random
perturbations in the NLLSQ-perturb method [12] for solving nonlinear PDEs, are all generated by the random
number generator from the Tensorflow library. The random numbers involved in the differential evolution
routine of the scipy library are generated by the random number generator from the numpy package in
Python. In order to make the simulation results reported here exactly reproducible, we employ the same
seed value for the random number generators in both Tensorflow and numpy for all the numerical tests in
Section 3. In addition, the seed value is fixed for all the numerical experiments within a subsection (see also
Remark 2.3). Specifically, the seed value is 1 for the numerical tests in Section 3.2, 10 for those in Section
3.3, 25 for those in Section 3.4, and 100 for those in Section 3.5, respectively. This seed value is passed to
the scipy differential evolution routine when invoking that algorithm.

We would like to mention another implementation detail in ELM for all the numerical tests in the following
subsections. When implementing the neural network model in Keras, between the input layer (representing
(z,y) in 2D or (z,t) in 1D plus time) and the first hidden layer, we have added an affine mapping to normalize
the (z,y) or (z,t) data. Suppose (z,y/t) € a1, b1] X [az, b2], then this affine mapping normalizes the (z,y) or
(z,t) data from [a1, b1] X [az, bo] to the domain [—1, 1] x [—1, 1]. This mapping is implemented as a “lambda”
layer in Keras. Because of this affine mapping, all the data into the first hidden layer are normalized. Note
that this lambda layer is not counted toward the number of hidden layers in the neural network.

Finally, we would like to comment on the evaluation of the neural network and the computation of the
maximum and rms ELM errors after the neural network has been trained. In the current paper we mostly
consider regular rectangular domains for 2D (or 1D plus time) problems, although the ELM simulation of
the Poisson equation on an irregular domain has also been performed (see Figure 17). For regular domains,
we adopt the following protocol for training the neural network, and for evaluating the neural network to

compute the ELM errors after the network is trained:

e For a given neural-network architecture, we train the network on a uniform set of Q@ = Q1 X @1
collocation points (uniform regular grid points) on the domain with the linear or nonlinear least squares
method. In other words, the coordinate data of these () collocation points are the input data to the

neural network.

e After the neural network is trained, we evaluate the neural network on another finer set of Qepar =
Q2 X Q2 uniform regular grid points on the domain to attain the ELM solution data, where Q5 is
chosen to be much larger than @;. We evaluate the exact solution for the problem (if available) on
the same set of Q2 x Q2 grid points. Then we compare the ELM solution data and the exact solution

data on the Q2 x @2 grid points to compute the maximum/rms errors on the domain.

e We refer to the maximum/rms errors as computed above as the ELM errors associated with the given
neural network architecture and the Q) = Q1 X @ training collocation points. The ELM errors presented

in all the subsequent subsections are computed in this way.

e In the convergence tests with respect to the number of collocation points @, as @} is varied in a

16

0.8 4

: ‘lIIIl'
06

>

04 ‘II"
02

0 02 04y 08 0.8 1 (E%) [02 04 X [[1 (1))

064

044

024

Ubabbnio-nehaadeo

Figure 1: Function approximation: (a) Distribution of the function to be approximated. (b) Illustration of
the uniform collocation points (with 5 x 5 points here) used in the ELM simulation.

prescribed range for the training, we employ a fixed set of Qeypqr = Q2 X Q2 grid points for the network

evaluation and error computation, with ()2 much larger than the largest 1 in the prescribed range.

e If the block time marching scheme (see Remark 2.7) is used together with the ELM method for solving
time-dependent problems, the collocation points Q = Q1 X Q1 and the valuation points Qcypqi = Q2 X Q2

as discussed above refer to the points within each time block.

o If the locELM method [12] together with domain decomposition is used for solving a problem (see
Remark 2.8), the collocation points @ = @1 X @1 and the valuation points Qevar = Q2 X Q2 as

discussed above refer to the points within each sub-domain.

In the current paper, we employ Qv = 101 x 101 (i.e. Q2 = 101) for evaluating the neural network and
compute the ELM errors for all the test problems on regular domains in Sections 3.2 to 3.5.

For irregular domains, we employ a total of @ collocation points (equally-spaced points on the domain
boundaries, and random points inside the domain) for the network training. For evaluating the neural
network and computing the ELM errors, we partition the irregular domain into several sub-regions and
generate a fine set of structured mesh points within each sub-region in an ad hoc fashion. The ELM
maximum/rms errors on the irregular domain are then computed based on the ELM solution data and the
exact solution data on the collection of structured mesh points. Please refer to Section 3.3 (the discussions

of Figure 17) for the details in this regard.

3.2 Function Approximation

In the first example we consider the approximation of a 2D function using ELM and illustrate the effects of
the network /simulation parameters on the optimal R,,. The numerical results in this subsection are obtained
using a seed value 1 in the random number generators in both Tensorflow and Numpy.

We consider the unit square domain Q = {(z,y) | 0 < z,y < 1}, and the following function on 2,

3 3 I m 3 3 9m U
flz,y) = [2 cos (27mc + 20) + 2cos (37T:13 - 5)] [2 cos (27ry + 20) + 2cos (37ry - 5)} . (13)

Figure 1(a) illustrates the distribution of this function. Given f(z,y) on a set of data points, we would

like to approximate f by ELM. The function approximation problem is equivalent to the problem (1), with

17

2 3r 1
—6— NN:[2,250,1] s .
---Ac-- NN: [2, 100, 250, 1] A m g :’:,’J]M 1 —6— NN:[2,50,50,M, 1]
. ----g---- NN: [2, 100, 100, 250, 1] . s NN:[2,100, 100, M, 1] . ----Ac-- NN: [2,100, 100, M, 1]
E 2 E 0.8
s O/e/@\s—e—e—e/g\o — =
i m | i
£ £ E o6
o o« o
Qo iy <@
(o)) [} (o))
£ £ £ 04r
2] Iz 2]
205} =] =]
£ BB £ E
o %_” A BB Ao A A o A A % % o 02
e A A A
20 .3‘0 K % .5‘0 K G 0 100 200 300 00 500 0 100 200 300 400 500
Collocation points per direction (a) Number of training parameters (b) Number of training parameters (C)

Figure 2: Function approximation (Single-Rm-ELM): The optimum R,,,o versus (a) the number of collocation
points per direction and (b) the number of training parameters, with neural networks of different depth. (c)
R0 versus the number of training parameters with neural networks having the same depth but different
width. @ =31 x 31 in (b,c), varied in (a). M = 250 in (a), varied in (b,c).

L(u) = u and without the boundary condition (1b). So the PDE is reduced to an algebraic equation,

u= f(z,y), (14)

where u(z,y) is the approximant given in the form of an extreme learning machine.

We use a feedforward neural network to represent u(z,y), with a total of (L + 1) layers. The input
layer (layer 0) contains two nodes, representing (z,y). The output layer (layer L) is linear and contains one
node, representing u(z,y). The network consists of one or more hidden layers, with the Gaussian activation
function for all the hidden nodes. As stated in Section 2, the network architecture is characterized by
the vector [My, My, ..., My], where M; denotes the number of nodes in layer ¢ (0 < ¢ < L). The specific
architecture of the neural networks are given below. We use M = M _1 to denote the width of the last
hidden layer (or number of training parameters). M is either fixed or varied systematically below.

We employ a set of uniform grid points, Q = Q1 x @1, as the collocation points on €2, where ()1 denotes
the number of uniform collocation points along both = and y directions. Therefore, there are)7 uniform
collocation points on each boundary of 2. Figure 1(b) illustrates this distribution with @ =5 x5 collocation
points. The input data to the neural network consist of the coordinates of all the collocation points. @7 is
either fixed or varied systematically in the numerical tests. We assume that the function values f(z,y) are
given on the collocation points.

With the above settings, we employ the Single-Rm-ELM and Multi-Rm-ELM configurations from Section
2 to solve this problem. The difference of these two configurations lies in the setting of the random hidden
layer coefficients in the neural network, as detailed in Section 2. The ELM maximum/rms errors presented
below are computed based on the ELM solution data and the exact solution data on a uniform set of
Qevar = 101 x 101 grid points on the domain, as discussed in Section 3.1.

Let us first look into the Single-Rm-ELM configuration, and we employ the method from Section 2.2
to compute the optimal R,, based on the differential evolution algorithm. We have considered several
neural network architectures with different depths and widths, and Figure 2 illustrates the characteristics

the optimum R,,,¢ obtained from the method.

18

Figure 2(a) depicts the R, as a function of the number of uniform collocation points in each direction
(Q1) for three neural networks as specified in the legend with one to three hidden layers. The number of
training parameters is fixed at M = 250, and the widths of the preceding hidden layers are fixed at 100 in
them. In this group of tests, for each neural network, we vary the number of collocation points systematically
between (Q = 20 x 20 and @ = 60 x 60, and for each set of collocation points we compute the optimum
R,,0. We have employed a population size 6, the bounds [0.01, 3] for R,,, and a relative tolerance 0.1 in
the scipy differential evolution routine. We can make two observations from Figure 2(a). First, R, is
largely insensitive to the number of collocation points with Single-Rm-ELM. In other words, R,,o remains
essentially the same as the number of training data points varies. Second, R,,o tends to decrease with
increasing number of layers in the neural network. There is a big drop in R,,q from a single hidden layer
to two hidden layers. Beyond two hidden layers, as the network depth further increases, the decrease in
R0 is slight and sometimes almost negligible. These seem to be the common characteristics of R,,q with
Single-Rm-ELM, which will appear repeatedly in other test problems.

Figure 2(b) shows the effect of the number of training parameters (M) on Ry, with three network
architectures as given in the legend. In this group of tests, we employ a fixed set of Q = 31 x 31 uniform
collocation points, and vary the number of training parameters systematically between M = 50 and M = 500.
The widths of the preceding hidden layers are fixed at 100 in the tests. Corresponding to each M, we
compute the optimum R,,q using the differential evolution algorithm. The data in Figure 2(b) correspond
to a population size of 8, the R, bounds [0.01,3], and a relative tolerance 0.1 in the scipy differential
evolution routine. We can make the following observations. First, R, decreases with increasing depth in
the neural network. R,,o drops markedly from one hidden layer to two hidden layers in the network. For
neural networks with two or more hidden layers, as the depth further increases, R,,9 decreases only slightly.
This observation is consistent with that from Figure 2(a). Second, R,,o has a dependence on the number
of training parameters. For neural networks with a single hidden layer, this dependence on M is stronger.
Figure 2(b) indicates that in this case R, generally increases with increasing M, except in a range of smaller
M values where R,,o decreases with increasing M. For neural networks with two or more hidden layers, the
dependence of R,,p on M is weak. R,,o appears to increase only slightly as M increases.

Figure 2(c) illustrates the effect of the widths of the preceding hidden layers on R,,. It depicts the
R0 as a function of the number of training parameters (M) for two neural networks, which contain three
hidden layers but have different widths (50 versus 100) in the preceding hidden layers (i.e. other than the
last hidden layer). These data are obtained again with a population size of 8, the R, bounds [0.01, 3], and a
relative tolerance 0.1 in the differential evolution algorithm. We observe that R,,o generally decreases, albeit
slightly, as the width of the preceding hidden layers increases. The characteristics observed from Figures
2(b,c) also seem common to Single-Rm-ELM, and they will appear repeatedly in other test problems.

Figure 3 illustrates the accuracy of the ELM approximant with R,, near the optimum R, in Single-
Rm-ELM. In this group of tests, we employ a neural network with an architecture [2, M, 1], where the
number of training parameters M is either fixed at M = 400 or varied between M = 50 and M = 500.

A set of Q = @1 x @1 uniform collocation points is employed, where) is either fixed at Q1 = 31 or

19

——&—— maxerror
el PMS eFror

p
NN

5770 Y5 20 25 30 35 40 45 50
Collocation points per direction (b)

—6&— maxerror
A K7 IMS error
——&—— max error A LLSQ residual norm
102 A ool FMS €FFOF 107
10*
[A VSN
s A A &
5 10 A A e A
=
=
I R,

CA

: Bbaa,n
H)”)0 N ﬂt‘;) théU .. 360 460t 5(‘]0 |0‘|ﬂ‘65 1‘,7 1.‘75 é.‘ﬁ 1.135 1‘,9 W.QZS
umber ot trainin arameters
g p (c) m (d)

Figure 3: Function approximation (Single-Rm-ELM): (a) absolute-error distribution. The maximum and
root-mean-squares (rms) errors in the domain versus (b) the number of collocation points per direction and
(c) the number of training parameters (M). (d) The maximum/rms errors and the LLSQ residual norm
versus R, in a neighborhood of R,,o. Network architecture: [2, M, 1]. @ = 31 x 31 in (a,c,d), varied in (b).
M =400 in (a,b,d), varied in (¢). R,, = 1.8 in (a,b,c), varied in (d). R0 = 1.822 in (d).

varied between (1 = 5 and @1 = 50. R, is either fixed at R,, = 1.8, or varied in a neighborhood of
R0 = 1.822, which is attained from the differential evolution algorithm with M = 400 and @ = 31 x 31.
Figure 3(a) shows the distribution in the z-y plane of the absolute error of the ELM approximant obtained
with @ = 31 x 31, M =400 and R,, = 1.8. It indicates that ELM can approximate the function accurately,
with the maximum error on the order 10~%. Figure 3(b) shows the maximum and root-mean-squares (rms)
errors in the domain of the ELM approximant as a function of)1, which is varied systematically here. It
is observed that the errors decrease exponentially with increasing ()1 before they saturate gradually beyond
about @1 =~ 25. Figure 3(c) shows the maximum/rms errors of the ELM approximant as a function of M,
which is varied systematically. We observe an exponential decrease in the errors with increasing M before a
gradual saturation for M beyond around M = 300. Figure 3(d) shows the maximum/rms errors of the ELM
approximant, as well as the residual norm of the linear least squares (LLSQ) problem (i.e. X(R,,) in equation
(8)), as a function of R,, in a neighborhood of R,,o = 1.822. The data indicate that the ELM accuracy is
generally not sensitive to R,, within a neighborhood of R,,g. The ELM errors are largely comparable with
the R, values around R,,o. These results attest to the point in Remark 2.5 that one can generally employ
an R, value around R,,o in the computations without seriously sacrificing the accuracy.

Let us next consider the Multi-Rm-ELM configuration for the function approximation problem (14). We

employ the method from Section 2.3 to compute the optimum R,y for neural networks with two or three

20

151
—&— R,!", NN: [2, 100, 300, 3
N RMZZ’. NN:{Z,:OO. 300,:} ©— R’ NN: [2,100, M, 1]
. Ll . B RL®,NN: [2,100, M, 1]
3 3
LlIJ 1t LIIJ 1+
£ IS
T x
\E/ 05 \E,O.S
2 2 o B,
o Bl g BB et o B g
o
Byt
ol ‘ ‘ ‘ ‘ 0 e ‘ ‘ ‘ ‘
20 .30 . 40 50 60 100 200 | 300 400 500
Collocation points per direction (a) Number of training parameters (b)
1 2r
——o— R}, NN: [2, 100, 100, 300, 1] —o— R,{",NN: [2, 100, 100, M, 1]
et R B NN: [2, 100, 100, 300, 1] - R @, NN: [2, 100, 100, M, 1]
081 -——g--— R, NN: [2, 100, 100, 300, 1] g --=--= R, NN:[2,100, 100, M, 1]
15+
oo oa
06 €
T 2 4
04 g
N) . . o
L S S £05
02f B NS - o Xy [an]
T
, , , , , o A
20 _30 . 40 _50 . 60 0 200 L. 400
Collocation points per direction (C) Number of training parameters (d)

Figure 4: Function approximation (Multi-Rm-ELM): The R,,o components versus the number of collocation
points (a,c) and the number of training parameters (b,d), with neural networks having two (a,b) or three
(c,d) hidden layers. The network architectures are given in the legends. @ = 31 x 31 in (b,d), varied in (a,c).
M =300 in (a,c), varied in (b,d).

hidden layers. The results are summarized in Figure 4. In this group of tests, the architecture of the neural
networks is characterized by [2,100, M, 1] or [2, 100,100, M, 1], where M is either fixed at M = 300 or varied
between M = 50 and M = 500. As stated previously, the Gaussian activation function has been employed
in all the hidden nodes in this work. We employ a set of) = @1 X (1 uniform collocation points in the
domain, with @) either fixed at (Q; = 31 or varied between Q1 = 20 and @1 = 60.

Figures 4(a,b) illustrate the optimum R, = (RSL%, Rfi%) for the neural networks with two hidden layers,
which are obtained with a population size of 10, the bounds [0.01, 3] for all components of R,,, and a
relative tolerance 0.1 in the differential evolution algorithm. Figure 4(a) depicts the R,,o components as
a function of @1, with a fixed M = 300 in the neural network. We observe that the values for Rfi()) and
Rg()) are quite different, indicating that the random coefficients for the first and second hidden layers could
be generated on two quite different intervals. It is also observed that they are essentially independent of
the number of collocation points. Figure 4(b) shows the R,,o components as a function of the number of
training parameters (M), with a fixed @1 = 31 in these tests. Both components of R,,o appear to generally

increase with increasing M, except that Rg% is observed to decrease for a range of smaller M values.

Figures 4(c,d) show the corresponding optimum R, = (RSL%, Rgz%, RSZ%) for neural networks containing
three hidden layers. These are obtained with a population size of 12, the bounds [0.01, 3] for all components
of R,,, and a relative tolerance 0.1 in the differential evolution algorithm. Figure 4(c) depicts the R0

components as a function of @1, with a fixed M = 300 in the neural network. Figure 4(d) depicts the R0

21

10° ———&—— maximum error 10 ———&—— maximum error
08 eeefxe- FMS €rror 3 b FMS €rror
| e 10%+ 10°+
Tee0s
s
T4£08
06 13E.08 2 D
T2£08
- b iieo S o
b iocos S =
| 90E09 w w
| bt
04 & 7oe0s 10° 10°F
b doros
b S
40500
B ol ol
02 10809 A BBp A
[N SN ErAbda
00 e 107 , , , ,
o —— 5 10 15 20 25 30 35 40 45 50 100 200 300 400 500
0 02 04y 06 08 1 (a) Collocation points per direction (b) Number of training parameters (C)

Figure 5: Function approximation (Multi-Rm-ELM): (a) absolute-error distribution of the ELM solution.
The maximum/rms errors in the domain versus (b) the number of collocation points per direction, and (c)
the number of training parameters M. Network architecture: [2, 100, M, 1]. @ = 31 x 31 in (a,c), varied in
(b). M =400 in (a,b), varied in (c). R,, = (0.6,0.3) in (a,b,c).

components as a function of the number of training parameters M in the neural network, with a fixed set
of @ = 31 x 31 uniform collocation points. Overall the relations of the R,,o components with respect to
the collocation points and the training parameters appear quite irregular. The relation of R, versus the
number of collocation points seems somewhat less irregular, and some R,,,o components appear to stay close
to a constant for a range of ()1 values. This is in stark contrast to those of Figures 4(a,b) with two hidden
layers in the neural network.

Figure 5 illustrates the accuracy of the ELM approximant obtained with Multi-Rm-ELM using an R,,
close to the optimum R,,,¢. In this group of tests, we employ a neural network with two hidden layers, with its
architecture given by [2,100, M, 1], where M is either fixed at M = 400 or varied systematically. We employ
a set of @ = @1 X Q7 uniform collocation points, where @, is either fixed at)1 = 31 or varied systematically.
We employ a fixed R,, = (0.6,0.3) in Multi-Rm-ELM, which is close to the optimum R,,o = (0.64,0.28)
obtained from the differential evolution algorithm corresponding to M = 400 and @ = 31 x 31. Figure
5(a) shows the absolute error distribution of the Multi-Rm-ELM approximant obtained with M = 400 and
Q@ = 31 x 31. The approximation is observed to be highly accurate, with a maximum error on the order 10~3
in the domain. Figures 5(b) and (c) show the maximum and rms errors of the Multi-Rm-ELM approximants
as a function of @y (with a fixed M = 400) and as a function of M (with a fixed @y = 31), respectively. The
results demonstrate the exponential decrease (before saturation) in the errors with respect to the collocation
points and the training parameters.

Figure 6 is a comparison of Single-Rm-ELM and Multi-Rm-ELM, with regard to their accuracy and cost
for computing the optimal R, /R, with the differential evolution algorithm. In this group of tests we employ
a set of @ = 31 x 31 uniform collocation points, and a neural network with an architecture [2,100, M, 1],
where M is varied between 50 and 500.

Figure 6(a) shows the maximum/rms errors of the Single-Rm-ELM (or Multi-Rm-ELM) configuration
corresponding to R, = R0 (resp. R, = Ryno), as a function of the number of training parameters M in
the neural network. The Multi-Rm-ELM errors are observed to be consistently lower, sometimes by over an

order of magnitude, than the Single-Rm-ELM errors. This shows that, by setting the hidden-layer coefficients

22

—o&— R, computation time (Single-Rm-ELM)

—6&— maxerror (Single-Rm-ELM) 1071 ion ti X
e R i vaiting o (Sl Am e
o T s enor :z:ﬂ.len:mzﬁw} . ----Ac--- ELM training time (Multi-Rm-ELM)
R R @ .
fIE gl 10k e
Il S -
o4} F< S APy c Lo
o L
< ~
=
s)
10°F IS
[=107
) =
= &)
W g0 = -
0% , , , , 10° , , , , ,
100 200 300 400 500 100 200 300 400 500
Number of training parameters (a) Number of training parameters (b)

Figure 6: Function approximation: (a) The maximum/rms errors in the domain obtained with R,, = Ry
in Single-Rm-ELM and with R,,, = R, in Multi-Rm-ELM, versus the number of training parameters (M)
in the neural network. (b) The R0 (or R,,0) computation time and the ELM network training time in
Single-Rm-ELM and in Multi-Rm-ELM, versus the number of training parameters. Network architecture:
[2, 100, M, 1]. @ =31 x 31 in (a,b).

to random values with different maximum magnitudes for different hidden layers, as in the Multi-Rm-ELM
configuration, one can achieve a better accuracy with the ELM method.

Figure 6(b) shows a comparison of the R;,,0/R,0 computation time by the differential evolution algo-
rithm, as well as the ELM training time of the neural network, with the Single-Rm-ELM/Multi-Rm-ELM
configurations. For both Single-Rm-ELM and Multi-Rm-ELM, R, and R,,o are computed by using a
population size of 10, R,, /R, bounds of [0.01, 3], and a relative tolerance 0.1 in the differential evolution al-
gorithm. Note that when computing the R,,0 (or R,,0) the differential evolution algorithm would invoke the
Algorithms 1 or 2 (the ELM training routine) whenever the residual norm for some R,, (or R,,) needs to be
evaluated. The ELM training routine would be typically called dozens of times by the differential evolution
algorithm. As shown by Figure 6(b), the R,,o (or R,,0) computation time for this function approximation
problem is typically on the order of 1 to 10 seconds. In contrast, the ELM network training time for a
given R,, is typically on the order of 0.01 to 0.1 seconds for this function approximation problem. From
Figure 6(b) we can also observe that computing the R,,,o in Multi-Rm-ELM is generally more expensive than
computing the R,,q in Single-Rm-ELM. Figure 6 indicates that there is a trade-off between the accuracy
and the cost for computing the optimal R,, (or R,,). While the Multi-Rm-ELM is more accurate than the
Single-Rm-ELM, the cost for computing the optimal R,, is also generally larger.

3.3 Poisson Equation

In this subsection we use the canonical 2D Poisson equation to test the method for computing the optimal R,,
(or R,;;) and study the effect of the simulation parameters on the optimum R,,o (or Ry,p). We compare the
current ELM method with the classical and high-order FEMs in terms of their computational performance.
A seed value 10 is used in the random number generators of Tensorflow and numpy for all the numerical
tests in this subsection.

Consider the 2D rectangular domain Q = {(z,y) | 0 < z,y < 2} and the following boundary value

23

Libblsdbobliomneran

Figure 7: Poisson equation: Distribution of the exact solution.

problem with the Poisson equation on 2 and Dirichlet boundary conditions on 952,

% + g—yz = f(z.y), (15a)
u(z,0) = g1(z), u(x,2)=g2(x), u(0,y)="hi(y), w2,y)="h(y). (15b)

Here u(z,y) is the field to be solved for, f(z,y) is a prescribed source term, and g1, g2, h; and hy are the

prescribed boundary distributions. We choose f(z,y) such that the following field satisfies (15a),

3 2 3 3 2 3
u(z,y) = — [2 cos (27mc + ;) + 5 cos (37r:v - g)] [2 cos <27Ty + ;) + 5 cos (37ry - 751-)} . (16)

We set g1, g2, h1 and hs by evaluating the expression (16) on the corresponding domain boundaries. Under
these settings the expression (16) solves the boundary value problem (15). Figure 7 shows the distribution
of the analytic solution (16) in the x-y plane.

We solve this problem using ELM. The neural network has an input layer of two nodes (representing x
and y), a linear output layer of one node (representing u), and one or more hidden layers in between with
the Gaussian activation function. The specific architectures of the neural networks will be provided below,
again with M denoting the number of training parameters (i.e. the number of nodes of the last hidden layer).
We employ a set of Q = (1 X @1 uniform grid points on 2 as the collocation points, where ()7 denotes the
number of points in both x and y directions. So there are (Q; uniform collocation points on each domain
boundary. Q1 and M are varied systematically in the numerical tests. We employ the Single-Rm-ELM and
Multi-Rm-ELM configurations from Section 2 for setting the random hidden-layer coefficients based on a
single R, or a vector R,,, respectively.

Figure 8 illustrates the characteristics of the optimum R,,g obtained with the differential evolution
algorithm for the Poisson equation with the Single-Rm-ELM configuration. Figure 8(a) depicts R0 as a
function of @); for several neural networks with different depth. The network architectures are given in the
legend, and @, is varied systematically between 30 and 60. Figure 8(b) shows the R,y as a function of the
number of training parameters M for several neural networks with different depth. Figure 8(c¢) shows the
computed R0 as a function of M for several neural networks that contain three hidden layers with the same
M but different width for the preceding hidden layers. In Figures 8(b,c) a fixed set of @ = 35 x 35 uniform

collocation points is employed. In the differential evolution algorithm we have employed a population size

24

. i
—6—— NN:[2,800, 1 —6—— NN:[2,M,1] .
R N 78500, 1 A NN TS, W, 1) T s
. --—---—- NN:[2, 75,75, 800, 1] g -7 NN:[2,75,75,M, 1] . s NN:[2,100, 100, M, 1]
S 4r = Sos
— — 3 —
m w m
£ .l GW IS €06
s s s
iy o 2 @
(o)) [} (o))
£ 2r = Coaf
[2)) [2)
2 g 2
ot o A PNV o2
. VA NN ap
e = — Vv 4GS T vV VTV
31‘0 . 4‘0 . 5‘0. . Bb 0 200 460 L. aéu BE}O mbo 0 260 460 . . 600 BEJO mba
Collocation points per direction (a) Number of training parameters (b) Number of training parameters (C)

Figure 8: Poisson equation (Single-Rm-ELM): R,,,o versus (a) the number of collocation points per direction
and (b) the number of training parameters, with neural networks of different depth. (c) R,,0 versus the
number of training parameters for neural networks with the same depth but different width. @ = 35 x 35 in
(b,c), varied in (a). M = 800 in (a), varied in (b,c). Network architectures are listed in the legends.

of 6, the R,;, bounds [0.1, 5] and a relative tolerance of 0.1 for these numerical tests.

We have the following observations from Figure 8. First, R, is essentially independent of the number
of collocation points in the simulation. Second, R,,o has a stronger dependence on the number of training
parameters M for neural networks containing a single hidden layer, and its dependence on M is quite weak
for neural networks with two or more hidden layers. R,,o generally increases with increasing M, except in a
range with smaller M values where R, is observed to decrease as M increases. With two or more hidden
layers in the neural network, R,,o can be approximated by essentially a constant for a wide range of M values.
Third, R,,o generally decreases with increasing depth of the neural network. It drops significantly from a
single hidden layer to two hidden layers, and then decreases only slightly as the depth further increases.
Fourth, R,,o has only a weak dependence on the width of the preceding hidden layers (other than the last
one), and tends to decrease slightly with increasing width of the preceding hidden layers. These observations
are consistent with those from the function approximation problem in Section 3.2.

Table 1 illustrates that the R,,o obtained from the differential evolution algorithm indeed corresponds
to an optimal (or near-optimal) R,,, which leads to more accurate (or the most accurate) ELM results than
other values. Here we consider a neural network [2,500, 1] with the Single-Rm-ELM configuration, and a
uniform set of @ = 35 x 35 collocation points. We vary the R, systematically (by a step size 0.5) between
R,, = 0.5 and R,, = 50 for generating the random hidden-layer coefficients. For each R,, value, we solve
the problem (15) and compute the residual norm X(R,,) in equation (8), and the maximum/rms errors
of the Single-Rm-ELM solution in the domain. Table 1 lists these errors and the residual norm K(R,,)
corresponding to a number of R, values in the test, as well as for the optimum R,,q ~ 2.23 from the
differential evolution algorithm. It is evident that R,, = R, leads to a lower residual norm for the least
squares problem and more accurate simulation results for the ELM method. Note that the Multi-Rm-ELM
configuration would produce the same results as the Single-Rm-ELM in this case, because it is equivalent to
Single-Rm-ELM for a single hidden layer in the neural network.

Figure 9 illustrates the solution accuracy obtained with the Single-Rm-ELM configuration. In this group

of tests we employ a neural network with an architecture [2, M, 1] and the Gaussian activation function,

25

R, K(Rp) max error rms error

0.5 2.04E+3 B5.16E+1 137TE+1
1.0 6.83E+0 4.54FE—1 548E —2
1.5 7.55E —3 549E—4 T.776E -5
2.0 477 —4 215E—5 2.82E —6
223 (Ry0) 3.09E—4 167E—-5 1.71E—6
2.5 416FE —4 323E -5 2.66E —6
3.0 191E-3 120E—-4 1.10E-5
3.5 1.97E—2 1.97E—3 147F —4
4.0 745FE —2 5.82E —3 4.24FE —4
5.0 6.66F —1 524FE—2 6.21E —3
7.0 350E+1 4.13E+0 3.74E—1
10.0 6.31E+2 33TE+1 6.76E+0
20.0 830E+3 5.14E+1 7.33E+0
50.0 1.01E+4 266E+2 5.00E+0

Table 1: Poisson equation (Single-Rm-ELM): Effect of the R,, value on the LLSQ residual norm X(R,,) (see
equation (8)), the maximum error, and the rms error of the Single-Rm-ELM solution. Network architecture:
[2,500,1]. @ = 35 x 35. The optimum R,,o & 2.23 from the differential evolution algorithm. The Multi-Rm-
ELM configuration results in the same results as Single-Rm-ELM, because it is equivalent to the latter for
a single hidden layer in the neural network.

8.0E-08
75608
7.0E-08 10"F
65608
6.0E-08
5.5E 08
5.0E-08 Dol
45608 o
4.0E-08 s
35608]
3.0E-08

25608 10°+
20E-08
15608
1.0E 08
50609

Ban s

1% Coll 10 i 20 ; 30 i 10 i 50 0 N 2?)0 fAtOO' 600 séct 7000
(a) ollocation points per direction (b) umber of training parameters (C)

Figure 9: Poisson equation (Single-Rm-ELM): (a) Absolute error distribution of the ELM solution. The
maximum/rms errors in the domain versus (b) the number of collocation points per direction and (c) the
number of training parameters M. Network architecture: [2, M,1]. @ = 35 x 35 in (a,c), varied in (b).
M =800 in (a,b), varied in (c). R, = 3.36 in (a,b,c).

where the number of training parameters is either fixed at M = 800 or varied systematically. The set of
uniform collocation points is either fixed at Q = 35 x 35 or varied between @) = 5 x 5 and @ = 50 x 50.
We employ a fixed R,,, = 3.36, which is close to the optimum R, from the differential evolution algorithm,
for generating the random hidden-layer coefficients in Single-Rm-ELM. Figure 9(a) shows the absolute error
distribution of the ELM solution in the z-y plane, which corresponds to a fixed M = 800 and @ = 35 x 35.
It indicates that ELM produces an accurate solution, with the maximum error on the order 10~8. Figures
9(b) and (c) depict the maximum and rms errors in the domain as a function of the number of collocation
points and the number of training parameters, respectively. One can clearly observe that the errors decrease
exponentially (before saturation) with increasing number of collocation points and training parameters.

Figure 10 illustrates the characteristics of the optimum R,,o for the Multi-Rm-ELM configuration ob-

26

O NN:
—o6— R, NN: [2,75,800, 1] e R”(“a' . 7s
A R, NN: [2, 75,800, 1] A Rygh NN:[2,75, M, 1

R,,, (Multi-Rm-ELM)
R, (Multi-Rm-ELM)

Sy

3 K 4‘0_ 5‘0. . 60 ED 00 | .660 300 7000
Collocation points per direction (a) Number of training parameters (b)

—=o— R, NN:[2,75,75,800, 1]

B R®,NN: [2, 75, 75, 800, 1] —6— R, NN:[2,75,75,M, 1]
eesge- R, NN: [2, 75,75, 800, 1] B Ry, NN: [2, 75,75, M, 1]
g g ---=--- R, NN: [2, 75,75, M, 1]
— —
w ot w1
£ £
T T
<05 < o5 K g M
2 e e WP ° e Ky A,‘Z’,@'
o R o« Gy
A"A A’:P*"’e
‘ ‘ ‘ ‘ vvy Y ‘ ‘ ‘
30 . 40 . 50 . 60 200 400 . 600 800 1000
Collocation points per direction (C) Number of training parameters (d)

Figure 10: Poisson equation (Multi-Rm-ELM): The optimum R,,o versus the number of collocation points
per direction (a,c) and the number of training parameters (b,d), with neural networks having two (a,b) and
three (c,d) hidden layers. The network architectures are given in the legends. @ = 35 x 35 in (b,d), varied
in (a,c). M =800 in (a,c), varied in (b,d).

tained with the differential evolution algorithm. Here we have considered two neural networks with two and
three hidden layers, whose architectures are characterized by [2,75, M, 1] and [2, 75,75, M, 1], respectively,
where M is either fixed at M = 800 or varied systematically. A set of uniform collocation points is employed,
either fixed at @ = 35 x 35 or varied systematically between = 30 x 30 and @ = 60 x 60. Figures 10(a)
and (b) show the components of R,,,0 = (RT(}L%, R,(TZL)O) versus the number of collocation points and the number
of training parameters for the neural network with two hidden layers, respectively. These are obtained with
a population size of 8, the bounds [0.01, 3] for all R, components, and a relative tolerance of 0.1 in the
differential evolution algorithm. Figures 10(c) and (d) show the components of R,,p = (Rg%,Ri%,RS{%)
versus the number of collocation points and the number of training parameters for the neural network with
three hidden layers, respectively. They are obtained using a population size of 9, the bounds [0.01, 3] for all
the R,,, components, and a relative tolerance of 0.1 in the differential evolution algorithm. One can see that
the R,,o components exhibit a fairly weak dependence (Figure 10(c)) or essentially no dependence (Figure
10(a)) on the number of the collocation points in the domain. The relation between R,,o and the number
of training parameters, on the other hand, appears quite irregular. The R,,o components tend to increase
as the number of training parameters M increases, except for some component, which appears to decrease
in a range of smaller M values.

Figure 11 illustrates the solution accuracy obtained with the Multi-Rm-ELM configuration. In this group

of tests we employ a neural network with two hidden layers, with an architecture [2, 75, M, 1], where M is

27

10°
10°
ToEar 10
6.5E-07
G007 .
Soror 0" [
45E-07 [} o
40E-07 = =
SoEar Wygel w-
25E-07 107+
2.0E-07
1.5E-07
1.0E-07
5.0E-08 10°+ 105k
SN Banph,
100 , , , , , 100 , , , ;
0 20 30 40 50 200 400 600 800 1000
(a) Collocation points per direction (b) Number of training parameters (C)

Figure 11: Poisson equation (Multi-Rm-ELM): (a) Absolute error distribution of the Multi-Rm-ELM solu-
tion. The maximum/rms errors in the domain versus (b) the number of collocation points per direction, and
(c) the number of training parameters. Network architecture: [2,75, M,1]. @ = 35 x 35 in (a,c), varied in
(b). M =800 in (a,b), varied in (c). R,, = (0.8,0.5) in (a,b,c).

either fixed at M = 800 or varied systematically. The set of uniform collocation points is either fixed at
@ = 35x35 or varied between Q = 5x5 and @ = 50x50. We employ a fixed R,,, = (0.8,0.5) here, close to the
R0 obtained corresponding to M = 800 and @ = 35x35. Figure 11(a) shows the distribution of the absolute
error of the Multi-Rm-ELM solution corresponding to M = 800 and @ = 35 x 35, suggesting a quite high
accuracy, with the maximum error on the order 10~7. Figures 11(b) and (c) depict the maximum/rms errors
in the domain as a function of the number of collocation points and the training parameters, respectively.
The exponential convergence of the errors (before saturation) with respect to the collocation points and the
training parameters is evident.

Figure 12 is a comparison between the Single-Rm-ELM and the Multi-Rm-ELM methods in terms of
their accuracy and R,,0/R.0 computation cost. Here we consider two neural networks with architectures
[2,75, M, 1] and [2,75,75, M, 1], respectively, where M is varied systematically. We employ a set of Q =
35 x 35 uniform collocation points in the domain. We look into the numerical errors corresponding to
R,, = Ry in Single-Rm-ELM and R,,, = R, in Multi-Rm-ELM, and the time spent on computing R,,q
and R0 with the differential evolution algorithm, as well as the network training time with ELM for solving
the Poisson equation with the obtained R,,o or R;,o. Figures 12(a) and (c) depict the maximum/rms errors in
the domain as a function of the number of training parameters M for these two neural networks, respectively,
obtained with R,, = R0 in Single-Rm-ELM and R,, = R0 in Multi-Rm-ELM. Figures 12(b) and (d)
depict the corresponding R, and R,,o computation time with the differential evolution algorithm, as well
as the ELM network training time, versus M. The R,,o and R,,o computations in Figures 12(a) and (b), for
the neural network with two hidden layers, correspond to a population size of 10, the R,, and R,, bounds
[0.01, 3], and a relative tolerance 0.1 in the differential evolution algorithm with both Single-Rm-ELM and
Multi-Rm-ELM. The R,,o and R,,o computations in Figures 12(c) and (d), for three hidden layers in the
neural network, correspond to a population size of 9 and the same bounds and relative tolerance as in (a,b)
for both Single-Rm-ELM and Multi-Rm-ELM.

We can make the following observations from Figure 12. First, the Multi-Rm-ELM method consistently

leads to smaller numerical errors than Single-Rm-ELM. By setting the weight/bias coefficients in different

28

—&— R, computation time (Single-Rm-ELM)

——©&—— max error (Single-Rm-ELM) ---<---- R,, computation time (Multi-Rm-ELM)
10°} -+-<9---- max error (Multi-Rm-ELM) —=4A— ELM training time (Single-Rm-ELM)
—A—— rms error (Single-Rm-ELM) 10° || ----A---- ELM training time (Multi-Rm-ELM)
===+A---- rms error (Multi-Rm-ELM)
Bl a
o 2
I S
E o
0ol Q
< &L
=
s 0E> 10°h
g 10 =
£ B
w 100 ;10 E
o , , , , o , , , ,
200 400 . 600 800 1000 200 400 . 600 800 1000
Number of training parameters (a) Number of training parameters (b)
10% - . —=o6— R_, computation time (Single-Rm-ELM)
——©—— maxerror (Single-Rm-ELM) ---<@---- R,, computation time (Multi-Rm-ELM)
=ee{@---- max evror(N_IuItl-Rm-ELM) ——A—— ELM training time (Single-Rm-ELM)
——4&— rms error (Single-Rm-ELM) 102 L| =*~A---- ELMtraining time (Multi-Rm-ELM)
o --=+A---- rms error (Multi-Rm-ELM) — ©
%,10)
i g
10"
oot 2
< &
£
= i GE’ 10°F
g =
= <
L ol = 10
S
10° L L L s 230} 102 L L L L .
200 400 . _EDQ 800 1000 200 400 . .SOD 800 1000
Number of training parameters (C) Number of training parameters (d)

Figure 12: Poisson equation: (a,c) The maximum/rms errors in the domain corresponding to R, = R0
in Single-Rm-ELM and R,,, = R, in Multi-Rm-ELM, versus the number of the training parameters (M).
(b,d) The R0 (or Ry,0) computation time and the ELM network training time in Single-Rm-ELM and
Multi-Rm-ELM, versus the number of training parameters (M). Network architecture: [2,75, M, 1] in (a,b),
[2,75,75,M,1] in (c,d). @ =35 x 35 in (a,b,c,d).

hidden layers to random values with different maximum magnitudes as given by R,,, Multi-Rm-ELM can
produce more accurate results than Single-Rm-ELM, which sets the weight/bias coefficients in all hidden
layers to random values with the same maximum magnitude R,,. Second, the cost for computing R,,q in
Multi-Rm-ELM is generally higher than that for computing R,,o in Single-Rm-ELM. Third, for a given
R,, in Single-Rm-ELM and given R, in Multi-Rm-ELM, the ELM network training time for solving the
Poisson equation is essentially the same. Fourth, the R,,0/R.,0 computation cost with differential evolution
is markedly higher than the ELM network training cost for solving the PDE with a given R, or R,,.
Table 2 provides an accuracy comparison of the Single-Rm-ELM and Multi-Rm-ELM simulations using
the optimum Ry,,0/Rmmo from the method of Section 2 and using a set of R,,/R,, values that are ran-
domly generated. Here we consider a neural network with the architecture [2, 75,500, 1], and @ = 35 x 35
uniform collocation points in the domain. For generating the random hidden-layer coefficients in Single-Rm-
ELM/Multi-Rm-ELM, we set R,, to a random value and R, to a pair of random values that are generated
on [0,5] from a uniform distribution. In Table 2 we list the maximum/rms errors of the ELM results corre-
sponding to these random R,,/R,, values, as well as to the optimum R,,o/R,o obtained from the method
of Section 2. The data for R, and R, in this table correspond to those in Figure 12(a) for M = 500. It
is evident that the simulation accuracy resulting from a random R,,/R,, value can be quite poor. On the

other hand, the optimum R,,o/R,0 from the current method generally results in simulation results that are

29

Single-Rm-ELM Multi-Rm-ELM
R, (random) max error rms error | R, (random) max error Ims error
2.56 1.63E8+1 2.79E +0 | (1.31,1.49) 1.33E+1 19140
4.75 1.21E+1 3.55E +0 | (4.07,0.46) 187E+1 4.75E 40
0.72 2.80F -3 1.75FE — 4 | (3.00,3.64) 1.14E +1 3.33E+0
4.74 1.21E+1 3.55E 40 | (0.94,0.28) 7.38E — 4 5.78E -5
1.56 2.06F +1 4.06E +0 | (1.37,3.29) 1.02E 42 8.02E +0
2.11 3.69FE +1 3.13E+0 | (2.81,0.75) 1.42E +1 2.89E+0
4.14 121841 3.48E 40 | (2.16,3.35) 1.71E 41 3.16E +0
2.05 3.04E+1 6.75E +0 | (2.11,3.17) 1.7TE+1 3.44FE +0
2.75 9.11E+0 27TE 40 | (4.84,3.42) 1.21E +1 344E +0
0.14 1.37TE + 2 2.65E+1 | (1.96,0.94) 5.73E 40 1.04E+0
3.77 1.15E+1 2.65F +1 | (1.73,2.56) 5.23E +1 6.33E +0
2.69 1.1bE+1 2.66F +0 | (4.46,3.88) 1.22FE 41 3.50E +0
1.65 428E +1 5.97E 40 | (1.59,4.62) 3.81E+1 6.06E + 0
3.94 1.20E8+1 3.42E 40 | (2.35,3.47) 1.29E + 1 2.99E +0
1.52 1.8eE+1 3.46E +0 | (0.54,0.52) 1.71E -4 1.85E -5
0.56 (Rmo) 2.10F — 4 1.75E —5 | (0.64,0.33) (R,,0) 5.82E—5 7.01E —6

Table 2: Poisson equation: Comparison of the maximum/rms errors of Single-Rm-ELM and Multi-Rm-ELM
obtained with the optimum R,,0/R.0 and with a set of random R,,/R,, values (generated on [0, 5]), for a
neural network architecture [2, 75,500, 1]. @ = 35 x 35 in all simulations. The data for the cases with the
optimum R0 and R0 here correspond to those in Figure 12(a) for M = 500.

——6—— invoked for the first time
——&—— invoked for the first time -----£---- invoked for a second time

A invoked for a second time

with auto-graph

—_
%)
i) 2
2 S
<} o
3 5 |
3 0 and tracing \
© [0}
£) €
= with auto-graph =
and tracing
g’ 870.5
c 0.5 b
© i h mod = Al
g in graph mode N 'S in graph mode o
= At - A.A'A'
— o s ANas
LB A
u ppa BT “))) — petets s Ll ‘ ‘
0 10 20 . 30 40 . 50 w e 200 400 . 600 800 1000
Collocation points per direction (a) Number of training parameters (b)

Figure 13: Poisson equation (Single-Rm-ELM): ELM network training time versus (a) the number of collo-
cation points per direction and (b) the number of training parameters, obtained with the training routine
invoked for the first time or subsequently. In the first invocation auto-graph/tracing occurs to build the com-
putational graphs, which are used in the graph mode in subsequent invocations. The settings and parameters
here correspond to those of Figures 9(b,c).

highly accurate.

As discussed in Section 3.1, the computations for the output fields of the last hidden layer and the
associated differential operators are implemented as “Tensorflow Functions” in this paper, which are executed
as a computational graph. When these functions are invoked for the first time, autograph/tracing occurs in
Tensorflow to build the computational graph, which can slow down the computations. Subsequent invocations
of these functions are executed in the graph mode, which is much faster. Figure 13 illustrates this effect for
solving the Poisson equation. Figure 13(a) depicts the ELM network training time with the Single-Rm-ELM

configuration, with the training routine invoked for the first time and invoked subsequently, as a function

30

w
1

102 ——&—— max error, degree=1

-G max error, degree=5
—A—— rms error, degree=1
A rms error, degree=5
reference, 2nd order
reference, 6th order

——&— FEM (2nd order), degree=1
& High-Order FEM, degree=5

n
o

3
N
T

FEM Errors

o
o

FEM computation time (seconds)

o

70 T 0
Number of elements per direction (a)

(b)

o
@

G- max error, ELM, NN: [2, 600, 1]
—&— maxerror, ELM, NN: [2, 800, 1]
-----A--- rms error, ELM, NN: [2, 600, 1]
—2A—— rms error, ELM, NN: [2, 800, 1]

w-re--Aeeoe-- ELM, NN: [2, 600, 1]
—o— ELM,NN:[2,800, 1]

ELM errors

ELM training time (seconds)

0

10 i % E) %)
Collocation points per direction (C) Collocation points per direction (d)

Figure 14: Poisson equation: The numerical errors (a) and the computation time (b) of the classical FEM
(2nd-order, linear elements or degree=1) and the high-order FEM (Lagrange elements, degree 5), versus the
number of elements in each direction. The numerical errors (c¢) and the network training time (d) of ELM
(Single-Rm-ELM) versus the number of collocation points per direction. ELM network architectures are
given in the legends of (c,d). R, = 2.76 for M = 600 and R,, = 3.36 for M = 800 in (c,d). The ELM
network training time is the time obtained in the graph mode (no autograph/tracing).

of the number of collocation points in each direction. Figure 13(b) depicts the corresponding ELM network
training time as a function of the number of training parameters in the neural network. The settings and
the simulation parameters here correspond to those of Figures 9(b) and (c), respectively. One can observe
that the ELM training time is reduced dramatically when these computations are performed in the graph
mode (without autograph/tracing).

We next compare the computational performance, accuracy and computational cost, between the current
implementation of ELM and the finite element method (classical second-order FEM, and high-order FEM)
for solving the Poisson equation. For ELM we use the Single-Rm-ELM configuration in the following com-
parisons. For FEM, as stated in Section 3.1, it is implemented using the FEniCS library as in [12]. The
classical FEM employs Lagrange elements of degree one (linear elements), and high-order FEM employs
Lagrange elements [6] with degrees larger than one from the FEniCS library. When solving the boundary
value problem (15) using FEM, we partition the domain Q into an N; X Nj rectangular mesh, where Ny
is the number of rectangles in each direction. Each rectangle is further partitioned into two triangular ele-
ments along the diagonal. So a total of 2N? triangular elements are involved in the FEM computation. For
convenience we will loosely refer to Ny as the number of elements in each direction. In the FEM tests we
vary the number of elements per direction N; and the degree of the Lagrange elements systematically.

Another implementation detail with FEM concerns the evaluation of the source term and the Dirichlet

31

0"

U

eeee-Bhe--- FEM, 2nd order A FEM, 2nd order
E ———6—— ELM, NN: [2, 800, 1] ———6—— ELM, NN: [2, 800, 1]
gwo" Lol
S ©
° §
_Emz L Oio°
g =
ro) o
g1t gwos—
>
E S
é‘ob oo’
=
108 , ‘ ‘ ‘ , ‘ 10 , ‘ ‘ ‘ , ,
. 005 0.1 015 02 0.25 03 . 005 0.1 015 02 0.25 03
Training/computation time (seconds) (a) Training/computation time (seconds) (b)

Figure 15: Poisson equation (comparison between ELM and classical FEM): The (a) maximum error and
(b) rms error in the domain versus the computational cost (ELM training time, FEM computation time)
for ELM and the classical FEM. The FEM data correspond to those of Figures 14(a,b) with degree=1. The
ELM data correspond to those of Figures 14(c,d) with M = 800.

boundary data in equations (15a)-(15b). These terms each is implemented as a FEniCS “Expression”, in
which the degree parameter is specified as the element degree plus one when solving the Poisson equation.
We observe that if the degree parameter in these FEniCS Expressions is specified to be equal to the element
degree or less, one cannot seem to quite achieve the expected convergence rate as the number of elements
increases, especially when the mesh size is not very large.

Figure 14 provides an overview of the numerical errors of FEM and ELM, as well as their computational
cost (FEM computation time, ELM network training time). In these tests the number of the elements in
the FEM mesh and the number of collocation points in ELM are varied systematically.

Figure 14(a) shows the maximum/rms errors in the domain as a function of the number of elements in
each direction (Np) with the classical FEM (degree=1) and the high-order FEM with Lagrange elements
of degree=5. Ome can clearly observe a second-order convergence rate and a sixth-order convergence rate
with these two types of elements. Figure 14(b) shows the corresponding FEM computation time versus the
number of elements per direction with these two types of elements. The FEM computation time grows quite
rapidly with increasing number of elements. The cost of the high-order FEM grows much faster than that
of the classical FEM.

Figure 14(c) shows the ELM maximum/rms errors in the domain as a function of the number of uniform
collocation points in each direction, obtained using two neural networks with the architectures [2, M, 1]
with M = 600 and M = 800, respectively. We have employed R,, = 2.76 for M = 600 and R,, = 3.36
for M = 800, close to their optimal R,,g, for generating the random hidden layer coefficients. A set of
Q = @1 X @1 uniform collocation points is employed and @7 is varied systematically. On can clearly
observe an exponential decrease in the ELM errors before saturation. As)7 becomes sufficiently large,
the ELM errors saturate at a higher level with M = 600 than with M = 800. Figure 14(d) shows the
corresponding ELM network training time versus the number of collocation points per direction with these
two neural networks. Here the ELM training time refers to the time obtained with the graph mode (no
autograph/tracing). They appear to grow quasi-linearly with increasing number of collocation points.

Figure 15 compares the computational performance of the ELM and the classical FEM. The two plots

32

—----A---- High-Order FEM, degree=3 10' —----A---- High-Order FEM, degree=3
10" ----y---- High-Order FEM, degree=4 A8 ----y---- High-Order FEM, degree=4
E » High-Order FEM, degree=5 > High-Order FEM, degree=5
© ------4--—--- High-Order FEM, degree=6 c ------4--—--- High-Order FEM, degree=6
€ —o— ELM,NN:[2, 600, 1] T —0o— ELM,NN:[2, 600, 1]
'8 10" ——O—— ELM, NN: [2,800, 1] e ——O— ELM, NN: [2,800, 1]
o
f
z o 10°L
o1 k=
2
£ =
o I S
(. Aa
Ero°f o0 N
g g T
>
<07l 107F S s
g 10 o g
10 L. 0.1 0.2 . 0.3 0.4 10 L. 0.1 0.2 . 0.3 0.4
Training/computation time (seconds) (a) Training/computation time (seconds) (b)
10°F A High-Order FEM, mesh 10x10 107 ------A-—-- High-Order FEM, mesh 10x10
----¥---- High-Order FEM, mesh 30x30 ----w---- High-Order FEM, mesh 30x30
c < High-Order FEM, mesh 50x50 < High-Order FEM, mesh 50x50
(_g 10" ¥ ——0—— ELM, NN: [2, 600, 1] - 10° —0—— ELM, NN: [2, 600, 1]
E —O—— ELM, NN: [2, 800, 1] a —O—— ELM, NN: [2, 800, 1]
o
Do}, gmz F
£ °
p
C
g 10° ‘10t
o e
=
€ . O,
L “
glﬂ < wm
£ > .
Si1o7 v-. [T v
g 10 10
10°

0 .. 0‘1 012 . 0‘,3 0‘,4 10" L. O‘.i D;Z . O.‘S D.‘A
Training/computation time (seconds) (C) Training/computation time (seconds) (d)

Figure 16: Poisson equation (comparison between ELM and high-order FEM): The maximum error (a,c)
and the rms error (b,d) in the domain versus the computational cost (ELM network training time, FEM
computation time) of the ELM and the high-order FEM with Lagrange elements of various degrees. For
FEM, in (a,b) the mesh size is varied systematically for each given element degree, and in (c¢,d) the element
degree is varied systematically for each given mesh size. The FEM data in (a,b) with degree=5 correspond to
those of Figures 14(a,b) with degree=5. The ELM data in (a,b,c,d) correspond to those of Figures 14(c,d).

show the maximum and rms errors in the domain of the ELM and FEM versus their computational cost
(FEM computation time, ELM network training time). The FEM data here correspond to those contained
in Figures 14(a,b) with degree=1, and the ELM data here correspond to those of Figures 14(c,d) with
M = 800. We observe that the ELM far outperforms the classical FEM in essentially all cases, except for a
narrow range with very small problem sizes (FEM mesh size below around 50 x 50, ELM collocation points
below around 13 x 13; error level above around 5 x 1072; wall time below around 0.03 seconds). With
the same computational cost/budget, the ELM achieves a considerably better accuracy (typically by orders
of magnitude) than the classical FEM, and to achieve the same accuracy the ELM incurs a much lower
computational cost than the classical FEM. Even in the narrow range of small problem sizes, where the
classical FEM is a little better, the FEM performance and the ELM performance are quite close.

Figure 16 provides a comparison of the computational performance between the ELM and the high-order
FEM with Lagrange elements of higher degrees. We have conducted two groups of tests with high-order
FEM. In the first group, for a fixed element degree, we vary the mesh size systematically. In the second
group, for a fixed mesh size, we vary the degree of the Lagrange elements systematically (between 2 and 8).
These two types of tests approximately correspond to the so-called h-type and p-type refinements with the
high-order hp-finite element method [35, 56, 11].

Figures 16(a) and (b) show the maximum and rms errors in the domain of the high-order FEM, with

33

Lagrange elements of degrees ranging from 3 to 6, versus the FEM computation time in the first group of
tests. The FEM data with degree=>5 in these plots correspond to those of Figures 14(a,b) with degree=5.
Figures 16(c) and (d) depict the maximum/rms errors of the high-order FEM, with mesh sizes ranging from
10 x 10 to 50 x 50, versus the FEM computation time in the second group of tests. In all these plots, we
have included the ELM maximum/rms errors versus the ELM network training time for comparison, where
the ELM data correspond to those contained in Figures 14(c¢,d) with M = 600 and M = 800.

We can make the following observations from Figure 16. With the h-type refinement (for a fixed element
degree), there is a cross-over point with respect to the problem size in the relative performance between
ELM and high-order FEM. For smaller problem sizes (smaller FEM mesh, smaller set of ELM collocation
points), the performance of the ELM and that of the high-order FEM are largely comparable, with the
high-order FEM being a little better. For larger problem sizes, the ELM outperforms the high-order FEM
markedly (see Figures 16(a,b)). With the p-type refinement (for a fixed mesh size), there is also a cross
over in the relative performance between ELM and high-order FEM with respect to the mesh size. With a
small FEM mesh size, the performance of the high-order FEM (with varying element degree) and that of
the ELM are comparable, with the high-order FEM being a little better. With a larger FEM mesh size,
the ELM markedly outperforms the high-order FEM with varying element degree, especially for larger FEM
degrees (see Figures 16(c,d)). Overall, we observe that the ELM method is very competitive compared with
the high-order FEM. For small problem sizes, the ELM performance and the high-order FEM performance
appear largely comparable, with the high-order FEM oftentimes a little better. For larger problem sizes, the
ELM method outperforms the high-order FEM. As the problem size becomes large, ELM can outperform
the high-order FEM by a substantial factor.

These observations on the ELM/FEM performance should be compared with those of [12]. In [12],
it is observed that the ELM method can outperform the classical 2nd-order FEM for larger problem sizes.
Compared with high-order FEM, however, ELM (with the implementation therein) is observed to be generally
not as competitive [12]. With the improvements in the current work, especially the use of forward-mode auto-
differentiations for computing the differential operators (see Remark 2.11), we have significantly increased the
ELM computational performance. As shown above, the improved ELM herein far outperforms the classical
FEM. Its computational performance is on par with that of the high-order FEM, and oftentimes it can
outperform the high-order FEM by a substantial margin.

Finally, Figure 17 illustrates the capability of the ELM method for solving boundary value problems on
irregular domains with the Poisson equation. Here we solve the system (15) on a pentagon, whose vertices
are given by {(0.5,0), (1.8,0.25), (2.5,1), (1.5,1.8), (0,2)}. Dirichlet data for each domain boundary are
obtained based on the analytic solution (16). The collocation points are equally spaced on the domain bound-
aries, and are randomly distributed (uniform distribution) inside the domain, as illustrated by Figure 17(a)
with a total of @ = 900 training collocation points. For a prescribed @ collocation points in total, we place
L@J collocation points on each side of the pentagon and the rest of the points inside the domain, where
|z| denotes the greatest integer not larger than x (floor). We employ the Single-Rm-ELM method with a

network architecture [2, M, 1] to solve this problem. In the simulations @ is either fixed at @ = 900 or varied

34

2 sub-regions, [" BN]]

101x101 grids in each sub-region 41109 8 7 6543210123456
2
90 @),
15

Total 900 collocation points

>1

T ve e

2608 BE-08 14E-07 2E-07 26E-07 32E-07 38E-07

'ogﬂ 260 4(‘10 560 . 560 0 2(‘10 460 L. 660 Eéu WdDD
(d) Total number of collocation points (e) Number of training parameters (f)

Figure 17: Poisson equation (on irregular domain): (a) Illustration of the collocation point distribution (with
@ = 900 training collocation points), which is equally spaced on the pentagon boundaries and randomly
distributed inside the pentagon. (b) Finer mesh points for neural network evaluation and computation of
the ELM errors. Distributions of (¢) the Single-Rm-ELM solution and (d) its absolute error on the domain.
The maximum/rms errors of the Single-Rm-ELM solution versus (e) the total number of training collocation
points in the domain (Q), and (f) the number of training parameters in the neural network (M). Network
architecture: [2,M,1]. @ = 900 in (a,c,d,f), varied in (e). M = 800 in (c,d,e), varied in (f). R,, = 4.0 in
(c,d,e,f).

systematically, and M is either fixed at M = 800 or varied systematically. We employ a fixed R,, = 4.0,
which is close to the R,,g obtained from the differential evolution algorithm. After the neural network is
trained on the @ collocation points, we evaluate the neural network on another set of much finer structured
mesh points on the pentagon, and compare the values with the analytic solution (16) on this finer set of
points to compute the maximum/rms errors. The mesh points for the network evaluation are generated by
dividing the pentagon into two quadrilateral sub-regions and generating a 101 x 101 structured uniform mesh
on each sub-region (see Figure 17(b)). The errors as computed above are then referred to as the ELM errors
associated with the neural network on the Q) training collocation points.

Figures 17(c) and (d) demonstrate the distributions of the Single-Rm-ELM solution and its absolute
error on this domain, obtained with ¢ = 900 collocation points and M = 800 training parameters in the
neural network. The ELM solution is quite accurate, with a maximum error on the order 10~7 in the
domain. Figures 17(e) and (f) show the maximum and rms errors in the domain of the ELM solution as a
function of the total number of collocation points (@) and of the number of training parameters (M) in the
neural network, respectively. It is evident that the ELM errors decrease exponentially with respect to these

parameters with the irregular domain.

35

Figure 18: Nonlinear Helmholtz equation: distribution of the exact solution.

3.4 Nonlinear Helmholtz Equation

We next use a nonlinear Helmholtz type equation in 2D to further test the method for computing the optimal
R,, and R,,. We demonstrate the competitiveness of the ELM method for nonlinear problems by comparing
its performance with those of the classical and high-order FEMs. A seed value 25 has been employed with
the random number generators in Tensorflow and numpy for all the numerical tests in this subsection.
Consider a 2D rectangular domain 2 = {(z,y) | 0 < z,y < 1.5} and the following boundary value

problem on €2,

% + g—yg — 100u 4 10 cos(2u) = f(z,y), (17a)
u(z,0) = g1(z), u(z,1.5)=g2(z), u(0,y)=nhi(y), u(l5,y)="h(y). (17b)

In the above equations, u(z,y) is the field to be solved for, f is a prescribed source term, and g;, ga, h; and
ho are prescribed Dirichlet boundary data. We choose the source term and the boundary data appropriately

so that the following field satisfies the problem (17),

u(z,y) = écos 7r:z:—2—7T —|—§cos 277:1:—1—3—7r §cos ™ 2 +§cos 27 —|—3—7T (18)
=2 5) 72 10/)] |2 Y75)T YT

The distribution of the analytic solution (18) in the z-y plane is shown in Figure 18.

The settings of the ELM neural network are similar to those in Section 3.3. The input layer contains
two nodes, representing x and y. The output layer is linear and contains one node, representing u. The
network contains one or more hidden layers, with the Gaussian activation function for all hidden nodes. The
random hidden-layer coefficients are set based on the Single-Rm-ELM or Multi-Rm-ELM configurations as
described in Section 2. The neural network is trained by the NLLSQ-perturb method from [12], as discussed
in Section 2. The crucial simulation parameters include the number of training parameters M, the set of
@ = Q1 X @ uniform collocation points in the domain, and the maximum magnitude R,, or R,, of the
random coefficients.

We first look into the Single-Rm-ELM configuration for assigning the random coefficients in the neural
network. Figure 19 illustrates the characteristics of the optimum R, in Single-Rm-ELM obtained by
the differential evolution algorithm. Note that when computing R,,o with differential evolution, we have

turned off the random perturbations and the corresponding sub-iterations in the NLLSQ-perturb method, as

36

S5 1r
oG NN:[2,200,1]) .

: G- NN:[2,M, 1] —6— NN:[2,50,50,M, 1]
—A— NN:[2,100,200, 1] 2 NN: 2, 100, M, 1] e} s NN: [2, 100, 100, M, 1]
B NN:[2,100, 100, 200, 1] oo NN: [2, 100, 100, M, 1] I -mgr--- NN: [2, 150, 150, M, 1]

w
T

_o
&
;
?
¢
6

R, (Single-Rm-ELM)
R, (Single-Rm-ELM)
o (Single-Rm-ELM)

Rm
S
s

% 20 K .3‘0 4.‘0 K 50 200 .4‘0.0 500 300 200 .469 500 800
Collocation points per direction (a) Number of training parameters (b) Number of training parameters (C)

Figure 19: Nonlinear Helmholtz equation (Single-Rm-ELM): The optimum R, versus (a) the number of
collocation points per direction and (b) the number of training parameters, with neural networks of different
depth. (¢) Ry versus the number of training parameters with neural networks having the same depth
but different width. @ = 31 x 31 in (b,c), varied in (a). M = 200 in (a), varied in (b,c). The network
architectures are given in the legends.

discussed in Remark 2.6. In these tests we consider one to three hidden layers in the neural network, and vary
the number of collocation points per direction)1 or the number of training parameters M systematically.

Figure 19(a) depicts the optimum R,,o as a function of @1, for three neural networks with a fixed number
of 200 training parameters but different depth. Figures 19(b) and (c) each depicts the R, as a function
of M for three neural networks. The three neural networks in plot (b) have different depths, with one to
three hidden layers and with the width fixed at 100 for the hidden layers other than the last one. The three
neural networks in plot (c) all contain three hidden layers, but the width the preceding hidden layers (other
than the last one) varies between 50 and 150. In both (b) and (c), the number of nodes in the last hidden
layer (i.e. M) is varied systematically, and a fixed set of @ = 31 x 31 uniform collocation points is employed.
All these results about R, are obtained with a population size of 4 and a relative tolerance 0.1 in the
differential evolution algorithm. The R,, bounds are [0.1, 3] in the differential evolution algorithm for all the
cases except for the neural network with the architecture [2, M, 1] in Figure 19(b), in which the R,, bounds
are set to [0.1,4].

We observe from Figure 19 the same characteristics about R,,o for the nonlinear Helmholtz equation
as those for the linear problems in previous subsections. For example, R, is largely independent of the
number of collocation points. It generally decreases with increasing number of layers in the neural network.
There is a large decrease in R,,,¢ from one to two hidden layers in the network, and beyond that the decrease
in R0 is almost negligible.

Table 3 illustrates the effect of R, on the accuracy of the ELM simulation results for the nonlinear
Helmholtz equation, and that the R,,q from the differential evolution algorithm leads to more accurate ELM
results than the other R,, values. In this test we consider a neural network architecture [2,300, 1] with the
Single-Rm-ELM configuration, and a set of Q = 31 x 31 uniform collocation points in the domain. We vary
the R, constant systematically (by a step size 0.5) between R,, = 0.5 and R,, = 50 for generating the
random hidden-layer coefficients. For each R,, value, we solve the system (17) and compute the residual

norm X(R,,) in (8), and the maximum/rms errors of the Single-Rm-ELM solution. These error/norm values

37

R, K(Rp) max error rms error

0.5 1.98E+2 177E+1 1.03E+0
1.0 1585 —~5 7.49E—7 6.03E —38
1.35 (Rpo) 4.44E—6 2.77TE—7 243FE —38
1.5 510E -6 3.13E—7 253E—-38
2.0 7T70E -5 723E—6 4.59E —7
2.5 1.12E -3 9.40E -5 6.98E—6
3.0 877TE -3 8.18E—4 6.57E—5
4.0 3.55E -1 3.36E—2 249E—3
5.0 26lE+0 239E—1 153E—2
7.0 148E+2 1.17E+1 8.02E -1
10.0 1.68E+3 4.77TE+1 259E+0
20.0 1.35E+4 633E+1 4.73E+0
50.0 1.77TE+4 152E+1 4.76E+0

Table 3: Nonlinear Helmholtz equation (Single-Rm-ELM): Effect of the R, value on the NLLSQ residual
norm K(R,,) (see equation (8)), the maximum error, and the rms error of the Single-Rm-ELM solution.
Network architecture: [2,300,1]. @ = 31 x 31. The optimum R, ~ 1.35 from the differential evolution
algorithm. The Multi-Rm-ELM configuration leads to identical results as Single-Rm-ELM for this test,
because it is equivalent to the latter for a single hidden layer in the neural network.

10"
4.2E-10
4.0E-10 107
3.8E-10
36E-10 0%
34E-10 107}
3.2E-10
= Soeto 104k
2.8E-10 4
26E-10 14 P10
2.4E-10 o o
SoE10 T E o
1.8E-10 LL’ U'I‘O
1.6E-10
1.4E-10
12E-10 107 10°+
1.0E10
B.OE-11 .
B.0E-11 10 F 0l
4.0E- SRS U Sy S| 10
20&11 Bl BBp, A
A
10 70 _ 20 K 30 . 0 | 50 10 200 }(‘)p 500 800
(a) Collocation points per direction (b) Number of training parameters (C)

Figure 20: Nonlinear Helmholtz equation (Single-Rm-ELM): (a) Absolute error distribution of the Single-
Rm-ELM solution. The maximum/rms errors in the domain versus (b) the number of collocation points per
direction, and (c) the number of training parameters. Network architecture: [2, M, 1]. @ =31 x 31 in (a,c),
varied in (b). M = 600 in (a,b), varied in (c). R, = 2.1 in (a,b,c).

are listed in Table 3 for a number of R, in this range, together with those corresponding to the optimum
R0 = 1.35 obtained from the differential evolution algorithm. The superior accuracy of the ELM results
with R,, = R0 is unmistakable. Note that the Multi-Rm-ELM configuration leads to the same results as
Single-Rm-ELM for this test, because it is equivalent to Single-Rm-ELM for a single hidden layer in the
neural network.

Figure 20 illustrates the accuracy of the solutions to the nonlinear Helmholtz equation obtained with
Single-Rm-ELM. In these tests we employ a set of Q = Q1 X @7 uniform collocation points, where Q) is
either fixed at @1 = 31 or varied systematically, a neural network with the architecture [2, M, 1], where M is
either fixed at M = 600 or varied systematically. We employ a fixed R,, = 2.1 in these tests, which is close
to the R0 from the differential evolution algorithm corresponding to M = 600 and @ = 31 x 31. Figure
20(a) shows the distribution of the absolute error of the Single-Rm-ELM solution. It signifies a high solution

38

—o&— R, NN: [2,100, 300, 1] —o6— R,{",NN: 2,100, M, 1]
weeedhenees R, NN: [2, 100, 300, 1] B Ryl NN: [2, 100, M, 1]
= =
— —
w1 [T
£ £
< <
E E
\E, 05 G\e/@\e/e\e/e \E, 05
2 2
o Bl o
R "
A K
, , , , Boptr , ,
0 20 K 30 40 . 50 0 200 400 600
Collocation points per direction (a) Number of training parameters (b)
15 15
—=o6— R, NN: 2, 100, 100, 300, 1]
A R®, NN: [2, 100, 100, 300, 1] —©&— R, NN: [2,100, 100, M, 1]
—ecsgee= R, NN: [2, 100, 100, 300, 1] e R, NN: [2, 100, 100, M, 1]
= = ---=7--— R, NN: [2, 100, 100, M, 1]
= =
w ot s A
£ £ i
= < ‘
5 E
\2./0.5 \§_, 05
° o
£ £
o i
V- e e e e
AT 4 ‘.X\‘V""Z\ v
, , 8 N o P , ,
20 . 30 | 40_ . 50 0 200 L. 400 600
Collocation points per direction (C) Number of training parameters (d)

Figure 21: Nonlinear Helmholtz equation (Multi-Rm-ELM): The R,,o components versus the number of
collocation points per direction (a,c) and the number of training parameters (b,d), with neural networks
having two (a,b) and three (c,d) hidden layers. The network architectures are given in the legends. Q =
31 x 31 in (b,d), varied in (a,c). M = 300 in (a,c), varied in (b,d).

accuracy, with the maximum error on the order 10710, Figures 20(b) and (c) depict the maximum/rms errors
in the domain of the ELM solution as a function of ()7 and the training parameters M, respectively. The
errors decrease exponentially (before saturation) with increasing numbers of collocation points or training
parameters, similar to what has been observed for the linear problems in previous subsections.

Let us next consider the Multi-Rm-ELM configuration for setting the random coefficients in the neural
network. Figure 21 illustrates the characteristics of the optimum R, obtained with the differential evolution
algorithm, as the number of collocation points or training parameters is varied. In these tests we consider
two neural networks with architectures given by [2,100, M, 1] and [2, 100, 100, M, 1], respectively, where the
number of training parameters is either fixed at M = 300 or varied systematically. A set of Q@ = Q1 X Q1
uniform collocation points is employed, where @)1 is either fixed at Q1 = 31 or varied systematically. Figures
21(a) and (b) depict the components of R, = (RS%, Rfi())) as a function of ()1 and M, respectively, for the
neural network with two hidden layers. These results are obtained with a population size of 4, the bounds
[0.01, 3] for both R,,, components, and a relative tolerance 0.1 in the differential evolution algorithm. Figures

W) B pO)

'm0’ *¥m0? * 'm0

21(c) and (d) show the corresponding results for R0 = (R) with the neural network of three
hidden layers, which are obtained with a population size of 6, the bounds [0.01, 2] for all R,,, components,
and a relative tolerance 0.1 in the differential evolution. The R,,o characteristics observed here are quite
similar to those of the linear problems in previous subsections. The values for the R,,,o components fluctuate

within a range (generally less than 1), and appear more irregular compared with the R,,o in Single-Rm-ELM.

39

10" 10°
2.4E-09
2.2E-09 10°+
2.0E-09 10°F
1 8E.09
Vi 2 P10
1.2E-09 (<3 e
1.0E-09 = =
3 s
SoE10 w .
S0E10 107k
10°
10° 1 . 0 AL
R SR N V.S 10 Bep B
10" 10 . 20 K 30 | 0 . 50 10" 200 K .460 600
(a) Collocation points per direction (b) Number of training parameters (C)

Figure 22: Nonlinear Helmholtz equation (Multi-Rm-ELM): (a) Absolute-error distribution of the Multi-
Rm-ELM solution. The maximum /rms errors in the domain versus (b) the number of collocation points per
direction, and (c) the number of training parameters. Network architecture: [2, 100, M, 1]. @ =31 x 31 in
(a,c), varied in (b). M = 500 in (a,b), varied in (¢). R,, = (0.55,0.4) in (a,b,c).

—&— R, computation time (Single-Rm-ELM)

107 —6— maxerror (Single-Rm-ELM) ----@--- R, computation time (Multi-Rm-ELM)
------- max error (Multi-Rm-ELM) —A— ELM training time (Single-Rm-ELM)
o —A—— rms error (Single-Rm-ELM) 4oL |-=--4---- ELM training time (Multi-Rm-ELM)
10°F --=A---- rms error (Multi-Rm-ELM) PSR
2 m @
010 2 o
[S
o, @
< @2
=
2 q0¢ Dl
%) E
‘6 e
=10 <
L S0
10"
Pres - | | | | , 107 | |
100 200 300 400 500 600 200 . 400 600
Number of training parameters (a) Number of training parameters (b)

Figure 23: Nonlinear Helmholtz equation: (a) The maximum/rms errors in the domain corresponding to
R,, = Ry in Single-Rm-ELM and R,,, = R, in Multi-Rm-ELM, versus the number of training parameters
(M) in the neural network. (b) The R,,0/Rmo computation time and the ELM network training time in
Single-Rm-ELM and Multi-Rm-ELM, versus the number of training parameters. Network architecture: [2,
100, M, 1]. @ = 31 x 31 in (a,b).

The dependence of R,,,o on the collocation points seems generally quite weak. Its relation to the number of
training parameters is quite irregular, especially with more hidden layers in the neural network.

Figure 22 illustrates the accuracy of the Multi-Rm-ELM solutions. In these tests we employ a neural
network with an architecture [2,100, M, 1], where the number of training parameters is either fixed at M =
500 or varied systematically. A set of Q = Q7 X @1 uniform collocation points is used, with @ fixed at
@1 = 31 or varied systematically. We employ a fixed R,,, = (0.54,0.4) in Multi-Rm-ELM, which is close to
the R0 obtained with M = 500 and @ = 31 x 31. Figure 22(a) shows the distribution of the absolute error
of the Multi-Rm-ELM solution corresponding to Q1 = 31 and M = 500, signifying a quite high accuracy
with the maximum error on the order 1072. Figures 22(b) and (c) depict the maximum and rms errors in
the domain of the Multi-Rm-ELM solution versus @); and M, respectively, demonstrating the exponential
convergence (before saturation) with respect to these parameters.

A comparison between Single-Rm-ELM and Multi-Rm-ELM for the nonlinear Helmholtz equation is

provided in Figure 23 with regard to their accuracies and the R,,o (R.,0) computation cost. Here the neural

40

Single-Rm-ELM Multi-Rm-ELM
R, (random) max error rms error | R, (random) max error Ims error
0.80 2.TME -1 2.05F —2 | (3.18,1.35) 5.21E+0 1.92E8 40
0.0016 1.57E+1 4.82E 40 | (0.20,0.08) 2.50E +1 1.59E +0
1.08 9.17E 40 8.70FE —1 | (4.07,4.56) 1.59E + 1 481F +0
1.84 2.50F +1 2.53E+0 | (3.03,3.65) 1.55E +1 4.68E 40
0.01 1.55E +1 2.10E+0 | (2.72,4.68) 1.57E +1 4.73E +0
0.97 6.75E + 0 4.83FE —1 | (4.08,0.01) 2.16E +0 2.94F — 1
4.95 1.58E 41 4.80E+0 | (4.29,0.17) 1.77E 40 251FE -1
3.93 1.57E+1 4.79E 40 | (3.65,0.88) 2.84E+0 8.64F — 1
0.61 7.64E —3 5.54F — 4 | (4.32,2.71) 1.52E +1 4.67E +0
1.13 1.12E8 +1 1.27E +0 | (1.50,2.11) 3.99E +1 351E+0
3.83 1.57E +1 477TE +0 | (0.14,0.62) 218E +1 1.69E 4+ 0
4.58 1.57TE+1 4.81E+0 | (3.35,3.24) 1.53E +1 4.65E +0
1.77 240E +1 2.72E +0 | (3.08,1.92) 1.04E +1 3.39E+0
3.93 157TE+1 4.78E 4+ 0 | (4.99,4.90) 1.58E +1 4.80E 40
0.73 1.14FE -1 7.54F — 3 | (3.43,3.25) 1.56E 41 4.67E +0
0.40 (Rmo) _ 34TE—5 2.61E — 6 | (0.54,0.12) (Rpmo) 5.52E — 6 128E — 7

Table 4: Nonlinear Helmholtz equation: Comparison of the maximum/rms errors of Single-Rm-ELM and
Multi-Rm-ELM with the optimum R,,0/R.n0 and with a set of random R,, /R, values (generated on [0, 5]),
for a neural network architecture [2,100,250,1]. @ = 31 x 31 in all simulations. The data for the cases with
R0 and Ry here correspond to those in Figure 23(a) for M = 250.

network has an architecture [2,100, M, 1], where M is varied between 100 and 600 in the tests. A fixed
set of @ = 31 x 31 uniform collocation points is employed in the domain. For both Single-Rm-ELM and
Multi-Rm-ELM, we have employed a population size of 4, the R,, (R,,) bounds [0.01,3], and a relative
tolerance 0.1 in the differential evolution algorithm. Figure 23(a) shows the maximum/rms errors in the
domain of the Single-Rm-ELM and Multi-Rm-ELM solutions obtained with R,, = R0 (R = Rio), as
a function of the number of training parameters M. The Multi-Rm-ELM produces a consistently better
accuracy than Single-Rm-ELM. Figure 23(b) shows the R, (R;0) computation time in Single-Rm-ELM
(Multi-Rm-ELM), as well as the ELM network training time for a given R, (R.,), as a function of M. The
R0 computation in Multi-Rm-ELM is notably more costly than the R,y computation in Single-Rm-ELM,
while the ELM network training cost is essentially the same for given R,, in Single-Rm-ELM and for given
R,, in Multi-Rm-ELM.

Table 4 provides an accuracy comparison of the Single-Rm-ELM/Multi-Rm-ELM simulations using the
optimum R,,o/Ruo from the current method and using a set of random R,,/R,, values for generating
the random hidden-layer coefficients in the neural network. Here we consider a neural network with the
architecture [2,100, 250, 1], and @ = 31 x 31 uniform collocation points in the domain. For generating the
random hidden-layer coefficients, we set R, in Single-Rm-ELM to a random value and R,, in Multi-Rm-
ELM to a pair of random values that are generated on [0,5] by a uniform distribution. Table 4 lists the
maximum/rms errors of the Single-Rm-ELM /Multi-Rm-ELM simulations corresponding to a set of random
R,,/R,, values, as well as to the optimum R,,o/Ro from the method of Section 2. The data for R,,0/Rmo
here correspond to those in Figure 23(a) with M = 250. The accuracy superiority of the simulation results

corresponding to Ry,0/Rumo is evident.

41

o
1

——6—— invoked for the first time
----------- invoked for a second time

o

——&—— invoked for the first time
-----4¢--- invoked for a second time

IS
T

. with auto-graph
with auto-graph and tracing

s and tracing

w
T

N
T

Ve in graph mode

ELM training time (seconds)

o7

5
e

10 K 20 . 3 K 0 . 50 200 4("10. 500 800
Collocation points per direction (a) Number of training parameters (b)

ELM training time (seconds)

o

Figure 24: Nonlinear Helmholtz equation (Single-Rm-ELM): ELM network training time versus (a) the
number of collocation points per direction and (b) the number of training parameters, obtained with the
training routine invoked for the first time or subsequently. The settings and simulation/network parameters
here correspond to those of Figures 20(b,c).

Figure 24 illustrates the effect of autograph/tracing and the computation in the graph mode on the
ELM network training time for the nonlinear Helmholtz equation. As discussed previously, the Tensorflow
Functions for computing the output of the last hidden layer and the associated differential operators are
slower when invoked for the first time, because the Tensorflow library would use the autograph/tracing to
build the computational graphs. But they run much faster when invoked subsequently. Figures 24(a) and (b)
depict the ELM network training time with Single-Rm-ELM, obtained with autograph/tracing (invoked for
the first time) or in graph mode (invoked subsequently, no autograph/tracing), as a function of the number
of collocation points per direction and the number of training parameters, respectively. The settings and
simulation parameters of these two plots correspond to those of the Figures 20(b) and (c), respectively. In
the graph mode the ELM network training time is markedly reduced. In the the following comparisons with
FEM, the ELM training time refers to the time obtained in the graph mode (no autograph/tracing).

We next compare the computational performance between the ELM method (Single-Rm-ELM config-
uration) and the classical and high-order FEM for solving the nonlinear Helmholtz equation. With FEM
we again use an Ny x Nj rectangular mesh (partitioned into 2N triangles), and the nonlinear Helmholtz
equation in weak form is solved by the Newton’s method from the FEniCS library with a relative tolerance
10712, We would like to mention an implementation detail concerning the evaluation of the source term and
the boundary data in the system (17a)—(17b). When implementing these terms as FEniCS “Expressions”,
we have employed the element degree plus 4 as the degree parameter in these Expressions. Note that when
solving the Poisson equation in Section 3.3 the degree parameter in the FEniCS Expressions for the source
term and the boundary data is set to be the element degree plus one. We find that for nonlinear PDEs
(nonlinear Helmholtz equation here, and the Burgers’ equation in the next subsection), setting the degree
parameter for these FEniCS Expressions to the element degree plus one is not adequate with the high-order
elements. When setting it to the element degree plus one, we observe that one cannot quite obtain the
expected rate of convergence with the high-order FEM, in particular for cases when the mesh size is not very
large. We have tested various cases by setting the degree parameter in these FEniCS Expressions to the

element degree plus different extra degrees. We observe that, as the extra degree increases (with the other

42

o'r —©— maxerror, degree=1
- max error, degree=3
A" tms error, degree=1
—feeee- rms error, degree=3
reference, 2nd-order
reference, dth-order

5 FEM(2nd orden), degree=t
- - High-order FEM, degree=3

s

FEM errors
FEM computation time (seconds)

70" g 70
Number of elements per direction (a)

=3
N

@ max error, ELM, NN: [2, 400, 1]
5 maxerror, ELM, NN: [2, 600, 1]

~-A---—- rms error, ELM, NN: [2, 400, 1]
A s error, ELM, NN: [2, 600, 1]

o--fc--- ELM, NN: [2, 400, 1]
J~ ELM, NN: [2, 600, 1]

ELM errors

ELM training time (seconds)

3
°

é |b . 1‘5 éﬂ . 2‘5 % 1‘9 . 1‘5 .2‘0) 2‘5
Collocation points per direction (C) Collocation points per direction (d)

Figure 25: Nonlinear Helmholtz equation (FEM/ELM errors and cost): The numerical errors (a) and the
computation time (b) of the classical FEM (degree=1) and the high-order FEM with Lagrange elements of
degree 3, versus the number of elements in each direction. The numerical errors (c) and the network training
time (d) of the ELM method versus the number of collocation points in each direction. ELM network
architecture: [2, M, 1]. In (¢,d), R,, = 1.5 for M = 400, and R,, = 2.1 for M = 600.

parameters fixed), the accuracy of the high-order FEM results increases significantly initially, and it levels
off as the extra degree increases to 4 and beyond. So in this subsection and the next one (Burgers’ equation),
we employ the element degree plus 4 as the degree parameter when evaluating the FEniCS Expressions for
the source term and the boundary data.

Figure 25 is an overview of the numerical errors of the FEM and ELM and their computational cost
(FEM computation time and ELM network training time) for solving the nonlinear Helmholtz equation.
Figure 25(a) shows the maximum/rms errors in the domain of the classical FEM (linear elements, degree=1)
and the high-order FEM with Lagrange elements of degree=3, as a function of the number of elements
in each direction (N;). The results signify the second-order convergence rate of the classical FEM and
the 4th-order convergence rate of the high-order FEM with element degree 3. Figure 25(b) depicts the
corresponding computation time versus the number of elements per direction for the classical and high-
order FEMs, showing that the cost of the high-order FEM grows much faster than the classical FEM with
increasing mesh sizes. Figure 25(c) depicts the maximum/rms errors in the domain of the ELM method
(Single-Rm-ELM configuration) as a function of the number of collocation points in each direction. Two
neural networks are employed, with architectures [2, M, 1] with M = 400 and M = 600, respectively. A set
of @ = @1 X @1 uniform collocation points is employed, with ()1 varied systematically between 5 and 25. In

ELM the random hidden-layer coefficients are generated with R,,, = 1.5 for the neural network with M = 400

43

<.
1

“----fx---- FEM, 2nd order “----Ac---- FEM, 2nd order
E —6—— ELM,NN: [2, 600, 1] —6—— ELM, NN:[2, 600, 1]
© CWO‘
£ T
3 £
Tyl - . o10°F §
£ ° A -
= C
2105— ‘—10°h
2 g
%10’— 310’—
£ =
Sio° To0
=
L — 2 34 5 6 L — 2 34 5 6
Training/computation time (seconds) (a) Training/computation time (seconds) (b)

Figure 26: Nonlinear Helmholtz equation (comparison between ELM and classical FEM): The maximum error
(a) and the rms error (b) versus the computational cost (ELM network training time, FEM computation
time) of the ELM and the classical FEM. The FEM data correspond to those of Figures 25(a,b) with
degree= 1. The ELM data correspond to those of Figures 25(c,d) with M = 600.

and R,, = 2.1 with M = 600, which are close to the R,,o obtained with the differential evolution algorithm.
The exponential decrease in the ELM errors are unmistakable. Figure 25(d) shows the corresponding ELM
network training time as a function of the number of collocation points. Here the ELM training time refers
to the time obtained in the graph mode (without autograph/tracing). One can observe that, as the number
of collocation points increases, the growth in the ELM training time is nearly linear.

Figure 26 compares the computational performance of the ELM and the classical FEM (2nd-order, linear
elements). It plots the maximum error (plot (a)) and the rms error (plot (b)) in the domain of the ELM (and
the classical FEM) versus the ELM network training time (resp. the FEM computation time). The FEM
data correspond to those in Figures 25(a,b) with degree=1, and the ELM data here correspond to those in
Figures 25(c,d) with M = 600 in the neural network. The ELM far outperforms the classical FEM in almost
all cases, achieving a considerably better accuracy with the same computational cost/budget or inducing a
considerably smaller cost to achieve the same accuracy. The exception is in a range of very small problem
sizes (FEM mesh size smaller than around 70 x 70, ELM collocation points less than around 10 x 10, error
level above around 5 x 1073 ~ 1072, wall time less than around 0.3 seconds), where the ELM performance
and the FEM performance are close, with the FEM a little better.

A comparison between ELM and the high-order FEM is provided in Figure 27 for solving the nonlinear
Helmholtz equation. We have again performed the h-type refinement (fix the element degree, vary the mesh
size) and the p-type refinement (fix the mesh size, vary the element degree between 1 and 7) with high-order
FEM. Figures 27(a) and (b) depict the maximum and rms errors, respectively, of the high-order FEM under
the h-type refinements versus the FEM computation time. The FEM data for the element degree=3 in these
plots correspond to those in Figures 25(a,b) with degree=3. Figures 27(c) and (d) depict the maximum and
rms errors of the high-order FEM under the p-type refinements versus the FEM computation time. These
four plots also include the maximum and rms errors of the ELM method versus the ELM network training
time. The ELM data here correspond to those in Figures 25(c,d) for the two neural networks.

We can make the following observations from Figure 27. The ELM method outperforms the high-order

FEM as the problem size becomes larger (larger FEM mesh size under fixed element degree, or larger element

44

—-—-4——— High-Order FEM, degree=3 —----A---- High-Order FEM, degree=3
v -

c'R e High-Order FEM, degree=4 v---- High-Order FEM, degree=4
‘T > High-Order FEM, degree=5 = High-Order FEM, degree=5
E -----4--——- High-Order FEM, degree=6 E . ------4--—-- High-Order FEM, degree=6
——O— ELM, NN: [2, 400, 1] @ 10 ——0—— ELM, NN: [2, 400, 1]
.8 ——O—— ELM, NN: [2, 600, 1] E ——O—— ELM, NN: [2, 600, 1]
o
£ o 10°
=
C
e =
> o 10°
= A TN
€ 5] A
g o 10° y—
= =
© o . < >
10
= -
.
1 L1 2 . 3. 4 5
(a) Training/computation time (seconds) (b)
10° [------A--—- High-Order FEM, mesh 30x30 10" ------A--—-- High-Order FEM, mesh 30x30

----v---- High-Order FEM, mesh 50x50
< High-Order FEM, mesh 70x70

—o— ELM,NN:[2, 400, 1]

—O0—— ELM, NN:[2, 600, 1]

~--- High-Order FEM, mesh 50x50
High-Order FEM, mesh 70x70

—0o— ELM, NN: [2, 400, 1]

—o0— ELM,NN: [2,600, 1]

A4

Maximum error in domain
RMS error in domain
3

10" L B 10"

S

10" 1 . .)‘ . 107 -
Toraining/compatationatime (secondg) (C) Tgraining'/compﬁtation 3time (gecond;) (d)

Figure 27: Nonlinear Helmholtz equation (comparison between ELM and high-order FEM): The maximum
error (a,c) and the rms error (b,d) in the domain versus the computational cost (ELM training time, FEM
computation time) between ELM and high-order FEM with various element degrees. In (a,b) the number of
elements per direction in the FEM mesh is varied systematically for each given element degree. In (c,d) the
degree of the Lagrange elements is varied systematically for each given mesh size. The FEM data of degree
3 in (a,b) correspond to those of Figures 25(a,b) with degree 3. The ELM data in (a,b,c,d) correspond to
those of Figures 25(c,d).

degree under fixed mesh size; larger set of ELM collocation points). With smaller problem sizes (smaller
FEM mesh size under fixed element degree, or smaller element degree under fixed mesh size; smaller set
of ELM collocation points), the computational performances of ELM and high-order FEM are comparable,
with the high-order FEM being slightly better. These observations with the nonlinear Helmholtz equation

here are consistent with what has been observed for the Poisson equation (linear) in the previous subsection.

3.5 Viscous Burgers’ Equation

We next use another nonlinear example, the viscous Burgers’ equation, to test the method for computing the
optimal R,, (R,,) and also compare the computational performance of the ELM method with the classical
and high-order FEMs. A seed value of 100 has bee employed for the random number generators in Tensorflow
and numpy for all the numerical tests in this subsection.

We consider the spatial-temporal domain, @ = {(z,t) | 0 < « < 2, 0 < t < 5}, and the following

45

LohbbhblioanwsooNmoO

Figure 28: Burgers’ equation: distribution of the exact solution.

initial-boundary value problem with the viscous Burgers’ equation on 2,

ou ou 0%u

5t T4 Vo = fz,t), (19a)
w(0,t) = g1(t), u(2,t) = g2(t), (19Db)
u(z,0) = h(z), (19¢)

where v = 0.01, u(x, t) is the field solution to be sought, f(x,t) is a prescribed source term, ¢g; and go are the
prescribed Dirichlet boundary condition, and h denotes the initial distribution. We choose the source term

and the boundary /initial distributions such that the following manufactured function solves the system (19),

u(zx,t) = (1 + 2%) <1 + 2t0> B cos <7rx + ;g) +
27 3T 3 e 27 3
% COSs <27T13 — 5>:| |:2 COSs (ﬂ't —+ 20> —+ % COS <2ﬂ't — 5>:| . (20)

Figure 28 illustrates the distribution of this function in the spatial-temporal plane.

We employ the ELM method (Single-Rm-ELM and Multi-Rm-ELM configurations), together with the
block time marching scheme (see Remark 2.7), to solve the system (19). The input layer of the neural network
contains two nodes, representing x and ¢. The linear output layer contains a single node, representing the
solution wu(z,t). The network contains one or multiple hidden layers, with the Gaussian activation function
for all the hidden nodes. The random hidden-layer coefficients are set according to the Single-Rm-ELM or
Multi-Rm-ELM configurations from Section 2.

We partition the spatial-temporal domain into a number of windows in time (time blocks), and solve
the problem on the time blocks individually and successively [12]. On each time block, the ELM network is
trained by the NLLSQ-perturb method [12]. After one time block is computed, its field solution evaluated
at the last time instant is used as the initial condition for the computation of the next time block. As
discussed in Remark 2.7, we compute the R,,o and R,,¢ by the differential evolution algorithm only on the
first time block, and we turn off the random perturbations and the associated subiterations in the nonlinear
least squares method (NLLSQ-perturb) during the R,,0 (Ry.0) computation.

The crucial simulation parameters for this problem include the time block size (or the number of time

blocks), the number of training parameters M (width of last hidden layer in network), the set of Q@ = Q1 x Q1

46

—--@---- NN:[2,300, 1] I RS . i
—A— NN:[2,100,300, 1] TR NN, 100,11 R NN i 200, 1o 11
. - NN: [2, 100, 100, 300, 1] . <o NN:[2,100, 100, M, 1] . --s--- NN; [2, 150, 150, M, 1]
,,,,, - 08
E 151 ,."e Rt c— O O © % [} -0 %
i o W, o’ m
i € oo’ €
& & | o &
[=) [=2) | g [=)
£ £ Ve £ 04r
@ Q6 @
205 =} o
£ =] B B B B B a £ £ 2
o o oc®
o &
20 K 3‘0. 4‘0. K 50 0 200 . 400 500 0 200 . 400 800
Collocation points per direction (a) Number of training parameters (b) Number of training parameters (C)

Figure 29: Burgers’ equation (Single-Rm-ELM): The optimum R,,o versus (a) the number of collocation
points per direction and (b) the number of training parameters, with neural networks of different depth. (c)
R0 versus the number of training parameters with neural networks having the same depth but different
widths. Domain: ; = [0,2] x [0,0.25]. @ = 31 x 31 in (b,c), varied in (a). M = 300 in (a), varied in (b,c).
The network architectures are given in the legends.

uniform collocation points on each time block, and the maximum magnitude R,, (or R,,) of the random
coefficients. We employ 20 uniform time blocks on the domain 2, resulting in a time block size 0.25.
Therefore, the R, and R,,o are computed on the first time block, i.e. by using the spatial-temporal domain
Q ={(z,t) | z €][0,2], t €0,0.25]}.

We first consider the Single-Rm-ELM configuration, and Figure 29 illustrates the optimum R, obtained
with the differential evolution algorithm for the Burgers’ equation. In these tests the computational domain
is the spatial-temporal domain of the first time block 21, and we employ neural networks with one to three
hidden layers. The number of training parameters is either fixed at M = 300 or varied systematically. The
set of @ = @1 X @1 uniform collocation points is either fixed at ()1 = 31 or varied systematically.

Figure 29(a) depicts the optimum R,,o as a function of the number of collocation points per direction
@1, for three neural networks with the same M = 300 but different depth. Figures 29(b) and (c) both
depict the R0 as a function of the number of training parameters M, but for neural networks with different
configurations. The plot (b) is for three neural networks with different depths, and the plot (c) is for three
neural networks with the same depth but different widths for the preceding hidden layers. These results are
obtained with a population size of 6, the R,,, bounds [0.01, 3], and a relative tolerance 0.1 in the differential
evolution algorithm. The settings and simulation parameters for each plot are provided in the figure caption.

The R, characteristics shown by Figure 29 are consistent with those observed from previous subsections.
For instance, R, is generally not sensitive to the number of collocation points in the domain, especially with
more than one hidden layers in the neural network. With a single hidden layer in the neural network, R,,q
has a notable dependence on the number of training parameters M, and tends to increase with increasing
M (Figure 29(b)). With two or more hidden layers in the neural network, R, only weakly depends on M.
R0 tends to decrease with increasing depths in the neural network or increasing widths of the preceding
hidden layers. When the number of hidden layers increases from one to two, the reduction in R, is quite
pronounced. Beyond two hidden layers, on the other hand, there is only a slight reduction in R,,q as the

number of hidden layers increases.

47

10" ——G—— maximum error
R Aoees rms error

75609
7.0E09 107F
65609
6.0E09
55609
5.0E09 10°F

P < g
5 [e) o
g.gggg t10'5 =
25E-09 L LLI10°F
2.0E-09
1.5E-09 L
e o'
10 T B p B DA 107
- ‘ ‘ ‘ ‘ ‘ 10" ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 | 30 40 50 0 100 200 300 400 500 600
(a) Collocation points per direction (b) Number of training parameters (c)

Figure 30: Burgers’ equation (Single-Rm-ELM): (a) Absolute-error distribution of the Single-Rm-ELM so-
lution on . The maximum/rms errors on 2 versus (b) the number of collocation points per direction on
each time block, and (c) the number of training parameters. Domain: 2, with 20 time blocks in block time
marching. Network architecture: [2, M, 1]. @ = 31 x 31 in (a,c), varied in (b). M =400 in (a,b), varied in
(¢). R =2.0in (a,b,c).

Figure 30 illustrates the solution accuracy of the Single-Rm-ELM configuration. The computational
domain here is the entire spatial-temporal domain © (0 < ¢ < 5), and we employ 20 time blocks in the
block time marching scheme, as mentioned before. The neural network has an architecture [2, M, 1], where
M is either fixed at M = 400 or varied systematically. A set of Q = @1 X @1 uniform collocation points
is employed on each time block, with @), either fixed at 31 or varied systematically. We employ a fixed
R,, = 2.0 in all these tests, which is close to the R,,o obtained from the differential evolution algorithm
corresponding to M = 500 and @ = 31 x 31. Figure 30(a) shows the distribution of the absolute error of the
Single-Rm-ELM solution, signifying a high accuracy with the maximum error on the order 10~ in the entire
spatial-temporal domain. Figures 30(b) and (c) depict the maximum/rms errors in the overall domain as
a function of @1 and M, respectively, showing the exponential convergence in the numerical errors (before
saturation). The simulation parameters for each plot are provided in the figure caption.

Let us next look into the Multi-Rm-ELM configuration for solving the Burgers’ equation. The charac-
teristics of the optimum R,,q are illustrated in Figure 31. The computational domain in these tests is the
spatial-temporal domain €, (¢ € [0,0.25]). We have considered two types of neural networks, whose archi-
tectures are given by [2, 100, M, 1] and [2, 100, 100, M, 1], where M is fixed at 300 or varied systematically. A
uniform set of QQ = @1 x @1 collocation points is employed in the domain, where Q) is fixed at 31 or varied
systematically. We employ a population size of 6, the bounds [0.01, 3] for all the R, components, and a
relative tolerance 0.1 in the differential evolution algorithm for these tests.

Figures 31(a) and (b) depict the optimum R0 = (Rg%, Rfi())) as a function of Q1 and M, respectively,

for the neural networks with two hidden layers. Figures 31(c) and (d) depict the corresponding components
W p®

0> om0 Rfs())) as a function of @ and M for the neural networks with three

of the optimum R,,0 = (R
hidden layers. Overall, the relations of R,,o versus ()1 and M appear to be quite irregular. The relation
between R, and @1 seems less irregular, and the dependence appears generally not quite strong. On the

other hand, the change in M appears to affect the R,,,o components more strongly, especially with increasing

48

——&— R,{", NN: 2,100, 300, 1] —o6— R, NN:[2,100,M, 1]
B R, NN: [2, 100, 300, 1] B R, NN: [2, 100, M, 1]

= =
LlIJ 1F LIIJ 1+
£ £
< <
= = W
\E, 05 W é 05k
2 o
o o A,
Lo R AL A n
RN, S N "-—A—-v—A,n: N X
° . . . , 0 P A . ,
20 K 30 40 . 50 200 | 400 600
Collocation points per direction (a) Number of training parameters (b)
e —=o6— R, NN: 2, 100, 100, 300, 1] 2r —=o— R,{",NN:[2,100, 100, M, 1]
oo R, @, NN: [2, 100, 100, 300, 1] b Ry NN2[2,100, 100, M, 1]
------- R, NN: [2, 100, 100, 300, 1] --=7-== Rys’ NN: [2,100, 100, M, 1]

R, (Multi-Rm-ELM)
R,, (Multi-Rm-ELM)

<
<
P 3

FRN i

,

Byt Booged W/
Z‘D . 3‘0 . 4‘0_ . 50 OD 260 L. 460 660
Collocation points per direction (C) Number of training parameters (d)

Figure 31: Burgers’ equation (Multi-Rm-ELM): The optimum R,,,¢ versus the number of collocation points
per direction (a,c) and the number of training parameters (b,d), with neural networks having two (a,b) and
three (c,d) hidden layers. The network architectures are given in the legends. Computational domain:
(t €10,0.25]). @ =31 x 31 in (b,d), varied in (a,c). M = 300 in (a,c), varied in (b,d).

number of hidden layers in the neural network (see Figure 31(d)). These characteristics are similar to those
observed in previous subsections with Multi-Rm-ELM for linear and nonlinear problems.

The solution accuracy of the Multi-Rm-ELM configuration is illustrated in Figure 32. The computational
domain in this set of tests is the spatial-temporal domain Q (¢ € [0,5]), which is partitioned into 25 time
blocks (block size 0.2 in time) in the block time marching scheme with Multi-Rm-ELM. The neural network
architecture is given by [2,100, M, 1], with M fixed at 400 or varied systematically. A uniform set of Q =
Q1 X Q1 collocation points is employed on each time block, where @)1 is fixed at 31 or varied systematically.
We employ a fixed R,,, = (0.645,0.145) in these tests, which is close to the R, obtained with the differential
evolution algorithm corresponding to M = 400 and @ = 31 x 31. Figure 32(a) shows the distribution of the
absolute error of the Multi-Rm-ELM solution on the entire spatial-temporal domain. The results signify a
high accuracy, with a maximum error on the order 10~ in the overall domain. Figures 32(b) and (c) depict
the maximum error and the rms error in the overall domain of the Multi-Rm-ELM solution as a function of
@1 and M. The errors generally appear to decrease exponentially or nearly exponentially with increasing
number of collocation points or training parameters. But the relation is not that regular. For example, in
Figure 32(b) as the collocation points increase from 5 x 5 to 15 x 15, there is little decrease in the errors.
However, once beyond that point, there is a sharp exponential decrease in the errors (before saturation).

A comparison between Single-Rm-ELM and Multi-Rm-ELM with regard to their accuracies and the cost

for computing Ry,0/Rino is provided in Figure 33. The computational domain is the spatial-temporal domain

49

10" ——G—— maximum error
S Aoees rms error

105 10 K 20 K 30 .4b . 50 0 100 260_ i 300 00 500
(a) Collocation points per direction (b) Number of training parameters (c)

Figure 32: Burgers’ equation (Multi-Rm-ELM): (a) Absolute-error distribution of the Multi-Rm-ELM solu-
tion in the spatial-temporal domain. The maximum/rms errors on € versus (b) the number of collocation
points per direction in each time block, and (c¢) the number of training parameters. Computational domain:
Q, with 25 time blocks in block time marching. Network architecture: [2, 100, M, 1]. @ = 31 x 31 for each
time block in (a,c), varied in (b). M = 400 in (a,b), varied in (c). R, = (0.625,0.145) in (a,b,c).

—&— R, computation time (Single-Rm-ELM)

10°r —o— max error (Single-Rm-ELM) ---@---- R, computation time (Multi-Rm-ELM)
--+<@---- max error (Multi-Rm-ELM) 10°L | —&— ELMtraining time (Single-Rm-ELM)
—A—— rms error (Single-Rm-ELM) --=+Ac--- ELM training time (Multi-Rm-ELM)
107 --=se--- rms error (Multi-Rm-ELM)
—
2 8
DIT_ 10* S 10
£
o
o [0}
Sl <
= @10+
o E
S 10°F O
g 3
w ; 10°F
107
o~
Pres - | | | , , 10" | | ,
100 200 300 400 500 600 200 . 40 600
Number of training parameters (a) Number of training parameters (b)

Figure 33: Burgers’ equation: (a) The maximum/rms errors corresponding to R,;, = R0 in Single-Rm-ELM
and R, = Ry, in Multi-Rm-ELM, versus the number of training parameters (M). (b) The R0 (or Ryn)
computation time and the ELM network training time in Single-Rm-ELM and Multi-Rm-ELM, versus the
number of training parameters. Computational domain: Q; (¢ € [0,0.25]). Network architecture: [2, 100,
M, 1]. @ =31x311in (a,b).

Q (¢t € [0,0.25]). The neural network has an architecture [2,100, M, 1] in this group of tests, where M is
varied systematically. The random hidden-layer coefficients are set based on the Single-Rm-ELM or Multi-
Rm-ELM configurations. A fixed set of @ = 31 x 31 uniform collocation points is employed. Figure 33(a)
shows the maximum/rms errors in the domain versus the number of training parameters M, corresponding
to R,, = R0 in Single-Rm-ELM and R,,, = R0 in Multi-Rm-ELM. Here when computing R,,0 and R0
we have employed a population size of 6, the bounds [0.01, 3], and a relative tolerance 0.1 in the differential
evolution algorithm for both Single-Rm-ELM and Multi-Rm-ELM. One can observe that Multi-Rm-ELM
leads to consistently more accurate results than Single-Rm-ELM. Figure 33(b) shows the corresponding cost
for computing the R,,0/Rmo in Single-Rm-ELM and Multi-Rm-ELM, as well as the ELM network training
time with given R,,/R.,, as a function of M. The R,,o computation cost in Single-Rm-ELM and the R,
computation cost in Multi-Rm-ELM appear comparable for the Burgers’ equation. The cost for computing

the Ry0/Rimo is markedly higher than the ELM network training time for a given R,, or R,,.

50

—6— max error, degree=1 g
10' -~ max error, degree=3 %)
+ rms error, degree=1 ko] ——&— FEM (2nd order), degree=1
e rms error, degree=3 € 107} | A~ High-order FEM, degree=3 | .4
, reference, 4th-order 8 "
10" reference, 2nd-order o
reference, 2nd-order 17}
(22T)
] Ew}
< =
5 " c
O
10° 1 o
> A0 =
E 4 Loa ©. g
107F 1 AA»E.OO 8.‘0“
O-g
o0 g
A
10 s 2
1 &
200 300600 (T 200 300600
Number of elements per direction (a) Number of elements per direction (b)

o

-G max error, ELM, NN: [2, 400, 1] 251
5 maxerror, ELM, NN: [2, 500, 1]
A~ rms error, ELM, NN: [2, 400, 1]
A {ms error, ELM, NN: [2, 500, 1]

oo ELM, ELM, NN: [2, 400, 1]
—o&— ELM, ELM, NN: [2,500, 1]

ELM errors
- & o

ELM training time (seconds)

3
o

5 1‘0 . 1‘5 . Z‘D . 2‘5 . 3‘0 5 1‘0) 1‘5 . 2‘0) 2‘5) 3‘0
Collocation points per direction (C) Collocation points per direction (d)

Figure 34: Burgers’ equation: The numerical errors (a) and the computation time (b) of the classical FEM
(2nd-order, degree=1) and the high-order FEM with Lagrange elements of degree 3, versus the number of
elements in each direction. In the FEM tests, as the number of elements increases, the time step size (At) is
decreased proportionately. The numerical errors (c¢) and the network training time (d) of the ELM method
versus the number of collocation points in each direction of the time block. Computational domain:
(t € 10,0.25]). The network architectures are given in the legends.

Let us next compare the ELM method (Single-Rm-ELM configuration) with the FEM (classical and
high-order FEMs) for solving the Burgers’ equation. The computational domain is the spatial-temporal
domain Q; (¢ € [0,0.25]) in the following tests.

With FEM, we employ a second-order semi-implicit type time integration scheme to solve the Burgers’
equation (see [12]). We discretize the time derivative term in (19a) by the second-order backward differ-
entiation formula (BDF2), treat the diffusion term implicitly, and treat the nonlinear term explicitly. The
temporally semi-discretized equation in weak form is then solved in space by the classical (2nd-order) FEM
or high-order FEM with Lagrange elements, which are implemented using the FEniCS library with uniform
1D interval mesh. The FEM simulation parameters include the time step size At (or the number of time
steps), the number of elements in space, and the element degree for high-order FEM. In the FEM tests, we
vary the number of elements systematically and simultaneously vary the number of time steps accordingly, so
that the At and the element size is increased or decreased proportionately. The element degree is also varied
with the high-order FEM. As mentioned in Section 3.4, the degree parameter in the FEniCS “Expressions”
for the source term and the boundary/initial data in (19) is set to be the element degree plus 4 with FEM.

With ELM, we employ one time block in the spatial-temporal domain €2;. We consider two neural
networks with the architecture [2, M, 1] with M = 400 and M = 500, respectively. A fixed R,, = 2.0 is

used to generate the random hidden-layer coefficients. We employ a uniform set of @ = Q1 x Q1 collocation

o1

£~ FEM, 2nd-order £~ FEM, 2nd-order
c —o&— ELM, NN: [2,500, 1] —©&— ELM,NN: [2,500, 1]
‘@10 c
£ ©
o
-Owo”— 15
o
£ kel
= C
2105— =
° g
€ 5]
5107+
E g
(>éwo° CC‘ 5
=
L — 2 34 5 6 L — 2 34 5 6
Training/computation time (seconds) (a) Training/computation time (seconds) (b)

Figure 35: Burgers’ equation (comparison between ELM and classical FEM): The maximum errors (a) and
the rms errors (b) in the spatial-temporal domain versus the computational cost (ELM training time, FEM
computation time) between ELM and the classical FEM. The FEM data correspond to those in Figures
34(a,b) with degree=1. The ELM data correspond to those in Figures 34(c,d) with M = 500.

points on the spatial-temporal domain 21, where @Q); is varied systematically in the tests.

Figure 34 provides an overview of the errors and the computational cost of the FEM and the ELM
for solving the Burgers’ equation. Figures 34(a) and (b) show the maximum/rms errors in 2y, and the
computation time, of the classical FEM (2nd-order, degree=1) and the high-order FEM with Lagrange
elements of degree=3, as a function of the number of elements in the mesh. Since the element size and the
time step size At are varied proportionately, these plots equivalently show the relations of the errors (or
computation time) versus At. With the classical FEM, the number of elements varies between 20 and 500,
and At is varied proportionately between 1.25 x 1073 and 5.0 x 1075 in these data. With the high-order
FEM of degree=3, the number of elements varies between 20 and 300, and At is varied proportionately
between 1.25 x 10~* and 8.33 x 107%. We clearly observe a second-order convergence rate of the classical
FEM with respect to the number of elements, and also with respect to At. With Lagrange elements of degree
3, we observe a 4th-order convergence rate initially (when the number of elements is not large), which then
transitions to a second-order convergence rate when the number of elements increases beyond a certain point.
The observed change in the convergence rate with high-order FEM is due to the interplay and the dominance
of the spatial truncation error or the temporal truncation error in different regimes. When the spatial error
dominates, what one observes is the actual spatial convergence rate (4th-order with element degree 3). When
the temporal error dominates, on the other hand, what one observes is the second-order convergence rate
with respect to At, because the spatial error becomes insignificant compared with the temporal error in this
case. Figure 34(b) signifies that computational cost of the high-order FEM is markedly larger than that of
the classical FEM.

Figures 34(c) and (d) depict the maximum/rms errors and the network training time of the ELM as a
function of the number of collocation points in each direction (@) with the two neural networks. Here the
ELM training time is the time obtained in the graph mode (no autograph/tracing). We observe the familiar
exponential decrease in the ELM errors. The plot (d) indicates that the ELM network training time grows
nearly linearly with increasing number of collocation points.

Figure 35 compares the computational performance between the ELM method and the classical FEM for

52

~-----&------ High-Order FEM, degree=3
--—-y---- High-Order FEM, degree=4

------a------ High-Order FEM, degree=3
v---- High-Order FEM, degree=4

= > High-Order FEM, degree=5 > igh-Order FEM, degree=5
10" ---—-—— High-Order FEM, degree=6 c 10° ---—-——- High-Order FEM, degree=6
e ——A—— ELM, NN: [2, 400, 1] T ——A—— ELM, NN: [2, 400, 1]
(o] ——O—— ELM, NN: [2, 500, 1] e ——0O—— ELM, NN: [2, 500, 1]
-gww E o 10°F
= o
S £ N ettt
100 o 10°F
2 g
gwo’ r £ 10° -
£ =
(>éwo° 0o
=
L —) 3 L —) 3
Training/computation time (seconds) (a) Training/computation time (seconds) (b)

A High-Order FEM, degree=2
----y---- High-Order FEM, degree=3
High-Order FEM, degree=4

A~ High-Order FEM, degree=2
----v---- High-Order FEM, degree=3

> High-Order FEM, degree=4 > .
£ ———<——— High-Order FEM, degree=5 ---~--—- High-Order FEM, degree=5
10" ——2— ELM,NN:[2, 400, 1] c ——— ELM,NN:[2, 400, 1]
1S —O0— ELM, NN: [2,500, 1] = o | —o— ELMNN:[2,500, 1]
o A e A
O A, S R
£ e . . S v a
=) c -
Sio° e, = > e
o + - T <] A - M.
c [e S Ay 5 |l T B
=1
E 2
(>Y<S| o,
=
H)”0 .. é . . |‘D 1‘5 'O‘QD L. é . . 1‘0 |‘5
Training/computation time (seconds) (C) Training/computation time (seconds) (d)

Figure 36: Burgers’ equation (comparison between ELM and high-order FEM): The maximum error (a,c)
and the rms error (b,d) in the spatial-temporal domain versus the computational cost (ELM training time,
FEM computation time) between ELM and high-order FEM. Computational domain: Q1 (¢ € [0,0.25]). The
ELM data correspond to those in Figures 34(c,d). In the FEM tests, the element size and the time step size
(At) are decreased simultaneously and proportionately for each given element degree. In (a,b), the number
of FEM elements varies between 20 and 500, and At varies between 1.25 x 1072 and 5 x 107°. In (c,d), the
number of FEM elements varies between 20 and 100, and At varies between 1.25 x 10~% and 2.5 x 107°. The
FEM data with degree=3 in (c,d) correspond to a portion of the data in Figures 34(a,b) with degree=3.

the Burgers’ equation. The two plots show the maximum errors and the rms errors in the overall spatial-
temporal domain of the ELM and classical FEM solutions versus their computational cost (ELM network
training time, FEM computation time). The FEM data here correspond to those in Figures 34(a,b) with
degree=1, and the ELM data correspond to those in Figures 34(c,d) with the neural network architecture
[2,500, 1]. One can observe that the ELM method consistently and far outperforms the classical FEM.

Figure 36 is a comparison of the computational performance between the ELM and the high-order FEM
for solving the Burgers’ equation. The computational domain here is the spatial-temporal domain Q; (¢t €
[0,0.25]). Two sets of FEM tests are conducted here, in both of which the element size and the time step size
(At) are reduced simultaneously and proportionately for a given element degree. In the first set of tests, the
number of elements vary between 20 and 500, and the time step size varies between At = 1.25 x 1072 and
At = 5.0 x 107° accordingly. In the second set, the number of elements vary between 20 and 100, and the
time step size varies between At = 1.25 x 10~% and At = 2.5 x 107° accordingly. The ELM data correspond
to those given in Figures 34(c,d).

Figures 36(a) and (b) show the maximum errors and the rms errors, respectively, of the high-order FEM

and the ELM solutions in the spatial-temporal domain versus the FEM computation time and the ELM

53

network training time for the first set of FEM tests. We observe that the FEM curves corresponding to
different element degrees essentially overlap with one another. This is because in this set of tests the At is
relatively large and the temporal truncation error dominates. So in this case increasing the element degree
barely affects the total FEM error. The data in Figures 36(a,b) demonstrate that the ELM consistently
outperforms the high-order FEM, and by a considerable margin as the problem size increases.

Figures 36(c) and (d) show the maximum and rms errors of the high-order FEM versus the computation
time for the second set of FEM tests, together with the ELM errors versus the ELM training time. We can
observe that the FEM error generally decreases as the element degree increases (e.g. from 2 to 3 and 4), and
that the FEM error remains essentially the same as the element degree increases to 4 and beyond. This is
because the At is smaller here than in the first set of FEM tests, and so the spatial truncation error dominates
the FEM total error, at least with the smaller element degrees. As the element degree increases, the spatial
truncation error is reduced rapidly and the temporal truncation error gradually becomes dominant. At this
point, further increase in the FEM element degree will not notably affect the total FEM error. Because of
the smaller At values in the second set of FEM tests, a significantly larger number of time steps need to be
computed in the FEM simulations, resulting in an overall increased FEM computation time. We can observe
from Figures 36(c,d) that the ELM way outperforms the high-order FEM for this set of tests.

The above comparisons show that the ELM method combined with block time marching is effective
and efficient for solving time dependent PDEs. It is considerably more efficient than the FEM (classical
and high-order FEMs) combined with the commonly-used second-order time stepping scheme, in terms of
the accuracy and the incurred computational cost. These comparisons are conducted on a relatively small
temporal domain (¢ € [0,0.25]). When the temporal dimension of the spatial-temporal domain increases
(i.e. for longer-time simulations), the advantage of the ELM combined with block time marching becomes

even more prominent.

4 Concluding Remarks

In extreme learning machines (ELM) the hidden-layer coefficients of the neural network are pre-set to uniform
random values generated on the interval [—R,,, R;;], where the maximum magnitude R, of the random
coefficients is a user-provided constant (hyperparameter), and the output-layer coefficients are trained by a
linear or nonlinear least squares computation [12]. More accurate ELM results have been observed to be
associated with a range of moderate values for R,, (see [12]). In the current paper, we have presented a
method for computing the optimal or near-optimal value for the R,,, constant for solving partial differential
equations (PDE). The presented method is based on the differential evolution algorithm, and seeks the
optimal R,, by minimizing the norm of the residual vector of the linear or nonlinear algebraic system that
results from the ELM representation of the PDE solution and that corresponds to the ELM least squares
solution to the system. This method amounts to a pre-processing procedure. It determines a near optimal
value for R,,, which can be used in ELM for solving linear or nonlinear PDEs. In practice, we observe that
any value in a neighborhood of the returned R,,o from the method can be used in the ELM simulation and

leads to comparable accuracy. This is because, as shown in [12], there is usually a range of R,, values that

54

lead to good accuracy with ELM.

We have investigated two configurations in ELM for setting the random hidden-layer coefficients, Single-
Rm-ELM and Multi-Rm-ELM. The Single-Rm-ELM configuration corresponds to the conventional ELM, in
which the weight /bias coefficients for all the hidden layers of the neural network are assigned to random values
generated on [—R,,, R;,], with a single R, constant. In the Multi-Rm-ELM configuration, the weight/bias
coefficients in the I-th hidden layer, 1 < 1 < L — 1 with (L — 1) denoting the total number of hidden layers,
are set to random values generated on [—Rffl), R,(fl)]. Therefore, the maximum magnitudes of the random
coefficients in different hidden layers may be different in Multi-Rm-ELM, and they are characterized by the
vector R,,, = (Rg), Rg,%), cee R%_l)).

We have computed the optimal R, in Single-Rm-ELM and the optimal R,, in Multi-Rm-ELM using
the method developed here for a number of linear and nonlinear PDEs. We have the following observations

about the Single-Rm-ELM and Multi-Rm-ELM and their respective optimum R,,,o and R,,q:

e The optimum R, of Single-Rm-ELM is largely independent of the number of collocation points. R,
only weakly depends on the number of training parameters for neural networks with two or more
hidden layers. For neural networks with a single hidden layer, the dependence of R,,o on the number
of training parameters (M) is stronger, and R0 tends to increase with increasing M (when M is not

very small).

e R0 generally decreases with increasing number of hidden layers in the neural network. There is a
fairly large drop in R,,,¢ from a single hidden layer to two hidden layers. Beyond two hidden layers, the
decrease in R,,o is only slight and can oftentimes be negligible as the number of hidden layers further

increases.

e R0 has only a very weak (oftentimes negligible) dependence on the number of nodes in the hidden
layers preceding the last hidden layer. R,,o tends to decrease slightly with increasing width of the
preceding hidden layers.

e The optimum R, of Multi-Rm-ELM tends to exhibit a relationship that is not quite regular with
respect to the ELM simulation parameters. However, the trend exhibited by R, appears reminiscent
of what has been observed about the optimum R,y of Single-Rm-ELM. For example, R,,o depends
only weakly on (or nearly independent of) the number of collocation points, and appears to generally

increase with increasing number of training parameters.

e The Multi-Rm-ELM configuration with R,, = R,,¢ leads to consistently more accurate simulation
results than the Single-Rm-ELM configuration with R, = R0, under otherwise identical conditions.
On the other hand, the R,,o computation cost in Multi-Rm-ELM is generally higher than the R,
computation cost in Single-Rm-ELM.

We have made several improvements to the implementation of the ELM method in the current work.
The most crucial change lies in the adoption of a forward-mode auto-differentiation for computing the

differential operators associated with the output fields of the last hidden layer of the neural network. This is

95

implemented using the “ForwardAccumulator” in Tensorflow. In contrast, these differential operators were
computed by the default reverse-mode auto-differentiation (“GradientTape”) of Tensorflow in the previous
work [12]. These improvements result in a significant boost to the computational performance of ELM.
Another aspect of the current contribution is a systematic comparison of the computational performance
between the current ELM method and the classical and high-order finite element methods (FEM) for solving
linear and nonlinear PDEs. The ELM method employs the improved implementation and the near optimal
R, obtained from the differential evolution algorithm. The classical FEM (second-order, linear elements)
and the high-order FEM are implemented based on the FEniCS library by employing the Lagrange elements
of degree one or higher degrees. By looking into the ELM/FEM accuracy and their computational cost
(FEM computation time, ELM network training time) for a number of linear /nonlinear PDEs, we have the

following observations:

e For stationary (i.e. time-independent) PDEs, the ELM far outperforms the classical FEM if the problem
size is not very small. For very small problem sizes (small FEM mesh, small number of ELM training
collocation points), the computational performance of the ELM and the classical FEM is close, with

the classical FEM a little better.

e For stationary PDEs, there is a crossover point in the relative performance between ELM and the
high-order FEM with respect to the problem size (FEM mesh size or element degree, ELM collocation
points). For smaller problem sizes (smaller FEM mesh in h-type refinements or smaller element degree
in p-type refinement; smaller number of ELM collocation points), the ELM and high-order FEM
are close in computational performance, with the high-order FEM appearing slightly better. As the
problem size becomes larger, the ELM markedly outperforms the high-order FEM.

e For time-dependent PDEs, the ELM method combined with the block time marching scheme consis-
tently and significantly outperforms both the classical and the high-order FEMs (combined with a

time-stepping scheme).

These performance comparisons demonstrate that the neural network-based ELM method is computa-
tionally competitive compared with not only the classical second-order FEM but also the high-order FEM
based on high-order polynomials. The ELM exceeds the classical FEM by a considerable margin in terms of
computational performance. The ELM method delivers a comparable performance to high-order FEM for
smaller problem sizes. For larger problem sizes, the ELM performance exceeds the performance of high-order
FEM. The ELM method is more efficient than or as efficient as the high-order FEM.

Can artificial neural networks provide a competitive method for scientific computing and in particular
for numerical PDEs? Can one devise a neural network-based method for approximating PDEs that can
outcompete the traditional numerical techniques? These questions have motivated the current effort and
also our recent work in [12]. The ELM type methods developed in [12] and the current work for solving
PDEs seek a different approach from the existing DNN-based PDE solvers, in order to achieve high accuracy
and competitive computational performance. Our methods attempt to exploit the randomization of a subset

of the network weights in order to simplify the the optimization task of the network training, and more

56

Figure 37: Appendix (Poisson equation): distribution of the exact solution.

importantly we train the neural network by a linear or nonlinear least squares computation (rather than
the gradient descent type algorithms). The exponential convergence behavior (for smooth solutions) with
respect to the number of training data points and training parameters and the high accuracy exhibited by
these methods are reminiscent of the traditional high-order methods such as the spectral, spectral element
or hp-finite element type techniques.

The current work and our recent work in [12] provide strong evidence that the answer to the above
questions seems indeed to be positive. Our previous work [12] demonstrates that the ELM type method can
be more competitive than or as competitive as the classical second-order FEM. The importance of the current
work lies in that it further shows that the ELM type method can be more competitive than or as competitive
as the high-order FEM in terms of the accuracy and computational cost. These studies collectively instigate
a neural network-based accurate, efficient and competitive technique for numerical approximation of PDEs

in computational science and engineering applications.

Acknowledgement

This work was partially supported by NSF (DMS-2012415, DMS-1522537).

Appendix: Comparison of Several Activation Functions with the
Poisson Equation

In the main text we have employed the Gaussian activation function (o(x) = e=*") for all the numerical
tests. In this appendix we provide a comparison of the ELM accuracy for solving the Poisson equation when
a number of different activation functions are employed in the neural network.

We consider the boundary value problem consisting of (15a) and (15b), and employ the following analytic

solution to this problem for the numerical experiments in this appendix,

u(z,y) = — |sin (r2%) — 1—10 tanh (2962)} {sin (my?) — 1—10 tanh (2y°) | . (21)

The distribution of this solution in the xy plane is illustrated in Figure 37. The other problem settings and

configurations follow those of Section 3.3.

o7

function name o(x) R0 | function name o(x) Rino
Gaussian e 3.3 | sine sin(x) 20.0
cosine cos(x) 20.0 | gcu x cos(z) 20.0
sinc sin(z) 70 | GELU[25] fali+ef(g)] 48
sigmoid H% 3.7 | tanh tanh(x) 2.0
erf erf(x) 3.2 swish 1+i—z 4.0
softplus In(1+e*) 4.4 | mish [47] ztanh(ln(l +e*)) 3.0

Table 5: Appendix (Poisson equation): The activation functions and the corresponding optimum R,
obtained using the method from Section 2. The R,,o values are computed with the network architecture
[2,800, 1] and @ = 35 x 35 uniform collocation points.

max error rms error

o(x) @ =15x15 25 x 25 35 x 35 Q=15x15 25 x 25 35 x 35
Gaussian | 4.32F —2 320E-4 117E-5| 6.7TE—-3 892E—-5 6.04E-7
GELU 4.36E — 2 3.78E—-4 131E -5 7.24FE -3 7T70E -5 T7.79E -7
sine 3.87TE -2 1.71E -5 8.28E —38 5.25E -3 364E -6 837TE -9
cosine 3.03E —2 1738 -5 126E—-7| 425E—-3 344E -6 145E—8
geu 6.30E — 2 948E -6 155E—T7| 1.23E -2 1.73E -6 148E -8
sinc 1.14E -1 3.0E—-5 276E—-7| 107E -2 5.14E -6 2.08E —8
tanh 4.78E — 2 123E -3 8I17TE—-5| 933E-3 241F -4 6.20E -6
sigmoid 5.33FE — 2 522K -4 114EF -4 | 961E -3 1.10E -4 1.08E -5
erf 3.16FE -2 5.01E -4 201E-5 5.72E -3 864E -5 T7.86E -7
swish 5.92F — 2 8.06F -4 112E -4 1.00E -2 1.69EF —4 9.88E —6
softplus 5.67TE — 2 137 -3 171E—-4 | 984FE -3 249FE -4 1.20E -5
mish 5.07E -2 132 -3 801E—-5| 922E-3 242FE -4 1.04E -5

Table 6: Appendix (Poisson equation): the maximum/rms errors of Single-Rm-ELM obtained with various
activation functions on three uniform sets of @) collocation points. Neural network architecture [2, 800, 1].
R,, = R0, whose values are given in Table 5, for generating the random hidden-layer coefficients.

max error rms error

o(x) M =400 600 800 M =400 600 800

Gaussian | 7.88F —2 3.67TE—-4 117E -5 | T712E—-3 295E—-5 6.04E—-7
GELU 732E—-2 215E—-4 131E—-5|895E—-3 231E-5 T7.79E -7
sine 431E -2 457E -5 828E—-8 | 443E—-3 3.00E—-6 837E—-9
cosine 3.03E—-2 276E -5 126E—-7|333EF—-3 162E—-6 145FE—8
geu 736 -2 245E -5 155E—7 | 78E -3 210E—-6 148E -8
sinc 8.03E -2 105E—-4 276E—-7|960F—-3 695E—-6 2.08FE—38
tanh 9.70EF -2 121F-3 817TE-5 | 812E—-3 124E—-4 6.20E—6
sigmoid 4.0 -2 105E—-3 114E—-4 | 361E—-3 109E—-4 108E—-5
erf 3.85E -2 216FE—-4 201E—-5|433E—-3 148E -5 7.86E—7
swish 1.1bE -1 161E—-3 112FE—4 | 855E -3 126E—4 988E—6
softplus 9.8E—-2 196F -3 171E—-4|948E—-3 187TE—-4 120FE-5
mish 6.26F -2 1656 -3 80lE—-5|659F -3 126E—-4 1.04FE—-5

Table 7: Appendix (Poisson equation): the maximum/rms errors of Single-Rm-ELM obtained with various
activation functions on the network architecture [2, M, 1] with three M values. @ = 35 x 35 uniform
collocation points. R,, = R0, whose values are given in Table 5, for generating the random hidden-layer
coefficients.

58

We employ a neural network architecture [2, M, 1], with M either fixed at M = 800 or varied system-
atically, and a uniform set of) = @1 x @1 collocation points, with @) either fixed at ()1 = 35 or varied
systematically. We employ the same activation function for all the hidden nodes, and a number of different
activation functions are tested. We employ R,, = R,,0 for generating the random hidden-layer coefficients,
where the optimum R, is computed using the method from Section 2 for different activation functions.
Table 5 lists the activation functions considered here, as well as their corresponding optima R, values.

Tables 6 and 7 list the maximum and rms errors of the Single-Rm-ELM solution corresponding to various
activation functions from Table 5, for several sets of collocation points and for several neural networks with
different M values, respectively. Note that the Multi-Rm-ELM would result in identical results for these
tests because it is equivalent to Single-Rm-ELM with a single hidden layer in the neural network. The data
suggest that one can approximately separate these activation functions into several groups based on their

accuracy, and order them as follows (from higher to lower accuracy),
{sine, cosine, gcu, sinc} = {Gaussian, GELU, erf} > {tanh, swish} > {mish, sigmoid, softplus},

where the symbol > is used to denote “generally better than”. Those functions in the same group generally

exhibit a comparable accuracy.

References

[1] P.A. Alaba, S.I. Popoola, L. Olatomiwa, M.B. Akanle, O.S. Ohunakin, E. Adetiba, O.D. Alex, A.A.A.
Atayero, and W.M.A.W. Daud. Towards a more efficient and cost-sensitive extreme learning machine:

a state-of-the-art review of recent trend. Neurocomputing, 350:70-90, 2019.

[2] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, and J.M. Siskind. Automatic differentiation in machine
learning: a survey. J. Mach. Learn. Res., 18:1-43, 2018.

[3] Z. Cai, J. Chen, M. Liu, and X. Liu. Deep least-squares methods: an unsupervised learning-based
numerical method for solving elliptic PDEs. Journal of Computational Physics, 420:109707, 2020.

[4] F. Calabro, G. Fabiani, and C. Siettos. Extreme learning machine collocation for the numerical solution
of elliptic PDEs with sharp gradients. Computer Methods in Applied Mechanics and FEngineering,
387:114188, 2021.

[6] N.E. Cotter. The stone-weierstrass theorem and its application to neural networks. IEEFE Transactions

on Neural Networks, 4:290-295, 1990.

[6] R.L. Courant. Variational methods for the solution of problems of equilibrium and vibration. Bulletin

of the American Mathematical Society, 49:1-23, 1943.

[7] E.C. Cyr, M.A. Gulian, R.G. Patel, M. Perego, and N.A. Trask. Robust training and initialization
of deep neural networks: An adaptive basis viewpoint. Proceedings of Machine Learning Research,

107:512-536, 2020.

59

8]

[9]

[10]

[16]

[17]

[18]

[19]

[20]

[21]

M.W.M.G. Dissanayake and N. Phan-Thien. Neural network-based approximations for solving partial

differential equations. Communications in Numerical Methods in Engineering, 10:195-201, 1994.

S. Dong. A convective-like energy-stable open boundary condition for simulations of incompressible

flows. Journal of Computational Physics, 302:300-328, 2015.

S. Dong. Multiphase flows of N immiscible incompressible fluids: a reduction-consistent and
thermodynamically-consistent formulation and associated algorithm. Journal of Computational Physics,

361:1-49, 2018.

S. Dong and G.E. Karniadakis. P-refinement and p-rethreads. Computer Methods in Applied Mechanics
and Engineering, 192(19):2191-2201, 2003.

S. Dong and Z. Li. Local extreme learning machines and domain decomposition for solving linear
and nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering,

387:114129, 2021. (also arXiv:2012.02895).

S. Dong and Z. Li. A modified batch intrinsic plascity method for pre-training the random coef-
ficients of extreme learning machines. Journal of Computational Physics, 445:110585, 2021. (also
arXiv:2103.08042).

S. Dong and N. Ni. A method for representing periodic functions and enforcing exactly periodic boundary

conditions with deep neural networks. Journal of Computational Physics, 435:110242, 2021.

S. Dong and J. Shen. A time-stepping scheme involving constant coefficient matrices for phase field
simulations of two-phase incompressible flows with large density ratios. Journal of Computational

Physics, 231:5788-5804, 2012.

V. Dwivedi and B. Srinivasan. Physics informed extreme learning machine (pielm) — a rapid method

for the numerical solution of partial differential equations. Neurocomputing, 391:96-118, 2020.

W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving

variational problems. Communications in Mathematics and Statistics, 6:1-12, 2018.

S.C. Endres, C. Sandrock, and W.W. Focke. A simplicial homology algorithm for Lipschitz optimization.
Journal of Global Optimization, 72:181-217, 2018.

G. Fabiani, F. Calabro, L. Russo, and C. Siettos. Numerical solution and bifurcation analysis of nonlinear
partial differential equations with extreme learning machines. Journal of Scientific Computing, 89:44,

2021.

A L. Freire, A.R. Rocha-Neto, and G.A. Barreto. On robust randomized neural networks for regression:

a comprehensive review and evaluation. Neural Computing and Applications, 32:16931-16950, 2020.

P.E. Gill, W. Murray, and M.H. Wright. Numerical Linear Algebra and Optimization. SIAM, 2021.

60

[22]
[23]

[24]

[25]

[26]

[27]

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.
S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

J. He and J. Xu. MgNet: A unified framework for multigrid and convolutional neural network. Science

China Mathematics, 62:1331-1354, 2019.
D. Hendrycks and K. Gimpel. Gaussian error linear units (GELU). arXiv:1606.08415, 2016.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxima-

tors. Neural Networks, 2:359-366, 1989.

K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping and its

derivatives using multilayer feedforward networks. Neural Networks, 3:551-560, 1990.

G. Huang, G.B. Huang, S. Song, and K. You. Trends in extreme learning machines: a review. Neural

Networks, 61:32—48, 2015.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and applications. Neuro-
computing, 70:489-501, 2006.

G.B. Huang, L. Chen, and C.-K. Siew. Universal approximation using incremental constructive feed-
forward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17:879-892,
2006.

B. Igelnik and Y.H. Pao. Stochastic choice of basis functions in adaptive function approximation and

the functional-link net. IEEE Transactions on Neural Networks, 6:1320-1329, 1995.

A.D. Jagtap and G.E. Karniadakis. Extended physics-informed neural network (XPINNs): A general-
ized space-time domain decomposition based deep learning framework for nonlinear partial differential

equations. Communications in Computational Physics, 28:2002-2041, 2020.

A.D. Jagtap, E. Kharazmi, and G.E. Karniadakis. Conservative physics-informed neural networks on
discrete domains for conservation laws: applications to forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 365:113028, 2020.

G.E. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed machine
learning. Nature Reviews Physics, 3:422-440, 2021.

G.E. Karniadakis and S.J. Sherwin. Spectral/hp element methods for computational fluid dynamics, 2nd
edn. Oxford University Press, 2005.

E. Kharazmi, Z. Zhang, and G.E. Karniadakis. Variational physics-informed neural networks for solving

partial differential equations. arXiv:1912.00873, 2019.

A.S. Krishnapriyan, A. Gholami, S. Zhe, R.M. Kirby, and M.W. Mahoney. Characterizing possible
failure modes in physics-informed neural networks. arXiv:2109.01050, 2021.

61

[38]

[39]

[40]

[50]

[51]

[52]

LE. Lagaris, A.C. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Transactions on Neural Networks, 9:987-1000, 1998.

LLE. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary value problems
with irregular boundaries. IFEFE Transactions on Neural Networks, 11:1041-1049, 2000.

H. Lee and I. Kang. Neural algorithms for solving differential equations. Journal of Computational

Physics, 91:110-117, 1990.

J.-Y. Li, W. Chow, B. Igelnik, and Y.-H. Pao. Comments on “stochastic choice of basis functions in
adaptive function approximaton and the functional-link net”. IEEE Trans. Neural Netw., 8:452-454,
1997.

K. Li, K. Tang, T. Wu, and Q. Liao. D3M: A deep domain decomposition method for partial differential
equations. IEEE Access, 8:5283-5294, 2020.

X. Li. Simultaneous approximations of mulvariate functions and their derivatives by neural networks

with one hidden layer. Neurocomputing, 12:327-343, 1996.

L. Lin, Z. Yang, and S. Dong. Numerical approximation of incompressible Navier-Stokes equations

based on an auxiliary energy variable. Journal of Computational Physics, 388:1-22, 2019.

A.J. Meade and A.A. Fernandez. The numerical solution of linear ordinary differential equations by

feedforward neural networks. Math. Comput. Modeling, 19(12):1-25, 1994.

A.J. Meade and A.A. Fernandez. Solution of nonlinear ordinary differential equations by feedforward

neural networks. Math. Comput. Modeling, 20(9):19-44, 1994.
D. Misra. Mish: A self regularized non-monotonic activation function. arXiv:1908.08681, 2019.

S. Panghal and M. Kumar. Optimization free neural network approach for solving ordinary and partial

differential equations. Engineering with Computers, Early Access, February 2020.

A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with ran-
domization in learning. In D. Koller, D. Schuurmans, Y. Bengio and L. Bottou, editors, Advances in

Neural Information Processing Systems (NIPS), 2:1316-1323, 2008.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.

Journal of Computational Physics, 378:686-707, 2019.

K. Rudd and S. Ferrari. A constrained integration (CINT) approach to solving partial differential

equations using artificial neural networks. Neurocomputing, 155:277-285, 2015.

E. Samanaiego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and

T. Rabczuk. An energy approach to the solution of partial differential equations in computational

62

[62]

[63]

[64]

[65]

[66]

mechanics via machine learning: concepts, implementation and applications. Computer Methods in

Applied Mechanics and Engineering, 362:112790, 2020.

S. Scardapane and D. Wang. Randomness in neural networks: an overview. WIRFEs Data Mining

Knowl. Discov., 7:e1200, 2017.

J. Sirignano and K. Spoliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339-1364, 2018.

R. Storn and K. Price. Differential evolution — A simple and efficient heuristic for global optimization

over continuous spaces. Journal of Global Optimization, 11:341-359, 1997.
B. Szabo and 1. Babushka. Finite Element Analysis. John Wiley & Sons, Inc., 1991.

J. Tang, C. Deng, and G.B. Huang. Extreme learning machine for multilayer perceptron. IEEE Trans-

actions on neural networks and learning systems, 32(2):392-404, 2015.

K. Tang, X. Wan, and Q. Liao. Adaptive deep density estimation for fokker-planck equations. Journal
of Computational Physics, 457:111080, 2022.

M.D. Tissera and M.D. McDonnell. Deep extreme learning machines: supervised autoencoding archi-

tecture for classification. Neurocomputing, 174:42—49, 2016.

X. Wan and S. Wei. VAE-KRnet and its applications to variational Bayes. Communications in Com-

putational Physics, in press, 2021. arXiv:2006.16431.

S. Wang, X. Yu, and P. Perdikaris. When and why PINNs fail to train: a neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

Y. Wang and G. Lin. Efficient deep learning techniques for multiphase flow simulation in heterogeneous

porous media. Journal of Computational Physics, 401:108968, 2020.

P.J. Werbos. Beyond regression: new tools for prediction and alaysis in the behavioral sciences. PhD

Thesis, Harvard Univeristy, Cambridge, MA, 1974.

N. Winovich, K. Ramani, and G. Lin. ConvPDE-UQ: Convolutional neural networks with quanti-
fied uncertainty for heterogeneous elliptic partial differential equations on varied domains. Journal of

Computational Physics, 394:263-279, 2019.

Z. Yang and S. Dong. A roadmap for discretely energy-stable schemes for dissipative systems based on a
generalized auxiliary variable with guaranteed positivity. Journal of Computational Physics, 404:109121,

2020. (also arXiv:1904.00141).

R. Yentis and M.E. Zaghoul. VLSI implementation of locally connected neural network for solving

partial differential equations. IEEE Trans. Circuits Syst. I, 43:687-690, 1996.

63

[67] Y. Yu, R.M. Kirby, and G.E. Karniadakis. Spectral element and hp methods. Encyclopedia of Compu-
tational Mechanics, John Wiley and Sons, NY, 1:1-43, 2017.

[68] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial differential
equations. Journal of Computational Physics, 411:109409, 2020.

[69] X. Zheng and S. Dong. An eigen-based high-order expansion basis for structured spectral elements.

Journal of Computational Physics, 230:8573-8602, 2011.

64

	Introduction
	Computing the Optimal Rm Constant(s) in ELM
	The Maximum Magnitude of Random Coefficients (Rm)
	ELM Configuration with a Single Rm Constant (Single-Rm-ELM)
	ELM Configuration with Multiple Rm Constants (Multi-Rm-ELM)

	Numerical Examples
	General Notes on the Implementations
	Function Approximation
	Poisson Equation
	Nonlinear Helmholtz Equation
	Viscous Burgers' Equation

	Concluding Remarks

